33 LITCHFIELD STREET ROCHESTER, MONROE COUNTY, NEW YORK

Prepared for:

New York State Department of Environmental Conservation 6274 East Avon-Lima Road Avon, New York 14414

Prepared on behalf of:

Carriage Factory Special Needs Apartments, L.P. 1931 Buffalo Road Rochester, New York 14624

Prepared by:

Stantec Consulting Services Inc. 61 Commercial Street, Suite 100 Rochester, New York 14614

April 11, 2017

Table of Contents

1.0	INTROD	DUCTION AND OVERVIEW	1
1.1		ARY OF SITE CONTAMINATION AND REMEDIAL HISTORY	
1.2	SITE MA	NAGEMENT REQUIREMENTS	3
1.3	EFFECTI	Iveness of the remedial program	Z
	1.3.1	Groundwater Sampling	Z
	1.3.2		7
	1.3.3		8
	1.3.4	Sump Sampling	8
1.4	COMPL	LIANCE	c
1.5	RECOM	MENDATIONS	
2.0	REMED	Y PERFORMANCE, EFFECTIVENESS, AND PROTECTIVENESS	9
3.0	COMPL	IANCE WITH IC/EC REQUIREMENTS AND THE OM&M PLAN	10
4.0	OVERA	LL CONCLUSIONS AND RECOMMENDATIONS	10

TABLES

- 1 Monthly Monitoring of the Sub-Slab Depressurization System
- 2 Summary of Analytical Results in Groundwater
- 3 Summary of Groundwater Field Parameters
- 4 Summary of Groundwater Elevations
- 5 Quarterly and Annual Monitoring of the Sub-Slab Depressurization System
- 6 Summary of Analytical Results in Post-Construction Purge Water and Discharge Permit Samples

FIGURES

- 1 Site Location Map
- 2 Groundwater Monitoring Wells
- 3 Summary of CVOC Degradation Over Time All Wells
- 4 Annual Sub-Slab Vacuum Monitoring of the SSDS

APPENDICES

- A IC/EC Certification Forms
- B Field Monitoring Logs
- C Laboratory Analytical Reports
- D Data Usability Summary Reports

1.0 INTRODUCTION AND OVERVIEW

Stantec Consulting Services Inc. (Stantec) has prepared this Periodic Review Report (PRR) and the attached Institutional Control/Engineering Control (IC/EC) forms (see Appendix A) to summarize Site Management (SM) activities at The Former Carriage Factory located at 33 Litchfield Street, Rochester, New York (Site) for the period of March 16, 2016 to March 16, 2017.

This PRR is prepared on behalf of Carriage Factory Special Needs Apartments, L.P. (CFSNA), the current owner of the Site, to fulfill the PRR requirements of the Brownfield Cleanup Agreement (BCA) under the Brownfield Cleanup Program (BCP) of the New York State Department of Environmental Conservation (NYSDEC). The Site is identified by the NYSDEC as BCA Site Number C828184.

The Site is a 1.5±-acre parcel bounded by Wiley Street and DeVault Storage Services, Inc. to the north, a parking lot to the south, Litchfield Street and a warehouse to the east, and Clark Alley and residences to the west. A Site Location Map is presented on Figure 1.

1.1 SUMMARY OF SITE CONTAMINATION AND REMEDIAL HISTORY

The building was originally built in 1900 for the production of horse-drawn carriages, and is one of the oldest former manufacturing plants in Rochester. Historical Site operations included manufacture of wood trim/accent-related products for the automobile industry, other automotive parts, and clothing washers and dryers. Operations at the site ceased in approximately 1993.

Beginning in 2010, a series of Phase I and Phase II Environmental Site Assessments (ESAs) were performed by Development and Environmental Consultants, Inc. (DECI) in association with real estate due diligence by CFSNA prior to its potential purchase of the property. Results of these investigations indicated the presence of chlorinated volatile organic compounds (CVOCs) in soil and/or in groundwater at concentrations above the applicable NYSDEC's soil cleanup objectives (SCOs) and groundwater standards. Additionally, urban fill consisting of ash, slag, cinders, bricks, concrete, and varying amounts of silt, sand, and gravel was encountered at most exterior locations with thicknesses ranging from 1.8 to 4.4 feet.

Based on the results of the ESAs, CFSNA entered the NYSDEC's BCP in February, 2013. Soon thereafter, construction began on renovation of the building for use as apartments. Stantec concurrently performed a Remedial Investigation (RI) to further identify and delineate contamination at the Site. Details of the RI activities and methodology are presented in the Remedial Investigation Report dated August, 2014. The RI further characterized the extent of contamination at the site: a soil gas survey identified the areal extent of CVOC impacts; a geophysical survey inside the building indicated numerous buried pipe runs; surface soil samples in urban fill material exhibited concentrations of several metals, including lead, mercury, arsenic, and barium, at levels in excess of NYSDEC Restricted Residential (RR) SCOs; groundwater monitoring well installation and subsequent gauging showed that groundwater levels were highest beneath the building and flow direction was radially away from the building; groundwater sampling showed that samples from thirteen of the sixteen monitoring wells on and

near the Site exceeded groundwater standards for one or more CVOC; and the types and concentration distribution of CVOCs were indicative that reductive dechlorination of these contaminants was occurring naturally.

Based on the results of the RI, an Interim Remedial Measures Work Plan (IRMWP) was submitted to the NYSDEC in May, 2013 and was approved on August 30, 2013. To accomplish the objectives of the IRMWP, Stantec performed the following primary activities:

- Observed and documented construction activities that involved soil excavation, grading, handling, stockpiling and disposal;
- Arranged for and documented pumping, containerizing, treatment and/or discharge of groundwater entering excavations;
- Performed visual and instrument screening of excavated and in-situ soils;
- Obtained permits on behalf of CFSNA from the Monroe County Department of Environmental Services (MCDES) for temporary and long-term discharge of impacted groundwater to the sanitary sewer;
- Developed a Contained-In Demonstration Work Plan (CIDWP) to address the characterization and disposal of chlorinated solvent-impacted soils;
- Collected samples of known, suspected, or potentially-impacted media for laboratory analysis, including:
 - o Soils in interior and exterior excavations to confirm contaminant levels in remaining
 - Stockpiles of impacted and non-impacted materials in accordance with CIDWP requirements and to obtain landfill disposal approval or to demonstrate acceptability for onsite reuse;
 - Soil from supplemental exterior test borings performed in areas of known CVOC impacts, in accordance with the CIDWP;
 - Waters entering interior excavations or the elevator pit for characterization to obtain sewer discharge approval; and
 - o Groundwater from monitoring wells for remedial program monitoring.
- Designed and oversaw installation of a piping system beneath the building to facilitate injection of a carbon substrate material as part of the enhanced reductive dechlorination (ERD) groundwater remediation program;
- Designed and oversaw installation of a vapor barrier and a sub-slab depressurization system (SSDS) to mitigate the potential for soil vapor intrusion (SVI) into the building;
- Facilitated waste profile preparation and landfill approval for disposal of impacted soils;
 and
- Performed injection of a sodium lactate solution to provide the carbon substrate for the ERD groundwater remediation program.

Based on observations and sampling data from the RI and IRM programs, contamination remained in subsurface soils and groundwater at the site:

- Interior Soils Although the majority of impacted soil was removed from the basement during several phases of excavation, occasional indications of remaining contamination, specifically in the atrium area, in the form of minor staining or low-level photoionization detector (PID) readings were observed. Accordingly, the potential for impacted soil to be encountered in the basement still existed. As noted above, a SSDS has been installed to mitigate the potential for sub-slab vapors to enter the building.
- Exterior Soils Virtually all of the exterior areas south of the building were excavated for
 driveway and parking lot construction, sidewalk and landscape area development or
 utility installation. In all of these areas, a demarcation layer (filter fabric or Geogrid) was
 placed at the base of the excavations prior to placing backfill soils or other materials
 (clean backfill soil/topsoil, concrete, paving stones or asphalt).
- <u>Groundwater</u> Groundwater monitoring events conducted after the sodium lactate injection described above indicated that the parent VOCs tetrachloroethylene (PCE) and trichloroethylene (TCE) were degrading into the daughter compounds of the cisand trans- isomers of 1,2-dichloroethylene (1,2-DCE) and vinyl chloride (VC); however, concentrations remained above groundwater standards for some wells.

During November, 2015, a supplemental ERD injection was performed at the Site. Over 16,500 gallons of a 20,000 milligrams per liter (mg/L) sodium lactate and water solution were injected into the nine horizontal sub-slab injection legs and into groundwater monitoring wells RW-4 and B102-MW located south of the building. The supplemental injection improved the groundwater geochemistry conditions needed to continue the ERD process. Consequently, CVOC concentrations continued to decline in all wells.

1.2 SITE MANAGEMENT REQUIREMENTS

Site Management activities were implemented in accordance with the NYSDEC-approved Site Management Plan (SMP) for the Site. The SMP includes the following required Institutional Controls (ICs) and Engineering Controls (ECs):

- The property uses are limited to Restricted Residential, Commercial and Industrial as described in 6 NYCRR Part 375-1.8(g)(2)(ii-iv) as long as the following long-term controls are employed:
 - o The SSDS is operated continuously to mitigate the potential for SVI.
 - o Operation of the elevator pit sump pump and pumping to a sanitary sewer for treatment at an approved POTW (groundwater extraction and ex-situ treatment).
 - o The soil cover system, building floor slabs, and sub-slab vapor barrier are maintained. NYSDEC approval must be obtained in advance for activities which breach impervious surfaces or disturb soils on the Site, and those activities must be performed in accordance with the SMP.

- Components of the in-situ groundwater remediation system which includes piping installed beneath the building slab and access points located immediately to the south of the building remain intact and undisturbed.
- Other than sampling for monitoring purposes, the use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Monroe County Department of Health to render it safe for use for its intended, non-potable industrial purpose, and the user must first notify and obtain written approval to do so from the NYSDEC. Groundwater is prohibited from use as a potable water supply within the City of Rochester limits.
- The Site may not be used for purposes with a higher level of use, such as *Unrestricted* or Residential, without additional remediation and amendment of the NYSDEC-approved Environmental Easement.
- Deed Restrictions have been implemented to restrict land use to Restricted Residential, Commercial, and Industrial uses, restrict the use of groundwater, and prevent future exposure to any contaminants of concern remaining at the Site.
- Vegetable gardens and farming on the property are prohibited.
- Annually (or as otherwise directed by NYSDEC), CFSNA must certify to the Department as
 to the continued presence and effectiveness of the ICs/ECs described above.

The SMP specifies a program for monthly system performance monitoring of the SSDS. The CFSNA employees perform routine monitoring including:

- Verifying normal system operating conditions and making observations of any abnormalities, whether visual, olfactory or auditory, with respect to the SSDS; and
- Recording of vacuum levels at SSDS fan manometers located in the fifth-floor utility room.

Data is recorded on the Monthly Monitoring Form provided in Appendix I of the SMP and is included here as Table 1 and field logs are provided in Appendix B.

1.3 EFFECTIVENESS OF THE REMEDIAL PROGRAM

1.3.1 Groundwater Sampling

During the reporting period covered by this PRR, three post-supplemental-injection (PS) groundwater sampling events were completed: May 2016 (6 months PS), August 2016 (9 months PS), and February 2017 (15 months PS). As per the SMP, the following wells have been included in each sampling event: RW-1, RW-2, RW-3, RW-4, RW-5, RW-6, RW-7, RW-9, RW-12, B102-MW, B106-MW, and B108-MW. Well locations are provided on Figure 2. Analytical results from these three events, in addition to previous groundwater sampling results, are included on Table 2, and laboratory analytical reports are included in Appendix C. As specified in the SMP, all groundwater monitoring analytical results have been validated by a qualified professional (Data Validation Services of North Creek, NY) and Data Usability

Summary Reports (DUSRs) for the groundwater sampling data are provided in Appendix D. Figure 3 shows concentrations of CVOCs at the wells listed above over time. Table 3 displays water quality parameters recorded during each of the groundwater sampling events that have occurred during this reporting period as well as previous events.

Six Months Post-Supplemental-Injection

Analytical results from the second round of PS groundwater sampling performed on May 2 and 3, 2016 reflect groundwater conditions six months after the supplemental injection of the sodium lactate solution. The parent VOCs PCE and TCE continued to degrade into the daughter compounds of the cis- and trans- 1,2-DCE and VC, before proceeding to complete destruction. Of the twelve wells sampled, all had PCE concentrations below the groundwater standard (5 μ g/L) and eleven had TCE concentrations below the groundwater standard (5 μ g/L). The parent compounds were not detected at RW-6, but slightly elevated detection limits of 20 μ g/L, due to elevated concentrations of cis-1,2-DCE and VC, may have masked the potential presence of PCE and TCE between 5 and 20 μ g/L. A TCE concentration slightly above the groundwater standard of 5 μ g/L was only detected at RW-9 (6.51 μ g/L), an offsite well that has not been subjected to sodium lactate injections.

Daughter compound concentrations also continued to decline at most wells from peak levels observed within the first six months of the remediation program. Eight of the twelve monitoring wells (B102-MW, B106-MW, RW-2, RW-3, RW-4, RW-5, RW-7, and RW-12) were below groundwater standards for all VOCs. RW-1 contained only VC at 2.75 μ g which is only slightly above the groundwater standard of 2 μ g/L μ g/L. Therefore, including RW-1 and RW-9, ten of the twelve wells were either below or only slightly above groundwater standards groundwater standards.

The highest concentrations of daughter compounds were observed at offsite well RW-6 (1,910 μ g/L cis-1,2-DCE, 18.0 μ g/L trans-1,2-DCE, and 624 μ g/L VC). These concentrations represented a decrease for VC concentrations from the previous event, but an increase for cis- and trans-1,2-DCE.

Nine Months Post-Supplemental-Injection

Analytical results from the third round of PS groundwater sampling performed on August 9 and 10, 2016 reflect groundwater conditions nine months after the supplemental injection of the sodium lactate. PCE and TCE continued to degrade into cis- and trans-1,2-DCE and VC before proceeding to complete destruction.

Of the twelve wells sampled, eleven had PCE concentrations below groundwater standards and all twelve had TCE concentrations below groundwater standards. PCE and TCE were not detected at RW-6, but slightly elevated detection limits of 20.0 μ g/L, due to elevated cis-1,2-DCE and VC, may have masked the potential presence of the parent compounds between 5 and 20 μ g/L. A PCE concentration

 $(5.52 \,\mu\text{g/L})$ slightly above the groundwater standard was detected only in RW-9, an offsite well that has not been subjected to sodium lactate injections.

Three of the twelve wells (B102-MW, RW-7, and RW-12) were below groundwater standards for all VOC's. The reduction in the number of wells below groundwater standards during the August 2016 sampling event is believed to be the result of the severe drought conditions which were manifested in groundwater elevations one to several feet lower than typical conditions (see Table 4). Nevertheless, with the exception of VC, daughter compound concentrations generally continued to decline, or remain below groundwater standards at most wells. Four wells (RW-1, RW-2, RW-3, and RW-4) contained only VC; concentrations ranged from 3.56-5.78 µg/L. Therefore, eight of the twelve wells were either below or only slightly above groundwater standards for all VOCs.

The highest concentrations of daughter compounds continued to be observed at offsite well RW-6 (344 μ g/L cis-1,2-DCE, 20.0 μ g/L trans-1,2-DCE, and 201 μ g/L VC), however, these concentrations represent substantial decreases from the previous event.

Anaerobic and reducing conditions were maintained creating favorable geochemical conditions for continued dechlorination. Given continued improvements to groundwater quality as a result of the ERD Injection Program, Stantec requested NYSDEC approval for reducing the groundwater monitoring program to semi-annual sampling events. In November, 2016, NYSDEC approved the request and groundwater sampling activities were henceforth conducted semi-annually.

Fifteen Months Post-Supplemental Injection

Analytical results from groundwater sampling performed on February 13 and 14, 2017 reflect groundwater conditions fifteen months after the supplemental injection of the sodium lactate. PCE and TCE continued to degrade into 1,2-DCE and VC, before proceeding to complete destruction. Of the twelve wells sampled, ten had PCE concentrations below groundwater standards and eleven had TCE concentrations below groundwater standards. PCE concentrations slightly above the groundwater standard were detected at only wells RW-6 and RW-9 (5.58 μ g/L and 5.06 μ g/L, respectively), while TCE was detected above the groundwater standard at only RW-6 at a concentration of 22.2 μ g/L.

Daughter compound concentrations also continued to decline at most wells from peak levels observed within the first six months of the remediation program. Ten of the twelve monitoring wells (B102-MW, B106-MW, RW-1, RW-2, RW-3, RW-4, RW-5, RW-7, RW-9, and RW-12) were below groundwater standards for cis-1,2-DCE, trans-1,2-DCE, and VC. Of these ten wells, both B102-MW and RW-12 have been below groundwater standards since February 2016. Therefore, it is recommended that periodic sampling of these two wells no longer be required.

Of the two remaining wells, the highest concentrations of daughter compounds were observed at offsite well RW-6 (277 μ g/L cis-1,2-DCE, and 147 μ g/L VC). These concentrations represent a continual decrease from the previous two sampling events and are indicative of ongoing reductive dechlorination. Only minor exceedances of daughter compound concentrations were observed at B108-MW with 7.2 μ g/L of cis-1,2-DCE and 3.51 μ g/L of VC.

Based on the February 2017 groundwater parameter monitoring data which is provided in Table 3, the primary and supplemental carbon substrate injections have continued to maintain optimal anaerobic (DO < 2.0 mg/L) and reducing (negative ORP) conditions across the targeted plume of the Site. Of the 12 monitoring wells used for ERD monitoring, 11 have negative ORP values, with 7 having values less than -100 mV. Monitoring well RW-9, located outside and upgradient of the targeted plume area, and which never received the ERD injection, was the only well to have DO levels greater than 2.0 mg/L and positive ORP values.

Significant contaminant reduction continues to be observed since implementation of the ERD remediation program. The lower concentrations of parent compounds and greater levels (order of magnitude) of daughter compounds, combined with anaerobic and reducing geochemistry conditions, indicate biodegradation of VOCS is continuing within the targeted plume area. With the exception of the recommended deletion of B102-MW and RW-12 from the sampling program, it is recommended that the current groundwater monitoring program continue in order to monitor progress of the ERD remediation program.

1.3.2 Sub-Slab Depressurization System Monitoring

The SSDS active parameters are monitored monthly by CFSNA. This includes collecting vacuum readings from the manometers and confirming that the fans are powered on. These observations are presented on Table 1 and copies of the field sheets are presented in Appendix B. The fans remained powered on for the duration of this reporting period and vacuum measured at the manometers remained consistently between 2.0 and 2.4 inches of water column (IWC) for all three fans.

As recommended in the previous PRR, monitoring of the six vacuum monitoring points (VMPs) located throughout the building (see locations Figure 4) occurred at a quarterly frequency during this reporting period. A micro-manometer was used to measure the vacuum at each VMP. The data collected during these quarterly monitoring events are included in Table 5. Additionally, on May 3, 2016, the SSDS fans were shut off for two hours to allow condensate in the riser pipes to drain back into the sub-slab gravel, as recommended in the previous PRR. This appeared to have improved vacuum at all six VMPs. In summary, the SSDS has maintained its area of influence beneath the building, and the vacuum readings have satisfied the minimum negative pressure differential of 0.002 IWC required by the New York State Department of health (NYSDOH) guidance. The readings ranged from 0.009 in VMP-1 (December 2016) to 0.205 IWC in VMP-5 (May 2016).

An annual SSDS monitoring event was conducted on February 14, 2017. In addition to monitoring the VMPs, the vacuum was also measured at the three vapor extraction wells at a position in the piping just below their respective fans. VOC readings were taken with a PID from the exhaust pipes from each of the fans. The data collected during this monitoring event are included in Table 5. The VMP data is illustrated on Figure 4.

In addition to the data collected during the annual SSDS monitoring event in February, 2017, the system components and building floor were inspected for visible cracks or audible indications of air leakage. No cracks or leaks were observed in any accessible system components or in the building floor. No new penetrations were observed in the building floor. A slight gurgling sound was observed on December 6, 2016 and February 14, 2017 in SSDS Riser Pipes 1 and 2 (Riser Pipe 3 is currently inaccessible as it is located behind a wall) suggesting that condensate or groundwater may have been present in the lower portions of the riser pipes.

In the previous PRR, it was recommended that VMP-2 be repaired due to a broken connection between the brass sampling valve and the PVC riser pipe. This repair was made on December 6, 2016 by replacing the brass valve with a PVC adapter and cap and sealing the threads with putty. The brass-PVC connections at VMP-3 and VMP-4 were also sealed with putty. To ease the vacuum monitoring procedure, at points where sufficient space was left between the monitoring valve and the well box lid during VMP construction (VMP-1, VMP-5, and VMP-6) the brass monitoring valves were left open and PVC caps were added to keep the VMPs sealed while not in use.

1.3.3 Intrusive Activities

During the current reporting period, no intrusive work that disturbed the building floor slab or the exterior Site cover was undertaken.

1.3.4 Sump Sampling

On a quarterly basis Stantec has collected a sample from the groundwater sump located in the elevator pit which drains to the building sanitary plumbing discharge. These samples were analyzed for Halogenated VOCs and metals Cd, Cu, Pb, and Zn as required by MCDES under sewer use permit SUP-996. The analytical results were well below permit discharge limits and VOCs have been undetected in sump samples since September, 2014. Analytical results for the sump samples are presented on Table 6.

In addition to the water pumped from the sump, Stantec also has discharged groundwater purged during sampling to the building sanitary discharge as outlined in the permit. Prior to discharging purge water, it was sampled and results were approved by MCDES. Analytical results for the purge water are presented on Table 6.

As of March 13, 2017, a combined total of 6,463 gallons of elevator sump water and groundwater has been discharged to the sanitary sewer.

1.4 COMPLIANCE

Compliance with the SMP was maintained throughout the reporting period.

1.5 RECOMMENDATIONS

Based on the analytical results from the 2016 and 2017 groundwater monitoring, it is recommended that wells B102-MW and RW-12 be eliminated from future sampling since both of the wells have been below groundwater standards for one year. Otherwise, it is proposed to continue sampling the wells in accordance with the methodology set out in the SMP and the Enhanced Reductive Dechlorination – Supplemental Injection Work Plan (Injection Work Plan) at the semi-annual frequency approved by the NYSDEC in November 2016.

It is recommended that VMP measurements continue to be made at a quarterly frequency, and if a significant drop in overall vacuum level is observed, an effort be made to drain condensate from the vapor extraction wells. An initial effort could be made by shutting down the fans for approximately two hours during summer inspections (when adequate first-floor ventilation could be maintained) to allow any condensate to drain back into the slab sub-base material. This would be a temporary remedy as the condensate may again collect in the base portions of the extraction wells over time. If this is found to occur within a period of one quarter, it may be prudent to install drain ports in the vapor extraction wells.

Coordination between CFSNA staff and Stantec will continue to ensure effective implementation of the SMP, including monthly reminders to record SSDS readings from the fifth floor utility room.

No change to the currently approved frequency of PRR (currently annual) is recommended at this time.

2.0 REMEDY PERFORMANCE, EFFECTIVENESS, AND PROTECTIVENESS

Based upon the data obtained and observations made, the ECs appear to be performing well, and the ECs and ICs have been effective at maintaining conditions protective of human health and the environment for the continued *Restricted Residential* use of the Site. Furthermore, based on the groundwater and SSDS monitoring events and related observations that took place during this reporting period, it appears that the SSDS has maintained sufficient vacuum influence beneath the building.

In accordance with the methodology and schedule set out in the SMP, the Injection Work Plan, the 2016 PRR, and the groundwater sampling frequency established in November 2016, it is proposed to continue: (i) the quarterly sampling and analysis of the elevator sump; (ii) the semi-annual sampling of the groundwater (with the exception of wells B102-MW and RW-12, which

are proposed for elimination from sampling); and (iii) the quarterly vacuum measurement of the VMPs.

3.0 COMPLIANCE WITH IC/EC REQUIREMENTS AND THE OM&M PLAN

During the reporting period, compliance with required ICs and ECs has been maintained.

- Use of the Site has been limited to Restricted Residential uses.
- The SSDS has been operated continuously and is currently achieving adequate sub-slab depressurization.
- The elevator sump pump continued operation during the reporting period and pumped water to a sanitary sewer for treatment at an approved POTW.
- No groundwater use has occurred at the Site.
- Deed Restrictions are in place to restrict land use to Restricted Residential, Commercial, and Industrial uses, restrict the use of groundwater, and prevent future exposure to any contaminants of concern remaining at the Site.

IC/EC forms certifying to the NYSDEC the continued presence and effectiveness of the controls described above are presented in Appendix A.

Monthly SSDS monitoring has been performed by the CFSNA employees, including:

- Verifying normal system operating conditions and making observations of any abnormalities, visual, olfactory, or auditory, with respect to the system; and
- Recording of vacuum levels at fan manometers located in the fifth-floor utility room.

4.0 OVERALL CONCLUSIONS AND RECOMMENDATIONS

Based on the sampling results and observations from the 2016 and 2017 groundwater sampling events, it is recommended that wells B102-MW and RW-12 be eliminated from future sampling since both of the wells have been below groundwater standards for one year. Otherwise, it is proposed to continue sampling the on- and offsite wells in accordance with the methodology set out in the SMP and the Injection Work Plan at the semi-annual frequency established in November 2016. The elevator sump will continue to be sampled on a quarterly basis as required by the MCDEDS permit.

Based on the 2017 annual SSDS monitoring event, it is recommended to continue monitoring the sub-slab vacuum levels at the six VMPs quarterly.

CFSNA employees will continue their monthly monitoring of the fan manometers and SSDS system operating conditions and submit this data to Stantec for review. Stantec will provide monthly reminders to CFSNA to make sure the data is recorded as specified in the SMP.

No change to the currently approved frequency of PRR (currently annual) is recommended at this time.

Tables

		Vacuun	n (inches Water (Column)	Pilo	ot Light ON (Y or	N)*	Additional Notes
Date	Operator	FAN-1 (west)	FAN-2 (center)	FAN-3 (east)	FAN-1	FAN-2	FAN-3	(Abnormal conditions such as hot fan housings, vibrations, unusual noises, etc)
3/17/16	DePaul	2.3	2.3	2.1	Υ	Υ	Υ	
4/7/16	DePaul	2.2	2.2	2.0	Υ	Υ	Y	
5/3/16	DePaul	2.2	2.2	2.0	Υ	Υ	Y	
6/7/16	DePaul	2.1	2.2	2.0	Υ	Υ	Y	
7/13/16	DePaul	2.1	2.2	2.0	Υ	Υ	Υ	
8/2/16	DePaul	2.1	2.2	2.0	Υ	Υ	Υ	
8/10/16	Stantec	2.1	2.2	2.0	Υ	Υ	Υ	
9/22/16	DePaul	2.1	2.2	2.0	Υ	Υ	Υ	
10/26/16	DePaul	2.1	2.2	2.0	Υ	Υ	Υ	
11/25/16	DePaul	2.1	2.2	2.0	Υ	Υ	Υ	
12/1/16	DePaul	2.1	2.2	2.0	Υ	Υ	Υ	
1/11/17	DePaul	2.2	2.2	2.0	Υ	Υ	Υ	
2/13/17	DePaul	2.4	2.4	2.0	Υ	Υ	Υ	
3/16/17	DePaul	2.3	2.3	2.0	Y	Y	Y	

 $^{^{\}star}$ If one or more pilot lights are OFF, contact Stantec immediately at 585-475-1440.

Table 2
Summary of Analytical Results in Groundwater
Remedial Investigation
Former Carriage Factory
33 Litchfield Street, Rochester, New York

Area		1	ı								_	n-Site Parkina L	ot								
Area Sample Location			p10	1MW	1						C	ııı-sıte rarkıng L	B102MW								
Sample Location Sample Date			21-May-13	21-May-13	22-May-13	27-Mar-14	27-Mar-14	28-May-14	2-Jul-14	6-Aug-14	28-Oct-14	3-Feb-15	3-Feb-15	4-May-15	4-May-15	12-Aug-15	12-Aug-15	1-Feb-16	3-May-16	9-Aug-16	14-Feb-17
sumple bule			LI-B101MW-	LI-B101MW-	LI-B102MW-	27-Mai-14	27-Mai-14	LI-B102-MW-	LI-B102-MW-	LI-B102-MW-	LI-B102-MW-	LI-B102-MW-		LI-B102-MW-	4-Muy-13	LI-B102-MW-	12-A0g-13	LI-B102-MW-	LI-B102-MW-	LI-B102-MW-	LI-B102-MW
Sample ID			GW1	GW1DUP	GW1	LI-B102-MW	LI-DUP-MW	PI1	PI2	PI3	PI6	PI9	LI-DUP-PI9	PI12	LI-DUP-PI12	PI15	LI-DUP-PI15	PS3	PS6	PS9	PS15
Sampling Company			STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory			CCGE	CCGE	CCGE	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH
Laboratory Work Order			E2314	E2314	E2342	141138	141138	142196	142794	143439	144730	150382	150382	151696	151696	153411	153411	160464	161713	163436	170564
Laboratory Sample ID			E2314-01	E2314-02	E2342-04	141138-11	141138-14	142196-07	142794-09	143439-10	144730-10	150382-05	150382-13	151696-11	151696-10	153411-06	153411-07	160464-06	161713-10	163436-10	170564-10
Sample Type	Units	TOGS		Field Duplicate			Field Duplicate						Field Duplicate		Field Duplicate		Field Duplicate				
				Doplicale			Doplicale						Doplicale		Doplicale		Doplicale				
General Chemistry			1		1																
Total Organic Carbon	μg/L	n/v	_		Τ.	6,000	4,600	15,200	146,000	24,600	7,300	6,500	6,000	5,400	5,300	7,500 J-	7,400 J-	39,400	5,220	2,620	1,780
Metals	P9/1	11/ *			1	0,000	4,000	10,200	140,000	24,000	7,000	0,000	0,000	3,400	3,000	7,500 3	7,400 3	07,400	0,220	2,020	1,700
Aluminum	μg/L	n/v	36.9	32.5	Τ.		_	_	_			_			_	_	_	_	_	_	
Antimony	µg/L	3 ^B	12.5 U	12.5 U	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Arsenic	µg/L	25 ^B	5.000 U	5.000 U	-	10 U	10 U	10 U	10 U	10 UJ	10 U	5.98 J	6.89 J	7.92 J	10.4	19.5 J-	23.5 J-	_	_	<u>-</u>	_
Barium	μg/L	1,000 ^B	62	69.6	-	-	-	-	-	-	-	-	-	-	-	-	-	_	_	_	_
Beryllium	μg/L	3 ^A	1.500 U	1.500 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	_	_
Cadmium	μg/L	5 ^B	1.500 U	1.500 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Calcium	μg/L	n/v	121,000	132,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chromium	μg/L	50 ^B	2.500 U	2.500 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cobalt	μg/L	n/v	7.500 U	7.500 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Copper	μg/L	200 ^B	5.000 U	5.000 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Iron	μg/L	300 _* ^B	25.0 U	25.0 U	-	100 U	100 U	4,330 ⁸	9,940 ^B	6,480 ⁸	10,700 ^B	13,900 ⁸	13,600 ^B	10,000 ^B	10,100 ⁸	17,000 J- ^B	18,400 J- ^B	-	-	-	-
Lead	μg/L	25 ^B	12.6	12.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Magnesium	μg/L	35,000 ^A	30,600	33,100	-	R	- 	- 	- B		-	-	B	R	R	B	B	-	-	-	-
Manganese	μg/L	300+ ^B	5.42 J	5.53 J	-	694 ^B	675 ^B	1,070 ⁸	2,280 ⁸	1,200 ⁸	1,060 ⁸	844 ^B	838 ⁸	945 ⁸	949 ^B	1,980 J- ⁸	2,010 J- ⁸	-	-	-	-
Mercury Nickel	µg/L	0.7 ⁸ 100 ⁸	0.200 U 2.52 J	0.200 U 10.0 U	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Potassium	μg/L μg/L	n/v	9,810	11,100			_	_										_	_	_	
Selenium	µg/L	10 ^B	5.92	4.23 J	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Silver	μg/L	50 ^B	2.500 U	2.500 U	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Sodium	µg/L	20,000 ^B	24,700 ^B	27,600 ^B	-	18,500	18,100	41,100 ^B	169,000 ^B	83,100 M ^B	63,800 ^B	58,000 ⁸	58,900 ^B	49,800 ^B	50,300 ⁸	450,000 J- ^B	455,000 J- ^B	-	-	-	_
Thallium	μg/L	0.5 ^A	10.0 U	10.0 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vanadium	μg/L	n/v	10.0 U	10.0 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Zinc	μg/L	2,000 ^A	12.4	10.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Volatile Organic Compounds																					
Acetone	μg/L	50 ^A	25 U	25 U	25 U	10.0 U	10.0 U	10.0 U	6.54 J	10.0 U	10.0 U	10.0 UJ	10.0 UJ	10.0 U	10.0 U	10.0 UJ	10.0 UJ	10.0 U	10.0 U	10.0 U	10.0 UJ
Benzene	µg/L	1 ^B	5 U	5 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.00 UJ	1.00 UJ	1.00 U	1.00 U	1.00 U	1.00 U
Bromodichloromethane	μg/L	50 ^A	5 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
Bromoform (Tribromomethane)	μg/L	50 ^A	5 U	5 U	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U
Bromomethane (Methyl bromide)	μg/L	5 ^B	5 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 UJ	2.00 U	2.00 U				
Butylbenzene, n-	μg/L	5 ^B	=	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Butylbenzene, sec- (2-Phenylbutane)	μg/L	5B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Butylbenzene, tert- Carbon Disulfide	μg/L μg/L	60 ^A	5 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
Carbon Tetrachloride (Tetrachloromethane)	μg/L	5 ^B	5 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
Chlorobenzene (Monochlorobenzene)	µg/L	5B	5 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
Chlorobromomethane	μg/L	5** ^B	5 U	5 U	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U
Chloroethane (Ethyl Chloride)	μg/L	5++ ^B	5 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
Chloroethyl Vinyl Ether, 2-	µg/L	n/v	-	-	-	_	-	-	_	-	-	-	-	_	_	_	-	-	-	-	-
Chloroform (Trichloromethane)	μg/L	7 ^B	5 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
Chloromethane	μg/L	5** ^B	5 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
Cyclohexane	μg/L	n/v	5 U	5 U	5 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 UJ	10.0 UJ	10.0 U	10.0 U	10.0 U	10.0 U
Dibromo-3-Chloropropane, 1,2- (DBCP)	μg/L	0.04 ^B	5 U	5 U	5 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 UJ	10.0 UJ	10.0 U	10.0 U	10.0 U	10.0 U
Dibromochloromethane	μg/L	50 ^A	5 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
Dichlorobenzene, 1,2-	μg/L	3 ^B	5 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
Dichlorobenzene, 1,3-	μg/L	3 ^B	5 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
Dichlorobenzene, 1,4-	μg/L	3 ^B	5 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
Dichlorodifluoromethane (Freon 12)	μg/L	5B	5 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
Dichloroethane, 1,1-	μg/L	5B	5 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
Dichloroethane, 1,2-	µg/L	0.6 ⁸ 5 _{**} ^B	5 U 5 U	5 U 5 U	5 U 5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
Dichloroethene, 1,1-	μg/L	5***	οU	3 U	οU	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U

Table 2
Summary of Analytical Results in Groundwater
Remedial Investigation
Former Carriage Factory
33 Litchfield Street, Rochester, New York

Volatile Organic Compounds (cont'd)	nits		21-May-13 LI-B101MW- GW1 STANTEC CCGE E2314	1MW 21-May-13 LI-B101MW- GW1DUP STANTEC	22-May-13 LI-B102MW- GW1	27-Mar-14	27-Mar-14	28-May-14	2-Jul-14		1	ı	B102MW						3-May-16	9-Aug-16	
Sample ID Sampling Company Laboratory Laboratory Work Order Laboratory Sample ID Sample Type Un Volatile Organic Compounds (cont'd)	nits		LI-B101MW- GW1 STANTEC CCGE	LI-B101MW- GW1DUP STANTEC	LI-B102MW-		27-Mar-14	28-May-14													
Laboratory Laboratory Work Order Laboratory Sample ID Sample Type Un Volatile Organic Compounds (cont'd)	nits		STANTEC CCGE	STANTEC	GWI	LI-B102-MW	LI-DUP-MW	LI-B102-MW- PI1	LI-B102-MW- PI2	6-Aug-14 LI-B102-MW- PI3	28-Oct-14 LI-B102-MW- PI6	3-Feb-15 LI-B102-MW- PI9	3-Feb-15 LI-DUP-PI9	4-May-15 LI-B102-MW- PI12	4-May-15 LI-DUP-PI12	12-Aug-15 LI-B102-MW- PI15	12-Aug-15 LI-DUP-PI15	1-Feb-16 LI-B102-MW- PS3	LI-B102-MW- PS6	LI-B102-MW- PS9	14-Feb- LI-B102-/ PS15
Laboratory Laboratory Work Order Laboratory Sample ID Sample Type Un Volatile Organic Compounds (cont'd)	nits		CCGE		STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTE
Laboratory Work Order Laboratory Sample ID Sample Type Un Volatile Organic Compounds (cont'd)	nits																				
Laboratory Sample ID Sample Type Un Volatile Organic Compounds (cont'd)	nits			CCGE	CCGE	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARARO
Sample Type Un Volatile Organic Compounds (cont'd)	nits			E2314	E2342	141138	141138	142196	142794	143439	144730	150382	150382	151696	151696	153411	153411	160464	161713	163436	17056
Volatile Organic Compounds (cont'd)	nits		E2314-01	E2314-02	E2342-04	141138-11	141138-14	142196-07	142794-09	143439-10	144730-10	150382-05	150382-13	151696-11	151696-10	153411-06	153411-07	160464-06	161713-10	163436-10	170564-
		TOGS		Field Duplicate			Field Duplicate						Field Duplicate		Field Duplicate		Field Duplicate				
Dichloroethene, cis-1,2- µg				<u> </u>																	
	g/L	5 ^B	5 U	5 U	7.5 ^B	4.45	4.44	4.61	7.04 ^B	68.7 ^B	7.01 ^B	2.00 U	2.00 U	4.10	4.11	2.75 J-	2.74 J-	2.00 U	2.00 U	1.01 J	2.00 (
Dichloroethene, trans-1,2-	g/L	5 ^B	5 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 (
Dichloropropane, 1,2-		1 ^B	5 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00
Dichloropropene, cis-1,3-		0.4 _p ^B	5 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00
1 1	g/L	0.4 _p ^B	5 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00
	g/L	n/v	100 U	100 U	100 U R	20.0 U R	20.0 U R	20.0 U R	20.0 U R	20.0 U R	20.0 U	20.0 U	20.0 U	20.0 UJ	20.0 UJ	20.0 U R	20.0 U R	20.0 U R	20.0 U R	20.0 U R	20.0 U
	g/L	5** ^B	5 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 (
1		0.0006 ^B	5 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00
Hexanone, 2- (Methyl Butyl Ketone)		50 ^A	25 U	25 U	25 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 (
	g/L	5++ ^B	5 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 (
	g/L	5++ ^B	-		_								-		-	-					
Methyl Acetate		n/v	5 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 L
Methyl Ethyl Ketone (MEK) (2-Butanone)		50 ^A	25 U	25 U	25 U	10.0 UJ	10.0 UJ	10.0 U	27.8 J	10.0 U	10.0 UJ	10.0 UJ	10.0 UJ	10.0 U	10.0 U	10.0 UJ	10.0 UJ	9.98 J	10.0 U	10.0 U	10.0 L
Methyl Isobutyl Ketone (MIBK)	-	n/v	25 U	25 U	25 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U
Methyl tert-butyl ether (MTBE)		10 ^A	5 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
	g/L	n/v	5 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
Methylene Chloride (Dichloromethane)		5B	5 U	5 U	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 (
Naphthalene µg	-	10 ⁸	30	30	3.0	3.00 0	3.00 0	3.00 0	3.00 0	3.00 0	3.00 0	3.00 0	3.00 0	3.00 0	5.00 0	3.00 03	3.00 03	3.00 0	3.00 0	3.00 0	3.00 0
		5 ^B	_	_	_		_	_	-	_	_	-	-	-	-	-	_	_	_	_	_
.,		5 ^B	5 U	5 U	-	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U
,					5 U																
	g/L	5 ^B	5 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
Tetrachloroethene (PCE)		5 ^B	1.6 J	1.2 J	20.9 ^B	24.4 ^B	25.4 ^B	20.6 ^B	26.4 ^B	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 L
Toluene µg		5 ^B	5 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 L
	g/L	5 ^B	5 U	5 U	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 L
	g/L	5 ^B	5 U	5 U	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 L
Trichloroethane, 1,1,1-	-	5 ^B	5 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 L
	g/L	1 ^B	5 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 L
	g/L	5 ^B	0.51 J	5 U	14.9 ^B	9.78 ^B	10.2 ^B	7.72 ⁸	15.3 ^B	2.09	2.00 U	2.00 U	2.00 U	2.38	2.42	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 L
	g/L	5 ^B	5 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 L
Trichlorotrifluoroethane (Freon 113)		5++ ^B	5 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 L
Trimethylbenzene, 1,2,4- μg	-	5++ ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trimethylbenzene, 1,3,5- μg		5** ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl Acetate µg		n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
Vinyl Chloride µg	g/L	2 ^B	5 U	5 U	0.53 J	2.00 U	2.00 U	2.00 U	1.45 J	4.49 ^B	20.8 ^B	11.7 NJ ^B	11.9 ^B	11.0 ^B	11.3 ^B	8.78 J- ^B	8.78 J- ^B	2.00 U	2.00 U	1.94 J	1.12 J
Xylene, m & p- μg	g/L	5** ^B	10 U	10 U	10 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 l
Xylene, o- μg	g/L	5** ^B	5 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 l
Total VOC µg	g/L	n/v	2.11	1.2	43.83	38.63	40.04	32.93	84.53	75.28	27.81	11.7	11.9	17.48	17.83	11.53 J-	11.52 J-	9.98	ND	2.95	1.12

Table 2 Summary of Analytical Results in Groundwater Remedial Investigation Former Carriage Factory 33 Litchfield Street, Rochester, New York

Area Sample Location									RV	V-4	n-Site Parking L	.ot						RW-11	
Sample Date			25-Apr-12	22-May-13	26-Mar-14	29-May-14	2-Jul-14	6-Aug-14	29-Oct-14	4-Feb-15	4-May-15	13-Aug-15	1-Feb-16	3-May-16	9-Aug-16	13-Feb-17	14-Jun-12	22-May-13	27-Mar-14
Sample ID			RW-4	LI-RW-4-GW1	LI-RW-4	LI-RW-4-PI1	LI-RW-4-PI2	LI-RW-4-PI3	LI-RW4-PI6	LI-RW-4-PI9	LI-RW-4-PI12	LI-RW-4-PI15	LI-RW-4-PS3	LI-RW-4-PS6	LI-RW-4-PS9	LI-RW-4-PS15	RW-11	LI-RW-11-GW1	LI-RW-11
Sampling Company			DECI	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	DECI	STANTEC	STANTEC
Laboratory			PARAROCH	CCGE	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	CCGE	PARAROCH
Laboratory Work Order			12:1770	E2342	141138	142196	142794	143439	144730	150382	151696	153411	160464	161713	163436	170564	12:2523	E2342	141138
Laboratory Sample ID			12:1770-01	E2342-03	141138-04	142196-13	142794-10	143439-04	144730-04	150382-11	151696-04	153411-13	160464-07	161713-04	163436-04	170564-04	12:2523-03	E2342-02	141138-09
Sample Type	Units	togs																	
General Chemistry																			
Total Organic Carbon	μg/L	n/v	-	-	-	8,200	339,000	63,000	6,900	5,900	5,400	15,000 J-	234,000	141,000	13,400	10,700	=	-	-
Metals																			
Aluminum	μg/L	n/v	-	43.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Antimony	μg/L	3 ^B	-	12.5 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Arsenic	μg/L	25 ^B	-	5.000 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Barium	μg/L	1,000 ^B	-	151	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Beryllium	µg/L	3 ^A	-	1.500 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cadmium	μg/L	5 ^B	-	1.500 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Calcium	μg/L	n/v	-	141,000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chromium	μg/L	50 ⁸	-	2.500 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cobalt	µg/L	n/v	-	7.500 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Copper	µg/L	200 ⁸ 300₊ ⁸	-	5.000 U 11.7 J	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-
Iron Lead	µg/L	25 ^B	-	17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Magnesium	μg/L μg/L	35,000 ^A		29,800	_		_	_	_	_		_	_	_	_		_		
Manganese	µg/L	300+ ^B	_	667 J ^B	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Mercury	µg/L	0.7 ⁸	_	0.200 U	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Nickel	μg/L	100 ^B	-	6.32 J	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_
Potassium	μg/L	n/v	-	17,800	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-
Selenium	μg/L	10 ^B	-	5.52	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-
Silver	μg/L	50 ^B	-	2.500 U N	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sodium	μg/L	20,000 ^B	-	8,750	-	22,300 ^B	298,000 ⁸	222,000 ^B	43,500 ^B	110,000 ^B	86,900 ^B	395,000 J- ^B	-	-	-	-	-	-	-
Thallium	μg/L	0.5 ^A	-	10.0 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vanadium	μg/L	n/v	-	10.0 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Zinc	μg/L	2,000 ^A	-	18.2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Volatile Organic Compounds																			
Acetone	μg/L	50 ^A	10.0 UJ	25 U	10.0 U	6.72 J	10.0 U	12.7 J	10.0 U	10.0 UJ	10.0 U	10.0 UJ	9.92 J	9.13 J	7.45 J	10.0 UJ	=	25 U	10.0 U
Benzene	μg/L	1 ^B	0.700 UJ	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.00 UJ	1.00 U	1.00 U	1.00 U	1.00 U	-	5 U	1 U
Bromodichloromethane	μg/L	50 ^A	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U
Bromoform (Tribromomethane)	μg/L	50 ^A	5.00 UJ	5 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5 U	5.00 U
Bromomethane (Methyl bromide)	μg/L	5B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 UJ	5 U	2.00 U
Butylbenzene, n-	µg/L	5 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Butylbenzene, sec- (2-Phenylbutane)	µg/L	5 ^B	-	-	-	-	_	_	-	-	-	-	-	-	-	-	-	-	-
Butylbenzene, tert- Carbon Disulfide	µg/L	5 ^B 60 ^A	2.00 UJ	5 U	2.00 U	2.00 U	3.04	3.64	2.00 U	2.00 U	2.00 U	2.00 UJ	1.26 J	2.00 U	2.00 U	2.00 U	_	5 U	2.00 U
Carbon Disultae Carbon Tetrachloride (Tetrachloromethane)	μg/L μg/L	5 ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	5 U	2.00 U
Chlorobenzene (Monochlorobenzene)	µg/L	5B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U
Chlorobromomethane	µg/L	5** ^B	-	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	-	5 U Q	5.00 U
Chloroethane (Ethyl Chloride)	µg/L	5** ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U
Chloroethyl Vinyl Ether, 2-	μg/L	n/v	10.0 U R	-	-	-	-		-	-	-	-	-	-	-	-	10.0 U R	-	-
Chloroform (Trichloromethane)	μg/L	7 ^B	2.00 UJ	5 U	2.00 U	2.00 U	1.91 J	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U
Chloromethane	μg/L	5** ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U
Cyclohexane	μg/L	n/v	-	5 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 UJ	10.0 U	10.0 U	10.0 U	10.0 U	-	5 U	10.0 U
Dibromo-3-Chloropropane, 1,2- (DBCP)	μg/L	0.04 ^B	-	5 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 UJ	10.0 U	10.0 U	10.0 U	10.0 U	-	5 U	10.0 U
Dibromochloromethane	μg/L	50 ^A	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U
Dichlorobenzene, 1,2-	μg/L	3 ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U
Dichlorobenzene, 1,3-	μg/L	3 ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U
Dichlorobenzene, 1,4-	μg/L	3 ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U
Dichlorodifluoromethane (Freon 12)	μg/L	5 ^B	-	5 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	-	5 U	2.00 U
Dichloroethane, 1,1-	μg/L	5B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U
Dichloroethane, 1,2-	μg/L	0.6 ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	5 U	2.00 U
Dichloroethene, 1,1- See notes on last page.	μg/L	5** ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U

Table 2
Summary of Analytical Results in Groundwater
Remedial Investigation
Former Carriage Factory
33 Litchfield Street, Rochester, New York

Area											n-Site Parking L	.01				1			
Sample Location Sample Date			25-Apr-12	22-May-13	26-Mar-14	29-May-14	2-Jul-14	6-Aug-14	29-Oct-14	V-4 4-Feb-15	4-May-15	13-Aug-15	1-Feb-16	3-May-16	9-Aug-16	13-Feb-17	14-Jun-12	RW-11 22-May-13	27-Mar-1
Sample ID			RW-4	LI-RW-4-GW1	LI-RW-4	LI-RW-4-PI1	LI-RW-4-PI2	LI-RW-4-PI3	LI-RW4-PI6	LI-RW-4-PI9	LI-RW-4-PI12	LI-RW-4-PI15	LI-RW-4-PS3	LI-RW-4-PS6	LI-RW-4-PS9	LI-RW-4-PS15	RW-11	LI-RW-11-GW1	
Sampling Company Laboratory Laboratory Work Order			DECI PARAROCH 12:1770	STANTEC CCGE E2342	STANTEC PARAROCH 141138	STANTEC PARAROCH 142196	STANTEC PARAROCH 142794	STANTEC PARAROCH 143439	STANTEC PARAROCH 144730	STANTEC PARAROCH 150382	STANTEC PARAROCH 151696	STANTEC PARAROCH 153411	STANTEC PARAROCH 160464	STANTEC PARAROCH 161713	STANTEC PARAROCH 163436	STANTEC PARAROCH 170564	DECI PARAROCH 12:2523	STANTEC CCGE E2342	STANTEC PARAROC 141138
Laboratory Sample ID			12:1770-01	E2342-03	141138-04	142196-13	142794-10	143439-04	144730-04	150382-11	151696-04	153411-13	160464-07	161713-04	163436-04	170564-04	12:2523-03	E2342-02	141138-09
Sample Type	Units	TOGS																	
V/ L III O																			
Volatile Organic Compounds (cont'd)																			
Dichloroethene, cis-1,2-	µg/L	5B	23.1 J ^B	14.9 ⁸	6.41 ^B	9.56 ^B	13.4 ^B	87.9 ⁸	47.3 ⁸	23.7 ⁸	14.8 ⁸	21.8 J- ^B	14.0 ⁸	2.00 U	3.42	4.93	2.00 U	5 U	2.00 U
Dichloroethene, trans-1,2-	µg/L	5B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	1.11 J	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U
Dichloropropane, 1,2-	µg/L	1 ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U
Dichloropropene, cis-1,3-	µg/L	0.4 _p ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U
Dichloropropene, trans-1,3-	µg/L	0.4 _p ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U
Dioxane, 1,4-	µg/L	n/v	-	100 U R	20.0 U R	20.0 U R	20.0 U R	20.0 U R	20.0 U	20.0 U	20.0 UJ	20.0 U R	i -	100 U R	20.0 U R				
Ethylbenzene	µg/L	5++ ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	i -	5 U	2.00 U
Ethylene Dibromide (Dibromoethane, 1,2-)	µg/L	0.0006 ^B	-	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	-	5 U	2.00 U
Hexanone, 2- (Methyl Butyl Ketone)	µg/L	50 ^A	5.00 UJ	25 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	i -	25 U	5.00 U
Isopropylbenzene	µg/L	5++ ^B	-	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	i -	5 U	2.00 U
Isopropyltoluene, p- (Cymene)	µg/L	5++ ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	i -	-	-
Methyl Acetate	µg/L	n/v	-	5 U	2.00 U	2.00 U	2.00 U	2.00 U	5.93	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	-	5 U	2.00 U
Methyl Ethyl Ketone (MEK) (2-Butanone)	µg/L	50 ^A	10.0 UJ	25 U	10.0 UJ	10.0 U	20.8 J	15.8	10.0 UJ	10.0 UJ	10.0 U	10.0 UJ	58.1 ^A	16.1 NJ	10.0 U	10.0 U	i -	25 U	10.0 UJ
Methyl Isobutyl Ketone (MIBK)	µg/L	n/v	5.00 UJ	25 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	-	25 U	5.00 U
Methyl tert-butyl ether (MTBE)	µg/L	10 ^A	-	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	i -	5 U	2.00 U
Methylcyclohexane	µg/L	n/v	-	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	i -	5 U	2.00 U
Methylene Chloride (Dichloromethane)	µg/L	5 ^B	5.00 UJ	5 U	4.35 JB	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5 U	5.00 U					
Naphthalene	µg/L	10 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	i -	-	-
Propylbenzene, n-	µg/L	5 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	i -	-	-
Styrene	µg/L	5 ^B	5.00 UJ	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	-	5 U	5.00 U
Tetrachloroethane, 1,1,2,2-	µg/L	5** ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U
Tetrachloroethene (PCE)	µg/L	5 ^B	62.6 J ^B	55.8 ^B	62.7 ^B	76.0 ^B	73.0 ^B	54.5 ^B	10.3 ^B	9.17 ^B	18.7 ^B	9.40 J- ^B	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	1.3 J	1.11 J
Toluene	µg/L	5 ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	i -	5 U	2.00 U
Trichlorobenzene, 1,2,3-	µg/L	5 ^B	=	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	i -	5 U	5.00 U
Trichlorobenzene, 1,2,4-	µg/L	5 ^B	=	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	=	5 U	5.00 U
Trichloroethane, 1,1,1-	µg/L	5 ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U
Trichloroethane, 1,1,2-	µg/L	1 ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U
Trichloroethene (TCE)	µg/L	5B	21.4 J ^B	19.8 ^B	10.3 ^B	18.0 ⁸	20.4 ^B	34.3 ⁸	13.7 ^B	5.85 ⁸	8.94 ⁸	6.51 J- ^B	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U
Trichlorofluoromethane (Freon 11)	µg/L	5B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	5 U	2.00 U
Trichlorotrifluoroethane (Freon 113)	µg/L	5** ^B	-	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	i -	5 U	2.00 U
Trimethylbenzene, 1,2,4-	µg/L	5++ ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	i -	-	-
Trimethylbenzene, 1,3,5-	μg/L	5++ ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	i -	-	-
Vinyl Acetate	µg/L	n/v	5.00 UJ	-	-	-	-	-	-	-	-	-	-	-	-	-	i -	-	-
Vinyl Chloride	µg/L	2 ^B	3.86 J ^B	1.8 J	1.72 J	2.00 U	3.07 ^B	2.00 U	28.4 ⁸	4.58 NJ ^B	2.00 U	1.42 J-	7.98 ^B	2.00 U	5.78 NJ ^B	1.39 NJ	2.00 U	5 U	2.00 U
Xylene, m & p-	µg/L	5++ ^B	2.00 UJ	10 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	i -	10 U	2.00 U
Xylene, o-	µg/L	5** ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	i -	5 U	2.00 U
Total VOC	μg/L	n/v	110.96	92.3	85.48	110.28	135.62	209.95	105.63	43.3	47.59	39.13 J-	91.26	25.23	16.65	6.32	ND	1.3	1.11
VOC Tentatively Identified Compounds																			

Table 2
Summary of Analytical Results in Groundwater
Remedial Investigation
Former Carriage Factory
33 Litchfield Street, Rochester, New York

Area																On-Site Building	9												
Sample Location									B106MW													B10	8MW						
Sample Date			23-May-13	26-Mar-14	28-May-14	2-Jul-14	7-Aug-14	28-Oct-14	3-Feb-15	5-May-15	12-Aug-15	2-Feb-16	2-May-16	10-Aug-16	13-Feb-17	23-May-13	26-Mar-14	28-May-14	28-May-14	2-Jul-14	8-Aug-14	29-Oct-14	3-Feb-15	5-May-15	12-Aug-15	2-Feb-16	2-May-16	10-Aug-16	13-Feb-17
Sample ID			LI-B106MW- GW1	LI-B106-MW	LI-B106-MW-	LI-B106-MW- PI2	LI-B106-MW- PI3	LI-B106-MW- PI6	LI-B106-MW- PI9	LI-B106-MW- PI12	LI-B106-MW- PI15	LI-B106-MW- PS3	LI-B106-MW- PS6	LI-B106-MW- PS9	LI-B106-MW- PS15	LI-B108MW- GW1	LI-B108-MW	LI-B108-MW-	LI-MW-DUP- PI1	LI-B108-MW- PI2	LI-B108-MW- PI3	LI-B108-MW- PI6	LI-B108-MW- PI9	LI-B108-MW- PI12	LI-B108-MW- PI15	LI-B108-MW- PS3	LI-B108-MW- PS6	LI-B108-MW- PS9	LI-B108-MW PS15
Sampling Company			STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory			CCGE	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	CCGE	PARAROCH		PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH
Laboratory Work Order			E2363	141138	142196	142794	143439	144730	150382	151696	153411	160464	161713	163436	170564	E2363	141138	142196	142196	142794	143439	144730	150382	151696	153411	160464	161713	163436	170564
Laboratory Sample ID			E2363-03	141138-12	142196-06	142794-11	143439-11	144730-11	150382-06	151696-12	153411-05	160464-12	161713-11	163436-11	170564-11	E2363-02	141138-13	142196-04	142196-05	142794-12	143439-12	144730-12	150382-07	151696-13	153411-04	160464-08	161713-12	163436-12	170564-12
Sample Type	Units	togs																	Field Duplicate										
General Chemistry																													<u></u>
Total Organic Carbon	ua/l	n/v			188,000	514,000	77,600	4,000 J-	3,100 J	1,500	3,200 J-	18,900	2,630	7,380	1,720		3,300	60,300	60,200	86,100	72,200	45,000	18,100 J	1,700	3,400 J-	101,000	68,300	27,600	1,970
Metals	µg/L	11/ V		_	100,000	314,000	77,000	4,000 J-	3,100 J	1,300	3,200 J-	10,700	2,030	7,300	1,720	-	3,300	60,300	60,200	06,100	72,200	43,000	10,100 3	1,700	3,400 3-	101,000	66,300	27,000	1,770
Aluminum	μg/L	n/v														66					-			-			-		
Antimony	μg/L μg/L	3 ^B	-		_	_	_		_	_	-	-		-	-	12.5 U	_	_	_	-	_	_	_	_	_	_	-	-	_
vsenic	μg/L	25 ^B	_		_	_	_		-		-	_			-	6.2	10 U	10 U	10 U	10 U	10 U	10 U	5.92 J	10.0 U	9.02 J-	_	_		_
arium	µg/L	1,000 ^B	_	_	_	_	_	_	_	_	_	_	_	_	_	54.9	-	-	-	-	-	-	0.723	- 10.0 0	7.02 5	_	_	_	_
Beryllium	μg/L	3 ^A	_	_	_		_		_	_	_	_	_	_	-	1.500 U	_	_	_	_	_	_	_	_	_	_	_	-	_
Cadmium	μg/L	5 ^B	_	_	_		_	_	_	_	_	_	_	_	_	0.7 J	_	_	_	_	_	_	_	_	_	_	-	_	_
Calcium	μg/L	n/v	_	_	_		_		-	_	_	_	_	_	-	97,000	_	_	_	_	_	_	_	_	_	_	-	-	_
Chromium	µg/L	50 ^B	_	_	_	_	_	_	_	_	_	_	_	_	_	2.500 U	_	_	_	_	_	_	_	_	_	_	_	_	_
Cobalt	μg/L	n/v	-	_	_	_	_	.	-	_	_	_	_	_	-	7.500 U	_	_	_	_	_	_	_	_	_	_	_	-	_
Copper	µg/L	200 ^B	-		_	_	_	.	-	_	_	_	.	-	-	4.16 J	_	_	_	_	-	_	_	_	-	-	-	-	-
ron	μg/L	300+B	-	_	_	_	_	_	_	_	-	_	_	-	-	45.3	100 U	1,400 ⁸	978 ^B	3,520 ^B	2,480 ^B	2,350 ^B	2,660 ^B	999 ^B	3.540 J- ^B	_	_	-	_
ead	μg/L	25 ^B	-	-	-	-	-	_	-	-	-	-	-	-	-	4.9	-	-	-	-	-	-	-,	-	-	-	-	-	-
Magnesium	μg/L	35,000 ^A	-	_	_	-	-	-	-	-	-	-	-	-	-	23,200	-	-	-	-	-	-	-	-	-	-	-	-	_
Manganese	μg/L	300 _* B	-	-	-	-	-	-	-	-	-	-	-	-	-	46.4 J	187	184	179	217	158	106	87.6	81.8	131 J-	-	-	-	-
Mercury	μg/L	0.7 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	0.200 U	-	-	-	-	-	-	-	-	-	-	-	-	-
lickel	μg/L	100 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	2.1 J	-	-	-	-	-	-	-	-	-	-	-	-	-
Potassium	μg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	10,500	-	-	-	-	-	-	-	-	-	-	-	-	-
Selenium	μg/L	10 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	5.03	-	-	-	-	-	-	-	-	-	-	-	-	-
Silver	μg/L	50 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	2.500 U	-	-	-	-	-	-	-	-	-	-	-	-	-
Sodium	μg/L	20,000 ^B	-	-	162,000 ^B	375,000 ^B	185,000 ^B	59,200 ^B	50,200 ^B	40,100 ^B	42,100 J- ^B	-	-	-	-	26,300 ^B	33,000 ^B	103,000 ⁸	101,000 ^B	100,000 M ^B	115,000 ^B	82,900 ^B	130,000 ^B	42,400 ^B	72,000 J- ^B	-	-	-	-
Thallium	µg/L	0.5 ^A	-	-	-	-	-	-	-	-	-	-	-	-	-	10.0 U	-	-	-	-	-	-	-	-	-	-	-	-	-
Vanadium	μg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	10.0 U	-	-	-	-	-	-	-	-	-	-	-	-	-
linc	μg/L	2,000 ^A	-	-	-	-	-	-	-	-	-	-	-	-	-	8.94 J	-	-	-	-	-	-	-	-	-	-	-	-	-
Volatile Organic Compounds																													
Acetone	µg/L	50 ^A	25 U	10.0 U	10.0 U	12.9	10.0 U	10.0 U	10.0 UJ	10.0 U	10.0 UJ	10.0 U	10.0 U	10.0 U	10.0 UJ	25 U	10.0 U	10.0 U	10.0 U	6.04 J	8.49 J	10.0 U	6.51 J	10.0 U	10.0 UJ	10.0 U	10.0 U	10.0 U	10.0 UJ
Benzene	μg/L	1 ^B	5 U	1 U	1 U	0.842 J	0.391 J	1 U	1 U	1 U	1.00 UJ	1.00 U	1.00 U	1.00 U	1.00 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.00 UJ	1.00 U	1.00 U	1.00 U	1.00 U
Bromodichloromethane	μg/L	50 ^A	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U MC	2.00 U	2.00 U	2.00 U
romoform (Tribromomethane)	µg/L	50 ^A	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U
romomethane (Methyl bromide)	µg/L	5** ^B	5 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 UJ	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U MC	2.00 UJ	2.00 U	2.00 U
Sutylbenzene, n-	μg/L	5 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sutylbenzene, sec- (2-Phenylbutane)	μg/L	5 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
utylbenzene, tert-	μg/L	5** ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon Disulfide	μg/L	60 ^A	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
Carbon Tetrachloride (Tetrachloromethane)	μg/L	5 ^B	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
Chlorobenzene (Monochlorobenzene)	μg/L	5** ^B	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
Chlorobromomethane	µg/L	5	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U
Chloroethane (Ethyl Chloride)	µg/L	5** ^B	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
Chloroethyl Vinyl Ether, 2-	μg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroform (Trichloromethane)	μg/L	7º	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
hloromethane	µg/L	5++ ^B	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
yclohexane	µg/L	n/v	0.69 J	10.0 U	10.0 U	15.8	7.47 J	10.0 U	10.0 U	10.0 U	10.0 UJ	10.0 U	10.0 U	10.0 U	10.0 U	5 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 UJ	10.0 U	10.0 U	10.0 U	10.0 U
ibromo-3-Chloropropane, 1,2- (DBCP)	µg/L	0.04 ^B	5 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 UJ	10.0 U	10.0 U	10.0 U	10.0 U	5 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 UJ	10.0 U	10.0 U	10.0 U	10.0 U
ibromochloromethane	µg/L	50 ^A 3 ^B	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	10.4	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
ichlorobenzene, 1,2-	µg/L	3° oB	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
ichlorobenzene, 1,3-	µg/L	3°	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
ichlorodifluoromethane (Freen 12)	µg/L	3 ^B 5 ^B	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
ichlorodifluoromethane (Freon 12)	µg/L	5 ^B	5 U	2.00 U	2.00 U	2.00 UJ 2.00 U	2.00 U	2.00 U 2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	5 U	2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 UJ 2.00 U	2.00 U 2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U 2.00 U	2.00 U	2.00 U 2.00 U	2.00 U
Dichloroethane, 1,1- Dichloroethane, 1,2-	µg/L		5 U	2.00 U	2.00 U		2.00 U		2.00 U	2.00 U	2.00 UJ					5 U	2.00 U					2.00 U	2.00 U	2.00 U	2.00 UJ		2.00 U		2.00 U
	µg/L	0.6°	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
Dichloroethene, 1,1-	μg/L	5***	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U

Table 2
Summary of Analytical Results in Groundwater
Remedial Investigation
Former Carriage Factory
33 Litchfield Street, Rochester, New York

Area																On-Site Building	g												
Sample Location									B106MW													B10	8MW						
Sample Date			23-May-13	26-Mar-14	28-May-14	2-Jul-14	7-Aug-14	28-Oct-14	3-Feb-15	5-May-15	12-Aug-15	2-Feb-16	2-May-16	10-Aug-16	13-Feb-17	23-May-13	26-Mar-14	28-May-14	28-May-14	2-Jul-14	8-Aug-14	29-Oct-14	3-Feb-15	5-May-15	12-Aug-15	2-Feb-16	2-May-16	10-Aug-16	13-Feb-1
Sample ID			LI-B106MW- GW1	LI-B106-MW	LI-B106-MW-	LI-B106-MW- PI2	LI-B106-MW-	LI-B106-MW-	LI-B106-MW- PI9	LI-B106-MW- PI12	LI-B106-MW-	LI-B106-MW- PS3	LI-B106-MW- PS6	LI-B106-MW- PS9	LI-B106-MW- PS15	LI-B108MW- GW1	LI-B108-MW	LI-B108-MW-	LI-MW-DUP-	LI-B108-MW- PI2	LI-B108-MW- PI3	LI-B108-MW-	LI-B108-MW-	LI-B108-MW- PI12	LI-B108-MW- PI15	LI-B108-MW- PS3	LI-B108-MW- PS6	LI-B108-MW- PS9	LI-B108-M
Sampling Company			STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory			CCGE	PARAROCH	PARAROCH	PARAROCH	PARAROCH		PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	CCGE	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROC
Laboratory Work Order			E2363	141138	142196	142794	143439	144730	150382	151696	153411	160464	161713	163436	170564	E2363	141138	142196	142196	142794	143439	144730	150382	151696	153411	160464	161713	163436	170564
Laboratory Sample ID			E2363-03	141138-12	142196-06	142794-11	143439-11	144730-11	150382-06	151696-12	153411-05	160464-12	161713-11	163436-11	170564-11	E2363-02	141138-13	142196-04	142196-05	142794-12	143439-12	144730-12	150382-07	151696-13	153411-04	160464-08	161713-12	163436-12	170564-1
																			Field										
Sample Type	Units	TOGS																	Duplicate										
Volatile Organic Compounds (cont'd)																													
	//	г В	1 4 OB	6 89 ⁸	0 4 TB	00 4B	16.3 ^B	40.4B	0 4 oB	10 2 ^B	0 50 1 B	0.0011	0.00.11	10 of	0.00.11	c =8	0.0011	11 oB	10 9 ^B	00 0B	4.00	1.96 J	1.07.1	1.40.1	0.10.1	11 OB	0.04B	4 00B	7 00B
Dichloroethene, cis-1,2-	μg/L	5 ^B	16.9 ⁸	0.07	8.67 ^B	28.4 ^B		40.4 ^B	26.0 ^B		8.52 J- ^B	2.00 U	2.00 U	12.0 ⁸	2.00 U	5.7 ⁸	2.00 U	11.0 ⁸		23.2 ^B	4.99		1.87 J	1.49 J	2.10 J-	11.8 ^B	9.96 ^B	6.08 ^B	7.20 ^B
Dichloroethene, trans-1,2-	μg/L	3++ 1B	1.4 J	2.00 U	2.00 U 2.00 U	3.84 2.00 U	1.61 J	2.00 U	2.00 U 2.00 U	2.00 U	2.00 UJ	2.00 U 2.00 U	2.00 U	2.54	2.00 U 2.00 U	5 U	2.00 U	2.00 U 2.00 U	2.00 U	2.04	1.37 J	2.00 U	1.42 J	2.00 U	2.00 UJ 2.00 UJ	2.00 U	2.00 U	1.10 J	2.00 U 2.00 U
Dichloropropane, 1,2- Dichloropropene, cis-1,3-	µg/L µg/L	0.4 ₀ ^B	511	2.00 U 2.00 U	2.00 U	2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U	2.00 U 2.00 U	2.00 UJ 2.00 UJ	2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U	5 U 5 U	2.00 U 2.00 U	2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 UJ	2.00 U 2.00 U MC	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U
Dichloropropene, trans-1,3-	μg/L	0.4 _p	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U MC	2.00 U	2.00 U	2.00 U
Dioxane, 1,4-	ua/L	n/v	100 U R	20.0 U R	20.0 U R	20.0 U R	20.0 U R	20.0 U	20.0 U	20.0 UJ	20.0 U R	20.0 U R	20.0 U R	20.0 U R	20.0 U R	100 U R	20.0 U R	20.0 U R	20.0 U R	20.0 U R	20.0 U R	20.0 U	20.0 U	20.0 UJ	20.0 U R	20.0 U R	20.0 U R	20.0 U R	20.0 U R
Ethylbenzene	µg/L	5. B	5 U	2.00 U	2.00 U	1.79 J	1.20 J	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
Ethylene Dibromide (Dibromoethane, 1,2-)	µg/L	0.0006 ^B	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
Hexanone, 2- (Methyl Butyl Ketone)	µg/L	50 ^A	25 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	25 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U
Isopropylbenzene	µg/L	5B	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
Isopropyltoluene, p- (Cymene)	µg/L	5 ^B	-	2.000		-			-	-	2.00 03		-	2.00 0	-	-	2.000	2.00 0		-		-		2.00 0	2.00 03	-	-	-	2.000
Methyl Acetate	μg/L	n/v	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
Methyl Ethyl Ketone (MEK) (2-Butanone)	μg/L	50 ^A	25 U	10.0 UJ	10.7	151 J ^A	31.6	10.0 UJ	10.0 UJ	10.0 U	10.0 UJ	36.6	10.0 U	10.0 U	10.0 U	25 U	10.0 UJ	13.9	12.8	41.5 J	63.8 ^A	22.9 J	23.0 J	10.0 U	10.0 UJ	16.3	9.02 J	10.0 U	10.0 U
Methyl Isobutyl Ketone (MIBK)	μg/L	n/v	25 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	25 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U
Methyl tert-butyl ether (MTBE)	μg/L	10 ^A	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
Methylcyclohexane	μg/L	n/v	0.77 J	2.00 U	2.03	11.7	6.30	1.21 J	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	1.07 J	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
Methylene Chloride (Dichloromethane)	µg/L	5B	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	5 U	4.93 JB	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U
Naphthalene	μg/L	10 ^B	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-
Propylbenzene, n-	μg/L	5B	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-
Styrene	μg/L	5 ^B	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U
Tetrachloroethane, 1,1,2,2-	μg/L	5** ^B	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
Tetrachloroethene (PCE)	μg/L	5** ^B	14.8 ^B	21.7 ^B	9.51 ^B	11.7 ^B	7.73 ^B	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	15.9 ^B	6.45 ^B	10.1 ^B	9.75 ^B	10.7 ^B	9.63 ^B	10.4 ^B	6.73 ^B	14.4 ^B	9.41 J- ^B	5.17 ^B	4.45	2.00 U	1.54 J
Toluene	μg/L	5** ^B	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
Trichlorobenzene, 1,2,3-	μg/L	5 ^B	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U
Trichlorobenzene, 1,2,4-	μg/L	5** ^B	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U
Trichloroethane, 1,1,1-	μg/L	5** ^B	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
Trichloroethane, 1,1,2-	μg/L	1 ^B	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
Trichloroethene (TCE)	μg/L	5** ^B	12 ^B	8.27 ^B	5.11 ^B	9.44 ^B	16.6 ^B	2.23	2.00 U	2.12	1.62 J-	2.00 U	2.00 U	1.28 J	2.00 U	8.5 ^B	1.05 J	4.17	4.15	4.21	1.65 J	4.04	2.93	2.72	2.12 J-	6.57 ^B	4.95	2.00 U	3.26
Trichlorofluoromethane (Freon 11)	μg/L	5** ^B	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
Trichlorotrifluoroethane (Freon 113)	μg/L	5** ^B	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
Trimethylbenzene, 1,2,4-	μg/L	5** ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	=	-	-	-	-	-	-	-	-	-	-	-	-	-
Trimethylbenzene, 1,3,5-	μg/L	5** ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl Acetate	μg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl Chloride	μg/L	2 ^B	2.1 J ^B	2.00 U	2.84 ^B	15.2 ⁸	7.60 ^B	15.2 ⁸	12.8 ⁸	4.89 NJ ^B	5.37 J- ^B	1.32 J	2.00 U	6.11 NJ ^B	2.00 U	5 U	2.00 U	2.75 ^B	2.61 ^B	10.2 ^B	14.6 ^B	4.23 ^B	2.00 U	2.00 U	2.37 J- ^B	9.05 ^B	3.71 NJ ^B	11.1 NJ ^B	3.51 ^B
Xylene, m & p-	μg/L	5++ ^B	10 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	10 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
Xylene, o-	μg/L	5** ^B	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U
Total VOC	μg/L	n/v	48.66	36.86	38.86	262.612	96.801	59.04	38.8	17.21	15.51 J-	37.92	ND	23	ND	30.1	12.43	41.92	40.21	97.89	104.53	53.93	42.46	18.61	16 J-	48.89	32.09	18.28	15.51
VOC Tentatively Identified Compounds	S																												
otal VOC TICs	μg/L	n/v	2.5 U	-	-	-	-		-	-		_	-	-	-	2.5 U	-	-		I .	T -	T -		I -	_			-	I -

Table 2
Summary of Analytical Results in Groundwater
Remedial Investigation
Former Carriage Factory
33 Litchfield Street, Rochester, New York

-																														
Area										NA 1						On-Site	Building							N44 0						
Sample Location Sample Date			23-Mar-12	23-May-13	26-Mar-14	29-May-14	1-Jul-14	8-Aug-14	1	3-Feb-15	5-May-15	12-Aug-15	2-Feb-16	2-May-16	10-Aug-16	13-Feb-17	23-Mar-12	21-May-13	26-Mar-14	29-May-14	1-Jul-14	8-Aug-14	1	W-2 3-Feb-15	5-May-15	12-Aug-15	2-Feb-16	2-May-16	10-Aug-16	13-Feb-17
Sample ID			RW-1	LI-RW-1-GW1	LI-RW-1	LI-RW-1-PI1	LI-RW-1-PI2	LI-RW-1-PI3	LI-RW1-PI6	LI-RW-1-PI9	LI-RW-1-PI12	LI-RW-1-PI15	LI-RW-1-PS3	LI-RW-1-PS6	LI-RW-1-PS9	LI-RW-1-PS15	RW-2	LI-RW-2-GW1	LI-RW-2	LI-RW-2-PI1	LI-RW-2-PI2	LI-RW-2-PI3	LI-RW2-PI6	LI-RW-2-PI9	LI-RW-2-PI12	LI-RW-2-PI15	LI-RW-2-PS3	LI-RW-2-PS6	LI-RW-2-PS9	LI-RW-2-PS15
Sampling Company			DECI	STANTEC	STANTEC		STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	DECI	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory			PARAROCH	CCGE	PARAROCI					PARAROCH		PARAROCH			PARAROCH	PARAROCH	PARAROCH			PARAROCH				PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH
Laboratory Work Order			12:1239	E2363	141138	142196	142794	143439	144730	150382	151696	153411	160464	161713	163436	170564	12:1239	E2314	141138	142196	142794	143439	144730	150382	151696	153411	160464	161713	163436	170564
Laboratory Sample ID			12:1239-01	E2363-01	141138-01	142196-09	142794-08	143439-01	144730-01	150382-01	151696-01	153411-01	160464-11	161713-01	163436-01	170564-01	12:1239-02	E2314-03	141138-02	142196-10	142794-07	143439-02	144730-02	150382-02	151696-02	153411-02	160464-10	161713-02	163436-02	170564-02
Sample Type	Units	TOGS																												
General Chemistry																														
Total Organic Carbon	μg/L	n/v	-	-	-	1,060,000	415,000	43,500	103,000	9,900	4,500	7,900	4,960	3,510	7,510	2,240	-	-	3,200	553,000	150,000	259,000	23,900	9,800	2,700	10,100	81,100	5,520	7,970	1,900
Metals	,		ı																											
Aluminum	μg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	64.5	-	-	-	-	-	-	-	-	-	-	-	-
Antimony	μg/L	3 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	=	12.5 U	-	-	-	-	-	-	-	-	-	-	-	-
Arsenic Barium	μg/L μg/L	25 ^B	-	_	-	-	_	_	-	_	-	-	-	_	-	_	-	5.000 U 59.7 N	10 U	10 U	10 U	10 U	10 U	10 U	10.0 U	5.33 J	-	-	-	_
Beryllium	µg/L	1,000 ⁸	-	_			_	_	_	_	_	-	_	_	_	_	-	1.500 U	_	_		_	_	-	-	_	_	-	-	_
Cadmium	μg/L	5 ^B	-	-	-	-	-	-	-	_	_	-	-	_	_	_	-	1.500 U	_	_	-	-	-	-	-	-	-	-	-	_
Calcium	μg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	87,300	-	-	-	-	-	-	-	-	-	-	-	-
Chromium	μg/L	50 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2.500 U	-	-	-	-	-	-	-	-	-	-	-	-
Cobalt	μg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	7.500 U	-	-	-	-	-	-	-	-	-	-	-	-
Copper .	μg/L	200 ⁸	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5.000 U	-	- B	R	R	B	- 	- 	- B	-	-	-	-
Iron Lead	μg/L	300₊ ^B 25 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	169 9.61	300	2,220 ⁸	1,210 ⁸	937 ⁸	1,430 ⁸	498 ⁸	1,850 ⁸	4,060 ⁸	-	-	-	-
Magnesium Magnesium	μg/L μg/L	35,000 ^A	-	_	_	_	_	_	-		_	-	_		-	_	-	29,500	_	-	_	_	_	-	-	_	-	-	-	_
Manganese	μg/L	300₊ ^B	-	-	-	-	-	-	-	_	-	-	-	_	-	-	-	305 J ^B	120	233	60.8	108	187	47.5	66.3	118	-	-	-	-
Mercury	μg/L	0.7 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.200 U	-	-	-	-	-	-	-	-	-	-	-	-
Nickel	μg/L	100 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	10.0 U	-	-	-	-	-	-	-	-	-	-	-	-
Potassium	μg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	22,600	-	-	-	-	-	-	-	-	-	-	-	-
Selenium	μg/L	10 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	5.000 U N	-	-	-	-	-	-	-	-	-	-	-	-
Silver Sodium	μg/L	50 ⁸	-	-	-	146.000 ^B	221 0008	137 000 ^B	146.000 ^B		175 000B	668.000 ^B	-	-	-	-	=	2.500 U	- 100B			197.000 ^B	150 000B	- 100 000B	B	114 000 ⁸	-	-	-	-
Thallium	μg/L μg/L	20,000 ⁸ 0.5 ^A	-	_	_	146,000	331,000 ⁸	137,000	146,000	85,700 ⁸	175,000 ⁸	668,000	-		_	_	-	35,600 ⁸	39,100 ⁸	370,000 ⁸	290,000 ⁸	197,000	152,000 ⁸	129,000 ⁸	60,600 ⁸	114,000	-	-	-	_
Vanadium	μg/L	n/v	-	-	_	_	-	-	_	_	_	_	_	_	_	_	-	10.0 U	_	_	_	_	_	_	-	_	-	_	-	_
Zinc	μg/L		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	14.6	-	-	-	-	-	-	-	-	-	-	-	-
Volatile Organic Compounds			•																											
Acetone	μg/L	50 ^A	10.0 U	25 U	10.0 U	10.0 U	10.0 U	10.0 U	15.2	10.0 UJ	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 UJ	10.0 U	160 ^A	10.0 U	32.4	19.4	9.47 J	10.0 U	10.0 UJ	10.0 U	10.0 U	7.44 J	10.0 U	10.0 U	10.0 UJ
Benzene	μg/L	1 ^B	0.700 U	0.49 NJ	1 U	1 U	1 U	1 U	0.561 J	1 U	1 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	0.700 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U
Bromodichloromethane	μg/L	50 ^A	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Bromoform (Tribromomethane)	μg/L	50 ^A	5.00 U	5 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Bromomethane (Methyl bromide) Butylbenzene, n-	μg/L μg/L	5B	2.00 U	5 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U
Butylbenzene, sec- (2-Phenylbutane)	μg/L	5 ^B	-	-	_	_	-	-	_	_	_	_	_	_	_	_	-	_	_	_	_	_	_	_	_	_	_	_	-	_
Butylbenzene, tert-	μg/L	5** ^B	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	_	-	-	-	-	-	-	-	_
Carbon Disulfide	μg/L	60 ^A	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Carbon Tetrachloride (Tetrachloromethane)	μg/L	5 ^B	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Chlorobenzene (Monochlorobenzene)	μg/L	5 ^B	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Chlorotromomethane	μg/L	5++ ⁸	- 0.00.11	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	- 0.00.11	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Chloroethane (Ethyl Chloride) Chloroethyl Vinyl Ether, 2-	μg/L	5++ ⁻	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U 10.0 U R	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Chloroform (Trichloromethane)	µg/L µg/L	n/v 7 ^B	10.0 U R 2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	0.67 J	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Chloromethane	µg/L	5** ^B	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Cyclohexane	μg/L	n/v	-	4.5 NJ	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	-	5 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
Dibromo-3-Chloropropane, 1,2- (DBCP)	μg/L	0.04 ^B	-	5 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	-	5 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
Dibromochloromethane	μg/L	50 ^A	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichlorobenzene, 1,2-	μg/L	3 ^B	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichlorobenzene, 1,3-	μg/L	3 ^B	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichlorobenzene, 1,4-	µg/L	3°	2.00 U	5 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichlorodifluoromethane (Freon 12) Dichloroethane, 1,1-	μg/L μg/L	5B	2.00 U	5 U	2.00 U	2.00 U	2.00 UJ 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U	5 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 UJ 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U
Dichloroethane, 1,2-	µg/L	0.6 ^B	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichloroethene, 1,1-	μg/L	5B	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	1 J	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
See notes on last page.						-		-							-		1			-	-									-

