NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 8 6274 East Avon-Lima Road, Avon, NY 14414-9516 P: (585) 226-5353 I F: (585) 226-8139 www.dec.ny.gov

March 14, 2024

Justin Tallo Clinton North Development Corporation 113 North Clinton Avenue Rochester, New York 14604

Re: Site Management Periodic Review Report 2023 113 – 117 Clinton North Site Nº: C828195 Rochester (C), Monroe (C)

Dear Mr. Tallo:

The New York State Department of Environmental Conservation (Department) and New York State Department of Health (NYSDOH) has completed a review of the Periodic Review Report (PRR) and IC/EC Certification dated May 15, 2023, and revised June 19, 2023, for following period: December 27, 2021, through April 15, 2023. The 113 – 117 Clinton North site (Site) is in the City of Rochester, Monroe County.

Based on the information presented in the PRR and information collected during a site visit conducted by the Department and NYSDOH on June 28, 2023, the Department is requesting the submittal of a Corrective Measures Work Plan (CMWP) for review and approval by the Department and NYSDOH. The CMWP will provide procedures and methods for correcting the deficiencies and issued presented below as well as bring the Site into compliance with the Site's Site Management Plan and Certificate of Completion. The Department requests that the CMWP is submitted within 45-days of the date of this letter.

As previously stated in the Department's letter dated April 14, 2023, conditionally approving the Corrective Measures Plan dated March 27, 2023 "*Work completed without a Department approved work plan is subject to change and is at the Brownfield Cleanup Program (BCP) Applicant's own risk.* It must be noted that failure to comply with the Site's SMP and the Department's approved work plans could be viewed as grounds for the revocation of the Certificate of Completion (COC).

The Department has the following comments and concerns based on a Site visit conducted June 28, 2023.

1) Based on observations made during the Site visit the Department is concerned with the integrity of the installed plywood cover over the angular shaped sump

and the associated seal. The Department prefers an impervious and rigid cover such as plexiglass, metal, etc. versus the painted plywood which can rot, deteriorate over time, flex, and is not impervious.

- 2) As indicated in the Department's April 14, 2023, "the plywood sump cover will need to be inspected and evaluated annually to determine the integrity of the sump cover and seal. Routine maintenance of the sump cover and seal will need to be completed and the Site's Site Management Plan (SMP) will need to be updated to reflect the modifications at the Site. The updated SMP will be submitted to the Department for review and approval." To date, the Department has not received a proposed update for the SMP. The updated SMP will be submitted at the same time as the PRR documenting the implementation of the CMWP.
- 3) In Section 4.0, Corrective Measures Plan dated March 27, 2023, the document presents details on NC-SUMP-01 corrective measures implemented. NC-SUMP-01 is described as being sealed with plexiglass and clear silicone sealant. See attached photograph. During the Department's Site visit on June 28, 2023, NC-SUMP-01 was discovered to have the plexiglass and sealant removed and replaced with original sump pump cover. See attached photograph. NC-SUMP-01 must be repaired. In addition to the repair, the Department is requesting that proper signage is placed to prevent the removal of the sump pump cover in the future and must also include contact information in the event that the sump cover becomes damaged/altered or the sump cover must be removed.
- 4) In Section 4.0, Corrective Measures Plan dated March 27, 2023, the document presents the details on NC-SUMP-02 corrective measures implemented. The document stated that NC-SUMP-02 was sealed with painted plywood with caulk/spray foam sealant around the edges. During the Department's Site visit, the plywood was found to be not properly sealed and sealing material peeling away from the edges. See attached photographs.
- 5) The Department requests after implementation the corrective measures for NC-SUMP-01 and NC-SUMP-02, an indoor air sampling event will be completed. Details associated with the indoor sampling event such as but not limited to, analytical methodology, sample locations, figures will be presented in the CMWP. The preliminary indoor air data will be provided to the Department and NYSDOH upon receipt. The indoor air data will have a DUSR completed, and all supporting documentation will be provided in the PRR documenting the implementation of the corrective measures. Based on the indoor air sampling data, additional corrective measures may need to be taken such as upgrading the fan.
- 6) During the Site visit the Department and NYSDOH observed large holes in the ceiling in a major portion of the basement. The holes must be repaired to mitigate the potential for contaminated basement air going to the occupied upper floors.

- 7) The Department and NYSDOH observed that the walls of the basement appear to be porous and additional measures need to be taken to mitigate the potential for impacted soil vapor entering the basement. The hallway seemed to have numerous items stored and those items should be moved/cleaned out so that a thorough inspection can be completed. Such measures could be sealing the walls and floors, sealing all cracks and other perforations.
- 8) The Department understands that within 14-days of the date of this letter a detailed schedule outlining the corrective measures timeline will be submitted to the Department and the NYSDOH for review and approval.
- 9) The Department must be notified with a minimum of a 7-day advance notice for any field work to be conduct on-site as per the Brownfield Cleanup Agreement so that Department oversight can be provided. The notification must include an anticipated start day and time for the site's field work.

If your technical team have any questions or concerns regarding this letter or need further assistance with the Site, please feel free to contact me at (585) 226-5349 or via e-mail <u>Joshua.Ramsey@dec.ny.gov</u>. If your legal team has any questions or concerns regarding this letter or needs further assistance with the Site, please feel free to contact Michael Murphy at (518) 402-8564 or via e-mail at <u>Michael.Murphy1@dec.ny.gov</u>.

Sincerely,

astruar F. Ramey

Joshua J. Ramsey Project Manager

ec: Dan Noll (LaBella) Alex Brett (LaBella) Tom Walsh (The West Firm, PLLC) Justin Deming (NYSDOH) Angela Martin (NYSDOH) Michael Murphy (NYSDEC) David Pratt (NYSDEC) Charlotte Theobald (NYSDEC)

Location: [NC-SUMP-01]

Location: [NC-SUMP-01]

Location: [NC-SUMP-02]

Periodic Review Report NYSDEC BCP Site #C828195

Reporting Period: December 27, 2021 to April 15, 2023

Location: 113-117 Clinton North 113-117 North Clinton Avenue Rochester, New York 14604

Prepared for:

Clinton North Development Corporation 113 North Clinton Avenue Rochester, New York 14604

LaBella Project No. 2231541

May 15, 2023 Revised June 19, 2023

300 State Street, Suite 201 | Rochester, NY 14614 | p 585-454-6110 | f 585-454-3066

TABLE OF CONTENTS

1.0 1.1	INTRODUCTION & BACKGROUND Site Description	1 1
1.2	Site Background	1
1.3	Remedial Activities	2
2.0 2.1	INSTITUTIONAL AND ENGINEERING CONTROLS (IC/EC)	2 2
2.2	Institutional Controls	2
2.3	Engineering Controls	3
2.4	Deviations	3
<mark>3.0</mark> 3.1	MONITORING COMPLIANCE AND REMEDY EVALUATION Monitoring Plan Components	4 4
3.0 3.1 3.2	MONITORING COMPLIANCE AND REMEDY EVALUATION Monitoring Plan Components SSDS System and Components	4 4 4
3.0 3.1 3.2 3.3	MONITORING COMPLIANCE AND REMEDY EVALUATION Monitoring Plan Components SSDS System and Components Indoor Air Sampling	4 4 5
3.0 3.1 3.2 3.3 4.0 5.0 5.1	MONITORING COMPLIANCE AND REMEDY EVALUATION. Monitoring Plan Components SSDS System and Components Indoor Air Sampling CORRECTIVE MEASURES. CONCLUSIONS AND RECOMMENDATIONS. Compliance	4 4 5 7 8 8
3.0 3.1 3.2 3.3 4.0 5.0 5.1 5.2	MONITORING COMPLIANCE AND REMEDY EVALUATION Monitoring Plan Components SSDS System and Components Indoor Air Sampling CORRECTIVE MEASURES CONCLUSIONS AND RECOMMENDATIONS Compliance Performance and Effectiveness of Remedy	4 4 5 7 8 8 8

Figures	Figure 1 Figure 2 Figure 3	Site Location Site Layout Map Site Features and Sample Locations
Tables	Table 1A Table 1B Table 1C Table 1D	Basement Location IA-01 Indoor Air Results Basement Location IA-02 Indoor Air Results First Floor Location IA-03 Indoor Air Results Outdoor Air Results
Appendices	Appendix 1 Appendix 2 Appendix 3 Appendix 4 Appendix 5	IC/EC Form Site Inspection Forms Laboratory Analytical Reports Field Logs Data Usability Summary Reports (DUSRs)

1.0 INTRODUCTION & BACKGROUND

LaBella Associates, D.P.C. (LaBella) is pleased to submit this Periodic Review Report on behalf of Clinton North Development Corporation for the 113-117 Clinton North Site located at 113-117 North Clinton Avenue, City of Rochester, Monroe County, New York (hereinafter referred to as the "Site"). The site is enrolled in the New York State (NYS) Brownfield Cleanup Program (BCP), (Site Code C828195). A site Location Map is included as Figure 1. LaBella was retained by Clinton North Development Corporation to assist with the monitoring and reporting requirements in accordance with the Site Management Plan (SMP).

1.1 Site Description

The site is located in Rochester, Monroe County, New York and is identified as Section 106.79 Block 1 and Lot 30 on the Monroe County Tax Map (see Figure 2). The site is an approximately 0.11± acre area and is bounded by Andrews Street to the north, the Former Silver Cleaners property (#C828186) to the northeast, the Clinton Avenue Learning Center on North Clinton Avenue to the south, North Clinton Avenue to the east, and Our Lady of Victory/St. Joseph Church and various commercial properties to the west (see Figure 2 – Site Layout Map).

The Site consists of the following: a 5-story residential hotel (boarding house), a mini-mart and a barbershop. The Site is zoned commercial, and is currently a multi-tenant property.

1.2 Site Background

The Site appears to have been first developed prior to 1875. Historical mapping indicates that the Site was developed with an apparent residential dwelling and a separate commercial structure from at least 1875 until the 1910s or 1920s. The current five-story, 21,317-sq. ft. building with a full basement appears to have been constructed in the mid-1920s. The Site Building appears to have been utilized as a boarding house with several small commercial businesses operating on the first floor from the mid-1920s to the present day. These businesses have varied since first construction but appear to have included: a jewelry store; pharmacy; shoe store; liquor store; book store; men's clothing store; and hair salon.

LaBella's Phase I ESA dated August 2015, identified the northern adjacent property, addressed as 245 Andrews Street, was occupied by Silvers Cleaners (a dry cleaning facility) from approximately 1946 until approximately 2011, and that eastern adjoining vacant asphalt parking lot, addressed as 159-169 Pleasant Street, was historically utilized as a gasoline filling station (Mid City Service Station) from at least 1935 to at least 1955. Based on the long-term historical use of the northern adjacent property at a dry cleaner and gasoline filling station and the known petroleum and PCE contamination present at that property, LaBella identified a Recognized Environmental Conditional (REC) associated with the northern adjacent property and potential impacts to the Site from contamination originating from the northern adjacent property. The 245 Andrews Street property, once occupied by Silver Cleaners and the gasoline station, are listed under NYSDEC Inactive Hazardous Waste Disposal Site (IHWDS) #828186 and NYSDEC BCP #C828186. According to the NYSDEC listing, soil sample analytical results indicated exceedances of tetrachloroethylene (PCE) and petroleum related compounds in the groundwater and soil at the property.

In November 2015 the NYSDEC conducted a soil vapor intrusion study at 113-117 North Clinton Avenue (i.e., the BCP Site) due to the contamination at the northern adjacent property. The NYSDEC collected two (2) collocated sub-slab and indoor air samples which indicated that PCE (the drycleaning chemical identified in groundwater at the northern adjacent property) was detected in the

samples at the Site at levels that warrant the mitigation of SVI impacts as directed by the NYSDOH. At the same time as the SVI testing was completed, the NYSDEC collected a groundwater sample from the Sump located on the southern portion of the Site and submitted the sample for analysis of VOCs. No VOCs were detected above laboratory MDLs in the sample.

1.3 Remedial Activities

Clinton North Development Corporation entered into a Brownfield Cleanup Agreement (BCA) in June 2017 with the NYSDEC to remediate the site. Remedial Investigation (RI) activities were conducted by LaBella in 2018 to evaluate the nature and extent of contamination identified during previous investigations. The investigation consisted of advancement of soil borings and installation of overburden groundwater monitoring wells. VOCs, SVOCs, PCBs, and Pesticides were not detected above laboratory MDLs in groundwater samples submitted for analysis during the RI and metals were detected in each of groundwater samples; however, concentrations were attributed to regional background concentrations. Additionally, no VOCs, SVOCs, PCBs, pesticides or metals were detected above the NYCRR Part 375 Restricted Residential Use SCOs and metal concentrations remained below Protection of Groundwater SCOs. Results of the Remedial Investigation confirmed that the primary contaminant of concern at the Site was tetrachloroethene (PCE) in sub-slab vapor and indoor air.

Interim Remedial Measures (IRMs) were completed from October 2018 to December 2020 to reduce PCE concentrations in the indoor air. A sub-slab depressurization system (SSDS) was installed in accordance with the NYSDEC-approved Interim Remedial Action Work Plan (IRAWP) dated October 2017 and the IRAWP Amendment dated August 2018. Following installation of the SSDS, a follow up indoor air sampling was completed in July 2019 which indicated that PCE concentrations in indoor air were below the NYSDOH Air Guideline Value. An additional round of indoor air sampling was completed in December 2020 at the request of the NYSDEC to complete sampling during the heating season which also indicated that PCE concentrations were below the NYSDOH Air Guideline Value.

A Certificate of Completion of the Brownfield Cleanup Program was issued by the NYSDEC in December 2021 indicating no further remedial action was required at the Site.

Institutional and Engineering Controls (ICs and ECs) have been incorporated into the site remedy to control exposure to remaining contamination to ensure protection of public health and the environment for the restricted residential use. IC/ECs are described in the next section.

2.0 INSTITUTIONAL AND ENGINEERING CONTROLS (IC/EC)

2.1 IC/EC Certification

IC/EC certifications are provided by a designated representative of Clinton North Development Corporation, and a professional engineer in the State of New York working for on behalf of Clinton North Development Corporation. Refer to Appendix 1 for a copy of the certification forms.

2.2 Institutional Controls

The Institutional Controls for the Site are described as follows:

- Monitoring Plan
- Groundwater Use Restriction

- Landuse Restriction
- Site Management Plan
- Operation & Maintenance (O&M) Plan
- IC/EC Plan

Imposition of an institutional control in the form of an environmental easement for the controlled property which will:

- Require the remedial party or site owner to complete and submit to the Department a periodic certification of institutional and engineering controls in accordance with Part 375-1.8 (h)(3);
- 2. Allow the use and development of the controlled property for restricted residential use, commercial use or industrial use as defined by Part 375-1.8(g), although land use is subject to local zoning laws;
- 3. Restrict the use of groundwater as a source of potable or process water, without necessary water quality treatment as determined by the NYSDOH or County DOH; and
- 4. Require compliance with the Department approved SMP which includes an O&M plan.

2.3 Engineering Controls

The Engineering Controls for the Site are described as follows:

• Vapor Mitigation System

A sub-slab depressurization system has been equipped for the Site building to mitigate the migration of vapors into the building from the subsurface soil and/or groundwater impacts.

2.4 Deviations

No deviations were noted during the monitoring and sampling work during this reporting period.

3.0 MONITORING COMPLIANCE AND REMEDY EVALUATION

Monitoring work performed per the SMP during this reporting period are described during the sections below:

Monitoring Program Component	Frequency	Monitored	Matrix	Analysis
SSDS System and Components	Annually, or as needed.	Fans, alarms, piping and pressure.	Not Applicable	U-tube manometers should indicate a pressure differential in the piping, alarms should sound if pressure drops to low or fans not operating, piping should be in good condition, no breaks and at typical operating pressures.
Indoor Air Sampling	Annually, or as needed.	Locations IA- 01 and IA-02	Indoor Air	VOCs via USEPA Method TO-15

3.1 Monitoring Plan Components

3.2 SSDS System and Components

The SSDS was monitored annually or more frequently as needed in accordance with the SMP and monitoring components described in Section 3.1 on the following dates during this reporting period:

- February 23, 2022 February 24, 2022
- March 14, 2022
- March 28, 2023 March 29, 2023

An indoor air sampling event was scheduled for February 23, 2022 but upon system inspection that day, it was found that the SSDS was not operating. The vacuum indicator showed a reading of 0.0-inches water column and the fan was not on; however, the piping and fans appeared to be in good condition. The issue was determined to be the result of a tripped breaker. The breaker was turned back on February 24, 2022 and the system resumed normal operation. Additionally, it was noted that no system alarm was present. An alarm was not included in the initial system plan per the NYSDEC-approved Interim Remedial Action Work Plan dated October 2017; however, an alarm system was installed in March of 2022 to prevent such future issues.. The NYSDEC was notified of the system being down and the indoor air sampling event was postponed until March.

On March 14, 2022, another inspection was completed prior to indoor air sample collection. Piping and fans appeared to be functioning and in good condition. Following sampling, installation of a new alarm was initiated.

The 2023 inspection was completed on March 28, 2023 through March 29, 2023. The system fan, alarms and piping were noted to be in good working condition.

The layout of the SSDS is shown on Figure 3. Inspection forms are included in included as Appendix 2.

3.3 Indoor Air Sampling

Two indoor air monitoring events were conducted during this reporting period on:

- March 14, 2022 March 15, 2022
- March 28, 2023 March 29, 2023

Indoor air samples were completed in two (2) locations in the basement of the building in approximately the same locations as those previously collected indoor air samples at the Site. Additionally, one first floor indoor air sample was collected during the March 28 to March 29, 2023 sampling event. One outdoor ambient air sample for each event was collected in an upwind location based on prevailing wind directions. Samples were collected at approximately 3 to 5 feet above the floor. Samples were collected utilizing individually cleaned and certified Summa® canisters equipped with laboratory calibrated flow controllers set for approximately 24-hr sample collection. For quality assurance/quality control (QA/QC), one duplicate sample and one matrix spike/matrix spike duplicate (MS/MSD) were collected during each sampling event. Additionally, during each sampling event the NYSDOH building inventory and indoor air quality questionnaire was completed to evaluate for potential indoor air sources of contaminants.

Indoor air samples were collected and submitted for analysis of VOCS via USEPA Method TO-15. All samples were submitted to Centek Laboratories located in Syracuse, NY, a New York State Department of Health (NYSDOH) Environmental Laboratory Approval Program (ELAP) certified laboratory, under standard chain-of-custody protocol.

Analytical results were compared to the Air Guidance Values listed in the NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York document (NYSDOH SVI Guidance), dated October 2006 and all subsequent updates. Additionally, compounds were compared to the USEPA 2001 Building Assessment and Survey Evaluation (BASE) Database Values for Background Concentrations (90th Percentile) in Indoor Air; however, note that these values do not represent regulatory criteria and are just for comparison purposes.

Refer to Figure 3 for locations of samples collected and refer to Tables 1A through 1D for a summary of analytical results. Refer to Appendix 3 for the full laboratory analytical reports. A copy of the sample collection field logs and the NYSDOH questionnaires are included in Appendix 4. Data Usability Summary Reports (DUSRs) are included in Appendix 5.

3.3.1 Volatile Organic Compound Results

IA-01 (Basement)

Several VOCs were detected in the samples collected from the IA-01 basement location above laboratory method detection limits (MDLs); however, only the contaminant of concern, PCE, was detected above the NYSDOH Air Guidance Value in the sample collected on March 15, 2022 (IA-01-3.15.22) and in the associated duplicate sample (Dup-3.15.22). Additionally, the concentrations of PCE detected in 2022 also exceeded the USEPA BASE Database 90th percentile value. Although the concentration of PCE slightly exceeded regulatory criteria, the concentration detected is significantly lower than the concentration of PCE detected in indoor air in the basement of the building prior to installation and activation of the SSDS system. The NYSDEC was notified of the PCE concentration slightly above the regulatory criteria. The NYSDEC required submittal of a corrective measures plan (CMP) and completion of the correctives measures to reduce PCE concentrations in the indoor air at

the Site. Additionally, the NYSDEC required another round of indoor air sampling the following heating season along with the collection of a first floor indoor air sample in addition to the samples typically collected in the basement. Samples collected during the March 29, 2023 sampling event were collected after completion of the corrective measures. The corrective measures are further described in Section 4.0.

The concentration of PCE detected in the same location on March 29, 2023 (sample IA-01-03292023) was significantly lower than the previous sampling event and is below the NYSDOH Air Guidance Value and BASE database 90th percentile. PCE results from the sampling events are displayed in the following table:

SAMPLE ID/LOCATION	NYSDOH Indoor Air	USEPA BASE Database Indoor	IA-01-3.15.22	DUP-3.15.22	IA-01-03292023	
DATE	Guidance Value	Air (90 th Percentile)	3/15/2022	3/15/2022	3/29/2023	
Parameter	Parameter					
Tetrachloroethene (PCE)	30	15.9	31	32	13	

- All results reported in micrograms per cubic meter (ug/m³).

BOLD values exceed the NYSDOH Indoor Air Guidance Value.

IA-02 (Basement)

Several VOCs were detected in the samples collected from the IA-02 basement location above laboratory method detection limits (MDLs); however, results were detected below the NYSDOH Indoor Air Guidance Values for each of the regulated compounds analyzed, including PCE. The concentrations of PCE detected in 2022 did exceeded the USEPA BASE Database 90th percentile value used for comparison purposes. The concentration of PCE detected in the same location on March 29, 2023 (sample IA-02-03292023) and its associated duplicate sample (Dup-03292023) was significantly lower than the previous sampling event and is also below the NYSDOH Air Guidance Value and BASE database 90th percentile. As previously indicated, results from sampling completed on March 29, 2023 were after the implementation of corrective measures at the Site.

	L Database Indoor		M 02 00202020	Dup-03292023
Air Guidance Value	Air (90 th Percentile)	3/15/2022	3/29/2023	3/29/2023
30	15.9	27	11	12
	Air Guidance Value 30	Air Guidance Value Air (90 th Percentile) 30 15.9	Air Guidance ValueAir (90th Percentile)3/15/20223015.927	Air Guidance Value Air (90 th Percentile) 3/15/2022 3/29/2023 30 15.9 27 11

All results reported in micrograms per cubic meter (ug/m³).

BOLD values exceed the NYSDOH Indoor Air Guidance Value.

IA-03 (First Floor)

One sample (IA-03-03292023) was collected on March 29, 2023 from the IA-03 sample location located on the first floor at the request of the NYSDEC following completion of corrective measures at the Site. Several VOCs were detected in the sample above laboratory MDLs; however, concentrations detected did not exceed the applicable NYSDOH Air Guidance Values or USEPA BASE Database Indoor Air 90th percentile values. Additionally, the site contaminant of concern, PCE, was not detected in the sample.

SAMPLE ID/LOCATION	NYSDOH Indoor Air	USEPA BASE Database	IA-03-03292023	
Date	Guidance Value	Indoor Air (90 th Percentile)	3/29/2023	
Tetrachloroethene (PCE)	30	15.9	<0.025 U	

All results reported in micrograms per cubic meter (ug/m³).

BOLD values exceed the NYSDOH Indoor Air Guidance Value.

U indicates the compound was not detected.

Outdoor Air

PCE was not detected in the outdoor air samples OA-3 and OA-03292023 collected during the March 15, 2022 and March 29, 2023 sampling events, respectively, therefore detections of PCE in the indoor air do not appear to be from an outdoor air source.

4.0 CORRECTIVE MEASURES

Due to elevated concentrations of PCE above the NYSDOH Air Guidance Value in the sample collected on March 15, 2022 in the basement indoor air location IA-01. The NYSDEC required corrective measure be implemented in accordance with the NYSDEC-approved corrective measures work plan. The following table summarizes corrective measures completed at the Site:

Potential sub-slab vapor infiltration location	Corrective Measures Implemented
Basement sumps NC- SUMP-01 and NC-SUMP- 02 were open to the indoor air and were identified as potential locations that could allow sub-slab vapors to enter indoor air.	 The circular sump, NC-SUMP-01, located on the southeast side of the basement was sealed with by placing a piece of plexiglass over the sump opening and sealing the perimeter with clear silicone sealant as well as sealing around the sump pump piping penetration in the plexiglass with clear silicone sealant. The irregular shaped sump, NC-SUMP-02, located on the west side of the basement was sealed by placing a piece of plywood over the opening, painting the plywood with a paint/primer, and sealing around the perimeter edges with caulk and expandable spray foam where the solid cover meets the sump edges as well as edges were the sump pump piping and electrical connections penetrate the sump cover.
Two (2) approximately 4- inch diameter PVC pipes were identified in the basement that penetrated the floor slab and extended approximately 2-3 feet above the basement floor and were only loosely sealed with plastic sheeting and tape.	 The pipes were cut down to grade and sealed with concrete to eliminate the direct pathway between the subsurface and indoor air.
Significant cracks, holes or seams in the basement floor.	 Cracks, holes and seams observed in the basement floor were sealed with concrete/cement to minimize the potential infiltration of soil vapor.

Based on sampling completed on March 29, 2023 following implementation of the corrective measures, it appears that the corrective measures have successfully reduced the PCE concentrations in indoor air at the Site. Additionally, it should be noted that although PCE is still detected in the basement indoor air, the basement is seldomly occupied except for maintenance purposes and that PCE was not detected on the first floor.

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 Compliance

The requirements dictated in the SMP regarding IC/EC's and the Monitoring Plan were generally met during the reporting period.

5.2 Performance and Effectiveness of Remedy

An evaluation of the components of the SMP during this reporting period indicates that the IC/EC controls were protective of human health and the environment. The monitoring plan sufficiently monitored the performance of the remedy.

5.3 Recommendations

Since residual contamination remains at the site, applicable site management requirements should be continued.

 $I:\Clinton North Development Corp\2231541 - 113-117 \ N. \ Clinton Corrective Measures\11_Reports\PRR\2023\PRR.2023-05.15 \ C828195 \ Clinton North.docx$

ccument Path: I\Clinton North Development Corpl2231541 - 113-117 N. Clinton Corrective Measures\06 Drawings\Environmental\PRR\Figure 2 - Site features and adjacent properties.m

cument Path: I:Clinton North Development Corpl2231541 - 113-117 N. Clinton Corrective Measures/06_Drawings/Environmental/PRR/Figure 3 - Site Features and Indoor Air Sample Locations

BROWNFIELD CLEANUP PROGRAM SITE #C818195

113-117 NORTH CLINTON AVENUE, ROCHESTER NEW YORK

VOLUNTEER: CLINTON NORTH DEVELOPMENT CO.

DRAWING NAME:

SITE FEATURES AND SAMPLE LOCATIONS

PROJECT/DRAWING NUMBER:

2231541

FIGURE 3

TABLE 1A: Basement Location IA-01 Periodic Review Report NYSDEC BCP Site No. C828195 -113-117 Clinton North 113-117 North Clinton Avenue Rochester, New York

				DUP-3.15.	22		
Sample ID	NYSDOH		IA-01-3.15.22	(Duplicate	of	IA-01-03292023	
	Indoor Air	USEPA BASE		IA-01-3.15.22) Indoor Air			
Sample Type	Guidance	Database*	Indoor Air			Indoor A	ir
Sample Location	Value^		Basement	Basemer	it	Basemer	1t
Sample Date			3/15/2022	3/15/202	22	3/29/202	23
Volatile Organic Compounds (VOC	s) by Method TU	-15	10.00	10.00		<0.02F	
1,1,1-Trichloroethane		20.6	< 0.82	< 0.82	UJ	< 0.035	
1,1,2,2-Tetrachioroethane			< 1.0	< 1.0	UJ	<0.1	
1,1,2-Trichloroethane		<1.5	< 0.82	< 0.82	UJ	< 0.046	
1,1-Dichloroethane		<0.7	< 0.61	< 0.61	UJ	< 0.025	
1, 1-Dichlorobonzono		1.4	< 0.16	< 0.16	UJ	<0.012	
1,2,4-ITICITIOTODETIZETTE		<u> </u>	<u> </u>	< <u>1.1</u>	UJ	<0.081	- 05
1,2,4-minethyldenzene		9.5	Z.I	2.1	J	0.98	J
1,2-Dichlorobenzene		<1.3	< 0.90	< 0.90	00	<0.04	
1.2-Dichloroethane		<0.9	< 0.90	< 0.90	111	<0.003	
1.2-Dichloropropape		<0.9	< 0.69	< 0.69	111	<0.028	
1 3 5-Trimethylbenzene		37	< 0.03	< 0.03	1	0.69	- 05
1.3-butadiene		<3.0	< 0.33	< 0.33	111	<0.022	
1.3-Dichlorobenzene		<2.4	< 0.90	< 0.90	111	<0.048	
1.4-Dichlorobenzene		5.5	< 0.90	< 0.90	UI	<0.042	
1.4-Dioxane			< 1.1	< 1.1	111	<0.2	UJ
2.2.4-trimethylpentane			< 0.70	0.51	1	<0.042	
4-ethyltoluene		3.6	0.49	0.64	1	< 0.057	UJ
Acetone		98.9	36	40	J	33	
Allyl chloride			< 0.47	< 0.47	UJ	< 0.042	UJ
Benzene		9.4	1.0	1.1	J	1.2	J
Benzyl chloride		<6.8	< 0.86	< 0.86	UJ	< 0.097	UJ
Bromodichloromethane			< 1.0	< 1.0	UJ	< 0.031	UJ
Bromoform			< 1.6	< 1.6	UJ	< 0.024	UJ
Bromomethane		<1.7	< 0.58	< 0.58	UJ	<0.048	UJ
Carbon disulfide		4.2	0.34 J	0.44	J	< 0.043	UJ
Carbon tetrachloride		<1.3	0.44	0.44	J	0.57	J
Chlorobenzene		<0.9	< 0.69	< 0.69	UJ	<0.034	UJ
Chloroethane		<1.1	< 0.40	< 0.40	UJ	<0.044	UJ
Chloroform		1.1	4.1	4.6	J	3.0	J
Chloromethane		3.7	1.5	< 0.31	UJ	0.95	J
cis-1,2-Dichloroethene		<1.9	< 0.16	< 0.16	UJ	0.36	J
cis-1,3-Dichloropropene		<2.3	< 0.68	< 0.68	UJ	<0.039	UJ
Cyclohexane			0.62	0.72	J	<0.039	UJ
Dibromochloromethane			< 1.3	< 1.3	UJ	<0.024	UJ
Ethyl acetate		5.4	2.3	2.7	J	1.3	J
Ethylbenzene		5.7	0.65	0.74	J	0.52	J
Freon 11		18.1	1.5	1.6	J	1.3	J
Freon 113			< 1.1	< 1.1	UJ	< 0.036	UJ
Freon 114		<6.8	< 1.0	< 1.0	UJ	< 0.024	UJ
Freon 12		16.5	2.6	2.7	J	< 0.034	UJ
Heptane			1.9	2.2	J	0.90	J
Hexachloro-1,3-butadiene		<6.8	< 1.6	< 1.6	UJ	<0.11	<u> </u>
Hexane		10.2	2.2	2.8	J	0.70	
		250	32	36	J	56	
m&p-Aylene Mothyl Butyl Kotopo		22.2	2.3	2.6	J	1.0	J
Methyl Bulyl Kelone			< 1.2	0.41	J	<0.088	- 00
Methyl Echyl Kelone		12	5.1	5.5	J	9.1	J
Methyl tert-butyl ether			< 1.2	< 1.2	111	<0.13	
Methylene chloride	=	10.0	24	< 0.54	1	<0.002 1.6	1
	00	7.0	2.4	2.4	J	1.0	
Propylene		7.5	0.90 < 0.26	1.0	111	<0.04	
Styrene		10	0.20	0.20	1	0.04	1
Tetrachloroethylene	30	15.9	31	22	J	13	ر ا
Tetrahvdrofuran				1.6	1	40	ر ا
Toluene	-	43.0	<u> </u>	1.0 7.5	ر ا		ر ا
trans-1 2-Dichloroethene			< 0.59	< 0 50	111	<0.042	
trans-1.3-Dichloropropene		 <1 २	< 0.68	< 0.55	111	<0.042	111
Trichloroethene	2	4.2	0.64	0.00	1	0.48	
Vinyl acetate			< 0.53	< 0.53	, UI	<0.031	
Vinyl Bromide			< 0.66	< 0.66	UI	<0.031	[]]
Vinvl chloride		<1.9	< 0.10	< 0.10	UJ	< 0.017	<u> </u>

	-		

Table Notes:

All values displayed in micrograms per cubic meter (ug/m³)

VOCs analyzed by USEPA Method TO-15

*United State Environmental Protection Agency (USEPA) 2001 Building Assessment and Survey Evaluation (BASE) Database Value for Background Concentration (90th Percentile) in Indoor Air ^From New York State Department of Health (NYSDOH) Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006 (and subsequent updates)

"--" Indicates no NYSDOH Guidance Value or EPA BASE Database Value for this Compound

"<" and/or "U" - Indicates compound was not detected above the indicated laboratory method detection limit (MDL).

"J" - Qualifier indicating the result was detected below the quantitation limit

Bold Indicates detectable / reportable concentration above MDL

Gray Shading Indicates concentration exceeds respective EPA BASE 90th Percentile Value for Indoor Air

Red text indicates concentration exceeds the respective NYSDOH Guidance Value for Indoor Air

TABLE 1B: Basement Location IA-02Periodic Review ReportNYSDEC BCP Site No. C828195 -113-117 Clinton North113-117 North Clinton AvenueRochester, New York

Sample ID	NYSDOH Indoor Air	USEPA BASE	IA-02-3.15.22	IA-02-03292023	Dup-03292023 (Duplicate of IA-02-03292023) Indoor Air	
Sample Type	Guidance	Database*	Indoor Air	Indoor Air		
Sample Location	Value		Basement	Basement	Basement	
Sample Date			3/15/2022	3/29/2023	3/29/2023	
Volatile Organic Compounds (VOCs)	s) by Method TO-15					
1,1,1-Trichloroethane		20.6	< 0.82	<0.035 UJ	<0.035 UJ	
1,1,2,2-Tetrachloroethane			< 1.0	<0.1 UJ	<0.1 UJ	
1,1,2-Trichloroethane		<1.5	< 0.82	<0.046 UJ	<0.046 UJ	
1,1-Dichloroethane		<0.7	< 0.61	<0.025 UJ	<0.025 UJ	
1,1-Dichloroethene		1.4	< 0.16	<0.012 UJ	<0.012 UJ	
1,2,4-Thermotopenzene		< 6.8	< 1.1 0.2	<0.081 UJ	<0.081 UJ	
1,2,4-millethylbenzene		9.5	2.3	1.2 J	1.2 J	
1.2-Dichlorobenzene		<1.0	< 0.90	<0.065 UI	<0.065 UI	
1.2-Dichloroethane		< 0.9	< 0.61	<0.028 UJ	<0.028 UJ	
1,2-Dichloropropane		<1.6	< 0.69	<0.057 UJ	<0.057 UJ	
1,3,5-Trimethylbenzene		3.7	< 2.8	0.93 J	1.2 J	
1,3-butadiene		<3.0	< 0.33	<0.022 UJ	<0.022 UJ	
1,3-Dichlorobenzene		<2.4	< 0.90	<0.048 UJ	<0.048 UJ	
1,4-Dichlorobenzene		5.5	< 0.90	<0.042 UJ	<0.042 UJ	
1,4-Dioxane			< 1.1	<0.2 UJ	<0.2 UJ	
2,2,4-trimethylpentane			< 0.70	<0.042 UJ	<0.042 UJ	
4-ethyltoluene		3.6	0.64 J	<0.057 UJ	<0.057 UJ	
Acetone		98.9	33	37 J	29 J	
Allyl chloride			< 0.47	<0.042 UJ	<0.042 UJ	
Benzene Denzul eblevide		9.4	0.99	1.1 J	1.1 J	
Benzyl chloride		<6.8	< 0.86	<0.097 UJ	<0.097 UJ	
Bromodichloromethane			< 1.0	<0.031 UJ	<0.031 UJ	
Bromomothana			< 1.6	<0.024 UJ	<0.024 UJ	
		×1.7	< 0.56	<pre> 0.048 UJ 0.34 I </pre>	<0.048 UJ	
Carbon tetrachloride		4.2 <1.3	0.34 J	0.54	0.54	
Chlorobenzene		<0.9	< 0.69	<0.034 []]	<0.034	
Chloroethane		<1.1	< 0.40	<0.044 UJ	<0.044 UJ	
Chloroform		1.1	4.6	2.5 J	2.7 J	
Chloromethane		3.7	1.4	1.1 J	1.3 J	
cis-1,2-Dichloroethene		<1.9	< 0.16	<0.031 UJ	<0.031 UJ	
cis-1,3-Dichloropropene		<2.3	< 0.68	<0.039 UJ	<0.039 UJ	
Cyclohexane			1.0	<0.039 UJ	<0.039 UJ	
Dibromochloromethane			< 1.3	<0.024 UJ	<0.024 UJ	
Ethyl acetate		5.4	2.2	1.4 J	1.5 J	
Ethylbenzene		5.7	0.65	0.61 J	0.56 J	
Freon 11		18.1	1.7	1.3 J	1.4 J	
Freon 113			< 1.1	<0.036 UJ	<0.036 UJ	
Freen 114		<6.8	< 1.0	<0.024 UJ	<0.024 UJ	
Freon 12		16.5	2.6	<0.034 UJ	<0.034 UJ	
Heyzoblara 1.2 butadiana			2.2	-0.11 III	0.94 J	
Hevane		<0.8 10.2	10	<0.11 0J 0.74 ↓	<0.11 0J	
Isopropyl alcohol		250	1.9	50	52	
m&p-Xylene		22.2	2.3	1.9	1.6	
Methyl Butyl Ketone			< 1.2	<0.088 UJ	<0.088 UJ	
Methyl Ethyl Ketone		12	5.3	8.0 J	6.8 J	
Methyl Isobutyl Ketone			< 1.2	<0.13 UJ	<0.13 UJ	
Methyl tert-butyl ether		11.5	< 0.54	<0.062 UJ	<0.062 UJ	
Methylene chloride	60	10.0	2.8	1.8 J	1.9 J	
o-Xylene		7.9	0.96	0.69 J	0.65 J	
Propylene			< 0.26	<0.04 UJ	<0.04 UJ	
Styrene		1.9	0.64	0.55 J	0.55 J	
Tetrachloroethylene	30	15.9	27	<u>11</u> J	12 J	
letrahydrofuran			1.5	4.4 J	4.8 J	
I oluene		43.0	6.3 J	2.8 J	2.9 J	
trans-1,2-Dichloroethene			< 0.59	<0.042 UJ	<0.042 UJ	
trans-1,3-Dichloropropene		<1.3	< 0.68	<0.034 UJ	<0.034 UJ	
	2	4.2	0.59	U.48 J	U.43 J	
Vinyl acetate		∦	< 0.66	<0.031 UJ		
Vinyl biornide		<1 9	< 0.00	<0.031 00	<0.031 00	
,· -···	11	·	0.40			

Table Notes:

All values displayed in micrograms per cubic meter (ug/m³)

VOCs analyzed by USEPA Method TO-15

*United State Environmental Protection Agency (USEPA) 2001 Building Assessment and Survey Evaluation (BASE) Database Value for Background Concentration (90th Percentile) in Indoor Air ^From New York State Department of Health (NYSDOH) Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006 (and subsequent updates)

"--" Indicates no NYSDOH Guidance Value or EPA BASE Database Value for this Compound

"<" and/or "U" - Indicates compound was not detected above the indicated laboratory method detection limit (MDL).

"J" - Qualifier indicating the result was detected below the quantitation limit

Bold Indicates detectable / reportable concentration above MDL

Gray Shading Indicates concentration exceeds respective EPA BASE 90th Percentile Value for Indoor Air

Red text indicates concentration exceeds the respective NYSDOH Guidance Value for Indoor Air

TABLE 1C: First Floor Location IA-03 Periodic Review Report NYSDEC BCP Site No. C828195 -113-117 Clinton North 113-117 North Clinton Avenue Rochester, New York

Sample ID	NYSDOH Indoor Air	USEPA BASE	IA-03-03292023		
Sample Type	Guidance	Database*	Indoor Ai	r	
Sample Location	Value [^]		1st Floor	r	
Sample Date			3/29/202	23	
Volatile Organic Compounds (VOCs)) by Method TO-	15	, ,	,	
1,1,1-Trichloroethane		20.6	< 0.035	UJ	
1,1,2,2-Tetrachloroethane			<0.1	UJ	
1,1,2-Trichloroethane		<1.5	<0.046	UJ	
1,1-Dichloroethane		<0.7	<0.025	UJ	
1,1-Dichloroethene		1.4	<0.012	UJ	
1,2,4-Trichlorobenzene		<6.8	<0.081	UJ	
1,2,4-Trimethylbenzene		9.5	0.93	J	
1,2-Dibromoethane		<1.5	<0.04	UJ	
1,2-Dichlorobenzene		<1.2	<0.065	UJ	
1,2-Dichloroethane		<0.9	<0.028	UJ	
1,2-Dichloropropane		<1.6	<0.057	UJ	
1,3,5-Trimethylbenzene		3.7	< 0.07	UJ	
1,3-butadiene		<3.0	< 0.022		
1,3-Dichlorobenzene		<2.4	<0.048		
1,4-Dichlorobenzene		5.5	<0.042		
1,4-Dioxane			< 0.2		
2,2,4-trimetnyipentane			<0.042		
4-ethyltoluene		3.6	<0.057		
Allyl oblorido		98.9	0. 5		
Allyi chioride			<0.042		
Benzene Benzul ebleride		9.4	0.67	00	
Benzyl chloride		<0.8	<0.097	00	
Bromodichloromethane			<0.031	00	
Bromomothono			<0.024		
Bromometnane		<1.7	< 0.048		
Carbon disulfide		4.2	< 0.043		
Carbon tetrachioride		<1.3	0.57	J	
Chlorobenzene		<0.9	< 0.034		
Chloroethane		<1.1	< 0.044		
Chlorotorm		1.1	0.59		
		3.7	1.0	J	
cis-1,2-Dichloroethene		<1.9	<0.031	00	
CIS-1,3-Dichloropropene		<2.3	< 0.039	00	
Dibromochloromothono			< 0.039		
Dibromochloromethane			< 0.024		
Ethyl acetate		5.4	< 0.13	00	
Ethylbenzene		5.7	< 0.031	- 01	
Freen 112		18.1	1.3	J	
Freen 114			<0.036		
Freen 12		<0.8 10 F	<0.024		
		10.5	<0.034	- 03	
Heptane			0.00		
Hexachioro-1,3-buladiene		<0.8 10.0	<0.11	- 03	
		10.2	0.74		
		250	14		
Mathyl Bytyl Katana		22.2	1.2		
Methyl Bulyl Kelone			<0.088	- 03	
Methyl Icobutyl Ketone		12	0.80		
Methyl Isobulyl Kelolle			<0.13		
Methylopo oblorido		10.0	<0.002	- 05	
	00	7.0	0.48		
Bropylopo		7.5	0.48		
Styrene		 1 Q	<0.04	111	
Tetrachloroethylene		15.0	<0.04 <0.025	111	
Tetrahydrofuran		10.9	<0.025	111	
Toluene		43.0	1 /	1	
trans-1 2-Dichloroethene		+3.0	<0.042	ر ۱۱۱	
trans-1,2-Dichloropropopo			<0.042		
		×1.3 4.2	<0.034 0.16	1	
Vinyl acetate	<u>∠</u>	4.2	<0.10	<u>ر</u>	
Vinyl Bromide			<0.031 <0.031	111	
Vinyl chloride		<10	<0.031	111	
		` L.J	· · · · · · · · ·	5	

Table Notes:

All values displayed in micrograms per cubic meter (ug/m³)

VOCs analyzed by USEPA Method TO-15

*United State Environmental Protection Agency (USEPA) 2001 Building Assessment and Survey Evaluation (BASE) Database Value for Background Concentration (90th Percentile) in Indoor Air ^From New York State Department of Health (NYSDOH) Guidance for Evaluating Soil Vapor Intrusion in the State of New York, October 2006 (and subsequent updates)

"--" Indicates no NYSDOH Guidance Value or EPA BASE Database Value for this Compound

"<" and/or "U" - Indicates compound was not detected above the indicated laboratory method detection limit (MDL).

"J" - Qualifier indicating the result was detected below the quantitation limit

Bold Indicates detectable / reportable concentration above MDL

Gray Shading Indicates concentration exceeds respective EPA BASE 90th Percentile Value for Indoor Air

Red text indicates concentration exceeds the respective NYSDOH Guidance Value for Indoor Air

TABLE 1D: Outdoor Air Periodic Review Report NYSDEC BCP Site No. C828195 -113-117 Clinton North 113-117 North Clinton Avenue Rochester, New York

Sample ID	0A-3		OA-03292023		
Sample Type	Outdoor Aii	r	Outdoor Air		
Sample Location	Outdoors		Outdoors		
Sample Date	3/15/2022		3/29/2023		
Volatile Organic Compounds (VOCs)	by Method TO-15	5			
1,1,1-Trichloroethane	< 0.82	UJ	<0.035	UJ	
1,1,2,2-Tetrachloroethane	< 1.0	IJ	<0.1	IJ	
1,1,2-Trichloroethane	< 0.82	UJ	<0.046	UJ	
1,1-Dichloroethane	< 0.61	UJ	<0.025	UJ	
1,1-Dichloroethene	< 0.16	UJ	< 0.012	UJ	
1,2,4-Trichlorobenzene	< 1.1	UJ	< 0.081	UJ	
1,2,4-Trimethylbenzene	< 0.74	UJ	< 0.074	UJ	
1,2-Dibromoethane	< 1.2	UJ	<0.04	UJ	
1.2-Dichlorobenzene	< 0.90	UJ	< 0.065	UJ	
1 2-Dichloroethane	< 0.61	111	<0.028	UI	
1 2-Dichloropropane	< 0.69	111	<0.057		
1 3 5-Trimethylbenzene	< 0.74	111	<0.07	111	
1 3-butadiene	< 0.33	111	<0.07	111	
1 3 Dichlorobonzono	< 0.00	05	<0.022		
1.4 Dichlorobonzono	< 0.90	05	<0.048	111	
	< 0.90	0)	<0.042	111	
1,4-DIOXAIIe	< 1.1	0)	<0.2	0,00	
	< 0.70	UJ	<0.042	0,	
4-ethyltoluene	< 0.74	UJ	< 0.057		
Acetone	17	J	11		
Allyl chloride	< 0.47	UJ	< 0.042	UJ	
Benzene	0.57	J	0.45	J	
Benzyl chloride	< 0.86	UJ	<0.097	UJ	
Bromodichloromethane	< 1.0	UJ	<0.031	UJ	
Bromoform	< 1.6	UJ	<0.024	UJ	
Bromomethane	< 0.58	IJ	<0.048	UJ	
Carbon disulfide	< 0.47	UJ	0.53	J	
Carbon tetrachloride	0.5	J	0.57	J	
Chlorobenzene	< 0.69	UJ	< 0.034	UJ	
Chloroethane	< 0.40	UJ	< 0.044	UJ	
Chloroform	< 0.73	UJ	< 0.031	UJ	
Chloromethane	1	1	1.1	J	
cis-1.2-Dichloroethene	< 0.16	<u> </u>	< 0.031	UI	
cis-1.3-Dichloropropene	< 0.68	111	< 0.039	UI	
Cyclohexane	< 0.52	111	<0.039		
Dibromochloromethane	< 1.3	111	<0.024	111	
Ethyl acetate	< 0.54	111	<0.024	<u> </u>	
Ethylbonzono	< 0.54	05	<0.13		
Erroop 11	< 0.05	1	<0.031 1 2	- 05	
	1.4	J	1.3		
	< 1.1	0)	<0.036	0,	
Freon 114	< 1.0	UJ	<0.024	01	
Freon 12	2.7	J	<0.034	0.	
Heptane	< 0.61	UJ	< 0.036	UJ	
Hexachloro-1,3-butadiene	< 1.6	UJ	<0.11	UJ	
Hexane	0.46	J	<0.051	UJ	
Isopropyl alcohol	4.5	J	1.7	J	
m&p-Xylene	< 1.3	UJ	<0.048	UJ	
Methyl Butyl Ketone	< 1.2	UJ	<0.088	UJ	
Methyl Ethyl Ketone	0.83	J	0.91	J	
Methyl Isobutyl Ketone	< 1.2	UJ	<0.13	UJ	
Methyl tert-butyl ether	< 0.54	UJ	<0.062	IJ	
Methylene chloride	0.63	J	1.1	J	
o-Xylene	< 0.65	UJ	< 0.017	UJ	
Propylene	< 0.26	UJ	<0.04	UJ	
Styrene	< 0.64	UJ	<0.04	UJ	
Tetrachloroethylene	< 1.0	UJ	< 0.025	UJ	
Tetrahydrofuran	< 0.44	IJ	< 0.095	IJ	
Toluene	1.0		0.41		
trans-1.2-Dichloroethene	< 0.59	-	< 0.042	- []]	
trans-1.3-Dichloropropene	< 0.68	111	<0.034	111	
Trichloroethene	< 0.00	111	0.004	1	
Vinvl acetate	< 0.10 < 0.52	111	<0.021	ر ۱۱۱	
Vinyl Bromide	< 0.55	111	<0.031 20.021	111	
Vinyl bloride	< 0.00		<0.031 <0.017	111	
	< 0.TO	55	~U.U17	U	

Table Notes:

All values displayed in micrograms per cubic meter (ug/m^3)

VOCs analyzed by USEPA Method TO-15

Outdoor air values are for comparison to indoor air sampling data and therefore have not been compared to any regulatory criteria

"<" and/or "U" - Indicates compound was not detected above the indicated laboratory method detection limit (MDL).

"J" - Qualifier indicating the result was detected below the quantitation limit

Bold Indicates detectable / reportable concentration above MDL

APPENDIX 1

IC/EC Form

Enclosure 2 NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION Site Management Periodic Review Report Notice Institutional and Engineering Controls Certification Form

Site	Site Details No. C828195	Box 1		
Site	Name 113-117 Clinton North			
Site City Cou Site	e Address: 113-117 N Clinton Avenue Zip Code: 14604 /Town: Rochester inty: Monroe e Acreage: 0.114			
Rep	December 27, 2021 porting Period: to April 15, 2023			
		YES	NO	
1.	Is the information above correct?	X		
	If NO, include handwritten above or on a separate sheet.			
2.	Has some or all of the site property been sold, subdivided, merged, or undergone a tax map amendment during this Reporting Period?		X	
3.	Has there been any change of use at the site during this Reporting Period (see 6NYCRR 375-1.11(d))?		X	
4.	Have any federal, state, and/or local permits (e.g., building, discharge) been issued for or at the property during this Reporting Period?		X	
	If you answered YES to questions 2 thru 4, include documentation or evidence that documentation has been previously submitted with this certification form.			
5.	Is the site currently undergoing development?		X	
		Box 2		
		YES	NO	
6.	Is the current site use consistent with the use(s) listed below? Restricted-Residential, Commercial, and Industrial	X		
7.	Are all ICs in place and functioning as designed?			
IF THE ANSWER TO EITHER QUESTION 6 OR 7 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.				
A C	orrective Measures Work Plan must be submitted along with this form to address th	iese issi	Jes.	
Sia	nature of Owner. Remedial Party or Designated Representative			

			Box 2	Α
o	Has any new information revealed that assumptions made in the Quality	tivo Exposuro	YES	NO
0.	Assessment regarding offsite contamination are no longer valid?			X
	If you answered YES to question 8, include documentation or evide that documentation has been previously submitted with this certifie	ence cation form.		
9.	Are the assumptions in the Qualitative Exposure Assessment still valid? (The Qualitative Exposure Assessment must be certified every five year	s)	X	
	If you answered NO to question 9, the Periodic Review Report mus updated Qualitative Exposure Assessment based on the new assu	t include an mptions.		
SITE	E NO. C828195		Bo	x 3
	Description of Institutional Controls			
Parce	<u>Owner</u> Ins	stitutional Contro	<u>bl</u>	
106.7	'9-1-30 Clinton North Development Corporation			
	Ma	onitoring Plan	Postria	tion
		nduse Restrictio	n	lion
	Sit	e Management	Plan	
	O&	&M Plan		
	IC	/EC Plan		
An Er reside provis	nvironmental Easement that restricts Groundwater Use. Land use is restrential, commercial, or industrial uses. A Site Management Plan which inclusions for Annual Certification is required.	icted to restricte ude an O&M pla	d n and	
			Bo	x 4
	Description of Engineering Controls			
Parce	Engineering Control			
106.7	/9-1-30			
Conti	Vapor Mitigation	nogoment Di		
Conti	nued operation of a sub-stab mitigation system as specified in the Site Ma	anagement Plan		

Г

	Вох	x 5
	Periodic Review Report (PRR) Certification Statements	
1.	I certify by checking "YES" below that:	
	a) the Periodic Review report and all attachments were prepared under the direction of, and reviewed by, the party making the Engineering Control certification;	
	b) to the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program, and generally accepted applications processes and the information processes and compete and compe	ation
	engineering practices, and the information presented is accurate and compete. YES NO	
2.	For each Engineering control listed in Box 4, I certify by checking "YES" below that all of the following statements are true:	
	(a) The Engineering Control(s) employed at this site is unchanged since the date that the Control was put in-place, or was last approved by the Department;	
	(b) nothing has occurred that would impair the ability of such Control, to protect public health the environment;	and
	(c) access to the site will continue to be provided to the Department, to evaluate the remedy, including access to evaluate the continued maintenance of this Control;	
	(d) nothing has occurred that would constitute a violation or failure to comply with the Site Management Plan for this Control; and	
	(e) if a financial assurance mechanism is required by the oversight document for the site, the mechanism remains valid and sufficient for its intended purpose established in the document.	
	YES NO	
	X	
	IF THE ANSWER TO QUESTION 2 IS NO, sign and date below and DO NOT COMPLETE THE REST OF THIS FORM. Otherwise continue.	
	A Corrective Measures Work Plan must be submitted along with this form to address these issues.	
	Signature of Owner, Remedial Party or Designated Representative Date	

IC CERTIFICATIONS SITE NO. C828195	Box 6
SITE OWNER OR DESIGNATED REPRESENTATIVE I certify that all information and statements in Boxes 1,2, and 3 are true. statement made herein is punishable as a Class "A" misdemeanor, pursu Penal Law.	SIGNATURE I understand that a false uant to Section 210.45 of the
I Jushn Tallo at 13 N. Clinton Ave print name print business addr	Roch ny 14604.
am certifying as	(Owner or Remedial Party)
for the Site named in the Site Details Section of this form.	
ALTO	5.14.23
Signature of Owner, Remedial Party, or Designated Representative Rendering Certification	Date

	EC CERTIFICA	ATIONS		
	Professional Engi	neer Signature	Box 7	
I certify that all information in Boz punishable as a Class "A" misde	kes 4 and 5 are true. I meanor, pursuant to S	l understand that a false s Section 210.45 of the Pen	statement made herein is al Law.	
LaBella Associates, D.P.C. Dan Noll				
print name	atpi	rint business address	,	
am certifying as a Professional Engineer for the <u>Owner</u> (Owner or Remedial Party)				
DJ P. 114	γ	Shite OF NEW 1011	5/12/2023	
		<u><u> </u></u>		

APPENDIX 2

Site Inspection Forms

SUB SLAB DEPRESSURIZATION SYSTEM INSPECTION FORM

LaBella Powered by partnership.	SUD SLAD DEPRESSURIZAT	PROJECT NAME:	113-117 Clinton North C82819S
300 STATE STREET. SUITE 201		LOCATION:	113-117 N Clinton Ave, Rochester NY
ROCHESTER, NEW YORK 14614		PROJECT NO.: INSPECTED BY:	2221560
PHONE: (S8S) 4S4-6110			AGB
FAX: (S8S-4S4-3066		DATE:	2/23/22 - 2/24/22
		WEATHER:	33°F light stor
COMPONENT			COMMENTS
VACUUM GAUGE READING (IN. H20)	0.0"	Brenker :-	s tripped
ALARM OPERATIONAL	YES NO	No alarm 1	present, nied siskil
SSDS PIPING IN TACT	VES / NO		
SSDS FAN OPERATIONAL	YES NO	When break- labeled.	turned by ck on -a breaker

Additional Information/Notes:

Systen bruker hrack back on - System workery again

SUB SLAB DEPRESSURIZATION SYSTEM INSPECTION FORM

🖵 LaBella	SUB SLAB DEPRESSURIZATION SYSTEM I	
Powered by partnership	PROJECT NAME:	113-117 Clinton North C828195
300 STATE STREET, SUITE 201	LOCATION:	113-117 N Clinton Ave, Rochester NY
ROCHESTER, NEW YORK 14614	PROJECT NO.:	2221560
PHONE: (585) 454-6110	INSPECTED BY:	A. Brett
FAX: (585-454-3066	DATE:	3/14/2022 - 3/15/2022
	WEATHER:	41 degrees F, partly cloudy

COMPONENT		COMMENTS
VACUUM GAUGE READING (IN. H20)	1" wc	
ALARM OPERATIONAL	YES NO	Alarm missing - A.Brett installing new alarm routing to office on first floor
SSDS PIPING IN TACT	TES/ NO	
SSDS FAN OPERATIONAL	YES/ NO	
Additional Information/Notes:		

SUB SLAB DEPRESSURIZATION SYSTEM INSPECTION FORM

Π	LaBella
States -	ີຍ ໝ⊷ສະຊະຫຼະຫຼະຫະລີຊີມູນ

300 STATE STREET, SUITE 201 ROCHESTER, NEW YORK 14614 PHONE: (585) 454-6110 FAX: (585-454-3066

PROJECT NAME:	113-117 Clinton North C828195			
LOCATION:	113-117 N Clinton Ave, Rochester NY			
PROJECT NO.:	2231541			
INSPECTED BY:	A. Brett			
DATE:	3/28/2023 - 3/29/2023			
WEATHER:	36°F partly (land)			

COMPONENT		COMMENTS		
VACUUM GAUGE READING (IN. H20)	0.9° W/C			
ALARM OPERATIONAL	YES) NO	Alarm tested, bounds when airflow tubeis removed à lighte on alarm functioning.		
SSDS PIPING IN TACT	YES NO	Piping in Inct.		
SSDS FAN OPERATIONAL	VESYNO	Checked on root - appens to se good condition.		
Additional Information/Notes: SUMP CONCY in place.				

APPENDIX 3

Laboratory Analytical Reports
CLIENT: LaBella Associates, P.C. Lab Order: C2203053 **Project:** 113-117 North Clinton C2203053-001A Lab ID:

Date: 25-Mar-22

Client Sample ID: IA-01-3.15.22 Tag Number: 192,1231 Collection Date: 3/15/2022 Matrix: AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	тс)-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	3/22/2022 1:35:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	3/22/2022 1:35:00 AM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	3/22/2022 1:35:00 AM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	3/22/2022 1:35:00 AM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	3/22/2022 1:35:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	3/22/2022 1:35:00 AM
1,2,4-Trimethylbenzene	2.1	0.74		ug/m3	1	3/22/2022 1:35:00 AM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	3/22/2022 1:35:00 AM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	3/22/2022 1:35:00 AM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	3/22/2022 1:35:00 AM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	3/22/2022 1:35:00 AM
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	3/22/2022 1:35:00 AM
1,3-butadiene	< 0.33	0.33		ug/m3	1	3/22/2022 1:35:00 AM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	3/22/2022 1:35:00 AM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	3/22/2022 1:35:00 AM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	3/22/2022 1:35:00 AM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	3/22/2022 1:35:00 AM
4-ethyltoluene	0.49	0.74	J	ug/m3	1	3/22/2022 1:35:00 AM
Acetone	36	7.1		ug/m3	10	3/22/2022 5:12:00 AM
Allyl chloride	< 0.47	0.47		ug/m3	1	3/22/2022 1:35:00 AM
Benzene	1.0	0.48		ug/m3	1	3/22/2022 1:35:00 AM
Benzyl chloride	< 0.86	0.86		ug/m3	1	3/22/2022 1:35:00 AM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	3/22/2022 1:35:00 AM
Bromoform	< 1.6	1.6		ug/m3	1	3/22/2022 1:35:00 AM
Bromomethane	< 0.58	0.58		ug/m3	1	3/22/2022 1:35:00 AM
Carbon disulfide	0.34	0.47	J	ug/m3	1	3/22/2022 1:35:00 AM
Carbon tetrachloride	0.44	0.19		ug/m3	1	3/22/2022 1:35:00 AM
Chlorobenzene	< 0.69	0.69		ug/m3	1	3/22/2022 1:35:00 AM
Chloroethane	< 0.40	0.40		ug/m3	1	3/22/2022 1:35:00 AM
Chloroform	4.1	0.73		ug/m3	1	3/22/2022 1:35:00 AM
Chloromethane	1.5	0.31		ug/m3	1	3/22/2022 1:35:00 AM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	3/22/2022 1:35:00 AM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	3/22/2022 1:35:00 AM
Cyclohexane	0.62	0.52		ug/m3	1	3/22/2022 1:35:00 AM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	3/22/2022 1:35:00 AM
Ethyl acetate	2.3	0.54		ug/m3	1	3/22/2022 1:35:00 AM
Ethylbenzene	0.65	0.65		ug/m3	1	3/22/2022 1:35:00 AM
Freon 11	1.5	0.84		ug/m3	1	3/22/2022 1:35:00 AM
Freon 113	< 1.1	1.1		ug/m3	1	3/22/2022 1:35:00 AM
Freon 114	< 1.0	1.0		ug/m3	1	3/22/2022 1:35:00 AM

Qualifiers: SC Sub-Contracted

Analyte detected in the associated Method Blank В

Holding times for preparation or analysis exceeded Н

Non-routine analyte. Quantitation estimated. JN

Spike Recovery outside accepted recovery limits S

Results reported are not blank corrected

Е Estimated Value above quantitation range J

Analyte detected below quantitation limit ND Not Detected at the Limit of Detection

DL Detection Limit

.