Table 2
Summary of Analytical Results in Groundwater
Remedial Investigation
Former Carriage Factory
33 Litchfield Street, Rochester, New York

Area																On-Site	Building													
Sample Location									R	W-1								1					R	W-2				1		_
Sample Date			23-Mar-12	23-May-13	26-Mar-14	29-May-14	1-Jul-14	8-Aug-14	29-Oct-14	3-Feb-15	5-May-15	12-Aug-15	2-Feb-16	2-May-16	10-Aug-16	13-Feb-17	23-Mar-12	21-May-13	26-Mar-14	29-May-14	1-Jul-14	8-Aug-14	29-Oct-14	3-Feb-15	5-May-15	12-Aug-15	2-Feb-16	2-May-16	10-Aug-16	13-Feb-1
Sample ID			RW-1	LI-RW-1-GW1	LI-RW-1	LI-RW-1-PI1	LI-RW-1-PI2	LI-RW-1-PI3	LI-RW1-PI6	LI-RW-1-PI9	LI-RW-1-PI12	LI-RW-1-PI15	LI-RW-1-PS3	LI-RW-1-PS6	LI-RW-1-PS9	LI-RW-1-PS15	RW-2	LI-RW-2-GW1	LI-RW-2	LI-RW-2-PI1	LI-RW-2-PI2	LI-RW-2-PI3	LI-RW2-PI6	LI-RW-2-PI9	LI-RW-2-PI12	LI-RW-2-PI15	LI-RW-2-PS3	LI-RW-2-PS6	LI-RW-2-PS9	9 LI-RW-2-PS
Sampling Company			DECI	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	DECI	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
aboratory			PARAROCH	CCGE	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	CCGE	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	H PARAROC
Laboratory Work Order			12:1239	E2363	141138	142196	142794	143439	144730	150382	151696	153411	160464	161713	163436	170564	12:1239	E2314	141138	142196	142794	143439	144730	150382	151696	153411	160464	161713	163436	170564
Laboratory Sample ID			12:1239-01	E2363-01	141138-01	142196-09	142794-08	143439-01	144730-01	150382-01	151696-01	153411-01	160464-11	161713-01	163436-01	170564-01	12:1239-02	E2314-03	141138-02	142196-10	142794-07	143439-02	144730-02	150382-02	151696-02	153411-02	160464-10	161713-02	163436-02	170564-0
Sample Type	Units	TOGS																												
/olatile Organic Compounds (cont'd)																														
tichloroethene, cis-1,2-	ua/l	E В	4 88 ^B	14 5 ^B	5 57 ^B	4.53	4.71	8 12 ^B	2.00 U	2.00 U	2.00 U	1.09 J	2.00 U	2.00 U	2.32	2.00 U	24 A ^B	360 D ^B	38.8 ⁸	55.7 ^B	51 OB	23 A ^B	87.7 ^B	4.37	2.00 U	7 (1B	2.00 U	2.00 U	4.18	2.00 U
ichloroethene, trans-1,2-	μg/L μg/L	5. B	2.00 U	4.2 J	2.00 U	2.00 U	1.03 J	2.00 U	1.34 J	2.00 U	2.00 U	1.07 J	2.00 U	2.00 U	1.45 J	2.00 U	2.43	11.4 ^B	2.39	3.06	2.50	3.57	12.8 ^B	2.00 U	1.17 J	1.32 J	2.00 U	2.00 U	3.40	2.00 U
vichloropropane, 1,2-	μg/L	1 ^B	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
vichloropropene, cis-1,3-	µg/L	0.4 B	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichloropropene, trans-1,3-	µg/L	0.4 ₆	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dioxane, 1,4-	μg/L	n/v	-	100 U R	20.0 U R	20.0 U R	20.0 U R	20.0 U R	20.0 U	20.0 U	20.0 UJ	20.0 U R	20.0 U R	20.0 U R	20.0 U R	20.0 U R		100 U	20.0 U R	20.0 U R	20.0 U R	20.0 U R	20.0 U	20.0 U	20.0 UJ	20.0 U R	20.0 U R	20.0 U R	20.0 U R	20.0 U R
thylbenzene	µg/L	5** ^B	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
thylene Dibromide (Dibromoethane, 1,2-)	µg/L	0.0006 ^B	-	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
lexanone, 2- (Methyl Butyl Ketone)	μg/L	50 ^A	5.00 U	25 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	25 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
opropylbenzene	μg/L	5** ^B	-	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
opropyltoluene, p- (Cymene)	μg/L	5** ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methyl Acetate	μg/L	n/v	-	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	5 U	2.00 U	2.00 U	2.00 U	2.00 U	3.03 NJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Methyl Ethyl Ketone (MEK) (2-Butanone)	µg/L	50 ^A	10.0 U	25 U	10.0 UJ	6.42 J	87.3 J ^A	9.42 NJ	57.3 J ^A	10.0 UJ	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	110 ^A	10.0 UJ	175 NJ ^A	29.3 J	38.1	10.2 J	10.0 UJ	10.0 U	10.0 U	27.0	10.0 U	10.0 U	10.0 U
Methyl Isobutyl Ketone (MIBK)	μg/L	n/v	5.00 U	25 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	25 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Methyl tert-butyl ether (MTBE)	μg/L	10 ^A	-	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	2.4 J	1.08 J	1.61 NJ	2.00 U	1.92 J	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.28	2.00 U
Methylcyclohexane	µg/L	n/v	-	3.1 J	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Methylene Chloride (Dichloromethane)	µg/L	5** ^B	5.00 U	5 U	2.84 JB	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5 U	3.76 JB	5.00 U	5.00 U	5.00 U	7.55 ^B	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Naphthalene	μg/L	10 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Propylbenzene, n-	μg/L	5 ^B	=	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Styrene	µg/L	5 ^B	5.00 U	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
etrachloroethane, 1,1,2,2-	µg/L	5++ ^B	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
etrachloroethene (PCE)	µg/L	5 ^B	6.72 ^B	3.6 J	5.35 ^B	10.1 ^B	6.14 ^B	2.65	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	110 ⁸	4.44	3.08	1.42 J	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
oluene	μg/L	5 ^B	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
richlorobenzene, 1,2,3-	µg/L	5++ ^D	-	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	-	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
richlorobenzene, 1,2,4-	µg/L	5 ⁰	-	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	-	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
richloroethane, 1,1,1-	μg/L	5 ^B	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U 2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U 2.00 U
richloroethane, 1,1,2-	µg/L	r B	2.00 U		2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U		2.00 U 2.39	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	
richloroethene (TCE) richlorofluoromethane (Freon 11)	µg/L	Б В Б В	7.15⁸ 2.00 U	8.1 ⁸	4.02 2.00 U	6.09 ⁸ 2.00 U	4.52 2.00 U	5.49 ⁸ 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	1.36 J 2.00 U	2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	9.19 ⁸ 2.00 U	76.4 ⁸	27.6 ⁸	21.5 ⁸ 2.00 U	6.31 ⁸ 2.00 U	2.39 2.00 U	1.05 J 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	3.85 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U
ichlorotrifluoroethane (Freon 11)	µg/L	Э++ г В	2.00 0	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U 2.00 U	2.00 U	2.00 U	2.00 U	2.00 0	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
imethylbenzene, 1,2,4-	μg/L μg/L	5++ E B	-	30	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	-	30	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0
imethylbenzene, 1,3,5-	μg/L	5B	_	_	_					_	_					_	_				_	_				_		_		
inyl Acetate	μg/L	n/v	5.00 U	_	_	_	_	_	_	_	_	_	_	_	_	_	5.00 U	_	_	_	_	_	_	_	_	_	_	_	_	_
inyl Chloride	μg/L	2 ^B	3 99 ^B	7.7 ^B	2.00 U	1.45 NJ	4 61 N.I ^B	5 29 N.I ^B	2.00 U	2.00 U	2.98 NJ ^B	2.00 U	2.84 ^B	2.75 NJ ^B	3.56 NJ ^B	2.00 U	2.00 U	5.9 ^B	1.24 J	1.64 NJ	7.48 ^B	56.4 ^B	23 9 N.I ^B	1.17 NJ	2.00 U	1.33 J	2.00 U	2.00 U	5.15 NJ ^B	2.00 U
vlene, m & p-	μg/L	5++ ^B	2.00 U	10 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.70 NJ	2.00 U	2.00 U	2.75 NJ 2.00 U	2.00 U	2.00 U	2.00 U	10 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
ylene, o-	μg/L	5** ^B	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
otal VOC	µg/L	n/v	24.74	46.19	17.78	28.59	108.31	30.97	74.40	1.43	2.98	3.67	2.84	2.75	7.33	ND	38.22	837.77	79.31	293.99	117.71	135.45	146.23	5.54	2.43	14.11	34.44	ND	15.01	ND
OC Tentatively Identified Compound	s																	-												
otal VOC TICs		n/v	_	4.900 J		-												770.000 J						-						$\overline{}$

Table 2
Summary of Analytical Results in Groundwater
Remedial Investigation
Former Carriage Factory
33 Litchfield Street, Rochester, New York

Area Sample Location											Building V-3							
Sample Date			23-Mar-12	22-May-13	26-Mar-14	29-May-14	1-Jul-14	7-Aug-14	29-Oct-14	3-Feb-15	5-May-15	12-Aug-15	2-Feb-16	2-May-16	2-May-16	10-Aug-16	13-Feb-17	13-Feb-17
Sample ID			RW-3	LI-RW-3-GW1	LI-RW-3	LI-RW-3-PI1	LI-RW-3-PI2	LI-RW-3-PI3	LI-RW3-PI6	LI-RW-3-PI9	LI-RW-3-PI12	LI-RW-3-PI15	LI-RW-3-PS3	LI-RW-3-PS6	LI-DUP-PS6	LI-RW-3-PS9	LI-RW-3-PS15	LI-FD-P\$15
Sampling Company			DECI	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory			PARAROCH	CCGE	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCI
Laboratory Work Order			12:1239	E2342	141138	142196	142794	143439	144730	150382	151696	153411	160464	161713	161713	163436	170564	170564
Laboratory Sample ID			12:1239-03	E2342-01	141138-03	142196-11	142794-06	143439-03	144730-03	150382-03	151696-03	153411-03	160464-09	161713-03	161713-13 Field	163436-03	170564-03	170564-13 Field
Sample Type	Units	TOGS													Duplicate			Duplicate
General Chemistry																		
Total Organic Carbon	μg/L	n/v	-	-	-	229,000	87,900	12,700	11,000	10,300	6,100	7,600 J-	218,000	7,080	6,840	8,280	2,820	2,580
Metals	1.0		l															
Aluminum	μg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Antimony	μg/L	3 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Arsenic	µg/L	25 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Barium	μg/L	1,000 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Beryllium	μg/L	3 ^A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cadmium	μg/L	5 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Calcium	µg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chromium	μg/L	50 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cobalt	μg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Copper	µg/L	200 ^B 300₊ ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_
Lead	µg/L µg/L	25 ^B	_	_	_	_	_		_	_	_		_	_	_	_	_	
Magnesium	µg/L	35,000 ^A	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Manganese	µg/L	300 ₊ B	-	_	_	_	-	_	_	_	_	_	-	_	-	_	_	_
Mercury	μg/L	0.7 ^B	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	_
Nickel	μg/L	100 ⁸	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Potassium	μg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Selenium	µg/L	10 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Silver	µg/L	50 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sodium	μg/L	20,000 ^B	-	-	-	252,000 ⁸	199,000 ^B	103,000 ⁸	125,000 ^B	120,000 ^B	85,300 ⁸	91,100 J- ^B	-	-	-	-	-	-
Thallium	µg/L	0.5 ^A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vanadium	μg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Zinc Volatile Organia Compounds	μg/L	2,000 ^A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Volatile Organic Compounds		A	10.011	05.11	10.011	4	42.0.1	47 / 1	10.011	10.0111	10.011	10.0111	00.0.1	10.011	10.011	10.011	10.0111	100111
Acetone Benzene	μg/L	50 ^A	10.0 U 0.700 U	25 U 5 U	10.0 U 1 U	132 ^A 5 U	43.2 J 1 U	47.6 J 1 U	10.0 U 1 U	10.0 UJ 1 U	10.0 U 1 U	10.0 UJ 1.00 UJ	20.2 J 1.00 U	10.0 U 1.00 U	10.0 U 1.00 U	10.0 U 1.00 U	10.0 UJ 1.00 U	10.0 UJ 1.00 U
Bromodichloromethane	µg/L µg/L	50 ^A	2.00 U	5 U	2.00 U	10.0 U	10.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Bromoform (Tribromomethane)	µg/L	50 ^A	5.00 U	5 U	5.00 U	25.0 U	25.0 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Bromomethane (Methyl bromide)	μg/L	5 ^B	2.00 U	5 U	2.00 U	10.0 U	10.0 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U
Butylbenzene, n-	μg/L	5 ^B	-	-	-	-	-	-	-		-	-	-	-	-	-	-	
Butylbenzene, sec- (2-Phenylbutane)	μg/L	5** ^B	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	_
Butylbenzene, tert-	μg/L	5 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon Disulfide	μg/L	60 ^A	2.00 U	5 U	2.00 U	10.0 U	10.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Carbon Tetrachloride (Tetrachloromethane)	μg/L	5 ^B	2.00 U	5 U	2.00 U	10.0 U	10.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Chlorobenzene (Monochlorobenzene)	μg/L	5** ^B	2.00 U	5 U	2.00 U	10.0 U	10.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Chlorobromomethane	μg/L	5** ^B	-	5 U	5.00 U	25.0 U	25.0 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Chloroethane (Ethyl Chloride)	μg/L	5** ^B	2.00 U	5 U	2.00 U	10.0 U	10.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Chloroethyl Vinyl Ether, 2-	μg/L	n/v	10.0 U R	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chloroform (Trichloromethane)	μg/L	7 ⁸	3.78	3.9 J	2.00 U	10.0 U	10.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Chloromethane	µg/L	5++ ^B	2.00 U	5 U	2.00 U	10.0 U	10.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Cyclohexane Dibromo-3-Chloropropane, 1,2- (DBCP)	μg/L ug/l	n/v 0.04 ^B	-	5 U	10.0 U	50.0 U	50.0 U 50.0 U	10.0 U	10.0 U	10.0 U 10.0 U	10.0 U	10.0 UJ 10.0 UJ	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
Dibromochloromethane	µg/L µg/L	50 ^A	2.00 U	5 U	2.00 U	10.0 U	10.0 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichlorobenzene, 1,2-	μg/L	3 ^B	2.00 U	5 U	2.00 U	10.0 U	10.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichlorobenzene, 1,3-	µg/L	3 ^B	2.00 U	5 U	2.00 U	10.0 U	10.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichlorobenzene, 1,4-	μg/L	3 ^B	2.00 U	5 U	2.00 U	10.0 U	10.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichlorodifluoromethane (Freon 12)	μg/L	5 ^B	-	5 U	2.00 U	10.0 U	10.0 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichloroethane, 1,1-	μg/L	5 ^B	2.00 U	5 U	2.00 U	10.0 U	10.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichloroethane, 1,2-	μg/L	0.6 ^B	2.00 U	5 U	2.00 U	10.0 U	10.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U

Table 2
Summary of Analytical Results in Groundwater
Remedial Investigation
Former Carriage Factory
33 Litchfield Street, Rochester, New York

Area Sample Location			-								Building V-3							
Sample Date			23-Mar-12	22-May-13	26-Mar-14	29-May-14	1-Jul-14	7-Aug-14	29-Oct-14	3-Feb-15	5-May-15	12-Aug-15	2-Feb-16	2-May-16	2-May-16	10-Aug-16	13-Feb-17	13-Feb-1
Sample ID			RW-3	LI-RW-3-GW1	LI-RW-3	LI-RW-3-PI1	LI-RW-3-PI2	LI-RW-3-PI3	LI-RW3-PI6	LI-RW-3-PI9	LI-RW-3-PI12	LI-RW-3-PI15	LI-RW-3-PS3	LI-RW-3-PS6	LI-DUP-PS6	LI-RW-3-PS9	LI-RW-3-PS15	LI-FD-PS1
Sampling Company			DECI	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory			PARAROCH	CCGE	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROC
Laboratory Work Order			12:1239	E2342	141138	142196	142794	143439	144730	150382	151696	153411	160464	161713	161713	163436	170564	170564
Laboratory Sample ID			12:1239-03	E2342-01	141138-03	142196-11	142794-06	143439-03	144730-03	150382-03	151696-03	153411-03	160464-09	161713-03	161713-13	163436-03	170564-03	170564-13
Sample Type	Units	togs													Field Duplicate			Field Duplicate
Volatile Organic Compounds (cont'd)																		
Dichloroethene, cis-1,2-	μg/L	5B	81.8 ^B	130 ^B	3.77	30.1 ^B	90.5 ^B	143 ^B	3.35	1.40 J	1.23 J	2.00 UJ	2.00 U	2.00 U	2.00 U	3.68	2.00 U	2.00 U
Dichloroethene, trans-1,2-	µg/L	5 ^B	10.2 ^B	18.8 ^B	2.00 U	10.0 U	7.12 J ^B	3.16	4.47	6.02 ^B	3.63	4.29 J-	2.77	1.32 J	1.12 J	3.81	2.00 U	2.00 U
Dichloropropane, 1,2-	µg/L	1 ^B	2.00 U	5 U	2.00 U	10.0 U	10.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichloropropene, cis-1,3-	µg/L	0.4 ₀ ^B	2.00 U	5 U	2.00 U	10.0 U	10.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dichloropropene, trans-1,3-	μg/L	0.4 _p ^B	2.00 U	5 U	2.00 U	10.0 U	10.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dioxane, 1,4-	μg/L	n/v	-	100 U R	20.0 U R	100 U R	100 U R	20.0 U R	20.0 U	20.0 U	20.0 UJ	20.0 U R	20.0 U R	20.0 U R	20.0 U R	20.0 U R	20.0 U R	20.0 U R
Ethylbenzene	μg/L	5++ ^B	2.00 U	5 U	2.00 U	10.0 U	10.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Ethylene Dibromide (Dibromoethane, 1,2-)	μg/L	0.0006 ^B	-	5 U	2.00 U	10.0 U	10.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Hexanone, 2- (Methyl Butyl Ketone)	μg/L	50 ^A	5.00 U	25 U	5.00 U	25.0 U	25.0 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Isopropylbenzene	μg/L	5++ ^B	-	5 U	2.00 U	10.0 U	10.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Isopropyltoluene, p- (Cymene)	μg/L	5++ ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methyl Acetate	μg/L	n/v	-	5 U	2.00 U	10.0 U	10.0 U	2.00 U	2.87	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Methyl Ethyl Ketone (MEK) (2-Butanone)	μg/L	50 ^A	10.0 U	25 U	10.0 UJ	404 ^A	139 J ^A	60.0 ^A	10.0 UJ	10.0 UJ	10.0 U	10.0 UJ	27.7	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U
Methyl Isobutyl Ketone (MIBK)	μg/L	n/v	5.00 U	25 U	5.00 U	25.0 U	25.0 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Methyl tert-butyl ether (MTBE)	μg/L	10 ^A	-	7.1	2.00 U	10.0 U	10.0 U	2.00 U	2.00 U	3.43	2.12	2.04 J-	2.26	1.78 J	1.33 J	6.86	1.35 J	1.23 J
Methylcyclohexane	μg/L	n/v	-	5 U	2.00 U	10.0 U	10.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Methylene Chloride (Dichloromethane)	µg/L	5 ^B	5.00 U	5 U	4.04 JB	25.0 U	25.0 U	5.00 U	6.12 ^B	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Naphthalene	μg/L	10 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Propylbenzene, n-	μg/L	5 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Styrene	µg/L	5 ^B	5.00 U	5 U	5.00 U	25.0 U	25.0 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Tetrachloroethane, 1,1,2,2-	μg/L	5 ^B	2.00 U	5 U	2.00 U	10.0 U	10.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Tetrachloroethene (PCE)	μg/L	5** ^B	2.81	7.8 ⁸	2.36	10.0 U	10.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Toluene	μg/L	5 ^B	2.00 U	5 U	2.00 U	10.0 U	10.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Trichlorobenzene, 1,2,3-	μg/L	5 ^B	-	5 U	5.00 U	25.0 U	25.0 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Trichlorobenzene, 1,2,4-	μg/L	5 ^B	-	5 U	5.00 U	25.0 U	25.0 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U
Trichloroethane, 1,1,1-	μg/L	5 ^B	2.00 U	5 U	2.00 U	10.0 U	10.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Trichloroethane, 1,1,2-	µg/L	1 ^B	2.00 U	5 U	2.00 U	10.0 U	10.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Trichloroethene (TCE)	µg/L	5 ^B	125 ⁸	320 D ^B	10.5 ^B	83.9 ⁸	36.6 ^B	2.00 U	2.00 U	2.00 U	1.04 J	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Trichlorofluoromethane (Freon 11)	μg/L	5 _{**} B	2.00 U	5 U	2.00 U	10.0 U	10.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Trichlorotrifluoroethane (Freon 113)	μg/L	5++ ^B	-	5 U	2.00 U	10.0 U	10.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Trimethylbenzene, 1,2,4-	μg/L	5++ ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trimethylbenzene, 1,3,5-	μg/L	5** ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl Acetate	μg/L	n/v	5.00 U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl Chloride	μg/L	2 ^B	2.00 U	3 J ^B	2.00 U	10.0 U	18.1 ^B	10.1 NJ ^B	22.5 ^B	4.14 NJ ^B	2.00 U	1.65 J-	2.00 U	2.00 U	2.00 U	5.39 NJ ^B	2.00 U	2.00 U
Xylene, m & p-	μg/L	5** ^B	2.00 U	10 U	2.00 U	10.0 U	10.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Xylene, o-	µg/L	5** ^B	2.00 U	5 U	2.00 U	10.0 U	10.0 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Total VOC	μg/L	n/v	223.59	490.6	20.67	650	334.52	263.86	39.31	14.99	12.43	7.98 J-	52.93	3.10	2.45	19.74	1.35	1.23
VOC Tentatively Identified Compound	ls																	
Total VOC TICs	μg/L	n/v	-	2.5 U	-	I			_	_			_		_			

Table 2
Summary of Analytical Results in Groundwater
Remedial Investigation
Former Carriage Factory
33 Litchfield Street, Rochester, New York

Area	1	I											Off-Site I	Locations										
Sample Location									RV	V-5										RV	N-6			
Sample Date			25-Apr-12	21-May-13	27-Mar-14	29-May-14	2-Jul-14	7-Aug-14	28-Oct-14	3-Feb-15	4-May-15	13-Aug-15	1-Feb-16	3-May-16	10-Aug-16	14-Feb-17	25-Apr-12	4-May-12	20-May-13	27-Mar-14	28-May-14	1-Jul-14	7-Aug-14	7-Aug-14
Sample ID			RW-5	LI-RW-5-GW1	LI-RW-5	LI-RW-5-PI1	LI-RW-5-PI2	LI-RW-5-PI3	LI-RW5-PI6	LI-RW-5-PI9	LI-RW-5-PI12	LI-RW-5-PI15	LI-RW-5-PS3	LI-RW-5-PS6	LI-RW-5-PS9	LI-RW-5-PS15	RW-6	RW-6	LI-RW-6-GW1	LI-RW-6	LI-RW-6-PI1	LI-RW-6-PI2	LI-RW-6-PI3	LI-FD-PI3
Sampling Company			DECI	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	DECI	DECI	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory			PARAROCH	CCGE	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	CCGE	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH
Laboratory Work Order			12:1770	E2314	141138	142196	142794	143439	144730	150382	151696	153411	160464	161713	163436	170564	12:1770	12:1927	E2301	141138	142196	142794	143439	143439
Laboratory Sample ID			12:1770-02	E2314-06	141138-05	142196-14	142794-13	143439-05	144730-05	150382-04	151696-05	153411-09	160464-05	161713-05	163436-05	170564-05	12:1770-03	12:1927-01	E2301-01	141138-06	142196-02	142794-03	143439-06	143439-13
Sample Type	Units	TOGS																						Field
																								Duplicate
General Chemistry			Į														ı							
Total Organic Carbon	μg/L	n/v	=	-	3,300	141,000	299,000	86,700	8,700	4,600 J	2,200	2,800 J-	4,990	2,490	3,690	1,780	-	-	-	3,400	360,000	96,600	99,700	102,000
Metals																								
Aluminum	μg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Antimony	µg/L	3 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Arsenic	µg/L	25 ^B	-	-	10 U	10 U	10 U	10 U	10 U	10 U	10.0 U	10.0 UJ	-	-	-	-	-	-	-	10 U	10 U	10 U	10 U	-
Barium	µg/L	1,000 ⁸	=	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Beryllium Cadmium	μg/L	3 ^A 5 ^B	-	_	-	_	_	_	_	_	_	_	_	_	_	_	I -	-	_	_	_	_	_	-
Cadmium Calcium	μg/L μg/L	n/v	_		-		_					_	_					_				_		
Chromium	µg/L	50 ^B	_		_	_	_	_	_	_	_	_	_				_	_			_	_		
Cobalt	µg/L	n/v	_	_	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Copper	μg/L	200 ^B	-	-	-	-	-	_	_	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-
Iron	μg/L	300 _* B	-	-	100 U	2,500 ^B	6,250 ^B	6,000 ^B	4,420 ^B	4,760 ^B	9,910 ^B	7,480 J- ^B	-	-	-	-	-	-	-	318 ^B	1,140 ^B	1,740 ^B	850 ⁸	
Lead	μg/L	25 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Magnesium	μg/L	35,000 ^A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Manganese	μg/L	300 _* B	=	-	69.2	69.1	102	60.4 B	47.8	25.7	29.8	38.9 J-	-	-	-	-	-	-	-	25.9	66.9	53.5	35.9	-
Mercury	μg/L	0.7 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nickel	μg/L	100 ^B	=	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Potassium	µg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Selenium	μg/L	10 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Silver	µg/L	50 ^B	-	-								B	-	-	-	-	-	-	-				- 110 000B	
Sodium	µg/L	20,000 ^B 0.5 ^A	-	_	39,500 ⁸	242,000 ⁸	312,000 ⁸	164,000 ⁸	85,200 ⁸	66,600 ⁸	44,600 ⁸	50,500 J- ⁸	-	-	-	-	-	_	-	37,800 ⁸	266,000 ⁸	167,000 ⁸	163,000 ⁸	178,000 ⁸
Thallium Vanadium	µg/L µg/L	0.5 n/v	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_		_	_		
Zinc	μg/L	2,000 ^A	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Volatile Organic Compounds	F-0/-	2,000															<u> </u>							
Acetone	μg/L	50 ^A	10.0 UJ	2.6 J	10.0 U	10.0 U	7.44 J	10.0 U	10.0 U	10.0 UJ	10.0 U	10.0 UJ	10.0 U	10.0 U	10.0 U	10.0 UJ	10.0 UJ	100 UJ	4.2 J	200 U	200 U	10.0 U	500 U	500 U
Benzene	µg/L	1 ^B	1.13 J ^B	5 U	1 U	0.737 J	0.358 J	1 U	0.507 J	1 U	1 U	0.509 J-	1.00 U	1.00 U	0.741 J	1.00 U	0.700 UJ	7.00 U	5 U	20 U	20 U	1 U	50 U	50 U
Bromodichloromethane	μg/L	50 ^A	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	20.0 U	5 U	40.0 U	40.0 U	2.00 U	100 U	100 U
Bromoform (Tribromomethane)	μg/L	50 ^A	5.00 UJ	5 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	50.0 U	5 U	100 U	100 U	5.00 U	250 UJ	250 UJ
Bromomethane (Methyl bromide)	μg/L	5 ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 UJ	20.0 U	5 U	40.0 U	40.0 U	2.00 U	100 U	100 U
Butylbenzene, n-	μg/L	5 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Butylbenzene, sec- (2-Phenylbutane)	μg/L	5 _{**} B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Butylbenzene, tert-	μg/L	5 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon Disulfide	μg/L	60 ^A	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	20.0 U	5 U	40.0 U	40.0 U	2.00 U	100 U	100 U
Carbon Tetrachloride (Tetrachloromethane)	μg/L	5 ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	20.0 U	5 U	40.0 U	40.0 U	2.00 U	100 U	100 U
Chlorobenzene (Monochlorobenzene)	µg/L	5 ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	20.0 U	5 U	40.0 U	40.0 U	2.00 U	100 U	100 U
Chlorobromomethane	µg/L	5++ ^B	-	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	-	-	5 U	100 U	100 U	5.00 U	250 U	250 U
Chloroethane (Ethyl Chloride)	µg/L	5** ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	20.0 U	5 U	40.0 U	40.0 U	2.00 U	100 U	100 U
Chloroethyl Vinyl Ether, 2- Chloroform (Trichloromethane)	µg/L µg/L	n/v 7 ^B	10.0 U R 2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	10.0 U R 2.00 UJ	100 U R 20.0 U	5 U	40.0 U	40.0 U	2.00 U	100 U	100 U
Chloromethane	μg/L	5** ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	20.0 U	5 U	40.0 U	40.0 U	2.00 U	100 U	100 U
Cyclohexane	µg/L	n/v	-	5 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 UJ	10.0 U	10.0 U	10.0 U	10.0 U	-	-	5 UJ	200 U	200 U	10.0 U	500 U	500 U
Dibromo-3-Chloropropane, 1,2- (DBCP)	µg/L	0.04 ^B	-	5 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 UJ	10.0 U	10.0 U	10.0 U	10.0 U	-	-	5 U	200 U	200 U	10.0 U	500 U	500 U
Dibromochloromethane	µg/L	50 ^A	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	20.0 U	5 U	40.0 U	40.0 U	2.00 U	100 UJ	100 UJ
Dichlorobenzene, 1,2-	μg/L	3 ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	20.0 U	5 U	40.0 U	40.0 U	2.00 U	100 U	100 U
Dichlorobenzene, 1,3-	μg/L	3 ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	20.0 U	5 U	40.0 U	40.0 U	2.00 U	100 U	100 U
Dichlorobenzene, 1,4-	μg/L	3 ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	20.0 U	5 U	40.0 U	40.0 U	2.00 U	100 U	100 U
Dichlorodifluoromethane (Freon 12)	μg/L	5** ^B	-	5 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	-	-	5 U	40.0 U	40.0 U	2.00 U	100 U	100 U
Dichloroethane, 1,1-	μg/L	5** ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	20.0 U	5 U	40.0 U	40.0 U	2.00 U	100 U	100 U
Dichloroethane, 1,2-	μg/L	0.6 ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	20.0 U	5 U	40.0 U	40.0 U	2.00 U	100 U	100 U
Dichloroethene, 1,1-	μg/L	5 ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	20.0 U	5 U	40.0 U	40.0 U	2.00 U	100 U	100 U

Table 2
Summary of Analytical Results in Groundwater
Remedial Investigation
Former Carriage Factory
33 Litchfield Street, Rochester, New York

Sample Location																								
Samuel - Data			05 4 10	01.4412	07.44 14	00.4414	0.1	7 4 14		1-5 2 5-4-15	4 44 15	12 4 15	1 5-6-17	2.4417	10 4 14	14 5-6 17	05 4 10	4.44 10	00.44 12		V-6	1 1.1.14	7 4 14	7
Sample Date			25-Apr-12	21-May-13	27-Mar-14	29-May-14	2-Jul-14	7-Aug-14	28-Oct-14	3-Feb-15	4-May-15	13-Aug-15	1-Feb-16	3-May-16	10-Aug-16	14-Feb-17	25-Apr-12	4-May-12	20-May-13	27-Mar-14	28-May-14	1-Jul-14	7-Aug-14	7-Aug-
Sample ID			RW-5	LI-RW-5-GW1	LI-RW-5	LI-RW-5-PI1	LI-RW-5-PI2	LI-RW-5-PI3	LI-RW5-PI6	LI-RW-5-PI9	LI-RW-5-PI12	LI-RW-5-PI15	LI-RW-5-PS3	LI-RW-5-PS6	LI-RW-5-PS9	LI-RW-5-PS15	RW-6	RW-6	LI-RW-6-GW1	LI-RW-6	LI-RW-6-PI1	LI-RW-6-PI2	LI-RW-6-PI3	LI-FD-PI
Sampling Company			DECI	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	DECI	DECI	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTE						
aboratory			PARAROCH	CCGE	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	CCGE	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARARO
aboratory Work Order			12:1770	E2314	141138	142196	142794	143439	144730	150382	151696	153411	160464	161713	163436	170564	12:1770	12:1927	E2301	141138	142196	142794	143439	143439
aboratory Sample ID			12:1770-02	E2314-06	141138-05	142196-14	142794-13	143439-05	144730-05	150382-04	151696-05	153411-09	160464-05	161713-05	163436-05	170564-05	12:1770-03	12:1927-01	E2301-01	141138-06	142196-02	142794-03	143439-06	143439-
Sample Type	Units	TOGS																						Field Duplica
Volatile Organic Compounds (cont'd)																								
Dichloroethene, cis-1,2-	μg/L	5 ^B	49.5 J ^B	18.2 ^B	7.64 ^B	32.7 ^B	45.7 ^B	46.0 ^B	132 ^B	8.81 ^B	4.52	56.7 J- ^B	2.00 U	2.00 U	50.7 ^B	2.00 U	59.8 J ^B	63.1 ^B	47.3 ^B	81.9 ^B	670 ^B	86.7 ^B	3,980 ^B	4,070
Dichloroethene, trans-1,2-	μg/L	5 ^B	5.63 J ^B	2.2 J	1.10 J	2.92	1.89 J	1.32 J	3.78	2.00 U	2.00 U	2.09 J-	2.00 U	2.00 U	2.62	2.00 U	2.00 UJ	20.0 U	1.1 J	40.0 U	76.1 ^B	3.31	76.6 J ^B	77.6 J
Dichloropropane, 1,2-	μg/L	1 ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	20.0 U	5 U	40.0 U	40.0 U	2.00 U	100 U	100 U
Dichloropropene, cis-1,3-	μg/L	0.4 ₀ ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	20.0 U	5 U	40.0 U	40.0 U	2.00 U	100 U	100 U
Dichloropropene, trans-1,3-	µg/L	0.4 ₀ ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	20.0 U	5 U	40.0 U	40.0 U	2.00 U	100 U	100 U
Dioxane, 1,4-	μg/L	n/v	-	100 U	20.0 U R	20.0 U R	20.0 U R	20.0 U R	20.0 U	20.0 U	20.0 UJ	20.0 U R	20.0 U R	20.0 U R	20.0 U R	20.0 U R			100 U R	400 U R	400 U R	20.0 U R	1,000 U R	1,000 U
Ethylbenzene	µg/L	5 ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	20.0 U	5 U	40.0 U	40.0 U	2.00 U	100 U	100 U
Ethylene Dibromide (Dibromoethane, 1,2-)	μg/L	0.0006 ^B	-	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	_	=	5 U	40.0 U	40.0 U	2.00 U	100 U	100 U
Hexanone, 2- (Methyl Butyl Ketone)	µg/L	50 ^A	5.00 UJ	25 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	50.0 U	25 U	100 U	100 U	5.00 U	250 U	250 U
sopropylbenzene	μg/L	5++ ^B	-	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	_	-	5 U	40.0 U	40.0 U	2.00 U	100 U	100 U
sopropyltoluene, p- (Cymene)	µg/L	5B	-	_	_	-	_	_	-	_	_	_	_	-	-	_	_	-	_	-	-	_	-	_
Methyl Acetate	µg/L	n/v	-	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	_	-	5 U	40.0 U	40.0 U	2.00 U	100 U	100 U
Methyl Ethyl Ketone (MEK) (2-Butanone)	µg/L	50 ^A	10.0 UJ	25 U	10.0 UJ	10.0 U	43.1 J	10.8	10.0 UJ	10.0 UJ	10.0 U	10.0 UJ	26.1	10.0 U	10.0 U	10.0 U	10.0 UJ	100 U	25 U	200 UJ	200 U	13.3 J	500 U	500 U
Methyl Isobutyl Ketone (MIBK)	µg/L	n/v	5.00 UJ	25 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	50.0 U	25 U	100 U	100 U	5.00 U	250 U	250 U
Methyl tert-butyl ether (MTBE)	μg/L	10 ^A	-	1.3 J	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	-	-	2.1 J	40.0 U	40.0 U	1.03 J	100 U	100 U					
Methylcyclohexane	μg/L	n/v	-	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	-	-	5 U	40.0 U	40.0 U	2.00 U	100 U	100 U
Methylene Chloride (Dichloromethane)	μg/L	5 ^B	5.00 UJ	5 U	4.53 JB	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	50.0 UJ	5 U	100 U	56.8 J ^B	5.00 U	250 U	250 U				
Naphthalene	μg/L	10 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Propylbenzene, n-	μg/L	5 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Styrene	μg/L	5 ^B	5.00 UJ	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	50.0 U	5 U	100 U	100 U	5.00 U	250 U	250 U
etrachloroethane, 1,1,2,2-	μg/L	5 ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	20.0 U	5 U	40.0 U	40.0 U	2.00 U	100 U	100 U
etrachloroethene (PCE)	μg/L	5 ^B	12.2 J ^B	5.6 ^B	2.75	11.2 ^B	2.44	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	881 J ^B	732 ^B	880 D ^B	3.380 ⁸	84.6 ^B	3.26	100 U	100 U
foluene	μg/L	5 ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	20.0 U	5 U	40.0 U	40.0 U	2.00 U	100 U	100 U
frichlorobenzene, 1,2,3-	μg/L	5 ^B	-	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	-	-	5 U	100 U	100 U	5.00 U	250 U	250 U
frichlorobenzene, 1,2,4-	μg/L	5 ^B	-	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	-	-	5 U	100 U	100 U	5.00 U	250 U	250 U
frichloroethane, 1,1,1-	μg/L	5 ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	20.0 U	5 U	40.0 U	40.0 U	2.00 U	100 U	100 U
frichloroethane, 1,1,2-	μg/L	1 ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	20.0 U	5 U	40.0 U	40.0 U	2.00 U	100 U	100 U
richloroethene (TCE)	μg/L	5 ^B	48.5 J ^B	25.2 ^B	6.65 ^B	40.0 ^B	14.2 ^B	1.10 J	2.76	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	112 J ^B	93.2 ⁸	140 ^B	283 ^B	752 ⁸	35.8 ^B	100 U	100 U
richlorofluoromethane (Freon 11)	μg/L	5 ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	20.0 U	5 U	40.0 U	40.0 U	2.00 U	100 U	100 U
richlorotrifluoroethane (Freon 113)	μg/L	5** ^B	-	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	-	-	5 U	40.0 U	40.0 U	2.00 U	100 U	100 U
rimethylbenzene, 1,2,4-	μg/L	5** ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
rimethylbenzene, 1,3,5-	μg/L	5** ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
/inyl Acetate	μg/L	n/v	5.00 UJ	-	-	-	-	-	-	-	-	-	-	-	-	-	5.00 UJ	50.0 U	-	-	-	-	-	-
/inyl Chloride	μg/L	2 ^B	2.93 J ^B	0.6 J	2.00 U	2.00 U	1.28 NJ	3.76 ^B	12.8 ^B	2.30 NJ ^B	2.00 U	16.0 J- ^B	1.52 J	2.00 U	53.4 ^B	2.00 U	2.00 UJ	20.0 U	0.52 NJ	40.0 U	40.0 U	2.00 U	115 ^B	116 ^B
(ylene, m & p-	μg/L	5** ^B	2.00 UJ	10 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	20.0 U	10 U	40.0 U	40.0 U	2.00 U	100 U	100 L
(ylene, o-	μg/L	5** ^B	2.00 UJ	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	20.0 UJ	5 U	40.0 U	40.0 U	2.00 U	100 U	100 U
rotal VOC	μg/L	n/v	119.89	55.7	22.67	87.557	116.408	62.98	151.85	11.11	6.13	75.299 J-	27.62	ND	107.461	ND	1,052.8	888.3	1,075.22	3,744.9	1,639.5	143.4	4,171.6	4,263.

Table 2
Summary of Analytical Results in Groundwater
Remedial Investigation
Former Carriage Factory
33 Litchfield Street, Rochester, New York

Area	1 1	I												Off-Site	Locations											
Sample Location						RW	V-6							0.1 0.10	2004		RV	W-7							RW	W-8
Sample Date		:	28-Oct-14	4-Feb-15	4-May-15	13-Aug-15	1-Feb-16	3-May-16	9-Aug-16	14-Feb-17	12-Jun-12	20-May-13	27-Mar-14	28-May-14	1-Jul-14	7-Aug-14	28-Oct-14	4-Feb-15	4-May-15	13-Aug-15	1-Feb-16	3-May-16	9-Aug-16	14-Feb-17	14-Jun-12	20-May-13
Sample ID			LI-RW6-PI6	LI-RW-6-PI9	LI-RW-6-PI12	LI-RW-6-PI15	LI-RW-6-PS3	LI-RW-6-PS6	LI-RW-6-PS9	LI-RW-6-PS15	RW-7	LI-RW-7-GW1	LI-RW-7	LI-RW-7-PI1	LI-RW-7-PI2	LI-RW-7-PI3	LI-RW7-PI6	LI-RW-7-PI9	LI-RW-7-PI12	LI-RW-7-PI15	LI-RW-7-PS3	LI-RW-7-PS6	LI-RW-7-PS9	LI-RW-7-PS15	RW-8	LI-RW-8-GW
Sampling Company			STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	DECI	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	DECI	STANTEC
Laboratory			ARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	CCGE	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	CCGE
Laboratory Work Order			144730	150382	151696	153411	160464	161713	163436	170564	12:2486	E2301	141138	142196	142794	143439	144730	150382	151696	153411	160464	161713	163436	170564	12:2523	E2301
Laboratory Sample ID		1	144730-06	150382-09	151696-06	153411-10	160464-02	161713-06	163436-06	170564-06	12:2486-02	E2301-02	141138-07	142196-01	142794-02	143439-07	144730-07	150382-10	151696-07	153411-11	160464-03	161713-07	163436-07	170564-07	12:2523-01	E2301-03
Sample Type	Units	TOGS																								
General Chemistry	, ,																									
Total Organic Carbon Metals	μg/L	n/v	62,900	14,000	3,000	2,800 J-	120,000	3,410	2,090	2,090	-	-	-	86,900	7,500	11,500	8,800	2,500 J	3,100	2,600 J-	21,100	2,720	3,680	1,530	-	-
	Lug/I	n/u					I	I			_					I			I			I				1
Aluminum Antimony	μg/L μg/L	n/v 3 ^B	-	-	-		_	_	_	-	-	_	_	_	_	-	_	-	_	_	_	_	_	_	-	
Arsenic		25 ^B	10 U	10 U	10.0 U	10.0 UJ	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Barium		1,000 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Beryllium	μg/L	3 ^A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cadmium	μg/L	5 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Calcium	µg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Chromium	µg/L	50 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	=	-
Cobalt	μg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Copper	μg/L	200 ⁸	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Iron		300₊ ^B	1,820 ^B	1,480 ⁸	864 ^B	1,240 J- ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lead		25 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Magnesium	1	5,000 ^A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Manganese		300+ ^B	38.7	34.7	30.9	32.2 J-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury		0.7 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nickel Potassium		100 ⁸ n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Selenium	μg/L μg/L	10 ^B		-	_		_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	
Silver		50 ⁸			_		_	_		_	_	_	_	_	_	_			_	_		_	_	_	-	
Sodium			149.000 ^B	91.700 ^B	68.800 ^B	63.200 J- ^B	_	_	_	_	_	_	_	126.000 ^B	85.200 ⁸	85.600 ^B	77.500 ^B	67.100 ^B	49.900 ^B	64.400 J- ^B	_	_	_	_	_	_
Thallium		0.5 ^A	-	-	-	-	-	_	_	-	-	_	_	-	-	-		-	-	-	-	_	_	_	-	_
Vanadium		n/v	-	-	-	-	-	-	_	-	-	-	-	-	_	-	-	_	-	_	_	-	_	_	-	-
Zinc		2,000 ^A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-
Volatile Organic Compounds											•															
Acetone	μg/L	50 ^A	500 U	50.0 UJ	50.0 U	50.0 UJ	100 U	100 U	100 U	20.0 UJ	-	25 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 UJ	10.0 U	10.0 UJ	10.0 U	10.0 U	10.0 U	10.0 UJ	-	25 U
Benzene	μg/L	1 ^B	50 U	5 U	5 U	5.00 UJ	10.0 U	10.0 U	10.0 U	2.00 U	-	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.00 UJ	1.00 U	1.00 U	1.00 U	1.00 U	-	5 U
Bromodichloromethane	μg/L	50 ^A	100 U	10.0 U	10.0 U	10.0 UJ	20.0 U	20.0 U	20.0 U	4.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U
Bromoform (Tribromomethane)	μg/L	50 ^A	250 U	25.0 U	25.0 U	25.0 UJ	50.0 U	50.0 U	50.0 U	10.0 U	5.00 U	5 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5 U
Bromomethane (Methyl bromide)	μg/L	5 ^B	100 U	10.0 U	10.0 U	10.0 UJ	20.0 U	20.0 UJ	20.0 U	4.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 UJ	5 U
Butylbenzene, n-	μg/L	5** ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Butylbenzene, sec- (2-Phenylbutane)	μg/L	5 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Butylbenzene, tert-	μg/L	5 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon Disulfide		60 ^A	100 U	10.0 U	10.0 U	10.0 UJ	20.0 U	20.0 U	20.0 U	4.00 U	-	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	-	5 U
Carbon Tetrachloride (Tetrachloromethane)	μg/L	5 ^B	100 U	10.0 U	10.0 U	10.0 UJ	20.0 U	20.0 U	20.0 U	4.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	5 U
Chlorobenzene (Monochlorobenzene)		5 ^B	100 U	10.0 U	10.0 U	10.0 UJ	20.0 U	20.0 U	20.0 U	4.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U
Chlorothomomethane	µg/L	5++"	250 U	25.0 U	25.0 U	25.0 UJ	50.0 U	50.0 U	50.0 U	10.0 U 4.00 U	2.00 U	5 U	5.00 U	5.00 U 2.00 U	5.00 U 2.00 U	5.00 U	5.00 U 2.00 U	5.00 U	5.00 U	5.00 UJ 2.00 UJ	5.00 U 2.00 U	5.00 U 2.00 U	5.00 U 2.00 U	5.00 U 2.00 U	2.00 U	5 U
Chloroethane (Ethyl Chloride) Chloroethyl Vinyl Ether, 2-		5++ ^B n/v	100 U	10.0 U	10.0 U	10.0 UJ	20.0 U	20.0 U	20.0 U	4.00 0	10.0 U R	5 U	2.00 U	2.00 0	2.00 0	2.00 U	2.00 0	2.00 U	2.00 U	2.00 03	2.00 0	2.00 0	2.00 0	2.00 0	10.0 U R	5 U
Chloroform (Trichloromethane)	μg/L μg/L	7 ^B	100 U	10.0 U	10.0 U	10.0 UJ	20.0 U	20.0 U	20.0 U	4.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U
Chloromethane	μg/L	5** ^B	100 U	10.0 U	10.0 U	10.0 UJ	20.0 U	20.0 U	20.0 U	4.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U
Cyclohexane		n/v	500 U	50.0 U	50.0 U	50.0 UJ	100 U	100 U	100 U	20.0 U	-	5 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 UJ	10.0 U	10.0 U	10.0 U	10.0 U	-	5 U J
Dibromo-3-Chloropropane, 1,2- (DBCP)		0.04 ^B	500 U	50.0 U	50.0 U	50.0 UJ	100 U	100 U	100 U	20.0 U	-	5 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 UJ	10.0 U	10.0 U	10.0 U	10.0 U	-	5 U
Dibromochloromethane		50 ^A	100 U	10.0 U	10.0 U	10.0 UJ	20.0 U	20.0 U	20.0 U	4.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U
Dichlorobenzene, 1,2-	μg/L	3 ^B	100 U	10.0 U	10.0 U	10.0 UJ	20.0 U	20.0 U	20.0 U	4.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U
Dichlorobenzene, 1,3-	μg/L	3 ^B	100 U	10.0 U	10.0 U	10.0 UJ	20.0 U	20.0 U	20.0 U	4.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U
Dichlorobenzene, 1,4-	μg/L	3 ^B	100 U	10.0 U	10.0 U	10.0 UJ	20.0 U	20.0 U	20.0 U	4.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U
Dichlorodifluoromethane (Freon 12)	μg/L	5** ^B	100 U	10.0 U	10.0 U	10.0 UJ	20.0 U	20.0 U	20.0 U	4.00 U	-	5 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	-	5 U
Dichloroethane, 1,1-	μg/L	5** ^B	100 U	10.0 U	10.0 U	10.0 UJ	20.0 U	20.0 U	20.0 U	4.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U
Dichiorochiane, 1,1																										
Dichloroethane, 1,2-		0.6 ^B	100 U 100 U	10.0 U	10.0 U	10.0 UJ	20.0 U	20.0 U	20.0 U	4.00 U	2.00 U	5 U 5 U	2.00 U 2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	5 U

Table 2
Summary of Analytical Results in Groundwater
Remedial Investigation
Former Carriage Factory
33 Litchfield Street, Rochester, New York

Area											1			Off-Site	Locations											
Sample Location			28-Oct-14	4-Feb-15	4-May-15	13-Aug-15	V-6 1-Feb-16	3-May-16	9-Aug-16	14-Feb-17	12-Jun-12	20-May-13	27-Mar-14	28-May-14	1-Jul-14	7-Aug-14	28-Oct-14	W-7 4-Feb-15	4-May-15	13-Aug-15	1-Feb-16	3-May-16	9-Aug-16	14-Feb-17	14-Jun-12	20-May-
Sample Date					,			,	_			,				_			,			,				
Sample ID			LI-RW6-PI6	LI-RW-6-PI9	LI-RW-6-PI12	LI-RW-6-PI15	LI-RW-6-PS3	LI-RW-6-PS6	LI-RW-6-PS9	LI-RW-6-PS15	RW-7	LI-RW-7-GW1	LI-RW-7	LI-RW-7-PI1	LI-RW-7-PI2	LI-RW-7-PI3	LI-RW7-PI6	LI-RW-7-PI9	LI-RW-7-PI12		LI-RW-7-PS3	LI-RW-7-PS6	LI-RW-7-PS9	LI-RW-7-PS15	RW-8	LI-RW-8-G
Sampling Company			STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	DECI	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	DECI	STANTEC
Laboratory			PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	CCGE	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	CCGE
Laboratory Work Order			144730	150382	151696	153411	160464	161713	163436	170564	12:2486	E2301	141138	142196	142794	143439	144730	150382	151696	153411	160464	161713	163436	170564	12:2523	E2301
Laboratory Sample ID			144730-06	150382-09	151696-06	153411-10	160464-02	161713-06	163436-06	170564-06	12:2486-02	E2301-02	141138-07	142196-01	142794-02	143439-07	144730-07	150382-10	151696-07	153411-11	160464-03	161713-07	163436-07	170564-07	12:2523-01	E2301-03
Sample Type	Units	TOGS																								
Volatile Organic Compounds (cont'd)																										
· · · · · · · · ·		- B	0	0								0													9	B
Dichloroethene, cis-1,2-	µg/L	5 ^B	2,730 ⁸ 100 U	687 ⁸	373 ⁸	164 J- ⁸ 10.0 UJ	1,520 ⁸	1,910 ⁸	344 ⁸ 20.0 U	277 ⁸	4.28	8.2 ⁸	2.35	2.65	2.43	2.96	4.44	1.33 J	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	6.50 ⁸	17.8 ⁸
Dichloroethene, trans-1,2-	µg/L	5*** 1B	100 U	6.64 J ^B	6.18 J ^B	10.0 UJ	11.5 J ^s	18.0 J ^B		4.00 U 4.00 U	2.00 U 2.00 U	0.92 J	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U	2.00 U 2.00 U	2.00 U	2.00 U	2.00 UJ 2.00 UJ	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.1 J 5 U
Dichloropropane, 1,2- Dichloropropene, cis-1,3-	µg/L	0.4 _p ^B	100 U	10.0 U 10.0 U	10.0 U 10.0 U	10.0 UJ	20.0 U 20.0 U	20.0 U 20.0 U	20.0 U 20.0 U	4.00 U	2.00 U	5 U 5 U	2.00 U	2.00 U	2.00 U	2.00 U 2.00 U	2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U 2.00 U	2.00 U	2.00 U	5 U
Dichloropropene, trans-1,3-	µg/L	0.4 _p	100 U	10.0 U	10.0 U	10.0 UJ	20.0 U	20.0 U	20.0 U		2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U
Dictrioropropene, irans-1,3- Dioxane, 1,4-	µg/L	0.4 _p	1,000 U	10.0 U	10.0 UJ	10.0 U R	20.0 U R	20.0 U R	20.0 U R	4.00 U 40.0 U R	2.00 0	100 U R	20.0 U R	20.0 U R	20.0 U R	20.0 U R	2.00 U	2.00 U	20.0 UJ	20.0 U R	20.0 U R	20.0 U R	20.0 U R	20.0 U R	2.00 0	100 U R
	µg/L	5++ ^B	1,000 U	10.0 U	10.0 U	10.0 UJ	20.0 U	20.0 U	20.0 U	4.00 U	-	5 U	2.00 U	2.00 U	2.00 U		2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	_	5 U
Ethylbenzene Ethylene Dibromide (Dibromoethane, 1,2-)	µg/L	0.0006 ^B	100 U	10.0 U	10.0 U	10.0 UJ	20.0 U	20.0 U	20.0 U	4.00 U	-	5 U	2.00 U	2.00 U	2.00 U	2.00 U 2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U		5 U
Hexanone, 2- (Methyl Butyl Ketone)	µg/L	50 ^A	250 U	25.0 U	25.0 U	25.0 UJ	50.0 U	50.0 U	50.0 U	10.0 U	-	25 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	-	25 U
sopropylbenzene	µg/L	5 ^B	100 U							4.00 U	-	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	_	5 U
sopropyltoluene, p- (Cymene)	μg/L μg/L	5**	100 0	10.0 U	10.0 U	10.0 UJ	20.0 U	20.0 U	20.0 U	4.00 0	-	30	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	2.00 03	2.000	2.000	2.00 0	2.00 0	-	30
Methyl Acetate		n/v	100 U	10.0 U	10.0 U	10.0 UJ	20.0 U	20.0 U	20.0 U	4.00 U	-	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	_	5 U
Methyl Ethyl Ketone (MEK) (2-Butanone)	µg/L	50 ^A	500 UJ	50.0 UJ	50.0 U	50.0 UJ	20.0 U	100 U	100 U	20.0 U	-	25 U	10.0 UJ	10.0 U	10.0 UJ	10.0 U	10.0 UJ	10.0 UJ	10.0 U	10.0 UJ	25.2	10.0 U	10.0 U	10.0 U	_	25 U
Methyl Isobutyl Ketone (MIBK)	µg/L µg/L	n/v	250 UJ	25.0 U	25.0 U	25.0 UJ	50.0 U	50.0 U	50.0 U	10.0 U	-	25 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	_	25 U
Methyl tert-butyl ether (MTBE)	µg/L	10 ^A	100 U	10.0 U	10.0 U	10.0 UJ	20.0 U	20.0 U	20.0 U	4.00 U		1.8 J	2.00 U	2.00 U	2.00 U	1.16 J-	1.43 J	1.41 J	2.38	1.12 J	_	3.3 J				
Methylcyclohexane	µg/L	n/v	100 0	10.0 U	10.0 U	10.0 UJ	20.0 U	20.0 U	20.0 U	4.00 U		5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U		5.U
Methylene Chloride (Dichloromethane)	µg/L	5 B	250 U	25.0 U	25.0 U	25.0 UJ	50.0 U	50.0 U	50.0 U	10.0 U	5.00 U	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5 U
Naphthalene	µg/L	10 ^B	230 0	23.00	25.00	23.0 03	30.00	30.0 0	30.00	10.00	5.50 0	-	3.50 0	5.00 0	3.00 0	3.00 0	3.00 0	5.00 0	3.00 0	3.00 03	3.00 0	3.00 0	3.00 0	3.00 0	5.00 0	_
Propylbenzene, n-	µg/L	5 B	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_		_	_	
Styrene	µg/L	5B	250 U	25.0 U	25.0 U	25.0 UJ	50.0 U	50.0 U	50.0 U	10.0 U		5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	_	5 U
Tetrachloroethane, 1,1,2,2-	µg/L	5 ^B	100 U	10.0 U	10.0 U	10.0 UJ	20.0 U	20.0 U	20.0 U	4.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U
Tetrachloroethene (PCE)	µg/L	5 ^B	100 U	10.0 U	10.0 U	10.0 UJ	20.0 U	20.0 U	20.0 U	5.58 ^B	2.00 U	0.76 J	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	4.3 J				
Toluene	µg/L	5 ^B	100 U	10.0 U	10.0 U	10.0 UJ	20.0 U	20.0 U	20.0 U	4.00 U	2.00 0	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 0	5 U
Trichlorobenzene, 1,2,3-	µg/L	5 ^B	250 U	25.0 U	25.0 U	25.0 UJ	50.0 U	50.0 U	50.0 U	10.0 U	_	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	_	5 U
Trichlorobenzene, 1,2,4-	µg/L	5 ^B	250 U	25.0 U	25.0 U	25.0 UJ	50.0 U	50.0 U	50.0 U	10.0 U	_	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	_	5 U
Trichloroethane, 1,1,1-	µg/L	5 ^B	100 U	10.0 U	10.0 U	10.0 UJ	20.0 U	20.0 U	20.0 U	4.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U
Trichloroethane, 1,1,2-	µg/L	1 ^B	100 U	10.0 U	10.0 U	10.0 UJ	20.0 U	20.0 U	20.0 U	4.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U
Trichloroethene (TCE)	μg/L	5B	100 U	10.0 U	10.0 U	10.0 UJ	20.0 U	20.0 U	20.0 U	22.2 ^B	2.00 U	5.8 ^B	2.85	2.99	3.05	3.12	2.00 U	2.00 U	1.29 J	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	7.59 ^B	20.7 ^B
Trichlorofluoromethane (Freon 11)	µg/L	5 ^B	100 U	10.0 U	10.0 U	10.0 UJ	20.0 U	20.0 U	20.0 U	4.00 U	2.00 U	5.0 5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	5 U
Trichlorotrifluoroethane (Freon 113)	µg/L	5** ^B	100 U	10.0 U	10.0 U	10.0 UJ	20.0 U	20.0 U	20.0 U	4.00 U		5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U		5 U
rimethylbenzene, 1,2,4-	µg/L	5** ^B	-							-	_		_	-	_	_					-	-			_	-
rimethylbenzene, 1,3,5-	µg/L	5** ^B	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_
Vinyl Acetate	µg/L	n/v	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Vinyl Chloride	µg/L	2 ^B	868 ^B	455 ^B	367 ^B	259 J- ^B	1,120 ⁸	624 ^B	201 ^B	147 ⁸	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	4.58 NJ ^B	5.43 ^B	2.87 ^B	2.84 J- ^B	2.27 ⁸	2.00 U	2.00 U	2.00 U	2.00 U	0.63 NJ
(ylene, m & p-	µg/L	5++ ^B	100 U	10.0 U	10.0 U	10.0 UJ	20.0 U	20.0 U	20.0 U	4.00 U	-	10 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	-	10 U
(ylene, o-	µg/L	5++ ^B	100 U	10.0 U	10.0 U	10.0 UJ	20.0 U	20.0 U	20.0 U	4.00 U	_	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	_	5 U
otal VOC	µg/L	n/v	3,598	1,148.64	746.18	423 J-	2,651.5	2,552	545	451.78	4.28	17.48	5.2	5.64	5.48	6.08	9.02	6.76	4.16	4 J-	28.9	1.41	2.38	1.12	14.09	48.83
VOC Tentatively Identified Compound		-							-					-												

Table 2
Summary of Analytical Results in Groundwater
Remedial Investigation
Former Carriage Factory
33 Litchfield Street, Rochester, New York

Area		L													Off-Site L	Locations												
Sample Location						l					RW-9													RW-12				
Sample Date			8-Jun-12	21-May-13	27-Mar-14	29-May-14	1-Jul-14	1-Jul-14	7-Aug-14	28-Oct-14	28-Oct-14	4-Feb-15	4-May-15	13-Aug-15	1-Feb-16	2-May-16	9-Aug-16	9-Aug-16	14-Feb-17	8-Jun-12	20-May-13	28-May-14	2-Jul-14	7-Aug-14	29-Oct-14	4-Feb-15	4-May-15	12-Aug-15
Sample ID			RW-9	LI-RW-9-GW1	LI-RW-9	LI-RW-9-PI1	LI-RW-9-PI2	LI-RW-DUP-PI2	LI-RW-9-PI3	LI-RW9-PI6	LI-DUP-PI6	LI-RW-9-PI9	LI-RW-9-PI12	LI-RW-9-PI15	LI-RW-9-PS3	LI-RW-9-PS6	LI-RW-9-PS9	LI-DUP-PS9	LI-RW-9-PS15	RW-12	LI-RW-12-GW1	LI-RW-12-PI1	LI-RW-12-PI2	LI-RW-12-PI3	LI-RW12-PI6	LI-RW-12-PI9	LI-RW-12-PI12	LI-RW-12-PI1
Sampling Company			DECI	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	DECI	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory			PARAROCH	CCGE	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	CCGE	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH									
Laboratory Work Order			12:2431	E2314	141138	142196	142794	142794	143439	144730	144730	150382	151696	153411	160464	161713	163436	163436	170564	12:2431	E2301	142196	142794	143439	144730	150382	151696	153411
Laboratory Sample ID			12:2431-01	E2314-07	141138-08	142196-12	142794-04	142794-05	143439-08	144730-08	144730-13	150382-12	151696-08	153411-12	160464-04	161713-08	163436-08	163436-13	170564-08	12:2431-02	E2301-04	142196-03	142794-14	143439-09	144730-09	150382-08	151696-09	153411-08
Sample Type	Units	rogs						Field Duplicate			Field Duplicate							Field Duplicate										
General Chemistry																												
Total Organic Carbon	μg/L	n/v	-	-	2,000	2,000	2,500	2,100	2,100	2,000 J-	2,000 J-	2,400 J	1,700	2,200 J-	1,910	2,340	2,640	2,650	1,980	-	-	103,000	186,000	44,800	5,700	33,900	6,200	3,200 J-
Metals																												
Aluminum	μg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Antimony	µg/L	3 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Arsenic	μg/L	25 ^B	-	-	10 U	10.0 U	10.0 UJ	-	-	-	-	-	-	-	-	-	-	-	-	-	-							
Barium	μg/L	1,000 ⁸	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-
Beryllium	µg/L	2.	-	-	-	-	-	-	-	-	-	-	-	-	=	-	-	-	-	-	-	-	-	-	-	-	-	_
Calcium	μg/L	5	-	-	-	_	-	_	-	-	_	-	-	-	-	-	-	-	-	-	-	_	-	=	_	-	_	_
Calcium Chromium	μg/L μg/L	n/v 50 ^B			-				-	-				-	-				-				-	-	_			
Cobalt	μg/L	n/v	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	-	_	_	_	_	_	_	_	_
Copper		200 ⁸	_	-	-	_	_	_	-	-	_	-	_	-	-	_	-	_	<u>-</u>	-	_	.	-	-	_	-	_	_
Iron		300 _* ^B	-	-	100 U	91.9 J	129	91.0 J	86.4 J	100 U	100 U	68.3 J	76.5 J	118 J-	-	-	-	_	-	-	-	-	-	-	_	-	-	_
Lead	μg/L	25 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Magnesium	μg/L 3	5,000 ^A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Manganese	μg/L	300 _* B	-	-	15 U	19.8	98.1	94.4	220	153	161	284	214	691 J- ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury	µg/L	0.7 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nickel	μg/L	100 ^B	-	-	-	-	-	-	-	=	-	-	-	-	-	-	-	-	-	=	-	-	-	-	-	-	-	-
Potassium	µg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Selenium	μg/L	10 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Silver	μg/L	50 ^B	-	-	B	- or oook	-	- -	B		B		-	- 40 000 L B	-	-	-	-	-	-	-	- -	- -	B	B	B		155.000.1
Sodium Thallium		0,000 ^B 0.5 ^A	-	-	38,100 ⁸	25,200 ⁸	29,000 ⁸	28,800 ⁸	27,700 ⁸	39,100 ⁸	38,600 ⁸	41,600 ⁸	32,000 ⁸	49,000 J- ^B	-	-	-	-	-	-	-	200,000 ⁸	255,000 ⁸	282,000 ⁸	193,000 ⁸	167,000 ⁸	213,000 ⁸	155,000 J-
Vanadium	μg/L	n/v	_	-	_		_	_	-	-	_	_	_	-	-	_	-	_	-	_	_		-	-	_	_	-	
Zinc		2,000 ^A	_	_	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	-	_	_	_	_	_	_	_	_
Volatile Organic Compounds	F9/-	2,000																										
Acetone	μg/L	50 ^A	-	25 U	10.0 U	6.70 J	10.0 U	10.0 UJ	10.0 U	10.0 UJ	10.0 U	10.0 U	10.0 U	10.0 U	10.0 UJ	-	25 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 UJ	10.0 U	10.0 UJ				
Benzene	μg/L	1 ^B	-	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.00 UJ	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	-	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1.00 UJ
Bromodichloromethane	μg/L	50 ^A	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 UJ						
Bromoform (Tribromomethane)	μg/L	50 ^A	5.00 U	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 UJ
Bromomethane (Methyl bromide)	μg/L	5** ^B	2.00 U	5 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 UJ	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ				
Butylbenzene, n-	μg/L	5** ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Butylbenzene, sec- (2-Phenylbutane)	μg/L	5** ^B	-	-	-	-	-	-	-	=	-	-	-	-	-	-	-	-	-	=	-	-	-	-	-	-	-	-
Butylbenzene, tert-	µg/L	5** ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Carbon Disulfide	μg/L	60 ^A	-	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	5 U	2.00 UJ						
Carbon Tetrachloride (Tetrachloromethane)	μg/L	5 ^B	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 UJ						
Chlorobenzene (Monochlorobenzene)	μg/L	5 ^B	2.00 U	5 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 UJ 5.00 UJ	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U	5 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 U 5.00 U	2.00 UJ 5.00 UJ
Chlorobromomethane Chloroethane (Ethyl Chloride)	μg/L	5 ^B	2.00 U	5 U 5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 UJ						
Chloroethyl Vinyl Ether, 2-	μg/L	n/v	10.0 U R	-	-	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	2.00 03	-	2.00 0	2.00 0	2.00 0	2.00 0	10.0 U R	_	2.00 0	-	2.00 0	2.00 0	2.00 0	2.00 0	2.00 03
Chloroform (Trichloromethane)	μg/L	7 ^B	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 UJ						
Chloromethane	μg/L	5** ^B	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 UJ						
Cyclohexane	μg/L	n/v	-	5 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 UJ	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	-	5 UJ	10.0 U	10.0 UJ					
Dibromo-3-Chloropropane, 1,2- (DBCP)		0.04 ^B	-	5 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 UJ	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	-	5 U	10.0 UJ						
Dibromochloromethane	μg/L	50 ^A	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 UJ
Dichlorobenzene, 1,2-	μg/L	3 ^B	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 UJ						
Dichlorobenzene, 1,3-	μg/L	3 ^B	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 UJ						
Dichlorobenzene, 1,4-	μg/L	3 ^B	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 UJ						
Dichlorodifluoromethane (Freon 12)	μg/L	5 ^B		5 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	5 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ				
Dichloroethane, 1,1-	µg/L	5** ^B	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 UJ						
Dichloroethane, 1,2- Dichloroethene, 1,1-	μg/L μg/L	0.6 ^B	2.00 U 2.00 U	5 U 5 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 UJ 2.00 UJ	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	5 U 5 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 UJ 2.00 UJ

Table 2
Summary of Analytical Results in Groundwater
Remedial Investigation
Former Carriage Factory
33 Litchfield Street, Rochester, New York