Page 1 of 8

CLIENT:LaBella Associates, P.C.Lab Order:C2203053Project:113-117 North ClintonLab ID:C2203053-001A

Date: 25-Mar-22

Client Sample ID: IA-01-3.15.22 Tag Number: 192,1231 Collection Date: 3/15/2022 Matrix: AIR

Analyses	Result	DL Q	ual Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	-DCE-1,1DCE	TO-15	5		Analyst: RJP
Freon 12	2.6	0.74	ug/m3	1	3/22/2022 1:35:00 AM
Heptane	1.9	0.61	ug/m3	1	3/22/2022 1:35:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	3/22/2022 1:35:00 AM
Hexane	2.2	0.53	ug/m3	1	3/22/2022 1:35:00 AM
Isopropyl alcohol	32	3.7	ug/m3	10	3/22/2022 5:12:00 AM
m&p-Xylene	2.3	1.3	ug/m3	1	3/22/2022 1:35:00 AM
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	3/22/2022 1:35:00 AM
Methyl Ethyl Ketone	5.1	0.88	ug/m3	1	3/22/2022 1:35:00 AM
Methyl Isobutyl Ketone	< 1.2	1.2	ug/m3	1	3/22/2022 1:35:00 AM
Methyl tert-butyl ether	< 0.54	0.54	ug/m3	1	3/22/2022 1:35:00 AM
Methylene chloride	2.4	0.52	ug/m3	1	3/22/2022 1:35:00 AM
o-Xylene	0.96	0.65	ug/m3	1	3/22/2022 1:35:00 AM
Propylene	< 0.26	0.26	ug/m3	1	3/22/2022 1:35:00 AM
Styrene	0.72	0.64	ug/m3	1	3/22/2022 1:35:00 AM
Tetrachloroethylene	31	10	ug/m3	10	3/22/2022 5:12:00 AM
Tetrahydrofuran	1.4	0.44	ug/m3	1	3/22/2022 1:35:00 AM
Toluene	6.7	0.57	ug/m3	1	3/22/2022 1:35:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/22/2022 1:35:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	3/22/2022 1:35:00 AM
Trichloroethene	0.64	0.16	ug/m3	1	3/22/2022 1:35:00 AM
Vinyl acetate	< 0.53	0.53	ug/m3	1	3/22/2022 1:35:00 AM
Vinyl Bromide	< 0.66	0.66	ug/m3	1	3/22/2022 1:35:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	1	3/22/2022 1:35:00 AM

Qualifiers:	SC	Sub-Contracted		Results reported are not blank corrected	
	В	Analyte detected in the associated Method Blank	Е	Estimated Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	D O (0)
	S	Spike Recovery outside accepted recovery limits	DL	Detection Limit	Page 2 of 8

CLIENT: LaBella Associates, P.C. Lab Order: C2203053 **Project:** 113-117 North Clinton C2203053-002A Lab ID:

Date: 25-Mar-22

Client Sample ID: Dup-3.15.22 **Tag Number: 347,448** Collection Date: 3/15/2022 Matrix: AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		тс	0-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	3/22/2022 2:19:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	3/22/2022 2:19:00 AM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	3/22/2022 2:19:00 AM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	3/22/2022 2:19:00 AM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	3/22/2022 2:19:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	3/22/2022 2:19:00 AM
1,2,4-Trimethylbenzene	2.1	0.74		ug/m3	1	3/22/2022 2:19:00 AM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	3/22/2022 2:19:00 AM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	3/22/2022 2:19:00 AM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	3/22/2022 2:19:00 AM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	3/22/2022 2:19:00 AM
1,3,5-Trimethylbenzene	2.1	0.74		ug/m3	1	3/22/2022 2:19:00 AM
1,3-butadiene	< 0.33	0.33		ug/m3	1	3/22/2022 2:19:00 AM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	3/22/2022 2:19:00 AM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	3/22/2022 2:19:00 AM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	3/22/2022 2:19:00 AM
2,2,4-trimethylpentane	0.51	0.70	J	ug/m3	1	3/22/2022 2:19:00 AM
4-ethyltoluene	0.64	0.74	J	ug/m3	1	3/22/2022 2:19:00 AM
Acetone	40	7.1		ug/m3	10	3/22/2022 5:55:00 AM
Allyl chloride	< 0.47	0.47		ug/m3	1	3/22/2022 2:19:00 AM
Benzene	1.1	0.48		ug/m3	1	3/22/2022 2:19:00 AM
Benzyl chloride	< 0.86	0.86		ug/m3	1	3/22/2022 2:19:00 AM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	3/22/2022 2:19:00 AM
Bromoform	< 1.6	1.6		ug/m3	1	3/22/2022 2:19:00 AM
Bromomethane	< 0.58	0.58		ug/m3	1	3/22/2022 2:19:00 AM
Carbon disulfide	0.44	0.47	J	ug/m3	1	3/22/2022 2:19:00 AM
Carbon tetrachloride	0.44	0.19		ug/m3	1	3/22/2022 2:19:00 AM
Chlorobenzene	< 0.69	0.69		ug/m3	1	3/22/2022 2:19:00 AM
Chloroethane	< 0.40	0.40		ug/m3	1	3/22/2022 2:19:00 AM
Chloroform	4.6	0.73		ug/m3	1	3/22/2022 2:19:00 AM
Chloromethane	< 0.31	0.31		ug/m3	1	3/22/2022 2:19:00 AM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	3/22/2022 2:19:00 AM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	3/22/2022 2:19:00 AM
Cyclohexane	0.72	0.52		ug/m3	1	3/22/2022 2:19:00 AM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	3/22/2022 2:19:00 AM
Ethyl acetate	2.7	0.54		ug/m3	1	3/22/2022 2:19:00 AM
Ethylbenzene	0.74	0.65		ug/m3	1	3/22/2022 2:19:00 AM
Freon 11	1.6	0.84		ug/m3	1	3/22/2022 2:19:00 AM
Freon 113	< 1.1	1.1		ug/m3	1	3/22/2022 2:19:00 AM
Freon 114	< 1.0	1.0		ug/m3	1	3/22/2022 2:19:00 AM

Qualifiers: SC Sub-Contracted

Analyte detected in the associated Method Blank В

Holding times for preparation or analysis exceeded Н

Non-routine analyte. Quantitation estimated. JN

Spike Recovery outside accepted recovery limits S

Results reported are not blank corrected

Ε Estimated Value above quantitation range

J Analyte detected below quantitation limit ND Not Detected at the Limit of Detection

DL Detection Limit

.

CLIENT:LaBella Associates, P.C.Lab Order:C2203053Project:113-117 North ClintonLab ID:C2203053-002A

Date: 25-Mar-22

Client Sample ID: Dup-3.15.22 Tag Number: 347,448 Collection Date: 3/15/2022 Matrix: AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TO-15				Analyst: RJP
Freon 12	2.7	0.74		ug/m3	1	3/22/2022 2:19:00 AM
Heptane	2.2	0.61		ug/m3	1	3/22/2022 2:19:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	3/22/2022 2:19:00 AM
Hexane	2.8	0.53		ug/m3	1	3/22/2022 2:19:00 AM
Isopropyl alcohol	36	3.7		ug/m3	10	3/22/2022 5:55:00 AM
m&p-Xylene	2.6	1.3		ug/m3	1	3/22/2022 2:19:00 AM
Methyl Butyl Ketone	0.41	1.2	J	ug/m3	1	3/22/2022 2:19:00 AM
Methyl Ethyl Ketone	5.5	0.88		ug/m3	1	3/22/2022 2:19:00 AM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	3/22/2022 2:19:00 AM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	3/22/2022 2:19:00 AM
Methylene chloride	2.4	0.52		ug/m3	1	3/22/2022 2:19:00 AM
o-Xylene	1.0	0.65		ug/m3	1	3/22/2022 2:19:00 AM
Propylene	< 0.26	0.26		ug/m3	1	3/22/2022 2:19:00 AM
Styrene	0.72	0.64		ug/m3	1	3/22/2022 2:19:00 AM
Tetrachloroethylene	32	10		ug/m3	10	3/22/2022 5:55:00 AM
Tetrahydrofuran	1.6	0.44		ug/m3	1	3/22/2022 2:19:00 AM
Toluene	7.5	5.7		ug/m3	10	3/22/2022 5:55:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	3/22/2022 2:19:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	3/22/2022 2:19:00 AM
Trichloroethene	0.48	0.16		ug/m3	1	3/22/2022 2:19:00 AM
Vinyl acetate	< 0.53	0.53		ug/m3	1	3/22/2022 2:19:00 AM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	3/22/2022 2:19:00 AM
Vinyl chloride	< 0.10	0.10		ug/m3	1	3/22/2022 2:19:00 AM

Qualifiers:	SC	Sub-Contracted		Results reported are not blank corrected	
	В	Analyte detected in the associated Method Blank	Е	Estimated Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	D
	S	Spike Recovery outside accepted recovery limits	DL	Detection Limit	Page 4 of 8

CLIENT: LaBella Associates, P.C. Lab Order: C2203053 **Project:** 113-117 North Clinton C2203053-003A Lab ID:

Date: 25-Mar-22

Client Sample ID: IA-02-3.15.22 **Tag Number:** 1204,1304 Collection Date: 3/15/2022 Matrix: AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1.1DCE	тс)-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	3/21/2022 11:05:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	3/21/2022 11:05:00 PM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	3/21/2022 11:05:00 PM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	3/21/2022 11:05:00 PM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	3/21/2022 11:05:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	3/21/2022 11:05:00 PM
1,2,4-Trimethylbenzene	2.3	0.74		ug/m3	1	3/21/2022 11:05:00 PM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	3/21/2022 11:05:00 PM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	3/21/2022 11:05:00 PM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	3/21/2022 11:05:00 PM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	3/21/2022 11:05:00 PM
1,3,5-Trimethylbenzene	2.8	0.74		ug/m3	1	3/21/2022 11:05:00 PM
1,3-butadiene	< 0.33	0.33		ug/m3	1	3/21/2022 11:05:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	3/21/2022 11:05:00 PM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	3/21/2022 11:05:00 PM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	3/21/2022 11:05:00 PM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	3/21/2022 11:05:00 PM
4-ethyltoluene	0.64	0.74	J	ug/m3	1	3/21/2022 11:05:00 PM
Acetone	33	7.1		ug/m3	10	3/22/2022 4:30:00 AM
Allyl chloride	< 0.47	0.47		ug/m3	1	3/21/2022 11:05:00 PM
Benzene	0.99	0.48		ug/m3	1	3/21/2022 11:05:00 PM
Benzyl chloride	< 0.86	0.86		ug/m3	1	3/21/2022 11:05:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	3/21/2022 11:05:00 PM
Bromoform	< 1.6	1.6		ug/m3	1	3/21/2022 11:05:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	3/21/2022 11:05:00 PM
Carbon disulfide	0.34	0.47	J	ug/m3	1	3/21/2022 11:05:00 PM
Carbon tetrachloride	0.44	0.19		ug/m3	1	3/21/2022 11:05:00 PM
Chlorobenzene	< 0.69	0.69		ug/m3	1	3/21/2022 11:05:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	3/21/2022 11:05:00 PM
Chloroform	4.6	0.73		ug/m3	1	3/21/2022 11:05:00 PM
Chloromethane	1.4	0.31		ug/m3	1	3/21/2022 11:05:00 PM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	3/21/2022 11:05:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	3/21/2022 11:05:00 PM
Cyclohexane	1.0	0.52		ug/m3	1	3/21/2022 11:05:00 PM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	3/21/2022 11:05:00 PM
Ethyl acetate	2.2	0.54		ug/m3	1	3/21/2022 11:05:00 PM
Ethylbenzene	0.65	0.65		ug/m3	1	3/21/2022 11:05:00 PM
Freon 11	1.7	0.84		ug/m3	1	3/21/2022 11:05:00 PM
Freon 113	< 1.1	1.1		ug/m3	1	3/21/2022 11:05:00 PM
Freon 114	< 1.0	1.0		ug/m3	1	3/21/2022 11:05:00 PM

Qualifiers: SC Sub-Contracted

> Analyte detected in the associated Method Blank В

Holding times for preparation or analysis exceeded Н

Non-routine analyte. Quantitation estimated. JN

Spike Recovery outside accepted recovery limits S

Results reported are not blank corrected

Е Estimated Value above quantitation range

J Analyte detected below quantitation limit ND Not Detected at the Limit of Detection

DL Detection Limit

.

CLIENT:LaBella Associates, P.C.Lab Order:C2203053Project:113-117 North ClintonLab ID:C2203053-003A

Date: 25-Mar-22

Client Sample ID: IA-02-3.15.22 Tag Number: 1204,1304 Collection Date: 3/15/2022 Matrix: AIR

Analyses	Result	DL Q	ual Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	TO-15	5		Analyst: RJP
Freon 12	2.6	0.74	ug/m3	1	3/21/2022 11:05:00 PM
Heptane	2.2	0.61	ug/m3	1	3/21/2022 11:05:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	3/21/2022 11:05:00 PM
Hexane	1.9	0.53	ug/m3	1	3/21/2022 11:05:00 PM
Isopropyl alcohol	33	3.7	ug/m3	10	3/22/2022 4:30:00 AM
m&p-Xylene	2.3	1.3	ug/m3	1	3/21/2022 11:05:00 PM
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	3/21/2022 11:05:00 PM
Methyl Ethyl Ketone	5.3	0.88	ug/m3	1	3/21/2022 11:05:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2	ug/m3	1	3/21/2022 11:05:00 PM
Methyl tert-butyl ether	< 0.54	0.54	ug/m3	1	3/21/2022 11:05:00 PM
Methylene chloride	2.8	0.52	ug/m3	1	3/21/2022 11:05:00 PM
o-Xylene	0.96	0.65	ug/m3	1	3/21/2022 11:05:00 PM
Propylene	< 0.26	0.26	ug/m3	1	3/21/2022 11:05:00 PM
Styrene	0.64	0.64	ug/m3	1	3/21/2022 11:05:00 PM
Tetrachloroethylene	27	10	ug/m3	10	3/22/2022 4:30:00 AM
Tetrahydrofuran	1.5	0.44	ug/m3	1	3/21/2022 11:05:00 PM
Toluene	6.3	0.57	ug/m3	1	3/21/2022 11:05:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	3/21/2022 11:05:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	3/21/2022 11:05:00 PM
Trichloroethene	0.59	0.16	ug/m3	1	3/21/2022 11:05:00 PM
Vinyl acetate	< 0.53	0.53	ug/m3	1	3/21/2022 11:05:00 PM
Vinyl Bromide	< 0.66	0.66	ug/m3	1	3/21/2022 11:05:00 PM
Vinyl chloride	< 0.10	0.10	ug/m3	1	3/21/2022 11:05:00 PM

-					
Qualifiers:	SC	Sub-Contracted		Results reported are not blank corrected	
	В	Analyte detected in the associated Method Blank	Е	Estimated Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	I	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	Dec. C.C.
	S	Spike Recovery outside accepted recovery limits	DL	Detection Limit	Page 6 of 8

CLIENT:	LaBella Associates, P.C.
Lab Order:	C2203053
Project:	113-117 North Clinton
Lab ID:	C2203053-004A

_

Date: 25-Mar-22

_ _

Client Sample ID: OA-3 Tag Number: 1189,391 Collection Date: 3/15/2022 Matrix: AIR

Analyses	Result	DL	Qual U	nits	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	тс	D-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	u	g/m3	1	3/22/2022 3:03:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	u	g/m3	1	3/22/2022 3:03:00 AM
1,1,2-Trichloroethane	< 0.82	0.82	u	g/m3	1	3/22/2022 3:03:00 AM
1,1-Dichloroethane	< 0.61	0.61	u	g/m3	1	3/22/2022 3:03:00 AM
1,1-Dichloroethene	< 0.16	0.16	u	g/m3	1	3/22/2022 3:03:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1	u	g/m3	1	3/22/2022 3:03:00 AM
1,2,4-Trimethylbenzene	< 0.74	0.74	u	g/m3	1	3/22/2022 3:03:00 AM
1,2-Dibromoethane	< 1.2	1.2	u	g/m3	1	3/22/2022 3:03:00 AM
1,2-Dichlorobenzene	< 0.90	0.90	u	g/m3	1	3/22/2022 3:03:00 AM
1,2-Dichloroethane	< 0.61	0.61	u	g/m3	1	3/22/2022 3:03:00 AM
1,2-Dichloropropane	< 0.69	0.69	u	g/m3	1	3/22/2022 3:03:00 AM
1,3,5-Trimethylbenzene	< 0.74	0.74	u	g/m3	1	3/22/2022 3:03:00 AM
1,3-butadiene	< 0.33	0.33	u	g/m3	1	3/22/2022 3:03:00 AM
1,3-Dichlorobenzene	< 0.90	0.90	u	g/m3	1	3/22/2022 3:03:00 AM
1,4-Dichlorobenzene	< 0.90	0.90	u	g/m3	1	3/22/2022 3:03:00 AM
1,4-Dioxane	< 1.1	1.1	u	g/m3	1	3/22/2022 3:03:00 AM
2,2,4-trimethylpentane	< 0.70	0.70	u	g/m3	1	3/22/2022 3:03:00 AM
4-ethyltoluene	< 0.74	0.74	u	g/m3	1	3/22/2022 3:03:00 AM
Acetone	17	7.1	u	g/m3	10	3/22/2022 6:41:00 AM
Allyl chloride	< 0.47	0.47	u	g/m3	1	3/22/2022 3:03:00 AM
Benzene	0.57	0.48	u	g/m3	1	3/22/2022 3:03:00 AM
Benzyl chloride	< 0.86	0.86	u	g/m3	1	3/22/2022 3:03:00 AM
Bromodichloromethane	< 1.0	1.0	u	g/m3	1	3/22/2022 3:03:00 AM
Bromoform	< 1.6	1.6	U	g/m3	1	3/22/2022 3:03:00 AM
Bromomethane	< 0.58	0.58	U	g/m3	1	3/22/2022 3:03:00 AM
Carbon disulfide	< 0.47	0.47	U	g/m3	1	3/22/2022 3:03:00 AM
Carbon tetrachloride	0.50	0.19	u	g/m3	1	3/22/2022 3:03:00 AM
Chlorobenzene	< 0.69	0.69	u	g/m3	1	3/22/2022 3:03:00 AM
Chloroethane	< 0.40	0.40	U	g/m3	1	3/22/2022 3:03:00 AM
Chloroform	< 0.73	0.73	U	g/m3	1	3/22/2022 3:03:00 AM
Chloromethane	1.0	0.31	U	g/m3	1	3/22/2022 3:03:00 AM
cis-1,2-Dichloroethene	< 0.16	0.16	U	g/m3	1	3/22/2022 3:03:00 AM
cis-1,3-Dichloropropene	< 0.68	0.68	U	g/m3	1	3/22/2022 3:03:00 AM
Cyclohexane	< 0.52	0.52	U	g/m3	1	3/22/2022 3:03:00 AM
Dibromochloromethane	< 1.3	1.3	u	g/m3	1	3/22/2022 3:03:00 AM
Ethyl acetate	< 0.54	0.54	u	g/m3	1	3/22/2022 3:03:00 AM
Ethylbenzene	< 0.65	0.65	u	g/m3	1	3/22/2022 3:03:00 AM
Freon 11	1.4	0.84	u	g/m3	1	3/22/2022 3:03:00 AM
Freon 113	< 1.1	1.1	u	g/m3	1	3/22/2022 3:03:00 AM
Freon 114	< 1.0	1.0	u	g/m3	1	3/22/2022 3:03:00 AM

Qualifiers: SC Sub-Contracted

В Analyte detected in the associated Method Blank

Holding times for preparation or analysis exceeded Н

Non-routine analyte. Quantitation estimated. JN

S Spike Recovery outside accepted recovery limits Results reported are not blank corrected

Estimated Value above quantitation range Е J

Analyte detected below quantitation limit ND Not Detected at the Limit of Detection

DL Detection Limit

.

CLIENT:LaBella Associates, P.C.Lab Order:C2203053Project:113-117 North ClintonLab ID:C2203053-004A

Date: 25-Mar-22

Client Sample ID: OA-3 Tag Number: 1189,391 Collection Date: 3/15/2022 Matrix: AIR

Analyses	Result	DL (Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TO-15				Analyst: RJP
Freon 12	2.7	0.74		ug/m3	1	3/22/2022 3:03:00 AM
Heptane	< 0.61	0.61		ug/m3	1	3/22/2022 3:03:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	3/22/2022 3:03:00 AM
Hexane	0.46	0.53	J	ug/m3	1	3/22/2022 3:03:00 AM
Isopropyl alcohol	4.5	0.37		ug/m3	1	3/22/2022 3:03:00 AM
m&p-Xylene	< 1.3	1.3		ug/m3	1	3/22/2022 3:03:00 AM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	3/22/2022 3:03:00 AM
Methyl Ethyl Ketone	0.83	0.88	J	ug/m3	1	3/22/2022 3:03:00 AM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	3/22/2022 3:03:00 AM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	3/22/2022 3:03:00 AM
Methylene chloride	0.63	0.52		ug/m3	1	3/22/2022 3:03:00 AM
o-Xylene	< 0.65	0.65		ug/m3	1	3/22/2022 3:03:00 AM
Propylene	< 0.26	0.26		ug/m3	1	3/22/2022 3:03:00 AM
Styrene	< 0.64	0.64		ug/m3	1	3/22/2022 3:03:00 AM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	3/22/2022 3:03:00 AM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	3/22/2022 3:03:00 AM
Toluene	1.0	0.57		ug/m3	1	3/22/2022 3:03:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	3/22/2022 3:03:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	3/22/2022 3:03:00 AM
Trichloroethene	< 0.16	0.16		ug/m3	1	3/22/2022 3:03:00 AM
Vinyl acetate	< 0.53	0.53		ug/m3	1	3/22/2022 3:03:00 AM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	3/22/2022 3:03:00 AM
Vinyl chloride	< 0.10	0.10		ug/m3	1	3/22/2022 3:03:00 AM

Qualifiers:	SC	Sub-Contracted		Results reported are not blank corrected	
	В	Analyte detected in the associated Method Blank	Е	Estimated Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	D 0 00
	S	Spike Recovery outside accepted recovery limits	DL	Detection Limit	Page 8 of 8

* *

\$X K

F						£					
		<u>Centek L</u>	<u>abs - Ch</u>	<u>ain of Cus</u>	<u>tody</u>	Site Name: 113-117 North	n Clinton	Detection Limit	Report	Level 5	
Centek Labo	atorias	143 Midler Pa	rk Drive			Project: 216,120		5ppbv	Lev	el I	
		Syracuse, NY	13206			PO#:		110/M3	Levi	9 1	
		315-431-9730	ŧ	Vapor Intrusio	on & IAQ	Quote # Q. JP		> 1ug/M3+0.2 NYS	Cat "B	like	
		www.Centeki	Labs.com	-		Canister Order #: 9210		Ē			
TAT	Check	Rush TAT	Due	Company:	.0.11.	Ann i la	Company:		H		
F Pupinone Dave		Surcharge %	Date:	6	<u>idecia</u>	4550clates	Check Here If Same:				
4 Business Days	<u> </u>	0% 25%		Address:	alex ore		Invoice to:	Invoice to:			
3 Business Days	Ē	50%		City, State, Zi	D Racha	e St Suit 201	City State Zin	JUNE			
2 Business Days		75%			E EDLUC	S121					
*Next Day by 5pm		100%		Email: Ahn	ott@faße	1a PC.com	Email: AD @ La Be	1 PE.COM			
"Next Day by Noon	Ц	150%		D							
*For Same and Next Dev	TAT Plage	200%		IPhone: 58	5	1 h	Phone: 585-45	54-6/10			
Samelo ID	1741 11663	Date	Somelad		Regulator	Analysis kequest	Field Vacuum	Labs Vacuum**	Sturt Coma	nents Stur	
Campie in		Dute		HUMBEI			Start / Stop	NecviAnalysis	DATE/+ AR	DAST / TIME	
IA-01-3.15-	22	ļ	15/22	192	1231	TO-15	-30+1-5	-31	34/2 1231	3/5/2 124:	
Dup - 3.15.22	I E	3	15/22	347	448	TD-15	-30+1-2.5	- / 1	3/4/2 1232	3/1/2 093	
IA-02-3.15	,22	3,	115/22	1204	1304	T0-15	-301-5	. 51	3/4/2 1834	3/10/2 12K	
0A - 3		3	15/2	1189	391	TD-15	-30+1 -3.5	~ 17	3/14/12 1244	3/1/2 094	
							1	1			
							1	<u> </u>			
							1	1			
							<u> </u>	1			
							1	11			
							11	1			
				· · · · · ·			1	1		· •····· ·····························	
				-			1	1			
							1	1			
							1	1			
							<i>I</i>	11			
					ļ		1	1		·····	
				<u> </u>			I	11	ļ		
		<u> </u>		1		ļ	1	1		·····	
Criain or Custody		Print Name	·····		Signature	a turner	Date/Time	FodEx LIPS Distant	Tanoff		
oampieu sy: Daliaaulahad hur	A	EX BRET			an h	KAN Der	5/15/22 1500				
rteiniquistied by:		h CCC			ST	TA In	2/16/24 1000	TOPLAN USE UNLY	NZNZ	2	
Received at Lab by:	+ K l	Ja Gus	Iliu)		Kolk	flittle 3	13/18/22	Work Order # (レクレラ.	2	

***Chain of Custody must be completed in full. Lack of any missing information will affect your Turn Around Times (TAT) *** By signing Centek Labs Chain of Custody, you are accepting Centek Labs Terms and Conditions listed on the reverse side.

CLIENT:LaBella Associates, P.C.Lab Order:C2304013Project:113-117 N. ClintonLab ID:C2304013-001A

Date: 13-Apr-23

Client Sample ID: OA-03292023 Tag Number: 232,434 Collection Date: 3/29/2023 Matrix: AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	тс)-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	4/8/2023 1:04:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	4/8/2023 1:04:00 AM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	4/8/2023 1:04:00 AM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/8/2023 1:04:00 AM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	4/8/2023 1:04:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	4/8/2023 1:04:00 AM
1,2,4-Trimethylbenzene	< 0.74	0.74		ug/m3	1	4/8/2023 1:04:00 AM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	4/8/2023 1:04:00 AM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/8/2023 1:04:00 AM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	4/8/2023 1:04:00 AM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	4/8/2023 1:04:00 AM
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	4/8/2023 1:04:00 AM
1,3-butadiene	< 0.33	0.33		ug/m3	1	4/8/2023 1:04:00 AM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/8/2023 1:04:00 AM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/8/2023 1:04:00 AM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	4/8/2023 1:04:00 AM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	4/8/2023 1:04:00 AM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	4/8/2023 1:04:00 AM
Acetone	11	3.6		ug/m3	5	4/9/2023 5:23:00 PM
Allyl chloride	< 0.47	0.47		ug/m3	1	4/8/2023 1:04:00 AM
Benzene	0.45	0.48	J	ug/m3	1	4/8/2023 1:04:00 AM
Benzyl chloride	< 0.86	0.86		ug/m3	1	4/8/2023 1:04:00 AM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	4/8/2023 1:04:00 AM
Bromoform	< 1.6	1.6		ug/m3	1	4/8/2023 1:04:00 AM
Bromomethane	< 0.58	0.58		ug/m3	1	4/8/2023 1:04:00 AM
Carbon disulfide	0.53	0.47		ug/m3	1	4/8/2023 1:04:00 AM
Carbon tetrachloride	0.57	0.19		ug/m3	1	4/8/2023 1:04:00 AM
Chlorobenzene	< 0.69	0.69		ug/m3	1	4/8/2023 1:04:00 AM
Chloroethane	< 0.40	0.40		ug/m3	1	4/8/2023 1:04:00 AM
Chloroform	< 0.73	0.73		ug/m3	1	4/8/2023 1:04:00 AM
Chloromethane	1.1	0.31		ug/m3	1	4/8/2023 1:04:00 AM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	4/8/2023 1:04:00 AM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/8/2023 1:04:00 AM
Cyclohexane	< 0.52	0.52		ug/m3	1	4/8/2023 1:04:00 AM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	4/8/2023 1:04:00 AM
Ethyl acetate	< 0.54	0.54		ug/m3	1	4/8/2023 1:04:00 AM
Ethylbenzene	< 0.65	0.65		ug/m3	1	4/8/2023 1:04:00 AM
Freon 11	1.3	0.84		ug/m3	1	4/8/2023 1:04:00 AM
Freon 113	< 1.1	1.1		ug/m3	1	4/8/2023 1:04:00 AM
Freon 114	< 1.0	1.0		ug/m3	1	4/8/2023 1:04:00 AM

Qualifiers: . Results reported are not blank corrected

DL Detection Limit

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank

Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

SC Sub-Contracted

В

Е

Page 1 of 10

CLIENT:LaBella Associates, P.C.Lab Order:C2304013Project:113-117 N. ClintonLab ID:C2304013-001A

Date: 13-Apr-23

Client Sample ID: OA-03292023 Tag Number: 232,434 Collection Date: 3/29/2023 Matrix: AIR

Analyses	Result	DL	Qual Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V	C-DCE-1,1DCE	то-	15		Analyst: RJP
Freon 12	< 0.74	0.74	ug/m3	1	4/8/2023 1:04:00 AM
Heptane	< 0.61	0.61	ug/m3	1	4/8/2023 1:04:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m3	1	4/8/2023 1:04:00 AM
Hexane	< 0.53	0.53	ug/m3	1	4/8/2023 1:04:00 AM
Isopropyl alcohol	1.7	0.37	ug/m3	1	4/8/2023 1:04:00 AM
m&p-Xylene	< 1.3	1.3	ug/m3	1	4/8/2023 1:04:00 AM
Methyl Butyl Ketone	< 1.2	1.2	ug/m3	1	4/8/2023 1:04:00 AM
Methyl Ethyl Ketone	0.91	0.88	ug/m3	1	4/8/2023 1:04:00 AM
Methyl Isobutyl Ketone	< 1.2	1.2	ug/m3	1	4/8/2023 1:04:00 AM
Methyl tert-butyl ether	< 0.54	0.54	ug/m3	1	4/8/2023 1:04:00 AM
Methylene chloride	1.1	0.52	ug/m3	1	4/8/2023 1:04:00 AM
o-Xylene	< 0.65	0.65	ug/m3	1	4/8/2023 1:04:00 AM
Propylene	< 0.26	0.26	ug/m3	1	4/8/2023 1:04:00 AM
Styrene	< 0.64	0.64	ug/m3	1	4/8/2023 1:04:00 AM
Tetrachloroethylene	< 1.0	1.0	ug/m3	1	4/8/2023 1:04:00 AM
Tetrahydrofuran	< 0.44	0.44	ug/m3	1	4/8/2023 1:04:00 AM
Toluene	0.41	0.57	J ug/m3	1	4/8/2023 1:04:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m3	1	4/8/2023 1:04:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68	ug/m3	1	4/8/2023 1:04:00 AM
Trichloroethene	0.11	0.16	J ug/m3	1	4/8/2023 1:04:00 AM
Vinyl acetate	< 0.53	0.53	ug/m3	1	4/8/2023 1:04:00 AM
Vinyl Bromide	< 0.66	0.66	ug/m3	1	4/8/2023 1:04:00 AM
Vinyl chloride	< 0.10	0.10	ug/m3	1	4/8/2023 1:04:00 AM

Qualifiers:		Results reported are not blank corrected	В	Analyte detected in the associated Method	Blank
	DL	Detection Limit	Е	Estimated Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	D 2 6 10
	S	Spike Recovery outside accepted recovery limits	SC	Sub-Contracted	Page 2 of 10

CLIENT: LaBella Associates, P.C. Lab Order: C2304013 **Project:** 113-117 N. Clinton Lab ID: C2304013-002A

Date: 13-Apr-23

Client Sample ID: IA-02-03292023 **Tag Number: 285,454** Collection Date: 3/29/2023 Matrix: AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	C-DCE-1,1DCE	TO-15				Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	4/8/2023 1:48:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	4/8/2023 1:48:00 AM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	4/8/2023 1:48:00 AM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/8/2023 1:48:00 AM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	4/8/2023 1:48:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	4/8/2023 1:48:00 AM
1,2,4-Trimethylbenzene	1.2	0.74		ug/m3	1	4/8/2023 1:48:00 AM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	4/8/2023 1:48:00 AM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/8/2023 1:48:00 AM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	4/8/2023 1:48:00 AM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	4/8/2023 1:48:00 AM
1,3,5-Trimethylbenzene	0.93	0.74		ug/m3	1	4/8/2023 1:48:00 AM
1,3-butadiene	< 0.33	0.33		ug/m3	1	4/8/2023 1:48:00 AM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/8/2023 1:48:00 AM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/8/2023 1:48:00 AM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	4/8/2023 1:48:00 AM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	4/8/2023 1:48:00 AM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	4/8/2023 1:48:00 AM
Acetone	37	7.1		ug/m3	10	4/9/2023 6:06:00 PM
Allyl chloride	< 0.47	0.47		ug/m3	1	4/8/2023 1:48:00 AM
Benzene	1.1	0.48		ug/m3	1	4/8/2023 1:48:00 AM
Benzyl chloride	< 0.86	0.86		ug/m3	1	4/8/2023 1:48:00 AM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	4/8/2023 1:48:00 AM
Bromoform	< 1.6	1.6		ug/m3	1	4/8/2023 1:48:00 AM
Bromomethane	< 0.58	0.58		ug/m3	1	4/8/2023 1:48:00 AM
Carbon disulfide	0.34	0.47	J	ug/m3	1	4/8/2023 1:48:00 AM
Carbon tetrachloride	0.57	0.19		ug/m3	1	4/8/2023 1:48:00 AM
Chlorobenzene	< 0.69	0.69		ug/m3	1	4/8/2023 1:48:00 AM
Chloroethane	< 0.40	0.40		ug/m3	1	4/8/2023 1:48:00 AM
Chloroform	2.5	0.73		ug/m3	1	4/8/2023 1:48:00 AM
Chloromethane	1.1	0.31		ug/m3	1	4/8/2023 1:48:00 AM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	4/8/2023 1:48:00 AM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/8/2023 1:48:00 AM
Cyclohexane	< 0.52	0.52		ug/m3	1	4/8/2023 1:48:00 AM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	4/8/2023 1:48:00 AM
Ethyl acetate	1.4	0.54		ug/m3	1	4/8/2023 1:48:00 AM
Ethylbenzene	0.61	0.65	J	ug/m3	1	4/8/2023 1:48:00 AM
Freon 11	1.3	0.84		ug/m3	1	4/8/2023 1:48:00 AM
Freon 113	< 1.1	1.1		ug/m3	1	4/8/2023 1:48:00 AM
Freon 114	< 1.0	1.0		ug/m3	1	4/8/2023 1:48:00 AM

Qualifiers: Results reported are not blank corrected

DL **Detection Limit**

Holding times for preparation or analysis exceeded Н

Non-routine analyte. Quantitation estimated. JN

S Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank Е

Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

SC Sub-Contracted

В

Page 3 of 10

CLIENT:LaBella Associates, P.C.Lab Order:C2304013Project:113-117 N. ClintonLab ID:C2304013-002A

Date: 13-Apr-23

Client Sample ID: IA-02-03292023 Tag Number: 285,454 Collection Date: 3/29/2023 Matrix: AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	TO-15				Analyst: RJP
Freon 12	< 0.74	0.74	I	ug/m3	1	4/8/2023 1:48:00 AM
Heptane	0.98	0.61	I	ug/m3	1	4/8/2023 1:48:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6	I	ug/m3	1	4/8/2023 1:48:00 AM
Hexane	0.74	0.53	I	ug/m3	1	4/8/2023 1:48:00 AM
Isopropyl alcohol	50	15	I	ug/m3	40	4/9/2023 6:48:00 PM
m&p-Xylene	1.9	1.3	I	ug/m3	1	4/8/2023 1:48:00 AM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	4/8/2023 1:48:00 AM
Methyl Ethyl Ketone	8.0	8.8	Jı	ug/m3	10	4/9/2023 6:06:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	4/8/2023 1:48:00 AM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/8/2023 1:48:00 AM
Methylene chloride	1.8	0.52		ug/m3	1	4/8/2023 1:48:00 AM
o-Xylene	0.69	0.65		ug/m3	1	4/8/2023 1:48:00 AM
Propylene	< 0.26	0.26		ug/m3	1	4/8/2023 1:48:00 AM
Styrene	0.55	0.64	Jı	ug/m3	1	4/8/2023 1:48:00 AM
Tetrachloroethylene	11	1.0		ug/m3	1	4/8/2023 1:48:00 AM
Tetrahydrofuran	4.4	0.44		ug/m3	1	4/8/2023 1:48:00 AM
Toluene	2.8	0.57		ug/m3	1	4/8/2023 1:48:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/8/2023 1:48:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/8/2023 1:48:00 AM
Trichloroethene	0.48	0.16		ug/m3	1	4/8/2023 1:48:00 AM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/8/2023 1:48:00 AM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/8/2023 1:48:00 AM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/8/2023 1:48:00 AM

		.	-		
Qualifiers:	•	Results reported are not blank corrected	В	Analyte detected in the associated Method	Blank
	DL	Detection Limit	Е	Estimated Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	D 4 610
	S	Spike Recovery outside accepted recovery limits	SC	Sub-Contracted	Page 4 of 10

CLIENT: LaBella Associates, P.C. Lab Order: C2304013 **Project:** 113-117 N. Clinton C2304013-003A Lab ID:

Date: 13-Apr-23

Client Sample ID: Dup-03292023 **Tag Number: 422,1171** Collection Date: 3/29/2023 Matrix: AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	то	-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	4/8/2023 2:33:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	4/8/2023 2:33:00 AM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	4/8/2023 2:33:00 AM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/8/2023 2:33:00 AM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	4/8/2023 2:33:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	4/8/2023 2:33:00 AM
1,2,4-Trimethylbenzene	1.2	0.74		ug/m3	1	4/8/2023 2:33:00 AM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	4/8/2023 2:33:00 AM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/8/2023 2:33:00 AM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	4/8/2023 2:33:00 AM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	4/8/2023 2:33:00 AM
1,3,5-Trimethylbenzene	1.2	0.74		ug/m3	1	4/8/2023 2:33:00 AM
1,3-butadiene	< 0.33	0.33		ug/m3	1	4/8/2023 2:33:00 AM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/8/2023 2:33:00 AM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/8/2023 2:33:00 AM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	4/8/2023 2:33:00 AM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	4/8/2023 2:33:00 AM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	4/8/2023 2:33:00 AM
Acetone	29	7.1		ug/m3	10	4/9/2023 7:31:00 PM
Allyl chloride	< 0.47	0.47		ug/m3	1	4/8/2023 2:33:00 AM
Benzene	1.1	0.48		ug/m3	1	4/8/2023 2:33:00 AM
Benzyl chloride	< 0.86	0.86		ug/m3	1	4/8/2023 2:33:00 AM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	4/8/2023 2:33:00 AM
Bromoform	< 1.6	1.6		ug/m3	1	4/8/2023 2:33:00 AM
Bromomethane	< 0.58	0.58		ug/m3	1	4/8/2023 2:33:00 AM
Carbon disulfide	0.34	0.47	J	ug/m3	1	4/8/2023 2:33:00 AM
Carbon tetrachloride	0.57	0.19		ug/m3	1	4/8/2023 2:33:00 AM
Chlorobenzene	< 0.69	0.69		ug/m3	1	4/8/2023 2:33:00 AM
Chloroethane	< 0.40	0.40		ug/m3	1	4/8/2023 2:33:00 AM
Chloroform	2.7	0.73		ug/m3	1	4/8/2023 2:33:00 AM
Chloromethane	1.3	0.31		ug/m3	1	4/8/2023 2:33:00 AM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	4/8/2023 2:33:00 AM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/8/2023 2:33:00 AM
Cyclohexane	< 0.52	0.52		ug/m3	1	4/8/2023 2:33:00 AM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	4/8/2023 2:33:00 AM
Ethyl acetate	1.5	0.54		ug/m3	1	4/8/2023 2:33:00 AM
Ethylbenzene	0.56	0.65	J	ug/m3	1	4/8/2023 2:33:00 AM
Freon 11	1.4	0.84		ug/m3	1	4/8/2023 2:33:00 AM
Freon 113	< 1.1	1.1		ug/m3	1	4/8/2023 2:33:00 AM
Freon 114	< 1.0	1.0		ug/m3	1	4/8/2023 2:33:00 AM

Qualifiers: Results reported are not blank corrected

Detection Limit DL

Holding times for preparation or analysis exceeded Н

Non-routine analyte. Quantitation estimated. JN

S Spike Recovery outside accepted recovery limits

Analyte detected in the associated Method Blank Е

Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

SC Sub-Contracted

В

Page 5 of 10

CLIENT:LaBella Associates, P.C.Lab Order:C2304013Project:113-117 N. ClintonLab ID:C2304013-003A

Date: 13-Apr-23

Client Sample ID: Dup-03292023 Tag Number: 422,1171 Collection Date: 3/29/2023 Matrix: AIR

Analyses	Result	DL (Qual Unit	s DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-	DCE-1,1DCE	TO-′	15		Analyst: RJP
Freon 12	< 0.74	0.74	ug/m	3 1	4/8/2023 2:33:00 AM
Heptane	0.94	0.61	ug/m	3 1	4/8/2023 2:33:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6	ug/m	3 1	4/8/2023 2:33:00 AM
Hexane	0.74	0.53	ug/m	3 1	4/8/2023 2:33:00 AM
Isopropyl alcohol	52	15	ug/m	3 40	4/9/2023 8:13:00 PM
m&p-Xylene	1.6	1.3	ug/m	3 1	4/8/2023 2:33:00 AM
Methyl Butyl Ketone	< 1.2	1.2	ug/m	3 1	4/8/2023 2:33:00 AM
Methyl Ethyl Ketone	6.8	8.8	J ug/m	3 10	4/9/2023 7:31:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2	ug/m	3 1	4/8/2023 2:33:00 AM
Methyl tert-butyl ether	< 0.54	0.54	ug/m	3 1	4/8/2023 2:33:00 AM
Methylene chloride	1.9	0.52	ug/m	3 1	4/8/2023 2:33:00 AM
o-Xylene	0.65	0.65	ug/m	3 1	4/8/2023 2:33:00 AM
Propylene	< 0.26	0.26	ug/m	3 1	4/8/2023 2:33:00 AM
Styrene	0.55	0.64	J ug/m	3 1	4/8/2023 2:33:00 AM
Tetrachloroethylene	12	1.0	ug/m	3 1	4/8/2023 2:33:00 AM
Tetrahydrofuran	4.8	0.44	ug/m	3 1	4/8/2023 2:33:00 AM
Toluene	2.9	0.57	ug/m	3 1	4/8/2023 2:33:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59	ug/m	3 1	4/8/2023 2:33:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68	ug/m	3 1	4/8/2023 2:33:00 AM
Trichloroethene	0.43	0.16	ug/m	3 1	4/8/2023 2:33:00 AM
Vinyl acetate	< 0.53	0.53	ug/m	3 1	4/8/2023 2:33:00 AM
Vinyl Bromide	< 0.66	0.66	ug/m	3 1	4/8/2023 2:33:00 AM
Vinyl chloride	< 0.10	0.10	ug/m	3 1	4/8/2023 2:33:00 AM

Oualifiers:		Results reported are not blank corrected	В	Analyte detected in the associated Method	Blank
C	DL	Detection Limit	Е	Estimated Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	D (. (10
	S	Spike Recovery outside accepted recovery limits	SC	Sub-Contracted	Page 6 of 10

CLIENT: LaBella Associates, P.C. Lab Order: C2304013 **Project:** 113-117 N. Clinton C2304013-004A Lab ID:

Date: 13-Apr-23

Client Sample ID: IA-01-03292023 **Tag Number: 212,1416** Collection Date: 3/29/2023 Matrix: AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	то)-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	4/7/2023 10:34:00 PM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	4/7/2023 10:34:00 PM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	4/7/2023 10:34:00 PM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/7/2023 10:34:00 PM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	4/7/2023 10:34:00 PM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	4/7/2023 10:34:00 PM
1,2,4-Trimethylbenzene	0.98	0.74		ug/m3	1	4/7/2023 10:34:00 PM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	4/7/2023 10:34:00 PM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/7/2023 10:34:00 PM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	4/7/2023 10:34:00 PM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	4/7/2023 10:34:00 PM
1,3,5-Trimethylbenzene	0.69	0.74	J	ug/m3	1	4/7/2023 10:34:00 PM
1,3-butadiene	< 0.33	0.33		ug/m3	1	4/7/2023 10:34:00 PM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/7/2023 10:34:00 PM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/7/2023 10:34:00 PM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	4/7/2023 10:34:00 PM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	4/7/2023 10:34:00 PM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	4/7/2023 10:34:00 PM
Acetone	33	7.1		ug/m3	10	4/9/2023 4:00:00 PM
Allyl chloride	< 0.47	0.47		ug/m3	1	4/7/2023 10:34:00 PM
Benzene	1.2	0.48		ug/m3	1	4/7/2023 10:34:00 PM
Benzyl chloride	< 0.86	0.86		ug/m3	1	4/7/2023 10:34:00 PM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	4/7/2023 10:34:00 PM
Bromoform	< 1.6	1.6		ug/m3	1	4/7/2023 10:34:00 PM
Bromomethane	< 0.58	0.58		ug/m3	1	4/7/2023 10:34:00 PM
Carbon disulfide	< 0.47	0.47		ug/m3	1	4/7/2023 10:34:00 PM
Carbon tetrachloride	0.57	0.19		ug/m3	1	4/7/2023 10:34:00 PM
Chlorobenzene	< 0.69	0.69		ug/m3	1	4/7/2023 10:34:00 PM
Chloroethane	< 0.40	0.40		ug/m3	1	4/7/2023 10:34:00 PM
Chloroform	3.0	0.73		ug/m3	1	4/7/2023 10:34:00 PM
Chloromethane	0.95	0.31		ug/m3	1	4/7/2023 10:34:00 PM
cis-1,2-Dichloroethene	0.36	0.16		ug/m3	1	4/7/2023 10:34:00 PM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/7/2023 10:34:00 PM
Cyclohexane	< 0.52	0.52		ug/m3	1	4/7/2023 10:34:00 PM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	4/7/2023 10:34:00 PM
Ethyl acetate	1.3	0.54		ug/m3	1	4/7/2023 10:34:00 PM
Ethylbenzene	0.52	0.65	J	ug/m3	1	4/7/2023 10:34:00 PM
Freon 11	1.3	0.84		ug/m3	1	4/7/2023 10:34:00 PM
Freon 113	< 1.1	1.1		ug/m3	1	4/7/2023 10:34:00 PM
Freon 114	< 1.0	1.0		ug/m3	1	4/7/2023 10:34:00 PM

Qualifiers: Results reported are not blank corrected

Detection Limit DL

Holding times for preparation or analysis exceeded Н

Non-routine analyte. Quantitation estimated. JN

S Spike Recovery outside accepted recovery limits В Analyte detected in the associated Method Blank Е

Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

SC Sub-Contracted

Page 7 of 10

CLIENT:LaBella Associates, P.C.Lab Order:C2304013Project:113-117 N. ClintonLab ID:C2304013-004A

Date: 13-Apr-23

Client Sample ID: IA-01-03292023 Tag Number: 212,1416 Collection Date: 3/29/2023 Matrix: AIR

Analyses	Result	DL	Qual U	Inits	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	то	-15			Analyst: RJP
Freon 12	< 0.74	0.74	u	g/m3	1	4/7/2023 10:34:00 PM
Heptane	0.90	0.61	u	g/m3	1	4/7/2023 10:34:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6	u	g/m3	1	4/7/2023 10:34:00 PM
Hexane	0.70	0.53	u	g/m3	1	4/7/2023 10:34:00 PM
Isopropyl alcohol	56	15	u	g/m3	40	4/9/2023 4:42:00 PM
m&p-Xylene	1.6	1.3	u	g/m3	1	4/7/2023 10:34:00 PM
Methyl Butyl Ketone	< 1.2	1.2	u	g/m3	1	4/7/2023 10:34:00 PM
Methyl Ethyl Ketone	9.1	0.88	u	g/m3	1	4/7/2023 10:34:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2	u	g/m3	1	4/7/2023 10:34:00 PM
Methyl tert-butyl ether	< 0.54	0.54	u	g/m3	1	4/7/2023 10:34:00 PM
Methylene chloride	1.6	0.52	u	g/m3	1	4/7/2023 10:34:00 PM
o-Xylene	0.56	0.65	Ju	g/m3	1	4/7/2023 10:34:00 PM
Propylene	< 0.26	0.26	u	g/m3	1	4/7/2023 10:34:00 PM
Styrene	0.47	0.64	Ju	g/m3	1	4/7/2023 10:34:00 PM
Tetrachloroethylene	13	1.0	u	g/m3	1	4/7/2023 10:34:00 PM
Tetrahydrofuran	4.0	0.44	u	g/m3	1	4/7/2023 10:34:00 PM
Toluene	3.1	0.57	u	g/m3	1	4/7/2023 10:34:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	u	g/m3	1	4/7/2023 10:34:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68	u	g/m3	1	4/7/2023 10:34:00 PM
Trichloroethene	0.48	0.16	u	g/m3	1	4/7/2023 10:34:00 PM
Vinyl acetate	< 0.53	0.53	u	g/m3	1	4/7/2023 10:34:00 PM
Vinyl Bromide	< 0.66	0.66	u	g/m3	1	4/7/2023 10:34:00 PM
Vinyl chloride	< 0.10	0.10	u	g/m3	1	4/7/2023 10:34:00 PM

Qualifiers:		Results reported are not blank corrected	В	Analyte detected in the associated Method	Blank
	DL	Detection Limit	Е	Estimated Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	D
	S	Spike Recovery outside accepted recovery limits	SC	Sub-Contracted	Page 8 of 10

CLIENT: LaBella Associates, P.C. Lab Order: C2304013 **Project:** 113-117 N. Clinton C2304013-005A Lab ID:

Date: 13-Apr-23

Client Sample ID: IA-03-03292023 **Tag Number:** 284,432 Collection Date: 3/29/2023 Matrix: AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	тс)-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	4/8/2023 3:17:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	4/8/2023 3:17:00 AM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	4/8/2023 3:17:00 AM
1,1-Dichloroethane	< 0.61	0.61		ug/m3	1	4/8/2023 3:17:00 AM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	4/8/2023 3:17:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1		ug/m3	1	4/8/2023 3:17:00 AM
1,2,4-Trimethylbenzene	0.93	0.74		ug/m3	1	4/8/2023 3:17:00 AM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	4/8/2023 3:17:00 AM
1,2-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/8/2023 3:17:00 AM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	4/8/2023 3:17:00 AM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	4/8/2023 3:17:00 AM
1,3,5-Trimethylbenzene	< 0.74	0.74		ug/m3	1	4/8/2023 3:17:00 AM
1,3-butadiene	< 0.33	0.33		ug/m3	1	4/8/2023 3:17:00 AM
1,3-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/8/2023 3:17:00 AM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	4/8/2023 3:17:00 AM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	4/8/2023 3:17:00 AM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	4/8/2023 3:17:00 AM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	4/8/2023 3:17:00 AM
Acetone	8.5	7.1		ug/m3	10	4/9/2023 8:56:00 PM
Allyl chloride	< 0.47	0.47		ug/m3	1	4/8/2023 3:17:00 AM
Benzene	0.67	0.48		ug/m3	1	4/8/2023 3:17:00 AM
Benzyl chloride	< 0.86	0.86		ug/m3	1	4/8/2023 3:17:00 AM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	4/8/2023 3:17:00 AM
Bromoform	< 1.6	1.6		ug/m3	1	4/8/2023 3:17:00 AM
Bromomethane	< 0.58	0.58		ug/m3	1	4/8/2023 3:17:00 AM
Carbon disulfide	< 0.47	0.47		ug/m3	1	4/8/2023 3:17:00 AM
Carbon tetrachloride	0.57	0.19		ug/m3	1	4/8/2023 3:17:00 AM
Chlorobenzene	< 0.69	0.69		ug/m3	1	4/8/2023 3:17:00 AM
Chloroethane	< 0.40	0.40		ug/m3	1	4/8/2023 3:17:00 AM
Chloroform	0.59	0.73	J	ug/m3	1	4/8/2023 3:17:00 AM
Chloromethane	1.0	0.31		ug/m3	1	4/8/2023 3:17:00 AM
cis-1,2-Dichloroethene	< 0.16	0.16		ug/m3	1	4/8/2023 3:17:00 AM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/8/2023 3:17:00 AM
Cyclohexane	< 0.52	0.52		ug/m3	1	4/8/2023 3:17:00 AM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	4/8/2023 3:17:00 AM
Ethyl acetate	< 0.54	0.54		ug/m3	1	4/8/2023 3:17:00 AM
Ethylbenzene	< 0.65	0.65		ug/m3	1	4/8/2023 3:17:00 AM
Freon 11	1.3	0.84		ug/m3	1	4/8/2023 3:17:00 AM
Freon 113	< 1.1	1.1		ug/m3	1	4/8/2023 3:17:00 AM
Freon 114	< 1.0	1.0		ug/m3	1	4/8/2023 3:17:00 AM

Qualifiers: Results reported are not blank corrected

Detection Limit DL

Holding times for preparation or analysis exceeded Н

Non-routine analyte. Quantitation estimated. JN

Spike Recovery outside accepted recovery limits S

В Analyte detected in the associated Method Blank Е

Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

SC Sub-Contracted

CLIENT:LaBella Associates, P.C.Lab Order:C2304013Project:113-117 N. ClintonLab ID:C2304013-005A

Date: 13-Apr-23

Client Sample ID: IA-03-03292023 Tag Number: 284,432 Collection Date: 3/29/2023 Matrix: AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE-1,1DCE		TO-15				Analyst: RJP
Freon 12	< 0.74	0.74		ug/m3	1	4/8/2023 3:17:00 AM
Heptane	0.66	0.61		ug/m3	1	4/8/2023 3:17:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/8/2023 3:17:00 AM
Hexane	0.74	0.53		ug/m3	1	4/8/2023 3:17:00 AM
Isopropyl alcohol	14	3.7		ug/m3	10	4/9/2023 8:56:00 PM
m&p-Xylene	1.2	1.3	J	ug/m3	1	4/8/2023 3:17:00 AM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	4/8/2023 3:17:00 AM
Methyl Ethyl Ketone	0.86	0.88	J	ug/m3	1	4/8/2023 3:17:00 AM
Methyl Isobutyl Ketone	< 1.2	1.2		ug/m3	1	4/8/2023 3:17:00 AM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/8/2023 3:17:00 AM
Methylene chloride	1.0	0.52		ug/m3	1	4/8/2023 3:17:00 AM
o-Xylene	0.48	0.65	J	ug/m3	1	4/8/2023 3:17:00 AM
Propylene	< 0.26	0.26		ug/m3	1	4/8/2023 3:17:00 AM
Styrene	< 0.64	0.64		ug/m3	1	4/8/2023 3:17:00 AM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	4/8/2023 3:17:00 AM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	4/8/2023 3:17:00 AM
Toluene	1.4	0.57		ug/m3	1	4/8/2023 3:17:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/8/2023 3:17:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/8/2023 3:17:00 AM
Trichloroethene	0.16	0.16		ug/m3	1	4/8/2023 3:17:00 AM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/8/2023 3:17:00 AM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/8/2023 3:17:00 AM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/8/2023 3:17:00 AM

Qualifiers:		Results reported are not blank corrected	В	Analyte detected in the associated Method	l Blank
	DL	Detection Limit	Е	Estimated Value above quantitation range	
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit	
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection	D 10 . C 10
	S	Spike Recovery outside accepted recovery limits	SC Sub-Contracted		Page 10 of 10

								a a
Centek/SanA	lir Techn	ologies Laboratory - Chai	n of Custody		Site Name: 113-117 N	J. CIMAN	Detection Limit	Report Level
Centek Laborato	zani	143 Midler Park Drive			Project: INDONE ATE	SNAPLING	5ppbv	Level I
		Syracuse, NY 13206			PO#: 2231571		110/M3	
Sar	٦Åir	315-431-9730	Vapor Intrusio	n & IAQ	Quote # 0-3P		100/13+0.2 NYS	Cat "8" Like
	1250 2029 1.859 2029	www.CentekLabs.us			Canister Order #: 771	3		
TAT Turners and Time:	Check	Rush TAT Due	Company:	20.00		Company		
S Pusiness Dave		Surcharge % Date:	L M	BELLA AND	10(17!!K>	Check Here If Same:		
4 Business Days		25%	Address: 2	ne store		Address	43 Payable	
3 Business Days	\square	50%	City, State, Zic	<u>200 - 2000k</u> 2 Rochest	518681 FE NY 14614	City, State, Zip		
2 Business Days		75%	1					
Next Day by 5pm		100%	<u> Email: ∆hr</u>	rett@LaBel	Unge. com	Email: O.P. @ Laß	ellattion	
Same Day	F	200%	Phone: Ser	- 771 - Je	~~~>	Phone		
*For Same and Next Day 1	AT Pleas	e Notify Lab	Canister	Regulator	Analysis Request	Field Vacuum	Labs Vacuum**	Comments
Sample ID		Date Sampled	Number	Number		Start / Stop	RecV/Analysis	DATEATA ADD START STOP
DA-03292023		3/29/2223	232	434	70-15	-30 1 -3	e 11	1,28,23 y 1,23 1155 N.73
1A-02-032921	973	3/29/2023	285	454	T0-15	- 30 1 -4	- 41	3/28/28 3/29/23 1212 6915
Dup-03292023	>	3/24/2023	422	1171	T0-15	.29.5 1 - 4	-51	3/27/23 3/2/23
IA-01-032920	<u>)23</u>	3/29/2023	PH-8212	1416	10-15	-30 1-6	- 41	3/24/23 3/25/25 /45/ 1219 1015 /19
JA-03-032920	23	3/29/2023	274	432	70-15	-30 1 -5	• 31	3/28/28 8/2923 1826 0954
			-				1	
		· · · · · · · · · · · · · · · · · · ·	ļ				1	-
						/	1	
		t				1	1	: [
	·				· · · · · · · · · · · · · · · · · · ·		1	
					• • • • • • • • • • • • • • • • • • •		1	
		 	ļ			1	1	<u></u>
							1	
i 			ļ			Į	1	
			<u> </u>	 		1	1	<u></u>
			ļ			f	1	
			<u> </u>	l			//	<u></u>
					<u> </u>	f	1	
Chain of Custody		Print Name		Signature	letter and and a second	Date/Time	Courier: CIRCLE ONE	
Sampled by:	<u> 40</u>	EX (SRETT		10a	1111	<u>AK/23 0730</u>	redex or o rickup/bi	0001
Received at Lab by:	Rot	In Gushlaut		Fals	- Aughter i	4/1/22	Work Order # (230	4013

***Chain of Custody must be completed in full. Luck of any missing information will uffect your Turn Around Times (TAT)

*** By signing Centek/SanAir Labs Chain of Custody, you are accepting the Terms and Conditions listed on the reverse side.