Sample Date Sample Date Sample Date Sample Date RW-9 LI-RW-9-GW1	N1 LI-RW-9 STANTEC PARAROCH	8-Jun-12					RW-9																	
Sampling Company Li-RW-9-GW1 Li-RW-9-	N1 LI-RW-9 STANTEC PARAROCH	8-Jun-12		and the second s			KVV-7													RW-12				
DECI STANTEC CCGE Laboratory Laboratory Laboratory Laboratory Laboratory Laboratory Laboratory Laboratory Sample ID Laboratory	STANTEC PARAROCH	1 1	May-13 27-Mar-14 29-May-14	1-Jul-14 1-Jul-	14 7-Aug-14	28-Oct-14	28-Oct-14	4-Feb-15	4-May-15	13-Aug-15	1-Feb-16	2-May-16	9-Aug-16	9-Aug-16	14-Feb-17	8-Jun-12	20-May-13	28-May-14	2-Jul-14	7-Aug-14	29-Oct-14	4-Feb-15	4-May-15	12-Aug-1
CCGE 12:2431 12:2431-01 12:3431 12:2431-01 12:3431 12:2431-01 12:3431 12:2431-01 12:3431-07 12:3431-07 12:3431-07 12:3431-07 13:34-07 13:34-07 14:3431-07 14:3431-07 15:34-07	PARAROCH	RW-9	-9-GW1 LI-RW-9 LI-RW-9-PI1	LI-RW-9-PI2 LI-RW-DI	JP-PI2 LI-RW-9-PI3	LI-RW9-PI6	LI-DUP-PI6	LI-RW-9-PI9	LI-RW-9-PI12	LI-RW-9-PI15	LI-RW-9-PS3	LI-RW-9-PS6	LI-RW-9-PS9	LI-DUP-PS9	LI-RW-9-PS15	RW-12	LI-RW-12-GW1	LI-RW-12-PI1	LI-RW-12-PI2	LI-RW-12-PI3	LI-RW12-PI6	LI-RW-12-PI9	LI-RW-12-PI12	LI-RW-12-F
12:2431 12:2431 12:2431 12:2431 12:2431-01 12:2431-07 12:2431 12:2431-07 12:2451-07 12:24		DECI	INTEC STANTEC STANTEC	STANTEC STANT	EC STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	DECI	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Description		PARAROCH	CGE PARAROCH PARAROCH	PARAROCH PARARO	OCH PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	CCGE	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROC
Volatile Organic Compounds (cont'd) Volatile Organic Conton Organi	141138	12:2431	2314 141138 142196	142794 1427	94 143439	144730	144730	150382	151696	153411	160464	161713	163436	163436	170564	12:2431	E2301	142196	142794	143439	144730	150382	151696	153411
Volafile Organic Compounds (cont'd) Dichloroethene, cis-1,2-	141138-08	12:2431-01	14-07 141138-08 142196-12	142794-04 142794	1-05 143439-08	144730-08	144730-13	150382-12	151696-08	153411-12	160464-04	161713-08	163436-08	163436-13	170564-08	12:2431-02	E2301-04	142196-03	142794-14	143439-09	144730-09	150382-08	151696-09	153411-0
Dichloroethene, cis-1,2- Dichloroethene, trans-1,2- Dichloropropane, 1,2- Dichloropropane, 1,2- Dichloropropane, 1,2- Dichloropropane, 1,2- Dichloropropane, cis-1,3- Dichloropropane, trans-1,3- Dichloropropane		Units TOGS		Field Duplic	d ate		Field Duplicate							Field Duplicate										
Bichloroethene, cis-1,2-																								
ichloroethene, trans-1,2- ichloropropane, 1,2- ichloropropane, 1,2- ichloropropane, 1,2- ichloropropane, cis-1,3- ichloropethane, 1,1,2- ichloropethane, 1,2,4- ichloropethane, 1,2,4- ichloropethane, 1,1,2- ichloropethane, 1,2,4- ichl	2.00 U	ug/l 5 ^B 2.00 II	.2 J 2.00 U 2.00 U	2.00 U 2.00	U 2.00 U	1.35 J	1.37 J	1.66 J	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	24.5 ^B	26.5 ^B	79.5 ^B	118 ^B	36.2 ^B	6.01 ^B	20 9 ^B	5.24 ^B	9.47 J-
Dichloropropane, 1,2- Dichloropropene, cis-1,3- Dichloropropene, cis-1,3- Dichloropropene, cis-1,3- Dichloropropene, cis-1,3- Dichloropropene, trans-1,3-	2.00 U			2.00 U 2.00		2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	1.2 J	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ
Dichloropropene, cis-1,3- Dichloropropene, cis-1,3- Dichloropropene, trans-1,3- Dichloropropene, t	2.00 U	-9/-		2.00 U 2.00		2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ
Dickloropropene, frans-1,3- Dickloropropen	2.00 U	,		2.00 U 2.00		2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Dioxane, 1,4- Hyg/L N/V - 100 U Hyg/L SB - 5 U Dioxane, 1,4- Hyg/L SB - 5 U Dioxane, 2- (Methyl Butyl Ketone) Hyg/L SB - 5 U Dioxane, 2- (Methyl Butyl Ketone) Hyg/L SB - 5 U Dioxane, 2- (Methyl Butyl Ketone) Hyg/L SB - 5 U Dioxane, 2- (Methyl Butyl Ketone) Hyg/L SB - 5 U Dioxane, 2- (Methyl Butyl Ketone) Hyg/L SB - - Dioxane, 2- (Methyl Butyl Ketone) Hyg/L SB - - Dioxane, 2- (Methyl Ethyl Ketone, 2- (Cymene) Hyg/L SB - - Dioxane, 2- (Methyl Ethyl Ketone (MEK) (2-Butanone) Hyg/L SB Dioxane, 2- Dioxan	2.00 U			2.00 U 2.00		2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U.
# thylbenzene ## pg/L 5 5 U 1 5 5 U 1 1	20.0 U R	· ·		20.0 U R 20.0 U		20.0 U	20.0 U	20.0 U	20.0 UJ	20.0 U R	20.0 U R	20.0 U R	20.0 U R	20.0 U R	20.0 U R	-	100 U R	20.0 U R	20.0 U R	20.0 U R	20.0 U	20.0 U	20.0 UJ	20.0 U R
Examone, 2- (Methyl Butyl Ketone)	2.00 U	μg/L 5 ₊₊ B -	5 U 2.00 U 2.00 U	2.00 U 2.00	U 2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ
Page	2.00 U	μg/L 0.0006 ^B -	5 U 2.00 U 2.00 U	2.00 U 2.00	U 2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U.
Page	5.00 U	μg/L 50 ^A -	5.00 U 5.00 U	5.00 U 5.00	U 5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	-	25 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ
Methyl Acetate	2.00 U	μg/L 5 ₊₊ ^B -	5 U 2.00 U 2.00 U	2.00 U 2.00	U 2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ
Methyl Ethyl Ketone (MEK) (2-Butanone) µg/L 50^A - 25 U Methyl Isobutyl Ketone (MIBK) µg/L n/v - 25 U Methyl Isobutyl Ketone (MIBK) µg/L n/v - 5 U Methylcyclohexane µg/L 10^A - 5 U Methylcyclohexane µg/L 5* 5.00 U 5 U Methyleren Chloride (Dichloromethane) µg/L 5* 5.00 U 5 U Iaphthalene µg/L 5* - - ropylbenzene, n- µg/L 5* - - tyrene µg/L 5* - 5 U etrachloroethane, 1,1,2- µg/L 5* 2.00 U 5 U strachloroethene (PCE) µg/L 5* - 5 U sichlorobenzene, 1,2,3- µg/L 5* - 5 U sichloroethane, 1,1,1- µg/L 5* 2.00 U 5 U sichloroethane, 1,1,2- µg/L 1.5* 2.00 U 5 U	-	μg/L 5 _{**} ^B -			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	!	-	-	-	-
Aethyl Isobutyl Ketone (MIBK) µg/L n/v - 25 U Aethyl tert-butyl ether (MTBE) µg/L 10^h - 5 U Aethyl tert-butyl ether (MTBE) µg/L 10^h - 5 U Aethyl tert-butyl ether (MTBE) µg/L 10^h - 5 U Aethyl tert-butyl ether (MTBE) µg/L 5* 5.00 U 5 U Japhthalene µg/L 5* 5.00 U 5 U Aethyl server µg/L 5* - - Aethyl server µg/L 5* - - Aethyl server µg/L 5* - 5 U etrachloroethane, 1,1,2,2- µg/L 5* - 5 U etrachloroethene (PCE) µg/L 5* - 5 U richloroethane, 1,2,4- µg/L 5* - 5 U richloroethane, 1,1,1- µg/L 5* 2.00 U 5 U richloroethane, 1,1,2- µg/L 5* 2.00 U 5 U richloroethane, 1,2-4 µg/L 5* 2.00 U 5 U	2.00 U	μg/L n/v -	5 U 2.00 U 2.00 U	2.00 U 2.00	U 2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ
Aethyl tert-butyl ether (MTBE) µg/L 10^A - 5 U Aethylcyclohexane µg/L n/v - 5 U Aethylchene Chloride (Dichloromethane) µg/L n/v - 5 U Japhthalene µg/L 10^B - - Propylbenzene, n- µg/L 5B - - - tyrene µg/L 5B - 5 U 5 U etrachloroethane, 1,1,2,2- µg/L 5B 2.00 U 5 U etrachloroethene (PCE) µg/L 5B - 5 U oluene µg/L 5B - 5 U richlorobenzene, 1,2,3- µg/L 5B - 5 U richloroethane, 1,1,1- µg/L 5B - 5 U richloroethane, 1,1,2- µg/L 1,8 2.00 U 5 U richloroethane, 1,1,2- µg/L 5B 2.00 U 5 U richloroethane (TCE) µg/L 5B 2.00 U 5 U richloroethane (Teon 113) µg/L 5B - 5 U	10.0 UJ	μg/L 50 ^A -	5 U 10.0 UJ 10.0 U	10.0 UJ 10.0	U 10.0 U	10.0 UJ	10.0 UJ	10.0 UJ	10.0 U	10.0 UJ	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	-	25 U	10.0 U	10.0 UJ	10.0 U	10.0 UJ	10.0 UJ	10.0 U	10.0 UJ
Aethylcyclohexane µg/L n/v - 5 U Aethylene Chloride (Dichloromethane) µg/L 58 5.00 U 5 U Alaphthalene µg/L 58 5.00 U 5 U Aropylberzene, n-tyrene µg/L 58 - - Aryene µg/L 58 - 5 U etrachloroethane, 1,1,2,2- µg/L 58 2.00 U 5 U etrachloroethene (PCE) µg/L 58 - 5 U oluene µg/L 58 - 5 U richlorobenzene, 1,2,3- µg/L 58 - 5 U richlorobenzene, 1,2,4- µg/L 58 2.00 U 5 U richloroethane, 1,1,1- µg/L 58 2.00 U 5 U richloroethene, 1,1,2- µg/L 58 2.00 U 5 U richloroethene, 1,1,2- µg/L 58 2.00 U 5 U richloroethene, 1,1,2- µg/L 58 2.00 U 5 U <	5.00 U	μg/L n/v -	5.00 U 5.00 U	5.00 U 5.00	U 5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	-	25 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ
Methylene Chloride (Dichloromethane) µg/L 5 ⁸ 5.00 U 5 U Naphthalene µg/L 10 ⁸ - - Propylbenzene, n- µg/L 5 ⁸ - - Idrachloroethane, 1,1,2,2- µg/L 5 ⁸ - 5 U Vetrachloroethene (PCE) µg/L 5 ⁸ - 5 U Soluene µg/L 5 ⁸ - 5 U Vetrachloroethene (PCE) µg/L 5 ⁸ - 5 U Vetrachloroethene (PCE) µg/L 5 ⁸ - 5 U Vetrachloroethene, 1,2,3- µg/L 5 ⁸ - 5 U Vetrachloroethene, 1,2,4- µg/L 5 ⁸ - 5 U Vetrachloroethene (TCE) µg/L 5 ⁸ 2.00 U 5 U Vetrachloroethene (TCE) µg/L 5 ⁸ 2.00 U 5 U Vetrachloroethane (Freon 113) µg/L 5 ⁸ - 5 U Vetrachloroethane (Freon 113) µg/L 5 ⁸ - <t< td=""><td>2.00 U</td><td>μg/L 10^A -</td><td>5 U 2.00 U 2.00 U</td><td>2.00 U 2.00</td><td>U 2.00 U</td><td>2.00 U</td><td>2.00 U</td><td>2.00 U</td><td>2.00 U</td><td>2.00 UJ</td><td>2.00 U</td><td>2.00 U</td><td>2.00 U</td><td>2.00 U</td><td>2.00 U</td><td>-</td><td>0.85 J</td><td>2.00 U</td><td>2.00 U</td><td>2.00 U</td><td>2.00 U</td><td>2.00 U</td><td>2.00 U</td><td>2.00 UJ</td></t<>	2.00 U	μg/L 10 ^A -	5 U 2.00 U 2.00 U	2.00 U 2.00	U 2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	0.85 J	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ
Propylbenzene, n- Propylbenze	2.00 U	μg/L n/v -	5 U 2.00 U 2.00 U	2.00 U 2.00	U 2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ
Propylbenzene, n- Styrene	5.00 U	· -	5 U 5.00 U 5.00 U	5.00 U 5.00	U 5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ
Pag/L Si-B - 5 U	-	· -	- - -	- -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	-	-	-
Fetrachloroethane, 1,1,2,2-	-	pg/E 3**		- -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 1	- 1	-	-	-
Fetrachloroethene (PCE) \(\mu_g/L \)	5.00 U	, 0,		5.00 U 5.00		5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	-	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ
Sum	2.00 U	2.000		2.00 U 2.00		2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ
Pg/L SB - 5 U	3.04	FS/- 11.0		4.10 4.1		3.28	3.40	2.67	2.13	4.48 J-	3.62	6.51 ⁸	5.52 ⁸	5.28 ⁸	5.06 ⁸	2.71	4.9 J	5.52 ⁸	4.37	2.78	4.74	7.82 ⁸	2.79	6.13 J-
	2.00 U	µg/L 3		2.00 U 2.00		2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ
Pag/L Single 1,2,4 Pag/L Single 2,00 U S U	5.00 U	pg/2		5.00 U 5.00		5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	-	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ
richloroethane, 1,1,2- µg/L 18 2.00 U 5 U richloroethene (TCE) µg/L 5 ⁸ 2.00 U 1.5 J richloroffuoromethane (Freon 11) µg/L 5 ⁸ 2.00 U 5 U richlorotriffuoroethane (Freon 113) µg/L 5 ⁸ - 5 U rimethylbenzene, 1,2,4- µg/L 5 ⁸ - - rimethylbenzene, 1,3,5- µg/L 5 ⁸ - - rinyl Acetate µg/L n/v - -	5.00 U	µg/L 3		5.00 U 5.00		5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U		5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ
frichloroethene (TCE) $\mu g/L \qquad 5^8 \qquad 2.00 \ U \qquad 1.5 \ J$ frichloroethane (Freon 1 1) $\mu g/L \qquad 5^8 \qquad 2.00 \ U \qquad 5 \ U$ frichloroethane (Freon 1 13) $\mu g/L \qquad 5^8 \qquad - \qquad 5 \ U$ frimethylbenzene, 1,2,4- $\mu g/L \qquad 5^8 \qquad - \qquad -$ frimethylbenzene, 1,3,5- $\mu g/L \qquad 5^8 \qquad - \qquad -$ $\mu g/L \qquad -$ μg	2.00 U 2.00 U			2.00 U 2.00 2.00 U 2.00		2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U	2.00 UJ 2.00 UJ	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	5 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	2.00 UJ 2.00 UJ
irichlorotromethane (Freon 11) μ g/L 5^8 2.00 U 5 U μ g/L 5^8 2.00 U 5 U richlorotrifluoroethane (Freon 113) μ g/L 5^8 $ 5$ U $ -$	2.00 U	, ,		2.00 U 2.00 2.00 U 2.00		2.00 U	2.00 U	2.45	2.00 U 2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U		15 ^B			4.38			4.85	
richlorotrifluoroethane (Freon 113) $ \mu g/L \qquad 5^{B} \qquad - \qquad 5 \ U \\ rimethylbenzene, 1, 2, 4- \qquad \qquad \mu g/L \qquad 5^{B} \qquad - \qquad - \\ rimethylbenzene, 1, 3, 5- \qquad \qquad \mu g/L \qquad 5^{B} \qquad - \qquad - \\ rinyl Acetate \qquad \qquad \mu g/L \qquad n/v \qquad - \qquad - $	2.00 U	pg/E 3.00 0		2.00 U 2.00		2.00 U	2.00 U	2.45 2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	6.80 ⁸ 2.00 U	5 U	25.1 ⁸ 2.00 U	29.8 ⁸ 2.00 U	2.00 U	7.10 ⁸ 2.00 U	2.00 U	4.85 2.00 U	9.90 J- ¹ 2.00 UJ
imethylbenzene, 1,2,4- $ \mu g/L \qquad 5^8 \qquad - \qquad -$ imethylbenzene, 1,3,5- $ \mu g/L \qquad 5^8 \qquad - \qquad -$ inyl Acetate $ \mu g/L \qquad n/v \qquad - \qquad -$	2.00 U	, ,		2.00 U 2.00		2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 0	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ
imethylbenzene, 1,3,5-	2.00 0		2.000	2.00 0 2.00	2.000	2.00 0	2.000	2.00 0	2.000	2.00 03	2.00 0	2.00 0	2.00 0	2.00 0	2.00 0	1 -		2.00 0	2.000	2.00 0	2.000	2.00 0	2.00 0	2.00 03
/inyl Acetate µg/L n/v							_	_	_					[_	_	1
	_		. . .		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	. <u>-</u>		_	_	1 -
	2.00 U	μg/L 2 ^B 2.00 U	2.00 U 2.00 U	2.00 U 2.00	U 2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	0.55 J	2.00 U	1.17 J	2.27 ^B	2.00 U	2.28 NJ ^B	2.00 U	1.49 J-
(ylene, m & p- µg/L 5 ₁₋ ^B - 10 U	2.00 U			2.00 U 2.00		2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U		10 U	2.00 U	2.00 U	2.27 2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ
ylene, o- µg/L 5 ^B - 5 U	2.00 U			2.00 U 2.00		2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ
otal VOC µg/L n/v 11.3 11.2		· -		4.1 4.1		4.63	4.77	6.78	2.13	4.48 J-	3.62	6.51	5.52	5.28	5.06	34.01	49	110.12	153.34	45.63	17.85	45.5	12.88	26.99 J-
OC Tentatively Identified Compounds	3.04		1 100	1 1 1	1																			

Table 2
Summary of Analytical Results in Groundwater
Remedial Investigation
Former Carriage Factory
33 Litchfield Street, Rochester, New York

Area	1					Off-Site	Locations				1							QA/QC							
Sample Location					RW-12				RW-13									Trip Blank							
Sample Date			1-Feb-16	1-Feb-16	3-May-16	9-Aug-16	14-Feb-17	12-Jun-12	20-May-13	27-Mar-14	12-Jun-12	20-May-13	21-May-13	27-Mar-14	29-May-14	1-Jul-14	8-Aug-14	28-Oct-14	3-Feb-15	4-May-15	12-Aug-15	1-Feb-16	2-May-16	9-Aug-16	13-Feb-17
											Trip Blank			Talan Diamala	LI-Trip Blank-	LI-TRIPBLANK-	Trip Blank (T-	Trip Blank (T-	LI-TRIPBLANK-	Trip Blank (T-	Trip Blank (T-	Trip Blank T-	Trip Blank (T-	Trip Blank (T-	
Sample ID			LI-RW-12-PS3	LI-DUP-PS3	LI-RW-12-PS6	LI-RW-12-PS9	LI-RW-12-PS15	RW-13	LI-RW-13-GW1	LI-RW-13	7346	Trip Blank	Trip Blank	Trip Blank	PI1	PI2	532)	570)	PI9 (T-586)	614)	644)	691	698)	722)	Trip Blank
Sampling Company			STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	DECI	STANTEC	STANTEC	DECI	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory			PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	CCGE	PARAROCH	PARAROCH	CCGE	CCGE	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCI
Laboratory Work Order			160464	160464	161713	163436	170564	12:2486	E2301	141138	12:2486	E2301	E2314	141138	142196	142794	143439	144730	150382	151696	153411	160464	161713	163436	170564
Laboratory Sample ID			160464-01	160464-13	161713-09	163436-09	170564-09	12:2486-01	E2301-05	141138-10	12:2486-03	E2301-07	E2314-08	141138-15	142196-08	142794-01	143439-14	144730-14	150382-14	151696-14	153411-14	160464-14	161713-14	163436-14	170564-14
Sample Type	Units	TOGS		Field Duplicate							Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank
General Chemistry																									
Total Organic Carbon	μg/L	n/v	1,740	1,990	2,480	1,480	1,460	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Metals											•														
Aluminum	μg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Antimony	μg/L	3 ^B	=	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Arsenic	μg/L	25 ^b	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Barium	μg/L	1,000 ⁸	-	-	-	_	-	-	_	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-
Beryllium Cadmium	µg/L µg/L	3 ^A 5 ^B	-	-	_	_	_	_	_	-	-	-	-	_	-	_	_	-	_	_	_	-		_	-
Calcium	μg/L	n/v	-		[-	-	-	-	-	_	-			-	-		_			_	-
Chromium	μg/L	50 ^B	-	_	_	_	_	_	_	=	_	-	=	_	-	_	_	-	_	_	_	_	_	_	_
Cobalt	μg/L	n/v	-	_	_	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_		-	_	-
Copper	μg/L	200 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Iron	μg/L	300 _* B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Lead	μg/L	25 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Magnesium	μg/L	35,000 ^A	=	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Manganese	μg/L	300 _* ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mercury	μg/L	0.7 ⁸	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nickel	μg/L	100 ⁸	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Potassium Selenium	μg/L μg/L	n/v 10 ⁸	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Silver	μg/L	50 ^B	-	_		_	_	_		-	-	_	-	_	_	_	-	_	_	_			_	_	_
Sodium	µg/L	20,000 ^B	-	_	_	_	_	-	_	_	-	-	-	_	_	_	_	_	_	_	_	_	_	_	_
Thallium	μg/L	0.5 ^A	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	_	-
Vanadium	μg/L	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Zinc	μg/L	2,000 ^A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Volatile Organic Compounds																									
Acetone	μg/L	50 ^A	10.0 U	10.0 U	10.0 U	10.0 U	10.0 UJ	-	25 U	10.0 U	-	25 U	25 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	10.0 UJ	10.0 U	10.0 UJ	10.0 UJ	10.0 U	10.0 U	10.0 UJ
Benzene	μg/L	1 ^B	1.00 U	1.00 U	1.00 U	1.00 U	1.00 U	-	5 U	1 U	-	5 U	5 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.00 UJ	1.00 UJ	1.00 U	1.00 U	1.00 U
Bromodichloromethane	μg/L	50 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U
Bromoform (Tribromomethane)	μg/L	50 ^A	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5 U	5.00 U	5.00 U	5 U	5 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 UJ	5.00 U	5.00 U	5.00 U
Bromomethane (Methyl bromide) Butylbenzene, n-	μg/L	5 ^B	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	5 U	5 U	2.00 U	2.00 U	2.00 UJ	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 UJ	2.00 U	2.00 U
Butylbenzene, sec- (2-Phenylbutane)	μg/L μg/L	5 ^B	-		_				_	-	_	-	-	_	-	_	_	-		_	_		_	_	
Butylbenzene, tert-	μg/L	5B	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Carbon Disulfide	µg/L	60 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	5 U	2.00 U	-	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U
Carbon Distinge	μg/L	5 ^B	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U
Carbon Tetrachloride (Tetrachloromethane)		5 _{**} B	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U
Carbon Tetrachloride (Tetrachloromethane)	µg/L		E 00 II	5.00 U	5.00 U	5.00 U	5.00 U	-	5 U	5.00 U	-	5 U	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 UJ	5.00 U	5.00 U	5.00 U
		5++ ^B	5.00 U								0.00.11	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U
Carbon Tetrachloride (Tetrachloromethane) Chlorobenzene (Monochlorobenzene)	μg/L	5** ^B	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	30												_	-
Carbon Tetrachloride (Tetrachloromethane) Chlorobenzene (Monochlorobenzene) Chlorobromomethane Chloroethane (Ethyl Chloride)	μg/L μg/L	-	2.00 U -	-	2.00 U	-	-	2.00 U 10.0 U R	-	2.00 U -	10.0 U R	-	-	-	-	-		-	-	-	-	-	-		
Carbon Tetrachloride (Tetrachloromethane) Chlorobenzene (Monochlorobenzene) Chlorobromomethane Chloroethane (Ethyl Chloride) Chloroethyl Vinyl Ether, 2- Chloroform (Trichloromethane)	µg/L µg/L µg/L µg/L	n/v 7 ^B	2.00 U - 2.00 U	- 2.00 U	2.00 U - 2.00 U	- 2.00 U	2.00 U	10.0 U R 2.00 U	- 5 U	- 2.00 U	10.0 U R 2.00 U	- 5 U	- 5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	- 2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U
Carbon Tetrachloride (Tetrachloromethane) Chlorobenzene (Monochlorobenzene) Chlorobromomethane Chloroethane (Ethyl Chloride) Chloroethyl Vinyl Ether, 2- Chloroform (Trichloromethane) Chloromethane	halr halr halr halr halr halr	n/v 7 ^B 5 _{**}	2.00 U - 2.00 U 2.00 U	2.00 U 2.00 U	2.00 U - 2.00 U 2.00 U	2.00 U 2.00 U	2.00 U 2.00 U	10.0 U R	- 5 U 5 U	- 2.00 U 2.00 U	10.0 U R 2.00 U 2.00 U	- 5 U 5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U 2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U
Carbon Tetrachloride (Tetrachloromethane) Chlorobenzene (Monochlorobenzene) Chlorobromomethane Chloroethane (Ethyl Chloride) Chloroethyl Vinyl Ether, 2- Chloroform (Trichloromethane) Chloromethane Cyclohexane	halr halr halr halr halr halr halr	n/v 7 ^B 5 ^B n/v	2.00 U - 2.00 U 2.00 U 10.0 U	2.00 U 2.00 U 10.0 U	2.00 U - 2.00 U 2.00 U 10.0 U	2.00 U 2.00 U 10.0 U	2.00 U 2.00 U 10.0 U	10.0 U R 2.00 U	- 5 U 5 U 5 UJ	2.00 U 2.00 U 10.0 U	10.0 U R 2.00 U	- 5 U 5 U 5 UJ	5 U 5 U	2.00 U 10.0 U	2.00 U 10.0 U	2.00 U 10.0 U	2.00 U 10.0 U	2.00 U 10.0 U	2.00 U 10.0 U	2.00 U 2.00 U 10.0 U	2.00 UJ 10.0 UJ	2.00 UJ 10.0 UJ	2.00 U 10.0 U	2.00 U 10.0 U	2.00 U 10.0 U
Carbon Tetrachloride (Tetrachloromethane) Chlorobenzene (Monochlorobenzene) Chlorobromomethane Chloroethane (Ethyl Chloride) Chloroethyl Vinyl Ether, 2- Chloroform (Trichloromethane) Chloromethane Cyclohexane Dibromo-3-Chloropropane, 1,2- (DBCP)	ha/r ha/r ha/r ha/r ha/r ha/r	n/v 7 ⁸ 5++ ⁸ n/v 0.04 ⁸	2.00 U - 2.00 U 2.00 U 10.0 U	2.00 U 2.00 U 10.0 U	2.00 U - 2.00 U 2.00 U 10.0 U	2.00 U 2.00 U 10.0 U	2.00 U 2.00 U 10.0 U	10.0 U R 2.00 U 2.00 U - -	5 U 5 U 5 UJ 5 U	2.00 U 2.00 U 10.0 U	10.0 U R 2.00 U 2.00 U - -	5 U 5 U 5 UJ 5 U	5 U 5 U 5 U	2.00 U 10.0 U 10.0 U	2.00 U 10.0 U 10.0 U	2.00 U 10.0 U 10.0 U	2.00 U 10.0 U 10.0 U	2.00 U 10.0 U 10.0 U	2.00 U 10.0 U 10.0 U	2.00 U 2.00 U 10.0 U	2.00 UJ 10.0 UJ 10.0 UJ	2.00 UJ 10.0 UJ 10.0 UJ	2.00 U 10.0 U 10.0 U	2.00 U 10.0 U 10.0 U	2.00 U 10.0 U 10.0 U
Carbon Tetrachloride (Tetrachloromethane) Chlorobenzene (Monochlorobenzene) Chlorobromomethane Chloroethane (Ethyl Chloride) Chloroethyl Vinyl Ether, 2- Chloroform (Trichloromethane) Chloromethane Cyclohexane Dibromo-3-Chloropropane, 1,2- (DBCP) Dibromochloromethane	halr halr halr halr halr halr halr halr	n/v 7 ⁸ 5** ⁸ n/v 0.04 ⁸ 50 ^A	2.00 U - 2.00 U 2.00 U 10.0 U 10.0 U 2.00 U	2.00 U 2.00 U 10.0 U 10.0 U 2.00 U	2.00 U - 2.00 U 2.00 U 10.0 U 10.0 U 2.00 U	2.00 U 2.00 U 10.0 U 10.0 U 2.00 U	2.00 U 2.00 U 10.0 U 10.0 U 2.00 U	10.0 U R 2.00 U 2.00 U - - - 2.00 U	5 U 5 U 5 UJ 5 U 5 U	2.00 U 2.00 U 10.0 U 10.0 U 2.00 U	10.0 U R 2.00 U 2.00 U - - 2.00 U	5 U 5 U 5 UJ 5 U 5 U	5 U 5 U 5 U 5 U	2.00 U 10.0 U 10.0 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 UJ	2.00 U 10.0 U 10.0 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 U	2.00 U 2.00 U 10.0 U 10.0 U 2.00 U	2.00 UJ 10.0 UJ 10.0 UJ 2.00 UJ	2.00 UJ 10.0 UJ 10.0 UJ 2.00 UJ	2.00 U 10.0 U 10.0 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 U
Carbon Tetrachloride (Tetrachloromethane) Chlorobenzene (Monochlorobenzene) Chlorobromomethane Chloroethane (Ethyl Chloride) Chloroethyl Vinyl Ether, 2- Chloroform (Trichloromethane) Chloromethane Cyclohexane Dibromo-3-Chloropropane, 1,2- (DBCP) Dibromochloromethane Dichlorobenzene, 1,2-	halr halr halr halr halr halr halr halr	n/v 7 ^B 5+- ^B n/v 0.04 ^B 50 ^A 3 ^B	2.00 U 2.00 U 2.00 U 10.0 U 10.0 U 2.00 U 2.00 U	2.00 U 2.00 U 10.0 U 10.0 U 2.00 U 2.00 U	2.00 U - 2.00 U 2.00 U 10.0 U 10.0 U 2.00 U 2.00 U	2.00 U 2.00 U 10.0 U 10.0 U 2.00 U 2.00 U	2.00 U 2.00 U 10.0 U 10.0 U 2.00 U 2.00 U	10.0 U R 2.00 U 2.00 U - - 2.00 U 2.00 U	5 U 5 U 5 UJ 5 U 5 U	2.00 U 2.00 U 10.0 U 10.0 U 2.00 U 2.00 U	10.0 U R 2.00 U 2.00 U - - 2.00 U 2.00 U	5 U 5 U 5 U 5 U 5 U 5 U	5 U 5 U 5 U 5 U	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 UJ 2.00 U	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U	2.00 U 2.00 U 10.0 U 10.0 U 2.00 U 2.00 U	2.00 UJ 10.0 UJ 10.0 UJ 2.00 UJ 2.00 UJ	2.00 UJ 10.0 UJ 10.0 UJ 2.00 UJ 2.00 UJ	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U
Carbon Tetrachloride (Tetrachloromethane) Chlorobenzene (Monochlorobenzene) Chlorobromomethane Chloroethane (Ethyl Chloride) Chloroethyl Vinyl Ether, 2- Chloroform (Tirchloromethane) Chloromethane Cyclohexane Dibromo-3-Chloropropane, 1,2- (DBCP) Dibromochloromethane Dichlorobenzene, 1,2- Dichlorobenzene, 1,3-	halr halr halr halr halr halr halr halr	n/v 7 ⁸ 5** ⁸ n/v 0.04 ⁸ 50 ^A 3 ⁸ 3 ⁸	2.00 U - 2.00 U 2.00 U 10.0 U 2.00 U 2.00 U 2.00 U 2.00 U 2.00 U	2.00 U 2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U	2.00 U - 2.00 U 2.00 U 10.0 U 2.00 U 2.00 U 2.00 U 2.00 U	2.00 U 2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U	2.00 U 2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U	10.0 U R 2.00 U 2.00 U - - 2.00 U 2.00 U 2.00 U	5 U 5 U 5 U 5 U 5 U 5 U 5 U	2.00 U 2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U	10.0 U R 2.00 U 2.00 U - - 2.00 U 2.00 U 2.00 U	5 U 5 U 5 UJ 5 U 5 U 5 U	5 U 5 U 5 U 5 U 5 U	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 UJ 2.00 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U	2.00 U 2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U	2.00 UJ 10.0 UJ 10.0 UJ 2.00 UJ 2.00 UJ 2.00 UJ	2.00 UJ 10.0 UJ 10.0 UJ 2.00 UJ 2.00 UJ 2.00 UJ	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U
Carbon Tetrachloride (Tetrachloromethane) Chlorobenzene (Monochlorobenzene) Chlorobromomethane Chloroethane (Ethyl Chloride) Chloroethyl Vinyl Ether, 2- Chloroform (Tirchloromethane) Chloromethane Cyclohexane Dibromo-3-Chloropropane, 1,2- (DBCP) Dibromochloromethane Dichlorobenzene, 1,2- Dichlorobenzene, 1,3- Dichlorobenzene, 1,4-	halr halr halr halr halr halr halr halr	n/v 7 ^B 5 ^B n/v 0.04 ^B 50 ^A 3 ^B 3 ^B	2.00 U - 2.00 U 2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U 2.00 U 2.00 U	2.00 U 2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U 2.00 U	2.00 U - 2.00 U 2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U 2.00 U 2.00 U	2.00 U 2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U 2.00 U	2.00 U 2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U 2.00 U	10.0 U R 2.00 U 2.00 U - - 2.00 U 2.00 U	5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U	2.00 U 2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U 2.00 U	10.0 U R 2.00 U 2.00 U - - 2.00 U 2.00 U	5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U	5 U 5 U 5 U 5 U 5 U 5 U 5 U	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 UJ 2.00 U 2.00 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U 2.00 U	2.00 U 2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U 2.00 U	2.00 UJ 10.0 UJ 10.0 UJ 2.00 UJ 2.00 UJ 2.00 UJ 2.00 UJ	2.00 UJ 10.0 UJ 10.0 UJ 2.00 UJ 2.00 UJ 2.00 UJ 2.00 UJ	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U 2.00 U
Carbon Tetrachloride (Tetrachloromethane) Chlorobenzene (Monochlorobenzene) Chlorobromomethane Chloroethane (Ethyl Chloride) Chloroethyl Vinyl Ether, 2- Chloroform (Tirchloromethane) Chloromethane Cyclohexane Dibromo-3-Chloropropane, 1,2- (DBCP) Dibromochloromethane Dichlorobenzene, 1,2- Dichlorobenzene, 1,3-	ha\/r ha\/r ha\/r ha\/r ha\/r ha\/r ha\/r ha\/r ha\/r ha\/r ha\/r	n/v 7 ⁸ 5** ⁸ n/v 0.04 ⁸ 50 ^A 3 ⁸ 3 ⁸	2.00 U - 2.00 U 2.00 U 10.0 U 2.00 U 2.00 U 2.00 U 2.00 U 2.00 U	2.00 U 2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U	2.00 U - 2.00 U 2.00 U 10.0 U 2.00 U 2.00 U 2.00 U 2.00 U	2.00 U 2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U	2.00 U 2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U	10.0 U R 2.00 U 2.00 U - - 2.00 U 2.00 U 2.00 U	5 U 5 U 5 U 5 U 5 U 5 U 5 U	2.00 U 2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U	10.0 U R 2.00 U 2.00 U - - 2.00 U 2.00 U 2.00 U	5 U 5 U 5 UJ 5 U 5 U 5 U	5 U 5 U 5 U 5 U 5 U	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 UJ 2.00 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U	2.00 U 2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U	2.00 UJ 10.0 UJ 10.0 UJ 2.00 UJ 2.00 UJ 2.00 UJ	2.00 UJ 10.0 UJ 10.0 UJ 2.00 UJ 2.00 UJ 2.00 UJ	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U
Carbon Tetrachloride (Tetrachloromethane) Chlorobenzene (Monochlorobenzene) Chlorobromomethane Chloroethane (Ethyl Chloride) Chloroethyl Vinyl Ether, 2- Chloroform (Trichloromethane) Chloromethane Cyclohexane Dibromo-3-Chloropropane, 1,2- (DBCP) Dibromochloromethane Dichlorobenzene, 1,2- Dichlorobenzene, 1,3- Dichlorobenzene, 1,4- Dichlorodifluoromethane (Freon 12)	halr halr halr halr halr halr halr halr	n/v 7 ^B 5 ^B n/v 0.04 ^B 50 ^A 3 ^B 3 ^B 3 ^B 5 ^B 5 ^B	2.00 U - 2.00 U 2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U 2.00 U 2.00 U 2.00 U	2.00 U 2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U 2.00 U 2.00 U	2.00 U - 2.00 U 2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U 2.00 U 2.00 U 2.00 U	2.00 U 2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U 2.00 U 2.00 U	2.00 U 2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U 2.00 U 2.00 U	10.0 U R 2.00 U	5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U	2.00 U 2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U 2.00 U 2.00 U	10.0 U R 2.00 U	5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U	5 U 5 U 5 U 5 U 5 U 5 U 5 U	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U 2.00 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U 2.00 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U 2.00 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 UJ 2.00 U 2.00 U 2.00 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U 2.00 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U 2.00 U 2.00 U	2.00 U 2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U 2.00 U 2.00 U	2.00 UJ 10.0 UJ 10.0 UJ 2.00 UJ 2.00 UJ 2.00 UJ 2.00 UJ 2.00 UJ	2.00 UJ 10.0 UJ 10.0 UJ 2.00 UJ 2.00 UJ 2.00 UJ 2.00 UJ 2.00 UJ	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U 2.00 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U 2.00 U 2.00 U	2.00 U 10.0 U 10.0 U 2.00 U 2.00 U 2.00 U 2.00 U 2.00 U

Table 2
Summary of Analytical Results in Groundwater
Remedial Investigation
Former Carriage Factory
33 Litchfield Street, Rochester, New York

Area						Off-Site	Locations				1							QA/QC							
Sample Location					RW-12				RW-13									Trip Blank							
Sample Date			1-Feb-16	1-Feb-16	3-May-16	9-Aug-16	14-Feb-17	12-Jun-12	20-May-13	27-Mar-14	12-Jun-12	20-May-13	21-May-13	27-Mar-14	29-May-14	1-Jul-14	8-Aug-14	28-Oct-14	3-Feb-15	4-May-15	12-Aug-15	1-Feb-16	2-May-16	9-Aug-16	13-Feb-1
Sample ID			LI-RW-12-PS3	LI-DUP-PS3	LI-RW-12-PS6	LI-RW-12-PS9	LI-RW-12-PS15	RW-13	LI-RW-13-GW1	LI-RW-13	Trip Blank 7346	Trip Blank	Trip Blank	Trip Blank	LI-Trip Blank- PI1	LI-TRIPBLANK- PI2	Trip Blank (T- 532)	Trip Blank (T- 570)	LI-TRIPBLANK- PI9 (T-586)	Trip Blank (T- 614)	Trip Blank (T- 644)	Trip Blank T- 691	Trip Blank (T- 698)	Trip Blank (T- 722)	Trip Blan
Sampling Company			STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	DECI	STANTEC	STANTEC	DECI	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory			PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	CCGE	PARAROCH	PARAROCH	CCGE	CCGE	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROCH	PARAROC
Laboratory Work Order			160464	160464	161713	163436	170564	12:2486	E2301	141138	12:2486	E2301	E2314	141138	142196	142794	143439	144730	150382	151696	153411	160464	161713	163436	170564
Laboratory Sample ID			160464-01	160464-13	161713-09	163436-09	170564-09	12:2486-01	E2301-05	141138-10	12:2486-03	E2301-07	E2314-08	141138-15	142196-08	142794-01	143439-14	144730-14	150382-14	151696-14	153411-14	160464-14	161713-14	163436-14	170564-14
Sample Type	Units	TOGS		Field Duplicate							Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank	Trip Blank
Volatile Organic Compounds (cont'd)																									
Dichloroethene, cis-1,2-	μg/L	5** ^B	3.65	3.89	2.44	1.59 J	2.00 U	2.00 U	5 U	2.00 U	2.00 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U
Dichloroethene, trans-1,2-	μg/L	5** ^B	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U
Dichloropropane, 1,2-	μg/L	1 ^B	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U
Dichloropropene, cis-1,3-	μg/L	0.4 _p ^B	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U
Dichloropropene, trans-1,3-	μg/L	0.4 _p ^B	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U
Dioxane, 1,4-	μg/L	n/v	20.0 U R	20.0 U R	20.0 U R	20.0 U R	20.0 U R	-	100 U R	20.0 U R	=	100 U R	100 U	20.0 U R	20.0 U R	20.0 U R	20.0 U R	20.0 U	20.0 U	20.0 UJ	20.0 U R	20.0 U R	20.0 U R	20.0 U R	20.0 U R
Ethylbenzene	μg/L	5** ^B	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	5 U	2.00 U	-	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U
Ethylene Dibromide (Dibromoethane, 1,2-)	µg/L	0.0006 ^B	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	5 U	2.00 U	-	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U
Hexanone, 2- (Methyl Butyl Ketone)	µg/L	50 ^A	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	-	25 U	5.00 U	-	25 U	25 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 UJ	5.00 U	5.00 U	5.00 U
Isopropylbenzene	μg/L	5** ^B	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	5 U	2.00 U	-	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U
Isopropyltoluene, p- (Cymene)	μg/L	5** ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Methyl Acetate	μg/L	n/v	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	5 U	2.00 U	-	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U
Methyl Ethyl Ketone (MEK) (2-Butanone)	μg/L	50 ^A	10.0 U	10.0 U	10.0 U	10.0 U	10.0 U	-	25 U	10.0 UJ	=	25 U	25 U	10.0 UJ	10.0 U	10.0 UJ	10.0 U	10.0 UJ	10.0 UJ	10.0 U	10.0 UJ	10.0 UJ	10.0 U	10.0 U	10.0 U
Methyl Isobutyl Ketone (MIBK)	μg/L	n/v	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	-	25 U	5.00 U	=	25 U	25 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 UJ	5.00 U	5.00 U	5.00 U
Methyl tert-butyl ether (MTBE)	μg/L	10 ^A	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	5 U	2.00 U	-	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U
Methylcyclohexane	µg/L	n/v	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	5 U	2.00 U	-	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U
Methylene Chloride (Dichloromethane)	µg/L	5 ^B	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5 U	5.00 U	5.00 U	5 U	3.4 J	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 UJ	5.00 U	5.00 U	5.00 U
Naphthalene	μg/L	10 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Propylbenzene, n-	µg/L	5 ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Styrene	μg/L	5 ^B	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	-	5 U	5.00 U	-	5 U	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 UJ	5.00 U	5.00 U	5.00 U
Tetrachloroethane, 1,1,2,2-	µg/L	5 ^B	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U
Tetrachloroethene (PCE)	μg/L	5B	1.68 J	1.83 J	1.68 J	2.76	2.00 U	2.00 U	2.8 J	2.00	2.00 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U
Toluene	µg/L	5 ^B	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	5 U	2.00 U	-	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U
Trichlorobenzene, 1,2,3-	μg/L	5** ^B	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	-	5 U	5.00 U	-	5 U	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 UJ	5.00 U	5.00 U	5.00 U
Trichlorobenzene, 1,2,4-	μg/L	5B	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	-	5 U	5.00 U	-	5 U	5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 UJ	5.00 UJ	5.00 U	5.00 U	5.00 U
Trichloroethane, 1,1,1-	µg/L	5 ^B	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U
Trichloroethane, 1,1,2-	μg/L	1º	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U
Trichloroethene (TCE)	µg/L	5B	2.92	3.09	2.51	3.44	1.29 J	2.00 U	0.99 J	2.00 U	2.00 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U
Trichlorofluoromethane (Freon 11)	μg/L	5 ^B	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U
Trichlorotrifluoroethane (Freon 113)	μg/L	5++°	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	5 U	2.00 U	-	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U
Trimethylbenzene, 1,2,4-	μg/L	5++°	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Trimethylbenzene, 1,3,5-	µg/L	5++ ^B	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Vinyl Acetate	µg/L	n/v		- 0.0011	0.0011			- 0.0011				-	-		0.0011	0.00.11					0.00117		0.00.11		0.00.11
Vinyl Chloride	μg/L	2°	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	5 U	2.00 U	2.00 U	5 U	5 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U
Xylene, m & p-	μg/L	5++ ⁻	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	-	10 U	2.00 U	-	10 U	10 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U
Xylene, o-	µg/L	5++ ^B	2.00 U	2.00 U 8.81	2.00 U	2.00 U 7.79	2.00 U	-	5 U 3.79	2.00 U	-	5 U ND	5 U 3.4	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U ND	2.00 U ND	2.00 UJ	2.00 UJ	2.00 U	2.00 U	2.00 U
Total VOC VOC Tentatively Identified Compounds	μg/L	n/v	8.25	0.81	6.63	7./9	1.29	ND	3./9	2.00	ND	ND	3.4	ND	ND	ND	ND	ND	ND	ND	UJ- ND	UJ ND	ND	ND	ND
	-																								

Table 2 Summary of Analytical Results in Groundwater Remedial Investigation Former Carriage Factory 33 Litchfield Street, Rochester, New York

Notes:

- TOGS NYSDEC TOGS 1.1.1 (Reissued June 1998 with errata in January 1999 and addenda in April 2000 and June 2004)
- A TOGS 1.1.1 Table 1 Ambient Water Quality Standards and Guidance Values, Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1); Guidance
- TOGS 1.1.1 Table 1 Ambient Water Quality Standards and Guidance Values, Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1); Standards

 6.5^A Concentration exceeds the indicated standard.
- 15.2 Measured concentration did not exceed the indicated standard.
- D.50 U Laboratory reporting limit was greater than the applicable standard.
- 0.03 U Analyte was not detected at a concentration greater than the laboratory reporting limit.
- n/v No standard/guideline value.
- Parameter not analyzed / not available.
- The standard for Iron and Manganese is 500 ug/L, which applies to the sum of these substances. As individual standards, the standard is 300 ug/L.
- " The principal organic contaminant standard for groundwater of 5 ug/L (described elsewhere in the TOGS table) applies to this substance.
- Applies to the sum of cis- and trans-1,3-dichloropropene.
- B Indicates analyte was found in associated blank, as well as in the sample.
- D Result was obtained from the analysis of a dilution
- J The reported result is an estimated value.
- J- The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased low.
- J+ The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased high.
- M Denotes matrix spike recoveries outside QC limits. Matrix bias indicated.
- MC Matrix Spike Recovery Outside Control Limits Due To Sample Matrix Interference, Biased High.
- N Indicates presumptive evidence of a compound. Identification of tentatively identified compound is based on a mass spectral library search.
- NJ The analysis indicates the presence of an analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.
- Q Indicates LCS control criteria did not meet requirements
- R The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control critera. The presence or absence of the analyte cannot be verified.
- U Indicates that the analyte was analyzed but not detected.
- UJ Indicates estimated non-detect.

Table 3 Summary of Groundwater Field Parameters Former Carriage Factory 33 Litchfield Street, Rochester, NY

ample Location		B101-MW	1						B102-MW												B106-	MW					
imple Location irge Date		21-May-13	22-May-13	27-Mar-14	28-Mgy-14	2-Jul-14	6-Aug-14	28-Oct-14	8102-MW 3-Feb-15	4-May-15	12-Aug-15	1-Feb-16	3-May-16	9-Aug-16	14-Feb-17	23-May-13	26-Mar-14	28-May-14	2-Jul-14	7-Aug-14	28-Oct-14	MW 3-Feb-15	5-May-15	12-Aug-15	2-Feb-16	2-May-16	10-Aug-16
ge Methodology		Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow
rge Method		Peristattic	Peristallic	Peristattic	Peristallic	Peristaltic	Peristattic	Peristallic	Peristallic	Peristallic	Peristallic	Peristattic	Peristaltic	Peristaltic	Peristaltic	Peristaltic	Peristaltic	Peristallic	Peristallic	Peristattic	Peristaltic	Peristaltic	Peristaltic	Peristattic	Peristaltic	Peristallic	Peristallic
imple Date		21-May-13	22-May-13	27-Mar-14	28-May-14	2-Jul-14	6-Aug-14	28-Oct-14	3-Feb-15	4-May-15	12-Aug-15	1-Feb-16	3-May-16	9-Aug-16	14-Feb-17	23-May-13	26-Mar-14	28-May-14	2-Jul-14	7-Aug-14	28-Oct-14	3-Feb-15	5-May-15	12-Aug-15	2-Feb-16	2-May-16	10-Aug-16
npling Method		Peristaltic	Peristaltic	Peristallic	Peristaltic	Peristallic	Peristaltic	Peristaltic	Peristallic	Peristallic	Peristallic	Peristallic	Peristaltic	Peristaltic	Peristaltic	Peristattic	Peristattic	Peristaltic	Peristallic	Peristattic	Peristattic	Peristallic	Peristaltic	Peristattic	Peristaltic	Peristaltic	Peristattic
	Units																										
	nS/cm	0.99	0.86	0.90	0.92	1.41	1.03	1.15	1.19	1.28	4.16	3.37	1.87	6.55	4.63	0.92	1.08	1.29	2.20	1.30	1.09	1.06	1.03	1.12	1.25	1.06	1.51
	mg/L	1.34	0.10	0.12	0.19	0.14	0.03	1.09	0.00	0.20	0.15	0.11	0.27	0.09	1.00	0.13	0.07	0.08	0.17	0.11	0.40	0.00	0.06	0.12	0.32	0.22	0.08
dation Reduction Potential	mV	-25.0	13.3	73.6	-49.7	-271.6	-284.0	-118.9	-154.7	-233.3	-128.2	-213.0	-204.7	-115.8	-117.2	17.8	90.8	-96.3	-231.4	-274.4	-138.8	-172.9	-241.4	-22.9	-255.6	-117.2	-88.5
	S.U.	7.02	6.87	7.02	7.15	7.26	7.04	7.06	7.17	7.00	6.90	7.18	7.13	6.99	7.00	6.99	7.05	7.15	6.96	7.07	7.02	7.09	6.98	7.00	7.05	7.00	7.10
perature de	deg C	13.4	20.5	3.7	18.4	16.2	20.4	15.9	7.7	10.9	17.2	11.4	11.2	16.4	10.2	16.1	3.0	18.3	15.7	16.5	15.4	16.2	16.7	17.6	17.6	18.0	18.3
oidity	NTU	0.68	4.07	11.71	1.87	1.79	1.45	2.75	2.28	0.76	1.62	4.73	11.1	2.13	17.4	4.77	1.84	1.48	1.46	2.1	2.46	0.99	0.48	3.39	1.34	1.11	1.55
ume Purged	gal	0.8	1.2	0.5	2.6	2.0	2.0	0.7	0.5	1.8	0.65	2.10	2.20	1.50	0.80	1.1	0.7	1.8	1.5	1.7	1.4	1.1	1.7	0.7	1.9	0.9	1.7
ple Location							B108	-MW												RW-1							
ge Date		23-May-13	26-Mar-14	28-May-14	2-Jul-14	8-Aug-14	29-Oct-14	3-Feb-15	5-May-15	12-Aug-15	2-Feb-16	2-May-16	10-Aug-16	13-Feb-17	23-May-13	26-Mar-14	29-May-14	1-Jul-14	8-Aug-14	29-Oct-14	3-Feb-15	5-May-15	12-Aug-15	2-Feb-16	2-May-16	10-Aug-16	12-Feb-17
e Methodology		Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow
e Method		Peristallic	Peristaltic	Peristaltic	Peristaltic	Peristattic	Peristattic	Peristaltic	Peristaltic	Peristaltic	Peristaltic	Peristaltic	Peristaltic	Peristattic	Peristattic	Peristaltic	Peristaltic	Peristaltic	Peristaltic	Peristaltic	Peristallic	Peristaltic	Peristallic	Peristattic	Peristaltic	Peristaltic	Peristattic
nple Date		23-May-13	26-Mar-14	28-May-14	2-Jul-14	8-Aug-14	29-Oct-14	3-Feb-15	5-May-15	12-Aug-15	2-Feb-16	2-May-16	10-Aug-16	13-Feb-17	23-May-13	26-Mar-14	29-May-14	1-Jul-14	8-Aug-14	29-Oct-14	3-Feb-15	5-May-15	12-Aug-15	2-Feb-16	2-May-16	10-Aug-16	12-Feb-17
pling Method		Peristallic	Peristaltic	Peristaltic	Peristaltic	Peristattic	Peristattic	Peristaltic	Peristattic	Peristaltic	Peristallic	Peristaltic	Peristaltic	Peristallic	Peristallic	Peristattic	Peristaltic	Peristallic	Peristallic	Peristallic	Peristaltic	Peristaltic	Peristallic	Peristattic	Peristaltic	Peristaltic	Peristattic
	Units																										
ductivity m	nS/cm	0.95	1.06	1.05	1.27	1.22	1.22	1.49	1.04	1.39	1.52	1.36	3.209	1.26	0.74	1.07	1.22	2.12	1.15	1.23	1.13	1.82	4.99	2.56	1.38	2.69	1.36
olved Oxygen n	mg/L	0.13	0.13	0.10	0.18	0.13	0.31	0.00	0.06	0.11	0.11	0.18	0.32	0.48	0.13	0.01	0.11	0.08	0.14	0.70	0.00	0.01	0.13	0.19	0.22	0.16	0.47
dation Reduction Potential	mV	29.1	137.1	-69.9	-216.0	-293.4	-354.1	-327.4	-241.5	-105.3	-330.3	-266.6	-283.3	-162.9	-94.3	179.0	-147.8	-252.9	-313.0	-297.2	-321.0	-266.7	-114.9	-243.9	-150.3	-106.4	-202.3
	S.U.	7.15	7.04	7.21	7.04	7.02	7.08	7.68	7.01	7.10	7.00	7.07	7.67	7.08	7.19	7.05	7.16	6.75	7.05	7.36	7.17	7.03	7.18	7.11	7.04	7.17	6.98
erature de	dea C	13.6	10.6	19.5	16.1	15.4	16.0	16.7	16.1	17.6	17.4	17.1	18.2	18.1	12.5	8.6	18.8	16.5	15.0	15.3	15.2	15.3	17.4	16.1	15.9	18.1	16.3
idity	NTU	0.62	0.28	3.54	0.86	3.78	3.24	1.11	1.56	2.41	1.35	1.49	4.39	2.94	10.55	12.37	1.66	6.31	3.19	4.41	2.97	2.15	4.37	0.96	13.13	3.93	1.74
ume Purged	gal	0.5	0.7	1.8	1.1	1.55	1.7	0.7	1.8	0.8	2.7	1.5	11	0.9	0.7	0.7	15	1.4	1.8	0.9	1.2	2.3	2.25	2.00	1.00	1.50	0.90
																			<u> </u>								
mple Location							RV	1-2												RW-3							
rge Date		21-May-13	26-Mar-14	29-May-14	1-Jul-14	8-Aug-14	29-Oct-14	3-Feb-15	5-May-15	12-Aug-15	2-Feb-16	2-May-16	10-Aug-16	13-Feb-17	22-May-13	26-Mar-14	29-May-14	1-Jul-14	7-Aug-14	29-Oct-14	3-Feb-15	5-May-15	12-Aug-15	2-Feb-16	2-May-16	10-Aug-16	13-Feb-17
ge Methodology		Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow
ge Method		Peristallic	Peristattic	Peristaltic	Peristaltic	Peristallic	Peristattic	Peristaltic	Peristaltic	Peristaltic	Peristallic	Peristallic	Peristallic	Peristaltic	Peristaltic	Peristaltic	Peristallic	Peristaltic	Peristallic	Peristaltic	Peristaltic	Peristaltic	Peristaltic	Peristattic	Peristallic	Peristallic	Peristallic
nple Date		21-May-13	26-Mar-14	29-May-14	1-Jul-14	8-Aug-14	29-Oct-14	3-Feb-15	5-May-15	12-Aug-15	2-Feb-16	2-May-16	10-Aug-16	13-Feb-17	22-May-13	26-Mar-14	29-May-14	1-Jul-14	7-Aug-14	29-Oct-14	3-Feb-15	5-May-15	12-Aug-15	2-Feb-16	2-May-16	10-Aug-16	13-Feb-17
npling Method		Peristallic	Peristattic	Peristallic	Peristaltic	Peristallic	Peristattic	Peristaltic	Peristaltic	Peristallic	Peristaltic	Peristallic	Peristallic	Peristaltic	Peristaltic	Peristaltic	Peristallic	Peristaltic	Peristaltic	Peristaltic	Peristattic	Peristaltic	Peristaltic	Peristattic	Peristaltic	Peristaltic	Peristaltic
	Units		<u> </u>																<u> </u>								
ductivity m	nS/cm	0.85	1.08	2.34	1.70	1.68	1.27	1.27	1.03	1.23	1.50	1.03	1.09	1.19	0.87	1.09	1.79	1.31	1.00	1.05	1.23	1.22	1.37	1.62	1.34	1.12	1.44
olved Oxygen n	mq/L	0.28	0.03	0.20	0.11	0.16	0.65	0.11	0.08	0.17	0.20	0.21	0.12	0.14	0.15	0.06	0.08	0.06	0.23	0.37	0.00	0.10	0.18	0.15	0.20	0.18	0.20
	mV	-30.3	156.8	-171.5	-172.0	-292.5	-286.4	-152.2	-326.1	-111.8	-284.7	-140.9	-237.5	-103.7	87.3	157.6	-132.8	-213.0	-216.8	-242.2	-192.4	-320.7	-116.4	-297.3	-156.2	-154.9	-200.7
		7.36	7.11	6.94	7.56	6.93	7.52	7.61	7.09	7.31	7.12	7.05	7.37	7.04	7.39	7.07	7.45	7.67	7.35	7.71	7.48	7.20	7.40	7.07	7.14	7.79	7.01
1 :	S.U.											17.2			12.4	9.3	17.7	15.3	15		16.3	17.2	17.6	17.9	18.1	18.1	18.0
		12.7	7.2	16.8	16.8	14.9	16.0	15.6	16.2	18.1	16.8		18.0	16.5						15.7							
perature de	S.U. deg C NTU	12.7	7.2 3.81	16.8		14.9	16.0 3.71		16.2		16.8	2.1		16.5					1.62								2.22
perature de	deg C				16.8 2.34			15.6 2.92		18.1 6.71			18.0 5.29		0.88	1.29	1.24	1.72	1.62	15.7 2.42 0.6	16.3 2.62 0.7	0.48	2.59	2.73	3.22	4.65	2.22
perature de	deg C	12.7 5.23		16.8 7.53	2.34	1.71		2.92	1.45	6.71	4.97	2.1			0.88	1.29	1.24	1.72	1.62 0.5	2.42	2.62	0.48	2.59		3.22	4.65	
nperature di olidity I ume Purged	deg C	12.7 5.23		16.8 7.53	2.34	1.71	3.71 0.6	2.92	1.45	6.71	4.97	2.1			0.88	1.29	1.24	1.72	1.62 0.5	2.42	2.62	0.48	2.59		3.22	4.65	
perature didity I	deg C	12.7 5.23		16.8 7.53 1.4	2.34	1.71 1.15	3.71 0.6	2.92 1.0	1.45 1.0	6.71	4.97	2.1	5.29 2.3		0.88	1.29	1.24 1.5	1.72	0.5	2.42 0.6	2.62	0.48 1.6	2.59 0.7		3.22 0.8	4.65 1.6	
perature di dity I me Purged ple Location e Date	deg C	12.7 5.23 1.2	3.81 0.8	16.8 7.53	2.34	1.71	3.71 0.6	2.92 1.0	1.45 1.0 4-May-15	6.71	4.97 1.8	2.1 0.6		3.2 1.6	0.88 0.5	1.29 0.7	1.24	1.72 1.8	1.62 0.5 7-Aug-14 Low flow	2.42 0.6 RW-5	2.62 0.7	0.48	2.59	2.73 3.0	3.22	4.65 1.6	0.9 14-Feb-17
perature dity IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	deg C	12.7 5.23 1.2 22-May-13 Low flow	3.81 0.8 26-Mar-14 Low flow	16.8 7.53 1.4 29-May-14 Low flow	2.34 0.3 2-Jul-14 Low flow	1.71 1.15 6-Aug-14 Low flow	3.71 0.6 RV 29-Oct-14 Low flow	2.92 1.0 7-4 4-Feb-15 Low flow	1.45 1.0 4-May-15 Volumetric ^d	6.71 1.0 13-Aug-15 Low flow	4.97 1.8 1-Feb-16 Low flow	2.1 0.6 3-May-16 Low flow	5.29 2.3 9-Aug-16 Low flow	3.2 1.6 13-Feb-17 Low flow	0.88 0.5 21-May-13 Low flow	1.29 0.7 27-Mar-14 Low flow	1.24 1.5 29-May-14 Low flow	1.72 1.8 2-Jul-14 Low flow	7-Aug-14 Low flow	2.42 0.6 RW-5 28-Oct-14 Low flow	2.62 0.7 3-Feb-15 Low flow	0.48 1.6 4-May-15 Low flow	2.59 0.7 13-Aug-15 Low flow	2.73 3.0 1-Feb-16 Low flow	3.22 0.8 3-May-16 Low flow	4.65 1.6 10-Aug-16 Low flow	0.9 14-Feb-17 Low flow
perature didity in the Purged ple Location e Date e Methodology e Method	deg C	12.7 5.23 1.2 22-May-13 Low flow Peristallic	3.81 0.8 26-Mar-14 Low flow Peristallic	16.8 7.53 1.4 29-May-14 Low flow Peristallic	2.34 0.3 2-Jul-14 Low flow Peristalfic	1.71 1.15 6-Aug-14 Low flow Peristallic	3.71 0.6 RV 29-Oct-14 Low flow Peristallic	2.92 1.0 1-4 4-Feb-15 Low flow Peristallic	1.45 1.0 4-May-15 Volumetric ^d Bailer ^d	6.71 1.0 13-Aug-15 Low flow Peristallic	4.97 1.8 1-Feb-16 Low flow Peristallic	2.1 0.6 3-May-16 Low flow Peristallic	5.29 2.3 9-Aug-16 Low flow Peristalfic	3.2 1.6 13-Feb-17 Low flow Peristallic	0.88 0.5 21-May-13 Low flow Peristallic	1.29 0.7 27-Mar-14 Low flow Peristallic	1.24 1.5 29-May-14 Low flow Peristallic	1.72 1.8 2-Jul-14 Low flow Peristallic	7-Aug-14 Low flow Peristallic	2.42 0.6 RW-5 28-Oct-14 Low flow Peristallic	2.62 0.7 3-Feb-15 Low flow Peristollic	0.48 1.6 4-May-15 Low flow Peristallic	2.59 0.7 13-Aug-15 Low flow Peristallic	2.73 3.0 1-Feb-16 Low flow Peristallic	3.22 0.8 3-May-16 Low flow Peristallic	4.65 1.6 10-Aug-16 Low flow Peristallic	0.9 14-Feb-17 Low flow Peristallic
perature didity III III III III III III III III III I	deg C	12.7 5.23 1.2 22-May-13 Low flow Peristallic 22-May-13	3.81 0.8 26-Mar-14 Low flow Peristallic 26-Mar-14	16.8 7.53 1.4 29-May-14 Low flow Peristallic 29-May-14	2.34 0.3 2-Jul-14 Low flow Peristollic 2-Jul-14	1.71 1.15 6-Aug-14 Low flow Peristollic 6-Aug-14	3.71 0.6 RV 29-Oct-14 Low flow Peristollic 29-Oct-14	2.92 1.0 4-Feb-15 Low flow Peristallic 4-Feb-15	1.45 1.0 4-May-15 Volumetric ^d Baller ^d 4-May-15	6.71 1.0 13-Aug-15 Low flow Peristollic 13-Aug-15	4.97 1.8 1-Feb-16 Low flow Peristollic 1-Feb-16	2.1 0.6 3-May-16 Low flow Peristallic 3-May-16	5.29 2.3 9-Aug-16 Low Bow Peristollic 9-Aug-16	3.2 1.6 13-Feb-17 Low flow Peristallic 13-Feb-17	0.88 0.5 21-May-13 Low flow Peristallic 21-May-13	1.29 0.7 27-Mar-14 Low flow Peristallic 27-Mar-14	1.24 1.5 29-May-14 Low flow Peristallic 29-May-14	1.72 1.8 2-Jul-14 Low flow Peristallic 2-Jul-14	7-Aug-14 Low flow Peristallic 7-Aug-14	2.42 0.6 RW-5 28-Oct-14 Low flow Peristallic 28-Oct-14	2.62 0.7 3-Feb-15 Low flow Peristallic 3-Feb-15	0.48 1.6 4-May-15 Low flow Peristallic 4-May-15	2.59 0.7 13-Aug-15 Low flow Peristollic 13-Aug-15	2.73 3.0 1-Feb-16 Low flow Peristallic 1-Feb-16	3.22 0.8 3-May-16 Low flow Peristallic 3-May-16	10-Aug-16 Low flow Peristallic 10-Aug-16	14-Feb-17 Low flow Peristalfic 14-Feb-17
erature di	deg C NTU gal	12.7 5.23 1.2 22-May-13 Low flow Peristallic	3.81 0.8 26-Mar-14 Low flow Peristallic	16.8 7.53 1.4 29-May-14 Low flow Peristallic	2.34 0.3 2-Jul-14 Low flow Peristalfic	1.71 1.15 6-Aug-14 Low flow Peristallic	3.71 0.6 RV 29-Oct-14 Low flow Peristallic	2.92 1.0 1-4 4-Feb-15 Low flow Peristallic	1.45 1.0 4-May-15 Volumetric ^d Bailer ^d	6.71 1.0 13-Aug-15 Low flow Peristallic	4.97 1.8 1-Feb-16 Low flow Peristallic	2.1 0.6 3-May-16 Low flow Peristallic	5.29 2.3 9-Aug-16 Low flow Peristalfic	3.2 1.6 13-Feb-17 Low flow Peristallic	0.88 0.5 21-May-13 Low flow Peristallic	1.29 0.7 27-Mar-14 Low flow Peristallic	1.24 1.5 29-May-14 Low flow Peristallic	1.72 1.8 2-Jul-14 Low flow Peristallic	7-Aug-14 Low flow Peristallic	2.42 0.6 RW-5 28-Oct-14 Low flow Peristallic	2.62 0.7 3-Feb-15 Low flow Peristollic	0.48 1.6 4-May-15 Low flow Peristallic	2.59 0.7 13-Aug-15 Low flow Peristallic	2.73 3.0 1-Feb-16 Low flow Peristallic	3.22 0.8 3-May-16 Low flow Peristallic	4.65 1.6 10-Aug-16 Low flow Peristallic	0.9 14-Feb-17 Low flow Peristallic
cerature di ility il me Purged di ility	deg C	12.7 5.23 1.2 1.2 22-May-13 Low flow Peristallic 22-May-13 Peristallic	381 0.8 26-Mar-14 Low flow Peristollic 26-Mar-14 Peristollic	16.8 7.53 1.4 29-May-14 Low flow Peristaltic 29-May-14 Peristaltic	2.34 0.3 2-Jul-14 Low flow Peristollic 2-Jul-14 Peristollic	1.71 1.15 6-Aug-14 Low flow Peristollic 6-Aug-14 Peristollic	3.71 0.6 RV 29-Oct-14 Low flow Peristollic 29-Oct-14 Peristollic	2.92 1.0 I-4 4-Feb-15 Low flow Peristollic 4-Feb-15 Peristollic	1.45 1.0 4-May-15 Volumetric ^d Baller ^d 4-May-15	13-Aug-15 Low flow Peristollic 13-Aug-15 Peristollic	4.97 1.8 1-Feb-16 Low flow Peristollic 1-Feb-16 Peristollic	2.1 0.6 3-May-16 Low flow Peristallic 3-May-16 Peristallic	9-Aug-16 Low flow Peristollic 9-Aug-16 Baller ^d	3.2 1.6 13-Feb-17 Low flow Peristoffic 13-Feb-17 Peristoffic	0.88 0.5 21-May-13 Low flow Peristallic 21-May-13 Peristallic	1.29 0.7 27-Mar-14 Low flow Peristollic 27-Mar-14 Peristollic	1.24 1.5 29-May-14 Low flow Peristollic 29-May-14 Peristollic	1.72 1.8 2-Jul-14 Low flow Peristollic 2-Jul-14 Peristollic	7-Aug-14 Low flow Peristallic 7-Aug-14 Peristallic	2.42 0.6 RW-5 28-Oct-14 Low flow Peristollic 28-Oct-14 Peristollic	2.62 0.7 3-Feb-15 Low flow Peristollic 3-Feb-15 Peristollic	0.48 1.6 4-May-15 Low flow Peristallic 4-May-15 Peristallic	2.59 0.7 13-Aug-15 Low flow Peristollic 13-Aug-15 Peristollic	2.73 3.0 1-Feb-16 Low flow Peristallic 1-Feb-16 Peristallic	3.22 0.8 3-May-16 Low flow Peristollic 3-May-16 Peristollic	4.65 1.6 10-Aug-16 Low flow Peristollic 10-Aug-16 Peristollic	14-Feb-17 Low flow Peristallic 14-Feb-17 Peristallic
perature didity in me Purged in	deg C NTU gal	12.7 5.23 1.2 22-May-13 Low flow Peristollic 22-May-13 Peristollic	3.81 0.8 26-Mar-14 Low flow Peristollic 26-Mar-14 Peristollic	16.8 7.53 1.4 29-May-14 Low flow Peristollic 29-May-14 Peristollic	2.34 0.3 2-Jul-14 Low flow Peristoffic 2-Jul-14 Peristoffic	1.71 1.15 6-Aug-14 Low flow Peristollic 6-Aug-14 Peristollic	3.71 0.6 RV 29-Oct-14 Low flow Peristollic 29-Oct-14 Peristollic	2.92 1.0 -4 4-Feb-15 Low flow Peristallic 4-Feb-15 Peristallic	1.45 1.0 4-May-15 Volumetric ^d 8-Balled ^d 4-May-15 8-diller ^d	6.71 1.0 13-Aug-15 Low flow Peristallic 13-Aug-15 Peristallic	4.97 1.8 1-Feb-16 Low flow Peristollic 1-Feb-16 Peristollic 3.18	2.1 0.6 3-May-16 Low flow Peristallic 3-May-16 Peristallic	5.29 2.3 9-Aug-16 Low flow Peristollic 9-Aug-16 Bailler ^d	3.2 1.6 13-Feb-17 Low flow Peristoflic 13-Feb-17 Peristoflic	0.88 0.5 21-May-13 Low flow Peristallic 21-May-13 Peristallic	1.29 0.7 27-Mar-14 Low flow Peristallic 27-Mar-14 Peristallic	1.24 1.5 29-May-14 Low flow Peristallic 29-May-14 Peristallic	1.72 1.8 2-Jul-14 Low flow Peristoffic 2-Jul-14 Peristoffic	7-Aug-14 Low flow Peristallic 7-Aug-14 Peristallic	2.42 0.6 RW-5 28-Oct-14 Low flow Peristollic 28-Oct-14 Peristollic	2.62 0.7 3-Feb-15 Low flow Peristallic 3-Feb-15 Peristallic	0.48 1.6 4-May-15 Low flow Peristallic 4-May-15 Peristallic	2.59 0.7 13-Aug-15 Low flow Peristallic 13-Aug-15 Peristallic	2.73 3.0 1-Feb-16 Low flow Peristallic 1-Feb-16 Peristallic	3.22 0.8 3-May-16 Low flow Peristallic 3-May-16 Peristallic	4.65 1.6 10-Aug-16 Low flow Peristallic 10-Aug-16 Peristallic	14-Feb-17 Low flow Peristallic 14-Feb-17 Peristallic
upperature dididity upperature dididity upperature dididity upperature dididity upperature dididition ge Date ge Methodology ge Method upper Date upperature dididition didition didit	deg C NTU gal Units	12.7 5.23 1.2 22-May-13 Low flow Peristallic 22-May-13 Peristallic	3.81 0.8 24-Mor-14 Low flow Peristollic 26-Mor-14 Peristollic	16.8 7.53 1.4 29-May-14 Low Bow Peristollic 29-May-14 Peristollic 0.89 0.06	2.34 0.3 2-Jul-14 Low flow Peristotlic 2-Jul-14 Peristotlic	1.71 1.15 6-Aug-14 Low flow Peristollic 6-Aug-14 Peristollic	3.71 0.6 RV 29-Oct-14 Low flow Peristollic 29-Oct-14 Peristollic	2.92 1.0 4-Feb-15 Low flow Peristollic 4-Feb-15 Peristollic	1.45 1.0 4-May-15 Volumetric ^d Boiler ^d 4-May-15 Boiler ^d 1.77 3.04	6.71 1.0 13-Aug-15 Low flow Peristollic 13-Aug-15 Peristollic 3.30 0.20	4.97 1.8 1.Feb-16 Low flow Peristoffic 1-Feb-16 Peristoffic 3.18 0.18	2.1 0.6 3-May-16 Low flow Peristallic 3-May-16 Peristallic 3.59 0.20	5.29 2.3 9-Aug-16 Low Blow Peristollic 9-Aug-16 Baller ^d 2.95 0.68	3.2 1.6 13-Feb-17 Low flow Peristollic 13-Feb-17 Peristollic 1.48 0.60	0.88 0.5 21-May-13 Low flow Peristallic 21-May-13 Peristallic	1.29 0.7 27-Mar-14 Low flow Peristollic 27-Mar-14 Peristollic	1.24 1.5 29-May-14 Low flow Peristollic 29-May-14 Peristollic	1.72 1.8 2-Jul-14 Low flow Peristallic 2-Jul-14 Peristallic	7-Aug-14 Low flow Peristollic 7-Aug-14 Peristollic	2.42 0.6 RW-5 28-Oct-14 Low flow Peristallic 28-Oct-14 Peristallic	2.62 0.7 3-Feb-15 Low flow Peristallic 3-Feb-15 Peristallic	0.48 1.6 4-May-15 Low flow Peristallic 4-May-15 Peristallic 1.02 0.39	2.59 0.7 13-Aug-15 Low flow Peristallic 13-Aug-15 Peristallic	2.73 3.0 1-Feb-16 Low flow Peristaltic 1-Feb-16 Peristaltic	3.22 0.8 3-May-16 Low flow Peristallic 3-May-16 Peristallic	4.65 1.6 10-Aug-16 Low flow Peristallic 10-Aug-16 Peristallic	0.9 14-Feb-17 Low flow Peristalfic 14-Feb-17 Peristalfic
upperature dididity upperature dididity upperature dididity upperature dididity upperature dididition didididition dididition didition di	deg C NTU gal	12.7 5.23 1.2 22-May-13 Low flow Peristallic 22-May-13 Peristallic	3.81 0.8 26-Mar-14 Low flow Peristollic 26-Mar-14 Peristollic	16.8 7.53 1.4 29-May-14 Low flow Peristollic 29-May-14 Peristollic	2.34 0.3 2-Jul-14 Low flow Peristollic 2-Jul-14 Peristollic 1.94 0.15	1.71 1.15 6-Aug-14 Low flow Peristollic 6-Aug-14 Peristollic	3.71 0.6 RV 29-Oct-14 Low flow Peristollic 29-Oct-14 Peristollic 1.00 0.44 -130.3	2.92 1.0 4-feb-15 Low flow Peristallic 4-feb-15 Peristallic 1.48 0.24	1.45 1.0 4-May-15 Volumetric ^d Boiler ^d 4-May-15 Boiler ^d 1.77 3.04 -175.5	6.71 1.0 13-Aug-15 Low flow Peristallic 13-Aug-15 Peristallic	4.97 1.8 1-Feb-14 Low flow Peristollic 1-Feb-14 Peristollic 3.18 0.18 3.11.9	2.1 0.6 3-May-16 Low flow Peristallic 3-May-16 Peristallic 3.59 0.20	5.29 2.3 9-Aug-16 Low flow Peristollic 9-Aug-16 Boiler ^d 2.95 0.68 -152.7	3.2 1.6 13-Feb-17 Low flow Peristoilic 13-Feb-17 Peristoilic 1.48 0.60	0.88 0.5 21-May-13 Low flow Peristallic 21-May-13 Peristallic 0.89 0.28	1.29 0.7 27-Mar-14 Low flow Peristollic 27-Mar-14 Peristollic	1.24 1.5 29-May-14 Low flow Peristollic 29-May-14 Peristollic	1.72 1.8 2-Jul-14 Low flow Peristoilic 2-Jul-14 Peristoilic 1.86 0.19	7-Aug-14 Low flow Peristollic 7-Aug-14 Peristollic	2.42 0.6 RW-5 28-Oct-14 Low flow Peristollic 28-Oct-14 Peristollic	2.62 0.7 3-Feb-15 Low flow Peristoffic 3-Feb-15 Peristoffic 1.00 0.00 269.2	0.48 1.6 4-May-15 Low flow Peristallic 4-May-15 Peristallic 1.02 0.39 -230.4	2.59 0.7 13-Aug-15 Low flow Peristallic 13-Aug-15 Peristallic	2.73 3.0 1-Feb-16 Low flow Peristallic 1-Feb-16 Peristallic 1.27 0.09 -179.1	3.22 0.8 3-May-16 Low flow Peristollic 3-May-16 Peristollic	4.65 1.6 10-Aug-16 Low flow Peristollic 10-Aug-16 Peristollic 1.98 0.11 -125.1	0.9 14-Feb-17 Low flow Peristolfic 14-Feb-17 Peristolfic 0.00 11.07 -43.6
portature di idiaty pie Location pie Location pie Location pe Cotte e Methodology e Method pie Dele di Location pi	deg C NTU gal Units	12.7 5.23 1.2 22-May-13 Low flow Peristollic 22-May-13 Peristollic	3.81 0.8 24-Mor-14 Low flow Peristollic 26-Mor-14 Peristollic	16.8 7.53 1.4 29-May-14 Low flow Peristollic 29-May-14 Peristollic 29-May-14 0.89 0.06 29-3 7.10	2.34 0.3 2-Jul-14 Low flow Peristollic 2-Jul-14 Peristollic 1.94 0.15 -180.2 6.90	1.71 1.15 6-Aug-14 Low flow Peristollic 6-Aug-14 Peristollic 1.67 0.04 -347 7.05	3.71 0.6 RV 29-Oct-14 Low flow Peristollic 29-Oct-14 Peristollic 1.00 0.44 -130.3 6.95	2.92 1.0 4-Feb-15 Low flow Peristollic 4-Feb-15 Peristollic 1.48 0.24 -278.2 7.117	1.45 1.0 4-May-15 Volumetric ^d Boller ^d 4-May-15 Boller ^d 1.77 3.04 -175.5 7.10	6.71 1.0 13-Aug-15 Low flow Peristollic 13-Aug-15 Peristollic 3.30 0.20 -57.8 6.86	4.97 1.8 1-Feb-16 Low flow Peristollic 1-Feb-16 Peristollic 3.18 0.18 -311.9 6.99	2.1 0.6 3-May-16 Low flow Peristollic 3-May-16 Peristollic 3.59 0.20 -348.2 7.12	5.29 2.3 9-Aug-16 Low flow Peristollic 9-Aug-16 Boiler ^d 2.95 0.68 -152.7 6.74	3.2 1.6 13-Feb-17 Low flow Peristollic 13-Feb-17 Peristollic 1.48 0.60	0.88 0.5 21-May-13 Low flow Peristallic 21-May-13 Peristallic 0.89 0.28 -2.3 7.07	1.29 0.7 27-Mar-14 Low flow Peristollic 27-Mar-14 Peristollic 1.08 0.00 74.7 7.29	1.24 1.5 29-May-14 Low flow Peristollic 29-May-14 Peristollic 1.40 0.06 .95.6 7.27	1.72 1.8 2-Jul-14 Low flow Peristoillic 2-Jul-14 Peristoillic 1.86 0.19 -137.8 7.03	7-Aug-14 Low flow Peristollic 7-Aug-14 Peristollic 1.20 0.08 -170.0 7.07	2.42 0.6 RW-5 28-Oct-14 Low flow Peristollic 28-Oct-14 Peristollic 1.01 0.43 -164.1 7.23	2.62 0.7 3-Feb-15 Low flow Peristotitic 3-Feb-15 Peristotitic	0.48 1.6 4-May-15 Low flow Peristallic 4-May-15 Peristallic 1.02 0.39 -230.4 7.19	2.59 0.7 13-Aug-15 Low flow Peristollic 13-Aug-15 Peristollic 1.08 0.22 -142.5 7.10	2.73 3.0 1-Feb-16 Low flow Peristallic 1-Feb-16 Peristallic 1.27 0.09 -179.1 7.36	3-May-16 Low flow Peristollic 3-May-16 Peristollic 1.01 0.57 -169.2 7.19	10-Aug-16 Low flow Peristollic 10-Aug-16 Peristollic 1.98 0.11 -125.1 7.07	0.9 14-Feb-17 Low flow Peristollic 14-Feb-17 Peristollic 0.00 11.07 -43.6 7.05
orditure didity didity ple Location ple Location be Date whethodology Nethod be Date John Method Location Location Location attaching attaching attaching attaching normalises location no	deg C NTU gal Units	12.7 5.23 1.2 22-May-13 Low flow Peristollic 22-May-13 Peristollic 0.91 0.11 38.6 6.91 20.0	3.81 0.8 26-Mar-14 Low flow Peristollic 26-Mar-14 Peristollic	16.8 7.53 1.4 29-May-14 Low flow Peristollic 29-May-14 Peristollic 0.89 0.06 29-3 7.10 25.5	2.34 0.3 2-Jul-14 Low flow Peristotlic 2-Jul-14 Peristotlic 1.94 0.15 -180.2 6.90	1.71 1.15 6-Aug-14 Low flow Peristollic 6-Aug-14 Peristollic	3.71 0.6 RV 29-Oct-14 Low flow Peristollic 29-Oct-14 Peristollic 1.00 0.44 -130.3	2.92 1.0 4-feb-15 Low flow Peristallic 4-feb-15 Peristallic 1.48 0.24	1.45 1.0 4-May-15 Volumetric ^d 8 oiler ^d 4-May-15 8 oiler ^d 1.77 3.04 -175.5 7.10 9.8	6.71 1.0 13-Aug-15 Low flow Peristollic 13-Aug-15 Peristollic 3.3.0 0.20 -57.8 6.86 21.2	4,97 1.8 1-Feb-14 Low flow Peristollic 1-Feb-16 Peristollic 3.18 0.18 -311.9 6.99 10.3	2.1 0.6 3-May-16 Low flow Peristallic 3-May-16 Peristallic 3.59 0.20	5.29 2.3 9-Aug-16 Low flow Peristollic 9-Aug-16 Boiller ^d 2.95 0.68 -152.7 6.74 17.7	3.2 1.6 13.Feb-17 Low flow Peristollic 13.Feb-17 Peristollic 1.48 0.60 -159.7 6.98	0.88 0.5 21-May-13 Low flow Peristallic 21-May-13 Peristallic 0.89 0.28	1.29 0.7 27-Mor-14 Low flow Peristotlic 27-Mor-14 Peristotlic 1.08 0.00 74.7 7.29 5.7	1.24 1.5 29-May-14 Low flow Peristollic 29-May-14 Peristollic 1.40 0.06 .95.6 7.27 22.8	1.72 1.8 2-Jul-14 Low flow Peristoffic 2-Jul-14 Peristoffic 1.86 0.19 -137.8 7.03 17.3	0.5 7-Aug-14 Low flow Peristollic 7-Aug-14 Peristollic 1.20 0.08 -170.0 7.07	2.42 0.6 RW-5 28-Qc1-14 Low flow Peristollic 28-Qc1-14 Peristollic 1.01 0.43 -164.1 7.23 17.5	2.62 0.7 3-Feb-15 Low flow Peristollic 3-Feb-15 Peristollic 1.00 0.00 -269.2 7.31 5.2	0.48 1.6 4-May-15 Low flow Peristallic 4-May-15 Peristallic 1.02 0.39 -230.4 7.19	2.59 0.7 13-Aug-15 Low flow Peristollic 13-Aug-15 Peristollic 0.22 -142.5 7.10	2.73 3.0 1-Feb-16 Low flow Peristollic 1-Feb-16 Peristollic 1.27 0.09 -179.1 7.36 10.5	3-May-16 Low flow Peristoffic 3-May-16 Peristoffic 1.01 0.57 -169.2 7.19	10-Aug-16 Low flow Peristollic 10-Aug-16 Peristollic 1.98 0.11 -125.1 7.07	14-Feb-17 Low flow Peristallic 14-Feb-17 Peristallic
perature didity in me Purged ple location e Date e Methodology e Methodology e Methodology big Date ping Method Parameters	deg C NTU gal Units	12.7 5.23 1.2 22-May-13 Low flow Peristollic 22-May-13 Peristollic	3.81 0.8 26-Mar-14 Low flow Peristollic 26-Mar-14 Peristollic	16.8 7.53 1.4 29-May-14 Low flow Peristollic 29-May-14 Peristollic 29-May-14 0.89 0.06 29-3 7.10	2.34 0.3 2-Jul-14 Low flow Peristollic 2-Jul-14 Peristollic 1.94 0.15 -180.2 6.90	1.71 1.15 6-Aug-14 Low flow Peristollic 6-Aug-14 Peristollic 1.67 0.04 -347 7.05	3.71 0.6 RV 29-Oct-14 Low flow Peristollic 29-Oct-14 Peristollic 1.00 0.44 -130.3 6.95	2.92 1.0 4-Feb-15 Low flow Peristollic 4-Feb-15 Peristollic 1.48 0.24 -278.2 7.117	1.45 1.0 4-May-15 Volumetric ^d Boller ^d 4-May-15 Boller ^d 1.77 3.04 -175.5 7.10	6.71 1.0 13-Aug-15 Low flow Peristollic 13-Aug-15 Peristollic 3.30 0.20 -57.8 6.86	4.97 1.8 1-Feb-16 Low flow Peristollic 1-Feb-16 Peristollic 3.18 0.18 -311.9 6.99	2.1 0.6 3-May-16 Low flow Peristollic 3-May-16 Peristollic 3.59 0.20 -348.2 7.12	5.29 2.3 9-Aug-16 Low flow Peristollic 9-Aug-16 Boiler ^d 2.95 0.68 -152.7 6.74	3.2 1.6 13-Feb-17 Low flow Peristoilic 13-Feb-17 Peristoilic 1.48 0.60	0.88 0.5 21-May-13 Low flow Peristallic 21-May-13 Peristallic 0.89 0.28 -2.3 7.07	1.29 0.7 27-Mar-14 Low flow Peristollic 27-Mar-14 Peristollic 1.08 0.00 74.7 7.29	1.24 1.5 29-May-14 Low flow Peristollic 29-May-14 Peristollic 1.40 0.06 .95.6 7.27	1.72 1.8 2-Jul-14 Low flow Peristoillic 2-Jul-14 Peristoillic 1.86 0.19 -137.8 7.03	7-Aug-14 Low flow Peristollic 7-Aug-14 Peristollic 1.20 0.08 -170.0 7.07	2.42 0.6 RW-5 28-Oct-14 Low flow Peristollic 28-Oct-14 Peristollic 1.01 0.43 -164.1 7.23	2.62 0.7 3-Feb-15 Low flow Peristotitic 3-Feb-15 Peristotitic	0.48 1.6 4-May-15 Low flow Peristallic 4-May-15 Peristallic 1.02 0.39 -230.4 7.19	2.59 0.7 13-Aug-15 Low flow Peristollic 13-Aug-15 Peristollic 1.08 0.22 -142.5 7.10	2.73 3.0 1-Feb-16 Low flow Peristallic 1-Feb-16 Peristallic 1.27 0.09 -179.1 7.36	3-May-16 Low flow Peristollic 3-May-16 Peristollic 1.01 0.57 -169.2 7.19	10-Aug-16 Low flow Peristollic 10-Aug-16 Peristollic 1.98 0.11 -125.1 7.07	0.9 14-Feb-17 Low flow Peristollic 14-Feb-17 Peristollic 0.00 11.07 -43.6 7.05


() Stantec

Table 3 Summary of Groundwater Field Parameters Former Carriage Factory 33 Litchfield Street, Rochester, NY

Sample Location							pu	1-6												PW.7							$\overline{}$
Purge Date	<u> </u>	20-May-13	27-Mar-14	28-May-14	1-Jul-14	7-Aug-14	28-Oct-14	4-Feb-15	4-May-15	13-Aug-15	1-Feb-16	3-May-16	9-Aug-16	14-Feb-17	20-May-13	27-Mar-14	28-May-14	1-Jul-14	7-Aug-14	28-Oct-14	4-Feb-15	4-May-15	13-Aug-15	1-Feb-16	3-May-16	9-Aug-16	14-Feb-17
Purge Methodology		Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow	Low flow
Purge Method		Peristaltic	Peristattic	Peristaltic	Peristallic	Peristallic	Peristaltic	Peristallic	Peristaltic	Peristaltic	Peristaltic	Peristaltic	Peristaltic	Peristaltic	Peristallic	Peristattic	Peristaltic	Peristaltic	Peristaltic	Peristallic	Peristaltic	Peristaltic	Peristaltic	Peristaltic	Peristaltic	Peristallic	Peristattic
Sample Date		20-May-13	27-Mar-14	28-May-14	1-Jul-14	7-Aug-14	28-Oct-14	4-Feb-15	4-May-15	13-Aug-15	1-Feb-16	3-May-16	9-Aug-16	14-Feb-17	20-May-13	27-Mar-14	28-May-14	1-Jul-14	7-Aug-14	28-Oct-14	4-Feb-15	4-May-15	13-Aug-15	1-Feb-16	3-May-16	9-Aug-16	14-Feb-17
Sampling Method		Peristallic	Peristattic	Peristaltic	Peristallic	Peristallic	Peristattic	Peristallic	Peristallic	Peristallic	Peristallic	Peristattic	Peristallic	Peristaltic	Peristaltic	Peristattic	Peristattic	Peristaltic	Peristallic	Peristattic	Peristattic	Peristallic	Peristaltic	Peristattic	Peristaltic	Peristallic	Peristallic
Field Parameters	Units																									1	
Conductivity	mS/cm	0.93	1.07	1.72	1.34	1.30	1.21	1.08	1.01	1.03	1.94	1.11	1.30	1.35	1.02	1.21	1.30	1.17	1.07	0.96	1.16	1.08	1.11	1.39	1.00	1.05	1.09
Dissolved Oxygen	mg/L	0.08	0.01	0.07	0.10	0.14	0.42	0.28	0.08	0.20	0.12	0.95	0.32	1.31	0.08	0.38	0.31	0.13	0.11	0.44	0.39	0.07	0.26	0.05	0.82	0.22	1.14
Oxidation Reduction Potential	mV	-10.6	138.3	-69.0	-136.7	-306.1	-134.8	-304.1	-252.4	-143.6	-117.7	47.2	-59.1	-89.6	29.4	92.6	-37.6	-104.6	-303.6	-168.2	-224.3	-208.5	-88.0	-217.8	-242.5	-59.2	-67.5
рН	S.U.	7.13	7.33	7.03	6.91	7.00	7.06	7.22	7.14	7.15	6.96	7.10	7.12	7.07	7.06	7.27	7.08	6.99	7.07	7.11	7.12	6.99	7.11	7.07	7.1	7.18	7.14
Temperature	deg C	19.0	6.1	17.6	21.2	17.2	16.7	6.8	10.4	18.8	9.9	10.2	20.6	6.9	16.8	6.7	20.3	18.4	16.3	17.5	7.9	10.6	17.9	10.3	10.2	17.4	8.4
Turbidity	NTU	7.08 ⁿ	5.46	7.48	4.83	4.79	1.03	4.76	4.62	3.01	4.68	6.46	13.9	64.8	10.38	1.36	3.12	1.12	1.53	4.74	0.67	1.77	3.13	1.72	2.34	7.01	10.63
Volume Purged	gal	1.3	1.1	1.2	0.7	1.0	0.7	1.2	2.0	1.8	1.5	1.0	1.5	0.6	1.2	0.9	1.8	1.2	1.5	1.3	2.0	1.8	2.0	2.2	1.4	1.2	1.3

															10		
Sample Location		RW-8						RV								RW-11	
Purge Date		20-May-13	21-May-13	27-Mar-14	29-May-14	1-Jul-14	7-Aug-14	28-Oct-14	4-Feb-15	4-May-15	13-Aug-15	1-Feb-16	2-May-16	9-Aug-16	14-Feb-17	22-May-13	27-Mar-14
Purge Methodology		Low flow	Low flow														
Purge Method		Peristallic	Peristattic	Peristattic	Peristallic	Peristallic	Peristattic	Peristaltic	Peristallic	Peristattic	Peristallic	Peristattic	Peristattic	Peristaltic	Peristaltic	Peristattic	Peristaltic
Sample Date		20-May-13	21-May-13	27-Mar-14	29-May-14	1-Jul-14	7-Aug-14	28-Oct-14	4-Feb-15	4-May-15	13-Aug-15	1-Feb-16	2-May-16	9-Aug-16	14-Feb-17	22-May-13	27-Mar-14
Sampling Method		Peristattic	Peristallic	Peristattic	Peristaltic	Peristallic	Peristaltic	Peristaltic	Peristallic	Peristallic	Peristaltic	Peristaltic	Peristaltic	Peristaltic	Peristallic	Peristaltic	Peristaltic
Field Parameters	Units																
Conductivity	mS/cm	1.04	0.94	1.05	0.68	0.74	0.85	0.98	1.03	0.97	1.29	1.51	0.93	1.44	1.10	0.79	0.82
Dissolved Oxygen	mg/L	1.06	2.48	2.45	5.52	2.37	2.43	0.50	0.45	0.61	1.61	1.46	2.51	0.91	2.45	2.36	1.62
Oxidation Reduction Potential	mV	77.0	49.4	104.6	28.1	33.9	51.0	4.1	-166.7	-34.3	50.5	-31.3	-135.7	33.7	41.3	94.5	88.8
pH	S.U.	7.05	7.13	7.29	7.44	7.12	7.06	7.04	7.12	6.99	7.03	7.07	7.11	7.05	7.07	7.15	7.33
Temperature	deg C	14.4	14.0	9.4	20.7	19.0	15.5	16.8	10.5	15.2	16.9	13.1	12.2	17.0	10.9	14.6	5.1
urbidity	NTU	2.54	0.33	0.50	3.62	1.80	1.06	1.61	0.71	2.88	3.18	1.50	3.14	1.35	1.21	0.11 ^b	1.31
/olume Purged	col	1.0	0.8	1.2	0.7	0.35	0.7	2.0	1.5	1.6	1.0	1.5	0.9	1.4	0.7	0.4	0.7

Sample Location							RW-12							RW-13	
Purge Date		20-May-13	28-May-14	2-Jul-14	7-Aug-14	29-Oct-14	4-Feb-15	4-May-15	12-Aug-15	1-Feb-16	3-May-16	9-Aug-16	14-Feb-17	20-May-13	27-Mar-14
Purge Methodology		Low flow													
Purge Method		Peristaltic	Peristaltic	Peristattic	Peristallic	Peristallic	Peristattic	Peristallic	Peristallic	Peristallic	Peristallic	Peristattic	Peristattic	Peristaltic	Peristaltic
Sample Date		20-May-13	28-May-14	2-Jul-14	7-Aug-14	29-Oct-14	4-Feb-15	4-May-15	12-Aug-15	1-Feb-16	3-May-16	9-Aug-16	14-Feb-17	20-May-13	27-Mar-14
Sampling Method		Peristaltic	Peristaltic	Peristattic	Peristallic	Peristaltic	Peristaltic	Peristaltic	Peristallic	Peristattic	Peristallic	Peristattic	Peristaltic	Peristaltic	Peristaltic
Field Parameters	Units														
Conductivity	mS/cm	1.02	1.76	2.09	2.00	1.60	1.37	1.49	1.23	1.60	1.40	1.54	1.58	1.08	1.12
Dissolved Oxygen	mg/L	0.06	0.06	0.24	0.45	1.02	0.34	0.09	0.12	0.12	1.76	0.11	1.33	1.96	2.13
Oxidation Reduction Potential	mV	20.0	-149.5	-204.6	-159.7	-44.7	-284.1	-113.1	-76.9	-62.4	-35.5	-16.9	-62.0	48.6	101.8
pH	S.U.	7.10	7.25	7.11	7.17	7.30	7.36	7.40	7.34	7.32	7.41	7.33	7.36	7.21	7.25
Temperature	deg C	16.0	24.1	17.4	18.1	14.8	6.8	12.4	17.7	10.5	10.7	17.4	7.2	17.2	6.0
Turbidity	NTU	- °	1.10	5.55	2.82	2.45	1.40	0.61	3.66	2.27	2.56	5.50	7.13	5.10	1.86
Volume Purged	gal	1.0	2.0	0.9	1.3	0.6	1.7	2.9	1.1	1.3	0.6	1.8	0.7	2.3	2.0

Notes:

deg c degrees Celsius
gal gallors
mg/gam [alignams per liter
mt/s/cm millsGemens per centimeter
mt/s/cm millsGemens per centimeter
mt/s/cm millsGemens per centimeter
mt/m millsUrbts
NTU nephedometric burbicity units
NTU nephedometric burbicity units
NTU standard units
Turbicity measured approximately 5 minutes prior to sampling subsequent measurement (-126 NTU) indicated that the surbidity meter was not functioning.
Turbicity meter was not functioning groundwater was clear and did not have an odor.
Turbicity meter was not functioning subsequent measurement (-0.02 NTU) indicated that the surbidity meter was not functioning.
Turbicity meter was not functioning soundwater was clear and did not have an odor.
Use to a large drop in water levels (NV 4 vary purge and sampled by baller (quiring the May 2015 event): parameters provided were not measured downhole.
Turbicity measured in AU. Water was not becoming sufficiently clearer with purge activities.