APPENDIX 4

Field Logs

Project: Indoor Air Sampling LaBella Project No:: 2221560 Dur 113-117 North Clinton, Rochester, NY LaBella Representative: A Breit 30'3 - 4 B's (Lo-Jy) Sample Canister Location: Indoor Air Sub-Siab		AIR	SAMPLING FIEL	D REPORT		AIR SAMPLING POINT
Specifie D: IA - Ol - 3.15.22 u.d PUP 3.15.22 ample Carlister Locator: BALLANNI	act: Indoor Air Sampling Location: 113-117 North Clinton, Ro ht: Clinton North Developmen	chester, NY tr Corporation	LaBella Project No.: LaBella Representativ Weather:	A. Brett 30'3-4	00 00 (Le-	Dup
angle Canister Location: \mathcal{G}_{ALLMAN} ample Canister Location: \mathcal{G}_{ALLMAN} Other angle Source: Indoor Air Other anjoing Date: $3/16/23$ Laboratory: Centek anister Type: 10 L Summa Canister	APLE 10: IA-	31-3.15.22	ud oup	3.15.22	0	
Imple Canister Location: $\bigcirc A \downarrow L = A \downarrow A \downarrow$ ample Source:	aral Information					
ample Source:	ple Canister Location:	,nnt			E. J. Jac Dell	Car
ipping Date: $3/l_b/2b$ Laboratory: Centek inister Type: \checkmark 1.0 L Summa Canister 0.0 L Summa Canister Other (specify): inister Serial No:: 192 Flow Controller Serial No:: 39.9 Dup: 3.47 $D up$: 244.8 Time Vacuum Reading (inHg) Notes $1/231$ $(3/l=1/2a)$ -30.4 -30.4 $1/245$ $(3/l=1/2a)$ -30.4 -30.4 $1/245$ $(3/l=1/2a)$ -30.4 -30.4 ample Date: $3/l 4 \cdot 3/l 5/22$ Sampler: A.Brett ample Height / Depth: $\sim 3.4t$ ~ 3.42 ~ 3.42	ple Source: Indoc Othe	r AirSub-Slat	Exterior	Ambient Air	Exterior Soli	Gas
Inister Type: Initial Summa Canister 6.0 L Summa Canister Other (specify): Inister Serial No.: 192 Flow Controller Serial No.: 399 Dup: 347 D Up: 448 Image: Information ample Date: $3/14 \cdot 3/15/22$ Sampler: A.Brett Start Start Start Stop	ping Date: 3/16/22		Laboratory:	Centek		
anister Serial No: 192 Flow Controller Serial No: 399 Dup : 347 $Dup :$ 448 Image: I	ster Type:1.0 L Summ	a Canister	6.0 L Summa Canister	Other (specify):		
$\frac{\text{Time}}{ 231} (3/14/2a) = \frac{-30 \cdot -3}{-5} =$	ster Serial No.: 192 Dup: 34	7	Flow Controller Seria DUP	No.: <u>399</u> : <u>448</u>		
ampling Information ample Date: <u>3/14 · 3/15/22</u> Sampler: <u>A.Brett</u> ample Height / Depth: <u>~ 3 FT</u> <u></u>	Time 1231 (3/14/2 1245 (3/15/2		Vacuum Reading	(inHg)		2165
	upling Information uple Date: $3/4 \cdot 3$ uple Height / Depth: ~ 3	/15 /22 Pt	Sampler:	A.Brett		
		Start			DUP	935
anister Pressure Gauge Reading: $\frac{1231}{-30t} -30t -5 -2.5$ ample Time: $Presson - t$	ister Pressure Gauge Reading:	=30+	-30t	-5		2.5
Duphenh collected: DUP-3.15.22	ments: Dupliente	ollected:	DUP - 3.1	5.22		

LaBella Powered by partnersbut	AIR SAMPLING FIELD REPORT	SAMPLING POINT
Project: Indoor Air Sampling Site Location: 113-117 North Clinton, Roc Client: Clinton North Development	LaBella Project No.: LaBella Representative: Corporation LaBella Representative: Weather: LaBella Project No.: A. Brett Joir 45, Cl.	nd y
SAMPLE TO : IN	1-02-3.15.22	
General Information	#	
Sample Canister Location:	ment	
Sample Source: Indoor	AirSub-SlabExterior Ambient AirExterior Sol	l Gas
Shipping Date: 3://16/22	Laboratory: Centek	
Canister Type:1.0 L Summa	Canister6.0 L Summa Canister Other (specify):	
Canister Serial No.: 204	Flow Controller Serial No.: 1304	
Time 1234 (3/14/22 1210 (3/15/22	Vacuum Reading (inHg) N ->>> ->>> >>> >>>	lotes
Sampling Information Sample Date: <u>3/14-3</u> Sample Height / Depth: <u>~ 3 . F</u> J	LS / 2.2 Sampler: A.Brett	
Canister Pressure Gauge Reading: Sample Time:	<u>Start</u> <u>-30</u> <u>1210</u>	
Comments:		

LaBella Posicieal by partnership	AIR	SAMPLING FIELD R	EPORT	SAMPLING POINT
Project: Indoor Air Sampling Site Location: 113-117 North Clinton, Rc Client: Clinton North Developmer	hchester, NY ht Corporation	LaBella Project No.: LaBella Representative: Weather:	2221560 A. Brett 305 4. AUS	(Lordy
SAMPLE TO: DA-3	.15.22			
General Information				
Sample Canister Location:	+			
Sample Source:Indoc	or AirSub-Slab	Exterior Ambie	ent AirExterior Soi	l Gas
Shipping Date: 3/16/22		Laboratory; Cer	itek	
Canister Type:1.0 L Summ	a Canister	6.0 L Summa Canister	Other (specify):	
Canister Serial No.: 118 9		Flow Controller Serial No.:	371	
Time (244 (3/14/) 0945 (3/15/)		Vacuum Reading (inHg) - 3 6 1 - 3.5		lotes
Sampling Information Sample Date: <u>3/14 -</u> Sample Height / Depth: <u>~ 3 4</u>	3/15/22 2 asne floor	Sampler: A.Bret	t	
	Start	-	Stop	
Canister Pressure Gauge Reading:	-36+	. –	-3.5	
Sample Time:	1244	. –	0945	
Comments:				

	AIR	SAMPLING FIELD F	REPORT	AIR SAMPLING POINT
Powered by partnariship,				IA-01
Project: Indoor Air Sampling Site Location: 113-117 North Clinton, Ro Client: Clinton North Developmen	bchester, NY ht Corporation	LaBella Project No.: LaBella Representative: Weather:	A. Brett	
SAMPLE ID : IA General Information Sample Canister Location: Buse	-01-03292023 ent	3		
Sample Source:Indoc	or AirSub-Slab	Exterior Ambi	ent AirExterior Soil	Gas
Shipping Date: <u>4/5/23</u>		Laboratory: Cer	ntek	
Canister Type:1.0 L Summ	a Canister	_6.0 L Summa Canister	Other (specify):	
Canister Serial No.:		Flow Controller Serial No.:	1416	
Time 1218 (3/29/23) 1015 (3/29/23)		Vacuum Reading (inHg)	N	stes
Sampling Information Sample Date: <u>3/27 - 3</u> Sample Height / Depth: <u>~ 3 - 14</u>	5/29 /23	Sampler: <u>A.Bret</u> l		
	Start		Stop	
Canister Pressure Gauge Reading:	-30		-6	
Sample Time:	1218		1015	
Comments: MS/MSD ()	slleeter			

LaBella Project No.: 2231541 LaBella Representative: A. Brett Weather: 305 (Loody) + DUP-03292023 Exterior Ambient Air Exterior Soil Gas Laboratory: Centek
Exterior Ambient AirExterior Soil Gas
Exterior Ambient Air Exterior Soil Gas
Exterior Ambient AirExterior Soil Gas
Exterior Ambient Air Exterior Soil Gas
Laboratory:Centek
Laboratory:Centek
6.0 L Summa Canister Øther (specify):
Flow Controller Serial No. 454
Dup 1171
Sampler:A.Brett
Stop
0.0295 1 1.0.4
DUP: 1215 0915 DUP: 0762

	AIR SAMPLING	FIELD REPORT	AIR SAMPLING POINT
Project: Indoor Air Sampling Site Location: 113-117 North Clinton, Roc Client: Clinton North Development	LaBella Project LaBella Project LaBella Repres Corporation Weather:	tNo.: sentative: A. Brett 30's (Landy)	
SANDLE ID. IA-63 General Information Sample Canister Location:	- 03292023 + Floor (Minhuce) NirSub-SlabE Laboratory: Canister6.0 L Summa Cani Flow Controller	Exterior Ambient Air Exterior So Centek ister Other (specify): r Serial No.:432	oil Gas
Time (236 (3/27/23) 0954 (3/29/23)	Vacuum Re	ading (inHg)	Notes
Sampling Information Sample Date: $3/23 - 3/2$ Sample Height / Depth: $-3 - 6$	<u>start</u>	A.Brett Stop	
Canister Pressure Gauge Reading: Sample Time:	-36	-5	
Comments:			

🖵 LaBella	AIR SAMPLING FIELD REPORT	AIR SAMPLING POINT
Powered by partnership.		Outdoor Arr
Project: Indoor Air Sampling Site Location: 113-117 North Clinton, Roches Client: Clinton North Development Con	LaBella Project No.:2231LaBella Representative:A. BrettporationWeather:	(lundy
SAMPLE ID: 0A-0	3292023	
Sample Canister Location:	~	
ample Source: Indoor Air	Sub-SlabExterior Ambient Air	Exterior Soil Gas
Other		
Shipping Date: 4/5/23	Laboratory: Centek	3
Canister Type:1.0 L Summa Can	nister6.0 L Summa Canister Other (specify);
Canister Serial No.: 232	Flow Controller Serial No.:	34
$\frac{1155}{0.920} \left(\frac{3/27/23}{27/23}\right)$	Vacuum Reading (inHg) - 30 - 3	Notes
·		
Sampling Information		
ample Date: <u>3/28 - 3/</u>	24/23 Sampler: <u>A.Brett</u>	
ample Height / Depth:3 - 44 🛛 🖉	bove flour	
	Start Stop	
		_
anister Pressure Gauge Reading	-30 -3	
Sample Time:	1155 0920	_
omments:	ι.	

OSR – 3

NEW YORK STATE DEPARTMENT OF HEALTH INDOOR AIR QUALITY QUESTIONNAIRE AND BUILDING INVENTORY CENTER FOR ENVIRONMENTAL HEALTH

This form must be completed for each residence involved in indoor air testing.

Preparer's Name Alex	Brett			pared 2/a	23/22	0930	updu 3/15
Preparer's Affiliation Fine	ronmertal Co.	rsul furt	Phone No		,		/
Purpose of Investigation In	door Atr E	maph					
1. OCCUPANT:							
Interviewed: Y / N							
Last Name:	Firs	st Name:					
Address:							
County:							
Home Phone:	Office P	hone:		-			
Number of Occupants/persons	at this location	Age	e of Occupants _				
2. OWNER OR LANDLORD Interviewed: Y / N Last Name:): (Check if same	as occupant) Don-	Front Des	k Candi	lord	
Address:							
County:							
Home Phone:	Office P	'hone:					
3. BUILDING CHARACTER	USTICS						
Type of Building: (Circle appr	opriate response)		(
Residential	School Church	Commercial	Multi-use				

	ial, type? (Circle approp	riate respon	se)
Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment House Log Home	3-Fam Coloni Mobile Townh Other:	ily al Home touses/Condos
If multiple units, how ma	ny? <u>65</u>		
If the property is commer	cial, type?		
Business Type(s)	and part		-
Does it include residen	ces (i.e., multi-use)?	'N	If yes, how many?
Other characteristics:	~		
Number of floors	_ Bui	lding age_[891
Is the building insulated	1? Y / N Hov	w air tight?	Tight/Average / Not Tight
4 AIRFLOW			
			· · · · · · · · · · · · · · · · · · ·
Use air current tubes or tr	acer smoke to evaluate	airflow pat	terns and qualitatively describe:
Use air current tubes or the Airflow between floors	acer smoke to evaluate	airflow pat	terns and qualitatively describe:
Use air current tubes or the Airflow between floors	acer smoke to evaluate	airflow pat	terns and qualitatively describe:
Use air current tubes or the Airflow between floors	acer smoke to evaluate	airflow pat	terns and qualitatively describe:
Use air current tubes or the Airflow between floors	acer smoke to evaluate	airflow pat	terns and qualitatively describe:
Use air current tubes or the Airflow between floors	acer smoke to evaluate	airflow pat	terns and qualitatively describe:
Use air current tubes or the Airflow between floors	acer smoke to evaluate	airflow pat	terns and qualitatively describe:
Use air current tubes or the Airflow between floors	acer smoke to evaluate	airflow pat	terns and qualitatively describe:
Use air current tubes or the Airflow between floors	acer smoke to evaluate	airflow pat	terns and qualitatively describe:
Use air current tubes or tr Airflow between floors	acer smoke to evaluate	airflow pat	terns and qualitatively describe:
Use air current tubes or tr	acer smoke to evaluate	airflow pat	terns and qualitatively describe:
Use air current tubes or the Airflow between floors	acer smoke to evaluate	airflow pat	terns and qualitatively describe:
Use air current tubes or tr	acer smoke to evaluate	airflow pat	terns and qualitatively describe:
Use air current tubes or the Airflow between floors	acer smoke to evaluate	airflow pat	terns and qualitatively describe:

2

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

a. Above grade construct	ion: wood frame	concrete	stone	brick
b. Basement type:	full	crawlspace	slab	other furfal
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	uncovered	covered	covered with	
e. Concrete floor:	unsealed	sealed	sealed with	
f. Foundation walls:	poured	block	stone	other
g. Foundation walls:	unsealed	sealed	sealed with _	
h. The basement is:	wet	damp	đry	moldy
i. The basement is:	finished	unfinished	partially finis	hed
j. Sump present?	YN			
k. Water in sump?	YN / not applicable			

Basement/Lowest level depth below grade: ______(feet)

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s)	used in this buildin	ng: (circle all the	at apply – note primary	() (1-
Hot air circulation Space Heaters Electric baseboard	Heat p Stream Wood	n radiation stove	Hot water baseboard Radiant floor Outdoor wood boiler	Other
The primary type of fuel u	sed is: Sbern			
Natural Gas	Fuel O	bil	Kerosene	
Electric	Propar	ne	Solar	
Wood	Coal			
Domestic hot water tank fu	ieled by: gas	>		
Boiler/furnace located in:	Basement	Outdoors	Main Floor	Other
Air conditioning:	Central Air	Window units	open Windows	None

3

Are there air distribution ducts present? Y/N

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

7. OCCUPANCY

Is basement/lo	west level occupied?	Full-time	Occasionally	Seldom	(Almost Never)
Level	General Use of Each	Floor (e.g., fa	milyroom, bedro	om, laundry	, workshop, storage)
Basement	Shrige		يرونه		
1 st Floor	Budness (2)	office mill	relowt hu	give roo.	n
2 nd Floor	Rooms				
3 rd Floor					
4 th Floor	*				
9 EACTODS	ТТТА (Р. В. Г.А. У. ТВІТ/Т. ТТІ			7	

8. FACTORS THAT MAY INFLUENCE INDOOR AIR QUALITY

a. Is there an attached garage?		Y
b. Does the garage have a separate heating unit?		Y/N/NA
c. Are petroleum-powered machines or vehicles stored in the garage (e.g., lawnmower, atv, car)		Y / N / NA Please specify
d. Has the building ever had a fire?		Y N When? UK
e. Is a kerosene or unvented gas space heater present?		Y / N Where?
f. Is there a workshop or hobby/craft area?	()/N	Where & Type? 19 dloo
g. Is there smoking in the building?	Gy/N	How frequently?
h. Have cleaning products been used recently?	Y N	When & Type?
i. Have cosmetic products been used recently?	(Y) N	When & Type?

j. Has painting/	staining been done	in the last 6 m	onths? G	N Where & W	/hen?
k. Is there new	carpet, drapes or o	ther textiles?	(\mathbf{y})	N Where & W	/hen?
l. Have air fresh	eners been used re	ecently?	Con	N When & Ty	vpe?
m. Is there a kit	chen exhaust fan?	w	kun Y/I	N If yes, when	re vented?
n. Is there a ba	throom exhaust fai	n? ler	KRAMA Y/]	N If yes, when	e vented?
o. Is there a clot	hes dryer?		(A)	N If yes, is it	vented outside? Y / N
p. Has there bee	en a pesticide appli	cation?	Y	🖗 When & Ty	pe?
Are there odors If yes, please de	in the building? escribe:		(Y) I	۷	
Do any of the build (e.g., chemical man boiler mechanic, pe	ding occupants use ufacturing or labora sticide application,	solvents at wor tory, auto mech cosmetologist	r k? Y / I anic or auto bo	N UNKNW dy shop, paintir	مر ng, fuel oil delivery,
If yes, what types	s of solvents are use	d?			
If yes, are their cl	othes washed at wo	rk?	Y / Y	NNA	
Do any of the build response)	ling occupants reg	ularly use or w	ork at a dry-cl	eaning service	? (Circle appropriate
Yes, use dr Yes, use dr Yes, work a	y-cleaning regularly y-cleaning infrequer at a dry-cleaning ser	(weekly) htly (monthly or vice	less)	No Unknown	
Is there a radon m Is the system active	itigation system for e or passive?	r the building/s Active/Passive	tructure?	N Date of Insta	allation: 2017
9. WATER AND S	EWAGE	w.,			
Water Supply:	Public Water	Drilled Well	Driven Well	Dug Well	Other:
Sewage Disposal:	Public Sewer	Septic Tank	Leach Field	Dry Well	Other:
10. RELOCATION	INFORMATION	for oil spill re	sidential emer	-gency)	
a. Provide reas	ons why relocation	is recommend	ed:		
b. Residents ch	oose to: remain in h	nome reloca	te to friends/fa	mily reloo	cate to hotel/motel
c. Responsibilit	y for costs associat	ed with reimbu	rsement expla	nined? Y / I	N
d. Relocation p	ackage provided a	nd explained to	residents?	Y / I	N

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

First Floor:

6

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

This form must be completed for each residence involved in indoor air testing.

Preparer's Name ALEX BRETT	Date/Time Prepared 3/29/23 LOOD			
Preparer's Affiliation <u>SNV CONSULTINT</u>	Phone No. 585-770-2552			
Purpose of Investigation INDIER ATE SAME	TNG			
1. OCCUPANT:				
Interviewed: Y /N				
Last Name: First Name:				
Address:				
County:				
Home Phone: Office Phone:				
Number of Occupants/persons at this location Age	of Occupants			
2. OWNER OR LANDLORD: (Check if same as occupant _)			
Interviewed: Y/🕅				
Last Name:First Name:				
Address:				
County:				
Home Phone: Office Phone:				
3. BUILDING CHARACTERISTICS				
Type of Building: (Circle appropriate response)				
Residential School Commercial/ Industrial Church Other:	Multi-use			
If the property is residential	, type?	(Circle	appropriate	response)
--------------------------------	---------	---------	-------------	-----------
--------------------------------	---------	---------	-------------	-----------

Ranch Raised Ranch Cape Cod Duplex Modular	2-Family Split Level Contemporary Apartment House Log Home	3-Fami Colonia Mobile Townho Other:_	ly Il Home ouses/Condos				
If multiple units, how many?	~ 65						
If the property is commercial,	If the property is commercial, type?						
Business Type(s)	Mut						
Does it include residences ((i.e., multi-use)?	Ŷ N	If yes, how many? <u>N(55</u>				
Other characteristics:							
Number of floors 5	E	Building age	891				
Is the building insulated? Y	/N H	low air tight?	Tight / Average/ Not Tight				
	× ~						

4. AIRFLOW

.

Use air current tubes or tracer smoke to evaluate airflow patterns and qualitatively describe:

Airflow between floors	holes for	bitmen http://w	Elvos	Star	nell	fi- who	k
Airflow near source	MA						
Outdoor air infiltration							
	NR						
Infiltration into air duct	s Ma						

5. BASEMENT AND CONSTRUCTION CHARACTERISTICS (Circle all that apply)

a. Above grade constructio	n: wood frame	concrete	stone	brick
b. Basement type:	full	crawlspace	slab	other prtiv
c. Basement floor:	concrete	dirt	stone	other
d. Basement floor:	uncovered	covered	covered with _	
e. Concrete floor:	unsealed	sealed	sealed with	
f. Foundation walls:	poured	block	stone	other
g. Foundation walls:	unsealed	sealed	sealed with	-kom
h. The basement is:	wet	damp	dry	moldy
i. The basement is:	finished	unfinished	partially finish	ned
j. Sump present?	ÝN (*	(crue		
k. Water in sump?	N / not applicable			

Basement/Lowest level depth below grade: _____(feet)

Identify potential soil vapor entry points and approximate size (e.g., cracks, utility ports, drains)

Cracks in utility condor will conducts sinchrow of basenent Unknown

6. HEATING, VENTING and AIR CONDITIONING (Circle all that apply)

Type of heating system(s) used in this building: (circle all that apply - note primary)

Hot air circulation Space Heaters Electric baseboard	Heat pump Stream radiation Wood stove		Hot water baseboard Radiant floor Outdoor wood boiler	Other		
The primary type of fuel u	sed is:					
Natural Gas Electric	Fuel Oi Propan	e e	Kerosene Solar			
Wood	Coal					
Domestic hot water tank fueled by:						
Boiler/furnace located in:	Basement	Outdoors	Main Floor	Other		
Air conditioning:	Central Air	Window units	Open Windows	None		

Are there air distribution ducts present? Y / N

Describe the supply and cold air return ductwork, and its condition where visible, including whether there is a cold air return and the tightness of duct joints. Indicate the locations on the floor plan diagram.

wh				
			• <u>i</u>	
7. OCCUPA	NCY			
Is basement/le	owest level occupied? Full-time Occa	sionally	Seldom Almost Never	
Level	General Use of Each Floor (e.g., familyroo	om, bedroo	om, laundry, workshop, stora	ge)
Basement	Strige 11 1	1. 1.	"In all and the allowers	my smarty
1" Floor	Dusinusses, office, work	Shop/S	with first Condition	rm'
2 nd Floor	Kouns			
3 rd Floor	,			
4 th Floor				
	THE MAX THE LENCE INDOOD AID		7	
8. FACTORS	HAI MAY INFLUENCE INDOOR AIR	UALITI	x7 (1 17)	
a. Is there a	n attached garage?		Y / N	
b. Does the	garage have a separate heating unit?		Y/N/NA	
c. Are petro	bleum-powered machines or vehicles		Y / N / Dease specify	
stored in	the garage (e.g., lawinnower, atv, car)		V/N_Wher?	
d. Has the b	ouilding ever had a fire?		Y/N when?	
e. Is a keros	sene or unvented gas space heater present?		Y (N) Where?	
f. Is there a	workshop or hobby/craft area?	ÝN	Where & Type?64 _ 400	cons-brance
g. Is there s	moking in the building?	Ý N	How frequently? uke	
h. Have clea	aning products been used recently?	N N	When & Type?	
i. Have cosr	netic products been used recently?	Y N	When & Type? Uk-	

: Her rejeting/staining been done in the last 6 months?	\sqrt{N} N	Where & When?
J. Has painting/staining been done in the last o months.		
k. Is there new carpet, drapes or other textiles?	(Y) N	Where & When?
l. Have air fresheners been used recently?	ŶN	When & Type?
m. Is there a kitchen exhaust fan?	Y / N	If yes, where vented? Uk
n. Is there a bathroom exhaust fan?	Y / N	If yes, where vented?
o. Is there a clothes dryer?	S IN	If yes, is it vented outside? Y / N
p. Has there been a pesticide application?	Y N	When & Type?
Are there odors in the building? If yes, please describe: K	<u>¥</u> /N	
Do any of the building occupants use solvents at work? (e.g., chemical manufacturing or laboratory, auto mechanic or a boiler mechanic, pesticide application, cosmetologist	Y / N auto body	ريا بري y shop, painting, fuel oil delivery,
If yes, what types of solvents are used?		
If yes, are their clothes washed at work?	Y / N	
Do any of the building occupants regularly use or work at a response)	a dry-clea	eaning service? (Circle appropriate
Yes, use dry-cleaning regularly (weekly) Yes, use dry-cleaning infrequently (monthly or less) Yes, work at a dry-cleaning service	(No Unknown
Is there a radon mitigation system for the building/structur Is the system active or passive? Active/Passive	•e? 🕢 N	N Date of Installation: 2018
9. WATER AND SEWAGE		
Water Supply: Public Water Drilled Well Drive	en Well	Dug Well Other:
Sewage Disposal: Public Sewer Septic Tank Leach	n Field	Dry Well Other:
10. RELOCATION INFORMATION (for oil spill residenti	ial emerg	gency)
a. Provide reasons why relocation is recommended:		
b. Residents choose to: remain in home relocate to fr	iends/farr	nily relocate to hotel/motel
c. Responsibility for costs associated with reimburseme	nt explai	ined? Y / N
d. Relocation package provided and explained to reside	ents?	Y / N

5

i.

11. FLOOR PLANS

Draw a plan view sketch of the basement and first floor of the building. Indicate air sampling locations, possible indoor air pollution sources and PID meter readings. If the building does not have a basement, please note.

Basement:

N

12. OUTDOOR PLOT

Draw a sketch of the area surrounding the building being sampled. If applicable, provide information on spill locations, potential air contamination sources (industries, gas stations, repair shops, landfills, etc.), outdoor air sampling location(s) and PID meter readings.

Also indicate compass direction, wind direction and speed during sampling, the locations of the well and septic system, if applicable, and a qualifying statement to help locate the site on a topographic map.

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used:

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition [*]	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
Basement	Boiler & Heating Syst. Clean	ergal	used	A		Y
Basmint	Cantex cement	1 pint	usid	Polyving Contoriale		10
Pasement	.Valspar Sealer	1000	usid	1		
Basument	precast modifiur	Igal	usid			
Barement	Pipe 10int compound	8floz	usid			
Workshop	Krylun galvahizing	2002	vsed	Keytones, Zinc		
Workshop	Kilz overnead Stain sealer	1002	Used		~	
Workshop	Armovseal 8100	194	used	POWOMINE, POLU (oxypropylar Glamine, pentamine	U)	
WUrkshon	Quikrete crack seal	194	used			
WOrkshop	MinWax polyurethane Char semi-aloss	11.502	insed	Ketones, alipnatic Hudrocarbons		
Workshop X3	Rustoleum gross protective enamed	1502	used	liquified petroleum gas, acetone, N-Butyl Acetale, Hydroca	rboni	
MORKENOP	spray on grout scaler	ISOZ	used			
workshop	tint	igal	used			
WORKSNOP	Wood putty + Wood Aller	IPINA	und			
workshop	Disinfectant wipes	SOU	used	Ethanol D.Onioride		
MUKKINOP	flat wall paint master hide	8floz	used			
WOYKShop	Pro cement	BAOZ	nad			
WOrkshop	Spectracide wasp 3 Hornet Killer		used			
Workshop	wood stan	lat	used	petrolum distillates		Y

* Describe the condition of the product containers as **Unopened (UO)**, **Used (U)**, or **Deteriorated (D)** ** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

* Worksnop located on ground flouv, used for storage of cleaning, painting, maintenance products & equipment.

8

13. PRODUCT INVENTORY FORM

Make & Model of field instrument used:

List specific products found in the residence that have the potential to affect indoor air quality.

Location	Product Description	Size (units)	Condition [*]	Chemical Ingredients	Field Instrument Reading (units)	Photo ** <u>Y / N</u>
Workshop	3x propane tanks		used			Y
office	glass clean or	2002	usid			1
office	Potton n paint	10pm1	used	Sodium Sillicate Glass, Sodium borate		
office	WD-40	2002	used			
office	Home defence inged	Igal	used	Bifenthrin Zeta-cypermethrin		
office	Hot shot antier killer	2002	usid	J		
WOYKShop	Chiorox bleach xz	1001	used	sodium Hypochlorite		
Workshop	Fartastik x7	Igal	und			
WONKSMOP	Kieun stre wood	Igal	used	actone methanol methyline chlonde		
MONKEMOP	PIPI Juint comportend	802	used	Dilute acids, Alkans		
WUNGhan	Bond wood filler	1202	Used	styrene monomer penzac acide		
warksho	Ppg flopr + exterior	Igal	used	VOCC509/L		
working	Kriz latex sealer	Igal	Used			
Shop	Sunnyside	Igal	used	Hydrochtone acid		
office	AKTIVE disin fect	1gal	usednew	Ethanol Dideay 1 Dimemarka Monum chlorida		
office	Old english Scrotten cover	lat	used	potról distillates		4
				-		

* Describe the condition of the product containers as Unopened (UO), Used (U), or Deteriorated (D)

** Photographs of the **front and back** of product containers can replace the handwritten list of chemical ingredients. However, the photographs must be of good quality and ingredient labels must be legible.

APPENDIX 5

Data Usability Summary Reports

DATA USABILITY SUMMARY REPORT

for

LaBella Associates, P.C.

300 State Street

Rochester, NY 14614

113-117 NORTH CLINTON Project 216120 SDG: C2203053 Sampled 03/15/2022

TO-15 AIR SAMPLES

IA-01-3.15.22	(C2203053-01)
DUP-3.15.22	(C2203053-02)
IA-02-3.15.22	(C2203053-03)
OA-3	(C2203053-04)

DATA ASSESSMENT

A TO-15 data package containing analytical results for four air samples was received from LaBella Associates, P.C. on 18May23. The ASP deliverables package included formal reports, raw data, the necessary QC, and supporting information. The samples, taken from the 113-117 North Clinton Site, were identified by Chain of Custody documents and traceable through the work of Centek/SunAir Technologies Laboratory, the laboratory contracted for analysis. The analyses were performed using US EPA Method TO-15 and addressed measurements of sixty-three volatile organic compounds. Laboratory data was evaluated according to the quality assurance / quality control requirements of the New York State Department of Environmental Conservation's Analytical Services Protocol (ASP), September 1989, Rev. 07/2005. When the required protocol was not followed, the current EPA Region II Functional Guidelines (SOP HW-31, Rev. #4, October 2006, Volatile Organic Analysis of Ambient Air in Canisters by Method TO-15) was used as a technical reference.

CORRECTNESS AND USABILITY

Reported data should be considered technically defensible and completely usable in its present form. Results presenting a usable estimation of the concitions at the time of sampling have been flagged "J" or "UJ". Estimated data should be used with caution. A detailed discussion of the review process follows.

Two facts should be considered by all data users. No compound concentration, even if it has passed all QC testing, can be guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error. Secondly. DATAVAL, Inc. guarantees the quality of this data assessment. However, DATAVAL, Inc. does not warrant any interpretation or utilization of this data by a third party.

Reviewer's signature:

James B. Baldwin Date: 29 May 23

DATAVAL, Inc.

SAMPLE HISTORY

Analyte concentrations can deteriorate with time due to chemical instability, bacterial degradation or volatility. Samples that are not properly preserved or are not analyzed within established holding times may no longer be considered representative. Holding times are calculated from the date of sample collection. TO-15 samples must be analyzed within 14 days of collection.

This sample delivery group contained four air samples that were collected from the 113-117 North Clinton site on 15Mar22. The samples were shipped to the laboratory, via UPS-Ground, on 16Mar22 and were received on 18Mar22. At the time of receipt, the sample canisters were found to be intact.

The samples were collected in 1-liter SUMMA canisters that were set in the laboratory to collect 24-hour samples. It is noted that IA-02-3.15.22 was collected in a 1.4-liter canister to facilitate the preparation of matrix spiked samples. The collection of each sample was terminated based on the canister vacuum readings. Based on these readings, the sampling times ranged between 21 hours and 24.5 hours. Based on this observation, the results from OA-3 have been qualified as estimations.

It is assumed that the variation in vacuum readings obtained at the end of sampling and at the time of analysis are indicative of the quality of the canister vacuum gauges, and that sample integrity may be assumed.

It is also noted that the post-sampling vacuum reading from DUP-3.15.22 failed to satisfy the program requirement of $-5\pm1''$ Hg. The results reported from this sample have been qualified as estimations.

SAMPLE	PRIOR TO	PRIOR TO	POST	LAB	LAB
	SHIPMENT	SAMPLING	SAMPLING	RECIEPT	ANALYSIS
	("Hg)	(``Hg)	(``Hg)	(``Hg)	(``Hg)
IA-01-	-30	-30	-5	-3	-3
3.15.22	j.				
DUP-	-30	-30	-2.5	-1	-2
3.15.22					
IA-02-	-30	-30	-5	-5	-5
3.15.22					
OA-3	-30	-30	-3.5	-1	-1

The analysis of this group of samples was completed between 21Mar22 and 22Mar22. The ASP holding time limitation was satisfied.

CANISTER CERTIFICATION

The canisters used for this project were vacuum tested at -30 psig for at least 24 hours. Each canister demonstrated a change ≤ 0.5 psig over this period.

The canisters for this project were cleaned in four batches. A blank analysis of a clean canister from each batch was free of targeted analyte contamination exceeding the laboratory's reporting limit.

BLANKS

Blanks are analyzed to evaluate various sources of sample contamination. Trip Blanks monitor sampling, trans-port and storage activities. Method blanks are analyzed to verify instrument integrity. Samples are considered compromised by conditions causing contamination in any blank.

One method blanks was analyzed with this group of samples. This blank produced acceptable chromatography and was free of target analyte contamination exceeding the laboratory's reporting limit.

MS TUNING

Mass spectrometer tuning and performance criteria are established to ensure sufficient mass resolution and sensitivity to accurately detect and identify targeted analytes. Verification is accomplished using a certified standard.

BFB ion abundance criteria was reported from standards run before the initial instrument calibration and prior to the analysis of program samples. Each of these checks satisfied the ASP acceptance criteria.

CALIBRATION

Requirements for instrument calibration are established to ensure that laboratory equipment is capable of producing accurate, quantitative data. Initial calibrations demonstrate a range through which measurements may be made. Continuing calibration check standards verify instrument stability.

The initial instrument calibration was performed on 03Mar22. Standards of 0.03, 0.04, 0.10, 0.15, 0.30, 0.50, 0.75, 1.0, 1.25, 1.5 and 2.0 ppb were included. Each targeted analyte produced the required levels of instrument response and demonstrated an acceptable degree of linearity during this calibration.

A continuing calibration check standard was analyzed on 21Mar22, prior to the 24-hour period of instrument operation that included samples from this program. When compared to the initial calibration, each targeted analyte demonstrated an acceptable level of instrument stability.

SURROGATES

Each sample, blank and standard is spiked with surrogate compounds prior to analysis. The structures of surrogates are similar to analytes of interest, but they are not normally found in environmental samples. Surrogate recoveries are monitored to evaluate overall laboratory performance and the efficiency of laboratory technique.

Although surrogate summary sheets were properly prepared, an incorrect acceptance criteria was applied. When compared to the

ASP requirements, an acceptable recovery was reported for the surrogate additions to this group of samples.

INTERNAL STANDARDS

Internal standards are added to each sample, blank and standard just prior to injection. Analyte concentrations are calculated relative to the response of a specific internal standard. Internal standard performance criteria ensure that GC/MS sensitivity and response are stable during the analysis of each sample. The area of internal standard peaks may not vary by more than 40%. When compared to the preceding calibration check, retention times may not vary by more than 10 seconds.

The laboratory recorded the response of each internal standard addition to this group of samples and the response obtained from the preceding CCV standard. Although the control limits based on the response of the CCV were not documented, they were calculated by this reviewer. When compared to these limits, an acceptable level of response was reported for each internal standard addition to this group of samples.

Although internal standard retention times were not addressed by the laboratory, the ASP retention time acceptance criteria was calculated by this reviewer. The retention times produced by each program sample satisfied these requirements.

MATRIX SPIKES / MATRIX SPIKE DUPLICATES / MATRIX SPIKED BLANKS Matrix spiking refers to the addition of known analyte concentrations to a sample, prior to analysis. Analyte recoveries provide an indication of laboratory accuracy. The analysis of a duplicate spiked aliquot provides a measurement of precision.

IA-02-3.15.22 was selected for matrix spiking. The entire list of targeted analytes was added to two aliquots of this sample. The recoveries reported for thee spikes included high results for 1,2,4-trichlorobenzene (146%,169%) and 1,3-butadiene (377%,348%) and low recoveries for toluene (56%,62%). The positive bias indicated by the high recoveries of 1,2,4-trichlorobenzene and 1,3-butadiene warrant no concern because these analytes were not detected in IA-02-3.15.22. The toluene concentration found in IA-02-3.15.22 has been qualified as an estimation.

A pair of spiked blanks (LCS/LCSD) was also analyzed with this group of samples. These LCS samples demonstrated acceptable levels of measurement precision and accuracy.

DUPLICATES

Two aliquots of the same sample are processed separately through all aspects of sample preparation and analysis. Results produced by the analysis of this pair of samples are compared as a measurement of precision. Poor precision may be indicative of sample non-homogeneity, method defects, or poor laboratory technique.

Field split duplicate samples of IA-01-3.13.22 were included in this delivery group. Each analyte that was detected in both of these samples produced concentrations that differed by 26% or

less. The program acceptance criteria was satisfied.

REPORTED ANALYTES

Formal reports were provided for each sample. The data package also included total ion chromatograms and raw instrument printouts. Reference mass spectra were provided to confirm the identification of each analyte that was detected in this group of samples.

It is noted that the presence of 1,3,5-trimethylbenzene in IA-02-3.15.22 could not be verified based on the mass spectra references included in the raw data. Based on this observation, 1,3,5trimethylbenzene (135TRIMETHBEN) should be interpreted as undetected in IA-02-3.15.22. A detection limit equaling the reported concentration should be assumed. SUMMARY OF QUALIFIED DATA

113-117 NORTH CLINTON

SAMPLED 03/15/22

•

SPECTRA ID 135TRIMETHBENZ		2.80	
SPIKE TOLUENE		6.3J	
SAMPLING	+ + + + + + + + + + + + + + + + + + + +	ALL U/UU	ALL J/UJ
	(C2203053-01)	(C2203053-02) (C2203053-03)	(C2203053-04)
	IA-01-3.15.22	DUP-3.15.22 IA-02-3.15.22	0A-3

Date: 07-Apr-22

	10 - 100000 KM						
CLIENT:	LaBella Associates, P.C			C	lient Sample ID:	IA-01-	-3.15.22
Lab Order:	C2203053				Tag Number:	192,12	231
Project:	113-117 North Clipton				Collection Date:	3/15/2	022
tab ID:	(22203053.001 A				Mateix	AID	
L/41/ 11/1	C44030534001A				Man IX.	AUX	
Analyses		Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE-1	,1DCE	тс)-15			Analyst: RJP
1,1,1-Trichioroe	thane	< 0.82	0.82		ug/m3	1	3/22/2022 1:35:00 AM
1,1,2,2-Tetrachi	oroethane	< 1.0	1.0		ug/m3	1	3/22/2022 1:35:00 AM
1,1,2-Trichloroe	thane	< 0.82	0.82		ug/m3	1	3/22/2022 1:35:00 AM
1,1-Dichloroetha	ane	< 0.61	0.61		ug/m3	1	3/22/2022 1:35:00 AM
1,1-Dichloroethe	ane	< 0.16	0.16		ug/m3	1	3/22/2022 1:35:00 AM
1,2,4-Trichlorob	enzene	< 1.1	1.1		ug/m3	1	3/22/2022 1:35:00 AM
1,2,4-Trimethylb	enzene -	2,1	0.74		ug/m3	1	3/22/2022 1:35:00 AM
1,2-Dibromoeth	ane	< 1.2	1.2		ug/m3	1	3/22/2022 1:35:00 AM
1,2-Dichloroben	zene	< 0.90	0.90		ug/m3	1	3/22/2022 1:35:00 AM
1,2-Dichloroetha	ane	< 0.61	0.61		ug/m3	1	3/22/2022 1:35:00 AM
1,2-Dichloroprop	bane	< 0.69	0.69		ug/m3	1	3/22/2022 1:35:00 AM
1,3,5-Trimethylb	penzene	< 0.74	0.74		ug/m3	1	3/22/2022 1:35:00 AM
1,3-buladiene		< 0.33	0.33		ug/m3	1	3/22/2022 1:35:00 AM
1,3-Dichloroben	zane	< 0.90	0.90		ug/m3	1	3/22/2022 1:35:00 AM
1,4-Dichloroben	zene	< 0.90	0.90		ug/m3	1	3/22/2022 1:35:00 AM
1,4-Dioxane		< 1.1	1.1		ug/m3	1	3/22/2022 1:35:00 AM
2,2,4-trimethylp	entane	< 0.70	0.70		ug/m3	1	3/22/2022 1:35:00 AM
4-ethyltoluene -	- 23	0.49	0.74	J	ug/m3	1	3/22/2022 1:35:00 AM
Acetone -		36	7.1		ug/m3	10	3/22/2022 5:12:00 AM
Allyl chloride		< 0.47	0.47		ug/m3	1	3/22/2022 1:35:00 AM
Benzene -		1.0	0.48		ug/m3	1	3/22/2022 1:35:00 AM
Benzyl chloride		< 0.86	0.86		ug/m3	1	3/22/2022 1:35:00 AM
Bromodichlorom	nethane	< 1.0	1.0		ug/m3	1	3/22/2022 1:35:00 AM
Bromoform		< 1.6	1.6		ug/m3	1	3/22/2022 1:35:00 AM
Bromomethane		< 0.58	0.58		ug/m3	1	3/22/2022 1:35:00 AM
Carbon disulfide		0.34	0.47	J	ug/m3	1	3/22/2022 1:35:00 AM
Carbon tetrachio	oride -	0.44	0.19		ug/m3	1	3/22/2022 1:35:00 AM
Chlorobenzene		< 0.69	0.69		ug/m3	1	3/22/2022 1:35:00 AM
Chloroethane		< 0.40	0.40		ug/m3	1	3/22/2022 1:35:00 AM
Chloroform 🛥		4.1	0,73		ug/m3	1	3/22/2022 1:35:00 AM
Chloromethane	-	1.5	0.31		ug/m3	1	3/22/2022 1:35:00 AM
cis-1,2-Dichloroe	ethene	< 0 16	0.16		ug/m3	1	3/22/2022 1:35:00 AM
cis-1,3-Dichlorop	propene	< 0.68	0.68		ug/m3	1	3/22/2022 1:35:00 AM
Cyclohexane -		0.62	0.52		ug/m3	1	3/22/2022 1:35:00 AM
Dibromochloron	ethane	< 1.3	1.3		ug/m3	1	3/22/2022 1:35:00 AM
Ethyl acetate 🛏		2.3	0.54		ug/m3	1	3/22/2022 1:35:00 AM
Ethylbenzene -		0.65	0.65		ug/m3	1	3/22/2022 1:35:00 AM
Freon 11-		1.5	0.84		ug/m3	1	3/22/2022 1:35:00 AM
Freon 113		< 1.1	1,1		ug/m3	1	3/22/2022 1:35:00 AM
Freon 114		≺ 1.0	1.0		ug/m3	1	3/22/2022 1:35:00 AM

Qualifiers:

B Analyte detected in the associated Method Hank

H Holding times for preparation or analysis exceeded /

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection D1. Detection Limit

SC Sub-Contracted

CLIENT: LaBella Associates, P.C. Lab Order: C2203053 Project: 113-117 North Clinton Lab ID: C2203053-001A Analyeas

Date: 07-Apr-22

.

Client Sample ID: 1A-01-3.15.22 Tag Number: 192,1231 Collection Date: 3/15/2022 Matrix: AIR

Analyses	Result	ÐL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	C-DCE-1,1DCE	TC)-15			Analyst: RJP
Freon 12 -	2.5	0.74	1	ug/m3	1	3/22/2022 1:35:00 AM
Heptane —	1.9	0.61		ug/m3	1	3/22/2022 1:35:00 AM
Hexachloro-1,3-butadiane	< 1.6	1.6		ug/m3	1	3/22/2022 1:35:00 AM
Hexane 🛶	2.2	0.53		ug/m3	1	3/22/2022 1:35:00 AM
Isopropyl alcohol -	32	3.7		ug/m3	10	3/22/2022 5:12:00 AM
m&p-Xylene —	2.3	1.3		ug/m3	1	3/22/2022 1:35:00 AM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	3/22/2022 1:35:00 AM
Methyl Ethyl Ketone -	5.1	0.88		ug/m3	1	3/22/2022 1:35:00 AM
Methyl Isobulyl Ketone	< 1.2	1.2		ug/m3	1	3/22/2022 1:35:00 AM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	3/22/2022 1:35:00 AM
Methylene chloride	2.4	0.52	1	ug/m3	1	3/22/2022 1:35:00 AM
o-Xylene 🛩	0.96	0.65		ug/m3	1	3/22/2022 1:35:00 AM
Propylene	< 0.26	0.26		ug/m3	1	3/22/2022 1:35:00 AM
Styrene ~	0.72	0.64		ug/m3	1	3/22/2022 1:35:00 AM
Tetrachloroethylene -	31 🕽	10		ug/m3	10	3/22/2022 5:12:00 AM
Tetrahydrofuran -	1.4	0.44	1	ug/m3	1	3/22/2022 1:35:00 AM
Toluene 🔶	6.7	0.57		ug/m3	1	3/22/2022 1:35:00 AM
trans-1.2-Dichloroethene	< 0.59	0.59		ug/m3	1	3/22/2022 1:35:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68	1	ug/m3	1	3/22/2022 1:35:00 AM
Trichloroethene 🥣	0.64	0.16		ug/m3	1	3/22/2022 1:35:00 AM
Vinyl acetate	< 0.53	0.53		ug/m3	1	3/22/2022 1:35:00 AM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	3/22/2022 1:35:00 AM
Vinyl chloride	< 0.10	0.10		ug/m3	1	3/22/2022 1:35:00 AM

Qualifiers:

SC

Sub-Contracted

B Analyte detected in the associated Method Blank

. .

- 1.1 Holding times for preparation or analysis exceeded
- JN. Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits S

Results reported are not blank corrected

1.17

E Estimated Value above quantitation range

92 .

- 3 Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection

DL Detection Limit

.

Date: 07-Apr-22

1 1 1 1	20 2 7 2 M 2 M 10 M			a içinə	່ວງລາດວຸ່ໜ		
CLIENT:	LaBella Associates, P.C.			C	lient Sample ID:	Dup-3	3.15.22
Lab Order:	C2203053				Tag Number	347 4	48
Project	113-117 North Clinton				Collection Date:	2/15/2	0000
Lab ID.					Concetion Date.	113/2	2022
LAD 10;	C2203053-002A				Matrix:	AIK	
Analyses		Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE-1,	IDCE	TC	0-15			Analyst: RJP
1,1,1-Trichloroe	thane	< 0.82	0.82		ug/m3	1	3/22/2022 2:19:00 AM
1,1,2,2-Tetrach	loroethane	< 1.0	1.0		ug/m3	1	3/22/2022 2:19:00 AM
1,1,2-Trichloroe	thane	< 0.82 /07	0.82		ug/m3	1	3/22/2022 2:19:00 AM
1,1-Dichloroeth:	ane	< 0.61	0.61		ug/m3	1	3/22/2022 2:19:00 AM
1,1-Dichloroethe	ene	< 0.16	0.16		ug/m3	1	3/22/2022 2:19:00 AM
1.2,4-Trichlorob	enzene	< 1.1	1.1		ug/m3	1	3/22/2022 2:19:00 AM
1.2.4-Trimethyft	oonzene	2.1]	0.74		ug/m3	1	3/22/2022 2:19:00 AM
1,2-Dibromoeth	але	< 1.2)	1.2		ug/m3	1	3/22/2022 2:19:00 AM
1.2-Dichloroben	zene	< 0.90 -03	0.90		ug/m3	1	3/22/2022 2:19:00 AM
1,2-Dichloroetha	ane	< 0.61	0.61		ug/m3	1	3/22/2022 2:19:00 AM
1.2-Dichloroprop	pane	< 0.69	0.69		ug/m3	1	3/22/2022 2:19:00 AM
1,3,5-Trimethylt	Dénzene —	2.1 J	0.74		ug/m3	1	3/22/2022 2:19:00 AM
1,3-butadiene		< 0.33	0.33		ug/m3	1	3/22/2022 2:19:00 AM
1,3-Dichloroben	zene	< 0.90 (11	0.90		ug/m3	1	3/22/2022 2:19:00 AM
1,4-Dichtoroben	zene	< 0.90	0.90		ug/m3	1	3/22/2022 2:19:00 AM
1.4~Dioxane		< 1.1	1.1		ug/m3	1	3/22/2022 2:19:00 AM
2,2,4-trimethylp	entane 🗝	0.51	0,70	J	ug/m3	1	3/22/2022 2:19:00 AM
4-ethyltoluene -	-	0.64 > J	0.74	J	ug/m3	1	3/22/2022 2:19:00 AM
Acelone		40	7.1		ug/m3	10	3/22/2022 5:55:00 AM
Allyl chloride		< 0.47 07	0.47		ug/m3	1	3/22/2022 2:19:00 AM
Benzene 💳		1.1 .	0.48		ug/m3	1	3/22/2022 2:19:00 AM
Benzyl chloride		< 0.86	0.86		ug/m3	1	3/22/2022 2:19:00 AM
Bromodichloron	nethane	< 1.0/17	1.0		ug/m3	1	3/22/2022 2:19:00 AM
Bromoform		< 1.6	1.6		ug/m3	1	3/22/2022 2:19:00 AM
Bromomethane		< 0.58	0.58		ug/m3	1	3/22/2022 2:19:00 AM
Carbon disulfide	-	0.44 J	0.47	J	ug/m3	1	3/22/2022 2:19:00 AM
Carbon tetrachic	bride -	0.44	0,19		ug/m3	1	3/22/2022 2:19:00 AM
Chlorobenzene		< 0.69 (1)	0.69		ug/m3	1	3/22/2022 2:19:00 AM
Chloroethane		< 0.40 UJ	0.40		ug/m3	1	3/22/2022 2:19:00 AM
Chloroform		4.6 J	0.73		ug/m3	1	3/22/2022 2:19:00 AM
Chloromethane		< 0.31)	0.31		ug/m3	1	3/22/2022 2:19:00 AM
cis-1,2-Dichloroe	ethene	< 0.16 /07	0,16		ug/m3	1	3/22/2022 2:19:00 AM
cis-1,3-Dichlorop	propene	< 0.68	0.68		ug/m3	1	3/22/2022 2:19:00 AM
Cyclohexane 🕳		0.72 J	0.52		ug/m3	1	3/22/2022 2:19:00 AM
Dibromochlorom	thane	< 1.3 UJ	1.3		ug/m3	1	3/22/2022 2:19:00 AM
Ethyl acetate 🗕		2.7 J	0.54		ug/m3	1	3/22/2022 2:19:00 AM
Ethylbenzene 🥌		0.74 7	0.65		ug/m3	1	3/22/2022 2:19:00 AM
Freon 11		1.6 J	0.84		ug/m3	1	3/22/2022 2:19:00 AM
Freon 113		<1.1V/1	1.1		ug/m3	1	3/22/2022 2:19:00 AM
Freon 114		< 1.0	1.0		ug/m3	1	3/22/2022 2:19:00 AM

SC Sub-Contracted

Qualifiers:

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated,

S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

D1. Detection Limit

.

Date: 07-Apr-22

ge an a			and the second
CLIENT:	LaBella Associates, P.C.	Client Sample ID:	Dup-3.15.22
Lab Order:	C2203053	Tag Number:	347,448
Project:	113-117 North Clinton	Collection Date:	3/15/2022
Lab ID:	C2203053-002A	Matrix:	AIR
	3		

Analyses	Result	DL,	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1.1DCE	тс)-15			Analyst: R.IP
Freon 12 -	2.7 1	0.74		ug/m3	1	3/22/2022 2:19:00 AM
Heptane 🗝	2.2]	0,61		ug/m3	1	3/22/2022 2:19:00 AM
Hexachloro-1,3-butadiene	< 1.6 (1)	1.6		ug/m3	1	3/22/2022 2:19:00 AM
Hexane —	2.8	0.53		ug/m3	1	3/22/2022 2:19:00 AM
Isopropyl alcohol -	36	3.7		ug/m3	10	3/22/2022 5:55:00 AM
m&p-Xylene 🗝	2.6	1.3		ug/m3	1	3/22/2022 2:19:00 AM
Methyl Butyl Ketone 🛩	0.41	1.2	J	ug/m3	1	3/22/2022 2:19:00 AM
Methyl Ethyl Ketone 🗝	5.5	0.88		ug/m3	1	3/22/2022 2:19:00 AM
Methyl Isobutyl Ketone	< 1.2\17	1.2		ug/m3	1	3/22/2022 2:19:00 AM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	3/22/2022 2:19:00 AM
Methylene chloride -	2.4]	0.52		ug/m3	1	3/22/2022 2:19:00 AM
o-Xylene 🛥	1.0 🔳	0.65		ug/m3	1	3/22/2022 2:19:00 AM
Propylene	< 0.26 0 1	0.26		ug/m3	1	3/22/2022 2:19:00 AM
Styrene -	0.72	0.64		ug/m3	1	3/22/2022 2:19:00 AM
Tetrachloroethylene-	32 7	10		ug/m3	10	3/22/2022 5:55:00 AM
Tetrahydrofuran	1.6	0.44		vg/m3	1	3/22/2022 2:19:00 AM
Toluene 🛶	7.5	5.7		ug/m3	10	3/22/2022 5:55:00 AM
trans-1,2-Dichloroethene	< 0.59 02	0.59		ug/m3	1	3/22/2022 2:19:00 AM
trans-1,3-Dichloropropene	< 0.68 UD	0.68		ug/m3	t	3/22/2022 2:19:00 AM
Trichloroethene 🤝	0.48	0.16		ug/m3	1	3/22/2022 2:19:00 AM
Vinyl acetate	< 0.53	0.53		ug/m3	1	3/22/2022 2:19:00 AM
Vinyl Bromide	< 0.66 200	0.66		ug/m3	1	3/22/2022 2:19:00 AM
Vinyl chloride	< 0.10	0,10		ug/m3	1	3/22/2022 2:19:00 AM

109

Qualifiers:

Sub-Contracted

SC.

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Estimated Value above quanitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection
- DL Detection Limit

.

Date: 07-Apr-22

* * * * * * * * *	·	an jen te	3 N N I	с н	1 12 A 12		6 a and 10
CLIENT:	LaBella Associates, P.C	2		(lient Sample 1D:	IA-02-	-3.15.22
Lab Order:	C2203053				Tag Number:	1204.1	1304
Project:	113-117 North Clinton				Collection Date:	3/15/2	072
Lab ID.	C2202053 002 4				Matuie:	A (D	
1.3415 TD5	C.2203033-003A				wiatrix;	AIK	
Analyses		Result	ÐL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2L	JG/M3 CT-TCE-VC-DCE-1	1DCE	тс	0-15			Analyst: RJP
1,1,1-Trichloroet	hane	< 0.82	0.82		ug/m3	1	3/21/2022 11:05:00 PM
1.1,2,2-Tetrachic	broethane	< 1.0	1.0		ug/m3	1	3/21/2022 11:05:00 PM
1,1,2-Trichloroet	hane	< 0.82	0.82		ug/m3	1	3/21/2022 11:05:00 PM
1,1-Dichloroetha	ne	< 0.61	0.61		ug/m3	1	3/21/2022 11:05:00 PM
1,1-Dichloroethe	ne	< 0.16	0.16		ug/m3	1	3/21/2022 11:05:00 PM
1,2,4-Trichlorobe	enzene	< 1.1	1.1		ug/m3	1	3/21/2022 11:05:00 PM
1,2,4-Trimethylbe	enzene 🐳	2.3	0.74		ug/m3	1	3/21/2022 11:05:00 PM
1,2-Dibromoetha	ne	< 1.2	1.2		ug/m3	1	3/21/2022 11:05:00 PM
1,2-Dichlorobenz	ene	< 0.90	0.90		ug/m3	1	3/21/2022 11:05:00 PM
1,2-Dichloroetha	ne	< 0.61	0.61		ug/m3	1	3/21/2022 11:05:00 PM
1,2-Dichlaroprop	áne	< 0.69	0.69		ug/m3	1	3/21/2022 11:05:00 PM
1,3,5-Trimethylbe	enzene	2.8 🕖	0.74		ug/m3	1	3/21/2022 11:05:00 PM
1,3-butadiene		< 0.33	0.33		ug/m3	1	3/21/2022 11:05:00 PM
1,3-Dichlorobenz	ene	< 0.90	0.90		ug/m3	1	3/21/2022 11:05:00 PM
1,4-Dichlorobenz	ene	< 0.90	0.90		ua/m3	1	3/21/2022 11:05:00 PM
1,4-Dioxane		< 1.1	1.1		ug/m3	1	3/21/2022 11:05:00 PM
2,2,4-trimethylpe	ntane	< 0.70	0.70		ua/m3	1	3/21/2022 11:05:00 PM
4-ethyltoluene -		0.64	0.74	L	ua/m3	1	3/21/2022 11:05:00 PM
Acetone ~		33	7.1		ug/m3	10	3/22/2022 4:30:00 AM
Allyl chloride		< 0.47	0.47		ua/m3	1	3/21/2022 11:05:00 PM
Benzene 🖛		0.99	0.48		ug/m3	1	3/21/2022 11:05:00 PM
Benzyl chloride		< 0.86	0.86		ua/m3	1	3/21/2022 11:05:00 PM
Bromodichiorome	ethane	< 1.0	1.0		ug/m3	1	3/21/2022 11:05:00 PM
Bromoform		< 1,6	1.6		ua/m3	1	3/21/2022 11:05:00 PM
Bromomethane		< 0.58	0.58		ug/m3	ì	3/21/2022 11:05:00 PM
Carbon disulfide	-	0.34	0.47	Ъ	ug/m3	4	3/21/2022 11:05:00 PM
Carbon tetrachior	ride	0.44	0.19	_	ug/m3	1	3/21/2022 11:05:00 PM
Chlorobenzene		< 0.69	0.69		uo/m3		3/21/2022 11:05:00 PM
Chloroethane		< 0.40	0.40		ug/m3	1	3/21/2022 11:05:00 PM
Chloroform -		4.6	0.73		ug/m3	i	3/21/2022 11:05:00 PM
Chioromethane-	- (3) (1.4	0.31		uo/m3	1	3/21/2022 11:05:00 01
cis-1,2-Dichloroet	thene	< 0.16	0.16		ug/m3	1	3/21/2022 11:05:00 PM
cis-1,3-Dichlorop	ropene	< 0.68	0.68		uo/m3	1	3/21/2022 11:05:00 PM
Cyclohexane 📥		1.0	0.52		ug/m3	1	3/21/2022 11:05:00 PM
Dibromochloromo	ethane	< 1.3	1.3		ug/m3	1	3/21/2022 11:05:00 PM
Ethyl acetate 🚄	9. Sanahar 2007 (1999)	2.2	0.54		ua/m3	1	3/21/2022 11:05:00 PM
Ethylbenzene -		0.65	0.65		ua/m3	1	3/21/2022 11:06:00 PM
Freon 11 ~		1.7	0.84		ua/m3	1	3/21/2022 11:05:00 PM
Freon 113		< 1.1	1 1		ug/m3	1	3/21/2022 11:05:00 PM
Freon 114		< 1.0	1.0		ua/m3	1	3/21/2022 11:05:00 PM
							WITH THE WARK TILL WILL TO THE

- 13 Analyte detected in the associated Method Blank
- Holding times for preparation or analysis exceeded 11
- Non-routine analyte. Quantitation estimated. IN
- Spike Recovery outside accepted recovery limits S

Results reported are not blank corrected .