Parameter Average for All Wells

Pre - Post Injection Comparison												
Parameter	Mar-14	May-14	Jul-14	Aug-14	Oct-14	Feb-15	May-15	Aug-15	Feb-16	May-16	Aug-16	Feb-17
Conductivity	1.04	1.36	1.60	1.29	1.15	1.21	1.23	1.94	1.89	1.42	2.20	1.46
Dissolved Oxygen	0.55	0.57	0.33	0.34	0.56	0.15	0.40	0.29	0.26	0.68	0.28	1.73
ORP	117.55	-80.19	-173.91	-242.46	-172.97	-237.27	-220.33	-88.15	-212.08	-159.98	-113.81	-107.77
pH	7.17	7.19	7.11	7.07	7.20		7.09	7.12	7.11	7.12	7.22	7.07
Temperature	6.45	20.04	17.28	16.95	16.03	11.03	13.53	17.93	13.48	13.58	18.05	12.08
Turbidity	3.76	3.46	2.74	2.49	2.64	2.17	2.77	4.14	104.13	5.38	8.89	12.02
Volume Purged	1.15	1.48	1.20	1.32	1.19	1.31	2.07	1.24	1.93	1.07	1.57	0.95
	Baseline	Month 1 Post	Month 2 Post	Month 3 Post	Month 6 Post	Month 9 Post	Month 12 Post	Month 15 Post	Supplemental	Supplemental	Supplemental	Supplemental

Table 4
Summary of Groundwater Elevations

Former Carriage Factory 33 Litchfield Street, Rochester, NY

	Date of Sampling event											
Well designation	3/27/2014	5/28/2014	7/2/2014	08/01/14	10/01/14	02/01/15	5/4/2015	08/01/15	02/01/16	5/2/2016	08/01/16	02/01/17
RW-1	513.03	513.21	512.60	510.69	512.51	512.50	513.12	512.98	513.15	512.18	511.62	512.63
RW-2	513.08	513.01	512.74	512.96	512.43	512.57	512.98	512.81	513.02	513.01	511.73	514.01
RW-3	513.34	513.37	512.97	513.73	512.74	512.83	513.40	512.99	513.35	513.55	510.91	515.47
RW-4	510.22	510.45	512.50	513.03	513.43	513.60	514.85	514.73	514.83	515.89	511.48	520.67
RW-5	513.06	512.38	511.56	514.12	511.89	511.14	513.16	512.58	513.09	513.41	510.33	nr
RW-6	512.64	512.74	512.13	515.87	511.87	512.06	511.52	512.38	512.30	512.49	510.15	512.74
RW-7	512.98	512.91	512.13	514.34	511.85	512.14	512.90	512.40	512.69	512.74	509.73	512.98
RW-9	513.84	513.66	512.77	519.04	512.36	512.69	513.85	513.04	514.07	513.59	510.88	514.44
RW-12	508.65	510.79	510.15	510.90	510.42	510.75	511.21	510.73	510.65	510.64	508.14	511.53
B102-MW	507.60	510.00	509.01	509.97	512.25	512.54	513.61	513.15	513.75	514.10	510.67	519.88
B106-MW	513.22	512.91	512.28	513.47	512.62	512.74	513.45	512.69	513.79	513.92	510.80	514.09
B108-MW	513.66	513.53	512.67	513.69	512.50	508.92	513.88	513.19	514.12	514.08	510.98	514.94

Table 5
Quarterly and Annual Monitoring of the Sub-Slab Depressurization System
Former Carriage Factory

33 Litchfield Street, Rochester, NY

		ition Detecto arts per millio	•	Vacuui	m Monito	ring Poin	ts (inches	s Water C	olumn)	Basement inspected for cracks, new penetrations, other potential leaks? If	Fans, pilot lights inspected in the attic? Any abnormal conditions	Any condensation		
Date	FAN-1	FAN-2	FAN-3	VMP-	VMP- 2	VMP-	VMP-	VMP- VMP- VMP- The performance of the suspect of suspect of suspect of suspect of the suspect				occuring in SSDS piping?		
12/14/2014	Not Collected	Not Collected	Not Collected	-0.042	-0.075	-0.107	-0.099	-0.142	-0.084	None observed	None observed	None Observed		
2/2/2016	0.1	0	0	-0.014	-0.043	-0.084	-0.086	-0.123	-0.073	None observed	None observed	Yes**		
5/2/2016				-0.022	-0.064	-0.101	-0.089	-0.184	-0.113			Yes		
5/3/2016	Quarterly	y vacuum m	onitoring	-0.024	-0.071	-0.126	-0.107	-0.205	-0.121	Quarterly vacuum mo	onitoring event,	Minimal***		
8/9/2016	-	D readings r		-0.038	-0.086	-0.141	-0.119	-0.196	-0.098	basement and fan inspe	_	None Observed		
12/6/2016				-0.009	-0.040	-0.068	-0.067	-0.109	-0.060					
2/14/2017	0.1	0	0	-0.010	-0.044	-0.075	-0.066	-0.116	-0.073	None observed	None observed	Minimal		

^{*} Fans 1,2, and 3 are the western, central, and eastern fans, respectively.

^{**} Based on 3/17/2016 site visit

^{***}Fans turned off for two hours to let condensate drain to sub-floor gravel prior to taking readings.

Table 6 Summary of Analytical Results in Post-Construction Purge Water and Discharge Permit Samples

Former Carriage Factory 33 Litchfield Street, Rochester, New York

	ı	Ī	1								1	1			1		1	1	1	
Sample Date			15-Sep-14	4-Nov-14	4-Feb-15	17-Feb-15	-	ay-15		ug-15	1-Dec-15		b-16	2-May-16	3-May-16	9-Aug-16	10-Aug-16	13-Feb-17		eb-17
Sample Location			LI-EL-W11	LI-EL-W12	LI-EL-W13	LI-EL-W14	LI-EL-W15	LI-EL-W16	LI-EL-W17	LI-EL-W18	LI-EL-W19	LI-EL-W20	LI-EL-W21	LI-EL-W22	LI-EL-W23	LI-EL-W24	LI-EL-W25	LI-EL-W26	LI-EL-W27	LI-EL-W28
Sample ID		County of	LI-EL-W11	LI-EL-W12	LI-EL-W13	LI-EL-W14	LI-EL-W15	LI-EL-W16	LI-EL-W17	LI-EL-W18	LI-EL-W19	LI-EL-W20	LI-EL-W21	LI-EL-W22	LI-EL-W23	LI-EL-W24	LI-EL-W25	LI-EL-W26	LI-EL-W27	LI-EL-W28
Sampling Company		Monroe	STANTEC																	
Laboratory		Sewer Use	PARAROCH																	
Laboratory Work Order		Permit	144025	144818	150381	150502	151695	151695	153410	153410	155061	160463	160463	161714	161714	163435	163435	170519	170547	170547
Laboratory Sample ID	Units	Enclosure	144025-01	144818-01	150381-01	150502-01	151695-01	151695-02	153410-01	153410-02	155061-01	160463-01	160463-02	161714-01	161714-02	163435-01	163435-02	170519-01	170547-01	170547-02
Metals		<u> </u>	<u> </u>					<u> </u>									<u> </u>			<u> </u>
Cadmium	mg/L	1.0 ^A	0.00500 U																	
Copper	mg/L	3.0 ^A	0.0250 U	0.0276	0.0250 U	0.0250 U	0.0250 U	0.0250 U												
Lead	mg/L	1.0 ^A	0.0239	0.0100 U	0.0275	0.0100 U	0.0100 U	0.0100 U	0.0100 U											
Zinc	mg/L	5.0 ^A	0.214	0.0600 U	0.0600 U	0.0600 U	0.0600 U	0.177	0.0600 U	0.0600 U	1.15	0.319	0.0600 U	0.0993	0.0600 U	0.136	0.0600 U	0.0600 U	0.0600 U	0.0600 U
Volatile Organic Compounds	•		•			•	•		•		•	•	•		•	•				
Bromodichloromethane	μg/L	n/v	2.00 U	1 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U							
Bromoform (Tribromomethane)	μg/L	n/v	5.00 U	2.5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U							
Bromomethane (Methyl bromide)	μg/L	n/v	2.00 U	1 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U							
Carbon Tetrachloride (Tetrachloromethane)	μg/L	n/v	2.00 U	1 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U							
Chlorobenzene (Monochlorobenzene)	μg/L	n/v	2.00 U	1 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U							
Chloroethane (Ethyl Chloride)	μg/L	n/v	2.00 U	1 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U							
Chloroform (Trichloromethane)	μg/L	n/v	2.00 U	1 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U							
Chloromethane	μg/L	n/v	2.00 U	1 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U							
Dibromochloromethane	μg/L	n/v	2.00 U	1 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U							
Dichlorobenzene, 1,2-	μg/L	n/v	2.00 U	1 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U							
Dichlorobenzene, 1,3-	μg/L	n/v	2.00 U	1 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U							
Dichlorobenzene, 1,4-	μg/L	n/v	2.00 U	1 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U							
Dichloroethane, 1,1-	μg/L	n/v	2.00 U	1 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U							
Dichloroethane, 1,2-	μg/L	n/v	2.00 U	1 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U							
Dichloroethene, 1,1-	μg/L	n/v	2.00 U	1 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U							
Dichloroethene, cis-1,2-	μg/L	n/v	98.8	107	12.5	2.00 U	19.2	2.00 U	2.00 U	11.1	1 U	2.00 U	2.00 U	2.00 U	109	2.00 U	38.8	2.00 U	8.02	2.00 U
Dichloroethene, trans-1,2-	μg/L	n/v	2.00 U	1 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U							
Dichloropropane, 1,2-	μg/L	n/v	2.00 U	1 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U							
Dichloropropene, cis-1,3-	μg/L	n/v	2.00 U	1 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U							
Dichloropropene, trans-1,3-	μg/L	n/v	2.00 U	1 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U							
Methylene Chloride (Dichloromethane)	μg/L	n/v	5.00 U	6.88	5.00 U	2.5 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U	5.00 U					
Tetrachloroethane, 1,1,2,2-	μg/L	n/v	2.00 U	1 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U							
Tetrachloroethene (PCE)	μg/L	n/v	2.00 U	2.00 U	2.00 U	2.00 U	2.25	2.00 U	2.00 U	2.00 U	1 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Trichloroethane, 1,1,1-	μg/L	n/v	2.00 U	1 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U							
Trichloroethane, 1,1,2-	μg/L	n/v	2.00 U	1 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U							
Trichloroethene (TCE)	μg/L	n/v	2.00 U	2.14	2.86	2.00 U	2.62	2.00 U	2.00 U	2.00 U	1 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U
Trichlorofluoromethane (Freon 11)	μg/L	n/v	2.00 U	1 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U	2.00 U							
Vinyl Chloride	μg/L	n/v	10.1	33.0	4.96	2.00 U	10.3	2.00 U	2.00 U	9.14	1 U	2.00 U	2.00 U	2.00 U	35.9	2.00 U	16.4	2.00 U	4.01	2.00 U
Total VOC	μg/L	2,130 ^A	108.9	149.02	20.32	ND	34.37	ND	ND	20.24	ND	ND	ND	ND	144.9	ND	55.2	ND	12.03	ND

Notes:

County of

Monroe

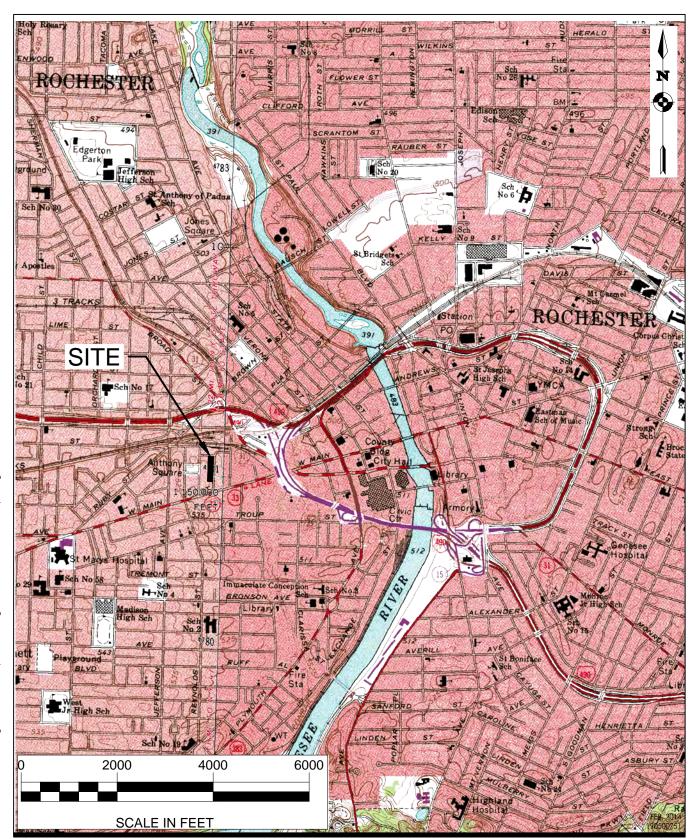
Sewer Use County of Monroe Sewer Use Permit Enclosure (Permit Number: ST-256, District Number: 8575)

Permit

Enclosure A

^A Site Specific Requirements

15.2 Measured concentration did not exceed the indicated standard.


0.03 U Analyte was not detected at a concentration greater than the laboratory reporting limit.

n/v No standard/guideline value.

190500751
U:\190500751\report\PRR\2017\Tables\Table 5 - 20170317-190500751-WW Permit Samples-Post Construction-CL xlsx
Page 1 of 1

Figures

61 Commercial Street, Suite 100 Rochester, New York USA 14614 585.475.1440 www.stantec.com

Client/Projec

CARRIAGE FACTORY SPECIAL NEEDS APARTMENTS, L.P.
BROWNFIELD CLEANUP PROGRAM
33 LITCHFIELD STREET, ROCHESTER, NY 14608

Figure No.

Title

PERIODIC REVIEW REPORT SITE LOCATION MAP

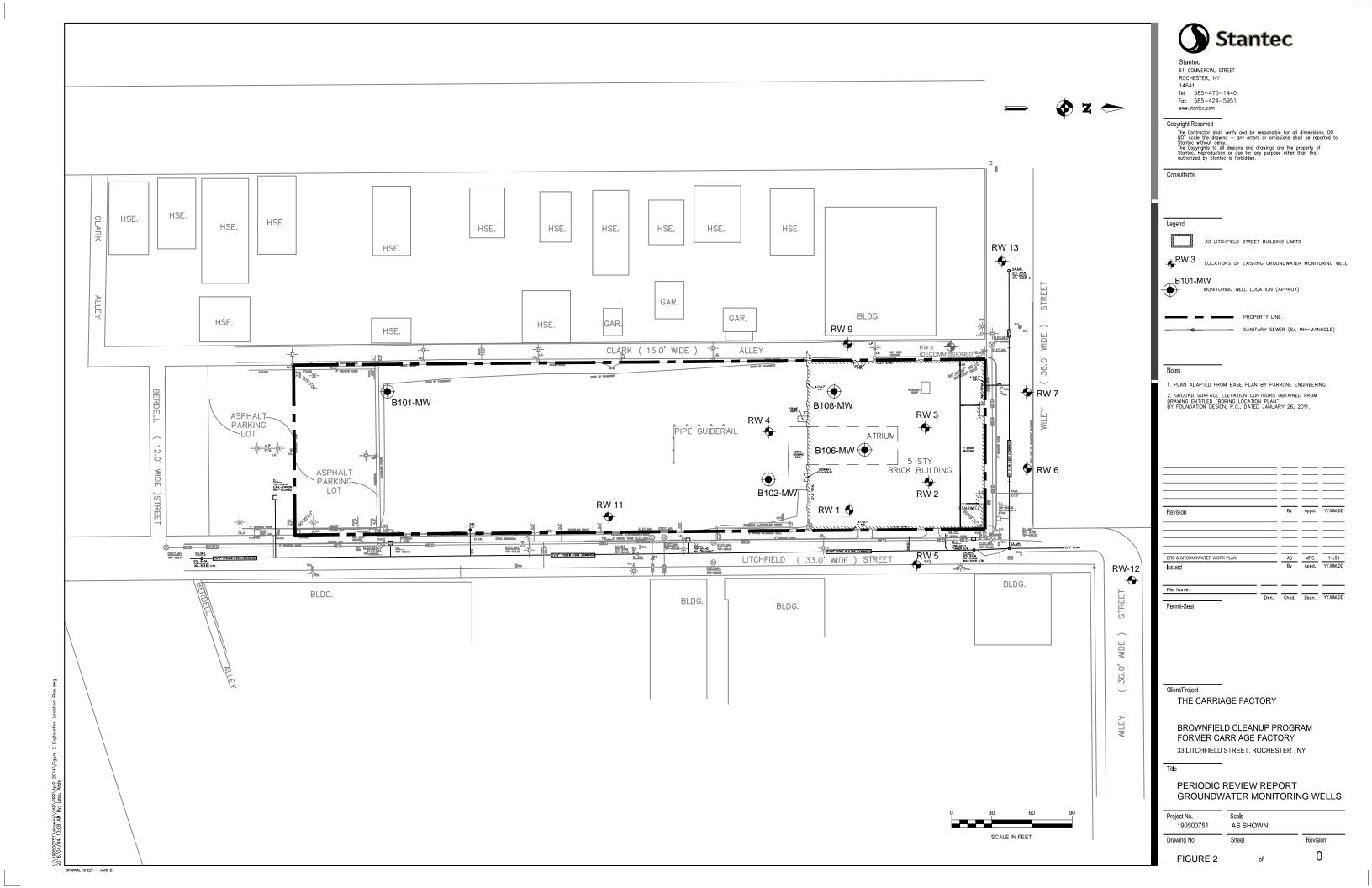
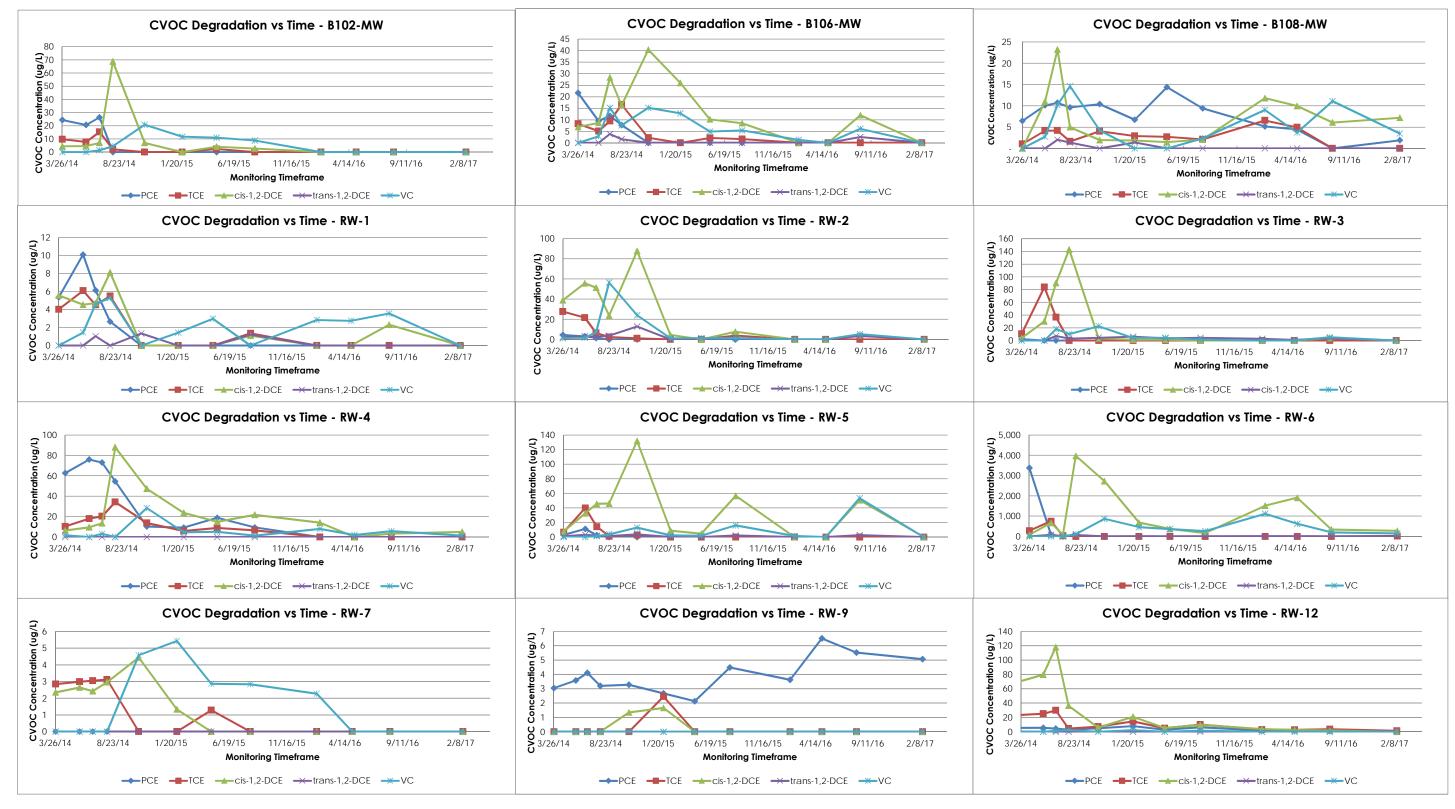
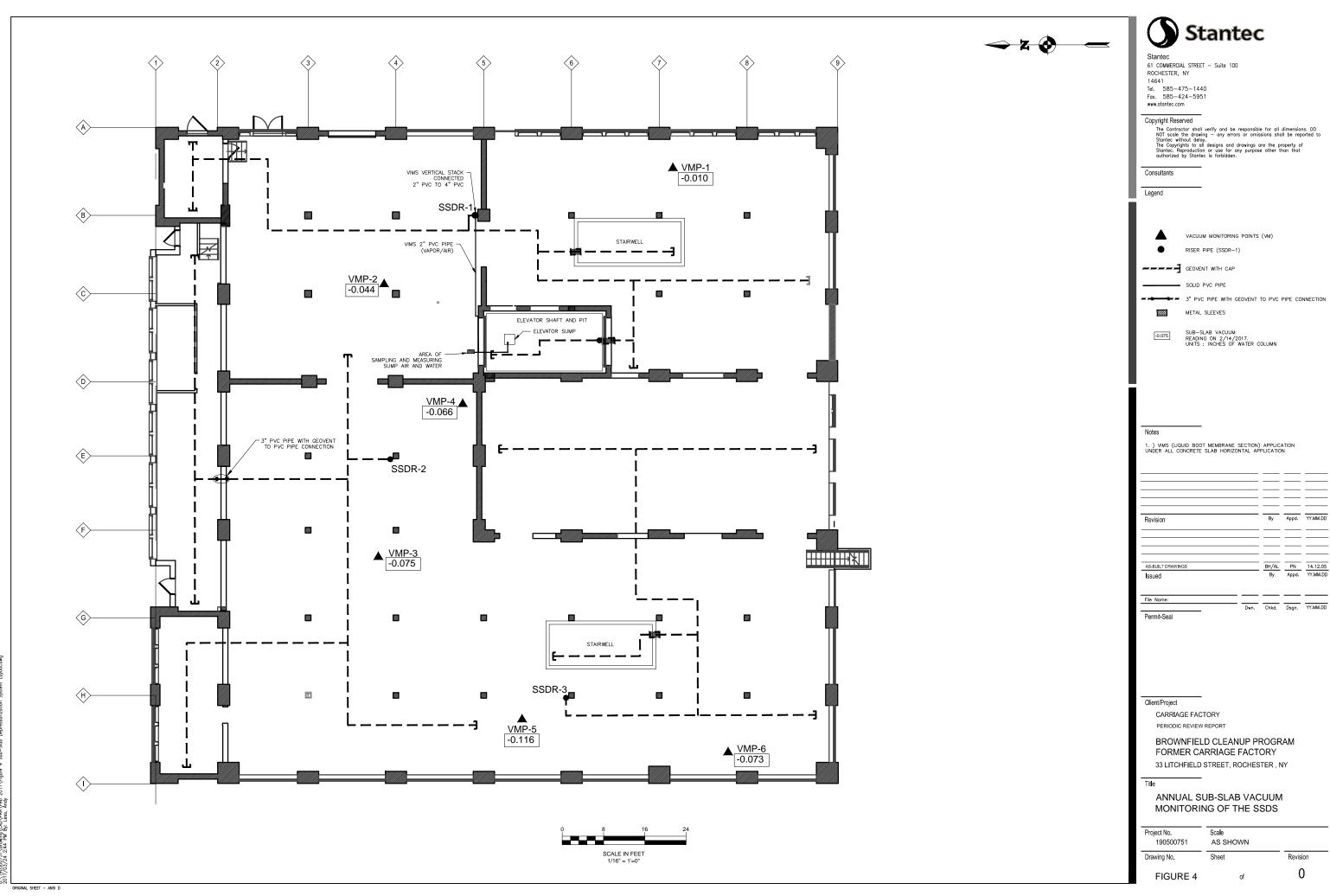




Figure 3
Summary of CVOC Degradation Over Time - All Wells
Former Carriage Factory

33 Litchfield Street, Rochester, NY

By Appd. YY.MM.DD

 BH/AL
 PN
 14.12.05

 By
 Appd.
 YY.MM.DD

Appendix A IC/EC Certification Forms

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site	в No.	C828184	Site Details	Box 1
Site	e Name Car	rrlage Factory		
City Cou	e Address: 3 y/Town: Roo unty: Monroe e Acreage: 1	•	Zip Code: 14608	
Rep	porting Perio	d: March 16, 2016 to M	arch 16, 2017	
				YES NO
1.	Is the inform	nation above correct?		X -
	If NO, inclu	de handwritten above or	on a separate sheet.	
2.		or all of the site property nendment during this Rep	been sold, subdivided, merged, or under porting Period?	rgone a
3.		een any change of use a RR 375-1.11(d))?	at the site during this Reporting Period	
4.		ederal, state, and/or loca property during this Rep	l permits (e.g., building, discharge) been porting Period?	issued
			s 2 thru 4, include documentation or e viously submitted with this certification	
5.	Is the site o	urrently undergoing deve	elopment?	
			30- UP 01482	Box 2
				YES NO
6.		nt site use consistent wit Residential, Commercial	h the use(s) listed below? , and Industrial	X -
7.	Are all ICs/	ECs in place and functio	ning as designed?	
	IF TH		QUESTION 6 OR 7 IS NO, sign and date E REST OF THIS FORM. Otherwise cor	
A C	Corrective M	easures Work Plan must	be submitted along with this form to a	ddress these issues.
Sig	nature of Ow	ner, Remedial Party or De	esignated Representative	Date

8. Has any new information revealed that assumptions made in the Qualitative Exposure Assessment regarding offsite contamination are no longer valid?

If you answered YES to question 8, include documentation or evidence that documentation has been previously submitted with this certification form.

9. Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five years)

If you answered NO to question 9, the Periodic Review Report must Include an updated Qualitative Exposure Assessment based on the new assumptions.

SITE NO. C828184

Box 3

Description of Institutional Controls

Parcel

<u>Owner</u>

Institutional Control

120.36-2-20

Carriage Factory Special Needs Apts, LP

Ground Water Use Restriction

Landuse Restriction
Site Management Plan

IC/EC Plan

Monitoring Plan O&M Plan

A Site Management Plan which includes a soil excavation plan and IC/EC plan.

An environmental easement that requires compliance with SMP; provides for periodic certification; limits site use to restricted residential, commercial or industrial uses; and restricts the use of groundwater as a potable source.

Box 4

Description of Engineering Controls

Parcel

Engineering Control

120.36-2-20

Groundwater Treatment System

Vapor Mitigation Cover System

Cover System: The sitewide cover system consists either of the on-site buildings, pavement, sidewalks or two feet of clean soil.

Sub-slab Depressurization system: Continued operation of the SSDS in the main occupied building is required.

Groundwater Remediation System: Continued monitoring and operation of the groundwater treatment system.

DOX O

	Periodic Review Report (PRR) Certification Statements		
1 ce	rtify by checking "YES" below that:		
	 a) the Periodic Review report and all attachments were prepared under the dreviewed by, the party making the certification; 	irection of,	and
	b) to the best of my knowledge and belief, the work and conclusions describe are in accordance with the requirements of the site remedial program, and ge engineering practices; and the information presented is accurate and competing	nerally acc	ertification epted
	engineering practices, and the information presented is accurate and compet	YES	NO
		X	
or E	is site has an IC/EC Plan (or equivalent as required in the Decision Document), Engineering control listed In Boxes 3 and/or 4, I certify by checking "YES" below owing statements are true:	for each Ir that all of t	nstitutional he
	(a) the Institutional Control and/or Engineering Control(s) employed at this si the date that the Control was put in-place, or was last approved by the Depar		nged since
	(b) nothing has occurred that would impair the ability of such Control, to prote the environment;	ect public h	ealth and
	 (c) access to the site will continue to be provided to the Department, to evaluate including access to evaluate the continued maintenance of this Control; 	ate the rer	nedy,
	(d) nothing has occurred that would constitute a violation or failure to comply Management Plan for this Control; and	with the S	ite
	 (e) if a financial assurance mechanism is required by the oversight documen mechanism remains valid and sufficient for its intended purpose established it 	t for the sit n the docu	e, the ment.
		YES	NO
		X	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below an DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continu		
A Co	rrective Measures Work Plan must be submitted along with this form to addres	s these is:	sues.
Signa	ture of Owner, Remedial Party or Designated Representative Date	Ð	

IC CERTIFICATIONS SITE NO. C828184

Box 6

SITE OWNER OR DESIGNATED REPRESENTATIVE SIGNATURE

I certify that all Information and statements in Boxes 1,2, and 3 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

James M.		at 1931 Buffalo Road, Roch	
print	name	print business address	
am certifying as	Owner		_(Owner or Remedial Party)
//	M Whalener, Remedial Part	Is Section of this form. CFo y, or Designated Representative	7/6/17 Date

IC/EC CERTIFICATIONS

Box 7

Professional Engineer Signature

I certify that all information in Boxes 4 and 5 are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law.

Peter Nielsen

at Stantec, 61 Commercial St, Rochester, NY

print name

print business address

am certifying as a Professional Engineer for the Remedial Party

(Owner or Remedial Party)

Signature of Professional Engineer, for the Remedial Party, Rendering Certification

Stamp

(Required for PE)

Date

Appendix B Field Monitoring Logs

Monthly monitoring – sub –slab depressurization system

date	name	Vacuum	inches wate	er column	Pilot lig	ght on		
		Fan-1	Fan-2	Fan-3	Fan-1	Fan-2	Fan-3	
1/13/16	MA	2,2	2.2	2.2	V	V		
2/1/16	SANTEC	2.3	2.3	2.0	V	V	C	
3/17/16	Marsh	2.3	2.3	2.1	1/	V	V	
4/7/16	MA	1.2	2.2	2.0	1	V		
1/3/16	MA	7.2	2.2	20	11	1		
6/7/16	MA	2.1	2.2	2.0	1/	rV	1/	
7/13/4	MA	2.1	2,2	3.0	1	V	V.	
8/2/16	MA	2.1	2.2	2.0	V	V		
3/10/16	Startec	2.1	2.2	2.0	V	V	V	
1/as/16	MA	2.1	2.2	2.0	V	V	4	
0/20/16	MA	2.1	2.2	2.0	1/	V		
11/2016	MA	۵.1	2.2	2.0	V	~	V	
13/1/16	MA	2.1	2.2	2.0	V	1		

2011

Monthly monitoring – sub –slab depressurization system

date	name	Vacuum	inches wat	er column	Pilot li	ght on		
		Fan-1	Fan-2	Fan-3	Fan-1	Fan-2	Fan-3	
1/11/12	MA	2.2	2.2	2.0	V	- ~	/	
2/13/17	MA	2.4	2.4	2.0	V		/	

Appendix C
Laboratory Analytical Reports

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-1-PS6

Lab Sample ID:161713-01Date Sampled:5/2/2016Matrix:GroundwaterDate Received:5/3/2016

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier Date Analy	<u>zed</u>
1,1,1-Trichloroethane	< 2.00	ug/L	5/4/2016	18:09
1,1,2,2-Tetrachloroethane	< 2.00	ug/L	5/4/2016	18:09
1,1,2-Trichloroethane	< 2.00	ug/L	5/4/2016	18:09
1,1-Dichloroethane	< 2.00	ug/L	5/4/2016	18:09
1,1-Dichloroethene	< 2.00	ug/L	5/4/2016	18:09
1,2,3-Trichlorobenzene	< 5.00	ug/L	5/4/2016	18:09
1,2,4-Trichlorobenzene	< 5.00	ug/L	5/4/2016	18:09
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L	5/4/2016	18:09
1,2-Dibromoethane	< 2.00	ug/L	5/4/2016	18:09
1,2-Dichlorobenzene	< 2.00	ug/L	5/4/2016	18:09
1,2-Dichloroethane	< 2.00	ug/L	5/4/2016	18:09
1,2-Dichloropropane	< 2.00	ug/L	5/4/2016	18:09
1,3-Dichlorobenzene	< 2.00	ug/L	5/4/2016	18:09
1,4-Dichlorobenzene	< 2.00	ug/L	5/4/2016	18:09
1,4-dioxane	< 20.0	ug/L	5/4/2016	18:09
2-Butanone	< 10.0	ug/L	5/4/2016	18:09
2-Hexanone	< 5.00	ug/L	5/4/2016	18:09
4-Methyl-2-pentanone	< 5.00	ug/L	5/4/2016	18:09
Acetone	< 10.0	ug/L	5/4/2016	18:09
Benzene	< 1.00	ug/L	5/4/2016	18:09
Bromochloromethane	< 5.00	ug/L	5/4/2016	18:09
Bromodichloromethane	< 2.00	ug/L	5/4/2016	18:09
Bromoform	< 5.00	ug/L	5/4/2016	18:09
Bromomethane	< 2.00	ug/L	5/4/2016	18:09
Carbon disulfide	< 2.00	ug/L	5/4/2016	18:09
Carbon Tetrachloride	< 2.00	ug/L	5/4/2016	18:09
Chlorobenzene	< 2.00	ug/L	5/4/2016	18:09

5/4/2016 18:09

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier:	LI-RW-1-PS6				
Lab Sample ID:	161713-01			Date Sampled:	5/2/2016
Matrix:	Groundwater			Date Received:	5/3/2016
Chloroethane		< 2.00	ug/L		5/4/2016 18:09
Chloroform		< 2.00	ug/L		5/4/2016 18:09
Chloromethane		< 2.00	ug/L		5/4/2016 18:09
cis-1,2-Dichloroethene		< 2.00	ug/L		5/4/2016 18:09
cis-1,3-Dichloropropene	9	< 2.00	ug/L		5/4/2016 18:09
Cyclohexane		< 10.0	ug/L		5/4/2016 18:09
Dibromochloromethane	!	< 2.00	ug/L		5/4/2016 18:09
Dichlorodifluoromethan	ie	< 2.00	ug/L		5/4/2016 18:09
Ethylbenzene		< 2.00	ug/L		5/4/2016 18:09
Freon 113		< 2.00	ug/L		5/4/2016 18:09
Isopropylbenzene		< 2.00	ug/L		5/4/2016 18:09
m,p-Xylene		< 2.00	ug/L		5/4/2016 18:09
Methyl acetate		< 2.00	ug/L		5/4/2016 18:09
Methyl tert-butyl Ether		< 2.00	ug/L		5/4/2016 18:09
Methylcyclohexane		< 2.00	ug/L		5/4/2016 18:09
Methylene chloride		< 5.00	ug/L		5/4/2016 18:09
o-Xylene		< 2.00	ug/L		5/4/2016 18:09
Styrene		< 5.00	ug/L		5/4/2016 18:09
Tetrachloroethene		< 2.00	ug/L		5/4/2016 18:09
Toluene		< 2.00	ug/L		5/4/2016 18:09
trans-1,2-Dichloroethen	ie	< 2.00	ug/L		5/4/2016 18:09
trans-1,3-Dichloroprope	ene	< 2.00	ug/L		5/4/2016 18:09
Trichloroethene		< 2.00	ug/L		5/4/2016 18:09
Trichlorofluoromethane	2	< 2.00	ug/L		5/4/2016 18:09

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

ug/L

2.75

Vinyl chloride

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-1-PS6

Lab Sample ID: 161713-01 **Date Sampled:** 5/2/2016

Matrix: Groundwater Date Received: 5/3/2016

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Anal	te Analyzed	
1,2-Dichloroethane-d4	105	81.1 - 122		5/4/2016	18:09	
4-Bromofluorobenzene	94.7	78.7 - 116		5/4/2016	18:09	
Pentafluorobenzene	104	88.6 - 112		5/4/2016	18:09	
Toluene-D8	100	88.9 - 110		5/4/2016	18:09	

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x32069.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-2-PS6

Lab Sample ID:161713-02Date Sampled:5/2/2016Matrix:GroundwaterDate Received:5/3/2016

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		5/4/2016 21:41
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		5/4/2016 21:41
1,1,2-Trichloroethane	< 2.00	ug/L		5/4/2016 21:41
1,1-Dichloroethane	< 2.00	ug/L		5/4/2016 21:41
1,1-Dichloroethene	< 2.00	ug/L		5/4/2016 21:41
1,2,3-Trichlorobenzene	< 5.00	ug/L		5/4/2016 21:41
1,2,4-Trichlorobenzene	< 5.00	ug/L		5/4/2016 21:41
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		5/4/2016 21:41
1,2-Dibromoethane	< 2.00	ug/L		5/4/2016 21:41
1,2-Dichlorobenzene	< 2.00	ug/L		5/4/2016 21:41
1,2-Dichloroethane	< 2.00	ug/L		5/4/2016 21:41
1,2-Dichloropropane	< 2.00	ug/L		5/4/2016 21:41
1,3-Dichlorobenzene	< 2.00	ug/L		5/4/2016 21:41
1,4-Dichlorobenzene	< 2.00	ug/L		5/4/2016 21:41
1,4-dioxane	< 20.0	ug/L		5/4/2016 21:41
2-Butanone	< 10.0	ug/L		5/4/2016 21:41
2-Hexanone	< 5.00	ug/L		5/4/2016 21:41
4-Methyl-2-pentanone	< 5.00	ug/L		5/4/2016 21:41
Acetone	< 10.0	ug/L		5/4/2016 21:41
Benzene	< 1.00	ug/L		5/4/2016 21:41
Bromochloromethane	< 5.00	ug/L		5/4/2016 21:41
Bromodichloromethane	< 2.00	ug/L		5/4/2016 21:41
Bromoform	< 5.00	ug/L		5/4/2016 21:41
Bromomethane	< 2.00	ug/L	M	5/4/2016 21:41
Carbon disulfide	< 2.00	ug/L		5/4/2016 21:41
Carbon Tetrachloride	< 2.00	ug/L		5/4/2016 21:41
Chlorobenzene	< 2.00	ug/L		5/4/2016 21:41

5/4/2016 21:41

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier:	LI-RW-2-PS6				
Lab Sample ID:	161713-02			Date Sampled:	5/2/2016
Matrix:	Groundwater			Date Received:	5/3/2016
Chloroethane		< 2.00	ug/L		5/4/2016 21:
Chloroform		< 2.00	ug/L		5/4/2016 21:
Chloromethane		< 2.00	ug/L		5/4/2016 21:
cis-1,2-Dichloroethene		< 2.00	ug/L		5/4/2016 21:
cis-1,3-Dichloropropene		< 2.00	ug/L		5/4/2016 21:
Cyclohexane		< 10.0	ug/L		5/4/2016 21:
Dibromochloromethane		< 2.00	ug/L		5/4/2016 21:
Dichlorodifluoromethan	е	< 2.00	ug/L		5/4/2016 21:
Ethylbenzene		< 2.00	ug/L		5/4/2016 21:
Freon 113		< 2.00	ug/L		5/4/2016 21:
Isopropylbenzene		< 2.00	ug/L		5/4/2016 21:
m,p-Xylene		< 2.00	ug/L		5/4/2016 21:
Methyl acetate		< 2.00	ug/L		5/4/2016 21:
Methyl tert-butyl Ether		< 2.00	ug/L		5/4/2016 21:
Methylcyclohexane		< 2.00	ug/L		5/4/2016 21:
Methylene chloride		< 5.00	ug/L		5/4/2016 21:
o-Xylene		< 2.00	ug/L		5/4/2016 21:
Styrene		< 5.00	ug/L		5/4/2016 21:
Tetrachloroethene		< 2.00	ug/L		5/4/2016 21:
Toluene		< 2.00	ug/L		5/4/2016 21:
trans-1,2-Dichloroethene	e	< 2.00	ug/L		5/4/2016 21:
trans-1,3-Dichloroprope	ne	< 2.00	ug/L		5/4/2016 21:
Trichloroethene		< 2.00	ug/L		5/4/2016 21:
Trichlorofluoromethane		< 2.00	ug/L		5/4/2016 21:

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

ug/L

< 2.00

Vinyl chloride

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-2-PS6

Lab Sample ID: 161713-02 **Date Sampled:** 5/2/2016

Matrix: Groundwater Date Received: 5/3/2016

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Anal	yzed
1,2-Dichloroethane-d4	102	81.1 - 122		5/4/2016	21:41
4-Bromofluorobenzene	91.3	78.7 - 116		5/4/2016	21:41
Pentafluorobenzene	101	88.6 - 112		5/4/2016	21:41
Toluene-D8	98.6	88.9 - 110		5/4/2016	21:41

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x32078.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-3-PS6

Lab Sample ID:161713-03Date Sampled:5/2/2016Matrix:GroundwaterDate Received:5/3/2016

Volatile Organics

Analyte	Result	<u>Units</u>	Qualifier Date Analyzed	
1,1,1-Trichloroethane	< 2.00	ug/L	5/4/2016 18:33	
1,1,2,2-Tetrachloroethane	< 2.00	ug/L	5/4/2016 18:33	
1,1,2-Trichloroethane	< 2.00	ug/L	5/4/2016 18:33	
1,1-Dichloroethane	< 2.00	ug/L	5/4/2016 18:33	
1,1-Dichloroethene	< 2.00	ug/L	5/4/2016 18:33	
1,2,3-Trichlorobenzene	< 5.00	ug/L	5/4/2016 18:33	
1,2,4-Trichlorobenzene	< 5.00	ug/L	5/4/2016 18:33	
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L	5/4/2016 18:33	
1,2-Dibromoethane	< 2.00	ug/L	5/4/2016 18:33	
1,2-Dichlorobenzene	< 2.00	ug/L	5/4/2016 18:33	
1,2-Dichloroethane	< 2.00	ug/L	5/4/2016 18:33	
1,2-Dichloropropane	< 2.00	ug/L	5/4/2016 18:33	
1,3-Dichlorobenzene	< 2.00	ug/L	5/4/2016 18:33	
1,4-Dichlorobenzene	< 2.00	ug/L	5/4/2016 18:33	
1,4-dioxane	< 20.0	ug/L	5/4/2016 18:33	
2-Butanone	< 10.0	ug/L	5/4/2016 18:33	
2-Hexanone	< 5.00	ug/L	5/4/2016 18:33	
4-Methyl-2-pentanone	< 5.00	ug/L	5/4/2016 18:33	
Acetone	< 10.0	ug/L	5/4/2016 18:33	
Benzene	< 1.00	ug/L	5/4/2016 18:33	
Bromochloromethane	< 5.00	ug/L	5/4/2016 18:33	
Bromodichloromethane	< 2.00	ug/L	5/4/2016 18:33	
Bromoform	< 5.00	ug/L	5/4/2016 18:33	
Bromomethane	< 2.00	ug/L	5/4/2016 18:33	
Carbon disulfide	< 2.00	ug/L	5/4/2016 18:33	
Carbon Tetrachloride	< 2.00	ug/L	5/4/2016 18:33	
Chlorobenzene	< 2.00	ug/L	5/4/2016 18:33	

Client: <u>Stantec</u>

Project Reference: Carriage Factory

		•			
Sample Identifier:	LI-RW-3-PS6				
Lab Sample ID:	161713-03			Date Sampled:	5/2/2016
Matrix:	Groundwater			Date Received:	5/3/2016
Chloroethane		< 2.00	ug/L		5/4/2016 18:33
Chloroform		< 2.00	ug/L		5/4/2016 18:33
Chloromethane		< 2.00	ug/L		5/4/2016 18:33
cis-1,2-Dichloroethene		< 2.00	ug/L		5/4/2016 18:33
cis-1,3-Dichloropropen	e	< 2.00	ug/L		5/4/2016 18:33
Cyclohexane		< 10.0	ug/L		5/4/2016 18:33
Dibromochloromethane	e	< 2.00	ug/L		5/4/2016 18:33
Dichlorodifluorometha	ne	< 2.00	ug/L		5/4/2016 18:33
Ethylbenzene		< 2.00	ug/L		5/4/2016 18:33
Freon 113		< 2.00	ug/L		5/4/2016 18:33
Isopropylbenzene		< 2.00	ug/L		5/4/2016 18:33
m,p-Xylene		< 2.00	ug/L		5/4/2016 18:33
Methyl acetate		< 2.00	ug/L		5/4/2016 18:33
Methyl tert-butyl Ether		1.78	ug/L	J	5/4/2016 18:33
Methylcyclohexane		< 2.00	ug/L		5/4/2016 18:33
Methylene chloride		< 5.00	ug/L		5/4/2016 18:33
o-Xylene		< 2.00	ug/L		5/4/2016 18:33
Styrene		< 5.00	ug/L		5/4/2016 18:33
Tetrachloroethene		< 2.00	ug/L		5/4/2016 18:33
Toluene		< 2.00	ug/L		5/4/2016 18:33
trans-1,2-Dichloroether	ne	1.32	ug/L	J	5/4/2016 18:33
trans-1,3-Dichloroprop	ene	< 2.00	ug/L		5/4/2016 18:33
Trichloroethene		< 2.00	ug/L		5/4/2016 18:33
Trichlorofluoromethan	е	< 2.00	ug/L		5/4/2016 18:33
Vinyl chloride		< 2.00	ug/L		5/4/2016 18:33

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-3-PS6

Lab Sample ID: 161713-03 **Date Sampled:** 5/2/2016

Matrix: Groundwater Date Received: 5/3/2016

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	iers Date Analy	
1,2-Dichloroethane-d4	102	81.1 - 122		5/4/2016	18:33
4-Bromofluorobenzene	92.2	78.7 - 116		5/4/2016	18:33
Pentafluorobenzene	104	88.6 - 112		5/4/2016	18:33
Toluene-D8	99.3	88.9 - 110		5/4/2016	18:33

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x32070.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-4-PS6

Lab Sample ID:161713-04Date Sampled:5/3/2016Matrix:GroundwaterDate Received:5/3/2016

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		5/4/2016 18:56
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		5/4/2016 18:56
1,1,2-Trichloroethane	< 2.00	ug/L		5/4/2016 18:56
1,1-Dichloroethane	< 2.00	ug/L		5/4/2016 18:56
1,1-Dichloroethene	< 2.00	ug/L		5/4/2016 18:56
1,2,3-Trichlorobenzene	< 5.00	ug/L		5/4/2016 18:56
1,2,4-Trichlorobenzene	< 5.00	ug/L		5/4/2016 18:56
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		5/4/2016 18:56
1,2-Dibromoethane	< 2.00	ug/L		5/4/2016 18:56
1,2-Dichlorobenzene	< 2.00	ug/L		5/4/2016 18:56
1,2-Dichloroethane	< 2.00	ug/L		5/4/2016 18:56
1,2-Dichloropropane	< 2.00	ug/L		5/4/2016 18:56
1,3-Dichlorobenzene	< 2.00	ug/L		5/4/2016 18:56
1,4-Dichlorobenzene	< 2.00	ug/L		5/4/2016 18:56
1,4-dioxane	< 20.0	ug/L		5/4/2016 18:56
2-Butanone	16.1	ug/L		5/4/2016 18:56
2-Hexanone	< 5.00	ug/L		5/4/2016 18:56
4-Methyl-2-pentanone	< 5.00	ug/L		5/4/2016 18:56
Acetone	9.13	ug/L	J	5/4/2016 18:56
Benzene	< 1.00	ug/L		5/4/2016 18:56
Bromochloromethane	< 5.00	ug/L		5/4/2016 18:56
Bromodichloromethane	< 2.00	ug/L		5/4/2016 18:56
Bromoform	< 5.00	ug/L		5/4/2016 18:56
Bromomethane	< 2.00	ug/L		5/4/2016 18:56
Carbon disulfide	< 2.00	ug/L		5/4/2016 18:56
Carbon Tetrachloride	< 2.00	ug/L		5/4/2016 18:56
Chlorobenzene	< 2.00	ug/L		5/4/2016 18:56

J

5/4/2016 18:56

Client: <u>Stantec</u>

Project Reference: Carriage Factory

		,				
Sample Identifier:	LI-RW-4-PS6					
Lab Sample ID:	161713-04			Date Sampled:	5/3/2016	
Matrix:	Groundwater			Date Received:	5/3/2016	
Chloroethane		< 2.00	ug/L		5/4/2016	18:56
Chloroform		< 2.00	ug/L		5/4/2016	18:56
Chloromethane		< 2.00	ug/L		5/4/2016	18:56
cis-1,2-Dichloroethene		< 2.00	ug/L		5/4/2016	18:56
cis-1,3-Dichloropropene	e	< 2.00	ug/L		5/4/2016	18:56
Cyclohexane		< 10.0	ug/L		5/4/2016	18:56
Dibromochloromethane	2	< 2.00	ug/L		5/4/2016	18:56
Dichlorodifluoromethan	ne	< 2.00	ug/L		5/4/2016	18:56
Ethylbenzene		< 2.00	ug/L		5/4/2016	18:56
Freon 113		< 2.00	ug/L		5/4/2016	18:56
Isopropylbenzene		< 2.00	ug/L		5/4/2016	18:56
m,p-Xylene		< 2.00	ug/L		5/4/2016	18:56
Methyl acetate		< 2.00	ug/L		5/4/2016	18:56
Methyl tert-butyl Ether		< 2.00	ug/L		5/4/2016	18:56
Methylcyclohexane		< 2.00	ug/L		5/4/2016	18:56
Methylene chloride		< 5.00	ug/L		5/4/2016	18:56
o-Xylene		< 2.00	ug/L		5/4/2016	18:56
Styrene		< 5.00	ug/L		5/4/2016	18:56
Tetrachloroethene		< 2.00	ug/L		5/4/2016	18:56
Toluene		< 2.00	ug/L		5/4/2016	18:56
trans-1,2-Dichloroethen	ie	< 2.00	ug/L		5/4/2016	18:56
trans-1,3-Dichloroprope	ene	< 2.00	ug/L		5/4/2016	18:56
Trichloroethene		< 2.00	ug/L		5/4/2016	18:56
Trichlorofluoromethane	e	< 2.00	ug/L		5/4/2016	18:56

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

ug/L

1.94

Vinyl chloride

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-4-PS6

Lab Sample ID:161713-04Date Sampled:5/3/2016Matrix:GroundwaterDate Received:5/3/2016

Surrogate Percent Recovery Limits Outliers Date Analyzed 1,2-Dichloroethane-d4 102 81.1 - 122 5/4/2016 18:56 4-Bromofluorobenzene 93.7 78.7 - 116 18:56 5/4/2016 Pentafluorobenzene 103 88.6 - 112 5/4/2016 18:56 Toluene-D8 101 88.9 - 110 18:56 5/4/2016

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x32071.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-5-PS6

Lab Sample ID:161713-05Date Sampled:5/3/2016Matrix:GroundwaterDate Received:5/3/2016

Volatile Organics

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		5/4/2016 19:20
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		5/4/2016 19:20
1,1,2-Trichloroethane	< 2.00	ug/L		5/4/2016 19:20
1,1-Dichloroethane	< 2.00	ug/L		5/4/2016 19:20
1,1-Dichloroethene	< 2.00	ug/L		5/4/2016 19:20
1,2,3-Trichlorobenzene	< 5.00	ug/L		5/4/2016 19:20
1,2,4-Trichlorobenzene	< 5.00	ug/L		5/4/2016 19:20
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		5/4/2016 19:20
1,2-Dibromoethane	< 2.00	ug/L		5/4/2016 19:20
1,2-Dichlorobenzene	< 2.00	ug/L		5/4/2016 19:20
1,2-Dichloroethane	< 2.00	ug/L		5/4/2016 19:20
1,2-Dichloropropane	< 2.00	ug/L		5/4/2016 19:20
1,3-Dichlorobenzene	< 2.00	ug/L		5/4/2016 19:20
1,4-Dichlorobenzene	< 2.00	ug/L		5/4/2016 19:20
1,4-dioxane	< 20.0	ug/L		5/4/2016 19:20
2-Butanone	< 10.0	ug/L		5/4/2016 19:20
2-Hexanone	< 5.00	ug/L		5/4/2016 19:20
4-Methyl-2-pentanone	< 5.00	ug/L		5/4/2016 19:20
Acetone	< 10.0	ug/L		5/4/2016 19:20
Benzene	< 1.00	ug/L		5/4/2016 19:20
Bromochloromethane	< 5.00	ug/L		5/4/2016 19:20
Bromodichloromethane	< 2.00	ug/L		5/4/2016 19:20
Bromoform	< 5.00	ug/L		5/4/2016 19:20
Bromomethane	< 2.00	ug/L		5/4/2016 19:20
Carbon disulfide	< 2.00	ug/L		5/4/2016 19:20
Carbon Tetrachloride	< 2.00	ug/L		5/4/2016 19:20
Chlorobenzene	< 2.00	ug/L		5/4/2016 19:20

Client: <u>Stantec</u>

Project Reference: Carriage Factory

- <u>-</u>					
Sample Identifier:	LI-RW-5-PS6				
Lab Sample ID:	161713-05			Date Sampled:	5/3/2016
Matrix:	Groundwater			Date Received:	5/3/2016
Chloroethane		< 2.00	ug/L		5/4/2016 19:20
Chloroform		< 2.00	ug/L		5/4/2016 19:20
Chloromethane		< 2.00	ug/L		5/4/2016 19:20
cis-1,2-Dichloroethene		< 2.00	ug/L		5/4/2016 19:20
cis-1,3-Dichloropropen	e	< 2.00	ug/L		5/4/2016 19:20
Cyclohexane		< 10.0	ug/L		5/4/2016 19:20
Dibromochloromethane	9	< 2.00	ug/L		5/4/2016 19:20
Dichlorodifluoromethan	ne	< 2.00	ug/L		5/4/2016 19:20
Ethylbenzene		< 2.00	ug/L		5/4/2016 19:20
Freon 113		< 2.00	ug/L		5/4/2016 19:20
Isopropylbenzene		< 2.00	ug/L		5/4/2016 19:20
m,p-Xylene		< 2.00	ug/L		5/4/2016 19:20
Methyl acetate		< 2.00	ug/L		5/4/2016 19:20
Methyl tert-butyl Ether		< 2.00	ug/L		5/4/2016 19:20
Methylcyclohexane		< 2.00	ug/L		5/4/2016 19:20
Methylene chloride		< 5.00	ug/L		5/4/2016 19:20
o-Xylene		< 2.00	ug/L		5/4/2016 19:20
Styrene		< 5.00	ug/L		5/4/2016 19:20
Tetrachloroethene		< 2.00	ug/L		5/4/2016 19:20
Toluene		< 2.00	ug/L		5/4/2016 19:20
trans-1,2-Dichloroether	ne	< 2.00	ug/L		5/4/2016 19:20
trans-1,3-Dichloroprop	ene	< 2.00	ug/L		5/4/2016 19:20
Trichloroethene		< 2.00	ug/L		5/4/2016 19:20
Trichlorofluoromethane	e	< 2.00	ug/L		5/4/2016 19:20
Vinyl chloride		< 2.00	ug/L		5/4/2016 19:20

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-5-PS6

Lab Sample ID: 161713-05 **Date Sampled:** 5/3/2016

Matrix:GroundwaterDate Received: 5/3/2016

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Anal	yzed
1,2-Dichloroethane-d4	103	81.1 - 122		5/4/2016	19:20
4-Bromofluorobenzene	94.0	78.7 - 116		5/4/2016	19:20
Pentafluorobenzene	102	88.6 - 112		5/4/2016	19:20
Toluene-D8	100	88.9 - 110		5/4/2016	19:20

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x32072.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-6-PS6

Lab Sample ID:161713-06Date Sampled:5/3/2016Matrix:GroundwaterDate Received:5/3/2016

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 20.0	ug/L		5/4/2016 17:46
1,1,2,2-Tetrachloroethane	< 20.0	ug/L		5/4/2016 17:46
1,1,2-Trichloroethane	< 20.0	ug/L		5/4/2016 17:46
1,1-Dichloroethane	< 20.0	ug/L		5/4/2016 17:46
1,1-Dichloroethene	< 20.0	ug/L		5/4/2016 17:46
1,2,3-Trichlorobenzene	< 50.0	ug/L		5/4/2016 17:46
1,2,4-Trichlorobenzene	< 50.0	ug/L		5/4/2016 17:46
1,2-Dibromo-3-Chloropropane	< 100	ug/L		5/4/2016 17:46
1,2-Dibromoethane	< 20.0	ug/L		5/4/2016 17:46
1,2-Dichlorobenzene	< 20.0	ug/L		5/4/2016 17:46
1,2-Dichloroethane	< 20.0	ug/L		5/4/2016 17:46
1,2-Dichloropropane	< 20.0	ug/L		5/4/2016 17:46
1,3-Dichlorobenzene	< 20.0	ug/L		5/4/2016 17:46
1,4-Dichlorobenzene	< 20.0	ug/L		5/4/2016 17:46
1,4-dioxane	< 200	ug/L		5/4/2016 17:46
2-Butanone	< 100	ug/L		5/4/2016 17:46
2-Hexanone	< 50.0	ug/L		5/4/2016 17:46
4-Methyl-2-pentanone	< 50.0	ug/L		5/4/2016 17:46
Acetone	< 100	ug/L		5/4/2016 17:46
Benzene	< 10.0	ug/L		5/4/2016 17:46
Bromochloromethane	< 50.0	ug/L		5/4/2016 17:46
Bromodichloromethane	< 20.0	ug/L		5/4/2016 17:46
Bromoform	< 50.0	ug/L		5/4/2016 17:46
Bromomethane	< 20.0	ug/L		5/4/2016 17:46
Carbon disulfide	< 20.0	ug/L		5/4/2016 17:46
Carbon Tetrachloride	< 20.0	ug/L		5/4/2016 17:46
Chlorobenzene	< 20.0	ug/L		5/4/2016 17:46

5/4/2016 17:46

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier:	LI-RW-6-PS6					
Lab Sample ID:	161713-06			Date Sampled:	5/3/2016	
Matrix:	Groundwater			Date Received:	5/3/2016	
Chloroethane		< 20.0	ug/L		5/4/2016 17:46	
Chloroform		< 20.0	ug/L		5/4/2016 17:46	
Chloromethane		< 20.0	ug/L		5/4/2016 17:46	
cis-1,2-Dichloroethene		1910	ug/L		5/4/2016 17:46	
cis-1,3-Dichloropropen	e	< 20.0	ug/L		5/4/2016 17:46	
Cyclohexane		< 100	ug/L		5/4/2016 17:46	
Dibromochloromethan	е	< 20.0	ug/L		5/4/2016 17:46	
Dichlorodifluorometha	ne	< 20.0	ug/L		5/4/2016 17:46	
Ethylbenzene		< 20.0	ug/L		5/4/2016 17:46	
Freon 113		< 20.0	ug/L		5/4/2016 17:46	
Isopropylbenzene		< 20.0	ug/L		5/4/2016 17:46	
m,p-Xylene		< 20.0	ug/L		5/4/2016 17:46	
Methyl acetate		< 20.0	ug/L		5/4/2016 17:46	
Methyl tert-butyl Ether		< 20.0	ug/L		5/4/2016 17:46	
Methylcyclohexane		< 20.0	ug/L		5/4/2016 17:46	
Methylene chloride		< 50.0	ug/L		5/4/2016 17:46	
o-Xylene		< 20.0	ug/L		5/4/2016 17:46	
Styrene		< 50.0	ug/L		5/4/2016 17:46	
Tetrachloroethene		< 20.0	ug/L		5/4/2016 17:46	
Toluene		< 20.0	ug/L		5/4/2016 17:46	
trans-1,2-Dichloroether	ne	18.0	ug/L	J	5/4/2016 17:46	
trans-1,3-Dichloroprop	ene	< 20.0	ug/L		5/4/2016 17:46	
Trichloroethene		< 20.0	ug/L		5/4/2016 17:46	
Trichlorofluoromethan	e	< 20.0	ug/L		5/4/2016 17:46	

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

ug/L

624

Vinyl chloride

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-6-PS6

Lab Sample ID:161713-06Date Sampled:5/3/2016Matrix:GroundwaterDate Received:5/3/2016

Surrogate Percent Recovery Limits Outliers Date Analyzed 1,2-Dichloroethane-d4 102 81.1 - 122 5/4/2016 17:46 4-Bromofluorobenzene 96.2 78.7 - 116 17:46 5/4/2016 Pentafluorobenzene 106 88.6 - 112 5/4/2016 17:46 Toluene-D8 101 88.9 - 110 5/4/2016 17:46

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x32068.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-7-PS6

Lab Sample ID:161713-07Date Sampled:5/3/2016Matrix:GroundwaterDate Received:5/3/2016

Volatile Organics

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		5/4/2016 19:43
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		5/4/2016 19:43
1,1,2-Trichloroethane	< 2.00	ug/L		5/4/2016 19:43
1,1-Dichloroethane	< 2.00	ug/L		5/4/2016 19:43
1,1-Dichloroethene	< 2.00	ug/L		5/4/2016 19:43
1,2,3-Trichlorobenzene	< 5.00	ug/L		5/4/2016 19:43
1,2,4-Trichlorobenzene	< 5.00	ug/L		5/4/2016 19:43
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		5/4/2016 19:43
1,2-Dibromoethane	< 2.00	ug/L		5/4/2016 19:43
1,2-Dichlorobenzene	< 2.00	ug/L		5/4/2016 19:43
1,2-Dichloroethane	< 2.00	ug/L		5/4/2016 19:43
1,2-Dichloropropane	< 2.00	ug/L		5/4/2016 19:43
1,3-Dichlorobenzene	< 2.00	ug/L		5/4/2016 19:43
1,4-Dichlorobenzene	< 2.00	ug/L		5/4/2016 19:43
1,4-dioxane	< 20.0	ug/L		5/4/2016 19:43
2-Butanone	< 10.0	ug/L		5/4/2016 19:43
2-Hexanone	< 5.00	ug/L		5/4/2016 19:43
4-Methyl-2-pentanone	< 5.00	ug/L		5/4/2016 19:43
Acetone	< 10.0	ug/L		5/4/2016 19:43
Benzene	< 1.00	ug/L		5/4/2016 19:43
Bromochloromethane	< 5.00	ug/L		5/4/2016 19:43
Bromodichloromethane	< 2.00	ug/L		5/4/2016 19:43
Bromoform	< 5.00	ug/L		5/4/2016 19:43
Bromomethane	< 2.00	ug/L		5/4/2016 19:43
Carbon disulfide	< 2.00	ug/L		5/4/2016 19:43
Carbon Tetrachloride	< 2.00	ug/L		5/4/2016 19:43
Chlorobenzene	< 2.00	ug/L		5/4/2016 19:43

Client: <u>Stantec</u>

Project Reference: Carriage Factory

-						
Sample Identifier:	LI-RW-7-PS6					
Lab Sample ID:	161713-07			Date Sampled:	5/3/2016	
Matrix:	Groundwater			Date Received:	5/3/2016	
Chloroethane		< 2.00	ug/L		5/4/2016	19:43
Chloroform		< 2.00	ug/L		5/4/2016	19:43
Chloromethane		< 2.00	ug/L		5/4/2016	19:43
cis-1,2-Dichloroethene		< 2.00	ug/L		5/4/2016	19:43
cis-1,3-Dichloropropen	e	< 2.00	ug/L		5/4/2016	19:43
Cyclohexane		< 10.0	ug/L		5/4/2016	19:43
Dibromochloromethane	e	< 2.00	ug/L		5/4/2016	19:43
Dichlorodifluoromethan	ne	< 2.00	ug/L		5/4/2016	19:43
Ethylbenzene		< 2.00	ug/L		5/4/2016	19:43
Freon 113		< 2.00	ug/L		5/4/2016	19:43
Isopropylbenzene		< 2.00	ug/L		5/4/2016	19:43
m,p-Xylene		< 2.00	ug/L		5/4/2016	19:43
Methyl acetate		< 2.00	ug/L		5/4/2016	19:43
Methyl tert-butyl Ether		1.41	ug/L	J	5/4/2016	19:43
Methylcyclohexane		< 2.00	ug/L		5/4/2016	19:43
Methylene chloride		< 5.00	ug/L		5/4/2016	19:43
o-Xylene		< 2.00	ug/L		5/4/2016	19:43
Styrene		< 5.00	ug/L		5/4/2016	19:43
Tetrachloroethene		< 2.00	ug/L		5/4/2016	19:43
Toluene		< 2.00	ug/L		5/4/2016	19:43
trans-1,2-Dichloroether	ne	< 2.00	ug/L		5/4/2016	19:43
trans-1,3-Dichloroprop	ene	< 2.00	ug/L		5/4/2016	19:43
Trichloroethene		< 2.00	ug/L		5/4/2016	19:43
Trichlorofluoromethane	e	< 2.00	ug/L		5/4/2016	19:43
Vinyl chloride		< 2.00	ug/L		5/4/2016	19:43

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-7-PS6

Lab Sample ID: 161713-07 **Date Sampled:** 5/3/2016

Matrix: Groundwater Date Received: 5/3/2016
Surrogate Percent Recovery Limits Outliers Date Analyz

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyzed	
1,2-Dichloroethane-d4	104	81.1 - 122		5/4/2016	19:43
4-Bromofluorobenzene	91.0	78.7 - 116		5/4/2016	19:43
Pentafluorobenzene	103	88.6 - 112		5/4/2016	19:43
Toluene-D8	99.5	88.9 - 110		5/4/2016	19:43

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x32073.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-9-PS6

Lab Sample ID:161713-08Date Sampled:5/2/2016Matrix:GroundwaterDate Received:5/3/2016

Volatile Organics

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		5/4/2016 20:07
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		5/4/2016 20:07
1,1,2-Trichloroethane	< 2.00	ug/L		5/4/2016 20:07
1,1-Dichloroethane	< 2.00	ug/L		5/4/2016 20:07
1,1-Dichloroethene	< 2.00	ug/L		5/4/2016 20:07
1,2,3-Trichlorobenzene	< 5.00	ug/L		5/4/2016 20:07
1,2,4-Trichlorobenzene	< 5.00	ug/L		5/4/2016 20:07
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		5/4/2016 20:07
1,2-Dibromoethane	< 2.00	ug/L		5/4/2016 20:07
1,2-Dichlorobenzene	< 2.00	ug/L		5/4/2016 20:07
1,2-Dichloroethane	< 2.00	ug/L		5/4/2016 20:07
1,2-Dichloropropane	< 2.00	ug/L		5/4/2016 20:07
1,3-Dichlorobenzene	< 2.00	ug/L		5/4/2016 20:07
1,4-Dichlorobenzene	< 2.00	ug/L		5/4/2016 20:07
1,4-dioxane	< 20.0	ug/L		5/4/2016 20:07
2-Butanone	< 10.0	ug/L		5/4/2016 20:07
2-Hexanone	< 5.00	ug/L		5/4/2016 20:07
4-Methyl-2-pentanone	< 5.00	ug/L		5/4/2016 20:07
Acetone	< 10.0	ug/L		5/4/2016 20:07
Benzene	< 1.00	ug/L		5/4/2016 20:07
Bromochloromethane	< 5.00	ug/L		5/4/2016 20:07
Bromodichloromethane	< 2.00	ug/L		5/4/2016 20:07
Bromoform	< 5.00	ug/L		5/4/2016 20:07
Bromomethane	< 2.00	ug/L		5/4/2016 20:07
Carbon disulfide	< 2.00	ug/L		5/4/2016 20:07
Carbon Tetrachloride	< 2.00	ug/L		5/4/2016 20:07
Chlorobenzene	< 2.00	ug/L		5/4/2016 20:07

5/4/2016 20:07

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier:	LI-RW-9-PS6				
Lab Sample ID:	161713-08			Date Sampled:	5/2/2016
Matrix:	Groundwater			Date Received:	5/3/2016
Chloroethane		< 2.00	ug/L		5/4/2016 20
Chloroform		< 2.00	ug/L		5/4/2016 20
Chloromethane		< 2.00	ug/L		5/4/2016 20
cis-1,2-Dichloroethene		< 2.00	ug/L		5/4/2016 20
cis-1,3-Dichloropropene		< 2.00	ug/L		5/4/2016 20
Cyclohexane		< 10.0	ug/L		5/4/2016 20
Dibromochloromethane		< 2.00	ug/L		5/4/2016 20
Dichlorodifluoromethan	е	< 2.00	ug/L		5/4/2016 20
Ethylbenzene		< 2.00	ug/L		5/4/2016 20
Freon 113		< 2.00	ug/L		5/4/2016 20
Isopropylbenzene		< 2.00	ug/L		5/4/2016 20
m,p-Xylene		< 2.00	ug/L		5/4/2016 20
Methyl acetate		< 2.00	ug/L		5/4/2016 20
Methyl tert-butyl Ether		< 2.00	ug/L		5/4/2016 20
Methylcyclohexane		< 2.00	ug/L		5/4/2016 20
Methylene chloride		< 5.00	ug/L		5/4/2016 20
o-Xylene		< 2.00	ug/L		5/4/2016 20
Styrene		< 5.00	ug/L		5/4/2016 20
Tetrachloroethene		6.51	ug/L		5/4/2016 20
Toluene		< 2.00	ug/L		5/4/2016 20
trans-1,2-Dichloroethene	j	< 2.00	ug/L		5/4/2016 20
trans-1,3-Dichloroprope	ne	< 2.00	ug/L		5/4/2016 20
Trichloroethene		< 2.00	ug/L		5/4/2016 20
Trichlorofluoromethane		< 2.00	ug/L		5/4/2016 20