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection 171., Detection Limit

Qualifiers: SC

Sub-Contracted

Date: 07-Apr-22

CLIENT:LaBella Associates, P.C.Lab Order:C2203053Project:113-117 North ClintonLab ID:C2203053-003A

Client Sample 1D: 1A-02-3.15.22 Tag Number: 1204,1304 Collection Date: 3/15/2022 Matrix: AIR

Analyses	Result	ÐL	Qual U	nits	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	DCE-1,1DCE	тс	0-15			Analyst: RJP
Freon 12 😁	2.6	0.74	uç	y/m3	1	3/21/2022 11:05:00 PM
Heptane 🥌	2.2	0.61	ug	g/m3	1	3/21/2022 11:05:00 PM
Hexachloro-1,3-butadiene	< 1.6	1.6	Ug	g/m3	1	3/21/2022 11:05:00 PM
Mexane —	1.9	0.53	μç	Em/g	1	3/21/2022 11:05:00 PM
isopropyl alcohol 🗂	33	3.7	ug	g/m3	10	3/22/2022 4:30:00 AM
m&p-Xylene 🛀	2.3	1,3	UÇ	j/m3	1	3/21/2022 11:05:00 PM
Methyl Butyl Ketone	< 1.2	1.2	ug	3/m3	1	3/21/2022 11:05:00 PM
Methyl Ethyl Ketone	5.3	0.88	ug	g/m3	1	3/21/2022 11:05:00 PM
Methyl Isobutyl Ketone	< 1.2	1.2	uc	- a/m3	1	3/21/2022 11:05:00 PM
Methyl tert-butyl ether	< 0.54	0.54	uc	ı/m3	Ť	3/21/2022 11:05:00 PM
Methylene chloride -	2.8	0.52	uç	/m3	1	3/21/2022 11:05:00 PM
o-Xylene 🛹	0.96	0.65	υ¢	3/m3	1	3/21/2022 11:05:00 PM
Propylene	< 0.26	0.26	ug	g/m3	1	3/21/2022 11:05:00 PM
Styrene -	0.64	0.64	UC	;/m3	1	3/21/2022 11:05:00 PM
Tetrachloroethylene 🛩	27	10	uc	p/m3	10	3/22/2022 4:30:00 AM
Tetrahydrofuran 🗝	1.5	0.44	UC	1/m3	1	3/21/2022 11:05:00 PM
Toluene -	6.3 J	0.57	- 	a/m3	1	3/21/2022 11:05:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59	uc	1/กา3	1	3/21/2022 11:05:00 PM
Irans-1,3-Dichloropropene	< 0.68	0.68	μç	a/m3	1	3/21/2022 11:05:00 PM
Trichloroethene -	0.59	0.16	uc	a/m3	1	3/21/2022 11:05:00 PM
Vinyl acetate	< 0.53	0.53	uç	1/m3	1	3/21/2022 11:05:00 PM
Vinyl Bromide	∝ 0.66	0.66	ug	j/m3	1	3/21/2022 11:05:00 PM
Vinyl chloride	< 0.10	0.10	ug	/m3	1	3/21/2022 11:05:00 PM

MA

Qualifiers:

SC Sub-Contracted

- B Analyte detected in the associated Method Blank
- 11 Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- . Results reported are not blank corrected
- E Estimated Value above quantitation range
- 3 Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection
- DL Detection Limit

CLIENT:LaBella Associates, P.C.Lab Order:C2203053Project:113-117 North ClintonLab ID:C2203053-004A

Date: 07-Apr-22

Client Sample ID: OA-3 Tag Number: 1189,391 Collection Date: 3/15/2022 Matrix: AIR

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	тс	0-15			Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82		ug/m3	1	3/22/2022 3:03:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0		ug/m3	1	3/22/2022 3:03:00 AM
1,1,2-Trichloroethane	< 0.82	0.82		ug/m3	1	3/22/2022 3:03:00 AM
1.1-Dichloroethane	< 0.61	0.61		ug/m3	1	3/22/2022 3:03:00 AM
1,1-Dichloroethene	< 0.16	0.16		ug/m3	1	3/22/2022 3:03:00 AM
1,2,4-Trichlorobenzene	< 1.1	1,1		ug/m3	1	3/22/2022 3:03:00 AM
1,2,4-Trimethylbenzene	< 0.74	0.74		ug/m3	1	3/22/2022 3:03:00 AM
1,2-Dibromoethane	< 1.2	1.2		ug/m3	1	3/22/2022 3:03:00 AM
1,2-Dichlorobenzene	< 0.90	0,90		ug/m3	1	3/22/2022 3:03:00 AM
1,2-Dichloroethane	< 0.61	0.61		ug/m3	1	3/22/2022 3:03:00 AM
1,2-Dichloropropane	< 0.69	0.69		ug/m3	1	3/22/2022 3:03:00 AM
1,3,5-Trimethy/benzene	< 0.74	0.74		ug/m3	1	3/22/2022 3:03:00 AM
1,3-butadiene	< 0.33	0.33		ug/m3	1	3/22/2022 3:03:00 AM
1,3-Dichlorobenzene	< 0.90	0,90		ug/m3	1	3/22/2022 3:03:00 AM
1,4-Dichlorobenzene	< 0.90	0.90		ug/m3	1	3/22/2022 3:03:00 AM
1,4-Dioxane	< 1.1	1.1		ug/m3	1	3/22/2022 3:03:00 AM
2,2,4-trimethylpentane	< 0.70	0.70		ug/m3	1	3/22/2022 3:03:00 AM
4-ethyltoluene	< 0.74	0.74		ug/m3	1	3/22/2022 3:03:00 AM
Acetone -	170	7.1		ug/m3	10	3/22/2022 6:41:00 AM
Allyl chloride	< 0.47 03	0.47		ua/m3	1	3/22/2022 3:03:00 AM
Benzene -	0.57 J	0.48		ug/m3	1	3/22/2022 3:03:00 AM
Benzyl chloride	< 0.86	0.86		ug/m3	1	3/22/2022 3:03:00 AM
Bromodichloromethane	< 1.0	1.0		ug/m3	1	3/22/2022 3:03:00 AM
Bromoform	< 1.6 0.1	1.6		ug/m3	1	3/22/2022 3:03:00 AM
Bromomethane	< 0.58	0.58		ug/m3	1	3/22/2022 3:03:00 AM
Carbon disulfide	< 0.47	0.47		ug/m3	1	3/22/2022 3:03:00 AM
Carbon tetrachtoride -	0.50]	0.19		ug/m3	1	3/22/2022 3:03:00 AM
Chlorobenzene	< 0.69	0.69		ug/m3	1	3/22/2022 3:03:00 AM
Chloroethane	< 0.40 500	0.40		ug/m3	1	3/22/2022 3:03:00 AM
Chloroform	< 0.73	0.73		ug/m3	1	3/22/2022 3:03:00 AM
Chloromethane	1.0 1	0.31		ug/m3	1	3/22/2022 3:03:00 AM
cis-1,2-Dichloroethene	< 0.16	0,16		ug/m3	1	3/22/2022 3:03:00 AM
cis-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	3/22/2022 3:03:00 AM
Cyclohexane	< 0.52	0.52		ug/m3	1	3/22/2022 3:03:00 AM
Dibromochloromethane	< 1.3	1.3		ug/m3	1	3/22/2022 3:03:00 AM
Ethyl acetate	< 0.54	0.54		ug/m3	1	3/22/2022 3:03:00 AM
Ethylbenzene	< 0.65	0.65		ug/m3	1	3/22/2022 3:03:00 AM
Freon 11 🗝	1.4 7	0.84		ug/m3	1	3/22/2022 3:03:00 AM
Freon 113	< 1.1707	1.1		ug/m3	1	3/22/2022 3:03:00 AM
Freon 114	< 1.0	1.0		ug/m3	1	3/22/2022 3:03:00 AM
				5253		

Qualifiers:

SC

Sub-Contracted

B Analyte detected in the associated Method Blank

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated,

S Spike Recovery outside accepted recovery limits

. Results reported are not blank corrected

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

DI. Detection Limit

Date: 07-Apr-22

CLIENT.	Labella Associate D.O.		· · ·				A
CLIERINI;	Laisena Associates, P.C.			Ç.	lient Sample ID;	OA-3	
Lab Order:	C2203053				Tag Number:	1189,39) [
Project:	113-117 North Clinton				Collection Date:	3/15/20	22
Lab ID:	C2203053-004A				Matrix:	AIR	
Analyses		Result	ÐŁ	Qual	Units	DF	Date Analyzed

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-VC	D-DCE-1,1DCE	TC)-15			Analyst: RJP
Freon 12-	2.7 1	0.74		ug/m3	1	3/22/2022 3:03:00 AM
Heptane	< 0.61	0.61		ug/m3	1	3/22/2022 3:03:00 AM
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	3/22/2022 3:03:00 AM
Hexane 🦟	0.46 J	0.53	L	ug/m3	1	3/22/2022 3:03:00 AM
Isopropyl alcohol	4.5 J	0.37		ug/m3	1	3/22/2022 3:03:00 AM
m&p-Xylene	< 1.3 11	1.3		ug/m3	1	3/22/2022 3:03:00 AM
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	7	3/22/2022 3:03:00 AM
Methyl Ethyl Ketone -	0.83 J	0.88	J	ug/m3	1	3/22/2022 3:03:00 AM
Methyl Isobutyl Ketone	< 1.2 (17)	1.2		ug/m3	1	3/22/2022 3:03:00 AM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	3/22/2022 3:03:00 AM
Methylene chloride	0.63 J	0.52		ug/m3	1	3/22/2022 3:03:00 AM
o-Xylene	< 0.65	0.65		ug/m3	1	3/22/2022 3:03:00 AM
Propylene	< 0.26	0.26		ug/m3	1	3/22/2022 3:03:00 AM
Styrene	< 0.64	0.64		uo/m3	1	3/22/2022 3:03:00 AM
Tetrachloroethylene	< 1.0	1.0		ug/m3	1	3/22/2022 3:03:00 AM
Tetrahydrofuran	< 0.44	0.44		ug/m3	1	3/22/2022 3:03:00 AM
Toluene -	1.0 J	0.57		ug/m3	1	3/22/2022 3:03:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	3/22/2022 3:03:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	3/22/2022 3:03:00 AM
Trichloroethene	< 0.16 07	0.16		ug/m3	1	3/22/2022 3:03:00 AM
Vinyl acetate	< 0.53	0.53		ug/m3	1	3/22/2022 3:03:00 AM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	3/22/2022 3:03:00 AM
Vinyl chloride	< 0.10	0.10		ug/m3	1	3/22/2022 3:03:00 AM

1115

Qualifiers:

SC Sub-Contracted

- 13 Analyte detected in the associated Method Blank
- 11 Holding times for preparation or analysis exceeded
- IN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits

Results reported are not blank corrected

- . E Estimated Value above quantitation range
- J. Analyte detected below quantitation limit Not Detected at the Limit of Detection ND.
- Detection Limit 1)1.

Date: 07-Apr-22

Centek/SanAir Technologies Laboratory

QC SUMMARY REPORT SURROGATE RECOVERIES

CLIENT: Work Order: Project: Test No:	LaBella / C220305 113-117 TO-15	Associates, 3 North Clint	P.C. on Matrix:	A																	
Sample ID		BR4FBZ	· · · · · · · · · · · · · · · · · · ·			*********						******					almanut, a				
ALCSIUG-032122	2	108	7 * ***	"	 		100				ij		· .:.		: . ·		.::	n Sect			. # `
ALCSIUGD-0321	22	115					2	ų.					1	.]		8		-		2.52	
AMB1UG-032122		75.0					0		• •		4	3	18			3		1		÷ .	
C2203053-001A -	~	92.0	-			52.6			8.6.9					.]						n (. 1
C2203053-002A		99.0			• •			{-	a 30	2011	4.	$\alpha = \omega$		- 4				. ·			
C2203053-003A .		91.0					22	Ì		3	1	a o		·	a		· · · · · · ·	-	61 - 64	12 I.S.	
C2203053-003A M	is	106						i						Ì			663	-			-
C2203053-003A M	ISD	108		3			\overline{x}						a a	-		2512		1			
C2203053-004A 🖌		86.0	:	3	1		8 9		• • •	• •		1	• • •		,				0000		-
											1.10	16.3	8 H		88 S		2 3 3 3	** *			8 K

Acronym	Surrogate	QC Limits
BR4F8Z	= Bromofluorobenzene	47-124
* Surro	gate recovery outside acceptance	e limits

l

CENT	EK LAB	ORATORIES,	LL	U						Date: 074pr-22	
			2					ANALYT	ICAL QC SUM	AMARY REPOR	T
CLIENT:	LaBella As	sociates, P.C.									
Work Order:	C2203053	c.									
Project:	113-117 N	orth Clinton							TestCode: 0	20_NYS	
Sample ID: AMB	106-032122	SampType: MBLK		TestCod	e: 0.20	NYS .	Units: ppbV	Prep Date:		RunNo: 18754	
Client ID: ZZZ	2	Batch ID' R18754		TestN	b: TO-	15		Analysis Date:	3/21/2022	SeqNo: 213907	
Anaiyte		Result	1	PQL	SPK	value SPI	K Ref Val %RE	C LowLimit Hi	ght.imit RPD Ref Vai	%RPD RPDLimit (Qual
1,1,1-Trichloroeth	ane	< 0.15	>	0.15							
1.1,2.2-Tetrachion	oethane	< 0.15		0.15							
1.1,2-Trichloroeth	ane	< 0.15		0.15							
1,1-Dichloroethan	đ	< 0.15		0.15							
1,1-Dichloroethen	đu	< 0.040		0.040							
1,2,4-Trichloroben	zene	< 0.15		0.15							
1,2,4-Trimethytber	ızene	< 0,15		0.15							
1,2-Dibromoethan	φ	< 0.15		0.15							
1,2-Dichlorobenze	Re	< 0.15		0.15							
1,2-Dichloroethane	0 1	< 0.15		0.15							
1,2-Dichloropropar	ā	< 0.15		0,15							
1,3,5-Trimethylber	Izene	< 0.15		0.15							
1,3-butadiene		< 0.15		0.15							
1,3-Dichlorobenzei	1se	< 0.15		0.15							
1.4-Dichloroberize	he	< 0.15		0.15							
1,4-Dioxane		< 0.30		0.30							
2,2,4-trimethylpent	ane	< 0.15		0.15							
4-ethyltoluene		< 0.15		0.15							
Acetone		< 0.30		0:30							
Allyl chloride		< 0.15		0,15							
Benzene		< 0.15		0.15							
Benzyl chloride		< 0.15		0.15							
Bromodichlorometi	hane	< 0.15		0.15							
Bromoform		< 0.15		0.15							
Bromomethane		< 0.15		0.15							
Qualifiers:	Results reporte	ed are not blank corrected	****		Ш	Estimated Vi	abre above quantitation r	ange	H Holding times far or	reparation of analysis everyied	
r	Analyte detecti	ed below quantitation limit	-		QN	Not Ubtected	t at the Limit of Detection	Ē	R RPD outside accept.	ed recovery limits	
S	Spike Recover	y outside accepted recovery	y limits		DL	Delection Li	Jitu			Poo	0 1 02 2
										1.5 ¹	51012

1

CLIENT: LaBell	la Associates, P.C.						
Work Order: C2203	053						
Project: [13-]]	7 North Clinton				TestCode: 0.	20_NYS	
Sample ID: AMB1UG-03211	22 SampType: MBLK	TestCode: 1	0.20 NYS Units: ppbV	Prep Date:		RinNo: 1875.	1
Client ID: ZZZZ	Batch ID: R18754	TestNo: 7	TO-15	Analysis Date: 3/	21/2022	SeqNo: 213907	
Analyte	Result	PQL SI	PK vatue SPK Ref Val	%REC LowLimit HighL	imit RPD Ref Val	%RPD RPDLimit Oust	
Carbon disultide	< 0.15	0.15					
Carbon tetrachtoride	< 0.030	0.030					
Chlorobenzene	< 0.15	0.15					
Chloroethane	< 0.15	0.15					
Chloroform	< 0.15	0.15					
Chloromethane	< 0.15	0.15					
cis-1.2-Dichloroethene	< 0.040	0.040					
cis-1.3-Dichloropropene	< 0.15	0.15					
Cyclohexane	< 0.15	0.15					
Dibromochloromethane	< 0.15	0.15					
Ethyl acetate	< 0.15	0.15					
Ethylbenzene	< 0.15	0.15					
Frean 11	< 0.15	0.15					
Frean 113	< 0.15	0.15					
Freon 134	< 0.15	0.15					
Freon 12	< 0.15	0.15					
Heptane	< 0.15	0.15					
Hexachtoro-1,3-butadiene	< 0.15	0.15					
Hexane	< 0.15	0.15					
Isopropyì aicohol	< 0.15	0.15					
m&p-Xylene	< 0.30	0.30					
Methyl Butyl Ketone	< 0.30	00.30					
Methyl Ethyl Ketone	< 0.30	06.0					
Methyl Isobutyl Ketone	< 0.30	0.30					
Methyl tert-butyl ether	< 0.15	0.15					
Methylene chloride	< 0.15	0.15					
o-Xylene	< 0.15	0.15					
Propylene	< 0.15	0.15					
Styrene	< 0.15	0.15					
Tetrachtoroethylene	< 0.15	0.15					
Tetrahydrofuran	< 0.15	0.15					
Qualifiers: Results n	sported are not blank corrected	3	Estimated Value above quentit	alion range	Halding times for ne	emaration or analysis exceeded	
J Analyte น้	ietected below quantitation fimil	GN	Not Detected at the Limit of D.	section R	RPD outside accepte	d recovery kindles	
S Spike Rex	covery outside accepted recovery limit	s DL	Detection Limit				3
And a second second and a second s						Dana Ja	5.30

•••

......

.....

Page 2 of 3

					• • • • • •										
CLIENT:	LaBella As	sociates, P.C.													1
Work Order:	C2203053														
Project:	113-117 Ne	orth Clinton								2	festCode: 0	SVN_02.			
Sample ID: AMB	1UG-032122	SampType: MI	BLK	Te	stCode:	0.20_NYS	Units: ppbV		Prep Da	äte:		RunNo: 18	754		11
Client ID: ZZZ	z	Batch ID: R1	18754	ni#225""	TestNo:	10-15			Analysis Da	ste: 3/21/2	122	SeqNo: 21.	3907		
Analyte		R	esult	ă.	ог Ю	SPK value	SPK Ref Val	%REC	LowLimi	HighLimi	RPD Ref Val	%RPD	RPDLimit	Qual	
Toluene		V	0.15 V	Ó	15										٦
trans-1,2-Dichloro	ethene	v	0.15	¢	15										
trans-1.3-Dichloro,	euedoud	v	0.15	0	15										
Trichloroethene		< 0 >	030	0.0	30										
Vinyi acetate		×	0.15	0.	15										
Vinył Bromide		v	0.15	0	15										
Viny! chloride		< 0.	.040	0.0	40										
					Å										
Qualificrs:	Results reported	d are not blank corr	ected	·····		Estimate	id Value above quastit	ation range		ł H	olding times for p	reparation or an	alysis exceeded		2

Page 3 of 3

RPD outside accepted recovery limits

H X

Estimated Value above quantitation range E Estimated Value above quantitation ran ND Not Detected at the Limit of Detection DL Detection Lumit

Desection Ltmit

Analyte detected below quantilation limit Spike Recovery outside accepted recovery limits

· -- -- ---

Date: 07-Apr-22

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

CLIENT:	LaBella Associates, P.C.
Work Order:	C2203053

113-117 North Clinton

Project:

TestCode: 0.20_NYS

Samp ID: At CEALO 200400											
Sample ID. ALCOTOC-US2122	samprige: LCS	TestCode	5: 0.20 NYS	Units: ppbV		Prep Date		Ru	nNo: 1875	£	
Client ID: ZZZZZ	Batch ID: R18754	TestNo	c TO-15		•	unalysis Date	3/21/2022	Se	gNio: 2135	308	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	sowLimit H	lighi.imit RPD	Ref Val	Qqa%	RPDLimit	Otal
1,1,1-Trichlorcethane	0.9400	0.15	-	0	94.0	613	177				
1,1,2,2-Tetrachloroethane	0.8700	0.15	¥.	Ö	87.0	787	1				
1, 1, 2-Trichloroethane	0.8000	0.15	quu.	D	80.0	88.5	135				č
1,1-Dichtorcethane	0.8400	0.15	4112	0	84.0	86.1	173				n u
1, 1-Dichiorcethene	0.7900	0.040	÷	0	79.0	5 8	24				'n
1,2,4-Trichlorobenzene	0.7400	0.15	~	o	74.0	76.7	112				U
1,2.4-Trimethylbenzene	0.8700	0.15	-	0	87.0	74.3	123				0
1.2-Dibromoethane	0.8100	0.15	-	0	81.0	80.4	125				
1.2-Dichiorobenzere	0.8400	0.15	÷	0	84.0	79.5	143				
1,2-Dichiorcethane	0.9600	0.15	÷	0	96.0	70.9	133				
1.2-Dichloropropane	0.7900	0.15	٣	0	79.0	91	134				U
1,3,5-Trimethylbenzene	0.8900	0.15	-	0	69.0	27.4	138				2
1.3-butadiene	1.010	0.15	۲	0	101	71	144				
1,3-Dichlorobenzene	0.8800	0.15	F	0	88.0	84.7	128				
1,4-Dichlorobenzene	0.900.0	0.15	F	٥	90.06	6.77	131				
1.4-Dioxane	0.8000	0.30	-	0	80.0	60,9	133				
2,2,4-trimethylpentane	0.7800	0.15	Ţ	Q	78.0	86.9	126				U
4-ethyttotuene	0.8800	0.15	-	0	88.0	77.5	133				2
Acetone	1.080	0.30	-	Q	108	46.7	165				
Alfyi chloride	0.7700	0.15	-	0	77.0	36.6	117				ď
Genzene	0.8100	0.15	-	0	81.0	88.9	122				<i>,</i> 0
Benzył chloride	0.9700	0.15	÷	0	97.0	73.6	120				0
Bromodichloromethane	0.6900	0.15	-	Q	89.0	84.3	133				
Bromoform	0.8400	0.15	-	Q	84.0	44.6	149				
Bromomethane	0.9300	0.15	٣	o	93.0	78.7	144				
Qualifiers: Results report	ed are not biank corrected		E Estimato	d Value above guantit	ation range		H Holding	times for prepara	tion of anal	vsis excerdas	
 Analyte detect 	ted below quantitation limit	£17.	ND Not Det	ected at the Limit of D	ctection:		K RPD out	side accepted ree	overy limits		
S Spike Recove	y' outside accepted recovery lim	zi	DL Detectio	a Limit				•	•	Ρa	se l of 5

LaBella Associates, P.C. CLIENT: ****

C2203053 113-117 North Clinton Work Order: Project:

Project: 113-117 Ne	orth Clinton						TestCode:	0.20_NYS	
Sample ID: ALCS1UG-032122	SampType: LCS	TestCode	C 0.20 NYS	Units: ppbV		Prep Date:		RunNo: 18754	
Client ID: ZZZZ	Batch ID: R18754	TestNo	c TO-15			Analysis Date:	3/21/2022	SeqNo: 213908	
Analyte	Result	PQL	SPX value	SPK Ref Val	%REC	LowLimit H	iighLimit RPD Ref Val	%RPD RPOLimit	Qual
Carbon disuifide	0.8100	0.15	-	0	81.0.	76.9	109		
Carbon tetrachloride	0.8400	0.030	-	0	84.0	3	120		
Chiorobenzene	0.8200	0.15	-	0	82.0	82.6	121		v,
Chioroethane	0.9100	0.15	-	0	91.0	67.1	146		>
Chioroform	0.8900	0.15	-	0	0.68	82.5	125		
Chioromethane	1.040	0.15	-	0	104	71.1	154		
cis-1,2-Dichéoroethene	0.7900	0.040	-	0	79.0	71.2	112		
cis-1,3-Dichioropropene	0.8200	D 15	F	0	82.0	90.3	137		ŝ
Cyciohexane	D.8000	0.15	F	0	80.0	87	122		0
Dibromochioromethane	0.8500	D. 15	-	0	85.0	62.8	132		l.
Ethyl acetate	0.8200	0.15	F	0	82.0	86.9	134		ŝ
Ethylbenzene	0.8200	0.15	-	0	82.0	76.9	123		
Freon 11	1.060	0.15	-	0	106	54.4	\$50		
Freon 113	0.8600	0.15	-	0	86.0	83.4	124		
Freon 114	1.000	0.15	-	0	100	70.2	133		
Freon 12	0.9600	0.15	-	0	96.0	86.3	135		
Heptane	0.7800	0.15	-	0	78.0	86.5	137		S
Hexachloro-1,3-butadiene	0.8300	0.15	-	0	83.0	78.7	120		
Hexane	0.8200	0.15	-	0	82.0	77.3	128		
isopropyt alcohol	0.9900	0.15	-	0	0.99	80.2	122		
m&p-Xylene	1.700	0.30	2	0	85.0	77.9	132		
Methyl Butyl Ketone	0.8100	0.30	-	D	81.0	69.4	131		
Methyl Ethyl Ketone	0.8100	0:30	-	0	81.0	71.5	117		
Methyl Isobutyl Ketone	0.8700	0.30	F	0	87.0	63.5	141		
Methyl tert-butyt ether	0.8300	0.15	*	ð	83.0	80.8	113		
Methylene chloride	0.8100	0.15	**	Ð	81.0	87.8	123		S
o-Xylene	0.8900	0.15	**	0	89.0	80.5	139		
Propylene	0.7400	0.15	*	Ð	74.0	73.8	124		
Styrene	0.8700	0.15	٣	O	87.0	82.7	138		
Tetrachloroethytene	0.8400	0.15	4-	0	84.0	85.9	122		ŝ
Tetrahydrofuran	0.7600	0.15	γu	0	76.0	65.5	134		×
Qualifiers: Results reporte	ed are not blunk corrected		E Estimat	ed Value above quantit	ation range		H Polding times for	preparation or analysis exceed	çi.
3 Analyse detects	ed below quantitation limit		VD Not Det	ected at the Limit of D	clection		R RPD outside acce.	pted recovery limits	
S Spike Recover	y outside accepted recovery fu	nits	DL Detectio	on Linut				£	ו. ג

-

Page 2 of 5

CLIENT: LaBella Associates, P.C.

C2203053 Work Order:

-----•••

10

Page 3 of 5

Work Order:

Work Order: C2203053 Project: 113-117 North

113-117 North Clinton

							F	estCode: (SAN_021		
Sample ID: ALCS1UGD-032122	SampType: LCSD	TestCode	: 0.20 NYS	Units: onbV		Don Dot-					
Client ID: ZZZZ	Batch ID: R18754	TestNo	: TO-15			משבר קבו ב			RunNo: 187	54	
Anaivie	ć				•	andrysis uate	3122/20	22	SeqNo: 213	606	
	Result	Par	SPK value	SPK Ref Val	%REC	KowLimit 1	High Limit	RPD Ref Vai	%RPD	RPDI imit	7 C
Acetone	1.060	0.30	-		100	1.01					KUC
Ally/ chloride	0.8100	0.15	• •	, c	0.10	40.7	165	1.08	1.87	0	
Benzene	0.9000	0.15) (81.0	86.6	117	0.77	5.06	¢	ഗ
Benzyf chloride	1 020	210			90.0	38.9	122	0.81	\$0.5	٥	
Bromodichloromethane	1 010	210		0	102	73.6	120	0.97	5.03	0	
Bromoform	0 8000	0 LF 0	-	0	103	84.3	133	0.89	14.6	, ¢	
Bromometinane	0000	6 0 0 0		0	85.0	44.5	149	0.84	5.78	, c	
Carbon disulfide	0.000 0.8700	0,10	- 1	0	108	78.7	144	0.93	14.9	• ¢	
Carbon testachloride		0.10		0	87.0	76.9	109	0.81	7.14	, c	
Cinlorobenzene	U RROU	0.036	-	0	94.0	71	120	0.84	11,2	• •	
Chloroethane	0000		-	0	68.0	82.6	121	0.82	7.06	c	
Chloroform	00200	0.13	-	0	103	67.1	146	0.91	12.4		
Chloromethane	3000 O	0 12 0	÷	0	93.0	82.5	125	0.89	4.40) c	
cis-1 2-Dictilornethene	1.140	u.15	-	0	114	71.1	154	1.04	9 17	- <	
cis-13-Dichloromosoa	0.7500	0:040	-	D	79.0	71.2	112	0.79	: C	ې د	
	0.955.0	0.15	-	0	95.0	90.3	137	0.80	5	> <	
Dihomothic	0.8700	0.15	•	0	87.0	87	661	4 C	C f	τ, τ	,
	0.9100	0.15	-	0	91.0	62.B	61	0.05	0.0	5	Ś
	0.8900	0.15	-	0	89.0	36.9	134	0.00	20.0	0	
cinyloenzene r	0.8500	0.15	-	Ċ	85.0	76.9	5 5	0.02	0.13 0.13	0	
	1.170	0.15	Ŧ	0	117	5.6.4	155	0.az	3.59	0	
Freon 113	0.9100	0.15	-	Ċ	91.0	L F B		90'- 100	9.87	o	
Freon [14	1.120	0.15	+-		110	t. 00	124	0.85	5.65	0	
Freon 12	1.100	0.15	• •	» с	110	2.02	135	~	11.3	0	
Heptane	0.8900	0.15	• •	> c		69.3	135	0.95	13.6	¢	
Hexachioro-1,3-butadiene	0.9200	0.15		5 c	02.0	C.C.2	137	0.78	13.2	0	
Hexane	0.8000	0.15	- +	5 ¢	32.0	68.3	160	0.83	10.3	0	
Isopropyl alcohol	1.090	0.15	• 4•	5 (0.00	(7.3	128	0.82	2.47	0	
m&p-Xylene	1 830	0.30		5 1	601	B 0.2	122	0.99	9.62	Q	
Methyf Butyl Ketore	61.B600	02.0	v •	0	91.5	77.9	132	1.7	7.37	¢	
Methyl Ethyl Ketone	0 R200	02.0	- ,	0	86.0	69.4	131	0.81	5.99	0	
Methyl Isobutyl Ketone		00.0	~	>	82.0	71.5	117	0.81	1.23	C	
	00200	0.30	y -a	0	82.0	63.5	141	0.87	5.92	c	
Qualifiers: Results reported	are not blank corrected	ш	Estimated	Value above quantit	tion sange		1461 21	firm firm to Control			
5 Analyte detected	I below quantitation limit	Z	Not Deter	ted at the Limit of De	dection			mig tatics for pre	pitration of analy	'sis excerted	
5 Spike Repovery	oatside accepted recovery limit.	DI	. Detection	Limit			1	י המצוחה מרכלווהר	recovery tanuts		

LaBella Associates, P.C. CLIENT:

C2203053 Work Order: Project:

113-117 North Clinton

.... 000 TaetCade

							-	esicode: 0	ZU_NYS		
Sample ID: ALCS1UGD-032122	SamoTvne- LCCD	Tore	de: 6 of								
Client ID: 77777	Delet (D. Brene		NUC: 0.20 NYS	Units: ppbV		Prep Date			RunNo: 18;	754	
	CALLIN, KIRLAN	Test	No: TO-15			Analysis Date	: 3122/20	13	SeqNo: 21	3909	
Analyte	Result	POL	SPK value	SPK Ref Val	%REC	Vow imit	timi Mait				
Methyl tert-burbl ether	2000 C					11511-54-5-	HAUTCHINE	הרט אפו עמו	042%	RPDLimit	Qual
Matheless Allows	U.86UU	0.15	-	D	86.0	80.8	113	0.83	2 5		
	0.8800	0.15	-	C	99.5	010		22.0	00.0	D	
o-Xylene	00650	0 1 E	Ŧ		2.00	0.10	123	0.81	8.28	0	
Propylene	0.000		-	5	0.99	30.5	139	0.83	10.6	c	
Styrene	0.0000	51.0	-	0	89.0	73.8	124	0.74	18.4		
Toirochissouth.de	0.986.0	0.15	-	0	080	82.7	138	0.87		5 (
ងារងសំរោះសាហរកេខាះង រ	0.8900	0.15	•	c	0.08	< LC				5	
Tetrahydrofutan	0.7800	D 15	•	,	2.20	7.00	771	D.84	5.78	0	
Toluene	0.8300			5	78.0	65.5	134	0.76	2.60	0	
trans-1,2-Dichioroethene	0.000	0.5 1	-	0	83.0	77.8	127	0.79	4.94	• •	
trans-1.3-Dichtoronooo	0.000	CT.U	-	φ	85.0	63.3	116	0.84	1 18) c	
Trichlomathana	U.86UG	0.15	-	Ð	36.0	84.8	134	0.78	0 75) (
	0.8600	0.030	•	C	85.0	20.7	143		a.ro	5	
Vinyl acetate	0.7700	0.15	**	4			2	G. /D	12.3	0	
Vinyl Bromide	1 070	A 15		> •	1.1.1	6.07	101	0.77	0	0	
Vinyl chioride	1 080	0100	ин у	¢	107	\$1.4	142	0.97	9.80	0	
	000-1	0.440	μ	o	108	70.4	138	Q.9	18.2	0	