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

ug/L

< 2.00

Vinyl chloride

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-9-PS6

Lab Sample ID: 161713-08 **Date Sampled:** 5/2/2016

Matrix: Groundwater Date Received: 5/3/2016

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Anal	yzed
1,2-Dichloroethane-d4	101	81.1 - 122		5/4/2016	20:07
4-Bromofluorobenzene	92.2	78.7 - 116		5/4/2016	20:07
Pentafluorobenzene	102	88.6 - 112		5/4/2016	20:07
Toluene-D8	101	88.9 - 110		5/4/2016	20:07

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x32074.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-12-PS6

Lab Sample ID:161713-09Date Sampled:5/3/2016Matrix:GroundwaterDate Received:5/3/2016

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L	5/4/2016 20:30
1,1,2,2-Tetrachloroethane	< 2.00	ug/L	5/4/2016 20:30
1,1,2-Trichloroethane	< 2.00	ug/L	5/4/2016 20:30
1,1-Dichloroethane	< 2.00	ug/L	5/4/2016 20:30
1,1-Dichloroethene	< 2.00	ug/L	5/4/2016 20:30
1,2,3-Trichlorobenzene	< 5.00	ug/L	5/4/2016 20:30
1,2,4-Trichlorobenzene	< 5.00	ug/L	5/4/2016 20:30
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L	5/4/2016 20:30
1,2-Dibromoethane	< 2.00	ug/L	5/4/2016 20:30
1,2-Dichlorobenzene	< 2.00	ug/L	5/4/2016 20:30
1,2-Dichloroethane	< 2.00	ug/L	5/4/2016 20:30
1,2-Dichloropropane	< 2.00	ug/L	5/4/2016 20:30
1,3-Dichlorobenzene	< 2.00	ug/L	5/4/2016 20:30
1,4-Dichlorobenzene	< 2.00	ug/L	5/4/2016 20:30
1,4-dioxane	< 20.0	ug/L	5/4/2016 20:30
2-Butanone	< 10.0	ug/L	5/4/2016 20:30
2-Hexanone	< 5.00	ug/L	5/4/2016 20:30
4-Methyl-2-pentanone	< 5.00	ug/L	5/4/2016 20:30
Acetone	< 10.0	ug/L	5/4/2016 20:30
Benzene	< 1.00	ug/L	5/4/2016 20:30
Bromochloromethane	< 5.00	ug/L	5/4/2016 20:30
Bromodichloromethane	< 2.00	ug/L	5/4/2016 20:30
Bromoform	< 5.00	ug/L	5/4/2016 20:30
Bromomethane	< 2.00	ug/L	5/4/2016 20:30
Carbon disulfide	< 2.00	ug/L	5/4/2016 20:30
Carbon Tetrachloride	< 2.00	ug/L	5/4/2016 20:30
Chlorobenzene	< 2.00	ug/L	5/4/2016 20:30

5/4/2016 20:30

5/4/2016 20:30

5/4/2016 20:30

5/4/2016 20:30

5/4/2016 20:30

5/4/2016 20:30

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier:	LI-RW-12-PS6					
Lab Sample ID:	161713-09			Date Sampled:	5/3/2016	
Matrix:	Groundwater			Date Received:	5/3/2016	
Chloroethane		< 2.00	ug/L		5/4/2016 20):30
Chloroform		< 2.00	ug/L		5/4/2016 20	0:30
Chloromethane		< 2.00	ug/L		5/4/2016 20	0:30
cis-1,2-Dichloroethene	•	2.44	ug/L		5/4/2016 20	0:30
cis-1,3-Dichloroproper	ne	< 2.00	ug/L		5/4/2016 20	0:30
Cyclohexane		< 10.0	ug/L		5/4/2016 20	0:30
Dibromochloromethan	ie	< 2.00	ug/L		5/4/2016 20	0:30
Dichlorodifluorometha	ine	< 2.00	ug/L		5/4/2016 20	0:30
Ethylbenzene		< 2.00	ug/L		5/4/2016 20	0:30
Freon 113		< 2.00	ug/L		5/4/2016 20	0:30
Isopropylbenzene		< 2.00	ug/L		5/4/2016 20	0:30
m,p-Xylene		< 2.00	ug/L		5/4/2016 20	0:30
Methyl acetate		< 2.00	ug/L		5/4/2016 20	0:30
Methyl tert-butyl Ether	r	< 2.00	ug/L		5/4/2016 20	0:30
Methylcyclohexane		< 2.00	ug/L		5/4/2016 20	0:30
Methylene chloride		< 5.00	ug/L		5/4/2016 20	0:30
o-Xylene		< 2.00	ug/L		5/4/2016 20	0:30
Styrene		< 5.00	ug/L		5/4/2016 20	0:30
Tetrachloroethene		1.68	ug/L	J	5/4/2016 20	0:30

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

< 2.00

< 2.00

< 2.00

2.51

< 2.00

< 2.00

Toluene

trans-1,2-Dichloroethene

Trichlorofluoromethane

Trichloroethene

Vinyl chloride

trans-1,3-Dichloropropene

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-12-PS6

Lab Sample ID:161713-09Date Sampled:5/3/2016Matrix:GroundwaterDate Received:5/3/2016

Surrogate	Percent Recovery	Limits	Outliers	Date Anal	vzed
Surrogate	<u>r ercent Recovery</u>	LIIIILS	<u>oumers</u>	Date Allai	<u>yzeu</u>
1,2-Dichloroethane-d4	107	81.1 - 122		5/4/2016	20:30
4-Bromofluorobenzene	92.7	78.7 - 116		5/4/2016	20:30
Pentafluorobenzene	101	88.6 - 112		5/4/2016	20:30
Toluene-D8	100	88.9 - 110		5/4/2016	20:30

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x32075.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-B102-MW-PS6

Lab Sample ID:161713-10Date Sampled:5/3/2016Matrix:GroundwaterDate Received:5/3/2016

Volatile Organics

Analyte	Result	<u>Units</u>	Qualifier Date Analyzed	
1,1,1-Trichloroethane	< 2.00	ug/L	5/4/2016 20:54	
1,1,2,2-Tetrachloroethane	< 2.00	ug/L	5/4/2016 20:54	
1,1,2-Trichloroethane	< 2.00	ug/L	5/4/2016 20:54	
1,1-Dichloroethane	< 2.00	ug/L	5/4/2016 20:54	
1,1-Dichloroethene	< 2.00	ug/L	5/4/2016 20:54	
1,2,3-Trichlorobenzene	< 5.00	ug/L	5/4/2016 20:54	
1,2,4-Trichlorobenzene	< 5.00	ug/L	5/4/2016 20:54	
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L	5/4/2016 20:54	
1,2-Dibromoethane	< 2.00	ug/L	5/4/2016 20:54	
1,2-Dichlorobenzene	< 2.00	ug/L	5/4/2016 20:54	
1,2-Dichloroethane	< 2.00	ug/L	5/4/2016 20:54	
1,2-Dichloropropane	< 2.00	ug/L	5/4/2016 20:54	
1,3-Dichlorobenzene	< 2.00	ug/L	5/4/2016 20:54	
1,4-Dichlorobenzene	< 2.00	ug/L	5/4/2016 20:54	
1,4-dioxane	< 20.0	ug/L	5/4/2016 20:54	
2-Butanone	< 10.0	ug/L	5/4/2016 20:54	
2-Hexanone	< 5.00	ug/L	5/4/2016 20:54	
4-Methyl-2-pentanone	< 5.00	ug/L	5/4/2016 20:54	
Acetone	< 10.0	ug/L	5/4/2016 20:54	
Benzene	< 1.00	ug/L	5/4/2016 20:54	
Bromochloromethane	< 5.00	ug/L	5/4/2016 20:54	
Bromodichloromethane	< 2.00	ug/L	5/4/2016 20:54	
Bromoform	< 5.00	ug/L	5/4/2016 20:54	
Bromomethane	< 2.00	ug/L	5/4/2016 20:54	
Carbon disulfide	< 2.00	ug/L	5/4/2016 20:54	
Carbon Tetrachloride	< 2.00	ug/L	5/4/2016 20:54	
Chlorobenzene	< 2.00	ug/L	5/4/2016 20:54	

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier:	LI-B102-MW-PS6		
Lab Sample ID:	161713-10	Date Sampled:	5/3/2016
36	0 1 .	D . D . 1	E /0 /004 6

Matrix:	Groundwater		Date Received:	5/3/2016
Chloroethane	< 2.00	ug/L		5/4/2016 20:54
Chloroform	< 2.00	ug/L		5/4/2016 20:54
Chloromethane	< 2.00	ug/L		5/4/2016 20:54
cis-1,2-Dichloroethen	e < 2.00	ug/L		5/4/2016 20:54
cis-1,3-Dichloroprope	ene < 2.00	ug/L		5/4/2016 20:54
Cyclohexane	< 10.0	ug/L		5/4/2016 20:54
Dibromochlorometha	ne < 2.00	ug/L		5/4/2016 20:54
Dichlorodifluorometh	ane < 2.00	ug/L		5/4/2016 20:54
Ethylbenzene	< 2.00	ug/L		5/4/2016 20:54
Freon 113	< 2.00	ug/L		5/4/2016 20:54
Isopropylbenzene	< 2.00	ug/L		5/4/2016 20:54
m,p-Xylene	< 2.00	ug/L		5/4/2016 20:54
Methyl acetate	< 2.00	ug/L		5/4/2016 20:54
Methyl tert-butyl Ethe	er < 2.00	ug/L		5/4/2016 20:54
Methylcyclohexane	< 2.00	ug/L		5/4/2016 20:54
Methylene chloride	< 5.00	ug/L		5/4/2016 20:54
o-Xylene	< 2.00	ug/L		5/4/2016 20:54
Styrene	< 5.00	ug/L		5/4/2016 20:54
Tetrachloroethene	< 2.00	ug/L		5/4/2016 20:54
Toluene	< 2.00	ug/L		5/4/2016 20:54
trans-1,2-Dichloroeth	ene < 2.00	ug/L		5/4/2016 20:54
trans-1,3-Dichloropro	opene < 2.00	ug/L		5/4/2016 20:54
Trichloroethene	< 2.00	ug/L		5/4/2016 20:54
Trichlorofluorometha	ne < 2.00	ug/L		5/4/2016 20:54
Vinyl chloride	< 2.00	ug/L		5/4/2016 20:54

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-B102-MW-PS6

Lab Sample ID:161713-10Date Sampled:5/3/2016Matrix:GroundwaterDate Received:5/3/2016

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Anal	yzed
1,2-Dichloroethane-d4	103	81.1 - 122		5/4/2016	20:54
4-Bromofluorobenzene	91.2	78.7 - 116		5/4/2016	20:54
Pentafluorobenzene	102	88.6 - 112		5/4/2016	20:54
Toluene-D8	98.4	88.9 - 110		5/4/2016	20:54

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x32076.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-B106-MW-PS6

Lab Sample ID:161713-11Date Sampled:5/2/2016Matrix:GroundwaterDate Received:5/3/2016

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier Date Analyzed	
1,1,1-Trichloroethane	< 2.00	ug/L	5/4/2016 21:3	17
1,1,2,2-Tetrachloroethane	< 2.00	ug/L	5/4/2016 21:3	17
1,1,2-Trichloroethane	< 2.00	ug/L	5/4/2016 21:3	17
1,1-Dichloroethane	< 2.00	ug/L	5/4/2016 21:3	17
1,1-Dichloroethene	< 2.00	ug/L	5/4/2016 21:3	17
1,2,3-Trichlorobenzene	< 5.00	ug/L	5/4/2016 21:3	17
1,2,4-Trichlorobenzene	< 5.00	ug/L	5/4/2016 21:3	17
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L	5/4/2016 21:3	17
1,2-Dibromoethane	< 2.00	ug/L	5/4/2016 21:3	17
1,2-Dichlorobenzene	< 2.00	ug/L	5/4/2016 21:3	17
1,2-Dichloroethane	< 2.00	ug/L	5/4/2016 21:3	17
1,2-Dichloropropane	< 2.00	ug/L	5/4/2016 21:	17
1,3-Dichlorobenzene	< 2.00	ug/L	5/4/2016 21:3	17
1,4-Dichlorobenzene	< 2.00	ug/L	5/4/2016 21:	17
1,4-dioxane	< 20.0	ug/L	5/4/2016 21:	17
2-Butanone	< 10.0	ug/L	5/4/2016 21:	17
2-Hexanone	< 5.00	ug/L	5/4/2016 21:	17
4-Methyl-2-pentanone	< 5.00	ug/L	5/4/2016 21:	17
Acetone	< 10.0	ug/L	5/4/2016 21:	17
Benzene	< 1.00	ug/L	5/4/2016 21:	17
Bromochloromethane	< 5.00	ug/L	5/4/2016 21:	17
Bromodichloromethane	< 2.00	ug/L	5/4/2016 21:	17
Bromoform	< 5.00	ug/L	5/4/2016 21:	17
Bromomethane	< 2.00	ug/L	5/4/2016 21:	17
Carbon disulfide	< 2.00	ug/L	5/4/2016 21:	17
Carbon Tetrachloride	< 2.00	ug/L	5/4/2016 21:	17
Chlorobenzene	< 2.00	ug/L	5/4/2016 21:	17

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier:	LI-B106-MW-PS6		
Lab Sample ID:	161713-11	Date Sampled:	5/2/2016
M - 4	C 1	Data Dagairrad	T /2 /2017

Lab Sample ID. 10	1/13-11		Date Sampleu.	3/2/2010
Matrix: Gro	oundwater		Date Received:	5/3/2016
Chloroethane	< 2.00	ug/L		5/4/2016 21:17
Chloroform	< 2.00	ug/L		5/4/2016 21:17
Chloromethane	< 2.00	ug/L		5/4/2016 21:17
cis-1,2-Dichloroethene	< 2.00	ug/L		5/4/2016 21:17
cis-1,3-Dichloropropene	< 2.00	ug/L		5/4/2016 21:17
Cyclohexane	< 10.0	ug/L		5/4/2016 21:17
Dibromochloromethane	< 2.00	ug/L		5/4/2016 21:17
Dichlorodifluoromethane	< 2.00	ug/L		5/4/2016 21:17
Ethylbenzene	< 2.00	ug/L		5/4/2016 21:17
Freon 113	< 2.00	ug/L		5/4/2016 21:17
Isopropylbenzene	< 2.00	ug/L		5/4/2016 21:17
m,p-Xylene	< 2.00	ug/L		5/4/2016 21:17
Methyl acetate	< 2.00	ug/L		5/4/2016 21:17
Methyl tert-butyl Ether	< 2.00	ug/L		5/4/2016 21:17
Methylcyclohexane	< 2.00	ug/L		5/4/2016 21:17
Methylene chloride	< 5.00	ug/L		5/4/2016 21:17
o-Xylene	< 2.00	ug/L		5/4/2016 21:17
Styrene	< 5.00	ug/L		5/4/2016 21:17
Tetrachloroethene	< 2.00	ug/L		5/4/2016 21:17
Toluene	< 2.00	ug/L		5/4/2016 21:17
trans-1,2-Dichloroethene	< 2.00	ug/L		5/4/2016 21:17
trans-1,3-Dichloropropene	< 2.00	ug/L		5/4/2016 21:17
Trichloroethene	< 2.00	ug/L		5/4/2016 21:17
Trichlorofluoromethane	< 2.00	ug/L		5/4/2016 21:17
Vinyl chloride	< 2.00	ug/L		5/4/2016 21:17

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-B106-MW-PS6

Lab Sample ID:161713-11Date Sampled:5/2/2016Matrix:GroundwaterDate Received:5/3/2016

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Anal	yzed
1,2-Dichloroethane-d4	102	81.1 - 122		5/4/2016	21:17
4-Bromofluorobenzene	90.9	78.7 - 116		5/4/2016	21:17
Pentafluorobenzene	101	88.6 - 112		5/4/2016	21:17
Toluene-D8	98.8	88.9 - 110		5/4/2016	21:17

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x32077.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-B108-MW-PS6

Lab Sample ID:161713-12Date Sampled:5/2/2016Matrix:GroundwaterDate Received:5/3/2016

Volatile Organics

Analyte	Result	<u>Units</u>	Qualifier Date Anal	yzed
1,1,1-Trichloroethane	< 2.00	ug/L	5/5/201	6 14:27
1,1,2,2-Tetrachloroethane	< 2.00	ug/L	5/5/201	6 14:27
1,1,2-Trichloroethane	< 2.00	ug/L	5/5/201	6 14:27
1,1-Dichloroethane	< 2.00	ug/L	5/5/201	6 14:27
1,1-Dichloroethene	< 2.00	ug/L	5/5/201	6 14:27
1,2,3-Trichlorobenzene	< 5.00	ug/L	5/5/201	6 14:27
1,2,4-Trichlorobenzene	< 5.00	ug/L	5/5/201	6 14:27
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L	5/5/201	6 14:27
1,2-Dibromoethane	< 2.00	ug/L	5/5/201	6 14:27
1,2-Dichlorobenzene	< 2.00	ug/L	5/5/201	6 14:27
1,2-Dichloroethane	< 2.00	ug/L	5/5/201	6 14:27
1,2-Dichloropropane	< 2.00	ug/L	5/5/201	6 14:27
1,3-Dichlorobenzene	< 2.00	ug/L	5/5/201	6 14:27
1,4-Dichlorobenzene	< 2.00	ug/L	5/5/201	6 14:27
1,4-dioxane	< 20.0	ug/L	5/5/201	6 14:27
2-Butanone	9.02	ug/L	J 5/5/201	6 14:27
2-Hexanone	< 5.00	ug/L	5/5/201	6 14:27
4-Methyl-2-pentanone	< 5.00	ug/L	5/5/201	6 14:27
Acetone	< 10.0	ug/L	5/5/201	6 14:27
Benzene	< 1.00	ug/L	5/5/201	6 14:27
Bromochloromethane	< 5.00	ug/L	5/5/201	6 14:27
Bromodichloromethane	< 2.00	ug/L	5/5/201	6 14:27
Bromoform	< 5.00	ug/L	5/5/201	6 14:27
Bromomethane	< 2.00	ug/L	5/5/201	6 14:27
Carbon disulfide	< 2.00	ug/L	5/5/201	6 14:27
Carbon Tetrachloride	< 2.00	ug/L	5/5/201	6 14:27
Chlorobenzene	< 2.00	ug/L	5/5/201	6 14:27

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier:	LI-B108-MW-PS6		
Lab Sample ID:	161713-12	Date Sampled:	5/2/2016
Matrix:	Groundwater	Date Received:	5/3/2016

Lab Sample ID:	161713-12			Date Sampled:	5/2/2016	
Matrix:	Groundwater			Date Received:	5/3/2016	
Chloroethane		< 2.00	ug/L		5/5/2016	14:27
Chloroform		< 2.00	ug/L		5/5/2016	14:27
Chloromethane		< 2.00	ug/L		5/5/2016	14:27
cis-1,2-Dichloroethene		9.96	ug/L		5/5/2016	14:27
cis-1,3-Dichloropropene		< 2.00	ug/L		5/5/2016	14:27
Cyclohexane		< 10.0	ug/L		5/5/2016	14:27
Dibromochloromethane		< 2.00	ug/L		5/5/2016	14:27
Dichlorodifluoromethan	e	< 2.00	ug/L		5/5/2016	14:27
Ethylbenzene		< 2.00	ug/L		5/5/2016	14:27
Freon 113		< 2.00	ug/L		5/5/2016	14:27
Isopropylbenzene		< 2.00	ug/L		5/5/2016	14:27
m,p-Xylene		< 2.00	ug/L		5/5/2016	14:27
Methyl acetate		< 2.00	ug/L		5/5/2016	14:27
Methyl tert-butyl Ether		< 2.00	ug/L		5/5/2016	14:27
Methylcyclohexane		< 2.00	ug/L		5/5/2016	14:27
Methylene chloride		< 5.00	ug/L		5/5/2016	14:27
o-Xylene		< 2.00	ug/L		5/5/2016	14:27
Styrene		< 5.00	ug/L		5/5/2016	14:27
Tetrachloroethene		4.45	ug/L		5/5/2016	14:27
Toluene		< 2.00	ug/L		5/5/2016	14:27
trans-1,2-Dichloroethen	e	< 2.00	ug/L		5/5/2016	14:27
trans-1,3-Dichloroprope	ene	< 2.00	ug/L		5/5/2016	14:27
Trichloroethene		4.95	ug/L		5/5/2016	14:27
Trichlorofluoromethane	!	< 2.00	ug/L		5/5/2016	14:27
Vinyl chloride		3.71	ug/L		5/5/2016	14:27

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-B108-MW-PS6

Lab Sample ID:161713-12Date Sampled:5/2/2016Matrix:GroundwaterDate Received:5/3/2016

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Anal	yzed
1,2-Dichloroethane-d4	100	81.1 - 122		5/5/2016	14:27
4-Bromofluorobenzene	90.2	78.7 - 116		5/5/2016	14:27
Pentafluorobenzene	101	88.6 - 112		5/5/2016	14:27
Toluene-D8	99.2	88.9 - 110		5/5/2016	14:27

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x32092.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-DUP-PS6

Lab Sample ID:161713-13Date Sampled:5/2/2016Matrix:GroundwaterDate Received:5/3/2016

Volatile Organics

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		5/5/2016 14:50
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		5/5/2016 14:50
1,1,2-Trichloroethane	< 2.00	ug/L		5/5/2016 14:50
1,1-Dichloroethane	< 2.00	ug/L		5/5/2016 14:50
1,1-Dichloroethene	< 2.00	ug/L		5/5/2016 14:50
1,2,3-Trichlorobenzene	< 5.00	ug/L		5/5/2016 14:50
1,2,4-Trichlorobenzene	< 5.00	ug/L		5/5/2016 14:50
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		5/5/2016 14:50
1,2-Dibromoethane	< 2.00	ug/L		5/5/2016 14:50
1,2-Dichlorobenzene	< 2.00	ug/L		5/5/2016 14:50
1,2-Dichloroethane	< 2.00	ug/L		5/5/2016 14:50
1,2-Dichloropropane	< 2.00	ug/L		5/5/2016 14:50
1,3-Dichlorobenzene	< 2.00	ug/L		5/5/2016 14:50
1,4-Dichlorobenzene	< 2.00	ug/L		5/5/2016 14:50
1,4-dioxane	< 20.0	ug/L		5/5/2016 14:50
2-Butanone	< 10.0	ug/L		5/5/2016 14:50
2-Hexanone	< 5.00	ug/L		5/5/2016 14:50
4-Methyl-2-pentanone	< 5.00	ug/L		5/5/2016 14:50
Acetone	< 10.0	ug/L		5/5/2016 14:50
Benzene	< 1.00	ug/L		5/5/2016 14:50
Bromochloromethane	< 5.00	ug/L		5/5/2016 14:50
Bromodichloromethane	< 2.00	ug/L		5/5/2016 14:50
Bromoform	< 5.00	ug/L		5/5/2016 14:50
Bromomethane	< 2.00	ug/L		5/5/2016 14:50
Carbon disulfide	< 2.00	ug/L		5/5/2016 14:50
Carbon Tetrachloride	< 2.00	ug/L		5/5/2016 14:50
Chlorobenzene	< 2.00	ug/L		5/5/2016 14:50

5/5/2016 14:50

Client: <u>Stantec</u>

Project Reference: Carriage Factory

		,			
Sample Identifier:	LI-DUP-PS6				
Lab Sample ID:	161713-13			Date Sampled:	5/2/2016
Matrix:	Groundwater			Date Received:	5/3/2016
Chloroethane		< 2.00	ug/L		5/5/2016 14:50
Chloroform		< 2.00	ug/L		5/5/2016 14:50
Chloromethane		< 2.00	ug/L		5/5/2016 14:50
cis-1,2-Dichloroethene		< 2.00	ug/L		5/5/2016 14:50
cis-1,3-Dichloropropene		< 2.00	ug/L		5/5/2016 14:50
Cyclohexane		< 10.0	ug/L		5/5/2016 14:50
Dibromochloromethane		< 2.00	ug/L		5/5/2016 14:50
Dichlorodifluoromethan	e	< 2.00	ug/L		5/5/2016 14:50
Ethylbenzene		< 2.00	ug/L		5/5/2016 14:50
Freon 113		< 2.00	ug/L		5/5/2016 14:50
Isopropylbenzene		< 2.00	ug/L		5/5/2016 14:50
m,p-Xylene		< 2.00	ug/L		5/5/2016 14:50
Methyl acetate		< 2.00	ug/L		5/5/2016 14:50
Methyl tert-butyl Ether		1.33	ug/L	J	5/5/2016 14:50
Methylcyclohexane		< 2.00	ug/L		5/5/2016 14:50
Methylene chloride		< 5.00	ug/L		5/5/2016 14:50
o-Xylene		< 2.00	ug/L		5/5/2016 14:50
Styrene		< 5.00	ug/L		5/5/2016 14:50
Tetrachloroethene		< 2.00	ug/L		5/5/2016 14:50
Toluene		< 2.00	ug/L		5/5/2016 14:50
trans-1,2-Dichloroethen	e	1.12	ug/L	J	5/5/2016 14:50
trans-1,3-Dichloroprope	ne	< 2.00	ug/L		5/5/2016 14:50
Trichloroethene		< 2.00	ug/L		5/5/2016 14:50
Trichlorofluoromethane		< 2.00	ug/L		5/5/2016 14:50
			_		

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

ug/L

< 2.00

Vinyl chloride

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-DUP-PS6

Lab Sample ID: 161713-13 **Date Sampled:** 5/2/2016

Matrix: Groundwater Date Received: 5/3/2016

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Anal	yzed
1,2-Dichloroethane-d4	99.5	81.1 - 122		5/5/2016	14:50
4-Bromofluorobenzene	88.7	78.7 - 116		5/5/2016	14:50
Pentafluorobenzene	104	88.6 - 112		5/5/2016	14:50
Toluene-D8	97.9	88.9 - 110		5/5/2016	14:50

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x32093.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: Trip Blank (T-698)

Lab Sample ID:161713-14Date Sampled:5/2/2016Matrix:WaterDate Received:5/3/2016

Volatile Organics

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		5/4/2016 17:22
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		5/4/2016 17:22
1,1,2-Trichloroethane	< 2.00	ug/L		5/4/2016 17:22
1,1-Dichloroethane	< 2.00	ug/L		5/4/2016 17:22
1,1-Dichloroethene	< 2.00	ug/L		5/4/2016 17:22
1,2,3-Trichlorobenzene	< 5.00	ug/L		5/4/2016 17:22
1,2,4-Trichlorobenzene	< 5.00	ug/L		5/4/2016 17:22
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		5/4/2016 17:22
1,2-Dibromoethane	< 2.00	ug/L		5/4/2016 17:22
1,2-Dichlorobenzene	< 2.00	ug/L		5/4/2016 17:22
1,2-Dichloroethane	< 2.00	ug/L		5/4/2016 17:22
1,2-Dichloropropane	< 2.00	ug/L		5/4/2016 17:22
1,3-Dichlorobenzene	< 2.00	ug/L		5/4/2016 17:22
1,4-Dichlorobenzene	< 2.00	ug/L		5/4/2016 17:22
1,4-dioxane	< 20.0	ug/L		5/4/2016 17:22
2-Butanone	< 10.0	ug/L		5/4/2016 17:22
2-Hexanone	< 5.00	ug/L		5/4/2016 17:22
4-Methyl-2-pentanone	< 5.00	ug/L		5/4/2016 17:22
Acetone	< 10.0	ug/L		5/4/2016 17:22
Benzene	< 1.00	ug/L		5/4/2016 17:22
Bromochloromethane	< 5.00	ug/L		5/4/2016 17:22
Bromodichloromethane	< 2.00	ug/L		5/4/2016 17:22
Bromoform	< 5.00	ug/L		5/4/2016 17:22
Bromomethane	< 2.00	ug/L		5/4/2016 17:22
Carbon disulfide	< 2.00	ug/L		5/4/2016 17:22
Carbon Tetrachloride	< 2.00	ug/L		5/4/2016 17:22
Chlorobenzene	< 2.00	ug/L		5/4/2016 17:22

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: Trip Blank (T-698)

Lab Sample ID: Date Sampled: 5/2/2016

Matrix: Date Received: 5/3/2016

Lab Sample ID:	161713-14			Date Sampled:	5/2/2016
Matrix:	Water			Date Received:	5/3/2016
Chloroethane		< 2.00	ug/L		5/4/2016 17:22
Chloroform		< 2.00	ug/L		5/4/2016 17:22
Chloromethane		< 2.00	ug/L		5/4/2016 17:22
cis-1,2-Dichloroethene		< 2.00	ug/L		5/4/2016 17:22
cis-1,3-Dichloropropen	e	< 2.00	ug/L		5/4/2016 17:22
Cyclohexane		< 10.0	ug/L		5/4/2016 17:22
Dibromochloromethan	e	< 2.00	ug/L		5/4/2016 17:22
Dichlorodifluorometha	ne	< 2.00	ug/L		5/4/2016 17:22
Ethylbenzene		< 2.00	ug/L		5/4/2016 17:22
Freon 113		< 2.00	ug/L		5/4/2016 17:22
Isopropylbenzene		< 2.00	ug/L		5/4/2016 17:22
m,p-Xylene		< 2.00	ug/L		5/4/2016 17:22
Methyl acetate		< 2.00	ug/L		5/4/2016 17:22
Methyl tert-butyl Ether		< 2.00	ug/L		5/4/2016 17:22
Methylcyclohexane		< 2.00	ug/L		5/4/2016 17:22
Methylene chloride		< 5.00	ug/L		5/4/2016 17:22
o-Xylene		< 2.00	ug/L		5/4/2016 17:22
Styrene		< 5.00	ug/L		5/4/2016 17:22
Tetrachloroethene		< 2.00	ug/L		5/4/2016 17:22
Toluene		< 2.00	ug/L		5/4/2016 17:22
trans-1,2-Dichloroethe	ne	< 2.00	ug/L		5/4/2016 17:22
trans-1,3-Dichloroprop	ene	< 2.00	ug/L		5/4/2016 17:22
Trichloroethene		< 2.00	ug/L		5/4/2016 17:22
Trichlorofluoromethan	e	< 2.00	ug/L		5/4/2016 17:22
Vinyl chloride		< 2.00	ug/L		5/4/2016 17:22

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: Trip Blank (T-698)

Lab Sample ID:161713-14Date Sampled:5/2/2016Matrix:WaterDate Received:5/3/2016

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Anal	yzed
1,2-Dichloroethane-d4	102	81.1 - 122		5/4/2016	17:22
4-Bromofluorobenzene	99.7	78.7 - 116		5/4/2016	17:22
Pentafluorobenzene	104	88.6 - 112		5/4/2016	17:22
Toluene-D8	102	88.9 - 110		5/4/2016	17:22

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x32067.D

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "J" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written. between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, term, or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB will use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB.

Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any

environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

3
CHSTON
7)
2
2
4
~
2
1
2
~

TIME Category A Category B Conner EDD Category B Conner EDD Category B Conner EDD Conner EDD	PROJECT REFERENCE	ms and Conditions (reverse). $6 J C \frac{100 J}{3} I C$ See additional page for sample conditions.	form, client agrees to Paradigm Terms and Condi See addition	By signing this	ge needed: please migrate EDD needed:	please indicate package needed:	73	Dease indicate date needed
Table Collected Collecte	Column C	1/11/2	5/3/16 15:50, Custody Se	Received @ Lab By	Other EDD	Other	≯ [Other
DOLECTED THAT ODLECTED THE ODLEC	Calestic		5/3/16		×	Category B		Rush 2 day
TIME OLIGITED COLLECTED CO	Color Colo	L	5/3/10/	Eme S		Category A		Rush 3 day
TIME No. SAMPLE IDENTIFIER NO. N	CLEART SAMPLE CONTINUE CLEART SAMPLE CONTINUE CLEART SAMPLE CONTINUE CLEART SAMPLE CONTINUE CLEART CANDESS CLEART SAMPLE CONTINUE CLEART CANDESS CLEART CANDESS CLEART CANDESS CANDESS CLEART CANDESS CLEART CANDESS CLEART CANDESS CLEART CANDESS CLEART CLEART CANDESS CLEART	540	Date/Time	Relinquished By	Basic EDD	Batch QC		10 day
Tumaround Time Report Supplements Name and the smay apply. Name and the small feet s	Collection Col		11/2	Sampled By	None Required	None Required		Standard 5 day
Tumaround Time Report Supplements Tumaround Time Report Supplements	TURNSCULECTED COLLECTED CO	330	m 5/3/16	New +	oval; additional fees may apply.	upon lab appr	bility contingent	Availa
TIME OCLECTED ON R SAMPLE DENTIFIER 1/2/16	COLLECTED COLL		1 1.	<u></u>	Report Supplements		nd Time	Turnarou
TIME OF R SAMPLE IDENTIFIER TO BE A COLLECTED COLLECTED COLLECTED SAMPLE IDENTIFIER TO BE A COLLECTED	TANADOM COLECTS: STAME PROJECT REFERENCE Mairix Codess: Ma			PSb	- B102-	*	1235	11
THE COLLECTED COLLECTED SAMPLE IDENTIFIER THE COLLECTED S A SAMPLE IDENTIFIER THE COLLECTED S A SAMPLE IDENTIFIER TO B A SO I LI-RW-1-PS & WA Y X X I I I I I I I I I I I I I I I I I	CLEARLY COLLEGES: CAMPLE C			6	I- RW-12-PS		0830	-
TIME TIME OF R SAMPLE IDENTIFIER TIME OF R SAMPLE DENTIFIER TO B A A COLLECTED OF R R R R R R R R R R R R R R R R R R	TIME PROJECT REFERENCE ATTINIC DOLLECTED AND AND AND ADDRESS: ATTINIC DOLLECTED TIME PROJECT REFERENCE ATTINIC DOLLECTED AND AND ADDRESS: ATTINIC DOLLECTED AND AND ADDRESS: ATTINIC DOLLECTED AND ADDRESS: ATTINIC DOLLECTED AND ADDRESS: ATTINIC DOLLECTED ATTINIC DOLLECTED ATTINIC DOLLECTED ATTINIC DOLLECTED AND ADDRESS: AND ADDRESS: ATTINIC DOLLECTED AND ADDRESS: ATTINIC DOLLECTED ATTINIC DO				54 - b		1600	-
THE COLLECTED CO	TIME PROJECT REFERENCE ATTINI ACTION			7	7 -		1015	e
TIME ON G SAMPLE IDENTIFIER AC MY GO TO BE A SOUTH THE SAMPLE IDENTIFIER TO BE A SOUTH THE SAMPLE IDEN	TIME OULECTED TIME OF A SAMPLE DESTRIBER OF STATE OF STAT			0.	6 - PS		0920	
TIME ON A SAMPLE IDENTIFIER ON A COLLECTED S A SAMPLE IDENTIFIER ON A COLLECTED S A SAMPLE IDENTIFIER ON A COLLECTED S A COLLECT	PROJECT REFERENCE PROJECT REFERENCE MORRESS: 6 C & MANAVICIAL St. DODRESS: 2IP. Quotatio PROJECT REFERENCE Matrix Codes: AQ. Aqueous Liquid MQ. Non-Aqueous Liquid MQ. Non-Aqueous Liquid MQ. Non-Aqueous Liquid MQ. Non-Aqueous Liquid MG. Groundwaler SQ. DW. Drinking Water SQ. Soil AQ. Aqueous Liquid MG. Groundwaler SQ. DW. Drinking Water SQ. Soil AQ. Aqueous Liquid MG. Groundwaler SQ. DW. Drinking Water SQ. Soil AQ. Aqueous Liquid MG. Groundwaler SQ. DW. Drinking Water SQ. Soil AQ. Aqueous Liquid MG. Groundwaler SQ. DW. Drinking Water SQ. Soil AQ. Aqueous SL. Sludge PT-Paint AQ. M. W.				S-PS		W	
ECOLLECTED TIME M G SAMPLE IDENTIFIER M C M I VO O O O O O O O O O O O O O O O O O	PROJECT REFERENCE ADDRESS: 6 C & MALLYCIAL St. ADDRESS: 8 C & MALLYCIAL St. PHONE: 478 - 5248 ATTH: Mile Stovense Liquid AQ - Aqueous Liquid AQ				4-75		1120	12/
ECOLLECTED TIME M G A SAMPLE IDENTIFIER AC M UN GO TO A A SAMPLE IDENTIFIER TO BA WIN GO TO A A SAMPLE IDENTIFIER TO BA WIN GO TO A A SAMPLE IDENTIFIER TO BA WIN GO TO A A SAMPLE IDENTIFIER TO BA WIN GO TO A A SAMPLE IDENTIFIER TO BA WIN GO TO A A SAMPLE IDENTIFIER TO BA WIN GO TO A A SAMPLE IDENTIFIER TO BA WIN GO TO A SAMPLE IDENTIFIER TO BE A WIN GO T	PROJECT REFERENCE PROJECT REFERENCE Matrix Codes: AG-Aqueous Liquid NG-Aqueous Liquid NG-Broundwater REQUESTED AIMALYSIS REMAN REAL PROJECT REFERENCE ATTN: AG-Aqueous Liquid NG-Aqueous Liquid NG-Groundwater REQUESTED AIMALYSIS REMAN		Y	1	-3-		1120	~
ECOLLECTED TIME M G M G M G M G M G M G M G M G M G M	CLERT: STANTEC COLEGES: 6 COMMANDE DEVIFIERER PROJECT REFERENCE ADDRESS: 6 COMMANDE DEVIFIERER PHONE: 413-5246 ATTIN: AC-Aqueous Liquid MG-Groundwater Coleges: Matrix Codes: MAC-Aqueous Liquid MG-Groundwater Coleges: MC-Non-Aqueous Coleges: MC-Non-Aqueous Liquid MG-Groundwater Coleges: MC-Non-Aqueous	USW,		1 1 1	-RW-2-		1020	
TIME TIME TO R SAMPLE IDENTIFIER A C R A C R A C R A C R A C R A C R A C R A C R A C A C	COLLECTED		×		· 1 - PS	×	37.hi	2
	CLIENT: Stantcc CLIENT: Same /6 ADDRESS: 6 Communicated St. ADDRESS: ADDRESS: /6 OITY: Rochuster STATE: ZIP: Quotatio PHONE: 413-526 PHONE: 978-5248 Email: Matrix Codes: Matrix Codes: AQ-Aqueous Liquid WA-Water AQ-Aqueous Liquid WG-Groundwater AQ-Aqueous Liquid WG-Groundwater AREQUESTED ANALYSIS PT-Paint REQUESTED ANALYSIS PT-Paint PHONE: 2P ANALYSIS PT-Paint REQUESTED ANALYSIS PT-Paint ADDRESS: 6 Communication Colent: Same /6 ADDRESS: 6 Communication ADDRESS: APERICATION: ADDRESS: APERICATION: ADDRESS: APERICATION: APERI	REMARKS	VOC (8260)	ишооо	SAMPLE IDENTIFIER		TIME	DATE COLLECTED
	ATTIN: Mike Storonsky CLIENT: Same COLIENT: Stante CLIENT: Same ADDRESS: 6 Communicated St. Address: State: ZIP: Quotatio PHONE: 413-5266 PHONE: 478-5248 Email: ATTIN: Storonsky ATTIN: Storonsky ATTIN: Starte: ZIP: Quotatio	SD - Solid PT - Paint	DW - Drinking Water SO - Soil WW - Wastewater SL - Sludge	WA - Water WG - Groundwater	Matrix Codes: AQ - Aqueous Liquid NQ - Non-Aqueous Liquid	tom	6	Carr
NQ - Non-Aqueous Liquid WG - Groundwater WWW - Wastewater SL - Sludge	CLIENT: STRIPLC ADDRESS: 6/ Communical St. ADDRESS: CITY: Rollwith STATE: Ny ZIP/46/4 CITY: STATE: ZIP: Que PHONE: 4/3-5246 PHONE: 978-5248 Em	mire storousky	Ben 1	7	Mike Storon		ECT REFERE	PROJ
REFERENCE Mike Storonsky ATTN: Ben Harauth Mike Matrix Codes: Matrix Codes: AQ-Aqueous Liquid WA-Water SQ-Drinking Water SQ-Solid SD-Solid SD	CLIENT: Stantc CLIENT: Same ADDRESS: 6 Communical St. ADDRESS: CITY: Rollington STATE: NY ZIP/4614 CITY: STATE: ZIP: Qui	Email:	978-5248	-	413-526		١	
FREFERENCE ATTN: 413-5216 FMONE: 978-5248 Email: REFERENCE Matrix Codes: AQ- Aqueous Liquid WG-Groundwater & WW-Wastewater SL-Sludge PT-Paint	ADDRESS: 6/ Communical St. ADDRESS: ADDRESS:	Quotation	STATE: ZIP:	41941 aiz	, b Chuster STATE:	7		1
TREFERENCE Matrix Codes: ACTIN: AQ-Aqueous Liquid NQ-Non-Aqueous Liquid MG-Groundwater	CLIENT: Same	161713		7	6	4		1
ADDRESS: 6 Commercial St. ADDRESS: OITY: Recluster STATE: VY ZIP +614 CITY: STATE: ZIP: Quotatio PHONE: 413-526 Matrix Codes: AQ-Aqueous Liquid NQ-Non-Aqueous Liquid MG-Groundwater & WW-Wastewater SL-Sludge MG-Solid NQ-Non-Aqueous Liquid MG-Groundwater & WW-Wastewater SL-Sludge PT-Paint				СП	V	: 5	APIGI	TA

CHAIN OF CUSTODY

PHONE: 413-5266	en. Rochester STATE: NY ZIP, 4614	ADDRESS: 61 Commercial St.	CLIENT: Stanta	REPORT TO:
8425-8LD :BNOHA	CITY: STATE: ZIP:	ADDRESS:	CLIENT: Same	INVOICE TO:
Email:	Quotation #:	16/7/13	LAB PROJECT	

	C FNT.	CI IENT:		
	ADDRESS: 6/ COM Marcial	Same Same	16/7/3	
	•	ZIP 414 CITY: STATE: ZIP:	Quotation #:	
-	PHONE: 413-5266	8425-8LD SNOH	Email:	
PROJECT REFERENCE	Storons	ky Ben Havavitch	Mike. Storonsky @ Stenter.	cor.
Carriage Factory	Matrix Codes: AQ - Aqueous Liquid NQ - Non-Aqueous Liquid	WA - Water DW - Drinking Water SO - Soil WG - Groundwater WW - Wastewater SL - Sludge	SD - Solid WP - Wipe PT - Paint CK - Caulk	OL - Oil AR - Air
		REQUESTED ANALYSIS		
DATE COLLECTED COLLECTED S S S S S S S S S S S S S S S S S S S	G R A A B	х-яныв иппоп по япшеси ияпи-ынгоп VOC (8260) ТОС (4/5.1)	REWARKS	PARADIGM LAI SAMPLE NUMBER
5/2/16 1325	X -8 - 106 LI-B106-MV-356WG	12 - 256 WG 4 X X		7.1
1 1235	956-MW-8018-IT	256		7
V 1125	* LI - DUP - PS6	4 4 4		2
5/2/16	Tril Blank CT-698	698) WA X		14
per TB method & 5/3/16	pers	per Sample label		
	ش ح	5/3/16		
Turnaround Time	Report Supplements	1 /		
Availability contingent upon la	Availability contingent upon lab approval; additional fees may apply.	TON HAVAVITON >/3/16	1380	
Standard 5 day None Required	equired None Required	Sampled By Front S/3 //6	Total Cost:	,

tor sample cor	See additional page for sample conditi	See		1		1	1	100
erse).	ınd Conditions (rev	Paradigm Terms a	By signing this form, client agrees to Paradigm Terms and Conditions (reverse).	Other EDD peeded:		Other please indicate package needed:		Other please indicate date needed:
		Date/Time	Received @ Lab By				E	Rush 1 day
P.I.F.	16:10	5/3/16	Regelved By		R	Category B		Rush 2 day
1	1540	5/3/16	W	NYSDEC EDD X		Category A		Rush 3 day
ſ		Date/Time	Relinquished By	Basic EDD		Batch QC		10 day
Total Cost:	1540	Date/Time ///	Sampled By Houth	None Required		None Required		Standard 5 day
	16 1350	3/3/1	ton Haravita		Availability contingent upon lab approval; additional fees may apply.	nt upon lab app	lity continge	Availab
		>		lements	Report Supplements		d Time	Turnaround Time

Chain of Custody Supplement

Client:	Stantec	Completed by:	5/3/16
Lab Project ID:	16 17 13	Date:	5/3/16
	Sample Condition Per NELAC/ELAP 21	on Requirements 0/241/242/243/244	
Condition	ELAC compliance with the sample o Yes	condition requirements upo No	on receipt N/A
Container Type Comments			
Transferred to method- compliant container			
Headspace (<1 mL) Comments	X VOA		
Preservation Comments			
Chlorine Absent (<0.10 ppm per test strip) Comments			
Jolding Time Comments			
emperature Comments	5°C : ced 5/3/16	15:50	
officient Sample Quantity Comments	- 💢		
· ·		·	

ANALYTICAL REPORT

Lab Number: L1613462

Client: Paradigm Environmental Services

179 Lake Avenue Rochester, NY 14608

ATTN: Rebecca Ross Phone: (585) 647-2530

Project Name: 161713
Project Number: 161713
Report Date: 05/10/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name:161713Project Number:161713

Lab Number: L1613462 **Report Date:** 05/10/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1613462-01	161713-01 LI-RW-1-PS6	WATER	Not Specified	05/02/16 14:25	05/04/16
L1613462-02	161713-02 LI-RW-2-PS6	WATER	Not Specified	05/02/16 10:20	05/04/16
L1613462-03	161713-03 LI-RW-3-PS6	WATER	Not Specified	05/02/16 11:20	05/04/16
L1613462-04	161713-04 LI-RW-4-PS6	WATER	Not Specified	05/03/16 11:20	05/04/16
L1613462-05	161713-05 LI-RW-5-PS6	WATER	Not Specified	05/03/16 13:30	05/04/16
L1613462-06	161713-06 LI-RW-6-PS6	WATER	Not Specified	05/03/16 09:20	05/04/16
L1613462-07	161713-07 LI-RW-7-PS6	WATER	Not Specified	05/03/16 10:15	05/04/16
L1613462-08	161713-08 LI-RW-9-PS6	WATER	Not Specified	05/02/16 16:00	05/04/16
L1613462-09	161713-09 LI-RW-12-PS6	WATER	Not Specified	05/03/16 08:30	05/04/16
L1613462-10	161713-10 LI-B102-MW-PS6	WATER	Not Specified	05/03/16 12:35	05/04/16
L1613462-11	161713-11 LI-B106-MW-PS6	WATER	Not Specified	05/02/16 13:25	05/04/16
L1613462-12	161713-12 LI-B108-MW-PS6	WATER	Not Specified	05/02/16 12:35	05/04/16
L1613462-13	161713-13 LI-DUP-PS6	WATER	Not Specified	05/02/16 11:25	05/04/16

 Project Name:
 161713
 Lab Number:
 L1613462

 Project Number:
 161713
 Report Date:
 05/10/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact Client Services at 800-624-9220 with any questions.	Please	contact	Client	Services	at 8	800-624-9220	with an	y questions.
--	--------	---------	--------	----------	------	--------------	---------	--------------

 Project Name:
 161713
 Lab Number:
 L1613462

 Project Number:
 161713
 Report Date:
 05/10/16

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 05/10/16

Michelle M. Morris

INORGANICS & MISCELLANEOUS

Project Name: Lab Number: 161713 L1613462 **Project Number:**

Report Date: 05/10/16 161713

SAMPLE RESULTS

Lab ID: Date Collected: L1613462-01 05/02/16 14:25

161713-01 LI-RW-1-PS6 Client ID: Date Received: 05/04/16 Not Specified

Not Specified Sample Location: Field Prep: Matrix: Water

Analytical Method **Dilution** Date Date Factor Prepared Result Qualifier Units Analyzed Parameter RL MDL **Analyst** General Chemistry - Westborough Lab Total Organic Carbon 3.51 mg/l 1.00 0.228 2 05/06/16 14:22 121,5310C ML

 Project Name:
 161713
 Lab Number:
 L1613462

 Project Number:
 161713
 Report Date:
 05/10/16

SAMPLE RESULTS

Lab ID: L1613462-02 Date Collected: 05/02/16 10:20

Client ID: 161713-02 LI-RW-2-PS6 Date Received: 05/04/16
Sample Location: Not Specified Field Prep: Not Specified

Matrix: Water

Dilution Analytical Method Date Date Factor Prepared Result Qualifier Units Analyzed Parameter RL MDL **Analyst** General Chemistry - Westborough Lab Total Organic Carbon 5.52 mg/l 2.50 0.570 5 05/06/16 14:22 121,5310C ML

Project Name: Lab Number: 161713 L1613462 **Project Number:** 161713

Report Date: 05/10/16

SAMPLE RESULTS

Lab ID: L1613462-03 Date Collected: 05/02/16 11:20

161713-03 LI-RW-3-PS6 Client ID: Date Received: 05/04/16 Sample Location: Not Specified Not Specified Field Prep:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab)								
Total Organic Carbon	7.08		mg/l	2.50	0.570	5	-	05/06/16 14:22	121,5310C	ML

 Project Name:
 161713
 Lab Number:
 L1613462

 Project Number:
 161713
 Report Date:
 05/10/16

SAMPLE RESULTS

Lab ID: L1613462-04 Client ID: 161713-04 LI-RW-4-PS6

Sample Location: Not Specified Matrix: Water

Date Collected: 05/03/16 11:20

Date Received: 05/04/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab)								
Total Organic Carbon	141.		mg/l	25.0	5.70	50	-	05/06/16 14:22	121,5310C	ML

05/03/16 13:30

Date Collected:

 Project Name:
 161713
 Lab Number:
 L1613462

 Project Number:
 161713
 Report Date:
 05/10/16

SAMPLE RESULTS

Lab ID: L1613462-05

Client ID: 161713-05 LI-RW-5-PS6 Date Received: 05/04/16 Sample Location: Not Specified Field Prep: Not Specified

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab									
Total Organic Carbon	2.49		mg/l	0.500	0.114	1	-	05/06/16 14:22	121,5310C	ML

 Project Name:
 161713
 Lab Number:
 L1613462

 Project Number:
 161713
 Report Date:
 05/10/16

SAMPLE RESULTS

Lab ID: L1613462-06 Date Collected: 05/03/16 09:20

Client ID: 161713-06 LI-RW-6-PS6 Date Received: 05/04/16

Sample Location: Not Specified Field Prep: Not Specified Matrix: Water

Analytical Method **Dilution** Date Date Factor Prepared Result Qualifier Units Analyzed Parameter RL MDL **Analyst** General Chemistry - Westborough Lab Total Organic Carbon 3.41 mg/l 1.00 0.228 2 05/06/16 14:22 121,5310C ML

 Project Name:
 161713
 Lab Number:
 L1613462

 Project Number:
 161713
 Report Date:
 05/10/16

SAMPLE RESULTS

Lab ID: L1613462-07

Client ID: 161713-07 LI-RW-7-PS6

Sample Location: Not Specified Matrix: Water

Date Collected: 05/03/16 10:15

Date Received: 05/04/16
Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)								
Total Organic Carbon	2.72		mg/l	0.500	0.114	1	-	05/06/16 14:22	121,5310C	ML

 Project Name:
 161713
 Lab Number:
 L1613462

 Project Number:
 161713
 Report Date:
 05/10/16

SAMPLE RESULTS

Lab ID: L1613462-08
Client ID: 161713-08 LI-RW-9-PS6

Sample Location: Not Specified Matrix: Water

Date Collected: 05/02/16 16:00
Date Received: 05/04/16

Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)								
Total Organic Carbon	2.34		mg/l	1.00	0.228	2	-	05/06/16 14:22	121,5310C	ML

 Project Name:
 161713
 Lab Number:
 L1613462

 Project Number:
 161713
 Report Date:
 05/10/16

SAMPLE RESULTS

Lab ID: L1613462-09

Client ID: 161713-09 LI-RW-12-PS6 Date Received:

Sample Location: Not Specified Matrix: Water

Date Received: 05/04/16
Field Prep: Not Specified

05/03/16 08:30

Date Collected:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	Vestborough Lab									
Total Organic Carbon	2.48		mg/l	1.00	0.228	2	-	05/06/16 14:22	121,5310C	ML

 Project Name:
 161713
 Lab Number:
 L1613462

 Project Number:
 161713
 Report Date:
 05/10/16

SAMPLE RESULTS

Lab ID: L1613462-10

Client ID: 161713-10 LI-B102-MW-PS6 Date Received:

Sample Location: Not Specified Matrix: Water

Date Received: 05/04/16 Field Prep: Not Specified

05/03/16 12:35

Date Collected:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)								
Total Organic Carbon	5.22		mg/l	2.50	0.570	5	-	05/06/16 14:22	121,5310C	ML

 Project Name:
 161713
 Lab Number:
 L1613462

 Project Number:
 161713
 Report Date:
 05/10/16

SAMPLE RESULTS

Lab ID: L1613462-11

Client ID: 161713-11 LI-B106-MW-PS6

Sample Location: Not Specified Matrix: Water

Date Collected: 05/02/16 13:25

Date Received: 05/04/16 Field Prep: Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab									
Total Organic Carbon	2.63		mg/l	0.500	0.114	1	-	05/06/16 14:22	121,5310C	ML

 Project Name:
 161713
 Lab Number:
 L1613462

 Project Number:
 161713
 Report Date:
 05/10/16

SAMPLE RESULTS

Lab ID: L1613462-12

Client ID: 161713-12 LI-B108-MW-PS6 Date Rec

Sample Location: Not Specified Matrix: Water

Date Received: 05/04/16 Field Prep: Not Specified

05/02/16 12:35

Date Collected:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)								
Total Organic Carbon	68.3		mg/l	5.00	1.14	10	-	05/06/16 14:22	121,5310C	ML

 Project Name:
 161713
 Lab Number:
 L1613462

 Project Number:
 161713
 Report Date:
 05/10/16

SAMPLE RESULTS

Lab ID: L1613462-13 Date Collected: 05/02/16 11:25

Client ID: 161713-13 LI-DUP-PS6 Date Received: 05/04/16 Sample Location: Not Specified Field Prep: Not Specified

Matrix: Water

Parameter	Result Q	ualifier U	Jnits	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab									
Total Organic Carbon	6.84	r	mg/l	2.50	0.570	5	-	05/06/16 14:22	121,5310C	ML

Project Name: 161713 Lab Number: L1613462

Project Number: 161713 Report Date: 05/10/16

Method Blank Analysis Batch Quality Control

					Dilution	Date	Date	Analytical	
Parameter	Result Qualifier	Units	RL	MDL	Factor	Prepared	Analyzed	Method	Analyst
General Chemistry - W	estborough Lab for sam	ple(s): 01	I-13 Bat	ch: W	G891329-1				
Total Organic Carbon	ND	ma/l	0.500	0.114	1	_	05/06/16 14:22	121.53100	MI

Lab Control Sample Analysis Batch Quality Control

Project Name: 161713
Project Number: 161713

Lab Number:

L1613462

Report Date:

05/10/16

Parameter	LCS %Recovery Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab	Associated sample(s): 01-1	Batch: WG8913	29-2					
Total Organic Carbon	102	-		90-110	-			

Matrix Spike Analysis Batch Quality Control

Project Name: 161713
Project Number: 161713

Lab Number:

L1613462

05/10/16

Report Date:

)	Recovery	RPD

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery C	Recovery Qual Limits	RPD	RPD Qual Limits
General Chemistry - Westboro 2-PS6	ugh Lab Asso	ciated samp	le(s): 01-13	QC Batch II	D: WG891329-4	QC Sample: L16	313462-02 Clier	nt ID: 1	161713-02 LI-RW-
Total Organic Carbon	5.52	8	12.5	87	-	-	80-120	-	20

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L1613462

Report Date:

05/10/16

Parameter	Native Sam	ple D	ouplicate Sampl	le Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated samp 2-PS6	le(s): 01-13	QC Batch ID:	WG891329-3	QC Sample:	L1613462-02	Client ID:	161713-02 LI-RW-
Total Organic Carbon	5.52		4.54	mg/l	19		20

Project Name:

Project Number: 161713

161713

 Project Name:
 161713
 Lab Number:
 L1613462

 Project Number:
 161713
 Report Date:
 05/10/16

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal Cooler

A Absent

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рΗ	deg C	Pres	Seal	Analysis(*)
L1613462-01A	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1613462-01B	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1613462-02A	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1613462-02B	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1613462-02C	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1613462-02D	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1613462-02E	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1613462-02F	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1613462-03A	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1613462-03B	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1613462-04A	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1613462-04B	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1613462-05A	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1613462-05B	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1613462-06A	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1613462-06B	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1613462-07A	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1613462-07B	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1613462-08A	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1613462-08B	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1613462-09A	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1613462-09B	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1613462-10A	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1613462-10B	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1613462-11A	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1613462-11B	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1613462-12A	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1613462-12B	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1613462-13A	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)

Project Name: **Lab Number:** L1613462 161713 **Project Number:** 161713

Report Date: 05/10/16

Container Information Temp deg C Pres Seal **Container ID Container Type** Cooler рΗ Analysis(*) L1613462-13B Vial H2SO4 preserved TOC-5310(28) Α N/A 4.2 Υ Absent

 Project Name:
 161713
 Lab Number:
 L1613462

 Project Number:
 161713
 Report Date:
 05/10/16

GLOSSARY

Acronyms

LCSD

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis of

PAHs using Solid-Phase Microextraction (SPME).

- Laboratory Control Sample Duplicate: Refer to LCS.

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes

or a material containing known and verified amounts of analytes.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes

or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's reporting unit.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

- Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

TIC

 The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a 'Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

- The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 161713
 Lab Number:
 L1613462

 Project Number:
 161713
 Report Date:
 05/10/16

Data Qualifiers

- C Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- I The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- R Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 161713
 Lab Number:
 L1613462

 Project Number:
 161713
 Report Date:
 05/10/16

REFERENCES

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:17873 Revision 6

Published Date: 2/3/2016 10:23:10 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

EPA 524.2: 1,2-Dibromo-3-chloropropane, 1,2-Dibromoethane, m/p-xylene, o-xylene

EPA 624: 2-Butanone (MEK), 1,4-Dioxane, tert-Amylmethyl Ether, tert-Butyl Alcohol, m/p-xylene, o-xylene

EPA 625: Aniline, Benzoic Acid, Benzyl Alcohol, 4-Chloroaniline, 3-Methylphenol, 4-Methylphenol.

EPA 1010A: NPW: Ignitability

EPA 6010C: NPW: Strontium; SCM: Strontium

EPA 8151A: NPW: 2,4-DB, Dicamba, Dichloroprop, MCPA, MCPP; SCM: 2,4-DB, Dichloroprop, MCPA, MCPP

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene, Isopropanol; SCM: Iodomethane (methyl iodide), Methyl methacrylate

(soil); 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Pentachloronitrobenzene, 1-Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine; SCM: Pentachloronitrobenzene, 1-

Methylnaphthalene, Dimethylnaphthalene, 1,4-Diphenylhydrazine.

EPA 9010: NPW: Amenable Cyanide Distillation, Total Cyanide Distillation EPA 9038: NPW: Sulfate

EPA 9050A: NPW: Specific Conductance EPA 9056: NPW: Chloride, Nitrate, Sulfate

EPA 9065: NPW: Phenols EPA 9251: NPW: Chloride SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

EPA 8270D: NPW: Biphenyl; SCM: Biphenyl, Caprolactam EPA 8270D-SIM Isotope Dilution: SCM: 1,4-Dioxane

SM 2540D: TSS

SM2540G: SCM: Percent Solids EPA 1631E: SCM: Mercury EPA 7474: SCM: Mercury

EPA 8081B: NPW and SCM: Mirex, Hexachlorobenzene.

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA 8270-SIM: NPW and SCM: Alkylated PAHs.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene, n-Butylbenzene, n-Propylbenzene, sec-Butylbenzene, tert-Butylbenzene.

Biological Tissue Matrix: 8270D-SIM; 3050B; 3051A; 7471B; 8081B; 8082A; 6020A: Lead; 8270D: bis(2-ethylhexyl)phthalate, Butylbenzylphthalate, Diethyl phthalate, Dimethyl phthalate, Di-n-butyl phthalate, Di-n-octyl phthalate, Fluoranthene, Pentachlorophenol.

The following analytes are included in our Massachusetts DEP Scope of Accreditation, Westborough Facility:

Drinking Water

EPA 200.8: Sb,As,Ba,Be,Cd,Cr,Cu,Pb,Ni,Se,Tl; EPA 200.7: Ba,Be,Ca,Cd,Cr,Cu,Na; EPA 245.1: Mercury;

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT, Enterolert-QT.

Non-Potable Water

EPA 200.8: Al,Sb,As,Be,Cd,Cr,Cu,Pb,Mn,Ni,Se,Ag,Tl,Zn;

EPA 200.7: Al,Sb,As,Be,Cd,Ca,Cr,Co,Cu,Fe,Pb,Mg,Mn,Mo,Ni,K,Se,Ag,Na,Sr,Ti,Tl,V,Zn;

EPA 245.1, SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2340B, SM2320B, SM4500CL-E, SM4500F-BC, SM426C, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F,

EPA 353.2: Nitrate-N, SM4500NH3-BC-NES, EPA 351.1, SM4500P-E, SM4500P-B, E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, SM14 510AC, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Pre-Qualtrax Document ID: 08-113 Document Type: Form

Serial_I	No:0510	1616:4
----------	---------	--------

11148

CHAIN OF CUSTODY

4			1	2	
P	AR.	A D	IGI	V	
1		The same		1	

42000														LHO	16	LIC	e \ 3416	7
PΔ	RADIG	M		1000	REPORT TO:	To the state of					INVOICE TO):					1010	
: V R 0	HHEHTAL SERVICES,	DIG 2 1	COMPANY	Pa	radigm Environ	nmental		COMPA	VY:	Same				LAB PROJECT #:	CLIE	NT PROJEC	T#:	
1		1	ADDRESS	179	9 Lake Avenue			ADDRES	SS:									
1	Mule		CITY:	Roches	ter STATE:	NY ZIP: 1	4608	CITY:			STATI	E:	ZIP:	TURNAROUND TIME:	(WORKIN	G DAYS)		
***	100		PHONE:		FAX:			PHONE:			FAX:					0.770		10.22
OJECT NAME/SIT	TE NAME:		ATTN:	Ka	te Hansen			ATTN:		Meridith I	Dillman		****			STD		OTHER
			COMMENT	s: Ple	ease email result	ts to khanser	n@na	aradior				naradi	ameny com	1 2		× 5		
		16 1 3 3 KB			·		- CP	.,					girienv.com	Date Due:	5/12	116	for dat	9
		C	T	8.15-32-3	2551437 95			T	T	EQUEST	ED ANALY	SIS	10					
		o .					M·	N N						J Flass.				
-2.2		P	G R				A· T	T					ASP Cat	B Package	Dure	5/25	/16.	
DATE	TIME	o s	A		SAMPLE LOCATION/FIELI	D ID	R	BAS	11				N Total	REMARKS				PLE NUMBER
		T					x	E N R E	O				SW-84	6 H1.				
		E						R	1									
5/2/16	14:25		X	161	713-01	6	Vater	2	X				LI-Rh	1-1-156			0 10	
	10:20			ſ	-02		1	6	1	MS/MSI	00-02			-2-PS6			7	
1	11:20				-03			2	111					-3-PS6				-
5/3/16	11:20				- 04				††			++		1-4-PS6			-	
1	13:30				- 05		+	1	+++								4-1-	
	09:20		+++		-06		+		Н					-5-PS6			-	
							+	-	₩					-6-PS6		-		
-1.11	10:15		+	-	-07		-		Н				_	-7-PS6				
5/a/16	16:00		+++	-	- 08		+		111					-9-PS6			1776	
5/3/16	08:30		+		-09		4		Ш	4, 11			LI-Ru	1-12-PS(0			
) +	12:35			7	-10		4	*	1	100			LI-BI	102-MW-60	RS6			
	ONLY BELO on: Per NELAC			2/244	and the state of the			11,171						THE SHAPE				- +5
inpic Conditi	Receipt Para		2411242124		Compliance	1												
	Container Ty	/pe:		Y	ΝΠ		lient							-	- 1			
mments:					_	Sampled					Date/	Time		Total	Cost:			
	Preservation	on:		y П	N	101	15				5/4/	116	16:00					
mments:	11.00					Relinquis	hed B	y _o			Date/	Time			L			
	Holding Tim	ne:		v \square	N	1 Am	1 Ale		AA	1	5/04/	16	17:02					
mments:				. –		Received	Ву				Date/	Time	6	P.I.F.	Í			
	Temperatur	re:		ΥΠ	N	Ma	1	1	21:	10	Ele	ille	nacc					
mments:		10			-3	Received	By	m f	TI.	ays.	Date/		2055					LV.
										1			*					
					Ufo OB	Received	@ Lat) Rv			Date	Time						

CHAIN OF CUSTODY

11148 L1613462 PARADIGM REPORT TO: INVOICE TO: COMPANY: Paradigm Environmental LAB PROJECT #: CLIENT PROJECT #: Same ADDRESS: 179 Lake Avenue ADDRESS: STATE: NY ZIP: 14608 CITY: Rochester CITY: STATE: TURNAROUND TIME: (WORKING DAYS) PHONE: PHONE: FAX: OTHER PROJECT NAME/SITE NAME: ATTN: Kate Hansen Meridith Dillman Please email results to khansen@paradigmenv.com and reporting@paradigmenv.com COMMENTS: Date Due: REQUESTED ANALYSIS N N U T G R M DATE TIME SAMPLE LOCATION/FIELD ID REMARKS PARADIGM LAB SAMPLE NUMBER В E N R E 0 5/2/16 13:25 Blown 61713-11 2 × LI-B106-MW-PS6 12:35 LI-B108-MW-PS6 11:25 -13 LI- DUP-PS6 10 **LAB USE ONLY BELOW THIS LINE** Sample Condition: Per NELAC/ELAP 210/241/242/243/244 Receipt Parameter **NELAC Compliance** Container Type: Client Comments: Sampled By Date/Time Total Cost: Preservation: Comments: Relinquished By Date/Time Holding Time: Comments: Received By Date/Time P.I.F. 5/5/14 Temperature: Comments: Received By Received @ Lab By

Date/Time

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-1-PS9

Lab Sample ID:163436-01Date Sampled:8/10/2016Matrix:GroundwaterDate Received:8/10/2016

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier 1	Date Analyz	zed
1,1,1-Trichloroethane	< 2.00	ug/L	:	8/19/2016	18:40
1,1,2,2-Tetrachloroethane	< 2.00	ug/L	:	8/19/2016	18:40
1,1,2-Trichloroethane	< 2.00	ug/L	:	8/19/2016	18:40
1,1-Dichloroethane	< 2.00	ug/L	:	8/19/2016	18:40
1,1-Dichloroethene	< 2.00	ug/L	:	8/19/2016	18:40
1,2,3-Trichlorobenzene	< 5.00	ug/L	:	8/19/2016	18:40
1,2,4-Trichlorobenzene	< 5.00	ug/L	:	8/19/2016	18:40
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L	:	8/19/2016	18:40
1,2-Dibromoethane	< 2.00	ug/L	:	8/19/2016	18:40
1,2-Dichlorobenzene	< 2.00	ug/L	:	8/19/2016	18:40
1,2-Dichloroethane	< 2.00	ug/L	:	8/19/2016	18:40
1,2-Dichloropropane	< 2.00	ug/L	:	8/19/2016	18:40
1,3-Dichlorobenzene	< 2.00	ug/L	;	8/19/2016	18:40
1,4-Dichlorobenzene	< 2.00	ug/L	:	8/19/2016	18:40
1,4-dioxane	< 20.0	ug/L	;	8/19/2016	18:40
2-Butanone	< 10.0	ug/L	;	8/19/2016	18:40
2-Hexanone	< 5.00	ug/L	;	8/19/2016	18:40
4-Methyl-2-pentanone	< 5.00	ug/L	;	8/19/2016	18:40
Acetone	< 10.0	ug/L	;	8/19/2016	18:40
Benzene	< 1.00	ug/L	;	8/19/2016	18:40
Bromochloromethane	< 5.00	ug/L	;	8/19/2016	18:40
Bromodichloromethane	< 2.00	ug/L	;	8/19/2016	18:40
Bromoform	< 5.00	ug/L	;	8/19/2016	18:40
Bromomethane	< 2.00	ug/L	:	8/19/2016	18:40
Carbon disulfide	< 2.00	ug/L	:	8/19/2016	18:40
Carbon Tetrachloride	< 2.00	ug/L	*	8/19/2016	18:40
Chlorobenzene	< 2.00	ug/L	:	8/19/2016	18:40

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier:	LI-RW-1-PS9					
Lab Sample ID:	163436-01			Date Sampled:	8/10/2016	
Matrix:	Groundwater			Date Received:	8/10/2016	
Chloroethane		< 2.00	ug/L		8/19/2016 18:4	40
Chloroform		< 2.00	ug/L		8/19/2016 18:4	40
Chloromethane		< 2.00	ug/L		8/19/2016 18:4	40
cis-1,2-Dichloroethene		2.32	ug/L		8/19/2016 18:4	40
cis-1,3-Dichloropropene	9	< 2.00	ug/L		8/19/2016 18:4	40
Cyclohexane		< 10.0	ug/L		8/19/2016 18:4	40
Dibromochloromethane	•	< 2.00	ug/L		8/19/2016 18:4	40
Dichlorodifluoromethar	ne	< 2.00	ug/L		8/19/2016 18:4	40
Ethylbenzene		< 2.00	ug/L		8/19/2016 18:4	40
Freon 113		< 2.00	ug/L		8/19/2016 18:4	40
Isopropylbenzene		< 2.00	ug/L		8/19/2016 18:4	40
m,p-Xylene		< 2.00	ug/L		8/19/2016 18:4	40
Methyl acetate		< 2.00	ug/L		8/19/2016 18:4	40
Methyl tert-butyl Ether		< 2.00	ug/L		8/19/2016 18:4	40
Methylcyclohexane		< 2.00	ug/L		8/19/2016 18:4	40
Methylene chloride		< 5.00	ug/L		8/19/2016 18:4	40
o-Xylene		< 2.00	ug/L		8/19/2016 18:4	40
Styrene		< 5.00	ug/L		8/19/2016 18:4	40
Tetrachloroethene		< 2.00	ug/L		8/19/2016 18:4	40
Toluene		< 2.00	ug/L		8/19/2016 18:4	40
trans-1,2-Dichloroether	ie	1.45	ug/L	J	8/19/2016 18:4	40
trans-1,3-Dichloroprope	ene	< 2.00	ug/L		8/19/2016 18:4	40
Trichloroethene		< 2.00	ug/L		8/19/2016 18:4	40
Trichlorofluoromethane	9	< 2.00	ug/L		8/19/2016 18:4	40
Vinyl chloride		3.56	ug/L		8/19/2016 18:4	40

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-1-PS9

Lab Sample ID:163436-01Date Sampled:8/10/2016Matrix:GroundwaterDate Received:8/10/2016

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4	108	86 - 116		8/19/2016	18:40
4-Bromofluorobenzene	96.7	82.2 - 113		8/19/2016	18:40
Pentafluorobenzene	101	90.9 - 110		8/19/2016	18:40
Toluene-D8	97.6	90.8 - 109		8/19/2016	18:40

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x34681.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-2-PS9

Lab Sample ID:163436-02Date Sampled:8/10/2016Matrix:GroundwaterDate Received:8/10/2016

Volatile Organics

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		8/19/2016 19:03
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		8/19/2016 19:03
1,1,2-Trichloroethane	< 2.00	ug/L		8/19/2016 19:03
1,1-Dichloroethane	< 2.00	ug/L		8/19/2016 19:03
1,1-Dichloroethene	< 2.00	ug/L		8/19/2016 19:03
1,2,3-Trichlorobenzene	< 5.00	ug/L		8/19/2016 19:03
1,2,4-Trichlorobenzene	< 5.00	ug/L		8/19/2016 19:03
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		8/19/2016 19:03
1,2-Dibromoethane	< 2.00	ug/L		8/19/2016 19:03
1,2-Dichlorobenzene	< 2.00	ug/L		8/19/2016 19:03
1,2-Dichloroethane	< 2.00	ug/L		8/19/2016 19:03
1,2-Dichloropropane	< 2.00	ug/L		8/19/2016 19:03
1,3-Dichlorobenzene	< 2.00	ug/L		8/19/2016 19:03
1,4-Dichlorobenzene	< 2.00	ug/L		8/19/2016 19:03
1,4-dioxane	< 20.0	ug/L		8/19/2016 19:03
2-Butanone	< 10.0	ug/L		8/19/2016 19:03
2-Hexanone	< 5.00	ug/L		8/19/2016 19:03
4-Methyl-2-pentanone	< 5.00	ug/L		8/19/2016 19:03
Acetone	< 10.0	ug/L		8/19/2016 19:03
Benzene	< 1.00	ug/L		8/19/2016 19:03
Bromochloromethane	< 5.00	ug/L		8/19/2016 19:03
Bromodichloromethane	< 2.00	ug/L		8/19/2016 19:03
Bromoform	< 5.00	ug/L		8/19/2016 19:03
Bromomethane	< 2.00	ug/L		8/19/2016 19:03
Carbon disulfide	< 2.00	ug/L		8/19/2016 19:03
Carbon Tetrachloride	< 2.00	ug/L		8/19/2016 19:03
Chlorobenzene	< 2.00	ug/L		8/19/2016 19:03

Client: <u>Stantec</u>

Project Reference: Carriage Factory

·						
Sample Identifier:	LI-RW-2-PS9					
Lab Sample ID:	163436-02			Date Sampled:	8/10/2016	
Matrix:	Groundwater			Date Received:	8/10/2016	
Chloroethane		< 2.00	ug/L		8/19/2016	19:03
Chloroform		< 2.00	ug/L		8/19/2016	19:03
Chloromethane		< 2.00	ug/L		8/19/2016	19:03
cis-1,2-Dichloroethene		4.18	ug/L		8/19/2016	19:03
cis-1,3-Dichloropropen	e	< 2.00	ug/L		8/19/2016	19:03
Cyclohexane		< 10.0	ug/L		8/19/2016	19:03
Dibromochloromethan	e	< 2.00	ug/L		8/19/2016	19:03
Dichlorodifluorometha	ne	< 2.00	ug/L		8/19/2016	19:03
Ethylbenzene		< 2.00	ug/L		8/19/2016	19:03
Freon 113		< 2.00	ug/L		8/19/2016	19:03
Isopropylbenzene		< 2.00	ug/L		8/19/2016	19:03
m,p-Xylene		< 2.00	ug/L		8/19/2016	19:03
Methyl acetate		< 2.00	ug/L		8/19/2016	19:03
Methyl tert-butyl Ether		2.28	ug/L		8/19/2016	19:03
Methylcyclohexane		< 2.00	ug/L		8/19/2016	19:03
Methylene chloride		< 5.00	ug/L		8/19/2016	19:03
o-Xylene		< 2.00	ug/L		8/19/2016	19:03
Styrene		< 5.00	ug/L		8/19/2016	19:03
Tetrachloroethene		< 2.00	ug/L		8/19/2016	19:03
Toluene		< 2.00	ug/L		8/19/2016	19:03
trans-1,2-Dichloroethe	ne	3.40	ug/L		8/19/2016	19:03
trans-1,3-Dichloroprop	ene	< 2.00	ug/L		8/19/2016	19:03
Trichloroethene		< 2.00	ug/L		8/19/2016	19:03
Trichlorofluoromethan	e	< 2.00	ug/L		8/19/2016	19:03
Vinyl chloride		5.15	ug/L		8/19/2016	19:03

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-2-PS9

Lab Sample ID:163436-02Date Sampled:8/10/2016Matrix:GroundwaterDate Received:8/10/2016

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	vzed
1,2-Dichloroethane-d4	107	86 - 116		8/19/2016	19:03
4-Bromofluorobenzene	97.6	82.2 - 113		8/19/2016	19:03
Pentafluorobenzene	101	90.9 - 110		8/19/2016	19:03
Toluene-D8	99.2	90.8 - 109		8/19/2016	19:03

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x34682.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-3-PS9

Lab Sample ID:163436-03Date Sampled:8/10/2016Matrix:GroundwaterDate Received:8/10/2016

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		8/19/2016 19:27
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		8/19/2016 19:27
1,1,2-Trichloroethane	< 2.00	ug/L		8/19/2016 19:27
1,1-Dichloroethane	< 2.00	ug/L		8/19/2016 19:27
1,1-Dichloroethene	< 2.00	ug/L		8/19/2016 19:27
1,2,3-Trichlorobenzene	< 5.00	ug/L		8/19/2016 19:27
1,2,4-Trichlorobenzene	< 5.00	ug/L		8/19/2016 19:27
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		8/19/2016 19:27
1,2-Dibromoethane	< 2.00	ug/L		8/19/2016 19:27
1,2-Dichlorobenzene	< 2.00	ug/L		8/19/2016 19:27
1,2-Dichloroethane	< 2.00	ug/L		8/19/2016 19:27
1,2-Dichloropropane	< 2.00	ug/L		8/19/2016 19:27
1,3-Dichlorobenzene	< 2.00	ug/L		8/19/2016 19:27
1,4-Dichlorobenzene	< 2.00	ug/L		8/19/2016 19:27
1,4-dioxane	< 20.0	ug/L		8/19/2016 19:27
2-Butanone	< 10.0	ug/L		8/19/2016 19:27
2-Hexanone	< 5.00	ug/L		8/19/2016 19:27
4-Methyl-2-pentanone	< 5.00	ug/L		8/19/2016 19:27
Acetone	< 10.0	ug/L		8/19/2016 19:27
Benzene	< 1.00	ug/L		8/19/2016 19:27
Bromochloromethane	< 5.00	ug/L		8/19/2016 19:27
Bromodichloromethane	< 2.00	ug/L		8/19/2016 19:27
Bromoform	< 5.00	ug/L		8/19/2016 19:27
Bromomethane	< 2.00	ug/L		8/19/2016 19:27
Carbon disulfide	< 2.00	ug/L		8/19/2016 19:27
Carbon Tetrachloride	< 2.00	ug/L		8/19/2016 19:27
Chlorobenzene	< 2.00	ug/L		8/19/2016 19:27

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier:	LI-RW-3-PS9					
Lab Sample ID:	163436-03			Date Sampled:	8/10/2016	
Matrix:	Groundwater			Date Received:	8/10/2016	
Chloroethane		< 2.00	ug/L		8/19/2016	19:27
Chloroform		< 2.00	ug/L		8/19/2016	19:27
Chloromethane		< 2.00	ug/L		8/19/2016	19:27
cis-1,2-Dichloroethene		3.68	ug/L		8/19/2016	19:27
cis-1,3-Dichloropropen	e	< 2.00	ug/L		8/19/2016	19:27
Cyclohexane		< 10.0	ug/L		8/19/2016	19:27
Dibromochloromethan	e	< 2.00	ug/L		8/19/2016	19:27
Dichlorodifluorometha	ne	< 2.00	ug/L		8/19/2016	19:27
Ethylbenzene		< 2.00	ug/L		8/19/2016	19:27
Freon 113		< 2.00	ug/L		8/19/2016	19:27
Isopropylbenzene		< 2.00	ug/L		8/19/2016	19:27
m,p-Xylene		< 2.00	ug/L		8/19/2016	19:27
Methyl acetate		< 2.00	ug/L		8/19/2016	19:27
Methyl tert-butyl Ether		6.86	ug/L		8/19/2016	19:27
Methylcyclohexane		< 2.00	ug/L		8/19/2016	19:27
Methylene chloride		< 5.00	ug/L		8/19/2016	19:27
o-Xylene		< 2.00	ug/L		8/19/2016	19:27
Styrene		< 5.00	ug/L		8/19/2016	19:27
Tetrachloroethene		< 2.00	ug/L		8/19/2016	19:27
Toluene		< 2.00	ug/L		8/19/2016	19:27
trans-1,2-Dichloroethe	ne	3.81	ug/L		8/19/2016	19:27
trans-1,3-Dichloroprop	ene	< 2.00	ug/L		8/19/2016	19:27
Trichloroethene		< 2.00	ug/L		8/19/2016	19:27
Trichlorofluoromethan	e	< 2.00	ug/L		8/19/2016	19:27
Vinyl chloride		5.39	ug/L		8/19/2016	19:27

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-3-PS9

Lab Sample ID:163436-03Date Sampled:8/10/2016Matrix:GroundwaterDate Received:8/10/2016

Surrogate Percent Recovery Limits Outliers Date Analyzed 1,2-Dichloroethane-d4 105 86 - 116 8/19/2016 19:27 82.2 - 113 4-Bromofluorobenzene 96.9 19:27 8/19/2016 Pentafluorobenzene 102 90.9 - 110 8/19/2016 19:27 Toluene-D8 98.7 90.8 - 109 8/19/2016 19:27

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x34683.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-4-PS9

Lab Sample ID:163436-04Date Sampled:8/9/2016Matrix:GroundwaterDate Received:8/10/2016

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		8/19/2016 19:50
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		8/19/2016 19:50
1,1,2-Trichloroethane	< 2.00	ug/L		8/19/2016 19:50
1,1-Dichloroethane	< 2.00	ug/L		8/19/2016 19:50
1,1-Dichloroethene	< 2.00	ug/L		8/19/2016 19:50
1,2,3-Trichlorobenzene	< 5.00	ug/L		8/19/2016 19:50
1,2,4-Trichlorobenzene	< 5.00	ug/L		8/19/2016 19:50
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		8/19/2016 19:50
1,2-Dibromoethane	< 2.00	ug/L		8/19/2016 19:50
1,2-Dichlorobenzene	< 2.00	ug/L		8/19/2016 19:50
1,2-Dichloroethane	< 2.00	ug/L		8/19/2016 19:50
1,2-Dichloropropane	< 2.00	ug/L		8/19/2016 19:50
1,3-Dichlorobenzene	< 2.00	ug/L		8/19/2016 19:50
1,4-Dichlorobenzene	< 2.00	ug/L		8/19/2016 19:50
1,4-dioxane	< 20.0	ug/L		8/19/2016 19:50
2-Butanone	< 10.0	ug/L		8/19/2016 19:50
2-Hexanone	< 5.00	ug/L		8/19/2016 19:50
4-Methyl-2-pentanone	< 5.00	ug/L		8/19/2016 19:50
Acetone	7.45	ug/L	J	8/19/2016 19:50
Benzene	< 1.00	ug/L		8/19/2016 19:50
Bromochloromethane	< 5.00	ug/L		8/19/2016 19:50
Bromodichloromethane	< 2.00	ug/L		8/19/2016 19:50
Bromoform	< 5.00	ug/L		8/19/2016 19:50
Bromomethane	< 2.00	ug/L		8/19/2016 19:50
Carbon disulfide	< 2.00	ug/L		8/19/2016 19:50
Carbon Tetrachloride	< 2.00	ug/L		8/19/2016 19:50
Chlorobenzene	< 2.00	ug/L		8/19/2016 19:50

Client: <u>Stantec</u>

Project Reference: Carriage Factory

		,				
Sample Identifier:	LI-RW-4-PS9					
Lab Sample ID:	163436-04			Date Sampled:	8/9/2016	
Matrix:	Groundwater			Date Received:	8/10/2016	
Chloroethane		< 2.00	ug/L		8/19/2016 1	19:50
Chloroform		< 2.00	ug/L		8/19/2016 1	19:50
Chloromethane		< 2.00	ug/L		8/19/2016 1	19:50
cis-1,2-Dichloroethene		3.42	ug/L		8/19/2016	19:50
cis-1,3-Dichloropropen	e	< 2.00	ug/L		8/19/2016	19:50
Cyclohexane		< 10.0	ug/L		8/19/2016	19:50
Dibromochloromethane	2	< 2.00	ug/L		8/19/2016	19:50
Dichlorodifluoromethan	ne	< 2.00	ug/L		8/19/2016	19:50
Ethylbenzene		< 2.00	ug/L		8/19/2016	19:50
Freon 113		< 2.00	ug/L		8/19/2016	19:50
Isopropylbenzene		< 2.00	ug/L		8/19/2016 1	19:50
m,p-Xylene		< 2.00	ug/L		8/19/2016	19:50
Methyl acetate		< 2.00	ug/L		8/19/2016	19:50
Methyl tert-butyl Ether		< 2.00	ug/L		8/19/2016	19:50
Methylcyclohexane		< 2.00	ug/L		8/19/2016 1	19:50
Methylene chloride		< 5.00	ug/L		8/19/2016 1	19:50
o-Xylene		< 2.00	ug/L		8/19/2016 1	19:50
Styrene		< 5.00	ug/L		8/19/2016 1	19:50
Tetrachloroethene		< 2.00	ug/L		8/19/2016 1	19:50
Toluene		< 2.00	ug/L		8/19/2016 1	19:50
trans-1,2-Dichloroether	ne	< 2.00	ug/L		8/19/2016 1	19:50
trans-1,3-Dichloroprope	ene	< 2.00	ug/L		8/19/2016	19:50
Trichloroethene		< 2.00	ug/L		8/19/2016	19:50
Trichlorofluoromethane	9	< 2.00	ug/L		8/19/2016	19:50
Vinyl chloride		5.78	ug/L		8/19/2016	19:50

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-4-PS9

Lab Sample ID: 163436-04 **Date Sampled:** 8/9/2016

Matrix: Groundwater Date Received: 8/10/2016

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyzed	
1,2-Dichloroethane-d4	111	86 - 116		8/19/2016	19:50
4-Bromofluorobenzene	96.6	82.2 - 113		8/19/2016	19:50
Pentafluorobenzene	101	90.9 - 110		8/19/2016	19:50
Toluene-D8	98.3	90.8 - 109		8/19/2016	19:50

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x34684.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-5-PS9

Lab Sample ID:163436-05Date Sampled:8/10/2016Matrix:GroundwaterDate Received:8/10/2016

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		8/19/2016 20:14
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		8/19/2016 20:14
1,1,2-Trichloroethane	< 2.00	ug/L		8/19/2016 20:14
1,1-Dichloroethane	< 2.00	ug/L		8/19/2016 20:14
1,1-Dichloroethene	< 2.00	ug/L		8/19/2016 20:14
1,2,3-Trichlorobenzene	< 5.00	ug/L		8/19/2016 20:14
1,2,4-Trichlorobenzene	< 5.00	ug/L		8/19/2016 20:14
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		8/19/2016 20:14
1,2-Dibromoethane	< 2.00	ug/L		8/19/2016 20:14
1,2-Dichlorobenzene	< 2.00	ug/L		8/19/2016 20:14
1,2-Dichloroethane	< 2.00	ug/L		8/19/2016 20:14
1,2-Dichloropropane	< 2.00	ug/L		8/19/2016 20:14
1,3-Dichlorobenzene	< 2.00	ug/L		8/19/2016 20:14
1,4-Dichlorobenzene	< 2.00	ug/L		8/19/2016 20:14
1,4-dioxane	< 20.0	ug/L		8/19/2016 20:14
2-Butanone	< 10.0	ug/L		8/19/2016 20:14
2-Hexanone	< 5.00	ug/L		8/19/2016 20:14
4-Methyl-2-pentanone	< 5.00	ug/L		8/19/2016 20:14
Acetone	< 10.0	ug/L		8/19/2016 20:14
Benzene	0.741	ug/L	J	8/19/2016 20:14
Bromochloromethane	< 5.00	ug/L		8/19/2016 20:14
Bromodichloromethane	< 2.00	ug/L		8/19/2016 20:14
Bromoform	< 5.00	ug/L		8/19/2016 20:14
Bromomethane	< 2.00	ug/L		8/19/2016 20:14
Carbon disulfide	< 2.00	ug/L		8/19/2016 20:14
Carbon Tetrachloride	< 2.00	ug/L		8/19/2016 20:14
Chlorobenzene	< 2.00	ug/L		8/19/2016 20:14

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier:	LI-RW-5-PS9					
Lab Sample ID:	163436-05			Date Sampled:	8/10/2016	
Matrix:	Groundwater			Date Received:	8/10/2016	
Chloroethane		< 2.00	ug/L		8/19/2016 20	0:14
Chloroform		< 2.00	ug/L		8/19/2016 20	ე:14
Chloromethane		< 2.00	ug/L		8/19/2016 20	ე:14
cis-1,2-Dichloroethene		50.7	ug/L		8/19/2016 20	0:14
cis-1,3-Dichloropropen	e	< 2.00	ug/L		8/19/2016 20	ე:14
Cyclohexane		< 10.0	ug/L		8/19/2016 20	0:14
Dibromochloromethane	!	< 2.00	ug/L		8/19/2016 20	0:14
Dichlorodifluoromethar	ie	< 2.00	ug/L		8/19/2016 20	0:14
Ethylbenzene		< 2.00	ug/L		8/19/2016 20	0:14
Freon 113		< 2.00	ug/L		8/19/2016 20	ე:14
Isopropylbenzene		< 2.00	ug/L		8/19/2016 20	0:14
m,p-Xylene		< 2.00	ug/L		8/19/2016 20	ე:14
Methyl acetate		< 2.00	ug/L		8/19/2016 20	ე:14
Methyl tert-butyl Ether		< 2.00	ug/L		8/19/2016 20	ე:14
Methylcyclohexane		< 2.00	ug/L		8/19/2016 20	ე:14
Methylene chloride		< 5.00	ug/L		8/19/2016 20	ე:14
o-Xylene		< 2.00	ug/L		8/19/2016 20	ე:14
Styrene		< 5.00	ug/L		8/19/2016 20	ე:14
Tetrachloroethene		< 2.00	ug/L		8/19/2016 20	ე:14
Toluene		< 2.00	ug/L		8/19/2016 20	ე:14
trans-1,2-Dichloroether	ie	2.62	ug/L		8/19/2016 20	ე:14
trans-1,3-Dichloroprope	ene	< 2.00	ug/L		8/19/2016 20	ე:14
Trichloroethene		< 2.00	ug/L		8/19/2016 20	ე:14
Trichlorofluoromethane	ė	< 2.00	ug/L		8/19/2016 20	ე:14
Vinyl chloride		53.4	ug/L		8/19/2016 20	ე:14

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-5-PS9

Lab Sample ID:163436-05Date Sampled:8/10/2016Matrix:GroundwaterDate Received:8/10/2016

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4	108	86 - 116		8/19/2016	20:14
4-Bromofluorobenzene	97.5	82.2 - 113		8/19/2016	20:14
Pentafluorobenzene	103	90.9 - 110		8/19/2016	20:14
Toluene-D8	99.5	90.8 - 109		8/19/2016	20:14

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x34685.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-6-PS9

Lab Sample ID:163436-06Date Sampled:8/9/2016Matrix:GroundwaterDate Received:8/10/2016

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 20.0	ug/L		8/19/2016 20:37
1,1,2,2-Tetrachloroethane	< 20.0	ug/L		8/19/2016 20:37
1,1,2-Trichloroethane	< 20.0	ug/L		8/19/2016 20:37
1,1-Dichloroethane	< 20.0	ug/L		8/19/2016 20:37
1,1-Dichloroethene	< 20.0	ug/L		8/19/2016 20:37
1,2,3-Trichlorobenzene	< 50.0	ug/L		8/19/2016 20:37
1,2,4-Trichlorobenzene	< 50.0	ug/L		8/19/2016 20:37
1,2-Dibromo-3-Chloropropane	< 100	ug/L		8/19/2016 20:37
1,2-Dibromoethane	< 20.0	ug/L		8/19/2016 20:37
1,2-Dichlorobenzene	< 20.0	ug/L		8/19/2016 20:37
1,2-Dichloroethane	< 20.0	ug/L		8/19/2016 20:37
1,2-Dichloropropane	< 20.0	ug/L		8/19/2016 20:37
1,3-Dichlorobenzene	< 20.0	ug/L		8/19/2016 20:37
1,4-Dichlorobenzene	< 20.0	ug/L		8/19/2016 20:37
1,4-dioxane	< 200	ug/L		8/19/2016 20:37
2-Butanone	< 100	ug/L		8/19/2016 20:37
2-Hexanone	< 50.0	ug/L		8/19/2016 20:37
4-Methyl-2-pentanone	< 50.0	ug/L		8/19/2016 20:37
Acetone	< 100	ug/L		8/19/2016 20:37
Benzene	< 10.0	ug/L		8/19/2016 20:37
Bromochloromethane	< 50.0	ug/L		8/19/2016 20:37
Bromodichloromethane	< 20.0	ug/L		8/19/2016 20:37
Bromoform	< 50.0	ug/L		8/19/2016 20:37
Bromomethane	< 20.0	ug/L		8/19/2016 20:37
Carbon disulfide	< 20.0	ug/L		8/19/2016 20:37
Carbon Tetrachloride	< 20.0	ug/L		8/19/2016 20:37
Chlorobenzene	< 20.0	ug/L		8/19/2016 20:37

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier:	LI-RW-6-PS9				
Lab Sample ID:	163436-06			Date Sampled:	8/9/2016
Matrix:	Groundwater			Date Received:	8/10/2016
Chloroethane		< 20.0	ug/L		8/19/2016 20:37
Chloroform		< 20.0	ug/L		8/19/2016 20:37
Chloromethane		< 20.0	ug/L		8/19/2016 20:37
cis-1,2-Dichloroethene		344	ug/L		8/19/2016 20:37
cis-1,3-Dichloropropen	e	< 20.0	ug/L		8/19/2016 20:37
Cyclohexane		< 100	ug/L		8/19/2016 20:37
Dibromochloromethane	9	< 20.0	ug/L		8/19/2016 20:37
Dichlorodifluorometha	ne	< 20.0	ug/L		8/19/2016 20:37
Ethylbenzene		< 20.0	ug/L		8/19/2016 20:37
Freon 113		< 20.0	ug/L		8/19/2016 20:37
Isopropylbenzene		< 20.0	ug/L		8/19/2016 20:37
m,p-Xylene		< 20.0	ug/L		8/19/2016 20:37
Methyl acetate		< 20.0	ug/L		8/19/2016 20:37
Methyl tert-butyl Ether		< 20.0	ug/L		8/19/2016 20:37
Methylcyclohexane		< 20.0	ug/L		8/19/2016 20:37
Methylene chloride		< 50.0	ug/L		8/19/2016 20:37
o-Xylene		< 20.0	ug/L		8/19/2016 20:37
Styrene		< 50.0	ug/L		8/19/2016 20:37
Tetrachloroethene		< 20.0	ug/L		8/19/2016 20:37
Toluene		< 20.0	ug/L		8/19/2016 20:37
trans-1,2-Dichloroether	ne	< 20.0	ug/L		8/19/2016 20:37
trans-1,3-Dichloroprop	ene	< 20.0	ug/L		8/19/2016 20:37
Trichloroethene		< 20.0	ug/L		8/19/2016 20:37
Trichlorofluoromethan	е	< 20.0	ug/L		8/19/2016 20:37
Vinyl chloride		201	ug/L		8/19/2016 20:37

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-6-PS9

Lab Sample ID:163436-06Date Sampled:8/9/2016Matrix:GroundwaterDate Received:8/10/2016

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4	109	86 - 116		8/19/2016	20:37
4-Bromofluorobenzene	95.9	82.2 - 113		8/19/2016	20:37
Pentafluorobenzene	102	90.9 - 110		8/19/2016	20:37
Toluene-D8	99.2	90.8 - 109		8/19/2016	20:37

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x34686.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-7-PS9

Lab Sample ID:163436-07Date Sampled:8/9/2016Matrix:GroundwaterDate Received:8/10/2016

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		8/19/2016 21:01
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		8/19/2016 21:01
1,1,2-Trichloroethane	< 2.00	ug/L		8/19/2016 21:01
1,1-Dichloroethane	< 2.00	ug/L		8/19/2016 21:01
1,1-Dichloroethene	< 2.00	ug/L		8/19/2016 21:01
1,2,3-Trichlorobenzene	< 5.00	ug/L		8/19/2016 21:01
1,2,4-Trichlorobenzene	< 5.00	ug/L		8/19/2016 21:01
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		8/19/2016 21:01
1,2-Dibromoethane	< 2.00	ug/L		8/19/2016 21:01
1,2-Dichlorobenzene	< 2.00	ug/L		8/19/2016 21:01
1,2-Dichloroethane	< 2.00	ug/L		8/19/2016 21:01
1,2-Dichloropropane	< 2.00	ug/L		8/19/2016 21:01
1,3-Dichlorobenzene	< 2.00	ug/L		8/19/2016 21:01
1,4-Dichlorobenzene	< 2.00	ug/L		8/19/2016 21:01
1,4-dioxane	< 20.0	ug/L		8/19/2016 21:01
2-Butanone	< 10.0	ug/L		8/19/2016 21:01
2-Hexanone	< 5.00	ug/L		8/19/2016 21:01
4-Methyl-2-pentanone	< 5.00	ug/L		8/19/2016 21:01
Acetone	< 10.0	ug/L		8/19/2016 21:01
Benzene	< 1.00	ug/L		8/19/2016 21:01
Bromochloromethane	< 5.00	ug/L		8/19/2016 21:01
Bromodichloromethane	< 2.00	ug/L		8/19/2016 21:01
Bromoform	< 5.00	ug/L		8/19/2016 21:01
Bromomethane	< 2.00	ug/L		8/19/2016 21:01
Carbon disulfide	< 2.00	ug/L		8/19/2016 21:01
Carbon Tetrachloride	< 2.00	ug/L		8/19/2016 21:01
Chlorobenzene	< 2.00	ug/L		8/19/2016 21:01

Client: <u>Stantec</u>

Project Reference: Carriage Factory

					-
Sample Identifier:	LI-RW-7-PS9				
Lab Sample ID:	163436-07			Date Sampled:	8/9/2016
Matrix:	Groundwater			Date Received:	8/10/2016
Chloroethane		< 2.00	ug/L		8/19/2016 21:01
Chloroform		< 2.00	ug/L		8/19/2016 21:01
Chloromethane		< 2.00	ug/L		8/19/2016 21:01
cis-1,2-Dichloroethene		< 2.00	ug/L		8/19/2016 21:01
cis-1,3-Dichloropropen	e	< 2.00	ug/L		8/19/2016 21:01
Cyclohexane		< 10.0	ug/L		8/19/2016 21:01
Dibromochloromethane	e	< 2.00	ug/L		8/19/2016 21:01
Dichlorodifluoromethan	ne	< 2.00	ug/L		8/19/2016 21:01
Ethylbenzene		< 2.00	ug/L		8/19/2016 21:01
Freon 113		< 2.00	ug/L		8/19/2016 21:01
Isopropylbenzene		< 2.00	ug/L		8/19/2016 21:01
m,p-Xylene		< 2.00	ug/L		8/19/2016 21:01
Methyl acetate		< 2.00	ug/L		8/19/2016 21:01
Methyl tert-butyl Ether		2.38	ug/L		8/19/2016 21:01
Methylcyclohexane		< 2.00	ug/L		8/19/2016 21:01
Methylene chloride		< 5.00	ug/L		8/19/2016 21:01
o-Xylene		< 2.00	ug/L		8/19/2016 21:01
Styrene		< 5.00	ug/L		8/19/2016 21:01
Tetrachloroethene		< 2.00	ug/L		8/19/2016 21:01
Toluene		< 2.00	ug/L		8/19/2016 21:01
trans-1,2-Dichloroether	ne	< 2.00	ug/L		8/19/2016 21:01
trans-1,3-Dichloroprop	ene	< 2.00	ug/L		8/19/2016 21:01
Trichloroethene		< 2.00	ug/L		8/19/2016 21:01
Trichlorofluoromethan	e	< 2.00	ug/L		8/19/2016 21:01
Vinyl chloride		< 2.00	ug/L		8/19/2016 21:01

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-7-PS9

Lab Sample ID: 163436-07 **Date Sampled:** 8/9/2016

Matrix: Groundwater Date Received: 8/10/2016

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	vzed
1,2-Dichloroethane-d4	109	86 - 116		8/19/2016	21:01
4-Bromofluorobenzene	94.9	82.2 - 113		8/19/2016	21:01
Pentafluorobenzene	101	90.9 - 110		8/19/2016	21:01
Toluene-D8	97.9	90.8 - 109		8/19/2016	21:01

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x34687.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-9-PS9

Lab Sample ID:163436-08Date Sampled:8/9/2016Matrix:GroundwaterDate Received:8/10/2016

Volatile Organics

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		8/19/2016 21:24
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		8/19/2016 21:24
1,1,2-Trichloroethane	< 2.00	ug/L		8/19/2016 21:24
1,1-Dichloroethane	< 2.00	ug/L		8/19/2016 21:24
1,1-Dichloroethene	< 2.00	ug/L		8/19/2016 21:24
1,2,3-Trichlorobenzene	< 5.00	ug/L		8/19/2016 21:24
1,2,4-Trichlorobenzene	< 5.00	ug/L		8/19/2016 21:24
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		8/19/2016 21:24
1,2-Dibromoethane	< 2.00	ug/L		8/19/2016 21:24
1,2-Dichlorobenzene	< 2.00	ug/L		8/19/2016 21:24
1,2-Dichloroethane	< 2.00	ug/L		8/19/2016 21:24
1,2-Dichloropropane	< 2.00	ug/L		8/19/2016 21:24
1,3-Dichlorobenzene	< 2.00	ug/L		8/19/2016 21:24
1,4-Dichlorobenzene	< 2.00	ug/L		8/19/2016 21:24
1,4-dioxane	< 20.0	ug/L		8/19/2016 21:24
2-Butanone	< 10.0	ug/L		8/19/2016 21:24
2-Hexanone	< 5.00	ug/L		8/19/2016 21:24
4-Methyl-2-pentanone	< 5.00	ug/L		8/19/2016 21:24
Acetone	< 10.0	ug/L		8/19/2016 21:24
Benzene	< 1.00	ug/L		8/19/2016 21:24
Bromochloromethane	< 5.00	ug/L		8/19/2016 21:24
Bromodichloromethane	< 2.00	ug/L		8/19/2016 21:24
Bromoform	< 5.00	ug/L		8/19/2016 21:24
Bromomethane	< 2.00	ug/L		8/19/2016 21:24
Carbon disulfide	< 2.00	ug/L		8/19/2016 21:24
Carbon Tetrachloride	< 2.00	ug/L		8/19/2016 21:24
Chlorobenzene	< 2.00	ug/L		8/19/2016 21:24

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier:	LI-RW-9-PS9				
Lab Sample ID:	163436-08			Date Sampled:	8/9/2016
Matrix:	Groundwater			Date Received:	8/10/2016
Chloroethane		< 2.00	ug/L		8/19/2016 21:24
Chloroform		< 2.00	ug/L		8/19/2016 21:24
Chloromethane		< 2.00	ug/L		8/19/2016 21:24
cis-1,2-Dichloroethene		< 2.00	ug/L		8/19/2016 21:24
cis-1,3-Dichloropropen	e	< 2.00	ug/L		8/19/2016 21:24
Cyclohexane		< 10.0	ug/L		8/19/2016 21:24
Dibromochloromethane	e	< 2.00	ug/L		8/19/2016 21:24
Dichlorodifluorometha	ne	< 2.00	ug/L		8/19/2016 21:24
Ethylbenzene		< 2.00	ug/L		8/19/2016 21:24
Freon 113		< 2.00	ug/L		8/19/2016 21:24
Isopropylbenzene		< 2.00	ug/L		8/19/2016 21:24
m,p-Xylene		< 2.00	ug/L		8/19/2016 21:24
Methyl acetate		< 2.00	ug/L		8/19/2016 21:24
Methyl tert-butyl Ether		< 2.00	ug/L		8/19/2016 21:24
Methylcyclohexane		< 2.00	ug/L		8/19/2016 21:24
Methylene chloride		< 5.00	ug/L		8/19/2016 21:24
o-Xylene		< 2.00	ug/L		8/19/2016 21:24
Styrene		< 5.00	ug/L		8/19/2016 21:24
Tetrachloroethene		5.52	ug/L		8/19/2016 21:24
Toluene		< 2.00	ug/L		8/19/2016 21:24
trans-1,2-Dichloroether	ne	< 2.00	ug/L		8/19/2016 21:24
trans-1,3-Dichloroprop	ene	< 2.00	ug/L		8/19/2016 21:24
Trichloroethene		< 2.00	ug/L		8/19/2016 21:24
Trichlorofluoromethan	e	< 2.00	ug/L		8/19/2016 21:24
Vinyl chloride		< 2.00	ug/L		8/19/2016 21:24

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-9-PS9

Lab Sample ID:163436-08Date Sampled:8/9/2016Matrix:GroundwaterDate Received:8/10/2016

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	vzed
1,2-Dichloroethane-d4	112	86 - 116		8/19/2016	21:24
4-Bromofluorobenzene	96.6	82.2 - 113		8/19/2016	21:24
Pentafluorobenzene	100	90.9 - 110		8/19/2016	21:24
Toluene-D8	96.7	90.8 - 109		8/19/2016	21:24

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x34688.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-12-PS9

Lab Sample ID:163436-09Date Sampled:8/9/2016Matrix:GroundwaterDate Received:8/10/2016

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier Da	ate Analyz	ed
1,1,1-Trichloroethane	< 2.00	ug/L	8,	/19/2016	21:48
1,1,2,2-Tetrachloroethane	< 2.00	ug/L	8,	/19/2016	21:48
1,1,2-Trichloroethane	< 2.00	ug/L	8,	/19/2016	21:48
1,1-Dichloroethane	< 2.00	ug/L	8,	/19/2016	21:48
1,1-Dichloroethene	< 2.00	ug/L	8,	/19/2016	21:48
1,2,3-Trichlorobenzene	< 5.00	ug/L	8,	/19/2016	21:48
1,2,4-Trichlorobenzene	< 5.00	ug/L	8,	/19/2016	21:48
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L	8,	/19/2016	21:48
1,2-Dibromoethane	< 2.00	ug/L	8,	/19/2016	21:48
1,2-Dichlorobenzene	< 2.00	ug/L	8,	/19/2016	21:48
1,2-Dichloroethane	< 2.00	ug/L	8,	/19/2016	21:48
1,2-Dichloropropane	< 2.00	ug/L	8,	/19/2016	21:48
1,3-Dichlorobenzene	< 2.00	ug/L	8,	/19/2016	21:48
1,4-Dichlorobenzene	< 2.00	ug/L	8,	/19/2016	21:48
1,4-dioxane	< 20.0	ug/L	8,	/19/2016	21:48
2-Butanone	< 10.0	ug/L	8,	/19/2016	21:48
2-Hexanone	< 5.00	ug/L	8,	/19/2016	21:48
4-Methyl-2-pentanone	< 5.00	ug/L	8,	/19/2016	21:48
Acetone	< 10.0	ug/L	8,	/19/2016	21:48
Benzene	< 1.00	ug/L	8,	/19/2016	21:48
Bromochloromethane	< 5.00	ug/L	8,	/19/2016	21:48
Bromodichloromethane	< 2.00	ug/L	8,	/19/2016	21:48
Bromoform	< 5.00	ug/L	8,	/19/2016	21:48
Bromomethane	< 2.00	ug/L	8,	/19/2016	21:48
Carbon disulfide	< 2.00	ug/L	8,	/19/2016	21:48
Carbon Tetrachloride	< 2.00	ug/L	8,	/19/2016	21:48
Chlorobenzene	< 2.00	ug/L	8,	/19/2016	21:48

Client: <u>Stantec</u>

Project Reference: Carriage Factory

		,			
Sample Identifier:	LI-RW-12-PS9				
Lab Sample ID:	163436-09			Date Sampled:	8/9/2016
Matrix:	Groundwater			Date Received:	8/10/2016
Chloroethane		< 2.00	ug/L		8/19/2016 21:48
Chloroform		< 2.00	ug/L		8/19/2016 21:48
Chloromethane		< 2.00	ug/L		8/19/2016 21:48
cis-1,2-Dichloroethene		1.59	ug/L	J	8/19/2016 21:48
cis-1,3-Dichloropropen	e	< 2.00	ug/L		8/19/2016 21:48
Cyclohexane		< 10.0	ug/L		8/19/2016 21:48
Dibromochloromethane	2	< 2.00	ug/L		8/19/2016 21:48
Dichlorodifluoromethar	ne	< 2.00	ug/L		8/19/2016 21:48
Ethylbenzene		< 2.00	ug/L		8/19/2016 21:48
Freon 113		< 2.00	ug/L		8/19/2016 21:48
Isopropylbenzene		< 2.00	ug/L		8/19/2016 21:48
m,p-Xylene		< 2.00	ug/L		8/19/2016 21:48
Methyl acetate		< 2.00	ug/L		8/19/2016 21:48
Methyl tert-butyl Ether		< 2.00	ug/L		8/19/2016 21:48
Methylcyclohexane		< 2.00	ug/L		8/19/2016 21:48
Methylene chloride		< 5.00	ug/L		8/19/2016 21:48
o-Xylene		< 2.00	ug/L		8/19/2016 21:48
Styrene		< 5.00	ug/L		8/19/2016 21:48
Tetrachloroethene		2.76	ug/L		8/19/2016 21:48
Toluene		< 2.00	ug/L		8/19/2016 21:48
trans-1,2-Dichloroether	ne	< 2.00	ug/L		8/19/2016 21:48
trans-1,3-Dichloroprop	ene	< 2.00	ug/L		8/19/2016 21:48
Trichloroethene		3.44	ug/L		8/19/2016 21:48
Trichlorofluoromethane	e	< 2.00	ug/L		8/19/2016 21:48
Vinyl chloride		< 2.00	ug/L		8/19/2016 21:48

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-12-PS9

Lab Sample ID:163436-09Date Sampled:8/9/2016Matrix:GroundwaterDate Received:8/10/2016

<u>Surrogate</u>	Percent Recovery Limits O		<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4	107	86 - 116		8/19/2016	21:48
4-Bromofluorobenzene	95.8	82.2 - 113		8/19/2016	21:48
Pentafluorobenzene	98.9	90.9 - 110		8/19/2016	21:48
Toluene-D8	97.8	90.8 - 109		8/19/2016	21:48

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x34689.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-B102-MW-PS9

Lab Sample ID:163436-10Date Sampled:8/9/2016Matrix:GroundwaterDate Received:8/10/2016

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyz	<u>zed</u>
1,1,1-Trichloroethane	< 2.00	ug/L		8/19/2016	22:11
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		8/19/2016	22:11
1,1,2-Trichloroethane	< 2.00	ug/L		8/19/2016	22:11
1,1-Dichloroethane	< 2.00	ug/L		8/19/2016	22:11
1,1-Dichloroethene	< 2.00	ug/L		8/19/2016	22:11
1,2,3-Trichlorobenzene	< 5.00	ug/L		8/19/2016	22:11
1,2,4-Trichlorobenzene	< 5.00	ug/L		8/19/2016	22:11
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		8/19/2016	22:11
1,2-Dibromoethane	< 2.00	ug/L		8/19/2016	22:11
1,2-Dichlorobenzene	< 2.00	ug/L		8/19/2016	22:11
1,2-Dichloroethane	< 2.00	ug/L		8/19/2016	22:11
1,2-Dichloropropane	< 2.00	ug/L		8/19/2016	22:11
1,3-Dichlorobenzene	< 2.00	ug/L		8/19/2016	22:11
1,4-Dichlorobenzene	< 2.00	ug/L		8/19/2016	22:11
1,4-dioxane	< 20.0	ug/L		8/19/2016	22:11
2-Butanone	< 10.0	ug/L		8/19/2016	22:11
2-Hexanone	< 5.00	ug/L		8/19/2016	22:11
4-Methyl-2-pentanone	< 5.00	ug/L		8/19/2016	22:11
Acetone	< 10.0	ug/L		8/19/2016	22:11
Benzene	< 1.00	ug/L		8/19/2016	22:11
Bromochloromethane	< 5.00	ug/L		8/19/2016	22:11
Bromodichloromethane	< 2.00	ug/L		8/19/2016	22:11
Bromoform	< 5.00	ug/L		8/19/2016	22:11
Bromomethane	< 2.00	ug/L		8/19/2016	22:11
Carbon disulfide	< 2.00	ug/L		8/19/2016	22:11
Carbon Tetrachloride	< 2.00	ug/L		8/19/2016	22:11
Chlorobenzene	< 2.00	ug/L		8/19/2016	22:11

Client: <u>Stantec</u>

Project Reference: Carriage Factory

	carriage ractory					
Sample Identifier:	LI-B102-MW-PS	9				
Lab Sample ID:	163436-10			Date Sampled:	8/9/2016	
Matrix:	Groundwater			Date Received:	8/10/2016	
Chloroethane	<	< 2.00	ug/L		8/19/2016	22:11
Chloroform	<	< 2.00	ug/L		8/19/2016	22:11
Chloromethane	<	< 2.00	ug/L		8/19/2016	22:11
cis-1,2-Dichloroethene	1	1.01	ug/L	J	8/19/2016	22:11
cis-1,3-Dichloropropene	<	< 2.00	ug/L		8/19/2016	22:11
Cyclohexane	<	< 10.0	ug/L		8/19/2016	22:11
Dibromochloromethane	<	< 2.00	ug/L		8/19/2016	22:11
Dichlorodifluoromethan	e <	< 2.00	ug/L		8/19/2016	22:11
Ethylbenzene	<	< 2.00	ug/L		8/19/2016	22:11
Freon 113	<	< 2.00	ug/L		8/19/2016	22:11
Isopropylbenzene	<	< 2.00	ug/L		8/19/2016	22:11
m,p-Xylene	<	< 2.00	ug/L		8/19/2016	22:11
Methyl acetate	<	< 2.00	ug/L		8/19/2016	22:11
Methyl tert-butyl Ether	<	< 2.00	ug/L		8/19/2016	22:11
Methylcyclohexane	<	< 2.00	ug/L		8/19/2016	22:11
Methylene chloride	<	< 5.00	ug/L		8/19/2016	22:11
o-Xylene	<	< 2.00	ug/L		8/19/2016	22:11
Styrene	<	< 5.00	ug/L		8/19/2016	22:11
Tetrachloroethene	<	< 2.00	ug/L		8/19/2016	22:11
Toluene	<	< 2.00	ug/L		8/19/2016	22:11
trans-1,2-Dichloroethene	e <	< 2.00	ug/L		8/19/2016	22:11
trans-1,3-Dichloroprope	ne <	< 2.00	ug/L		8/19/2016	22:11
Trichloroethene	<	< 2.00	ug/L		8/19/2016	22:11
Trichlorofluoromethane	<	< 2.00	ug/L		8/19/2016	22:11
Vinyl chloride	1	1.94	ug/L	J	8/19/2016	22:11

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-B102-MW-PS9

Lab Sample ID:163436-10Date Sampled:8/9/2016Matrix:GroundwaterDate Received:8/10/2016

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	vzed
1,2-Dichloroethane-d4	111	86 - 116		8/19/2016	22:11
4-Bromofluorobenzene	95.5	82.2 - 113		8/19/2016	22:11
Pentafluorobenzene	100	90.9 - 110		8/19/2016	22:11
Toluene-D8	97.5	90.8 - 109		8/19/2016	22:11

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x34690.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-B106-MW-PS9

Lab Sample ID:163436-11Date Sampled:8/10/2016Matrix:GroundwaterDate Received:8/10/2016

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		8/22/2016 15:52
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		8/22/2016 15:52
1,1,2-Trichloroethane	< 2.00	ug/L		8/22/2016 15:52
1,1-Dichloroethane	< 2.00	ug/L		8/22/2016 15:52
1,1-Dichloroethene	< 2.00	ug/L		8/22/2016 15:52
1,2,3-Trichlorobenzene	< 5.00	ug/L		8/22/2016 15:52
1,2,4-Trichlorobenzene	< 5.00	ug/L		8/22/2016 15:52
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		8/22/2016 15:52
1,2-Dibromoethane	< 2.00	ug/L		8/22/2016 15:52
1,2-Dichlorobenzene	< 2.00	ug/L		8/22/2016 15:52
1,2-Dichloroethane	< 2.00	ug/L		8/22/2016 15:52
1,2-Dichloropropane	< 2.00	ug/L		8/22/2016 15:52
1,3-Dichlorobenzene	< 2.00	ug/L		8/22/2016 15:52
1,4-Dichlorobenzene	< 2.00	ug/L		8/22/2016 15:52
1,4-dioxane	< 20.0	ug/L		8/22/2016 15:52
2-Butanone	< 10.0	ug/L		8/22/2016 15:52
2-Hexanone	< 5.00	ug/L		8/22/2016 15:52
4-Methyl-2-pentanone	< 5.00	ug/L		8/22/2016 15:52
Acetone	< 10.0	ug/L		8/22/2016 15:52
Benzene	< 1.00	ug/L		8/22/2016 15:52
Bromochloromethane	< 5.00	ug/L		8/22/2016 15:52
Bromodichloromethane	< 2.00	ug/L		8/22/2016 15:52
Bromoform	< 5.00	ug/L		8/22/2016 15:52
Bromomethane	< 2.00	ug/L		8/22/2016 15:52
Carbon disulfide	< 2.00	ug/L		8/22/2016 15:52
Carbon Tetrachloride	< 2.00	ug/L		8/22/2016 15:52
Chlorobenzene	< 2.00	ug/L		8/22/2016 15:52

8/22/2016 15:52

Client: <u>Stantec</u>

Project Reference: Carriage Factory

		,				
Sample Identifier:	LI-B106-MW-F	rS9				
Lab Sample ID:	163436-11			Date Sampled:	8/10/2016	
Matrix:	Groundwater			Date Received:	8/10/2016	
Chloroethane		< 2.00	ug/L		8/22/2016	15:52
Chloroform		< 2.00	ug/L		8/22/2016	15:52
Chloromethane		< 2.00	ug/L		8/22/2016	15:52
cis-1,2-Dichloroethene		12.0	ug/L		8/22/2016	15:52
cis-1,3-Dichloropropene	•	< 2.00	ug/L		8/22/2016	15:52
Cyclohexane		< 10.0	ug/L		8/22/2016	15:52
Dibromochloromethane		< 2.00	ug/L		8/22/2016	15:52
Dichlorodifluoromethan	e	< 2.00	ug/L		8/22/2016	15:52
Ethylbenzene		< 2.00	ug/L		8/22/2016	15:52
Freon 113		< 2.00	ug/L		8/22/2016	15:52
Isopropylbenzene		< 2.00	ug/L		8/22/2016	15:52
m,p-Xylene		< 2.00	ug/L		8/22/2016	15:52
Methyl acetate		< 2.00	ug/L		8/22/2016	15:52
Methyl tert-butyl Ether		< 2.00	ug/L		8/22/2016	15:52
Methylcyclohexane		1.07	ug/L	J	8/22/2016	15:52
Methylene chloride		< 5.00	ug/L		8/22/2016	15:52
o-Xylene		< 2.00	ug/L		8/22/2016	15:52
Styrene		< 5.00	ug/L		8/22/2016	15:52
Tetrachloroethene		< 2.00	ug/L		8/22/2016	15:52
Toluene		< 2.00	ug/L		8/22/2016	15:52
trans-1,2-Dichloroethen	e	2.54	ug/L		8/22/2016	15:52
trans-1,3-Dichloroprope	ene	< 2.00	ug/L		8/22/2016	15:52
Trichloroethene		1.28	ug/L	J	8/22/2016	15:52
Trichlorofluoromethane		< 2.00	ug/L		8/22/2016	15:52
			_			

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

ug/L

6.11

Vinyl chloride

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-B106-MW-PS9

Lab Sample ID:163436-11Date Sampled:8/10/2016Matrix:GroundwaterDate Received:8/10/2016

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyzed	
1,2-Dichloroethane-d4	105	86 - 116		8/22/2016	15:52
4-Bromofluorobenzene	96.6	82.2 - 113		8/22/2016	15:52
Pentafluorobenzene	101	90.9 - 110		8/22/2016	15:52
Toluene-D8	100	90.8 - 109		8/22/2016	15:52

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x34705.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-B108-MW-PS9

Lab Sample ID:163436-12Date Sampled:8/10/2016Matrix:GroundwaterDate Received:8/10/2016

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		8/22/2016 15:28
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		8/22/2016 15:28
1,1,2-Trichloroethane	< 2.00	ug/L		8/22/2016 15:28
1,1-Dichloroethane	< 2.00	ug/L		8/22/2016 15:28
1,1-Dichloroethene	< 2.00	ug/L		8/22/2016 15:28
1,2,3-Trichlorobenzene	< 5.00	ug/L		8/22/2016 15:28
1,2,4-Trichlorobenzene	< 5.00	ug/L		8/22/2016 15:28
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		8/22/2016 15:28
1,2-Dibromoethane	< 2.00	ug/L		8/22/2016 15:28
1,2-Dichlorobenzene	< 2.00	ug/L		8/22/2016 15:28
1,2-Dichloroethane	< 2.00	ug/L		8/22/2016 15:28
1,2-Dichloropropane	< 2.00	ug/L		8/22/2016 15:28
1,3-Dichlorobenzene	< 2.00	ug/L		8/22/2016 15:28
1,4-Dichlorobenzene	< 2.00	ug/L		8/22/2016 15:28
1,4-dioxane	< 20.0	ug/L		8/22/2016 15:28
2-Butanone	< 10.0	ug/L		8/22/2016 15:28
2-Hexanone	< 5.00	ug/L		8/22/2016 15:28
4-Methyl-2-pentanone	< 5.00	ug/L		8/22/2016 15:28
Acetone	< 10.0	ug/L		8/22/2016 15:28
Benzene	< 1.00	ug/L		8/22/2016 15:28
Bromochloromethane	< 5.00	ug/L		8/22/2016 15:28
Bromodichloromethane	< 2.00	ug/L		8/22/2016 15:28
Bromoform	< 5.00	ug/L		8/22/2016 15:28
Bromomethane	< 2.00	ug/L		8/22/2016 15:28
Carbon disulfide	< 2.00	ug/L		8/22/2016 15:28
Carbon Tetrachloride	< 2.00	ug/L		8/22/2016 15:28
Chlorobenzene	< 2.00	ug/L		8/22/2016 15:28

Client: <u>Stantec</u>

Project Reference: Carriage Factory

	carriage ractory					
Sample Identifier:	LI-B108-MW-PS	S9				
Lab Sample ID:	163436-12			Date Sampled:	8/10/2016	
Matrix:	Groundwater			Date Received:	8/10/2016	
Chloroethane		< 2.00	ug/L		8/22/2016	15:28
Chloroform		< 2.00	ug/L		8/22/2016	15:28
Chloromethane		< 2.00	ug/L		8/22/2016	15:28
cis-1,2-Dichloroethene		6.08	ug/L		8/22/2016	15:28
cis-1,3-Dichloropropene		< 2.00	ug/L		8/22/2016	15:28
Cyclohexane		< 10.0	ug/L		8/22/2016	15:28
Dibromochloromethane		< 2.00	ug/L		8/22/2016	15:28
Dichlorodifluoromethan	e	< 2.00	ug/L		8/22/2016	15:28
Ethylbenzene		< 2.00	ug/L		8/22/2016	15:28
Freon 113		< 2.00	ug/L		8/22/2016	15:28
Isopropylbenzene		< 2.00	ug/L		8/22/2016	15:28
m,p-Xylene		< 2.00	ug/L		8/22/2016	15:28
Methyl acetate		< 2.00	ug/L		8/22/2016	15:28
Methyl tert-butyl Ether		< 2.00	ug/L		8/22/2016	15:28
Methylcyclohexane		< 2.00	ug/L		8/22/2016	15:28
Methylene chloride		< 5.00	ug/L		8/22/2016	15:28
o-Xylene		< 2.00	ug/L		8/22/2016	15:28
Styrene		< 5.00	ug/L		8/22/2016	15:28
Tetrachloroethene		< 2.00	ug/L		8/22/2016	15:28
Toluene		< 2.00	ug/L		8/22/2016	15:28
trans-1,2-Dichloroethene	e	1.10	ug/L	J	8/22/2016	15:28
trans-1,3-Dichloroprope	ne	< 2.00	ug/L		8/22/2016	15:28
Trichloroethene		< 2.00	ug/L		8/22/2016	15:28
Trichlorofluoromethane		< 2.00	ug/L		8/22/2016	15:28
Vinyl chloride		11.1	ug/L		8/22/2016	15:28

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-B108-MW-PS9

Lab Sample ID:163436-12Date Sampled:8/10/2016Matrix:GroundwaterDate Received:8/10/2016

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyzed	
1,2-Dichloroethane-d4	104	86 - 116		8/22/2016	15:28
4-Bromofluorobenzene	96.1	82.2 - 113		8/22/2016	15:28
Pentafluorobenzene	101	90.9 - 110		8/22/2016	15:28
Toluene-D8	99.7	90.8 - 109		8/22/2016	15:28

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x34704.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-DUP-PS9

Lab Sample ID:163436-13Date Sampled:8/9/2016Matrix:GroundwaterDate Received:8/10/2016

Volatile Organics

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		8/22/2016 15:05
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		8/22/2016 15:05
1,1,2-Trichloroethane	< 2.00	ug/L		8/22/2016 15:05
1,1-Dichloroethane	< 2.00	ug/L		8/22/2016 15:05
1,1-Dichloroethene	< 2.00	ug/L		8/22/2016 15:05
1,2,3-Trichlorobenzene	< 5.00	ug/L		8/22/2016 15:05
1,2,4-Trichlorobenzene	< 5.00	ug/L		8/22/2016 15:05
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		8/22/2016 15:05
1,2-Dibromoethane	< 2.00	ug/L		8/22/2016 15:05
1,2-Dichlorobenzene	< 2.00	ug/L		8/22/2016 15:05
1,2-Dichloroethane	< 2.00	ug/L		8/22/2016 15:05
1,2-Dichloropropane	< 2.00	ug/L		8/22/2016 15:05
1,3-Dichlorobenzene	< 2.00	ug/L		8/22/2016 15:05
1,4-Dichlorobenzene	< 2.00	ug/L		8/22/2016 15:05
1,4-dioxane	< 20.0	ug/L		8/22/2016 15:05
2-Butanone	< 10.0	ug/L		8/22/2016 15:05
2-Hexanone	< 5.00	ug/L		8/22/2016 15:05
4-Methyl-2-pentanone	< 5.00	ug/L		8/22/2016 15:05
Acetone	< 10.0	ug/L		8/22/2016 15:05
Benzene	< 1.00	ug/L		8/22/2016 15:05
Bromochloromethane	< 5.00	ug/L		8/22/2016 15:05
Bromodichloromethane	< 2.00	ug/L		8/22/2016 15:05
Bromoform	< 5.00	ug/L		8/22/2016 15:05
Bromomethane	< 2.00	ug/L		8/22/2016 15:05
Carbon disulfide	< 2.00	ug/L		8/22/2016 15:05
Carbon Tetrachloride	< 2.00	ug/L		8/22/2016 15:05
Chlorobenzene	< 2.00	ug/L		8/22/2016 15:05

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier:	LI-DUP-PS9					
Lab Sample ID:	163436-13			Date Sampled:	8/9/2016	
Matrix:	Groundwater			Date Received:	8/10/2016	
Chloroethane		< 2.00	ug/L		8/22/2016	15:05
Chloroform		< 2.00	ug/L		8/22/2016	15:05
Chloromethane		< 2.00	ug/L		8/22/2016	15:05
cis-1,2-Dichloroethene		< 2.00	ug/L		8/22/2016	15:05
cis-1,3-Dichloropropen	е	< 2.00	ug/L		8/22/2016	15:05
Cyclohexane		< 10.0	ug/L		8/22/2016	15:05
Dibromochloromethane	9	< 2.00	ug/L		8/22/2016	15:05
Dichlorodifluoromethan	ne	< 2.00	ug/L		8/22/2016	15:05
Ethylbenzene		< 2.00	ug/L		8/22/2016	15:05
Freon 113		< 2.00	ug/L		8/22/2016	15:05
Isopropylbenzene		< 2.00	ug/L		8/22/2016	15:05
m,p-Xylene		< 2.00	ug/L		8/22/2016	15:05
Methyl acetate		< 2.00	ug/L		8/22/2016	15:05
Methyl tert-butyl Ether		< 2.00	ug/L		8/22/2016	15:05
Methylcyclohexane		< 2.00	ug/L		8/22/2016	15:05
Methylene chloride		< 5.00	ug/L		8/22/2016	15:05
o-Xylene		< 2.00	ug/L		8/22/2016	15:05
Styrene		< 5.00	ug/L		8/22/2016	15:05
Tetrachloroethene		5.28	ug/L		8/22/2016	15:05
Toluene		< 2.00	ug/L		8/22/2016	15:05
trans-1,2-Dichloroether	ne	< 2.00	ug/L		8/22/2016	15:05
trans-1,3-Dichloroprop	ene	< 2.00	ug/L		8/22/2016	15:05
Trichloroethene		< 2.00	ug/L		8/22/2016	15:05
Trichlorofluoromethan	e	< 2.00	ug/L		8/22/2016	15:05
Vinyl chloride		< 2.00	ug/L		8/22/2016	15:05

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-DUP-PS9

Lab Sample ID: 163436-13 **Date Sampled:** 8/9/2016

Matrix: Groundwater Date Received: 8/10/2016

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	yzed
1,2-Dichloroethane-d4	103	86 - 116		8/22/2016	15:05
4-Bromofluorobenzene	94.7	82.2 - 113		8/22/2016	15:05
Pentafluorobenzene	101	90.9 - 110		8/22/2016	15:05
Toluene-D8	98.6	90.8 - 109		8/22/2016	15:05

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x34703.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: Trip Blank (T-722)

Lab Sample ID:163436-14Date Sampled:8/9/2016Matrix:WaterDate Received:8/10/2016

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		8/22/2016 14:41
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		8/22/2016 14:41
1,1,2-Trichloroethane	< 2.00	ug/L		8/22/2016 14:41
1,1-Dichloroethane	< 2.00	ug/L		8/22/2016 14:41
1,1-Dichloroethene	< 2.00	ug/L		8/22/2016 14:41
1,2,3-Trichlorobenzene	< 5.00	ug/L		8/22/2016 14:41
1,2,4-Trichlorobenzene	< 5.00	ug/L		8/22/2016 14:41
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		8/22/2016 14:41
1,2-Dibromoethane	< 2.00	ug/L		8/22/2016 14:41
1,2-Dichlorobenzene	< 2.00	ug/L		8/22/2016 14:41
1,2-Dichloroethane	< 2.00	ug/L		8/22/2016 14:41
1,2-Dichloropropane	< 2.00	ug/L		8/22/2016 14:41
1,3-Dichlorobenzene	< 2.00	ug/L		8/22/2016 14:41
1,4-Dichlorobenzene	< 2.00	ug/L		8/22/2016 14:41
1,4-dioxane	< 20.0	ug/L		8/22/2016 14:41
2-Butanone	< 10.0	ug/L		8/22/2016 14:41
2-Hexanone	< 5.00	ug/L		8/22/2016 14:41
4-Methyl-2-pentanone	< 5.00	ug/L		8/22/2016 14:41
Acetone	< 10.0	ug/L		8/22/2016 14:41
Benzene	< 1.00	ug/L		8/22/2016 14:41
Bromochloromethane	< 5.00	ug/L		8/22/2016 14:41
Bromodichloromethane	< 2.00	ug/L		8/22/2016 14:41
Bromoform	< 5.00	ug/L		8/22/2016 14:41
Bromomethane	< 2.00	ug/L		8/22/2016 14:41
Carbon disulfide	< 2.00	ug/L		8/22/2016 14:41
Carbon Tetrachloride	< 2.00	ug/L		8/22/2016 14:41
Chlorobenzene	< 2.00	ug/L		8/22/2016 14:41

Client: **Stantec**

Project Reference: Carriage Factory

Sample Identifier:	Trip Blank (T-722)		
Lab Sample ID:	163436-14	Date Sampled:	8/9/2016
Matrix:	Water	Date Received:	8/10/2016

Lab Sample ID:	163436-14			Date Sampled:	8/9/2016	
Matrix:	Water			Date Received:	8/10/2016	
Chloroethane		< 2.00	ug/L		8/22/2016	14:41
Chloroform		< 2.00	ug/L		8/22/2016	14:41
Chloromethane		< 2.00	ug/L		8/22/2016	14:41
cis-1,2-Dichloroethene	2	< 2.00	ug/L		8/22/2016	14:41
cis-1,3-Dichloroproper	ne	< 2.00	ug/L		8/22/2016	14:41
Cyclohexane		< 10.0	ug/L		8/22/2016	14:41
Dibromochloromethar	ne	< 2.00	ug/L		8/22/2016	14:41
Dichlorodifluorometha	ane	< 2.00	ug/L		8/22/2016	14:41
Ethylbenzene		< 2.00	ug/L		8/22/2016	14:41
Freon 113		< 2.00	ug/L		8/22/2016	14:41
Isopropylbenzene		< 2.00	ug/L		8/22/2016	14:41
m,p-Xylene		< 2.00	ug/L		8/22/2016	14:41
Methyl acetate		< 2.00	ug/L		8/22/2016	14:41
Methyl tert-butyl Ethe	r	< 2.00	ug/L		8/22/2016	14:41
Methylcyclohexane		< 2.00	ug/L		8/22/2016	14:41
Methylene chloride		< 5.00	ug/L		8/22/2016	14:41
o-Xylene		< 2.00	ug/L		8/22/2016	14:41
Styrene		< 5.00	ug/L		8/22/2016	14:41
Tetrachloroethene		< 2.00	ug/L		8/22/2016	14:41
Toluene		< 2.00	ug/L		8/22/2016	14:41
trans-1,2-Dichloroethe	ene	< 2.00	ug/L		8/22/2016	14:41
trans-1,3-Dichloroprop	pene	< 2.00	ug/L		8/22/2016	14:41
Trichloroethene		< 2.00	ug/L		8/22/2016	14:41
Trichlorofluoromethan	ne	< 2.00	ug/L		8/22/2016	14:41
Vinyl chloride		< 2.00	ug/L		8/22/2016	14:41

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: Trip Blank (T-722)

Lab Sample ID:163436-14Date Sampled:8/9/2016Matrix:WaterDate Received:8/10/2016

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	vzed
1,2-Dichloroethane-d4	101	86 - 116		8/22/2016	14:41
4-Bromofluorobenzene	96.3	82.2 - 113		8/22/2016	14:41
Pentafluorobenzene	102	90.9 - 110		8/22/2016	14:41
Toluene-D8	98.7	90.8 - 109		8/22/2016	14:41

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x34702.D

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "J" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written. between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, term, or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB will use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB.

Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any

environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

Pg 1 of 2

CHAIN OF CUSTODY

	DATE COLLECTED COLLECTED SAME SAME SAME SAME SAME SAME SAME SAME	PROJECT REFERENCE ATTN: Mile Store Matrix Codes: AQ - Aqueous Liquid NQ - Non-Aqueous Liquid	PARADIGM ADDRESS: OITY: Noche PHONE: 412-
Availability contingent upon lab approval; additional fees may apply. Availability contingent upon lab approval; additional fees may apply. Availability contingent upon lab approval; additional fees may apply. None Required Sampled By Sampled By Sampled By Category A Sampled By Received By Date/ Category B S Other Other EDD S Received @ Lab By Date/ Received @ Lab By Date/ Received @ Lab By Date/	2-PS9 3-PS9 3-PS9 X-MW-PS9 X-M	WA - Water WG - Groundwater WG - Groundwater WG - Groundwater WG - Groundwater WG - Groundwater	STATE: NY ZIP14614 OTTY: SAME STATE: NY ZIP14614 OTTY: STATE STATE: STATE: STATE STATE STATE: STATE STATE: STATE STATE: STATE STATE: STATE STATE STATE: STATE ST
Date/Time	REMARKS REMARKS REMARKS REMARKS RAPLE NUMBER NUMBER 0 1 0 2 0 3 0 7 0 8 0 9 0 9	St - Sludge	LAB PROJECT ID / 6 3 4 3 6 ZIP: Quotation #:

CHAIN OF CUSTODY

B 2 of 2 2.f3

ロトロトコーラ	25,000,10.	INVOICE IO		
	CLIENT: STANTEC	CLIENT: Same	LAB PROJECT ID	
	ADDRESS OF COMMENCION ST	ADDRESS:	163436	
	CITY KODUSTAV STATE: MY ZIP/48	$\eta \eta$ oith: State: ZIP:	Quotation #:	
	PHONÉ: 413 5266	46 ES- 865 BNOHA	Email:	, ,
PROJECT REFERENCE	0	ATTINE THEN HELVEN I FEL	Den Maran Hilostuti.	Cot.
	Matrix Codes: WA - Water AQ - Aqueous Liquid WG - Groun	WA - Water DW - Drinking Water SO - Soil WG - Groundwater WW - Wastewater SL - Sludge	SD - Solid WP - Wipe CF - Paint CK - Caulk	OL - Oil AR - Air
		REQUESTED ANALYSIS		
DATE COLLECTED COLLECTED S A B	SAMPLE IDENTIFIER	×-71+> ≥ 6 0 m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	REMARKS	PARADIGM LAB SAMPLE NUMBER
8/10/16 1025	LI-BIOG-MW-PS9	W6 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		11
8/10/16 1430	LI-BIOX-MW-PS9			10
8/9/16 1155	LI - DUP-PS9	4 4 4 4		13
	Trip Blank (T-722)	WA 1 X		14
	per somet label streets	2 (1) o 1) 2 "		

See additional page for sample condi	idditional page	See a			1 1 1 N	Į.	Ì		
verse).	d Conditions (re	Paradigm Terms an	client agrees to	By signing this form, client agrees to Paradigm Terms and Conditions (reverse).	Other EDD peeded:		Other please indicate package needed:	X	Other please indicate date needed:
		Date/Time		Received @ Lab By					Rush 1 day
	17:00	8/10/16		Ja.		K	Category B		Rush 2 day
P.I.F.	1635	S/15/16	place	Recoved By	NYSDEC EDD X		Category A		Rush 3 day
, [Date/Time		Relinquished By	Basic EDD .		Batch QC		10 day
Total Cost.	1887 199	Plo /	tank	Sampled by	None Required		None Required		Standard 5 day
	8/10/16/1430		1 Homa	Degmun	ees may apply.	al; additional f	Availability contingent upon lab approval; additional fees may apply	lity continger	Availabi
	1	13/	11/	1	ements	Report Supplements	7.0	a lime	i urnarouna i ime

litions.

Chain of Custody Supplement

Client:	Stantec	Completed by:	Glenn Pezzulo		
Lab Project ID:	163436	Date:	8/10/16		
	Sample Condition R Per NELAC/ELAP 210/24	equirements 1/242/243/244			
Condition A	NELAC compliance with the sample cond Yes	lition requirements upo No	on receipt N/A		
Container Type Comments					
Transferred to method- compliant container					
Headspace (<1 mL) Comments	✓ VOA				
Preservation Comments					
Chlorine Absent (<0.10 ppm per test strip) Comments					
Holding Time Comments					
Temperature Comments	5°C : ccd 8/10/16	16:39			
Sufficient Sample Quantity Comments					

ANALYTICAL REPORT

Lab Number: L1625232

Client: Paradigm Environmental Services

179 Lake Avenue Rochester, NY 14608

ATTN: Rebecca Ross Phone: (585) 647-2530

Project Name: 163436
Project Number: 163436
Report Date: 08/17/16

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NY (11148), CT (PH-0574), NH (2003), NJ NELAP (MA935), RI (LAO00065), ME (MA00086), PA (68-03671), VA (460195), MD (348), IL (200077), NC (666), TX (T104704476), DOD (L2217), USDA (Permit #P-330-11-00240).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 163436 Project Number: 163436
 Lab Number:
 L1625232

 Report Date:
 08/17/16

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1625232-01	163436-01 LI-RW-1-PS9	WATER	Not Specified	08/10/16 11:15	08/11/16
L1625232-02	163436-02 LI-RW-2-PS9	WATER	Not Specified	08/10/16 12:45	08/11/16
L1625232-03	163436-03 LI-RW-3-PS9	WATER	Not Specified	08/10/16 13:46	08/11/16
L1625232-04	163436-04 LI-RW-4-PS9	WATER	Not Specified	08/10/16 09:25	08/11/16
L1625232-05	163436-05 LI-RW-5-PS9	WATER	Not Specified	08/10/16 09:20	08/11/16
L1625232-06	163436-06 LI-RW-6-PS9	WATER	Not Specified	08/09/16 15:25	08/11/16
L1625232-07	163436-07 LI-RW-7-PS9	WATER	Not Specified	08/09/16 14:20	08/11/16
L1625232-08	163436-08 LI-RW-9-PS9	WATER	Not Specified	08/09/16 11:50	08/11/16
L1625232-09	163436-09 LI-RW12-PS9	WATER	Not Specified	08/09/16 10:47	08/11/16
L1625232-10	163436-10 LI-B102-MW-PS9	WATER	Not Specified	08/09/16 09:20	08/11/16
L1625232-11	163436-11 LI-B106-MW-PS9	WATER	Not Specified	08/10/16 10:25	08/11/16
L1625232-12	163436-12 LI-B108-MW-PS9	WATER	Not Specified	08/10/16 14:30	08/11/16
L1625232-13	163436-13 LI-DUP-PS9	WATER	Not Specified	08/09/16 11:55	08/11/16

 Project Name:
 163436
 Lab Number:
 L1625232

 Project Number:
 163436
 Report Date:
 08/17/16

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please contact	t Client Services	at 800-624-9220	with any	auestions.

 Project Name:
 163436
 Lab Number:
 L1625232

 Project Number:
 163436
 Report Date:
 08/17/16

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized Signature:

Title: Technical Director/Representative Date: 08/17/16

Smal Ing Lura L Troy

INORGANICS & MISCELLANEOUS

Project Name: 163436

Lab Number: L1625232

Project Number: 163436 Report Date: 08/17/16

SAMPLE RESULTS

Lab ID: L1625232-01 Date Collected: 08/10/16 11:15

Client ID: 163436-01 LI-RW-1-PS9 Date Received: 08/11/16
Sample Location: Not Specified Field Prep: Not Specified

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab									
Total Organic Carbon	7.51		mg/l	1.00	0.228	2	-	08/16/16 07:36	121,5310C	DW

Project Name: Lab Number: 163436 L1625232 **Project Number:** 163436

Report Date: 08/17/16

SAMPLE RESULTS

Lab ID: L1625232-02 Date Collected: 08/10/16 12:45

163436-02 LI-RW-2-PS9 Client ID: Date Received: 08/11/16 Sample Location: Not Specified Not Specified Field Prep:

Matrix: Water

Parameter	Result C	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab									
Total Organic Carbon	7.97		mg/l	1.00	0.228	2	-	08/16/16 07:36	121,5310C	DW

Project Name: 163436

Lab Number: L1625232

Project Number: 43436

Report Date: 09/47/46

Project Number: 163436 Report Date: 08/17/16

SAMPLE RESULTS

Lab ID: L1625232-03 Date Collected: 08/10/16 13:46

Client ID: 163436-03 LI-RW-3-PS9 Date Received: 08/11/16
Sample Location: Not Specified Field Prep: Not Specified

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab									
Total Organic Carbon	8.28		mg/l	1.00	0.228	2	-	08/16/16 07:36	121,5310C	DW

Project Name: 163436

Lab Number: L1625232

Project Number: 403436

Project Number: 163436 Report Date: 08/17/16

SAMPLE RESULTS

Lab ID: L1625232-04 Date Collected: 08/10/16 09:25

Client ID: 163436-04 LI-RW-4-PS9 Date Received: 08/11/16
Sample Location: Not Specified Field Prep: Not Specified

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab									
Total Organic Carbon	13.4		mg/l	1.00	0.228	2	-	08/16/16 07:36	121,5310C	DW

Project Name: 163436

Lab Number: L1625232

Project Number: 433436

Report Date: 08/47/46

Project Number: 163436 Report Date: 08/17/16

SAMPLE RESULTS

Lab ID: L1625232-05 Date Collected: 08/10/16 09:20

Client ID: 163436-05 LI-RW-5-PS9 Date Received: 08/11/16
Sample Location: Not Specified Field Prep: Not Specified

Sample Location: Not Specified Field Prep: Not Specified Matrix: Water

Analytical Method **Dilution** Date Date Factor Prepared Analyzed Result Qualifier Units RL MDL **Parameter Analyst** General Chemistry - Westborough Lab Total Organic Carbon 3.69 mg/l 1.00 0.228 2 08/16/16 07:36 121,5310C DW

Project Name: 163436

Lab Number: L1625232

Project Number: 163436 Report Date: 08/17/16

SAMPLE RESULTS

Lab ID: L1625232-06 Date Collected: 08/09/16 15:25

Client ID: 163436-06 LI-RW-6-PS9 Date Received: 08/11/16
Sample Location: Not Specified Field Prep: Not Specified

Matrix: Water

Analytical Method **Dilution** Date Date Factor Prepared Result Qualifier Units Analyzed Parameter RL MDL **Analyst** General Chemistry - Westborough Lab Total Organic Carbon 2.09 mg/l 1.00 0.228 2 08/16/16 07:36 121,5310C DW

Project Name: 163436

Lab Number: L1625232

Project Number: 163436 Report Date: 08/17/16

SAMPLE RESULTS

Lab ID: L1625232-07 Date Collected: 08/09/16 14:20

Client ID: 163436-07 LI-RW-7-PS9 Date Received: 08/11/16
Sample Location: Not Specified Field Prep: Not Specified

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab									
Total Organic Carbon	3.68		mg/l	1.00	0.228	2	-	08/16/16 07:36	121,5310C	DW

Project Name: 163436

Lab Number: L1625232

Project Number: 403436

Project Number: 163436 Report Date: 08/17/16

SAMPLE RESULTS

Lab ID: L1625232-08 Date Collected: 08/09/16 11:50

Client ID: 163436-08 LI-RW-9-PS9 Date Received: 08/11/16
Sample Location: Not Specified Field Prep: Not Specified

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab									
Total Organic Carbon	2.64		mg/l	1.00	0.228	2	-	08/16/16 07:36	121,5310C	DW

Project Name: 163436 Lab Number: L1625232

Project Number: 163436 Report Date: 08/17/16

SAMPLE RESULTS

Lab ID: L1625232-09 Date Collected: 08/09/16 10:47

Client ID: 163436-09 LI-RW12-PS9 Date Received: 08/11/16
Sample Location: Not Specified Field Prep: Not Specified

Sample Location: Not Specified Field Prep: Not Specified Matrix: Water

Analytical Method **Dilution** Date Date Factor Prepared Result Qualifier Units Analyzed Parameter RL MDL **Analyst** General Chemistry - Westborough Lab Total Organic Carbon 1.48 mg/l 1.00 0.228 2 08/16/16 07:36 121,5310C DW

Project Name: Lab Number: 163436 L1625232 **Project Number:** 163436

Report Date: 08/17/16

SAMPLE RESULTS

Lab ID: L1625232-10

163436-10 LI-B102-MW-PS9 Client ID: Date Received: 08/11/16

Sample Location: Not Specified Matrix: Water

Not Specified Field Prep:

08/09/16 09:20

Date Collected:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab)								
Total Organic Carbon	2.62		mg/l	1.00	0.228	2	-	08/16/16 07:36	121,5310C	DW

Project Name: Lab Number: 163436 L1625232 **Project Number:** 163436

Report Date: 08/17/16

SAMPLE RESULTS

Lab ID: L1625232-11

163436-11 LI-B106-MW-PS9 Client ID: Date Received:

Not Specified Sample Location: Matrix: Water

08/11/16 Not Specified Field Prep:

08/10/16 10:25

Date Collected:

Analytical Method **Dilution** Date Date Factor Prepared Result Qualifier Units Analyzed Parameter RL MDL **Analyst** General Chemistry - Westborough Lab Total Organic Carbon 7.38 mg/l 1.00 0.228 2 08/16/16 07:36 121,5310C DW

Project Name: 163436

Lab Number: L1625232

Project Number: 43436

Report Date: 09/47/46

Project Number: 163436 Report Date: 08/17/16

SAMPLE RESULTS

Lab ID: L1625232-12

Client ID: 163436-12 LI-B108-MW-PS9 Date Received: 08/11/16

Sample Location: Not Specified Matrix: Water

Field Prep: Not Specified

08/10/16 14:30

Date Collected:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab)								
Total Organic Carbon	27.6		mg/l	2.00	0.456	4	-	08/16/16 07:36	121,5310C	DW

Project Name: 163436

Lab Number: L1625232

Project Number: 403436

Project Number: 163436 Report Date: 08/17/16

SAMPLE RESULTS

Lab ID: L1625232-13 Date Collected: 08/09/16 11:55

Client ID: 163436-13 LI-DUP-PS9 Date Received: 08/11/16
Sample Location: Not Specified Field Prep: Not Specified

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab									
Total Organic Carbon	2.65		mg/l	1.00	0.228	2	-	08/16/16 07:36	121,5310C	DW

 Project Name:
 163436

 Lab Number:
 L1625232

Project Number: 163436 Report Date: 08/17/16

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab for sam	ple(s): 01	I-13 Ba	tch: W0	G923068-1				
Total Organic Carbon	ND	mg/l	0.500	0.114	1	-	08/16/16 07:36	121,5310C	DW

Lab Control Sample Analysis Batch Quality Control

Project Name: 163436 Batch Quality Con

Lab Number: L1625232

Report Date: 08/17/16

Parameter	LCS %Recovery Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab	Associated sample(s): 01-13	Batch: WG923068	-2				
Total Organic Carbon	98	-		90-110	-		

Project Number:

163436

Matrix Spike Analysis Batch Quality Control

Project Name: 163436 Project Number: 163436 Lab Number:

L1625232

Report Date:

08/17/16

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Q	Recovery ual Limits	RPD	RPD Qual Limits
General Chemistry - Westborough B102-MW-PS9	gh Lab Asso	ciated samp	le(s): 01-13	QC Batch II	D: WG923068-4	QC Sample: L16	25232-10 Clier	nt ID: 1	163436-10 LI-
Total Organic Carbon	2.62	8	9.53	86	-	-	80-120	-	20

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L1625232

Report Date:

08/17/16

Parameter	Native Sam	ple D	Ouplicate Sampl	e Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated samp B102-MW-PS9	ole(s): 01-13	QC Batch ID:	WG923068-3	QC Sample:	L1625232-10	Client ID:	163436-10 LI-
Total Organic Carbon	2.62		2.77	mg/l	6		20

Project Name:

Project Number: 163436

163436

 Project Name:
 163436
 Lab Number:
 L1625232

 Project Number:
 163436
 Report Date:
 08/17/16

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal Cooler

A Absent

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рΗ		Pres	Seal	Analysis(*)
L1625232-01A	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1625232-01B	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1625232-02A	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1625232-02B	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1625232-03A	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1625232-03B	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1625232-04A	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1625232-04B	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1625232-05A	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1625232-05B	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1625232-06A	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1625232-06B	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1625232-07A	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1625232-07B	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1625232-08A	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1625232-08B	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1625232-09A	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1625232-09B	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1625232-10A	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1625232-10A1	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1625232-10A2	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1625232-10B	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1625232-10B1	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1625232-10B2	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1625232-11A	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1625232-11B	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1625232-12A	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1625232-12B	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)
L1625232-13A	Vial H2SO4 preserved	Α	N/A	4.2	Υ	Absent	TOC-5310(28)

Project Name: Lab Number: L1625232 163436 Project Number: 163436

Report Date: 08/17/16

Container Information Temp deg C Pres Seal **Container ID Container Type** Cooler рΗ Analysis(*) Vial H2SO4 preserved TOC-5310(28) L1625232-13B Α N/A 4.2 Υ Absent

 Project Name:
 163436
 Lab Number:
 L1625232

 Project Number:
 163436
 Report Date:
 08/17/16

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

-The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 163436
 Lab Number:
 L1625232

 Project Number:
 163436
 Report Date:
 08/17/16

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 163436
 Lab Number:
 L1625232

 Project Number:
 163436
 Report Date:
 08/17/16

REFERENCES

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc. Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

Serial_No:08171612:03

ID No.:17873 Revision 7

Published Date: 8/5/2016 11:25:56 AM

Page 1 of 1

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: NPW: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; SCM: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-

Tetramethylbenzene: 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide EPA 9050A: NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9222D-MF.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

179 Lake Avenue, Rochester, NY 14608 Office (585) 647-2530 Fax (585) 647-3311

CHAIN OF CUSTODY

11148

PΔ	RADIG	Me.	150		REPORT TO:	12 7-14 23					INVC	ICE TO			200.	ی محر	-		
	HMEHTAL SERVICES	100	COMPAN	raia	digm Enviror	nmental		COMPAN	Y:	San					LAB PROJECT #:	CLII	ENT PROJEC	CT #:	
1000			ADDRESS	179 L	ake Avenue			ADDRES	S:										
3			CITY:	Rochester	STATE:	NY ZIP: 1	4608	CITY:				STATE	:	ZIP:	TURNAROUND TIME	E: (WORKIN	NG DAYS)		
	The state of the s		PHONE:		FAX:			PHONE:			F	AX:	-				STD		OTUED
PROJECT NAME/SIT	E NAME:		ATTN:	Repo	rting			ATTN:	-	Accoun	ts Pay	able			1 72	П	X 5		OTHER
			COMMEN	rs: Pleas	e email resul	Its to reportin	g@p	aradigr	nenv	.com				-		1	-		
				F 26 1 1 1 1						EQUES	TED A	NALY	SIS		Date Due: 2	5/19	/16	for d	at q
		С			10.1			С	ΙŤ		T			Repair	J F/955	0	C 1	- 1	
		O M	G				M A	N N U T						100	(100	20	6 610	sed-	1.7
DATE	TIME	0	R	SAMI	PLE LOCATION/FIEL	LD ID	T R	MAS			11	11		143F	Cat B Pace	rase l	PAPADIG	1 / 1 / 1	LE NUMBER
		S	В				1	E	0					SW - 8	346 HT's		PARADIGI	W LAD SAWF	LE NUMBER
1-0		T E					X	R E	6			11							
18/10/16	11:15		1	1634	36-01		und	2	X		+	+	++	IT A	1 00	0		TI	
)	12:45		+	A .	-02	U s	nter	1	1	++	+	++	++		W-1-PS		\vdash	+	
2	13:46				-03		+		+	++	+		11		w-2-PS		\vdash	+	
			+				+		+	++	+	++	++		0-3-PS		H	4	
	09:25				-04		+		+	++	-		++		U-4-PS		\vdash		
o la tit	09:20				-05		-		1	-		+	11		U-5-PS				
8/9/16			-		_ o C		-		1	-	44	4			U-6-P5				
	14:20		-		-07				4				\perp	LI-RO	N-7- PS	9			
3	11:50				-08					11					W-9-PS				
9	10:47				-09			4						LI-R	W-12-PS	19			
0 +	09:20			+	-10		1	6	to	ms/	450	- 10		LI-B	102-MW	- PS9			
*LAB USE C sample Condition				3/244					9 69	175	900	1000							EGREEN
	Receipt Paran			NELAC Co	mpliance														
	Container Typ	e:		Υ 🗌	N 🔲	C	lient									Г			
omments:						Sampled I	Ву					Date/T			Tota	al Cost:			
	Preservation	1:		Υ	N	1	12				.8	/11/	16	16:	00				
omments:						Relinquis		У				Date/T	ime	180		_			
	Holding Time	e :		Y 🔲	N 🗌		10	The	~	AA	5	> /n	116	18 -					
omments:						Received	Ву					Date/T	ime		P.I.F	: [
ommonte.	Temperature):		Υ	N 🔲	J.X	Lo	nu	~ ×	SOL	8	/w/	16						
omments:						Received	Ву	100			-	Date/T					·		
Page 20 of t	30					Received	@ 1 2	help			81	12/16 Date/T	imo	940					
Page 29 of 3	30					i veceived	e rar	, Dy ,				Date/1	ine						

179 Lake Avenue, Rochester, NY 14608 Office (585) 647-2530 Fax (585) 647-3311

CHAIN OF CUSTODY

11148

PA	RADIG	Me			REPORT T	0:		277		ans:	INVOICE	TO:				.0-1			
	HEMINE SERVICES	- 1 to 1	COMPANY	Y: Para	digm Envir	ronmental		COMPA	NY:	Same					LAB PROJEC	CT #:	CLIENT P	ROJECT#;	
1			ADDRESS	i 179 L	ake Aveni			ADDRES	SS:										
	The state of the s		CITY:	Rochester	STA	TE: NY ZIP:	14608	CITY:				STATE:	2	ZIP:	TURNAROUN	D TIME: (WO	RKING DA	YS)	
	The party		PHONE:		FAX:			PHONE:			FAX:						STD		OTUE
PROJECT NAME/SITE	E NAME:		ATTN:	Repo	rting			ATTN:	Ac	counts	Payable	9				7.	3 X		OTHER
			COMMENT	rs: Pleas	e email res	sults to reporting	ng@p	aradig	menv.c	om					 ' 		3 6	5	
OPE ST				4.043.54		COVER N		4 195		QUESTI	FD ANA	I VSIS			Date Du	ie:		E CHILD	
		C						С					TT				T		
DATE	TIME	O M P O S I T E	G R A B	SAM	PLE LOCATION/F	FIELD ID	M A T R I	N N T S E R E R	TOC						REMARKS		PAF	RADIGM LAB	SAMPLE NUMBER
1 8/10/16	10:25			1634	36-	11 6	ound	2	X			3	11,	LI-B	101 1	11.1 00	0	TI	
2 1	14:30				- 1		ater	1	1			++		T RI	0 - 11	, po		-	
3 8/9/16	11:55				- 1		1	1	1				1	I-B1	OD MI	0-13	1	+	
4	1113			7	-							+		1 . 00	41 - P.	37			
5										-	++		+				\dashv	++	
-							-					+					\perp		
6							-	-					++					+	
			+						-		\perp	++	+						- 1
8																			
9													14						
10 ™LAB USE O	NI V PEI O	WATER OF	NIE++				-	CONTRACTOR OF											
Sample Condition	n: Per NELAC	/ELAP 210/2	NE 41/242/24:	3/244			57.45			<u> </u>					A CONTRACTOR				
	Receipt Para	meter		NELAC Co	mpliance														
Comments:	Container Ty	pe:		Υ 🔲	N _		Client												
Johnnents.						Sampled	Ву				D	ate/Time				Total Cos	st:		- 1
Comments:	Preservatio	n:		Υ 🗌	N _	1	12				8/	11/1	6	16	60 ;				
Johnneiks.						Relinquis		У				ate/Time							
Comments:	Holding Tim	ie:		Υ 🗌	N _	A. 8	10	no	~ P	Sao	,8/	21/	6	180					
Johnnonia.						Received	By				1	ate/Time				P.I.F.		7	
Comments:	Temperatur	e:		Υ .	N 🔲	(4.)	Do	one	N	AL.		1/16					-		
						Réceived	By	110				ate/Time					-		
Page 30 of 3	30					Received	@ Lab	By			8/12	//Cate/Time	0,	140	 -				
. 440 00 01 0	<i>-</i>						-				-								

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-1-PS15

Lab Sample ID:170564-01Date Sampled:2/13/2017Matrix:GroundwaterDate Received:2/15/2017

Volatile Organics

G				
<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		2/24/2017 02:42
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		2/24/2017 02:42
1,1,2-Trichloroethane	< 2.00	ug/L		2/24/2017 02:42
1,1-Dichloroethane	< 2.00	ug/L		2/24/2017 02:42
1,1-Dichloroethene	< 2.00	ug/L		2/24/2017 02:42
1,2,3-Trichlorobenzene	< 5.00	ug/L		2/24/2017 02:42
1,2,4-Trichlorobenzene	< 5.00	ug/L		2/24/2017 02:42
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		2/24/2017 02:42
1,2-Dibromoethane	< 2.00	ug/L		2/24/2017 02:42
1,2-Dichlorobenzene	< 2.00	ug/L		2/24/2017 02:42
1,2-Dichloroethane	< 2.00	ug/L		2/24/2017 02:42
1,2-Dichloropropane	< 2.00	ug/L		2/24/2017 02:42
1,3-Dichlorobenzene	< 2.00	ug/L		2/24/2017 02:42
1,4-Dichlorobenzene	< 2.00	ug/L		2/24/2017 02:42
1,4-dioxane	< 20.0	ug/L		2/24/2017 02:42
2-Butanone	< 10.0	ug/L		2/24/2017 02:42
2-Hexanone	< 5.00	ug/L		2/24/2017 02:42
4-Methyl-2-pentanone	< 5.00	ug/L		2/24/2017 02:42
Acetone	< 10.0	ug/L		2/24/2017 02:42
Benzene	< 1.00	ug/L		2/24/2017 02:42
Bromochloromethane	< 5.00	ug/L		2/24/2017 02:42
Bromodichloromethane	< 2.00	ug/L		2/24/2017 02:42
Bromoform	< 5.00	ug/L		2/24/2017 02:42
Bromomethane	< 2.00	ug/L		2/24/2017 02:42
Carbon disulfide	< 2.00	ug/L		2/24/2017 02:42
Carbon Tetrachloride	< 2.00	ug/L		2/24/2017 02:42
Chlorobenzene	< 2.00	ug/L		2/24/2017 02:42

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier:	LI-RW-1-PS15					
-				D . C . I I	0.440.4004.5	
Lab Sample ID:	170564-01			Date Sampled:	2/13/2017	
Matrix:	Groundwater			Date Received:	2/15/2017	
Chloroethane	<	2.00	ug/L		2/24/2017	02:42
Chloroform	<	2.00	ug/L		2/24/2017	02:42
Chloromethane	<	2.00	ug/L		2/24/2017	02:42
cis-1,2-Dichloroethene	<	2.00	ug/L		2/24/2017	02:42
cis-1,3-Dichloropropen	e <	2.00	ug/L		2/24/2017	02:42
Cyclohexane	<	10.0	ug/L		2/24/2017	02:42
Dibromochloromethan	e <	2.00	ug/L		2/24/2017	02:42
Dichlorodifluorometha	ne <	2.00	ug/L		2/24/2017	02:42
Ethylbenzene	<	2.00	ug/L		2/24/2017	02:42
Freon 113	<	2.00	ug/L		2/24/2017	02:42
Isopropylbenzene	<	2.00	ug/L		2/24/2017	02:42
m,p-Xylene	<	2.00	ug/L		2/24/2017	02:42
Methyl acetate	<	2.00	ug/L		2/24/2017	02:42
Methyl tert-butyl Ether	<	2.00	ug/L		2/24/2017	02:42
Methylcyclohexane	<	2.00	ug/L		2/24/2017	02:42
Methylene chloride	<	5.00	ug/L		2/24/2017	02:42
o-Xylene	<	2.00	ug/L		2/24/2017	02:42
Styrene	<	5.00	ug/L		2/24/2017	02:42
Tetrachloroethene	<	2.00	ug/L		2/24/2017	02:42
Toluene	<	2.00	ug/L		2/24/2017	02:42
trans-1,2-Dichloroether	ne <	2.00	ug/L		2/24/2017	02:42
trans-1,3-Dichloroprop	ene <	2.00	ug/L		2/24/2017	02:42
Trichloroethene	<	2.00	ug/L		2/24/2017	02:42
Trichlorofluoromethan	e <	2.00	ug/L		2/24/2017	02:42
Vinyl chloride	<	2.00	ug/L		2/24/2017	02:42

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-1-PS15

Lab Sample ID:170564-01Date Sampled:2/13/2017Matrix:GroundwaterDate Received:2/15/2017

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4	100	81.2 - 120		2/24/2017	02:42
4-Bromofluorobenzene	88.3	82.4 - 112		2/24/2017	02:42
Pentafluorobenzene	102	90.2 - 112		2/24/2017	02:42
Toluene-D8	94.6	89.9 - 109		2/24/2017	02:42

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x39448.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-2-PS15

Lab Sample ID: 170564-02 **Date Sampled:** 2/13/2017

Matrix: Groundwater Date Received: 2/15/2017

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		2/24/2017 07:37
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		2/24/2017 07:37
1,1,2-Trichloroethane	< 2.00	ug/L		2/24/2017 07:37
1,1-Dichloroethane	< 2.00	ug/L	M	2/24/2017 07:37
1,1-Dichloroethene	< 2.00	ug/L		2/24/2017 07:37
1,2,3-Trichlorobenzene	< 5.00	ug/L		2/24/2017 07:37
1,2,4-Trichlorobenzene	< 5.00	ug/L		2/24/2017 07:37
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		2/24/2017 07:37
1,2-Dibromoethane	< 2.00	ug/L		2/24/2017 07:37
1,2-Dichlorobenzene	< 2.00	ug/L		2/24/2017 07:37
1,2-Dichloroethane	< 2.00	ug/L		2/24/2017 07:37
1,2-Dichloropropane	< 2.00	ug/L		2/24/2017 07:37
1,3-Dichlorobenzene	< 2.00	ug/L		2/24/2017 07:37
1,4-Dichlorobenzene	< 2.00	ug/L		2/24/2017 07:37
1,4-dioxane	< 20.0	ug/L		2/24/2017 07:37
2-Butanone	< 10.0	ug/L		2/24/2017 07:37
2-Hexanone	< 5.00	ug/L		2/24/2017 07:37
4-Methyl-2-pentanone	< 5.00	ug/L		2/24/2017 07:37
Acetone	< 10.0	ug/L		2/24/2017 07:37
Benzene	< 1.00	ug/L		2/24/2017 07:37
Bromochloromethane	< 5.00	ug/L		2/24/2017 07:37
Bromodichloromethane	< 2.00	ug/L		2/24/2017 07:37
Bromoform	< 5.00	ug/L		2/24/2017 07:37
Bromomethane	< 2.00	ug/L		2/24/2017 07:37
Carbon disulfide	< 2.00	ug/L		2/24/2017 07:37
Carbon Tetrachloride	< 2.00	ug/L		2/24/2017 07:37
Chlorobenzene	< 2.00	ug/L		2/24/2017 07:37

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Cample Identifica	11 DW/ 2 DC1				
Sample Identifier:	LI-RW-2-PS15				0.440.4004.5
Lab Sample ID:	170564-02			Date Sampled:	2/13/2017
Matrix:	Groundwater			Date Received:	2/15/2017
Chloroethane		< 2.00	ug/L		2/24/2017 07:
Chloroform		< 2.00	ug/L		2/24/2017 07:
Chloromethane		< 2.00	ug/L		2/24/2017 07:
cis-1,2-Dichloroethene		< 2.00	ug/L		2/24/2017 07:
cis-1,3-Dichloropropene		< 2.00	ug/L	M	2/24/2017 07:
Cyclohexane		< 10.0	ug/L		2/24/2017 07:
Dibromochloromethane		< 2.00	ug/L		2/24/2017 07:
Dichlorodifluoromethan	е	< 2.00	ug/L		2/24/2017 07:
Ethylbenzene		< 2.00	ug/L		2/24/2017 07:
Freon 113		< 2.00	ug/L		2/24/2017 07:
Isopropylbenzene		< 2.00	ug/L		2/24/2017 07:
m,p-Xylene		< 2.00	ug/L		2/24/2017 07:
Methyl acetate		< 2.00	ug/L		2/24/2017 07:
Methyl tert-butyl Ether		< 2.00	ug/L		2/24/2017 07:
Methylcyclohexane		< 2.00	ug/L		2/24/2017 07:
Methylene chloride		< 5.00	ug/L		2/24/2017 07:
o-Xylene		< 2.00	ug/L		2/24/2017 07:
Styrene		< 5.00	ug/L		2/24/2017 07:
Tetrachloroethene		< 2.00	ug/L		2/24/2017 07:
Toluene		< 2.00	ug/L		2/24/2017 07:
trans-1,2-Dichloroethene	9	< 2.00	ug/L		2/24/2017 07:
trans-1,3-Dichloroprope	ne	< 2.00	ug/L	M	2/24/2017 07:
Trichloroethene		< 2.00	ug/L		2/24/2017 07:
Trichlorofluoromethane		< 2.00	ug/L		2/24/2017 07:
Vinyl chloride		< 2.00	ug/L		2/24/2017 07:

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-2-PS15

Lab Sample ID:170564-02Date Sampled:2/13/2017Matrix:GroundwaterDate Received:2/15/2017

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4	102	81.2 - 120		2/24/2017	07:37
4-Bromofluorobenzene	84.8	82.4 - 112		2/24/2017	07:37
Pentafluorobenzene	98.2	90.2 - 112		2/24/2017	07:37
Toluene-D8	91.8	89.9 - 109		2/24/2017	07:37

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x39459.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-3-PS15

Lab Sample ID:170564-03Date Sampled:2/13/2017Matrix:GroundwaterDate Received:2/15/2017

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		2/24/2017 03:06
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		2/24/2017 03:06
1,1,2-Trichloroethane	< 2.00	ug/L		2/24/2017 03:06
1,1-Dichloroethane	< 2.00	ug/L		2/24/2017 03:06
1,1-Dichloroethene	< 2.00	ug/L		2/24/2017 03:06
1,2,3-Trichlorobenzene	< 5.00	ug/L		2/24/2017 03:06
1,2,4-Trichlorobenzene	< 5.00	ug/L		2/24/2017 03:06
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		2/24/2017 03:06
1,2-Dibromoethane	< 2.00	ug/L		2/24/2017 03:06
1,2-Dichlorobenzene	< 2.00	ug/L		2/24/2017 03:06
1,2-Dichloroethane	< 2.00	ug/L		2/24/2017 03:06
1,2-Dichloropropane	< 2.00	ug/L		2/24/2017 03:06
1,3-Dichlorobenzene	< 2.00	ug/L		2/24/2017 03:06
1,4-Dichlorobenzene	< 2.00	ug/L		2/24/2017 03:06
1,4-dioxane	< 20.0	ug/L		2/24/2017 03:06
2-Butanone	< 10.0	ug/L		2/24/2017 03:06
2-Hexanone	< 5.00	ug/L		2/24/2017 03:06
4-Methyl-2-pentanone	< 5.00	ug/L		2/24/2017 03:06
Acetone	< 10.0	ug/L		2/24/2017 03:06
Benzene	< 1.00	ug/L		2/24/2017 03:06
Bromochloromethane	< 5.00	ug/L		2/24/2017 03:06
Bromodichloromethane	< 2.00	ug/L		2/24/2017 03:06
Bromoform	< 5.00	ug/L		2/24/2017 03:06
Bromomethane	< 2.00	ug/L		2/24/2017 03:06
Carbon disulfide	< 2.00	ug/L		2/24/2017 03:06
Carbon Tetrachloride	< 2.00	ug/L		2/24/2017 03:06
Chlorobenzene	< 2.00	ug/L		2/24/2017 03:06

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier:	LI-RW-3-PS15					
Lab Sample ID:	170564-03			Date Sampled:	2/13/2017	
Matrix:	Groundwater			Date Received:	2/15/2017	
Chloroethane		< 2.00	ug/L		2/24/2017	03:06
Chloroform		< 2.00	ug/L		2/24/2017	03:06
Chloromethane		< 2.00	ug/L		2/24/2017	03:06
cis-1,2-Dichloroethene		< 2.00	ug/L		2/24/2017	03:06
cis-1,3-Dichloropropene	e	< 2.00	ug/L		2/24/2017	03:06
Cyclohexane		< 10.0	ug/L		2/24/2017	03:06
Dibromochloromethane	2	< 2.00	ug/L		2/24/2017	03:06
Dichlorodifluoromethar	ne	< 2.00	ug/L		2/24/2017	03:06
Ethylbenzene		< 2.00	ug/L		2/24/2017	03:06
Freon 113		< 2.00	ug/L		2/24/2017	03:06
Isopropylbenzene		< 2.00	ug/L		2/24/2017	03:06
m,p-Xylene		< 2.00	ug/L		2/24/2017	03:06
Methyl acetate		< 2.00	ug/L		2/24/2017	03:06
Methyl tert-butyl Ether		1.35	ug/L	J	2/24/2017	03:06
Methylcyclohexane		< 2.00	ug/L		2/24/2017	03:06
Methylene chloride		< 5.00	ug/L		2/24/2017	03:06
o-Xylene		< 2.00	ug/L		2/24/2017	03:06
Styrene		< 5.00	ug/L		2/24/2017	03:06
Tetrachloroethene		< 2.00	ug/L		2/24/2017	03:06
Toluene		< 2.00	ug/L		2/24/2017	03:06
trans-1,2-Dichloroethen	ne	< 2.00	ug/L		2/24/2017	03:06
trans-1,3-Dichloroprope	ene	< 2.00	ug/L		2/24/2017	03:06
Trichloroethene		< 2.00	ug/L		2/24/2017	03:06
Trichlorofluoromethane	e	< 2.00	ug/L		2/24/2017	03:06
Vinyl chloride		< 2.00	ug/L		2/24/2017	03:06

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-3-PS15

Lab Sample ID:170564-03Date Sampled:2/13/2017Matrix:GroundwaterDate Received:2/15/2017

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyzed	
1,2-Dichloroethane-d4	101	81.2 - 120		2/24/2017	03:06
4-Bromofluorobenzene	88.6	82.4 - 112		2/24/2017	03:06
Pentafluorobenzene	99.9	90.2 - 112		2/24/2017	03:06
Toluene-D8	93.2	89.9 - 109		2/24/2017	03:06

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x39449.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-4-PS15

Lab Sample ID: 170564-04 **Date Sampled:** 2/13/2017

Matrix: Groundwater Date Received: 2/15/2017

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		2/24/2017 03:30
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		2/24/2017 03:30
1,1,2-Trichloroethane	< 2.00	ug/L		2/24/2017 03:30
1,1-Dichloroethane	< 2.00	ug/L		2/24/2017 03:30
1,1-Dichloroethene	< 2.00	ug/L		2/24/2017 03:30
1,2,3-Trichlorobenzene	< 5.00	ug/L		2/24/2017 03:30
1,2,4-Trichlorobenzene	< 5.00	ug/L		2/24/2017 03:30
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		2/24/2017 03:30
1,2-Dibromoethane	< 2.00	ug/L		2/24/2017 03:30
1,2-Dichlorobenzene	< 2.00	ug/L		2/24/2017 03:30
1,2-Dichloroethane	< 2.00	ug/L		2/24/2017 03:30
1,2-Dichloropropane	< 2.00	ug/L		2/24/2017 03:30
1,3-Dichlorobenzene	< 2.00	ug/L		2/24/2017 03:30
1,4-Dichlorobenzene	< 2.00	ug/L		2/24/2017 03:30
1,4-dioxane	< 20.0	ug/L		2/24/2017 03:30
2-Butanone	< 10.0	ug/L		2/24/2017 03:30
2-Hexanone	< 5.00	ug/L		2/24/2017 03:30
4-Methyl-2-pentanone	< 5.00	ug/L		2/24/2017 03:30
Acetone	< 10.0	ug/L		2/24/2017 03:30
Benzene	< 1.00	ug/L		2/24/2017 03:30
Bromochloromethane	< 5.00	ug/L		2/24/2017 03:30
Bromodichloromethane	< 2.00	ug/L		2/24/2017 03:30
Bromoform	< 5.00	ug/L		2/24/2017 03:30
Bromomethane	< 2.00	ug/L		2/24/2017 03:30
Carbon disulfide	< 2.00	ug/L		2/24/2017 03:30
Carbon Tetrachloride	< 2.00	ug/L		2/24/2017 03:30
Chlorobenzene	< 2.00	ug/L		2/24/2017 03:30

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier:	LI-RW-4-PS15					
Lab Sample ID:	170564-04			Date Sampled:	2/13/2017	
Matrix:	Groundwater			Date Received:	2/15/2017	
Chloroethane		< 2.00	ug/L		2/24/2017 03	3:30
Chloroform		< 2.00	ug/L		2/24/2017 03	3:30
Chloromethane		< 2.00	ug/L		2/24/2017 03	3:30
cis-1,2-Dichloroethene		4.93	ug/L		2/24/2017 03	3:30
cis-1,3-Dichloropropen	е	< 2.00	ug/L		2/24/2017 03	3:30
Cyclohexane		< 10.0	ug/L		2/24/2017 03	3:30
Dibromochloromethane	2	< 2.00	ug/L		2/24/2017 03	3:30
Dichlorodifluoromethan	ne	< 2.00	ug/L		2/24/2017 03	3:30
Ethylbenzene		< 2.00	ug/L		2/24/2017 03	3:30
Freon 113		< 2.00	ug/L		2/24/2017 03	3:30
Isopropylbenzene		< 2.00	ug/L		2/24/2017 03	3:30
m,p-Xylene		< 2.00	ug/L		2/24/2017 03	3:30
Methyl acetate		< 2.00	ug/L		2/24/2017 03	3:30
Methyl tert-butyl Ether		< 2.00	ug/L		2/24/2017 03	3:30
Methylcyclohexane		< 2.00	ug/L		2/24/2017 03	3:30
Methylene chloride		< 5.00	ug/L		2/24/2017 03	3:30
o-Xylene		< 2.00	ug/L		2/24/2017 03	3:30
Styrene		< 5.00	ug/L		2/24/2017 03	3:30
Tetrachloroethene		< 2.00	ug/L		2/24/2017 03	3:30
Toluene		< 2.00	ug/L		2/24/2017 03	3:30
trans-1,2-Dichloroether	ne	< 2.00	ug/L		2/24/2017 03	3:30
trans-1,3-Dichloroprop	ene	< 2.00	ug/L		2/24/2017 03	3:30
Trichloroethene		< 2.00	ug/L		2/24/2017 03	3:30
Trichlorofluoromethane	e	< 2.00	ug/L		2/24/2017 03	3:30
Vinyl chloride		1.39	ug/L	J	2/24/2017 03	3:30

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-4-PS15

Lab Sample ID:170564-04Date Sampled:2/13/2017Matrix:GroundwaterDate Received:2/15/2017

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analyzed	
1,2-Dichloroethane-d4	102	81.2 - 120		2/24/2017	03:30
4-Bromofluorobenzene	87.2	82.4 - 112		2/24/2017	03:30
Pentafluorobenzene	101	90.2 - 112		2/24/2017	03:30
Toluene-D8	93.2	89.9 - 109		2/24/2017	03:30

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x39450.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-5-PS15

Lab Sample ID: 170564-05 **Date Sampled:** 2/14/2017

Matrix: Groundwater Date Received: 2/15/2017

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L	-	2/24/2017 03:53
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		2/24/2017 03:53
1,1,2-Trichloroethane	< 2.00	ug/L		2/24/2017 03:53
1,1-Dichloroethane	< 2.00	ug/L		2/24/2017 03:53
1,1-Dichloroethene	< 2.00	ug/L		2/24/2017 03:53
1,2,3-Trichlorobenzene	< 5.00	ug/L		2/24/2017 03:53
1,2,4-Trichlorobenzene	< 5.00	ug/L		2/24/2017 03:53
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		2/24/2017 03:53
1,2-Dibromoethane	< 2.00	ug/L		2/24/2017 03:53
1,2-Dichlorobenzene	< 2.00	ug/L		2/24/2017 03:53
1,2-Dichloroethane	< 2.00	ug/L		2/24/2017 03:53
1,2-Dichloropropane	< 2.00	ug/L		2/24/2017 03:53
1,3-Dichlorobenzene	< 2.00	ug/L		2/24/2017 03:53
1,4-Dichlorobenzene	< 2.00	ug/L		2/24/2017 03:53
1,4-dioxane	< 20.0	ug/L		2/24/2017 03:53
2-Butanone	< 10.0	ug/L		2/24/2017 03:53
2-Hexanone	< 5.00	ug/L		2/24/2017 03:53
4-Methyl-2-pentanone	< 5.00	ug/L		2/24/2017 03:53
Acetone	< 10.0	ug/L		2/24/2017 03:53
Benzene	< 1.00	ug/L		2/24/2017 03:53
Bromochloromethane	< 5.00	ug/L		2/24/2017 03:53
Bromodichloromethane	< 2.00	ug/L		2/24/2017 03:53
Bromoform	< 5.00	ug/L		2/24/2017 03:53
Bromomethane	< 2.00	ug/L		2/24/2017 03:53
Carbon disulfide	< 2.00	ug/L		2/24/2017 03:53
Carbon Tetrachloride	< 2.00	ug/L		2/24/2017 03:53
Chlorobenzene	< 2.00	ug/L		2/24/2017 03:53

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier:	LI-RW-5-PS15					
Lab Sample ID:	170564-05			Date Sampled:	2/14/2017	
Matrix:	Groundwater			Date Received:	2/15/2017	
Chloroethane		< 2.00	ug/L		2/24/2017	03:53
Chloroform		< 2.00	ug/L		2/24/2017	03:53
Chloromethane		< 2.00	ug/L		2/24/2017	03:53
cis-1,2-Dichloroethene		< 2.00	ug/L		2/24/2017	03:53
cis-1,3-Dichloropropene	•	< 2.00	ug/L		2/24/2017	03:53
Cyclohexane		< 10.0	ug/L		2/24/2017	03:53
Dibromochloromethane		< 2.00	ug/L		2/24/2017	03:53
Dichlorodifluoromethan	e	< 2.00	ug/L		2/24/2017	03:53
Ethylbenzene		< 2.00	ug/L		2/24/2017	03:53
Freon 113		< 2.00	ug/L		2/24/2017	03:53
Isopropylbenzene		< 2.00	ug/L		2/24/2017	03:53
m,p-Xylene		< 2.00	ug/L		2/24/2017	03:53
Methyl acetate		< 2.00	ug/L		2/24/2017	03:53
Methyl tert-butyl Ether		< 2.00	ug/L		2/24/2017	03:53
Methylcyclohexane		< 2.00	ug/L		2/24/2017	03:53
Methylene chloride		< 5.00	ug/L		2/24/2017	03:53
o-Xylene		< 2.00	ug/L		2/24/2017	03:53
Styrene		< 5.00	ug/L		2/24/2017	03:53
Tetrachloroethene		< 2.00	ug/L		2/24/2017	03:53
Toluene		< 2.00	ug/L		2/24/2017	03:53
trans-1,2-Dichloroethen	e	< 2.00	ug/L		2/24/2017	03:53
trans-1,3-Dichloroprope	ene	< 2.00	ug/L		2/24/2017	03:53
Trichloroethene		< 2.00	ug/L		2/24/2017	03:53
Trichlorofluoromethane		< 2.00	ug/L		2/24/2017	03:53
Vinyl chloride		< 2.00	ug/L		2/24/2017	03:53

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-5-PS15

Lab Sample ID:170564-05Date Sampled:2/14/2017Matrix:GroundwaterDate Received:2/15/2017

Surrogate	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	vzed
1,2-Dichloroethane-d4	103	81.2 - 120		2/24/2017	03:53
4-Bromofluorobenzene	86.0	82.4 - 112		2/24/2017	03:53
Pentafluorobenzene	98.5	90.2 - 112		2/24/2017	03:53
Toluene-D8	93.3	89.9 - 109		2/24/2017	03:53

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x39451.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-6-PS15

Lab Sample ID:170564-06Date Sampled:2/14/2017Matrix:GroundwaterDate Received:2/15/2017

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 4.00	ug/L		2/24/2017 09:54
1,1,2,2-Tetrachloroethane	< 4.00	ug/L		2/24/2017 09:54
1,1,2-Trichloroethane	< 4.00	ug/L		2/24/2017 09:54
1,1-Dichloroethane	< 4.00	ug/L		2/24/2017 09:54
1,1-Dichloroethene	< 4.00	ug/L		2/24/2017 09:54
1,2,3-Trichlorobenzene	< 10.0	ug/L		2/24/2017 09:54
1,2,4-Trichlorobenzene	< 10.0	ug/L		2/24/2017 09:54
1,2-Dibromo-3-Chloropropane	< 20.0	ug/L		2/24/2017 09:54
1,2-Dibromoethane	< 4.00	ug/L		2/24/2017 09:54
1,2-Dichlorobenzene	< 4.00	ug/L		2/24/2017 09:54
1,2-Dichloroethane	< 4.00	ug/L		2/24/2017 09:54
1,2-Dichloropropane	< 4.00	ug/L		2/24/2017 09:54
1,3-Dichlorobenzene	< 4.00	ug/L		2/24/2017 09:54
1,4-Dichlorobenzene	< 4.00	ug/L		2/24/2017 09:54
1,4-dioxane	< 40.0	ug/L		2/24/2017 09:54
2-Butanone	< 20.0	ug/L		2/24/2017 09:54
2-Hexanone	< 10.0	ug/L		2/24/2017 09:54
4-Methyl-2-pentanone	< 10.0	ug/L		2/24/2017 09:54
Acetone	< 20.0	ug/L		2/24/2017 09:54
Benzene	< 2.00	ug/L		2/24/2017 09:54
Bromochloromethane	< 10.0	ug/L		2/24/2017 09:54
Bromodichloromethane	< 4.00	ug/L		2/24/2017 09:54
Bromoform	< 10.0	ug/L		2/24/2017 09:54
Bromomethane	< 4.00	ug/L		2/24/2017 09:54
Carbon disulfide	< 4.00	ug/L		2/24/2017 09:54
Carbon Tetrachloride	< 4.00	ug/L		2/24/2017 09:54
Chlorobenzene	< 4.00	ug/L		2/24/2017 09:54

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier:	LI-RW-6-PS15					
Lab Sample ID:	170564-06			Date Sampled:	2/14/2017	
Matrix:	Groundwater			Date Received:	2/15/2017	
Chloroethane		< 4.00	ug/L		2/24/2017	09:54
Chloroform		< 4.00	ug/L		2/24/2017	09:54
Chloromethane		< 4.00	ug/L		2/24/2017	09:54
cis-1,2-Dichloroethene		277	ug/L		2/24/2017	09:54
cis-1,3-Dichloropropene	e	< 4.00	ug/L		2/24/2017	09:54
Cyclohexane		< 20.0	ug/L		2/24/2017	09:54
Dibromochloromethane	2	< 4.00	ug/L		2/24/2017	09:54
Dichlorodifluoromethar	ne	< 4.00	ug/L		2/24/2017	09:54
Ethylbenzene		< 4.00	ug/L		2/24/2017	09:54
Freon 113		< 4.00	ug/L		2/24/2017	09:54
Isopropylbenzene		< 4.00	ug/L		2/24/2017	09:54
m,p-Xylene		< 4.00	ug/L		2/24/2017	09:54
Methyl acetate		< 4.00	ug/L		2/24/2017	09:54
Methyl tert-butyl Ether		< 4.00	ug/L		2/24/2017	09:54
Methylcyclohexane		< 4.00	ug/L		2/24/2017	09:54
Methylene chloride		< 10.0	ug/L		2/24/2017	09:54
o-Xylene		< 4.00	ug/L		2/24/2017	09:54
Styrene		< 10.0	ug/L		2/24/2017	09:54
Tetrachloroethene		5.58	ug/L		2/24/2017	09:54
Toluene		< 4.00	ug/L		2/24/2017	09:54
trans-1,2-Dichloroether	ne	< 4.00	ug/L		2/24/2017	09:54
trans-1,3-Dichloroprope	ene	< 4.00	ug/L		2/24/2017	09:54
Trichloroethene		22.2	ug/L		2/24/2017	09:54
Trichlorofluoromethane	e	< 4.00	ug/L		2/24/2017	09:54
Vinyl chloride		147	ug/L		2/24/2017	09:54

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-6-PS15

Lab Sample ID:170564-06Date Sampled:2/14/2017Matrix:GroundwaterDate Received:2/15/2017

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4	95.1	81.2 - 120		2/24/2017	09:54
4-Bromofluorobenzene	90.8	82.4 - 112		2/24/2017	09:54
Pentafluorobenzene	104	90.2 - 112		2/24/2017	09:54
Toluene-D8	93.7	89.9 - 109		2/24/2017	09:54

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x39464.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-7-PS15

Lab Sample ID: 170564-07 **Date Sampled:** 2/14/2017

Matrix: Groundwater Date Received: 2/15/2017

Volatile Organics

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		2/24/2017 04:21
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		2/24/2017 04:21
1,1,2-Trichloroethane	< 2.00	ug/L		2/24/2017 04:21
1,1-Dichloroethane	< 2.00	ug/L		2/24/2017 04:21
1,1-Dichloroethene	< 2.00	ug/L		2/24/2017 04:21
1,2,3-Trichlorobenzene	< 5.00	ug/L		2/24/2017 04:21
1,2,4-Trichlorobenzene	< 5.00	ug/L		2/24/2017 04:21
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		2/24/2017 04:21
1,2-Dibromoethane	< 2.00	ug/L		2/24/2017 04:21
1,2-Dichlorobenzene	< 2.00	ug/L		2/24/2017 04:21
1,2-Dichloroethane	< 2.00	ug/L		2/24/2017 04:21
1,2-Dichloropropane	< 2.00	ug/L		2/24/2017 04:21
1,3-Dichlorobenzene	< 2.00	ug/L		2/24/2017 04:21
1,4-Dichlorobenzene	< 2.00	ug/L		2/24/2017 04:21
1,4-dioxane	< 20.0	ug/L		2/24/2017 04:21
2-Butanone	< 10.0	ug/L		2/24/2017 04:21
2-Hexanone	< 5.00	ug/L		2/24/2017 04:21
4-Methyl-2-pentanone	< 5.00	ug/L		2/24/2017 04:21
Acetone	< 10.0	ug/L		2/24/2017 04:21
Benzene	< 1.00	ug/L		2/24/2017 04:21
Bromochloromethane	< 5.00	ug/L		2/24/2017 04:21
Bromodichloromethane	< 2.00	ug/L		2/24/2017 04:21
Bromoform	< 5.00	ug/L		2/24/2017 04:21
Bromomethane	< 2.00	ug/L		2/24/2017 04:21
Carbon disulfide	< 2.00	ug/L		2/24/2017 04:21
Carbon Tetrachloride	< 2.00	ug/L		2/24/2017 04:21
Chlorobenzene	< 2.00	ug/L		2/24/2017 04:21

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier:	LI-RW-7-PS15					
Lab Sample ID:	170564-07			Date Sampled:	2/14/2017	
Matrix:	Groundwater			Date Received:	2/15/2017	
Chloroethane		< 2.00	ug/L		2/24/2017	04:21
Chloroform		< 2.00	ug/L		2/24/2017	04:21
Chloromethane		< 2.00	ug/L		2/24/2017	04:21
cis-1,2-Dichloroethene		< 2.00	ug/L		2/24/2017	04:21
cis-1,3-Dichloropropene	9	< 2.00	ug/L		2/24/2017	04:21
Cyclohexane		< 10.0	ug/L		2/24/2017	04:21
Dibromochloromethane	•	< 2.00	ug/L		2/24/2017	04:21
Dichlorodifluoromethan	ne	< 2.00	ug/L		2/24/2017	04:21
Ethylbenzene		< 2.00	ug/L		2/24/2017	04:21
Freon 113		< 2.00	ug/L		2/24/2017	04:21
Isopropylbenzene		< 2.00	ug/L		2/24/2017	04:21
m,p-Xylene		< 2.00	ug/L		2/24/2017	04:21
Methyl acetate		< 2.00	ug/L		2/24/2017	04:21
Methyl tert-butyl Ether		1.12	ug/L	J	2/24/2017	04:21
Methylcyclohexane		< 2.00	ug/L		2/24/2017	04:21
Methylene chloride		< 5.00	ug/L		2/24/2017	04:21
o-Xylene		< 2.00	ug/L		2/24/2017	04:21
Styrene		< 5.00	ug/L		2/24/2017	04:21
Tetrachloroethene		< 2.00	ug/L		2/24/2017	04:21
Toluene		< 2.00	ug/L		2/24/2017	04:21
trans-1,2-Dichloroethen	ie	< 2.00	ug/L		2/24/2017	04:21
trans-1,3-Dichloroprope	ene	< 2.00	ug/L		2/24/2017	04:21
Trichloroethene		< 2.00	ug/L		2/24/2017	04:21
Trichlorofluoromethane	2	< 2.00	ug/L		2/24/2017	04:21
Vinyl chloride		< 2.00	ug/L		2/24/2017	04:21

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-7-PS15

Lab Sample ID:170564-07Date Sampled:2/14/2017Matrix:GroundwaterDate Received:2/15/2017

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	vzed
1,2-Dichloroethane-d4	104	81.2 - 120		2/24/2017	04:21
4-Bromofluorobenzene	86.6	82.4 - 112		2/24/2017	04:21
Pentafluorobenzene	100	90.2 - 112		2/24/2017	04:21
Toluene-D8	93.7	89.9 - 109		2/24/2017	04:21

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x39452.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-9-PS15

Lab Sample ID:170564-08Date Sampled:2/14/2017Matrix:GroundwaterDate Received:2/15/2017

Volatile Organics

J				
<u>Analyte</u>	<u>Result</u>	<u>Units</u>	<u>Qualifier</u>	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		2/24/2017 05:15
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		2/24/2017 05:15
1,1,2-Trichloroethane	< 2.00	ug/L		2/24/2017 05:15
1,1-Dichloroethane	< 2.00	ug/L		2/24/2017 05:15
1,1-Dichloroethene	< 2.00	ug/L		2/24/2017 05:15
1,2,3-Trichlorobenzene	< 5.00	ug/L		2/24/2017 05:15
1,2,4-Trichlorobenzene	< 5.00	ug/L		2/24/2017 05:15
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		2/24/2017 05:15
1,2-Dibromoethane	< 2.00	ug/L		2/24/2017 05:15
1,2-Dichlorobenzene	< 2.00	ug/L		2/24/2017 05:15
1,2-Dichloroethane	< 2.00	ug/L		2/24/2017 05:15
1,2-Dichloropropane	< 2.00	ug/L		2/24/2017 05:15
1,3-Dichlorobenzene	< 2.00	ug/L		2/24/2017 05:15
1,4-Dichlorobenzene	< 2.00	ug/L		2/24/2017 05:15
1,4-dioxane	< 20.0	ug/L		2/24/2017 05:15
2-Butanone	< 10.0	ug/L		2/24/2017 05:15
2-Hexanone	< 5.00	ug/L		2/24/2017 05:15
4-Methyl-2-pentanone	< 5.00	ug/L		2/24/2017 05:15
Acetone	< 10.0	ug/L		2/24/2017 05:15
Benzene	< 1.00	ug/L		2/24/2017 05:15
Bromochloromethane	< 5.00	ug/L		2/24/2017 05:15
Bromodichloromethane	< 2.00	ug/L		2/24/2017 05:15
Bromoform	< 5.00	ug/L		2/24/2017 05:15
Bromomethane	< 2.00	ug/L		2/24/2017 05:15
Carbon disulfide	< 2.00	ug/L		2/24/2017 05:15
Carbon Tetrachloride	< 2.00	ug/L		2/24/2017 05:15
Chlorobenzene	< 2.00	ug/L		2/24/2017 05:15

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier:	LI-RW-9-PS15					
Lab Sample ID:	170564-08			Date Sampled:	2/14/2017	
Matrix:	Groundwater			Date Received:	2/15/2017	
Chloroethane		< 2.00	ug/L		2/24/2017	05:15
Chloroform		< 2.00	ug/L		2/24/2017	05:15
Chloromethane		< 2.00	ug/L		2/24/2017	05:15
cis-1,2-Dichloroethene		< 2.00	ug/L		2/24/2017	05:15
cis-1,3-Dichloropropene	2	< 2.00	ug/L		2/24/2017	05:15
Cyclohexane		< 10.0	ug/L		2/24/2017	05:15
Dibromochloromethane		< 2.00	ug/L		2/24/2017	05:15
Dichlorodifluoromethan	ie	< 2.00	ug/L		2/24/2017	05:15
Ethylbenzene		< 2.00	ug/L		2/24/2017	05:15
Freon 113		< 2.00	ug/L		2/24/2017	05:15
Isopropylbenzene		< 2.00	ug/L		2/24/2017	05:15
m,p-Xylene		< 2.00	ug/L		2/24/2017	05:15
Methyl acetate		< 2.00	ug/L		2/24/2017	05:15
Methyl tert-butyl Ether		< 2.00	ug/L		2/24/2017	05:15
Methylcyclohexane		< 2.00	ug/L		2/24/2017	05:15
Methylene chloride		< 5.00	ug/L		2/24/2017	05:15
o-Xylene		< 2.00	ug/L		2/24/2017	05:15
Styrene		< 5.00	ug/L		2/24/2017	05:15
Tetrachloroethene		5.06	ug/L		2/24/2017	05:15
Toluene		< 2.00	ug/L		2/24/2017	05:15
trans-1,2-Dichloroethen	e	< 2.00	ug/L		2/24/2017	05:15
trans-1,3-Dichloroprope	ene	< 2.00	ug/L		2/24/2017	05:15
Trichloroethene		< 2.00	ug/L		2/24/2017	05:15
Trichlorofluoromethane	•	< 2.00	ug/L		2/24/2017	05:15
Vinyl chloride		< 2.00	ug/L		2/24/2017	05:15

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-9-PS15

Lab Sample ID:170564-08Date Sampled:2/14/2017Matrix:GroundwaterDate Received:2/15/2017

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4	102	81.2 - 120		2/24/2017	05:15
4-Bromofluorobenzene	85.7	82.4 - 112		2/24/2017	05:15
Pentafluorobenzene	96.9	90.2 - 112		2/24/2017	05:15
Toluene-D8	92.7	89.9 - 109		2/24/2017	05:15

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x39453.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-12-PS15

Lab Sample ID:170564-09Date Sampled:2/14/2017Matrix:GroundwaterDate Received:2/15/2017

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		2/24/2017 05:39
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		2/24/2017 05:39
1,1,2-Trichloroethane	< 2.00	ug/L		2/24/2017 05:39
1,1-Dichloroethane	< 2.00	ug/L		2/24/2017 05:39
1,1-Dichloroethene	< 2.00	ug/L		2/24/2017 05:39
1,2,3-Trichlorobenzene	< 5.00	ug/L		2/24/2017 05:39
1,2,4-Trichlorobenzene	< 5.00	ug/L		2/24/2017 05:39
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		2/24/2017 05:39
1,2-Dibromoethane	< 2.00	ug/L		2/24/2017 05:39
1,2-Dichlorobenzene	< 2.00	ug/L		2/24/2017 05:39
1,2-Dichloroethane	< 2.00	ug/L		2/24/2017 05:39
1,2-Dichloropropane	< 2.00	ug/L		2/24/2017 05:39
1,3-Dichlorobenzene	< 2.00	ug/L		2/24/2017 05:39
1,4-Dichlorobenzene	< 2.00	ug/L		2/24/2017 05:39
1,4-dioxane	< 20.0	ug/L		2/24/2017 05:39
2-Butanone	< 10.0	ug/L		2/24/2017 05:39
2-Hexanone	< 5.00	ug/L		2/24/2017 05:39
4-Methyl-2-pentanone	< 5.00	ug/L		2/24/2017 05:39
Acetone	< 10.0	ug/L		2/24/2017 05:39
Benzene	< 1.00	ug/L		2/24/2017 05:39
Bromochloromethane	< 5.00	ug/L		2/24/2017 05:39
Bromodichloromethane	< 2.00	ug/L		2/24/2017 05:39
Bromoform	< 5.00	ug/L		2/24/2017 05:39
Bromomethane	< 2.00	ug/L		2/24/2017 05:39
Carbon disulfide	< 2.00	ug/L		2/24/2017 05:39
Carbon Tetrachloride	< 2.00	ug/L		2/24/2017 05:39
Chlorobenzene	< 2.00	ug/L		2/24/2017 05:39

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier:	LI-RW-12-PS15			
Lab Sample ID:	170564-09		Date Sampled:	2/14/2017
Matrix:	Groundwater		Date Received:	2/15/2017
Chloroethane	< 2.00	ug/L		2/24/2017 05:39
Chloroform	< 2.00	ug/L		2/24/2017 05:39
Chloromethane	< 2.00	ug/L		2/24/2017 05:39
cis-1,2-Dichloroethene	< 2.00	ug/L		2/24/2017 05:39
cis-1,3-Dichloropropene	e < 2.00	ug/L		2/24/2017 05:39
Cyclohexane	< 10.0	ug/L		2/24/2017 05:39
Dibromochloromethane	< 2.00	ug/L		2/24/2017 05:39
Dichlorodifluoromethar	ne < 2.00	ug/L		2/24/2017 05:39
Ethylbenzene	< 2.00	ug/L		2/24/2017 05:39
Freon 113	< 2.00	ug/L		2/24/2017 05:39
Isopropylbenzene	< 2.00	ug/L		2/24/2017 05:39
m,p-Xylene	< 2.00	ug/L		2/24/2017 05:39
Methyl acetate	< 2.00	ug/L		2/24/2017 05:39
Methyl tert-butyl Ether	< 2.00	ug/L		2/24/2017 05:39
Methylcyclohexane	< 2.00	ug/L		2/24/2017 05:39
Methylene chloride	< 5.00	ug/L		2/24/2017 05:39
o-Xylene	< 2.00	ug/L		2/24/2017 05:39
Styrene	< 5.00	ug/L		2/24/2017 05:39
Tetrachloroethene	< 2.00	ug/L		2/24/2017 05:39
Toluene	< 2.00	ug/L		2/24/2017 05:39
trans-1,2-Dichloroethen	ne < 2.00	ug/L		2/24/2017 05:39
trans-1,3-Dichloroprope	ene < 2.00	ug/L		2/24/2017 05:39
Trichloroethene	1.29	ug/L	J	2/24/2017 05:39
Trichlorofluoromethane	e < 2.00	ug/L		2/24/2017 05:39
Vinyl chloride	< 2.00	ug/L		2/24/2017 05:39

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-RW-12-PS15

Lab Sample ID:170564-09Date Sampled:2/14/2017Matrix:GroundwaterDate Received:2/15/2017

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	vzed
1,2-Dichloroethane-d4	102	81.2 - 120		2/24/2017	05:39
4-Bromofluorobenzene	87.7	82.4 - 112		2/24/2017	05:39
Pentafluorobenzene	97.8	90.2 - 112		2/24/2017	05:39
Toluene-D8	92.4	89.9 - 109		2/24/2017	05:39

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x39454.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-B102-MW-PS15

Lab Sample ID:170564-10Date Sampled:2/14/2017Matrix:GroundwaterDate Received:2/15/2017

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		2/24/2017 06:03
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		2/24/2017 06:03
1,1,2-Trichloroethane	< 2.00	ug/L		2/24/2017 06:03
1,1-Dichloroethane	< 2.00	ug/L		2/24/2017 06:03
1,1-Dichloroethene	< 2.00	ug/L		2/24/2017 06:03
1,2,3-Trichlorobenzene	< 5.00	ug/L		2/24/2017 06:03
1,2,4-Trichlorobenzene	< 5.00	ug/L		2/24/2017 06:03
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		2/24/2017 06:03
1,2-Dibromoethane	< 2.00	ug/L		2/24/2017 06:03
1,2-Dichlorobenzene	< 2.00	ug/L		2/24/2017 06:03
1,2-Dichloroethane	< 2.00	ug/L		2/24/2017 06:03
1,2-Dichloropropane	< 2.00	ug/L		2/24/2017 06:03
1,3-Dichlorobenzene	< 2.00	ug/L		2/24/2017 06:03
1,4-Dichlorobenzene	< 2.00	ug/L		2/24/2017 06:03
1,4-dioxane	< 20.0	ug/L		2/24/2017 06:03
2-Butanone	< 10.0	ug/L		2/24/2017 06:03
2-Hexanone	< 5.00	ug/L		2/24/2017 06:03
4-Methyl-2-pentanone	< 5.00	ug/L		2/24/2017 06:03
Acetone	< 10.0	ug/L		2/24/2017 06:03
Benzene	< 1.00	ug/L		2/24/2017 06:03
Bromochloromethane	< 5.00	ug/L		2/24/2017 06:03
Bromodichloromethane	< 2.00	ug/L		2/24/2017 06:03
Bromoform	< 5.00	ug/L		2/24/2017 06:03
Bromomethane	< 2.00	ug/L		2/24/2017 06:03
Carbon disulfide	< 2.00	ug/L		2/24/2017 06:03
Carbon Tetrachloride	< 2.00	ug/L		2/24/2017 06:03
Chlorobenzene	< 2.00	ug/L		2/24/2017 06:03

Client: **Stantec**

Project Reference: Carriage Factory

Sample Identifier:	LI-B102-MW-PS15			
Lab Sample ID:	170564-10		Date Sampled:	2/14/2017
Matrix:	Groundwater		Date Received:	2/15/2017
Chloroothano	~ 2.00	ug/I		2/24/2017

Lab Sample 1D.	170304 10			Date Jampica.	2/14/2017	
Matrix:	Groundwater			Date Received:	2/15/2017	
Chloroethane		< 2.00	ug/L		2/24/2017	06:03
Chloroform		< 2.00	ug/L		2/24/2017	06:03
Chloromethane		< 2.00	ug/L		2/24/2017	06:03
cis-1,2-Dichloroethene		< 2.00	ug/L		2/24/2017	06:03
cis-1,3-Dichloropropene	е	< 2.00	ug/L		2/24/2017	06:03
Cyclohexane		< 10.0	ug/L		2/24/2017	06:03
Dibromochloromethane	2	< 2.00	ug/L		2/24/2017	06:03
Dichlorodifluoromethar	ne	< 2.00	ug/L		2/24/2017	06:03
Ethylbenzene		< 2.00	ug/L		2/24/2017	06:03
Freon 113		< 2.00	ug/L		2/24/2017	06:03
Isopropylbenzene		< 2.00	ug/L		2/24/2017	06:03
m,p-Xylene		< 2.00	ug/L		2/24/2017	06:03
Methyl acetate		< 2.00	ug/L		2/24/2017	06:03
Methyl tert-butyl Ether		< 2.00	ug/L		2/24/2017	06:03
Methylcyclohexane		< 2.00	ug/L		2/24/2017	06:03
Methylene chloride		< 5.00	ug/L		2/24/2017	06:03
o-Xylene		< 2.00	ug/L		2/24/2017	06:03
Styrene		< 5.00	ug/L		2/24/2017	06:03
Tetrachloroethene		< 2.00	ug/L		2/24/2017	06:03
Toluene		< 2.00	ug/L		2/24/2017	06:03
trans-1,2-Dichloroether	ne	< 2.00	ug/L		2/24/2017	06:03
trans-1,3-Dichloroprope	ene	< 2.00	ug/L		2/24/2017	06:03
Trichloroethene		< 2.00	ug/L		2/24/2017	06:03
Trichlorofluoromethane	e	< 2.00	ug/L		2/24/2017	06:03
Vinyl chloride		1.12	ug/L	J	2/24/2017	06:03

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-B102-MW-PS15

Lab Sample ID:170564-10Date Sampled:2/14/2017Matrix:GroundwaterDate Received:2/15/2017

Surrogate	Percent Recovery	Limits	Outliers	Date Analy	vzed
1,2-Dichloroethane-d4	102	81.2 - 120		2/24/2017	06:03
4-Bromofluorobenzene	87.2	82.4 - 112		2/24/2017	06:03
Pentafluorobenzene	98.7	90.2 - 112		2/24/2017	06:03
Toluene-D8	94.3	89.9 - 109		2/24/2017	06:03

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x39455.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-B106-MW-PS15

Lab Sample ID:170564-11Date Sampled:2/13/2017Matrix:GroundwaterDate Received:2/15/2017

Volatile Organics

Analyte	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		2/24/2017 06:26
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		2/24/2017 06:26
1,1,2-Trichloroethane	< 2.00	ug/L		2/24/2017 06:26
1,1-Dichloroethane	< 2.00	ug/L		2/24/2017 06:26
1,1-Dichloroethene	< 2.00	ug/L		2/24/2017 06:26
1,2,3-Trichlorobenzene	< 5.00	ug/L		2/24/2017 06:26
1,2,4-Trichlorobenzene	< 5.00	ug/L		2/24/2017 06:26
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		2/24/2017 06:26
1,2-Dibromoethane	< 2.00	ug/L		2/24/2017 06:26
1,2-Dichlorobenzene	< 2.00	ug/L		2/24/2017 06:26
1,2-Dichloroethane	< 2.00	ug/L		2/24/2017 06:26
1,2-Dichloropropane	< 2.00	ug/L		2/24/2017 06:26
1,3-Dichlorobenzene	< 2.00	ug/L		2/24/2017 06:26
1,4-Dichlorobenzene	< 2.00	ug/L		2/24/2017 06:26
1,4-dioxane	< 20.0	ug/L		2/24/2017 06:26
2-Butanone	< 10.0	ug/L		2/24/2017 06:26
2-Hexanone	< 5.00	ug/L		2/24/2017 06:26
4-Methyl-2-pentanone	< 5.00	ug/L		2/24/2017 06:26
Acetone	< 10.0	ug/L		2/24/2017 06:26
Benzene	< 1.00	ug/L		2/24/2017 06:26
Bromochloromethane	< 5.00	ug/L		2/24/2017 06:26
Bromodichloromethane	< 2.00	ug/L		2/24/2017 06:26
Bromoform	< 5.00	ug/L		2/24/2017 06:26
Bromomethane	< 2.00	ug/L		2/24/2017 06:26
Carbon disulfide	< 2.00	ug/L		2/24/2017 06:26
Carbon Tetrachloride	< 2.00	ug/L		2/24/2017 06:26
Chlorobenzene	< 2.00	ug/L		2/24/2017 06:26

Client: Stantec

Sample Identifier:

Project Reference: Carriage Factory

LI-B106-MW-PS15

	Lab Sample ID:	170564-11			Date Sampled:	2/13/2017	
_	Matrix:	Groundwater			Date Received:	2/15/2017	
_	Chloroethane		< 2.00	ug/L		2/24/2017	06:
	Chloroform		< 2.00	ug/L		2/24/2017	06:
	Chloromethane		< 2.00	ug/L		2/24/2017	06:
	cis-1,2-Dichloroethene		< 2.00	ug/L		2/24/2017	06:

6:26 6:26 6:26 6:26 cis-1,3-Dichloropropene < 2.00 ug/L 2/24/2017 06:26 Cyclohexane < 10.0 ug/L 2/24/2017 06:26 2/24/2017 06:26 Dibromochloromethane < 2.00 ug/L Dichlorodifluoromethane < 2.00 ug/L 2/24/2017 06:26 Ethylbenzene < 2.00 ug/L 2/24/2017 06:26 Freon 113 < 2.00 ug/L 2/24/2017 06:26 Isopropylbenzene < 2.00 ug/L 2/24/2017 06:26 m,p-Xylene < 2.00 ug/L 2/24/2017 06:26 Methyl acetate < 2.00 ug/L 2/24/2017 06:26 2/24/2017 06:26 Methyl tert-butyl Ether < 2.00 ug/L Methylcyclohexane < 2.00 2/24/2017 06:26 ug/L Methylene chloride < 5.00 ug/L 2/24/2017 06:26 o-Xylene < 2.00 ug/L 2/24/2017 06:26 Stvrene < 5.00 ug/L 2/24/2017 06:26 Tetrachloroethene < 2.00 ug/L 2/24/2017 06:26 Toluene < 2.00 ug/L 2/24/2017 06:26 < 2.00 trans-1,2-Dichloroethene ug/L 2/24/2017 06:26 trans-1,3-Dichloropropene < 2.00 ug/L 2/24/2017 06:26 Trichloroethene < 2.00 ug/L 2/24/2017 06:26 Trichlorofluoromethane < 2.00 ug/L 2/24/2017 06:26 Vinyl chloride < 2.00 ug/L 2/24/2017 06:26

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-B106-MW-PS15

Lab Sample ID:170564-11Date Sampled:2/13/2017Matrix:GroundwaterDate Received:2/15/2017

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4	101	81.2 - 120		2/24/2017	06:26
4-Bromofluorobenzene	86.5	82.4 - 112		2/24/2017	06:26
Pentafluorobenzene	98.4	90.2 - 112		2/24/2017	06:26
Toluene-D8	92.6	89.9 - 109		2/24/2017	06:26

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x39456.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-B108-MW-PS15

Lab Sample ID:170564-12Date Sampled:2/13/2017Matrix:GroundwaterDate Received:2/15/2017

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyz	zed
1,1,1-Trichloroethane	< 2.00	ug/L		2/24/2017	06:50
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		2/24/2017	06:50
1,1,2-Trichloroethane	< 2.00	ug/L		2/24/2017	06:50
1,1-Dichloroethane	< 2.00	ug/L		2/24/2017	06:50
1,1-Dichloroethene	< 2.00	ug/L		2/24/2017	06:50
1,2,3-Trichlorobenzene	< 5.00	ug/L		2/24/2017	06:50
1,2,4-Trichlorobenzene	< 5.00	ug/L		2/24/2017	06:50
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		2/24/2017	06:50
1,2-Dibromoethane	< 2.00	ug/L		2/24/2017	06:50
1,2-Dichlorobenzene	< 2.00	ug/L		2/24/2017	06:50
1,2-Dichloroethane	< 2.00	ug/L		2/24/2017	06:50
1,2-Dichloropropane	< 2.00	ug/L		2/24/2017	06:50
1,3-Dichlorobenzene	< 2.00	ug/L		2/24/2017	06:50
1,4-Dichlorobenzene	< 2.00	ug/L		2/24/2017	06:50
1,4-dioxane	< 20.0	ug/L		2/24/2017	06:50
2-Butanone	< 10.0	ug/L		2/24/2017	06:50
2-Hexanone	< 5.00	ug/L		2/24/2017	06:50
4-Methyl-2-pentanone	< 5.00	ug/L		2/24/2017	06:50
Acetone	< 10.0	ug/L		2/24/2017	06:50
Benzene	< 1.00	ug/L		2/24/2017	06:50
Bromochloromethane	< 5.00	ug/L		2/24/2017	06:50
Bromodichloromethane	< 2.00	ug/L		2/24/2017	06:50
Bromoform	< 5.00	ug/L		2/24/2017	06:50
Bromomethane	< 2.00	ug/L		2/24/2017	06:50
Carbon disulfide	< 2.00	ug/L	;	2/24/2017	06:50
Carbon Tetrachloride	< 2.00	ug/L	;	2/24/2017	06:50
Chlorobenzene	< 2.00	ug/L	;	2/24/2017	06:50

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier:LI-B108-MW-PS15Lab Sample ID:170564-12Date Sampled:2/13/2017

Lab Sample ID:	170564-12			Date Sampled:	2/13/2017	
Matrix:	Groundwater			Date Received:	2/15/2017	
Chloroethane		< 2.00	ug/L		2/24/2017 0)6:50
Chloroform		< 2.00	ug/L		2/24/2017 0	06:50
Chloromethane		< 2.00	ug/L		2/24/2017 0	06:50
cis-1,2-Dichloroethene		7.20	ug/L		2/24/2017 0	06:50
cis-1,3-Dichloropropene	2	< 2.00	ug/L		2/24/2017 0	06:50
Cyclohexane		< 10.0	ug/L		2/24/2017 0	06:50
Dibromochloromethane		< 2.00	ug/L		2/24/2017 0	06:50
Dichlorodifluoromethan	ie	< 2.00	ug/L		2/24/2017 0	06:50
Ethylbenzene		< 2.00	ug/L		2/24/2017 0	06:50
Freon 113		< 2.00	ug/L		2/24/2017 0	06:50
Isopropylbenzene		< 2.00	ug/L		2/24/2017 0	06:50
m,p-Xylene		< 2.00	ug/L		2/24/2017 0	06:50
Methyl acetate		< 2.00	ug/L		2/24/2017 0	06:50
Methyl tert-butyl Ether		< 2.00	ug/L		2/24/2017 0	06:50
Methylcyclohexane		< 2.00	ug/L		2/24/2017 0	06:50
Methylene chloride		< 5.00	ug/L		2/24/2017 0	06:50
o-Xylene		< 2.00	ug/L		2/24/2017 0	06:50
Styrene		< 5.00	ug/L		2/24/2017 0	06:50
Tetrachloroethene		1.54	ug/L	J	2/24/2017 0	06:50
Toluene		< 2.00	ug/L		2/24/2017 0	06:50
trans-1,2-Dichloroethen	e	< 2.00	ug/L		2/24/2017 0	06:50
trans-1,3-Dichloroprope	ene	< 2.00	ug/L		2/24/2017 0	06:50
Trichloroethene		3.26	ug/L		2/24/2017 0	06:50
Trichlorofluoromethane		< 2.00	ug/L		2/24/2017 0	06:50
Vinyl chloride		3.51	ug/L		2/24/2017 0)6:50

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-B108-MW-PS15

Lab Sample ID:170564-12Date Sampled:2/13/2017Matrix:GroundwaterDate Received:2/15/2017

Surrogate	Percent Recovery	Limits	Outliers	Date Analy	wad.
Surrogate	1 ercent Recovery	Limits	<u>Outhers</u>	Date Analy	<u>vzeu</u>
1,2-Dichloroethane-d4	100	81.2 - 120		2/24/2017	06:50
4-Bromofluorobenzene	86.8	82.4 - 112		2/24/2017	06:50
Pentafluorobenzene	98.6	90.2 - 112		2/24/2017	06:50
Toluene-D8	93.3	89.9 - 109		2/24/2017	06:50

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x39457.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-FD-PS15

Lab Sample ID: 170564-13 **Date Sampled:** 2/13/2017

Matrix: Groundwater Date Received: 2/15/2017

Volatile Organics

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		2/24/2017 07:14
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		2/24/2017 07:14
1,1,2-Trichloroethane	< 2.00	ug/L		2/24/2017 07:14
1,1-Dichloroethane	< 2.00	ug/L		2/24/2017 07:14
1,1-Dichloroethene	< 2.00	ug/L		2/24/2017 07:14
1,2,3-Trichlorobenzene	< 5.00	ug/L		2/24/2017 07:14
1,2,4-Trichlorobenzene	< 5.00	ug/L		2/24/2017 07:14
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		2/24/2017 07:14
1,2-Dibromoethane	< 2.00	ug/L		2/24/2017 07:14
1,2-Dichlorobenzene	< 2.00	ug/L		2/24/2017 07:14
1,2-Dichloroethane	< 2.00	ug/L		2/24/2017 07:14
1,2-Dichloropropane	< 2.00	ug/L		2/24/2017 07:14
1,3-Dichlorobenzene	< 2.00	ug/L		2/24/2017 07:14
1,4-Dichlorobenzene	< 2.00	ug/L		2/24/2017 07:14
1,4-dioxane	< 20.0	ug/L		2/24/2017 07:14
2-Butanone	< 10.0	ug/L		2/24/2017 07:14
2-Hexanone	< 5.00	ug/L		2/24/2017 07:14
4-Methyl-2-pentanone	< 5.00	ug/L		2/24/2017 07:14
Acetone	< 10.0	ug/L		2/24/2017 07:14
Benzene	< 1.00	ug/L		2/24/2017 07:14
Bromochloromethane	< 5.00	ug/L		2/24/2017 07:14
Bromodichloromethane	< 2.00	ug/L		2/24/2017 07:14
Bromoform	< 5.00	ug/L		2/24/2017 07:14
Bromomethane	< 2.00	ug/L		2/24/2017 07:14
Carbon disulfide	< 2.00	ug/L		2/24/2017 07:14
Carbon Tetrachloride	< 2.00	ug/L		2/24/2017 07:14
Chlorobenzene	< 2.00	ug/L		2/24/2017 07:14

Client: <u>Stantec</u>

Project Reference: Carriage Factory

						=
Sample Identifier:	LI-FD-PS15					
Lab Sample ID:	170564-13			Date Sampled:	2/13/2017	
Matrix:	Groundwater			Date Received:	2/15/2017	
Chloroethane		< 2.00	ug/L		2/24/2017 07:14	4
Chloroform		< 2.00	ug/L		2/24/2017 07:14	4
Chloromethane		< 2.00	ug/L		2/24/2017 07:14	4
cis-1,2-Dichloroethene		< 2.00	ug/L		2/24/2017 07:14	4
cis-1,3-Dichloropropene	e	< 2.00	ug/L		2/24/2017 07:14	4
Cyclohexane		< 10.0	ug/L		2/24/2017 07:14	4
Dibromochloromethane	2	< 2.00	ug/L		2/24/2017 07:14	4
Dichlorodifluoromethar	ne	< 2.00	ug/L		2/24/2017 07:14	4
Ethylbenzene		< 2.00	ug/L		2/24/2017 07:14	4
Freon 113		< 2.00	ug/L		2/24/2017 07:14	4
Isopropylbenzene		< 2.00	ug/L		2/24/2017 07:14	4
m,p-Xylene		< 2.00	ug/L		2/24/2017 07:14	4
Methyl acetate		< 2.00	ug/L		2/24/2017 07:14	4
Methyl tert-butyl Ether		1.23	ug/L	J	2/24/2017 07:14	4
Methylcyclohexane		< 2.00	ug/L		2/24/2017 07:14	4
Methylene chloride		< 5.00	ug/L		2/24/2017 07:14	4
o-Xylene		< 2.00	ug/L		2/24/2017 07:14	4
Styrene		< 5.00	ug/L		2/24/2017 07:14	4
Tetrachloroethene		< 2.00	ug/L		2/24/2017 07:14	4
Toluene		< 2.00	ug/L		2/24/2017 07:14	4
trans-1,2-Dichloroether	ie	< 2.00	ug/L		2/24/2017 07:14	4
trans-1,3-Dichloroprope	ene	< 2.00	ug/L		2/24/2017 07:14	4
Trichloroethene		< 2.00	ug/L		2/24/2017 07:14	4
Trichlorofluoromethane	2	< 2.00	ug/L		2/24/2017 07:14	4
Vinyl chloride		< 2.00	ug/L		2/24/2017 07:14	4

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-FD-PS15

Lab Sample ID: 170564-13 **Date Sampled:** 2/13/2017

Matrix: Groundwater Date Received: 2/15/2017

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4	102	81.2 - 120		2/24/2017	07:14
4-Bromofluorobenzene	87.7	82.4 - 112		2/24/2017	07:14
Pentafluorobenzene	97.7	90.2 - 112		2/24/2017	07:14
Toluene-D8	92.9	89.9 - 109		2/24/2017	07:14

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x39458.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: Trip Blank

Lab Sample ID: 170564-14 **Date Sampled:** 2/13/2017

Matrix: Water Date Received: 2/15/2017

Volatile Organics

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		2/24/2017 01:55
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		2/24/2017 01:55
1,1,2-Trichloroethane	< 2.00	ug/L		2/24/2017 01:55
1,1-Dichloroethane	< 2.00	ug/L		2/24/2017 01:55
1,1-Dichloroethene	< 2.00	ug/L		2/24/2017 01:55
1,2,3-Trichlorobenzene	< 5.00	ug/L		2/24/2017 01:55
1,2,4-Trichlorobenzene	< 5.00	ug/L		2/24/2017 01:55
1,2-Dibromo-3-Chloropropane	< 10.0	ug/L		2/24/2017 01:55
1,2-Dibromoethane	< 2.00	ug/L		2/24/2017 01:55
1,2-Dichlorobenzene	< 2.00	ug/L		2/24/2017 01:55
1,2-Dichloroethane	< 2.00	ug/L		2/24/2017 01:55
1,2-Dichloropropane	< 2.00	ug/L		2/24/2017 01:55
1,3-Dichlorobenzene	< 2.00	ug/L		2/24/2017 01:55
1,4-Dichlorobenzene	< 2.00	ug/L		2/24/2017 01:55
1,4-dioxane	< 20.0	ug/L		2/24/2017 01:55
2-Butanone	< 10.0	ug/L		2/24/2017 01:55
2-Hexanone	< 5.00	ug/L		2/24/2017 01:55
4-Methyl-2-pentanone	< 5.00	ug/L		2/24/2017 01:55
Acetone	< 10.0	ug/L		2/24/2017 01:55
Benzene	< 1.00	ug/L		2/24/2017 01:55
Bromochloromethane	< 5.00	ug/L		2/24/2017 01:55
Bromodichloromethane	< 2.00	ug/L		2/24/2017 01:55
Bromoform	< 5.00	ug/L		2/24/2017 01:55
Bromomethane	< 2.00	ug/L		2/24/2017 01:55
Carbon disulfide	< 2.00	ug/L		2/24/2017 01:55
Carbon Tetrachloride	< 2.00	ug/L		2/24/2017 01:55
Chlorobenzene	< 2.00	ug/L		2/24/2017 01:55

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier:	Trip Blank				
Lab Sample ID:	170564-14			Date Sampled:	2/13/2017
Matrix:	Water			Date Received:	2/15/2017
Chloroethane		< 2.00	ug/L		2/24/2017 01:55
Chloroform		< 2.00	ug/L		2/24/2017 01:55
Chloromethane		< 2.00	ug/L		2/24/2017 01:55
cis-1,2-Dichloroethene		< 2.00	ug/L		2/24/2017 01:55
cis-1,3-Dichloropropen	e	< 2.00	ug/L		2/24/2017 01:55
Cyclohexane		< 10.0	ug/L		2/24/2017 01:55
Dibromochloromethan	e	< 2.00	ug/L		2/24/2017 01:55
Dichlorodifluorometha	ne	< 2.00	ug/L		2/24/2017 01:55
Ethylbenzene		< 2.00	ug/L		2/24/2017 01:55
Freon 113		< 2.00	ug/L		2/24/2017 01:55
Isopropylbenzene		< 2.00	ug/L		2/24/2017 01:55
m,p-Xylene		< 2.00	ug/L		2/24/2017 01:55
Methyl acetate		< 2.00	ug/L		2/24/2017 01:55
Methyl tert-butyl Ether		< 2.00	ug/L		2/24/2017 01:55
Methylcyclohexane		< 2.00	ug/L		2/24/2017 01:55
Methylene chloride		< 5.00	ug/L		2/24/2017 01:55
o-Xylene		< 2.00	ug/L		2/24/2017 01:55
Styrene		< 5.00	ug/L		2/24/2017 01:55
Tetrachloroethene		< 2.00	ug/L		2/24/2017 01:55
Toluene		< 2.00	ug/L		2/24/2017 01:55
trans-1,2-Dichloroethe	ne	< 2.00	ug/L		2/24/2017 01:55
trans-1,3-Dichloroprop	ene	< 2.00	ug/L		2/24/2017 01:55
Trichloroethene		< 2.00	ug/L		2/24/2017 01:55
Trichlorofluoromethan	e	< 2.00	ug/L		2/24/2017 01:55
Vinyl chloride		< 2.00	ug/L		2/24/2017 01:55

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: Trip Blank

Lab Sample ID:170564-14Date Sampled:2/13/2017Matrix:WaterDate Received:2/15/2017

<u>Surrogate</u>	Percent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4	102	81.2 - 120		2/24/2017	01:55
4-Bromofluorobenzene	90.6	82.4 - 112		2/24/2017	01:55
Pentafluorobenzene	102	90.2 - 112		2/24/2017	01:55
Toluene-D8	95.2	89.9 - 109		2/24/2017	01:55

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x39446.D

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "J" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written. between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, term, or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB will use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB.

Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any

environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

CHAIN OF CUSTODY

					10 Day	1
	nditions (reverse).	By signing this form, client agrees to Paradigm Terms and Conditions (reverse).	Other EDD please indicate EDD needed:	Other please indicate package needed:	licate date needed:	Other please indi
		Received @ Lab By Date/Time	. 공		day	Rush 1 day
	14,14/	2/5//		Category B	day	Rush 2 day
		Received By Pate Time 14/17 1805	NYSDEC EDD R	Category A	day	Rush 3 day
		Relinquished by Date/Time	Basic EDD Re	Batch QC		10 day
	(XO)	Daylor touth 2/14/17	None Required	None Required	Standard 5 day	Standa
		Many 11 mills	Availability contingent upon lab approval; additional fees may apply.	nt upon lab app	Availability continger	
		1	Report Supplements		Turnaround Time	Τι
	FILM 12 POSI					
/0		515	עד	4	4 11438	
09		3	LI- RW-12-PS15		092	
30			LI- RW-9-7515		1148	
07			LI- RW-7-PSIS	N A	1100	
06			LI- RW-6-7515		1008	
05			LI- RW-5-PS15		4/17 1339	2/14
104			1 I- RW-4-7815		4 1602	
03	1	4	LI-RW-3-PS15		1218	
00	c Delform MS/MSD	1 12 17 11 11 11 11 11 11 11 11 11 11 11 11	LI- RW-2-PS15		1 1121	
0/	1	MG HXX	LI-RW-1-PS15	X	13/17 1453	2/1
PARADIGM L/ SAMPLE NUMBER	REMARKS	х-я-> в м п п о о о о о о о о о о о о о о о о о	SAMPLE IDENTIFIER	m ⊣ − w o v ≤ o o	DATE COLLECTED COLLECTED	DATEC
		UREQUESTED ANALYSIS				
OL - Oil AR - Air	SD - Solid WP - Wipe PT - Paint CK - Caulk	WA - Water DW - Drinking Water SO - Soil WG - Groundwater WW - Wastewater 2/15/17 SL - Sludge	Matrix Codes: AQ - Aqueous Liquid NQ - Non-Aqueous Liquid W	Tactory	Parriage Fo	6
tenta con	wike storonsmye stanta con	ATTN: Bob Malony	ATTHE MINE STOROUSKY	ENCE	PROJECT REFERENCE	
	Email:	PHONE: 413 5301	266			
	Quotation #:	ZIP 146 / Y CITY: STATE: ZIP:	5	7		
	170564	ADDRESS:	ADDRESS: 6 COMMUNICAL ST			_
TID	LAB PROJECT ID	CLIENT:	CLIENT: STANTEC	± <u>3</u>	TAKADIGM	
		INVOICE TO:	REPORT TO:	3		

See additional page for sample conditions.

CHAIN OF CUSTODY

PARADIGM	REPORT TO:	INVOICE TO:	
	CLIENT:	CLENT:	LAB PROJECT ID
	ADDRESS:	ADDRESS:	170564
	CITY: STATE: ZIP	P CITY: STATE: ZIP:	Quotation #:
	PHONE:	PHONE:	Email:
PROJECT REFERENCE	ATTN:	ATTN:	
Carrine Factory	Matrix Codes: AQ - Aqueous Liquid V/ NQ - Non-Aqueous Liquid V/	WA - Water DW - Drinking Water SO - Soil WG - Groundwater WW - Wastewater SL - Sludge	oil SD-Solid WP-Wipe OL-Oil udge PT-Paint CK-Caulk AR-Air
4		REQUESTED ANALYSIS	
DATE COLLECTED TIME O R R A A A B B B B B B B B B B B B B B B	SAMPLE IDENTIFIER		REMARKS PARADIGM LAB SAMPLE NUMBER
2/13/17 1400 X	LI - 13106 -MW- 751	5 Wh 4	
2/13/17 1310 1	11I-BIDS-MW-PSIS		
2/13/17 1223	LT- XXX PS/5	* * * *	
X	Trip Blank	WA I KW	
Turnaround Time	Report Supplements	N. HILL	
Availability contingent upon lab approval; additional fees may apply.	proval; additional fees may apply.	Denni Hours	
Standard 5 day None Required	None Required	Sampled By Date Time Hours Date Time	Total Cost:
10 day Batch QC	Basic EDD Re	Date/I	
Rush 3 day Category A	NYSDEC EDD A	100	1803
	K - / N	Received By Date/Time	7.7.

Rush 1 day Rush 2 day

Category B

please indicate package needed:

By signing this form, client agrees to Paradigm Terms and Conditions (reverse).

See additional page for sample conditions.

Received @ Lab By

Date/Time 1/5

Chain of Custody Supplement

Client:	Stantec 170564	Completed by:	Glenn Pezzulo 2/15/17
Lab Project ID:	Sample Conditio Per NELAC/ELAP 210	n Requirements	4 [(3] []
Condition 1	NELAC compliance with the sample c Yes	ondition requirements upon No	receipt N/A
Container Type Comments			
Transferred to method- compliant container			
Headspace (<1 mL) Comments	AON X	444	
Preservation Comments			
Chlorine Absent (<0.10 ppm per test strip) Comments			<u> </u>
Holding Time Comments			
Temperature Comments	6° C : ced 2/14/1	7 18:06	
Sufficient Sample Quantity Comments			

ANALYTICAL REPORT

Lab Number: L1704820

Client: Paradigm Environmental Services

179 Lake Avenue Rochester, NY 14608

ATTN: Jane Daloia Phone: (585) 647-2530

Project Name: 170564
Project Number: 170564
Report Date: 02/20/17

The original project report/data package is held by Alpha Analytical. This report/data package is paginated and should be reproduced only in its entirety. Alpha Analytical holds no responsibility for results and/or data that are not consistent with the original.

Certifications & Approvals: MA (M-MA086), NH NELAP (2064), NJ NELAP (MA935), CT (PH-0574), IL (200077), ME (MA00086), MD (348), NH (2003), NY (11148), NC (25700/666), PA (68-03671), RI (LAO00065), TX (T104704476), VT (VT-0935), VA (460195), USDA (Permit #P330-14-00197).

Eight Walkup Drive, Westborough, MA 01581-1019 508-898-9220 (Fax) 508-898-9193 800-624-9220 - www.alphalab.com

Project Name: 170564
Project Number: 170564

 Lab Number:
 L1704820

 Report Date:
 02/20/17

Alpha Sample ID	Client ID	Matrix	Sample Location	Collection Date/Time	Receive Date
L1704820-01	170564-01 LI-RW-1-PS15	WATER	Not Specified	02/13/17 14:53	02/15/17
L1704820-02	170564-02 LI-RW-2-PS15	WATER	Not Specified	02/13/17 11:21	02/15/17
L1704820-03	170564-03 LI-RW-3-PS15	WATER	Not Specified	02/13/17 12:18	02/15/17
L1704820-04	170564-04 LI-RW-4-PS15	WATER	Not Specified	02/13/17 16:02	02/15/17
L1704820-05	170564-05 LI-RW-5-PS15	WATER	Not Specified	02/14/17 13:39	02/15/17
L1704820-06	170564-06 LI-RW-6-PS15	WATER	Not Specified	02/14/17 10:08	02/15/17
L1704820-07	170564-07 LI-RW-7-PS15	WATER	Not Specified	02/14/17 11:00	02/15/17
L1704820-08	170564-08 LI-RW-9-PS15	WATER	Not Specified	02/14/17 11:48	02/15/17
L1704820-09	170564-09 LI-RW-12-PS15	WATER	Not Specified	02/14/17 09:21	02/15/17
L1704820-10	170564-10 LI-B102-MW-PS15	WATER	Not Specified	02/14/17 14:38	02/15/17
L1704820-11	170564-11	WATER	Not Specified	02/13/17 14:00	02/15/17
L1704820-12	170564-12	WATER	Not Specified	02/13/17 13:10	02/15/17
L1704820-13	170564-13	WATER	Not Specified	02/13/17 12:23	02/15/17

 Project Name:
 170564
 Lab Number:
 L1704820

 Project Number:
 170564
 Report Date:
 02/20/17

Case Narrative

The samples were received in accordance with the Chain of Custody and no significant deviations were encountered during the preparation or analysis unless otherwise noted. Sample Receipt, Container Information, and the Chain of Custody are located at the back of the report.

Results contained within this report relate only to the samples submitted under this Alpha Lab Number and meet NELAP requirements for all NELAP accredited parameters unless otherwise noted in the following narrative. The data presented in this report is organized by parameter (i.e. VOC, SVOC, etc.). Sample specific Quality Control data (i.e. Surrogate Spike Recovery) is reported at the end of the target analyte list for each individual sample, followed by the Laboratory Batch Quality Control at the end of each parameter. Tentatively Identified Compounds (TICs), if requested, are reported for compounds identified to be present and are not part of the method/program Target Compound List, even if only a subset of the TCL are being reported. If a sample was re-analyzed or re-extracted due to a required quality control corrective action and if both sets of data are reported, the Laboratory ID of the re-analysis or re-extraction is designated with an "R" or "RE", respectively. When multiple Batch Quality Control elements are reported (e.g. more than one LCS), the associated samples for each element are noted in the grey shaded header line of each data table. Any Laboratory Batch, Sample Specific % recovery or RPD value that is outside the listed Acceptance Criteria is bolded in the report. All specific QC information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications. Soil/sediments, solids and tissues are reported on a dry weight basis unless otherwise noted. Definitions of all data qualifiers and acronyms used in this report are provided in the Glossary located at the back of the report.

In reference to questions H (CAM) or 4 (RCP) when "NO" is checked, the performance criteria for CAM and RCP methods allow for some quality control failures to occur and still be within method compliance. In these instances the specific failure is not narrated but noted in the associated QC table. The information is also incorporated in the Data Usability format of our Data Merger tool where it can be reviewed along with any associated usability implications.

Please see the associated ADEx data file for a comparison of laboratory reporting limits that were achieved with the regulatory Numerical Standards requested on the Chain of Custody.

HOLD POLICY

For samples submitted on hold, Alpha's policy is to hold samples (with the exception of Air canisters) free of charge for 21 calendar days from the date the project is completed. After 21 calendar days, we will dispose of all samples submitted including those put on hold unless you have contacted your Client Service Representative and made arrangements for Alpha to continue to hold the samples. Air canisters will be disposed after 3 business days from the date the project is completed.

Please	contact	Client	Services a	at 800-6	524-9220	with a	any q	uestions.

 Project Name:
 170564
 Lab Number:
 L1704820

 Project Number:
 170564
 Report Date:
 02/20/17

Case Narrative (continued)

Report Submission

All non-detect (ND) or estimated concentrations (J-qualified) have been quantitated to the limit noted in the MDL column.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Michelle M. Morris

Authorized Signature:

Title: Technical Director/Representative Date: 02/20/17

INORGANICS & MISCELLANEOUS

Project Name: Lab Number: 170564 L1704820 Project Number: 170564

Report Date: 02/20/17

Date Collected:

SAMPLE RESULTS

Lab ID: L1704820-01

170564-01 LI-RW-1-PS15 Client ID: Date Received:

Sample Location: Not Specified Matrix: Water

02/15/17 Not Specified Field Prep:

02/13/17 14:53

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab)								
Total Organic Carbon	2.24		mg/l	1.00	0.228	2	-	02/16/17 07:17	121,5310C	DW

Project Name: Lab Number: 170564 L1704820 Project Number: 170564

Report Date: 02/20/17

Date Collected:

SAMPLE RESULTS

Lab ID: L1704820-02

170564-02 LI-RW-2-PS15 Client ID: Date Received: 02/15/17

Sample Location: Not Specified Matrix: Water

Not Specified Field Prep:

02/13/17 11:21

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	stborough Lab)								
Total Organic Carbon	1.90		mg/l	1.00	0.228	2	-	02/16/17 07:17	121,5310C	DW

 Project Name:
 170564
 Lab Number:
 L1704820

 Project Number:
 170564
 Report Date:
 02/20/17

SAMPLE RESULTS

Lab ID: L1704820-03

Client ID: 170564-03 LI-RW-3-PS15 Date Received: 02/15/17

Sample Location: Not Specified Matrix: Water

Field Prep: Not Specified

02/13/17 12:18

Date Collected:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst		
General Chemistry - Westborough Lab												
Total Organic Carbon	2.82		mg/l	1.00	0.228	2	-	02/16/17 07:17	121,5310C	DW		

 Project Name:
 170564
 Lab Number:
 L1704820

 Project Number:
 170564
 Report Date:
 02/20/17

SAMPLE RESULTS

Lab ID: L1704820-04

Client ID: 170564-04 LI-RW-4-PS15 Date Received: 02/15/17

Sample Location: Not Specified Matrix: Water

Field Prep: Not Specified

02/13/17 16:02

Date Collected:

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lat)								
Total Organic Carbon	10.7		mg/l	1.00	0.228	2	-	02/16/17 07:17	121,5310C	DW

Project Number: 170564

Lab Number: L1704820

Project Number: 470564

Project Number: 470564

Project Number: 170564 Report Date: 02/20/17

SAMPLE RESULTS

Lab ID: L1704820-05

Client ID: 170564-05 LI-RW-5-PS15 Date Received: 02/15/17

Sample Location: Not Specified Matrix: Water

Field Prep: Not Specified

02/14/17 13:39

Date Collected:

Analytical Method **Dilution** Date Date Factor Prepared Result Qualifier Units Analyzed Parameter RL MDL **Analyst** General Chemistry - Westborough Lab Total Organic Carbon 1.78 mg/l 1.00 0.228 2 02/16/17 07:17 121,5310C DW

02/14/17 10:08

Project Name: Lab Number: 170564 L1704820 Project Number: 170564 02/20/17

Report Date:

SAMPLE RESULTS

Lab ID: L1704820-06 Date Collected:

170564-06 LI-RW-6-PS15 Client ID: Date Received: 02/15/17

Sample Location: Not Specified Not Specified Field Prep: Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab)								
Total Organic Carbon	2.09		mg/l	1.00	0.228	2	-	02/16/17 07:17	121,5310C	DW

Project Name: Lab Number: 170564 L1704820 Project Number: 170564 Report Date:

02/20/17

Date Collected:

SAMPLE RESULTS

Lab ID: L1704820-07

170564-07 LI-RW-7-PS15 Client ID: Date Received: 02/15/17

Sample Location: Not Specified Matrix: Water

Not Specified Field Prep:

02/14/17 11:00

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - Wes	stborough Lab)								
Total Organic Carbon	1.53		mg/l	1.00	0.228	2	-	02/16/17 07:17	121,5310C	DW

Project Name: Lab Number: 170564 L1704820 **Project Number:** 02/20/17 170564

Report Date:

SAMPLE RESULTS

Lab ID: L1704820-08

170564-08 LI-RW-9-PS15 Client ID:

Sample Location: Not Specified Matrix: Water

Date Collected:

02/14/17 11:48

Date Received: 02/15/17

Field Prep:

Not Specified

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab)								
Total Organic Carbon	1.98		mg/l	1.00	0.228	2	-	02/16/17 07:17	121,5310C	DW

Project Name: Lab Number: 170564 L1704820 **Project Number:** 170564

Report Date: 02/20/17

Date Collected:

SAMPLE RESULTS

Lab ID: L1704820-09

170564-09 LI-RW-12-PS15 Client ID: Date Received: 02/15/17

Not Specified Sample Location: Matrix: Water

Not Specified Field Prep:

02/14/17 09:21

Analytical Method **Dilution** Date Date Factor Prepared Result Qualifier Units Analyzed Parameter RL MDL **Analyst** General Chemistry - Westborough Lab Total Organic Carbon 1.46 mg/l 1.00 0.228 2 02/16/17 07:17 121,5310C DW

 Project Name:
 170564
 Lab Number:
 L1704820

 Project Number:
 170564
 Report Date:
 02/20/17

SAMPLE RESULTS

Lab ID: L1704820-10

Client ID: 170564-10 LI-B102-MW-PS15 Date Received:

Sample Location: Not Specified Matrix: Water

Date Received: 02/15/17
Field Prep: Not Specified

02/14/17 14:38

Date Collected:

Analytical Method **Dilution** Date Date Factor Prepared Result Qualifier Units Analyzed Parameter RL MDL **Analyst** General Chemistry - Westborough Lab Total Organic Carbon 1.78 mg/l 1.00 0.228 2 02/16/17 07:17 121,5310C DW

Project Name: Lab Number: 170564 L1704820 Project Number: 170564

Report Date: 02/20/17

SAMPLE RESULTS

Lab ID: Date Collected: L1704820-11 02/13/17 14:00 170564-11

Client ID: Date Received: 02/15/17 Sample Location: Not Specified Not Specified Field Prep:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab)								
Total Organic Carbon	1.72		mg/l	1.00	0.228	2	-	02/16/17 07:17	121,5310C	DW

Project Name: Lab Number: 170564 L1704820 Project Number: 170564 02/20/17

Report Date:

SAMPLE RESULTS

Lab ID: Date Collected: L1704820-12 02/13/17 13:10 170564-12

Client ID: Date Received: 02/15/17 Sample Location: Not Specified Not Specified Field Prep:

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - We	estborough Lab)								
Total Organic Carbon	1.97		mg/l	1.00	0.228	2	-	02/16/17 07:17	121,5310C	DW

 Project Name:
 170564
 Lab Number:
 L1704820

 Project Number:
 170564
 Report Date:
 02/20/17

SAMPLE RESULTS

Lab ID: L1704820-13 Date Collected: 02/13/17 12:23 Client ID: 170564-13 Date Received: 02/15/17

Client ID: 170564-13 Date Received: 02/15/17
Sample Location: Not Specified Field Prep: Not Specified

Matrix: Water

Parameter	Result	Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - W	estborough Lab									
Total Organic Carbon	2.58		mg/l	1.00	0.228	2	-	02/16/17 07:17	121,5310C	DW

 Project Name:
 170564

 Lab Number:
 L1704820

Project Number: 170564 Report Date: 02/20/17

Method Blank Analysis Batch Quality Control

Parameter	Result Qualifier	Units	RL	MDL	Dilution Factor	Date Prepared	Date Analyzed	Analytical Method	Analyst
General Chemistry - V	Vestborough Lab for sam	ple(s): 01	-13 Ba	tch: WC	G978302-1				
Total Organic Carbon	ND	mg/l	0.500	0.114	1	-	02/16/17 07:17	′ 121,5310C	DW

Lab Control Sample Analysis Batch Quality Control

Project Name: 170564

Lab Number: L1704820

02/20/17

Project Number: 170564 Report Date:

Parameter	LCS %Recovery	Qual	LCSD %Recovery	Qual	%Recovery Limits	RPD	Qual	RPD Limits	
General Chemistry - Westborough Lab A	ssociated sample(s): 01-13	Batch: WG9783	02-2					
Total Organic Carbon	92		-		90-110	-			

Matrix Spike Analysis Batch Quality Control

Project Name: 170564
Project Number: 170564

Lab Number:

L1704820

Report Date:

02/20/17

Parameter	Native Sample	MS Added	MS Found	MS %Recovery	MSD Qual Found	MSD %Recovery Q	Recovery ual Limits R	RPD PD Qual Limits
General Chemistry - Westbord 2-PS15	ough Lab Asso	ciated samp	ole(s): 01-13	QC Batch II	D: WG978302-4	QC Sample: L17	04820-02 Client II	D: 170564-02 LI-RW-
Total Organic Carbon	1.90	8	9.25	92	-	-	80-120	- 20

Lab Duplicate Analysis
Batch Quality Control

Lab Number:

L1704820

Report Date:

02/20/17

Parameter	Native Sam	nple D	Ouplicate Sampl	e Units	RPD	Qual	RPD Limits
General Chemistry - Westborough Lab Associated samp 2-PS15	ole(s): 01-13	QC Batch ID:	WG978302-3	QC Sample:	L1704820-02	Client ID:	170564-02 LI-RW-
Total Organic Carbon	1.90		1.92	mg/l	1		20

Project Name:

Project Number: 170564

170564

 Project Name:
 170564
 Lab Number:
 L1704820

 Project Number:
 170564
 Report Date:
 02/20/17

Sample Receipt and Container Information

Were project specific reporting limits specified?

Cooler Information Custody Seal Cooler

A Absent

Container Info	rmation			Temp			
Container ID	Container Type	Cooler	рН	deg C	Pres	Seal	Analysis(*)
L1704820-01A	Vial H2SO4 preserved	Α	N/A	2.1	Υ	Absent	TOC-5310(28)
L1704820-01B	Vial H2SO4 preserved	Α	N/A	2.1	Υ	Absent	TOC-5310(28)
L1704820-02A	Vial H2SO4 preserved	Α	N/A	2.1	Υ	Absent	TOC-5310(28)
L1704820-02B	Vial H2SO4 preserved	Α	N/A	2.1	Υ	Absent	TOC-5310(28)
L1704820-02C	Vial H2SO4 preserved	Α	N/A	2.1	Υ	Absent	TOC-5310(28)
L1704820-02D	Vial H2SO4 preserved	Α	N/A	2.1	Υ	Absent	TOC-5310(28)
L1704820-02E	Vial H2SO4 preserved	Α	N/A	2.1	Υ	Absent	TOC-5310(28)
L1704820-02F	Vial H2SO4 preserved	Α	N/A	2.1	Υ	Absent	TOC-5310(28)
L1704820-03A	Vial H2SO4 preserved	Α	N/A	2.1	Υ	Absent	TOC-5310(28)
L1704820-03B	Vial H2SO4 preserved	Α	N/A	2.1	Υ	Absent	TOC-5310(28)
L1704820-04A	Vial H2SO4 preserved	Α	N/A	2.1	Υ	Absent	TOC-5310(28)
L1704820-04B	Vial H2SO4 preserved	Α	N/A	2.1	Υ	Absent	TOC-5310(28)
L1704820-05A	Vial H2SO4 preserved	Α	N/A	2.1	Υ	Absent	TOC-5310(28)
L1704820-05B	Vial H2SO4 preserved	Α	N/A	2.1	Υ	Absent	TOC-5310(28)
L1704820-06A	Vial H2SO4 preserved	Α	N/A	2.1	Υ	Absent	TOC-5310(28)
L1704820-06B	Vial H2SO4 preserved	Α	N/A	2.1	Υ	Absent	TOC-5310(28)
L1704820-07A	Vial H2SO4 preserved	Α	N/A	2.1	Υ	Absent	TOC-5310(28)
L1704820-07B	Vial H2SO4 preserved	Α	N/A	2.1	Υ	Absent	TOC-5310(28)
L1704820-08A	Vial H2SO4 preserved	Α	N/A	2.1	Υ	Absent	TOC-5310(28)
L1704820-08B	Vial H2SO4 preserved	Α	N/A	2.1	Υ	Absent	TOC-5310(28)
L1704820-09A	Vial H2SO4 preserved	Α	N/A	2.1	Υ	Absent	TOC-5310(28)
L1704820-10A	Vial H2SO4 preserved	Α	N/A	2.1	Υ	Absent	TOC-5310(28)
L1704820-10B	Vial H2SO4 preserved	Α	N/A	2.1	Υ	Absent	TOC-5310(28)
L1704820-11A	Vial H2SO4 preserved	Α	N/A	2.1	Υ	Absent	TOC-5310(28)
L1704820-11B	Vial H2SO4 preserved	Α	N/A	2.1	Υ	Absent	TOC-5310(28)
L1704820-12A	Vial H2SO4 preserved	Α	N/A	2.1	Υ	Absent	TOC-5310(28)
L1704820-12B	Vial H2SO4 preserved	Α	N/A	2.1	Υ	Absent	TOC-5310(28)
L1704820-13A	Vial H2SO4 preserved	Α	N/A	2.1	Υ	Absent	TOC-5310(28)
L1704820-13B	Vial H2SO4 preserved	Α	N/A	2.1	Υ	Absent	TOC-5310(28)

 Project Name:
 170564
 Lab Number:
 L1704820

 Project Number:
 170564
 Report Date:
 02/20/17

GLOSSARY

Acronyms

EDL - Estimated Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated

values, when those target analyte concentrations are quantified below the reporting limit (RL). The EDL includes any adjustments from dilutions, concentrations or moisture content, where applicable. The use of EDLs is specific to the analysis

of PAHs using Solid-Phase Microextraction (SPME).

EPA - Environmental Protection Agency.

LCS - Laboratory Control Sample: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

LCSD - Laboratory Control Sample Duplicate: Refer to LCS.

LFB - Laboratory Fortified Blank: A sample matrix, free from the analytes of interest, spiked with verified known amounts of

analytes or a material containing known and verified amounts of analytes.

MDL - Method Detection Limit: This value represents the level to which target analyte concentrations are reported as estimated values, when those target analyte concentrations are quantified below the reporting limit (RL). The MDL includes any

adjustments from dilutions, concentrations or moisture content, where applicable.

MS - Matrix Spike Sample: A sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for

which an independent estimate of target analyte concentration is available.

MSD - Matrix Spike Sample Duplicate: Refer to MS.

NA - Not Applicable.

NC - Not Calculated: Term is utilized when one or more of the results utilized in the calculation are non-detect at the parameter's

reporting unit.

NDPA/DPA - N-Nitrosodiphenylamine/Diphenylamine.

NI - Not Ignitable.

NP - Non-Plastic: Term is utilized for the analysis of Atterberg Limits in soil.

RL - Reporting Limit: The value at which an instrument can accurately measure an analyte at a specific concentration. The RL

includes any adjustments from dilutions, concentrations or moisture content, where applicable.

RPD - Relative Percent Difference: The results from matrix and/or matrix spike duplicates are primarily designed to assess the precision of analytical results in a given matrix and are expressed as relative percent difference (RPD). Values which are less

than five times the reporting limit for any individual parameter are evaluated by utilizing the absolute difference between the

values; although the RPD value will be provided in the report.

SRM - Standard Reference Material: A reference sample of a known or certified value that is of the same or similar matrix as the

associated field samples.

STLP - Semi-dynamic Tank Leaching Procedure per EPA Method 1315.

TIC - Tentatively Identified Compound: A compound that has been identified to be present and is not part of the target compound

list (TCL) for the method and/or program. All TICs are qualitatively identified and reported as estimated concentrations.

Footnotes

- The reference for this analyte should be considered modified since this analyte is absent from the target analyte list of the original method.

Terms

Total: With respect to Organic analyses, a 'Total' result is defined as the summation of results for individual isomers or Aroclors. If a "Total' result is requested, the results of its individual components will also be reported. This is applicable to 'Total' results for methods 8260, 8081 and 8082.

Analytical Method: Both the document from which the method originates and the analytical reference method. (Example: EPA 8260B is shown as 1,8260B.) The codes for the reference method documents are provided in the References section of the Addendum.

Data Qualifiers

A - Spectra identified as "Aldol Condensation Product".

The analyte was detected above the reporting limit in the associated method blank. Flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For MCP-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank. For DOD-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte at less than ten times (10x) the concentration found in the blank AND the analyte was detected above one-half the reporting limit (or above the reporting limit for common lab contaminants) in the associated method blank. For NJ-Air-related projects, flag only applies to associated field samples that have detectable concentrations of the analyte above the reporting limit. For NJ-related projects (excluding Air), flag only applies to associated field samples that have detectable concentrations of the analyte, which was detected above the reporting limit in the associated method blank or above five times the

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 170564
 Lab Number:
 L1704820

 Project Number:
 170564
 Report Date:
 02/20/17

Data Qualifiers

- reporting limit for common lab contaminants (Phthalates, Acetone, Methylene Chloride, 2-Butanone).
- Co-elution: The target analyte co-elutes with a known lab standard (i.e. surrogate, internal standards, etc.) for co-extracted analyses.
- Concentration of analyte was quantified from diluted analysis. Flag only applies to field samples that have detectable concentrations
 of the analyte.
- E Concentration of analyte exceeds the range of the calibration curve and/or linear range of the instrument.
- G The concentration may be biased high due to matrix interferences (i.e, co-elution) with non-target compound(s). The result should be considered estimated.
- H The analysis of pH was performed beyond the regulatory-required holding time of 15 minutes from the time of sample collection.
- The lower value for the two columns has been reported due to obvious interference.
- M Reporting Limit (RL) exceeds the MCP CAM Reporting Limit for this analyte.
- NJ Presumptive evidence of compound. This represents an estimated concentration for Tentatively Identified Compounds (TICs), where the identification is based on a mass spectral library search.
- P The RPD between the results for the two columns exceeds the method-specified criteria.
- Q The quality control sample exceeds the associated acceptance criteria. For DOD-related projects, LCS and/or Continuing Calibration Standard exceedences are also qualified on all associated sample results. Note: This flag is not applicable for matrix spike recoveries when the sample concentration is greater than 4x the spike added or for batch duplicate RPD when the sample concentrations are less than 5x the RL. (Metals only.)
- **R** Analytical results are from sample re-analysis.
- RE Analytical results are from sample re-extraction.
- S Analytical results are from modified screening analysis.
- Estimated value. The Target analyte concentration is below the quantitation limit (RL), but above the Method Detection Limit (MDL) or Estimated Detection Limit (EDL) for SPME-related analyses. This represents an estimated concentration for Tentatively Identified Compounds (TICs).
- ND Not detected at the method detection limit (MDL) for the sample, or estimated detection limit (EDL) for SPME-related analyses.

Report Format: DU Report with 'J' Qualifiers

 Project Name:
 170564
 Lab Number:
 L1704820

 Project Number:
 170564
 Report Date:
 02/20/17

REFERENCES

121 Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WEF. Standard Methods Online.

LIMITATION OF LIABILITIES

Alpha Analytical performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical be held liable for any incidental, consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding time and splitting of samples in the field.

Alpha Analytical, Inc.
Facility: Company-wide

Department: Quality Assurance

Title: Certificate/Approval Program Summary

ID No.:**17873** Revision 10

Page 1 of 1

Published Date: 1/16/2017 11:00:05 AM

Certification Information

The following analytes are not included in our Primary NELAP Scope of Accreditation:

Westborough Facility

EPA 624: m/p-xylene, o-xylene

EPA 8260C: <u>NPW</u>: 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene, Azobenzene; <u>SCM</u>: Iodomethane (methyl iodide), Methyl methacrylate, 1,2,4,5-Tetramethylbenzene; 4-Ethyltoluene.

EPA 8270D: NPW: Dimethylnaphthalene,1,4-Diphenylhydrazine; SCM: Dimethylnaphthalene,1,4-Diphenylhydrazine.

EPA 300: DW: Bromide

EPA 6860: NPW and SCM: Perchlorate

EPA 9010: NPW and SCM: Amenable Cyanide Distillation

EPA 9012B: NPW: Total Cyanide **EPA 9050A:** NPW: Specific Conductance

SM3500: NPW: Ferrous Iron

SM4500: NPW: Amenable Cyanide, Dissolved Oxygen; SCM: Total Phosphorus, TKN, NO2, NO3.

SM5310C: DW: Dissolved Organic Carbon

Mansfield Facility

SM 2540D: TSS EPA 3005A NPW

EPA 8082A: NPW: PCB: 1, 5, 31, 87,101, 110, 141, 151, 153, 180, 183, 187.

EPA TO-15: Halothane, 2,4,4-Trimethyl-2-pentene, 2,4,4-Trimethyl-1-pentene, Thiophene, 2-Methylthiophene,

3-Methylthiophene, 2-Ethylthiophene, 1,2,3-Trimethylbenzene, Indan, Indene, 1,2,4,5-Tetramethylbenzene, Benzothiophene, 1-Methylnaphthalene.

Biological Tissue Matrix: EPA 3050B

The following analytes are included in our Massachusetts DEP Scope of Accreditation

Westborough Facility:

Drinking Water

EPA 300.0: Nitrate-N, Fluoride, Sulfate; EPA 353.2: Nitrate-N, Nitrite-N; SM4500NO3-F: Nitrate-N, Nitrite-N; SM4500F-C, SM4500CN-CE, EPA 180.1, SM2130B, SM4500CI-D, SM2320B, SM2540C, SM4500H-B

EPA 332: Perchlorate; EPA 524.2: THMs and VOCs; EPA 504.1: EDB, DBCP.

Microbiology: SM9215B; SM9223-P/A, SM9223B-Colilert-QT,SM9222D.

Non-Potable Water

SM4500H,B, EPA 120.1, SM2510B, SM2540C, SM2320B, SM4500CL-E, SM4500F-BC, SM4500NH3-BH, EPA 350.1: Ammonia-N, LACHAT 10-107-06-1-B: Ammonia-N, SM4500NO3-F, EPA 353.2: Nitrate-N, EPA 351.1, SM4500P-E, SM4500P-B, E, SM4500SO4-E, SM5220D, EPA 410.4, SM5210B, SM5310C, SM4500CL-D, EPA 1664, EPA 420.1, SM4500-CN-CE, SM2540D.

EPA 624: Volatile Halocarbons & Aromatics,

EPA 608: Chlordane, Toxaphene, Aldrin, alpha-BHC, beta-BHC, gamma-BHC, delta-BHC, Dieldrin, DDD, DDE, DDT, Endosulfan II, Endosulfan sulfate, Endrin, Endrin Aldehyde, Heptachlor, Heptachlor Epoxide, PCBs

EPA 625: SVOC (Acid/Base/Neutral Extractables), EPA 600/4-81-045: PCB-Oil.

Microbiology: SM9223B-Colilert-QT; Enterolert-QT, SM9221E.

Mansfield Facility:

Drinking Water

EPA 200.7: Ba, Be, Cd, Cr, Cu, Ni, Na, Ca. EPA 200.8: Sb, As, Ba, Be, Cd, Cr, Cu, Pb, Ni, Se, TL. EPA 245.1 Hg.

Non-Potable Water

EPA 200.7: Al, Sb, As, Be, Cd, Ca, Cr, Co, Cu, Fe, Pb, Mg, Mn, Mo, Ni, K, Se, Ag, Na, Sr, TL, Ti, V, Zn.

EPA 200.8: Al, Sb, As, Be, Cd, Cr, Cu, Pb, Mn, Ni, Se, Ag, TL, Zn.

EPA 245.1 Hg.

SM2340B

For a complete listing of analytes and methods, please contact your Alpha Project Manager.

Document Type: Form

Pre-Qualtrax Document ID: 08-113

179 Lake Avenue, Rochester, NY 14608 Office (585) 647-2530 Fax (585) 647-3311

CHAIN OF CUSTODY

11148

PA	RADIG	Mary 1	COMPANY: Paradigm Environmental					OF SALV	INVOI	CE TO:	Tell'in an	<u>C1704820</u>				
1.0	4		ADDRESS:				PANY:	San	ne			LAB PROJECT	t: CLI	ENT PROJEC	Т#:	
1		1	CITY:		NY ZIP: 1460	1 450										
	1 10		PHONE:	FAX:	NY 217. 1460	PHON				STATE:	ZIP:	TURNAROUND 1	ME: (WORK	NG DAYS)		
PROJECT NAME/SITE	E NAME:		ATTN:						FAI	1				STD		OTHER
				Reporting		ATTN		Accoun	ts Payal	ole		1 1	1 13	X 5		OTTLE
. (COMMENTS	s: Please email resu	Its to reporting@	parad	igme	nv.com				D.1 D	-	_	7	
							-	REQUES	TED AN	IALYSIS		Date Due:	2/23	111_	For the	2+9
DATE	TIME	C O M P O S I T E	G R A B	SAMPLE LOCATION/FIE	LD ID TR	U T B I	s)0/				ASP C	J Flags at B Pack REMARKS 546 HT'S	Kase 1)	me 3/	ed. 9 /17 1 LAB SAMPLE	NUMBER
12/13/17	14:53			170564 -01	Stour Wet				++-				20.0	- I		
2 1	11:01			1 -02	Wat	63						RW-1-1				
	12:18						-	MS/M	50 00	-02		9W-2-1				
	16:02			-03		2	-				LI-1	2W-3-F	515			
2/1/2				-c4		2				n H s	LI- 6	2W-4-P	5/15			
2/14/17	13:39			- 05		1 3						W-5-A		19 50 5		
j	10:08			- 06		2					LI-R	W-6-P	515			-
	11:00			-07		2					LI-R	W-7-P	515		+	
3	11:48			30-	56_	2				31 = = 1		W-9-P			+-	
	16:50			-09		1		H H			LTS	2w-12-1	3 13		-	-
0 7	14:38			+ -10	-	2	1	1 10								
*LAB USE O	NLY BELOV	VTHISTLI	NE**			11 1	1		1000	35.27.2	L L - 13	WM-601	1315	1		
ample Conditio	Receipt Paran		41/242/243	NELAC Compliance	1				2 2 2 2000	- 20 May proger	. *************************************	S. S. W. L. V. Town		Water Street	h et	
omments:	Container Typ			Y	Clier Sampled By	nt										
omments:	Preservation	:		Y	Relinquished	By			2/	Date/Time 5 17	16:		otal Cost:			
omments:	Holding Time	9;		Y . N .	Received By	L	4AC	_	2/1.	Date/Time	16;	00 45 25				
omments:	Temperature);		Y . N .	Received By	L	AC		2/1	Date/Time	17;	25 P.	l.F.			
	314				171	-11/	1,			Date/Time	12.					
					Received @ L	ab By	1			Oate/Time	048	-				

179 Lake Avenue, Rochester, NY 14608 Office (585) 647-2530 Fax (585) 647-3311

2.72

CHAIN OF CUSTODY

11148

.PA	RADIG	Me	,	Libra G	REPORT TO			No.			INVO	ICE TO):	Eldina.	in 3	71	7048	-		771 er
	CHPENTAL SEC. CL	*	COMPAN	1 uru	digm Enviro			COMPA	NY:	Sam					LAB PF	ROJECT#:	CLIENT P	ROJECT	Γ#:	
1.			ADDRES	1/3 L	.ake Avenue			ADDRES	SS:											
			CITY:	Rochester		NY ZIP: 1	4608	CITY:				STAT	E:	ZIP:	TURNA	ROUND TIME: (WO	RKING DA	(SYA	_	-
DDO IFOT MANEED			PHONE:		FAX:			PHONE:			F	AX:					STE	,		OTUED
PROJECT NAME/SI	ITE NAME:		ATTN:	Repo				ATTN:			s Pay	able					3 1	-		OTHER
			COMMEN	тs: Pleas	e email resu	its to reporting	g@p	aradig	menv.c	om							1/2	9		
					***************************************				REC	QUES	TED A	NALY	SIS		Date	Due:	(1)		105 A 7 A	marriage.
DATE	тіме	C O M G P R SAMPLE LOCATION/FIELD ID T E I I I I I I I I I I I I I I I I I I			LD ID	ID A T R I X								REMA	RKS	PA	RADIGM	LAB SAM	IPLE NUMBER	
1 2/13/17	14:00			17.0	111	60	and	R	×	-	14	+	+							
2 1	13:10			1163		- 6	2.to	2		_	-	+		0						
	12:23				- 12			3	X											
3 4	14:47			-6	-13		+	2	X										ai E	
4	+																			
5																				
6												1								
7																				
8						1												-	\vdash	
9									- Y 3.								++		++-	
10																	++		-	
LAB USE (Sample Conditi	ONLY BELO	W THIS L	INE	3/044	5.4				. 6	在,令	4.5	46. 20		40-						
Tampie Tonais	Receipt Para	meter	24 11242124	NELAC Co	mpliance	1										r reset or all years at				
Comments:	Container Ty	/pe:		Y 🔲	N		lient													
Comments:	Preservatio	n:		Υ 🔲	N 🔲	Sampled E	2_				2	/ 1	117	16	100	Total Cos	t:			
Comments:	Holding Tim	ne:		Y 🔲	N	Received E	H		AAC		2	Pate/	17	16	:45					
Comments:	Temperatur	re:		Υ	N	Received E	A.C.	1	AL		2	Date/	7	17:	25	P.I.F.				į
Page 20						Received @	Lab D Lab	By	4		7	Date/	12	0045		-1				24.

Analytical Report For

Stantec

For Lab Project ID

161714

Referencing

Carriage Factory

Prepared

Monday, May 16, 2016

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below.

Certifies that this report has been approved by the Technical Director or Designee

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-EL-W22

Lab Sample ID:161714-01Date Sampled:5/2/2016Matrix:GroundwaterDate Received:5/3/2016

Metals

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Cadmium	< 0.00500	mg/L		5/9/2016 12:42
Copper	< 0.0250	mg/L		5/9/2016 12:42
Lead	< 0.0100	mg/L		5/9/2016 12:42
Zinc	0.0993	mg/L		5/9/2016 12:42

Method Reference(s): EPA 6010C

EPA 3005A

Preparation Date: 5/6/2016 Data File: 050916a

Volatile Organics (Halogenated)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		5/5/2016 15:14
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		5/5/2016 15:14
1,1,2-Trichloroethane	< 2.00	ug/L		5/5/2016 15:14
1,1-Dichloroethane	< 2.00	ug/L		5/5/2016 15:14
1,1-Dichloroethene	< 2.00	ug/L		5/5/2016 15:14
1,2-Dichlorobenzene	< 2.00	ug/L		5/5/2016 15:14
1,2-Dichloroethane	< 2.00	ug/L		5/5/2016 15:14
1,2-Dichloropropane	< 2.00	ug/L		5/5/2016 15:14
1,3-Dichlorobenzene	< 2.00	ug/L		5/5/2016 15:14
1,4-Dichlorobenzene	< 2.00	ug/L		5/5/2016 15:14
Bromodichloromethane	< 2.00	ug/L		5/5/2016 15:14
Bromoform	< 5.00	ug/L		5/5/2016 15:14
Bromomethane	< 2.00	ug/L		5/5/2016 15:14
Carbon Tetrachloride	< 2.00	ug/L		5/5/2016 15:14
Chlorobenzene	< 2.00	ug/L		5/5/2016 15:14
Chloroethane	< 2.00	ug/L		5/5/2016 15:14
Chloroform	< 2.00	ug/L		5/5/2016 15:14
Chloromethane	< 2.00	ug/L		5/5/2016 15:14
cis-1,2-Dichloroethene	< 2.00	ug/L		5/5/2016 15:14

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier:	LI-EL-W22						
Lab Sample ID:	161714-01			Dat	e Sampled:	5/2/2016	
Matrix:	Groundwate	r		Dat	e Received:	5/3/2016	
cis-1,3-Dichloropropen	e	< 2.00	ug/L			5/5/2016	15:14
Dibromochloromethane	9	< 2.00	ug/L			5/5/2016	15:14
Methylene chloride		< 5.00	ug/L			5/5/2016	15:14
Tetrachloroethene		< 2.00	ug/L			5/5/2016	15:14
trans-1,2-Dichloroether	ne	< 2.00	ug/L			5/5/2016	15:14
trans-1,3-Dichloroprop	ene	< 2.00	ug/L			5/5/2016	15:14
Trichloroethene		< 2.00	ug/L			5/5/2016	15:14
Trichlorofluoromethan	e	< 2.00	ug/L			5/5/2016	15:14
Vinyl chloride		< 2.00	ug/L			5/5/2016	15:14
Surrogate		P	ercent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4			102	81.1 - 122		5/5/2016	15:14
4-Bromofluorobenzene			91.2	78.7 - 116		5/5/2016	15:14
Pentafluorobenzene			101	88.6 - 112		5/5/2016	15:14
Toluene-D8			99.2	88.9 - 110		5/5/2016	15:14

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x32094.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-EL-W23

Lab Sample ID:161714-02Date Sampled:5/3/2016Matrix:GroundwaterDate Received:5/3/2016

Metals

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
Cadmium	< 0.00500	mg/L		5/9/2016 12:47
Copper	< 0.0250	mg/L		5/9/2016 12:47
Lead	< 0.0100	mg/L		5/9/2016 12:47
Zinc	< 0.0600	mg/L		5/9/2016 12:47

Method Reference(s): EPA 6010C

EPA 3005A

Preparation Date: 5/6/2016 Data File: 050916a

Volatile Organics (Halogenated)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		5/5/2016 15:38
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		5/5/2016 15:38
1,1,2-Trichloroethane	< 2.00	ug/L		5/5/2016 15:38
1,1-Dichloroethane	< 2.00	ug/L		5/5/2016 15:38
1,1-Dichloroethene	< 2.00	ug/L		5/5/2016 15:38
1,2-Dichlorobenzene	< 2.00	ug/L		5/5/2016 15:38
1,2-Dichloroethane	< 2.00	ug/L		5/5/2016 15:38
1,2-Dichloropropane	< 2.00	ug/L		5/5/2016 15:38
1,3-Dichlorobenzene	< 2.00	ug/L		5/5/2016 15:38
1,4-Dichlorobenzene	< 2.00	ug/L		5/5/2016 15:38
Bromodichloromethane	< 2.00	ug/L		5/5/2016 15:38
Bromoform	< 5.00	ug/L		5/5/2016 15:38
Bromomethane	< 2.00	ug/L		5/5/2016 15:38
Carbon Tetrachloride	< 2.00	ug/L		5/5/2016 15:38
Chlorobenzene	< 2.00	ug/L		5/5/2016 15:38
Chloroethane	< 2.00	ug/L		5/5/2016 15:38
Chloroform	< 2.00	ug/L		5/5/2016 15:38
Chloromethane	< 2.00	ug/L		5/5/2016 15:38
cis-1,2-Dichloroethene	109	ug/L		5/5/2016 15:38

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier:	LI-EL-W23						
Lab Sample ID:	161714-02			Date	e Sampled:	5/3/2016	
Matrix:	Groundwate	r		Dat	e Received:	5/3/2016	
cis-1,3-Dichloropropen	е	< 2.00	ug/L			5/5/2016	15:38
Dibromochloromethane	9	< 2.00	ug/L			5/5/2016	15:38
Methylene chloride		< 5.00	ug/L			5/5/2016	15:38
Tetrachloroethene		< 2.00	ug/L			5/5/2016	15:38
trans-1,2-Dichloroether	ne	< 2.00	ug/L			5/5/2016	15:38
trans-1,3-Dichloroprop	ene	< 2.00	ug/L			5/5/2016	15:38
Trichloroethene		< 2.00	ug/L			5/5/2016	15:38
Trichlorofluoromethane	e	< 2.00	ug/L			5/5/2016	15:38
Vinyl chloride		35.9	ug/L			5/5/2016	15:38
<u>Surrogate</u>		Percent Recovery		<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4			103	81.1 - 122		5/5/2016	15:38
4-Bromofluorobenzene			90.1	78.7 - 116		5/5/2016	15:38
Pentafluorobenzene			102	88.6 - 112		5/5/2016	15:38
Toluene-D8			99.8	88.9 - 110		5/5/2016	15:38

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x32095.D

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "J" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, tern or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB.

Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any

environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on th final report.

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples.

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

10かり

CHAIN OF CUSTODY

5/3/16	5/2/16	DATE COLLECTED		Carriage Factory	PROJE			1	4004(-41	
1350	1450	TIME	(اد کور	PROJECT REFERENCE	١			The state of the s	PARADIGM
×		m		tory	ENCE		٦	q	3.5	S
	×	מגאמ								
LI-EL-W23	LI-EL-W22	SAMPLE IDENTIFIER		Matrix Codes: AQ - Aqueous Liquid NQ - Non-Aqueous Liquid	Mike Storonsky	PHONE: 413-5266	CITY: Rochester STATE: NY	5	CLIENT: Stante	REPORT TO:
mG	mg	X - Z - D ≤ Ø m D O O		WA - Water WG - Groundwater	7		41941A			
W	n	10 2m03c2 02m2->-1200		er	ATTN:	PHONE:	CITY:	ADDRESS:	CLIENT:	
× ×	× × – – – – – – – – – – – – – – – – – –	Heilosenakol Vões Col, Cu, Pb, Zn	REQUESTED ANALYSIS	DW - Drinking Water WW - Wastewater	エ	378-5248	STATE:		Same	INVOICE TO:
			SIS	SO - Soil SL - Sludge	ch	4.	ZIP:			
		REMARKS		SD - Solid WP - Wipe PT - Paint CK - Caulk	Miller Staronskye starker	Email:	Quotation #:	161714	LAB PROJECT ID	
02	07	PARADIGM LAB SAMPLE NUMBER		OL - Oil AR - Air	Starter				D	

See additional page for sample conditions	additional nage	See				1	-	
verse).	nd Conditions (re	o Paradigm Terms a	By signing this form, client agrees to Paradigm Terms and Conditions (reverse).	please indicate EDD needed:		please indicate package needed:	O AN	please indicate date needed
		15:50	5°C:ced 5/3/16 15	Other EDD 🗡	Ц	Other	X	Other
	1	Date/Time	Received @ Lab By					Rush 1 day
Ş	36:31	5/3/16	J. Comment	,		Category B		Rush 2 day
	1540	5/3/16 1540	Ame Julyan	NYSDEC EDD X		Category A		Rush 3 day
		Date/Time	Relinquished By	Basic EDD		Batch QC		10 day
Total Cost:	でなっ	Date/Time	Sampled By Howat	None Required		None Required		Standard 5 day
	0581	5/3/16	Ver taravita	ees may apply.	al; additional fe	Availability contingent upon lab approval; additional fees may apply.	lity continger	Availabi
			ソニン	ements	Report Supplements	R	d Time	Turnaround Time

Chain of Custody Supplement

Client:	Stantec	Completed by:	Glenn Pezzulo	
Lab Project ID:	161714	Date:	5/3/16	
	Sample Condition Per NELAC/ELAP 21	on Requirements 0/241/242/243/244		
Condition	ELAC compliance with the sample of Yes	condition requirements upor No	receipt N/A	
Container Type Comments				
Transferred to method- compliant container			* 15	4.
Headspace (<1 mL) Comments	X VOA	*		T. W
Preservation Comments				
Chlorine Absent (<0.10 ppm per test strip) Comments			X	
emperature Comments	5°Ciced		MING	
ufficient Sample Quantity Comments				
-				

Analytical Report For

Stantec

For Lab Project ID

163435

Referencing

Carriage Factory

Prepared

Wednesday, August 24, 2016

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below.

Certifies that this report has been approved by the Technical Director or Designee

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958 • PADEP ID# 68-02351

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-EL-W24

Lab Sample ID:163435-01Date Sampled:8/9/2016Matrix:GroundwaterDate Received:8/10/2016

Metals

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Cadmium	< 0.00500	mg/L		8/15/2016 20:58
Copper	0.0276	mg/L		8/15/2016 20:58
Lead	0.0275	mg/L		8/17/2016 10:29
Zinc	0.136	mg/L		8/15/2016 20:58

Method Reference(s): EPA 6010C

EPA 3005A

 Preparation Date:
 8/12/2016

 Data File:
 081516b

Volatile Organics (Halogenated)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		8/19/2016 16:20
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		8/19/2016 16:20
1,1,2-Trichloroethane	< 2.00	ug/L		8/19/2016 16:20
1,1-Dichloroethane	< 2.00	ug/L		8/19/2016 16:20
1,1-Dichloroethene	< 2.00	ug/L		8/19/2016 16:20
1,2-Dichlorobenzene	< 2.00	ug/L		8/19/2016 16:20
1,2-Dichloroethane	< 2.00	ug/L		8/19/2016 16:20
1,2-Dichloropropane	< 2.00	ug/L		8/19/2016 16:20
1,3-Dichlorobenzene	< 2.00	ug/L		8/19/2016 16:20
1,4-Dichlorobenzene	< 2.00	ug/L		8/19/2016 16:20
Bromodichloromethane	< 2.00	ug/L		8/19/2016 16:20
Bromoform	< 5.00	ug/L		8/19/2016 16:20
Bromomethane	< 2.00	ug/L		8/19/2016 16:20
Carbon Tetrachloride	< 2.00	ug/L		8/19/2016 16:20
Chlorobenzene	< 2.00	ug/L		8/19/2016 16:20
Chloroethane	< 2.00	ug/L		8/19/2016 16:20
Chloroform	< 2.00	ug/L		8/19/2016 16:20
Chloromethane	< 2.00	ug/L		8/19/2016 16:20
cis-1,2-Dichloroethene	< 2.00	ug/L		8/19/2016 16:20

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier:	LI-EL-W24						
Lab Sample ID:	163435-01			Dat	e Sampled:	8/9/2016	
Matrix:	Groundwate	r		Dat	e Received:	8/10/2016	
cis-1,3-Dichloropropen	e	< 2.00	ug/L			8/19/2016	16:20
Dibromochloromethan	е	< 2.00	ug/L			8/19/2016	16:20
Methylene chloride		< 5.00	ug/L			8/19/2016	16:20
Tetrachloroethene		< 2.00	ug/L			8/19/2016	16:20
trans-1,2-Dichloroether	ne	< 2.00	ug/L			8/19/2016	16:20
trans-1,3-Dichloroprop	ene	< 2.00	ug/L			8/19/2016	16:20
Trichloroethene		< 2.00	ug/L			8/19/2016	16:20
Trichlorofluoromethan	e	< 2.00	ug/L			8/19/2016	16:20
Vinyl chloride		< 2.00	ug/L			8/19/2016	16:20
Surrogate		Pe	ercent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4			107	86 - 116		8/19/2016	16:20
4-Bromofluorobenzene			95.5	82.2 - 113		8/19/2016	16:20
Pentafluorobenzene			103	90.9 - 110		8/19/2016	16:20
Toluene-D8			97.1	90.8 - 109		8/19/2016	16:20

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x34675.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-EL-W25

Lab Sample ID:163435-02Date Sampled:8/10/2016Matrix:GroundwaterDate Received:8/10/2016

Metals

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Cadmium	< 0.00500	mg/L		8/15/2016 21:02
Copper	< 0.0250	mg/L		8/15/2016 21:02
Lead	< 0.0100	mg/L		8/15/2016 21:02
Zinc	< 0.0600	mg/L		8/15/2016 21:02

Method Reference(s): EPA 6010C

EPA 3005A

 Preparation Date:
 8/12/2016

 Data File:
 081516b

Volatile Organics (Halogenated)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		8/19/2016 16:43
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		8/19/2016 16:43
1,1,2-Trichloroethane	< 2.00	ug/L		8/19/2016 16:43
1,1-Dichloroethane	< 2.00	ug/L		8/19/2016 16:43
1,1-Dichloroethene	< 2.00	ug/L		8/19/2016 16:43
1,2-Dichlorobenzene	< 2.00	ug/L		8/19/2016 16:43
1,2-Dichloroethane	< 2.00	ug/L		8/19/2016 16:43
1,2-Dichloropropane	< 2.00	ug/L		8/19/2016 16:43
1,3-Dichlorobenzene	< 2.00	ug/L		8/19/2016 16:43
1,4-Dichlorobenzene	< 2.00	ug/L		8/19/2016 16:43
Bromodichloromethane	< 2.00	ug/L		8/19/2016 16:43
Bromoform	< 5.00	ug/L		8/19/2016 16:43
Bromomethane	< 2.00	ug/L		8/19/2016 16:43
Carbon Tetrachloride	< 2.00	ug/L		8/19/2016 16:43
Chlorobenzene	< 2.00	ug/L		8/19/2016 16:43
Chloroethane	< 2.00	ug/L		8/19/2016 16:43
Chloroform	< 2.00	ug/L		8/19/2016 16:43
Chloromethane	< 2.00	ug/L		8/19/2016 16:43
cis-1,2-Dichloroethene	38.8	ug/L		8/19/2016 16:43

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier:	LI-EL-W25						
Lab Sample ID:	163435-02			Dat	e Sampled:	8/10/2016	
Matrix:	Groundwate	r		Dat	e Received:	8/10/2016	
cis-1,3-Dichloropropen	e	< 2.00	ug/L			8/19/2016	16:43
Dibromochloromethane	e	< 2.00	ug/L			8/19/2016	16:43
Methylene chloride		< 5.00	ug/L			8/19/2016	16:43
Tetrachloroethene		< 2.00	ug/L			8/19/2016	16:43
trans-1,2-Dichloroether	ne	< 2.00	ug/L			8/19/2016	16:43
trans-1,3-Dichloroprop	ene	< 2.00	ug/L			8/19/2016	16:43
Trichloroethene		< 2.00	ug/L			8/19/2016	16:43
Trichlorofluoromethan	e	< 2.00	ug/L			8/19/2016	16:43
Vinyl chloride		16.4	ug/L			8/19/2016	16:43
Surrogate		<u>Pe</u>	rcent Recovery	<u>Limits</u>	Outliers	Date Analy	zed
1,2-Dichloroethane-d4			105	86 - 116		8/19/2016	16:43
4-Bromofluorobenzene			97.5	82.2 - 113		8/19/2016	16:43
Pentafluorobenzene			103	90.9 - 110		8/19/2016	16:43
Toluene-D8			97.5	90.8 - 109		8/19/2016	16:43

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x34676.D

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "J" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, tern or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB. Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against

any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any

environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the final report.

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples.

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

CHAIN OF CUSTODY

Page 8 of 9

Turnaround Time Report Supplements Availability contingent upon lab approval; additional fees may apply. Standard 5 day None Required Other Other Diease indicate package needed: Neport Supplements None Required NYSDEC EDD Availability contingent upon lab approval; additional fees may apply. None Required None Required None Required NYSDEC EDD Other EDD please indicate package needed: please indicate package needed:	1	DATE COLLECTED TIME O COLLECTED S B T T T T T T T T T T T T	PROJECT REFERENCE IN	PARADIGM
Report Supplements oval; additional fees may apply. None Required Basic EDD NYSDEC EDD NYSDEC EDD please indicate EDD needed:	13-ET-M3-	SAMPLE IDENTIFIER	Matrix Codes: AQ - Aqueous Liquid NQ - Non-Aqueous Liquid	ritco hester
Sampled By Sampled By Total Co Resinquished By Received By Received @ Lab By P.I.F. Parent Strong Form, client agrees to Paradigm Terms and Conditions (reverse).	20 20 20 20 20 20 20 20 20 20 20 20 20 2	X-NHNE WHOOD NO NHOSC Z NON NO Z-NHZOO Halczbata Va Cal, Cu, Pb, Zn ON NHOSC Z	WA - Water WG - Groundwater WW - Wastewater WW - Wastewater WW - Wastewater WW - Wastewater	CLIENT: Same CLIENT: Same CLIENT: Same CLIENT: ZIP: CLIEN
St.		REMARKS		LAB PROJECT ID /6 3 4 3 S Quotation #:
	02	PARADIGM LAB SAMPLE NUMBER	Stanta con OL-Oil AR-Air	

Chain of Custody Supplement

Client:	Stantec	Completed by:	Glenn Perzulo
Lab Project ID:	163435	Date:	8/10/16
	Sample Condition Per NELAC/ELAP 210/	Requirements 241/242/243/244	
Condition	NELAC compliance with the sample co Yes	ndition requirements upor No	n receipt N/A
Container Type			
Comment	rs	· ·	
Transferred to method- compliant container			×
Headspace (<1 mL)	VOA (03)	Vey (a)	X Mosels
Comment	s Borh von wals for sample	e of have bead	space > Int
Preservation			
Comment	s		
Chlorine Absent (<0.10 ppm per test strip)			
Comment	s		_
Holding Time			
Comments	S		
Temperature	VOA (00)	VeA (el)	mek Is
Comments	3	V	→
Sufficient Sample Quantity			
Comments	5		
	-		-

2016 Q4 Elevator Sump Sample (W26) 2/13/17

Analytical Report For

Stantec

For Lab Project ID

170519

Referencing

Carriage Factory

Prepared

Thursday, February 23, 2017

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below.

Certifies that this report has been approved by the Technical Director or Designee

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-EL-W26

Lab Sample ID:170519-01Date Sampled:2/13/2017Matrix:GroundwaterDate Received:2/14/2017

Metals

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Cadmium	< 0.00500	mg/L		2/16/2017 11:40
Copper	< 0.0250	mg/L		2/16/2017 11:40
Lead	< 0.0100	mg/L		2/16/2017 16:49
Zinc	< 0.0600	mg/L		2/16/2017 11:40

Method Reference(s): EPA 6010C

EPA 3005A

 Preparation Date:
 2/14/2017

 Data File:
 021617a

Volatile Organics (Halogenated)

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		2/17/2017 19:45
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		2/17/2017 19:45
1,1,2-Trichloroethane	< 2.00	ug/L		2/17/2017 19:45
1,1-Dichloroethane	< 2.00	ug/L		2/17/2017 19:45
1,1-Dichloroethene	< 2.00	ug/L		2/17/2017 19:45
1,2-Dichlorobenzene	< 2.00	ug/L		2/17/2017 19:45
1,2-Dichloroethane	< 2.00	ug/L		2/17/2017 19:45
1,2-Dichloropropane	< 2.00	ug/L		2/17/2017 19:45
1,3-Dichlorobenzene	< 2.00	ug/L		2/17/2017 19:45
1,4-Dichlorobenzene	< 2.00	ug/L		2/17/2017 19:45
Bromodichloromethane	< 2.00	ug/L		2/17/2017 19:45
Bromoform	< 5.00	ug/L		2/17/2017 19:45
Bromomethane	< 2.00	ug/L		2/17/2017 19:45
Carbon Tetrachloride	< 2.00	ug/L		2/17/2017 19:45
Chlorobenzene	< 2.00	ug/L		2/17/2017 19:45
Chloroethane	< 2.00	ug/L		2/17/2017 19:45
Chloroform	< 2.00	ug/L		2/17/2017 19:45
Chloromethane	< 2.00	ug/L		2/17/2017 19:45
cis-1,2-Dichloroethene	< 2.00	ug/L		2/17/2017 19:45

Client: Stantec

Project Reference: Carriage Factory

							
Sample Identifier:	LI-EL-W26						
Lab Sample ID:	170519-01			Dat	e Sampled:	2/13/2017	
Matrix:	Groundwate	r		Dat	e Received:	2/14/2017	
cis-1,3-Dichloropropen	ie	< 2.00	ug/L			2/17/2017	19:45
Dibromochloromethan	e	< 2.00	ug/L			2/17/2017	19:45
Methylene chloride		< 5.00	ug/L			2/17/2017	19:45
Tetrachloroethene		< 2.00	ug/L			2/17/2017	19:45
trans-1,2-Dichloroethe	ne	< 2.00	ug/L			2/17/2017	19:45
trans-1,3-Dichloroprop	ene	< 2.00	ug/L			2/17/2017	19:45
Trichloroethene		< 2.00	ug/L			2/17/2017	19:45
Trichlorofluoromethan	e	< 2.00	ug/L			2/17/2017	19:45
Vinyl chloride		< 2.00	ug/L			2/17/2017	19:45
Surrogate		P	ercent Recovery	<u>Limits</u>	Outliers	Date Analy	zed
1,2-Dichloroethane-d4			102	81.2 - 120		2/17/2017	19:45
4-Bromofluorobenzene	2		92.1	82.4 - 112		2/17/2017	19:45
Pentafluorobenzene			97.6	90.2 - 112		2/17/2017	19:45
Toluene-D8			96.0	89.9 - 109		2/17/2017	19:45

Method Reference(s): EPA 8260C

Data File:

EPA 5030C x39276.D

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "I" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, tern or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB.

Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any

environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the final report.

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples.

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

Page 6 of 7

CHAIN OF CUSTODY

		n			GITA	IIV C			010	וטו						
DAD	ADICI	M		REPORT TO:						INVO	CETO	‡				
PAR	ADIGI	VI		CLIENT: Stantec	, .		CLIENT:		Sov	ne					LAB PROJECT	D
VIIII		v		ADDRESS: 6 (Commercia	1 5%.		ADDRES	S:						170	519	
				CITY: Rochester STATE:NY	ZIP/Y	614	CITY:			S	TATE:	ZIP:		Quotation	#:	
				PHONE: 413 5266			PHONE:	9-	28	57	48	413	5301	Email:		
PROJEC	CT REFER	ENCE		ATTN: Mike Storonsky			ATTN:	Bo	L	1.1.	one			Juiles S	toronsky e	Stanter
Carriag	. F.	b.	~	Matrix Codes: AQ - Aqueous Liquid NQ - Non-Aqueous Liquid	WA - Wa		er	1	OW - Drir NW - Wa	king Wa	iter	\$0 - So \$L - Slu		SD - Solid PT - Paint	WP - Wipe CK - Caulk	OL - Oil AR - Air
211119	Line	100					-	R	EQUES	STED /	ANALY	'SIS				
DATE COLLECTED	TIME COLLECTED	C O M P O S I T E	G R A B	SAMPLE IDENTIFIER		M A T R I X		hogenerted	cal cu rb zn					REMARK	s	PARADIGM LAE SAMPLE NUMBER
2/13/17	1100		X	LI-EL-W26	>	WG	3	X	C							oj
														- A.S		
			111								7.0	C Onice	OU	CRRI		
											70	A CO		431	7 1741 hr)
								\perp				el 2/5/17				
																4
Turnarour		nt unon	lah ang	Report Supplements proval; additional fees may apply.	P	ny	100	1-	lar	ite	1	2/13	117	1100		
Availab	mry continger	upon	іар ар	1.0	Sample		0000	- (-	1		e/Time ,	1		Total Cost:	
tandard 5 day		None I	Require	d None Required	K	mi	1	H	Time	M		2/13	/17	1720		

10 day Batch QC Basic EDD NYSDEC EDD X Category A Rush 3 day Rush 2 day Category B Rush 1 day X please indicate EDD needed : Other please indicate date needed: please indicate package needed:

Bayin Ho	mutel 2/13	3/17 1100		
Sampled By / Hun		1/17 1720	Total Cost:	
Relinquished/by Received by	Date/Time Date/Time Date/Time	7 1735	P.I.F.	7
Received @ Lab By	2 / 14 / 1 - 7 Date/Time	09:28		

By signing this form, client agrees to Paradigm Terms and Conditions (reverse).

See additional page for sample conditions.

Chain of Custody Supplement

Client:	Stantec	Completed by:	Glenn Pezzulo
Lab Project ID:	1705/9	Date:	2/14/17
	Sample Condition Per NELAC/ELAP 210	n Requirements 0/241/242/243/244	
Condition	NELAC compliance with the sample co Yes	ondition requirements upo No	on receipt N/A
Container Type			
Transferred to method- compliant container			
Headspace (<1 mL) Comment	✓ Vo A		
Preservation Comment	s		
Chlorine Absent (<0.10 ppm per test strip) Comments	s		
Holding Time Comments	s		
Temperature Comments	5 7.0°C iced storted	m field	[X] mulals
Sufficient Sample Quantity Comments			

Well Purge Water sample (W-27) and 2017 Q1 Elevator Sump Sample (W28) 2/14/17

Analytical Report For

Stantec

For Lab Project ID

170547

Referencing

Carriage Factory

Prepared

Tuesday, February 21, 2017

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below.

Certifies that this report has been approved by the Technical Director or Designee

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-EL-W27

Lab Sample ID:170547-01Date Sampled:2/14/2017Matrix:GroundwaterDate Received:2/15/2017

Metals

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Cadmium	< 0.00500	mg/L		2/16/2017 12:30
Copper	< 0.0250	mg/L		2/16/2017 12:30
Lead	< 0.0100	mg/L		2/16/2017 16:53
Zinc	< 0.0600	mg/L		2/16/2017 12:30

Method Reference(s): EPA 6010C

EPA 3005A

 Preparation Date:
 2/15/2017

 Data File:
 021617a

Volatile Organics (Halogenated)

<u>Analyte</u>	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		2/17/2017 17:05
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		2/17/2017 17:05
1,1,2-Trichloroethane	< 2.00	ug/L		2/17/2017 17:05
1,1-Dichloroethane	< 2.00	ug/L		2/17/2017 17:05
1,1-Dichloroethene	< 2.00	ug/L		2/17/2017 17:05
1,2-Dichlorobenzene	< 2.00	ug/L		2/17/2017 17:05
1,2-Dichloroethane	< 2.00	ug/L		2/17/2017 17:05
1,2-Dichloropropane	< 2.00	ug/L		2/17/2017 17:05
1,3-Dichlorobenzene	< 2.00	ug/L		2/17/2017 17:05
1,4-Dichlorobenzene	< 2.00	ug/L		2/17/2017 17:05
Bromodichloromethane	< 2.00	ug/L		2/17/2017 17:05
Bromoform	< 5.00	ug/L		2/17/2017 17:05
Bromomethane	< 2.00	ug/L		2/17/2017 17:05
Carbon Tetrachloride	< 2.00	ug/L		2/17/2017 17:05
Chlorobenzene	< 2.00	ug/L		2/17/2017 17:05
Chloroethane	< 2.00	ug/L		2/17/2017 17:05
Chloroform	< 2.00	ug/L		2/17/2017 17:05
Chloromethane	< 2.00	ug/L		2/17/2017 17:05
cis-1,2-Dichloroethene	8.02	ug/L		2/17/2017 17:05

Client: <u>Stantec</u>

Project Reference: Carriage Factory

							_
Sample Identifier:	LI-EL-W27						
Lab Sample ID:	170547-01			Dat	e Sampled:	2/14/2017	
Matrix:	Groundwate	r		Dat	e Received:	2/15/2017	
cis-1,3-Dichloropropen	e	< 2.00	ug/L			2/17/2017	17:05
Dibromochloromethan	e	< 2.00	ug/L			2/17/2017	17:05
Methylene chloride		< 5.00	ug/L			2/17/2017	17:05
Tetrachloroethene		< 2.00	ug/L			2/17/2017	17:05
trans-1,2-Dichloroether	ne	< 2.00	ug/L			2/17/2017	17:05
trans-1,3-Dichloroprop	ene	< 2.00	ug/L			2/17/2017	17:05
Trichloroethene		< 2.00	ug/L			2/17/2017	17:05
Trichlorofluoromethan	e	< 2.00	ug/L			2/17/2017	17:05
Vinyl chloride		4.01	ug/L			2/17/2017	17:05
Surrogate		Pe	rcent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4			100	81.2 - 120		2/17/2017	17:05
4-Bromofluorobenzene			91.5	82.4 - 112		2/17/2017	17:05
Pentafluorobenzene			99.9	90.2 - 112		2/17/2017	17:05
Toluene-D8			95.7	89.9 - 109		2/17/2017	17:05

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x39269.D

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier: LI-EL-W28

Lab Sample ID:170547-02Date Sampled:2/14/2017Matrix:GroundwaterDate Received:2/15/2017

Metals

<u>Analyte</u>	Result	<u>Units</u>	Qualifier	Date Analyzed
Cadmium	< 0.00500	mg/L		2/16/2017 12:34
Copper	< 0.0250	mg/L		2/16/2017 12:34
Lead	< 0.0100	mg/L		2/16/2017 16:57
Zinc	< 0.0600	mg/L		2/16/2017 12:34

Method Reference(s): EPA 6010C

EPA 3005A

 Preparation Date:
 2/15/2017

 Data File:
 021617a

Volatile Organics (Halogenated)

Analyte	<u>Result</u>	<u>Units</u>	Qualifier	Date Analyzed
1,1,1-Trichloroethane	< 2.00	ug/L		2/17/2017 17:28
1,1,2,2-Tetrachloroethane	< 2.00	ug/L		2/17/2017 17:28
1,1,2-Trichloroethane	< 2.00	ug/L		2/17/2017 17:28
1,1-Dichloroethane	< 2.00	ug/L		2/17/2017 17:28
1,1-Dichloroethene	< 2.00	ug/L		2/17/2017 17:28
1,2-Dichlorobenzene	< 2.00	ug/L		2/17/2017 17:28
1,2-Dichloroethane	< 2.00	ug/L		2/17/2017 17:28
1,2-Dichloropropane	< 2.00	ug/L		2/17/2017 17:28
1,3-Dichlorobenzene	< 2.00	ug/L		2/17/2017 17:28
1,4-Dichlorobenzene	< 2.00	ug/L		2/17/2017 17:28
Bromodichloromethane	< 2.00	ug/L		2/17/2017 17:28
Bromoform	< 5.00	ug/L		2/17/2017 17:28
Bromomethane	< 2.00	ug/L		2/17/2017 17:28
Carbon Tetrachloride	< 2.00	ug/L		2/17/2017 17:28
Chlorobenzene	< 2.00	ug/L		2/17/2017 17:28
Chloroethane	< 2.00	ug/L		2/17/2017 17:28
Chloroform	< 2.00	ug/L		2/17/2017 17:28
Chloromethane	< 2.00	ug/L		2/17/2017 17:28
cis-1,2-Dichloroethene	< 2.00	ug/L		2/17/2017 17:28

Client: <u>Stantec</u>

Project Reference: Carriage Factory

Sample Identifier:	LI-EL-W28						
Lab Sample ID:	170547-02			Dat	e Sampled:	2/14/2017	
Matrix:	Groundwate	r		Dat	e Received:	2/15/2017	
cis-1,3-Dichloropropen	e	< 2.00	ug/L			2/17/2017	17:28
Dibromochloromethane	9	< 2.00	ug/L			2/17/2017	17:28
Methylene chloride		< 5.00	ug/L			2/17/2017	17:28
Tetrachloroethene		< 2.00	ug/L			2/17/2017	17:28
trans-1,2-Dichloroether	ne	< 2.00	ug/L			2/17/2017	17:28
trans-1,3-Dichloroprop	ene	< 2.00	ug/L			2/17/2017	17:28
Trichloroethene		< 2.00	ug/L			2/17/2017	17:28
Trichlorofluoromethan	e	< 2.00	ug/L			2/17/2017	17:28
Vinyl chloride		< 2.00	ug/L			2/17/2017	17:28
<u>Surrogate</u>		Pe	rcent Recovery	<u>Limits</u>	<u>Outliers</u>	Date Analy	zed
1,2-Dichloroethane-d4			102	81.2 - 120		2/17/2017	17:28
4-Bromofluorobenzene			91.9	82.4 - 112		2/17/2017	17:28
Pentafluorobenzene			99.6	90.2 - 112		2/17/2017	17:28
Toluene-D8			98.3	89.9 - 109		2/17/2017	17:28

Method Reference(s): EPA 8260C

EPA 5030C

Data File: x39270.D

Analytical Report Appendix

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "I" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, tern or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB.

Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any

environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the final report.

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples.

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

CHAIN OF CUSTODY

1012

See additional page for sample conditions.

DAE	RADIG	M			RE	PORT TO:						INVOIC	ETO:						
THAT	ADIO	1c IAI		CLIENT: S	ntec		101		CLIENT:		.5	an	e					PROJECT	D
				ADDRESS:	CON	mercia	157		ADDRESS	S:							054	1 /	
		-		CITY: Rock	rester	STATE:	1 ZIP	76/9	CITY:			STA	TE:	ZIP:		Quotatio	on #:		
	_			PHONE: 413	- 52	66			PHONE:	4	13	53	01			Email:			
PROJE	CT REFER	ENCE		Mil2	e St	pronsk	1		ATTN:	Ba	b	Ma	hou	wy		Mike-	Store	nsky e	starte c
Carria	je Fac	toy		Matrix Code AQ - A NQ - N	es: queous Liqui lon-Aqueous	d Liquid	WA - V WG - G	Vater Groundwate	er			king Water stewater		SO - Soi SL - Slu		SD - Solid PT - Paint	W	P - Wipe K - Caulk	OL - Oil AR - Air
)							party of the same	_		1001	TED AN	IALYSI	S					
DATE COLLECTED	TIME COLLECTED	C O M P O S I T E	G R A B		SAMPLE I	DENTIFIER		M C T D R E I S	CONTAINERS	lozouka VOC	ata hoto					REMA	ARKS		PARADIGM LAB SAMPLE NUMBER
2/14/17	1604	X		LT - F	= 1	WIT		NG	3	XX									01
11	1615		X	LT-F	5 L -	W28		WG	3	XX	4								02
															15				
										H			H						
Turnarour Availab		nt upon I		Report Sup		pply.	Sampl) OM led By	m	- t	la	my	Date/Ti) me	1171	17	G°C ic	ed _	7 1805
Standard 5 day		None R	equired	X	None Req	uired	12	NEND	~	+	lavi	ullit	7				, 0.0,		
10 day		Batch C	C		Basic EDD		Reling	uished By				0	Date/Ti	me		_			
Rush 3 day		Catego			NYSDEC	EDD 🏴	Receiv	red By	6		_		2/14 Date/Ti		180		P.I.F.		7
Rush 2 day		Catego	уВ	15			/	2/		_		2	115	117	0	9:58			
Rush 1 day						. ,	Receiv	red @ Lab	Ву				Date/Ti	me					
Other please indicate date need		Other please ind	icate packa	ge needed:	Other EDI	e EDDIneeded :	By sig	gning th	is fort	n, clie	nt agre	ees to Pa	aradigi	n Term	s and Co	nditions (r	everse).	

Chain of Custody Supplement

Client:	Stantec	Completed by:	Glenn Pezzulo	
Lab Project ID:	170547	Date:	2/15/17	
	Sample Condition Per NELAC/ELAP 23	on Requirements 10/241/242/243/244		
Condition	NELAC compliance with the sample Yes	condition requirements upo No	n receipt N/A	
Container Type	ents			
Transferred to method- compliant container				
Headspace (<1 mL) Comme	ents			
Preservation Comme	ents			
Chlorine Absent (<0.10 ppm per test strip Comme				
Holding Time Comme	nts			
Temperature Comme	nts 9°C reed started m	Field	metals	
Sufficient Sample Quantit	-			
		-111		

Appendix D

Data Usability Summary Reports

Data Validation Services

120 Cobble Creek Road P.O. Box 208 North Creek, NY 12853

Phone 518-251-4429 harry@frontiernet.net

April 7, 2017

Ben Haravitch Stantec 61 Commercial St. Rochester, NY 14614

RE: Data Usability Summary Report (DUSR)

Validation of the 33 Litchfield Old Carriage Factory Remediation Site Analytical Data Paradigm SDG Nos. 161713, 163436, and 170564

Dear Mr. Haravitch:

Review has been completed for the data packages generated by Paradigm Environmental Services, Inc that pertain to samples collected between May 2, 2016 and February 13, 2017 at the 33 Litchfield Carriage Factory site. Thirty six aqueous samples and three field duplicates were analyzed for TCL volatiles and TOC. Matrix spikes and trip blanks were also processed. Analytical methodologies are those of the USEPA SW846 8260 and Standard Methods SM5310C. TOC results were subcontracted to Alpha Analytical.

The data package submitted by the laboratory contains full deliverables for validation, but this usability report is generated from review of the QC summary form information, with full review of sample raw data and limited review of associated QC raw data. The reported QC summary forms and sample raw data have been reviewed for application of validation qualifiers, in accordance with the project QAPP, with guidance from the USEPA national and regional validation documents, and in consideration for the specific requirements of the analytical methodology. The following items were reviewed:

- * Data Completeness
- * Case Narrative
- * Custody Documentation/Sample Receipt
- * Holding Times
- * Surrogate and Internal Standard Recoveries
- * Calibration/Trip/Method Blanks
- * Laboratory Control Sample (LCS)
- * Blind Field Duplicate Correlations
- * Instrumental Tunes
- * Calibration Standards
- * Method Compliance
- * Sample Result Verification

The data review includes evaluation of the specific items noted in The NYS DER-10 Appendix B section 2.0 (c). The items listed above that show deficiencies are discussed within the text of this narrative. The laboratory QC forms illustrating the excursions can be found within the laboratory data package.

In summary, most results are usable either as reported or with minor qualification or edit. However, the results for one volatile analyte are rejected due to poor instrument response.

Accuracy, precision, data completeness, sensitivity, representativeness, and the analytical method comparability are acceptable.

Client sample identifications are attached to this text, and should be reviewed in conjunction with this report. Also attached are the client EDD files, with recommended qualifiers/edits applied in red.

Chain-of-Custody/Sample Receipt

The laboratory chains of custody do not have sufficient fields for relinquish entries, and therefore the final receipt entries are not preceded by relinquish entries.

The second page of the subcontract custody form for samples collected in May does not show any relinquish entries.

The custody forms should have fields to indicate preservation. The volatile preparation/analysis logs do not include the pH of the samples, but the samples were processed within the holding time for unpreserved samples. The TOC logs, processed by Alpha, do show the proper pH.

General

The data deliverables are not in compliance with NYS category B. The Paradigm sample report forms do not include the required information such as volume of sample, dilution factor, preparation date, etc.

The method 415.1 was requested on the chain-of-custody for the TOC analyses. The laboratories utilized method MW5310C

Field Duplicate Correlations

Aqueous field duplicates were collected at locations LI-RW-3-PS6, LI-RW-9-PS9, and LI-RW-3-PS15, and show acceptable correlations.

Volatile Analyses by EPA8260C

The detection of vinyl chloride in LI-RW-4-PS6 is edited to non-detection due to very poor, non-definitive mass spectral quality.

The detections of vinyl chloride in LI-RW-4-PS15, LI-RW-1-PS6, LI-B108-MW-PS6, LI-RW-1-PS9, LI-RW-2-PS9, LI-RW-3-PS9, LI-RW-4-PS9, LI-B106-MW-PS9, LI-B108-MW-PS9, and of 2-butanone in LI-RW-4-PS6 are qualified as tentative in identification and estimated in value due to significant mass spectral interferences.

The matrix spikes of LI-RW-2-PS6, LI-RW-2-PS156, and LI-B102-MW-PS9 show acceptable recoveries and correlations, with the exception of one slightly low recovery for bromomethane. Although required of the protocol, not all of the target analytes were evaluated. No qualification to the data is made.

Due to low responses inherent in the methodology, the results for 1,4-dioxane are rejected and not usable. Other calibration standards show acceptable responses, with the exceptions, results for which have been qualified as estimated in the indicated samples:

- bromomethane (34%D and 37%D) in the samples collected in May 2016
- acetone (47%D) in samples reported in February 2017

TOC by SM5310C

Review was conducted for method compliance, holding times, transcription, calculations, standard and blank acceptability, accuracy and precision, etc., as applicable to each procedure.

Matrix spike/duplicate evaluations were performed for TOC on LI-RW-2-PS6, LI-B102-MW-PS9, and LI-RW-2-PS15, and show acceptable recoveries and correlations.

Please do not hesitate to contact me if questions or comments arise during your review of this report.

Very truly yours,

Judy Harry

Att: Validation Qualifier Definitions

Client and Laboratory Sample IDs Qualified Client EQuIS EDDs

VALIDATION DATA QUALIFIER DEFINITIONS

- U The analyte was analyzed for, but was not detected above the level of the associated reported quantitation limit.
- J The analyte was positively identified; the associated numerical value is an approximate concentration of the analyte in the sample.
- J- The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased low.
- J+ The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased high.
- UJ The analyte was analyzed for, but was not detected. The associated reported quantitation limit is approximate and may be inaccurate or imprecise.
- NJ The detection is tentative in identification and estimated in value. Although there is presumptive evidence of the analyte, the result should be used with caution as a potential false positive and/or elevated quantitative value.
- R The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control limits. The analyte may or may not be present.
- EMPC The results do not meet all criteria for a confirmed identification.

 The quantitative value represents the Estimated Maximum Possible Concentration of the analyte in the sample.

CLIENT and LABORATORY SAMPLE IDs

SDG#:

1713-01

LAB PROJECT #: 161713

CLIENT:

Stantec

PROJECT NAME: Carriage Factory

BATCH COMPLETE:

5/3/2016

DATE DUE: 5/31/2016

PROTOCOL: SW846

, , , , , , , , , , , , , , , , , , , 				·
FIELD ID	MATRIX	REQUESTED ANALYSIS	DATE	DATE
			SAMPLED	REC'D
LI-RW-1-PS6	Water	TCL-8260, TOC-415.1	5/2/2016	5/3/2016
LI-RW-2-PS6	Water	TCL-8260, TOC-415.1	5/2/2016	5/3/2016
LI-RW-3-PS6	Water	TCL-8260, TOC-415.1	5/2/2016	5/3/2016
LI-RW-4-PS6	Water	TCL-8260, TOC-415.1	5/3/2016	5/3/2016
LI-RW-5-PS6	Water	TCL-8260, TOC-415.1	5/3/2016	5/3/2016
LI-RW-6-PS6	Water	TCL-8260, TOC-415.1	5/3/2016	5/3/2016
LI-RW-7-PS6	Water	TCL-8260, TOC-415.1	5/3/2016	5/3/2016
LI-RW-9-PS6	Water	TCL-8260, TOC-415.1	5/2/2016	5/3/2016
LI-RW-12-PS6	Water	TCL-8260, TOC-415.1	5/3/2016	5/3/2016
LI-B102-MW-PS6	Water	TCL-8260, TOC-415.1	5/3/2016	5/3/2016
LI-B106-MW-PS6	Water	TCL-8260, TOC-415.1	5/2/2016	5/3/2016
LI-B108-MW-PS6	Water	TCL-8260, TOC-415.1	5/2/2016	5/3/2016
LI-DUP-PS6	Water	TCL-8260, TOC-415.1	5/2/2016	5/3/2016
Trip Blank (T-698)	Water	TCL-8260, TOC-415.1	5/2/2016	5/3/2016
	LI-RW-2-PS6 LI-RW-3-PS6 LI-RW-4-PS6 LI-RW-5-PS6 LI-RW-6-PS6 LI-RW-7-PS6 LI-RW-9-PS6 LI-RW-12-PS6 LI-B102-MW-PS6 LI-B106-MW-PS6 LI-B108-MW-PS6 LI-DUP-PS6	LI-RW-1-PS6 Water LI-RW-2-PS6 Water LI-RW-3-PS6 Water LI-RW-4-PS6 Water LI-RW-5-PS6 Water LI-RW-6-PS6 Water LI-RW-7-PS6 Water LI-RW-9-PS6 Water LI-RW-12-PS6 Water LI-B102-MW-PS6 Water LI-B106-MW-PS6 Water LI-B108-MW-PS6 Water LI-DUP-PS6 Water	LI-RW-1-PS6 Water TCL-8260, TOC-415.1 LI-RW-2-PS6 Water TCL-8260, TOC-415.1 LI-RW-3-PS6 Water TCL-8260, TOC-415.1 LI-RW-4-PS6 Water TCL-8260, TOC-415.1 LI-RW-5-PS6 Water TCL-8260, TOC-415.1 LI-RW-6-PS6 Water TCL-8260, TOC-415.1 LI-RW-7-PS6 Water TCL-8260, TOC-415.1 LI-RW-9-PS6 Water TCL-8260, TOC-415.1 LI-RW-12-PS6 Water TCL-8260, TOC-415.1 LI-B102-MW-PS6 Water TCL-8260, TOC-415.1 LI-B106-MW-PS6 Water TCL-8260, TOC-415.1 LI-B108-MW-PS6 Water TCL-8260, TOC-415.1 LI-B108-MW-PS6 Water TCL-8260, TOC-415.1 LI-DUP-PS6 Water TCL-8260, TOC-415.1	LI-RW-1-PS6 Water TCL-8260, TOC-415.1 5/2/2016 LI-RW-2-PS6 Water TCL-8260, TOC-415.1 5/2/2016 LI-RW-3-PS6 Water TCL-8260, TOC-415.1 5/2/2016 LI-RW-4-PS6 Water TCL-8260, TOC-415.1 5/3/2016 LI-RW-5-PS6 Water TCL-8260, TOC-415.1 5/3/2016 LI-RW-6-PS6 Water TCL-8260, TOC-415.1 5/3/2016 LI-RW-7-PS6 Water TCL-8260, TOC-415.1 5/3/2016 LI-RW-9-PS6 Water TCL-8260, TOC-415.1 5/2/2016 LI-RW-12-PS6 Water TCL-8260, TOC-415.1 5/3/2016 LI-B102-MW-PS6 Water TCL-8260, TOC-415.1 5/3/2016 LI-B108-MW-PS6 Water TCL-8260, TOC-415.1 5/2/2016 LI-B108-MW-PS6 Water TCL-8260, TOC-415.1 5/2/2016 LI-DUP-PS6 Water TCL-8260, TOC-415.1 5/2/2016

SDG#:

3436-01

LAB PROJECT #: 163436

CLIENT:

Stantec

BATCH COMPLETE:

8/10/2016

DATE DUE: 9/7/2016

PROTOCOL: SW846

PROJECT NAME: Carriage Factory

LAB.SAMPLE#	FIELD ID	MATRIX	REQUESTED ANALYSIS	DATE	DATE
				SAMPLED	REC'D
163436-01	LI-RW-1-PS9	Water	TCL-8260, TOC-415.1	8/10/2016	8/10/2016
163436-02	LI-RW-2-PS9	Water	TCL-8260, TOC-415.1	8/10/2016	8/10/2016
163436-03	LI-RW-3-PS9	Water	TCL-8260, TOC-415.1	8/10/2016	8/10/2016
163436-04	LI-RW-4-PS9	Water	TCL-8260, TOC-415.1	8/9/2016	8/10/2016
163436-05	LI-RW-5-PS9	Water	TCL-8260, TOC-415.1	8/10/2016	8/10/2016
163436-06	LI-RW-6-PS9	Water	TCL-8260, TOC-415.1	8/9/2016	8/10/2016
163436-07	LI-RW-7-PS9	Water	TCL-8260, TOC-415.1	8/9/2016	8/10/2016
163436-08	LI-RW-9-PS9	Water	TCL-8260, TOC-415.1	8/9/2016	8/10/2016
163436-09	LI-RW-12-PS9	Water	TCL-8260, TOC-415.1	8/9/2016	8/10/2016
163436-10 QC	LI-B102-MW-PS9	Water	TCL-8260, TOC-415.1	8/9/2016	8/10/2016
163436-11	LI-B106-MW-PS9	Water	TCL-8260, TOC-415.1	8/10/2016	8/10/2016
163436-12	LI-B108-MW-PS9	Water	TCL-8260, TOC-415.1	8/10/2016	8/10/2016
163436-13	LI-DUP-PS9	Water	TCL-8260, TOC-415.1	8/9/2016	8/10/2016
163436-14	Trip Blank (T-722)	Water	TCL-8260	8/9/2016	8/10/2016
_					

SDG#: 0564-01 BATCH COMPLETE: 2/15/2017

LAB PROJECT #: 170564 DATE DUE: 3/15/2017
CLIENT: Stantec PROTOCOL: SW846

PROJECT NAME: Carriage Factory

· · · · · · · · · · · · · · · · · · ·					
ATE	DATE	REQUESTED ANALYSIS	MATRIX	FIELD ID	LAB.SAMPLE#
EC,D	SAMPLED				
/15/2017	2/13/2017	TCL-8260, TOC-415.1	Water	LI-RW-1-PS15	170564-01
/15/2017	2/13/2017	TCL-8260, TOC-415.1	Water	LI-RW-2-PS15	170564-02 QC
/15/2017	2/13/2017	TCL-8260, TOC-415.1	Water	LI-RW-3-PS15	170564-03
/15/2017	2/13/2017	TCL-8260, TOC-415.1	Water	LI-RW-4-PS15	170564-04
/15/2017	2/14/2017	TCL-8260, TOC-415.1	Water	LI-RW-5-PS15	170564-05
/15/2017	2/14/2017	TCL-8260, TOC-415.1	Water	LI-RW-6-PS15	170564-06
/15/2017	2/14/2017	TCL-8260, TOC-415.1	Water	LI-RW-7-PS15	170564-07
/15/2017	2/14/2017	TCL-8260, TOC-415.1	Water	LI-RW-9-PS15	170564-08
/15/2017	2/14/2017	TCL-8260, TOC-415.1	Water	LI-RW-12-PS15	170564-09
/15/2017	2/14/2017	TCL-8260, TOC-415.1	Water	LI-B102-MW-PS15	170564-10
/15/2017	2/13/2017	TCL-8260, TOC-415.1	Water	LI-B106-MW-PS15	170564-11
/15/2017	2/13/2017	TCL-8260, TOC-415.1	Water	LI-B108-MW-PS15	170564-12
/15/2017	2/13/2017	TCL-8260, TOC-415.1	Water	LI-FD-PS15	170564-13
/15/2017	2/13/2017	TCL-8260	Water	Trip Blank	170564-14
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