Holding times for preparation or analysis exceeded the state of the state of the state of the RPD outside accepted secorery limits Estimated Value above quantitation range Not Detected at the Limit of Detection Detection Limit a No Spike Recovery outside accepted recovery limits Analyte detected helow quantitation limit Results reported are not blank corrected - - 5 Qualifiers: of the second se

Date: 07-Apr-22

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

C2203053 Work Order:

113-117 North Clinton Project:

TestCode: 0.20 NYS

									CIN-NT		
Sample ID: C2203053-003A MS	SamnTuna: MC	-									
	campi Juc. Ho	i estCode;	0.20_NYS	Units: ppbV		Prep Date:			RunNo: 18	TKA	
77.01.5-70-MI	Batch ID: R18754	TestNo:	TO-15			Analysis Date;	3/21/2022		Servin 21	2005	
Analyte	Result	TOd	SPX value	SPK Ref Vai	020%					Dhha	
1,1,1-Trichloroethane	Unco N			10 × 10 × 10	ACCC	H HULLINGT	aghLimit R5	D Ref Val	%RPD	RPDLimit	Qual
1.1.2.7. Tetrachloroethane	0.0000	0,15	-	Q	88.0	58.1	17				
1 2. Trichlorothono	0.7600	0.15	•	C	76.0	82.3	‡∩1				
	0.7700	D. 15	¥	G	77.0	1	007				Ś
1. I-Uichloroethane	0.8300	0.15		¢		10	071				
 1-Dichloroethene 	0.7600	0.040) (10.00	10.0	118				
1.2,4-Trichlorobenzene	1.460	0.15	. Au	7 C		40.C	128				
³ ,2,4-Trimethylbenzene	1.410	0.15	• •	5 0	140	2	130				S
 2-Dibromoethane 	0.7700	44.0	• •	U.45	95.0	81.5	155				
1.2-Dichlorobenzene		C. 10	••	Ċ	77.0	78.7	107				0
¹ .2-Dichloroethane	0000.0	0.15	***	Ċ.	85.0	57.2	175				o
1 2 0.141000	C.8700	0.15	Ø.	9	97.0	65.1	130				
	0.7600	0.15	÷	0	76.0	500	001				
c.d.>-Inmeinylbenzene	1.340	0.15	£10	J 56	10.0	6.60 C	01				
f.3-butadiene	3.770	0.15		00.2		9.70	139				
1,3-Dichlorobenzene	0.8900	2 2 2		5,	377	70	130				c;
 4-Dichlorobenzene 	0 8000	0.7		ð	69-0	89.1	122				<i>v</i> 0
1.4-Dioxane	00000	0.10	Y-17	D	89.0	85.8	114				2
2.2.4. trimethedan	0.6100	0.30	**	Ö	B1.D	75.1	114				
c,c,4-IIIIGeInypentane	0.8600	0.15	Ava	Ċ	RS D	C 70	t (;				
4-ethyliciuene	1.040	0.15	feri	D 13	0.00	N. 5	511				
Acetone	13.71	0.30	**	5 C C F	0.10	2	130				
Allyl chloride	0.8800	0.15	- v	50,21	100	02	130				ŝ
Benzene	1 חפת	245	u. ,	Ċ)	88.0	20	130				
Benzyl chloride		, i 1	iun .	0.31	78.0	72.7	133				
Bromodicáloromethene	000.1	0.35	***	Ō	100	72.5	129				
Bromoform	0.5/00	0.15	q ras	0	87.0	69.4	112				
Browneth	0.6800	0.15	44	Ð	68.0	42.5	110				
	0.9500	0.15	*~-	0	95.0	68.6	121				
Qualifiers: Results reported a	are not blank corrected	- 1	Felimator	Webe characteristic							
J Analyte detected t	below quantitation limit	LIN.	Nav Duran	י ז אוויר מנאזאר ענומאזווע	uten range		If Hotdin	g times for prep	AUTATION OF ADA	ivsis exceeded	
S Spike Recovery or	structure apprended recommendation	Ē	NOI DCICI	cled at the Lsmit of Use	lection		R RPD 01	stside accepted	recovery limits	,	
A Time and a second a	สมาย รั้นองการเกรรไหรระ ระบะหะ	Ъ Н	Detection	Limit				10.00 Million of the state of t			

Page 1 of 5

CLIENT: LaBella Ass Work Orden COPASES	ocíates, P.C.								
Project: [13-1]7 No.	rth Clinton						TestCod	:: 0.20_NYS	
Sample ID: C2203053-003A MS	SampType: MS	TesiCode: (0.20_NYS	Units: ppbV		Prep Dat	äi	RurNo: 18754	
Client ID: IA-02-3.15.22	Batch ID: R18754	TestNo: 7	10-15		4	inalysis Dat	e: 3/21/2022	SeqNo: 213995	
Analyte	Result	PQL SI	PK value S	PK Ref Val	%REC	Lowčamat	HighLimit RPD Ref	Vat %RPD RPDLimit	Qual
Carbon disulfide	0.8300	0.15	-	0.11	72.0	02	130		
Carbon tetrachioride	0.8400	0:030	F	0.07	77.0	2 6	107		
Chlorobenzene	0.7600	0.15	÷	0	76.0	76.1	111		U
Chloroethane	0.9600	0.15	-	٥	96.0	62.5	119		¢
Chloroform	1.700	0.15		0.94	76.0	6.54	173		
Chloromethane	1.610	D 15	۲	5.5	91.0	54.4	125		
cis-1,2-Dichioroethene	D.8200	0.040	۲	0	82.0	60.1	121		
cis-1,3-Dichioropropene	0.8000	0.15	٣	0	80.0	50.8	122		
Cyciphexane	0.9500	0.15	£-	0.29	65.0	59.4	148		
Dibromochtoromethane	0.7300	0.15	£	Q	73.0	71.6	102		
Ethyi acetate	1.480	0.15	٣	0.6	88.0	49.3	146		
Ethythenzene	0.9600	0.15	8411	0.15	81.0	68.5	129		
Freor 11	1.290	0.15	4	0.31	5 8.0	44.8	143		
Freor 113	0.8900	0.15	A m.	D	89.0	80.3	125		
Freon 114	1.000	0.15	***	Ð	100	65.2	132		
Freon 12	1.460	0.15	ţu.	0.52	94.0	67.4	103		
Heptane	1.340	0.15	4	0.53	81.0	80.8	124		
Hexachioro-1,3-butadiene	0.8200	0.15	**	0	82.0	81.9	119		
Нехале	1.530	0.15		0.53	199	73.7	147		
Isopropyi aicohol	11.93	0.15	>	13.02	-109	20	130		ŝ
m &p-Xy!ene	2.080	0.30	2	0.53	77.5	74.2	123		
Methyl Butyl Ketone	0.9200	0.30	ي يد	0	92.0	72.6	117		
Methyl Ethyl Kelone	2.580	0.30	-	1.79	89.0	59.4	135		
wethyl Isobutyl Ketone	0.8400	0.30	-	0	84.0	61	120		
Methyl tert-butyl ether	0.8500	0.15	-	٥	85.0	63.6	134		
svietraylene chlorade	1.530	0.15	-	0.81	72.0	53.4	125		
o-Xylene	0066.0	0.15	-	0.22	77.0	74.3	132		
<i>н</i> торувая С.	8.160 /	0.15	7	٥	816	70	130		S
Totrochiscontinue	0.9000	0.15	-	0.15	75.0	82.4	118		S
t etrachioroethylene	4.450 🗸	0.15	>	4.6	-15.0	86.2	112		S
l ekahydrofuran	1.410	0.15	-	0.52	89.0	70	130		
Qualifiers: Results reported	are not blattk corrected	ш.	Estimated '	Value above quanti	itation range		H Flolding time	i for preparation or analysis exceed	
J Antifyte detected	below quantitation limit	02	Not Detects	ed at the Limit of L	Detection		R RPD cutside	arented recovery limits	2
S Spike Recovery	untside accepted recovery linn	ts DL	Detection 1	imi					

Page 2 of 5

...

CLIENT: LaBella As Work Order: C2203053	sociates, P.C.										
Project: 113-117 No	orth Clinton						<i>c</i>	festCode:	0.20_NYS		
Sample ID: C2203053-003A MS	SampType: MS	TestCode:	0.20_NYS	Units. ppbV		Prep Da	je je		RunMo: 18754		
Client ID: 1A-02-3.15.22	Batch ID: R18754	TestNo:	TO-15			Analysis Da	te: 3/21/2(122	SeqNo: 21399	ŝ	
Analyte	Result	PQL S	PK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD R	PDI imit	an O
Toluene	2.230	0.15	-	167	F.F. D	02	130				5
frans-1,2-Dichloroethene	0.8300	0.15	· -	0	010	0.02	130				S
Irans-1,3-Dichloropropene	0.8400	0.15	٣	0	84.0	51.9	133				
Trichtorbethene	0.8000	0.030	÷	0.15	0.69	63.1	109				
Viny! acetate	1.010	0.15	-	0	101	17.3	187				
Viryi Bromide	0.9200	0.15	-	0	92.0	71.3	121				
Vinyi chloride	0.5300	0:040	-	o	93.0	63.2	114				
Sample ID: C2203053-003A MS	Sampřype: MSD	TestCode: (0.20_NYS	Units: ppbV		Prep Dat			RunNo: 18754		
Client (D: IA-02-3.15.22	Batch ID: R18754	TesiNo: 1	10-15			Anelysis Dat	e: 3/22/20	22	SeqNo: 213996		,
Anaiyte	Result	Pal Sf	oK value S	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RP	DLimit	Quat
1,1,1-Trichloroethane	0.8900	0.15	-	0	89.0	68.1	117	0.88	1 13	6	
1,1,2,2-Tetrachiorcethane	0.8000	0,15	-	0	80.0	82.3	101	0.76	2 C C	5 C	o
1,1,2-Trichloroethane	0.8400	0.15		0	84.0	61	128	0.77	8 70	o c	7
1,1-Dichlorcethane	0.8100	0.15	-	0	81.0	76.5	118	0.83	2.44	0	
1,1-Dichloroethene	0.7500	0.043	-	0	75.0	45.8	128	0.76	1.32	0	
1,2,4-1 RCNIO(OBENZERE	1.690	0.15		٥	169	30.3	262	1.46	14.6	٥	
1,2,4-1 Riteinyibelizerie 1.2,Dihromoothass	1.430	0.15	-	0.45	97.0	81.5	155	1.41	1.41	0	
1.2-Dichlorobenzene	1 240	0.15 0.15		0 (78.0	78.7	107	0.77	1.29	0	S
1,2-Dichloroethane	0.9500	0.15			95 N	57.2 65.1	175	0.85	37.3	00	
1,2-Dichloropropane	0.8000	0.15	٣	0	80.0	68.9	116	0.76	5, 13	- c	
1,3,5-Trimethylbenzene	1.400	0.15	۴	0.56	84.0	67.6	139	1.34	4.38) C	
1,3-butadiene	3.480	0.15	۴	0	348	70	404	3.77	8.00	0	
1,3-Uichlorobenzene	0.5500	0.15	-	٥	96.0	89.1	122	0.89	7.57	٥	
1,4-Dichlorobenzene	0.3700	0.15	-	0	97.0	86.8	114	0.89	8.60	0	
1,4-uloxane	0.8500	0.30	-	0	86.0	75.1	114	0.81	5.99	0	
e.e.t-uniterugipentane 4.ethvikolitere	0.69.0	0.15 0.45		0	89.0	84.2	113	0.86	3.43	Q	
ocionatino .	.130	0.13	-	0.13	106	70	130	1.04	13.5	0	
Qualifiers: Results reported	are not blank corrected	ш	Estimated	Value above quanti	tation mage		H H	skino times for r	renarstion of anchei	helsen er	******
J Analyte detected	l below quantilation himit	EN .	Not Detec	ted at the 3. imit of D	Detection		R RI	P outside access	ed treatment of timits	א ניארו ניטני	
S Spike Recovery	outside accepted recovery lim	its DL	Detection	Limit				denne organi	South Finance by		

···· ··· --

Page 3 of 5

đ,
LaBella Associates, P.C. CLIENT:

C2203053 Work Order: Project:

113-117 North Clinton

							and the second se				
Sample IU. CZ203053-003A MS	SampType: MSD	TesiCode	: 0.20 NYS	Units: ppbV		Prep Date			Durble: 202		
Client ID: IA-02-3,15.22	Batch ID: R18754	TestNo	c TO-15			Analysis Date	3/22/202	22	Seallo: 781	154 2006	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	Low imt +	timi îmit	ייוויים עמם			
Acetone	11 25 5	0.30					URI PUBLIC	ULU REI VAI	0HX%	RPDLimit	Qual
Allyl chloride		0.20	2	12.03	-28.0 /	22	130	13.71	35.4	G	v
Benzene	0.9800	C.15	1	0	88.0	49.7	155	0.88	C	o c	2
Pennul at land	1.120	0.15	-	0.31	81.0	72.7	133	100	о т с	> (
	1.080	0.15	-	0	168	725	120		11.2	Ð	
bromodichioromethane	0.9000	0.15	F	С	0.00				69.7	c	
Bromoform	0.7100	0.15	-	• =	71.0	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	7 1	78.0	3.39	0	
Bromomethane	0.9500	0.15	• •	, c		0.74	011	0.68	4.32	¢	
Carbon disultate	0.8300	0.15			1.0° 0.0°	68.6	121	0.55	0	O	
Carbon tetrachtoride	0 8500	0.020		0.12	12.0	70	130	0.83	0	ð	
Chlarobenzene	0.8600	0.16	- •	0.07	78.0	61	107	0.84	1.18	0	
Chloroethane	D QEAD	0.10	- •	0	80.0	76.1	111	0.76	5.13	0	
Chloraform		0 1	-	0	95.0	62.6	119	0.96	1.05	0	
Chloromethane	0001	0.10 51.0	-	0.94	71.0	6.54	173	1.7	2.99	• =	
cie-1 2-Dichloroeihooo	1.350	U.15	-	0.7	0.68	54.4	125	1.61	1 25	, c	
	0.7900	0.040	~	٥	0.67	60.1	121	0.87	07:1 2 7 2	,	
control of the second sec	0.8300	0.15	-	0	83.0	60 R	177	100	2.2	5 1	
Cyclohexane	1.040	0.15	-	0.29	75.0	2.04 4	771	0.0	3.58	0	
Dibromochloromethane	0.7700	0.15	٣		0.02		0	CR:U	<u> </u>	0	
Ethyl acetate	1.410	0 15	• •	2 (2	A.1.	0.17	102	0.73	5.33	0	
Ethylbenzene	0066.0	015		0.2	U.F8	49.3	146	1.43	4.84	0	
Freon 11	1 250	2 4	- ,	0.15	84,0	68.5	129	0.96	3.08	0	
Freon 113	U READ	0.10		0.31	94.0	44.8	143	1.29	3.15	0	
Freon 114	0.0000	0.10	-	٥	86.0	80.3	125	0.89	3.43	0	
Freen 12	00000	0.10	-	0	96.0	65.2	132	۲	4.08	0	
Heptane	1 340	0.10		0.52	91.0	67.4	103	t.46	2.08	٥	
Hexachioro-1.3-buladiene	D RADIO	210	- ,	0.53	81.0	80.8	124	1.34	0	0	
Hexane	1 440	0.10	- ,	0	86.0	81.9	119	0.82	4.76	0	
Isopropyi atcohol	1 22 11	0.0		0.53	91.0	73.7	147	1.53	6.0E	0	
m&p-XvJene	014 6	C1.0	7	13.02	-165 🗸	70	130	11.93	4.81	0	6
Methyl Butvi Ketone	2.140	0.30	N	0.53	80.5	74.2	123	2.08	2.84	C	Ē
Methyl Ethyl Keine	0701	0.30	-	0	102	72.5	117	D.92	10.3	, c	
Mathul leadered Xalone	2.450	0.30	~	1.79	67.0	59.4	135	2.68	8.56) C	
	0.3300	0.30	-	0	93.0	61	120	0.84	10.2		
Qualifiers: Results reported	are not blank corrected	ω	Estimated	Value above quantiza	ion mage		H Hal	the time for a			
J Analyte detected	below quantitation limit	ĨZ	D Not Detects	ed at the Limit of Des	ection		0001 0	n ni cini ŝin	cparation of analy	ysis exceeded	
S Spike Kouvery.	outside accepted recovery limits	đ	Detection 1	imi			214	outsuer accepte	d fecovery limits		

C2203053 Work Order: Project:

113-117 North Clinton

		ŝ				S	0	0	i.	Ś						
		imit		φ	Q	0	0	¢	¢	¢	¢	0	0	0	0	¢
	8754 1300c	IDda														
0.20 NYS	RunNo: 18 Servio: 24	%RPD	1.18	1.98	3.96	6.58	6.45	0.903	5.03	2.65	38.8	5.78	3.68	5.03	5.59	5
estCode:	8	RPD Ref Val	0.85	1.53	0.99	8.15	0.9	4.45	1.41	2.23	0.83	0.84	0.8	1.01	0.92	20.0
Į	e: 3/22/20	HighLimit	134	125	132	130	118	112	130	130	132	133	103	130	130	115
	Prep Date Analysis Date	Lowćimit	63.6	53.4	74.3	22	82.4	86.2	22	2	70.9	51.B	63.1	20	2	63.3
		%REC	84.0	69.0	81.0	764	81.0	-19.0 <	82.0	62.0	123	69.0	12.0	96.0	87.0	38.0
	Units: ppbV	ok Ref Val	D	0.81	0.22		0.15	4,6	0.52)Q.L	5 (- ; ;	2.'S	- (- ·	Þ
	e: 0.20_NYS o: TO-15	SPK vatue SF	Ψ.			. ,		>								
	TestCod	PQL	0.15 0.15	0.15	0.15	0 15 2 15	0.15	0.15	0.15	0.15	0.15	0.030	0.15	0.15	0.040	5
	MSD R18754	Result	0.8400 1 5nn	1.030	7.640	0.9600	4 410 V	1.340	2.290	1.230	0.8900	0.8300	0.9500	.8700	1.8800	
1011	SampType: Batch ID:					-					C	0	0	0	0	
	HD: C2203053-003A MS D: IA-02-3.15.22		err-butyl esher ne chloride	-	те		oroethyiene	Irofuran		-Dichloroethene	-Dichloropropene	efnene	state	mide	oride	
	Sample Client IC	Analyte	Methyle	o-Xylene	Propyler	Styrene	Tetrachl	Tetrahyo	Toluene	trans-1,2	trans-1,3	Trichloro	Vinyi ace	Vinyl Bro	Vinyl chic	

Page 5 of 5 Holding times for preparation or analysis exceeded RPD outside accepted recovery limits H X Estimated Vatue above quantitation range Not Detected at the Limit of Detection Detection Limit DL ND Spike Recovery outside accepted recovery limits Analyte detected below quantitation limit Results reported are not blank corrected v, ----• Qualifiers: ** *****

..... •••

AT030201.D A302_1UG.M

Wed Mar 16 13:36:10 2022 MSD1

AT032101.D A302_1UG.M

Thu Apr 07 09:37:21 2022 MSD1

GC7MS GA-QC Check Report

Tune File : C:\HPCHEM\1\DATA\AT032102.D Tune Time : 21 Mar 2022 9:09 am

Daily Calibration File : C:\HPCHEM\1\DATA\AT032102.D

	CCV	3/21/22	09/09	(BFB)	9.76	12,06	6 16,88	(IS1) 32717	(IS2) 129797	(IS3) 117759	
File ========	San	ple	DL	Surro	ogate	Recover	у% І	nternal	Standard Re:	sponses	
AT032103	.D ALC	S1UG-0321	.22	1.08				35595	140050	117382	
AT032104	, D AMB	1UG-03212	2	75				32897	107260	92461	
AT032121	.D C22	03053-003	A	91	9.77	12.07	16.88	30869	122618	109062	
AT032122	.D C22	03053-003	A MS	106				34563	138740	137163	
AT032123	.D C22	03053-003	A MSD	108				36235	140161	135910	
AT032124	.D C22	03053-001	A	92	9.77	12.06	16.88	33983	129207	119566	
AT032125	.D C22	03053-002	A	99	9.77	12.06	16.88	32818	131811	119916	
AT032126	.D C22	03053-004	A	86	9.77	12.06	16.88	31624	102698	100334	
AT032127	.D ALC	S1UGD-032	122	115			*	30485	106542	94430	* 16 ~ ~ ~
AT032128	.D C22	03053-003	A 10X	80	9.77	12.07	16.88	27168	93416	85750	
AT032129	.D C22	03053-001	A 1.0X	78	9:77	12.06	16.88	27663	88386	78002	
AT032130	D C22	03053~002	A 10X	80	9.27	12,07	16,88	26710	84460	76286	
AT032131	.D C22	03053-004.	A 10X	72	9.77	12.06	16.88	24680	80989	73588	• •
1.707 (1.000)	6						- KKTAT-				

.

t - fails 24hr time check * - fails criteria

Created: Thu Apr 07 09:38:24 2022 MSD #1/

DATA USABILITY SUMMARY REPORT

for

LaBella Associates, P.C.

300 State Street

Rochester, NY 14614

113-117 NORTH CLINTON Project 216120 SDG: C2304013 Sampled 03/29/2023

TO-15 AIR SAMPLES

OA-03292023	(C2304013-01)
IA-02-03292023	(C2304013-02)
DUP-03292023	(C2304013-03)
IA-01-03292023	(C2304013-04)
IA-03-03292023	(C2304013-05)

DATA ASSESSMENT

A TO-15 data package containing analytical results for five air samples was received from LaBella Associates, P.C. on 18May23. The ASP deliverables package included formal reports, raw data, the necessary QC, and supporting information. The samples, taken from the 113-117 North Clinton Site, were identified by Chain of Custody documents and traceable through the work of Centek/SunAir Technologies Laboratory, the laboratory contracted for analysis. The analyses were performed using US EPA Method TO-15 and addressed measurements of sixty-three volatile organic compounds. Laboratory data was evaluated according to the quality assurance / quality control requirements of the New York State Department of Environmental Conservation's Analytical Services Protocol (ASP), September 1989, Rev. 07/2005. When the required protocol was not followed, the current EPA Region II Functional Guidelines (SOP HW-31, Rev. #4, October 2006, Volatile Organic Analysis of Ambient Air in Canisters by Method TO-15) was used as a technical reference.

CORRECTNESS AND USABILITY

Reported data should be considered technically defensible and completely usable in its present form. Results presenting a usable estimation of the conditions at the time of sampling have been flagged "J" or "UJ". Estimated data should be used with caution. A detailed discussion of the review process follows.

Two facts should be considered by all data users. No compound concentration, even if it has passed all QC testing, can be guaranteed to be accurate. Strict QC serves to increase confidence in data, but any value potentially contains error. Secondly. DATAVAL, Inc. guarantees the quality of this data assessment. However, DATAVAL, Inc. does not warrant any interpretation or utilization of this data by a third party.

Reviewer's signature: James B. Baldwin DATAVAL, Inc.

SAMPLE HISTORY

Analyte concentrations can deteriorate with time due to chemical instability, bacterial degradation or volatility. Samples that are not properly preserved or are not analyzed within established holding times may no longer be considered representative. Holding times are calculated from the date of sample collection. TO-15 samples must be analyzed within 14 days of collection.

This sample delivery group contained five air samples that were collected from the 113-117 North Clinton site on 29Mar23. The samples were shipped to the laboratory, via UPS-Ground, on 05Apr23 and were received on 06Apr23. At the time of receipt, the sample canisters were found to be intact.

This group of samples was collected in 1-liter SUMMA canisters that were set in the laboratory to collect 24-hour samples. It is noted that IA-01-03292023 was collected in a 1.4-liter canister to facilitate the preparation of matrix spiked samples. The collection of each sample was terminated based on the canister vacuum reading. Based on these readings, the sampling times ranged between 21 hours and 22 hours. Based on this observation, the results from these 12-hour samples have been qualified as estimations.

It is assumed that the variation in vacuum readings obtained at the end of sampling and at the time of analysis are indicative of the quality of the canister vacuum gauges, and that sample integrity may be assumed.

It is also noted that the post-sampling vacuum reading from OA-03292023 failed to satisfy the program requirement of $-5\pm1"$ Hg. Results reported from this sample have not been qualified as estimations due to this mild accidence.

SAMPLE	PRIOR	PRIOR TO	POST	LAB	LAB
	ТО	SAMPLING	SAMPLING	RECIEPT	ANALYSIS
	SHIPING	(``Hg)	(``Hg)	("Hg)	(``Hg)
	("Hg)				
OA-03292023	-30	-30	-3	-1	-2
IA-02-03292023	-30	-30	- 4	-4	-4
DUP-03292023	-30	-29.5	4	-5	-5
IA-01-03292023	-30	-30	-6	-4	-4
IA-03-03292023	-30	-30	-5	-3	-3

The analysis of this group of samples was completed between 07Apr23 and 09Apr23. The ASP holding time limitation was satisfied.

CANISTER CERTIFICATION

The canisters used for this project were vacuum tested at -30 psig for at least 24 hours. Each canister demonstrated a change ≤ 0.5 psig over this period.

The canisters for this project were cleaned in three batches. A blank analysis of a clean canister from each batch was free of targeted analyte contamination exceeding the laboratory's reporting limit.

BLANKS

Blanks are analyzed to evaluate various sources of sample contamination. Trip Blanks monitor sampling, trans-port and storage activities. Method blanks are analyzed to verify instrument integrity. Samples are considered compromised by conditions causing contamination in any blank.

Two method blanks was analyzed with this group of samples. Both of these blanks produced acceptable chromatography and were free of target analyte contamination exceeding the laboratory's reporting limit.

MS TUNING

Mass spectrometer tuning and performance criteria are established to ensure sufficient mass resolution and sensitivity to accurately detect and identify targeted analytes. Verification is accomplished using a certified standard.

BFB ion abundance criteria was reported from standards run before the initial instrument calibration and prior to the analysis of program samples. Each of these checks satisfied the ASP acceptance criteria.

CALIBRATION

Requirements for instrument calibration are established to ensure that laboratory equipment is capable of producing accurate, quantitative data. Initial calibrations demonstrate a range through which measurements may be made. Continuing calibration check standards verify instrument stability.

The initial instrument calibration was performed on 17Mar23. Standards of 0.03, 0.04, 0.10, 0.15, 0.30, 0.50, 0.75, 1.0, 1.25, 1.5 and 2.0 ppb were included. Each targeted analyte produced the required levels of instrument response and demonstrated an acceptable degree of linearity during this calibration.

Continuing calibration check standard were analyzed on 07Apr23 and 09Apr23, prior to the 24-hour periods of instrument operation that included samples from this program. When compared to the initial calibration, each targeted analyte demonstrated an acceptable level of instrument stability.

SURROGATES

Each sample, blank and standard is spiked with surrogate compounds prior to analysis. The structures of surrogates are similar to analytes of interest, but they are not normally found in environmental samples. Surrogate recoveries are monitored to evaluate overall laboratory performance and the efficiency of laboratory technique.

Although surrogate summary sheets were properly prepared, an incorrect acceptance criteria was applied. When compared to the ASP requirements, an acceptable recovery was reported for the surrogate additions to the initial analysis of each program sample. Low recoveries were reported from the subsequent analyses of each sample. Data has not been qualified based on this performance because the affected analyses were the result of sample dilutions.

INTERNAL STANDARDS

Internal standards are added to each sample, blank and standard just prior to injection. Analyte concentrations are calculated relative to the response of a specific internal standard. Internal standard performance criteria ensure that GC/MS sensitivity and response are stable during the analysis of each sample. The area of internal standard peaks may not vary by more than 40%. When compared to the preceding calibration check, retention times may not vary by more than 10 seconds.

The laboratory recorded the response of each internal standard addition to this group of samples and the response obtained from the preceding CCV standard. Although the control limits based on the response of the CCV were not documented, they were calculated by this reviewer. When compared to these limits, an acceptable level of response was reported for each internal standard addition to this group of samples.

Although internal standard retention times were not addressed by the laboratory, the ASP retention time acceptance criteria was calculated by this reviewer. The retention times produced by each program sample satisfied these requirements.

MATRIX SPIKES / MATRIX SPIKE DUPLICATES / MATRIX SPIKED BLANKS Matrix spiking refers to the addition of known analyte concentrations to a sample, prior to analysis. Analyte recoveries provide an indication of laboratory accuracy. The analysis of a duplicate spiked aliquot provides a measurement of precision.

IA-01-03292023 was selected for matrix spiking. The entire list of targeted analytes was added to two aliquots of this sample. The recoveries reported for these spikes included high results for 1,2,4-trichlorobenzene (232%,214%), 1,3-butadiene (160%, 153%), benzyl Chloride (171%,165%) and methylene chloride (253%, 256%); and a low recovery of tetrachloroethene (63%). Based on this performance the methylene chloride (METH CL) and tetrachloroethene (1122TCE) results from OA-03292023 have been qualified as estimations.

Two pairs of spiked blanks (LCS/LCSD) were also analyzed with this group of samples. The recoveries from the 07Apr23 LCS samples included high results from acetone (236%,282%), benzyl chloride (147%,143%) and methylene chloride (258%). Based on these indications of bias, the acetone, benzyl chloride (BENZ CL) and methylene chloride concentrations found in the initial analysis of each program sample have been qualified as estimations.

The LCS/LCSD results from 09Apr23 included low results for 1,1dichloroethene (56%, 52%), 1,2,4-trimethybenzene (60%), cis-1,2-dichloroethene (64%), bromomethane (61%,54%), ethvl acetate (62%,56%), ethylbenzene (63%,60%), Freon 114 (58%), Freon 12 (58%), hexane (61%,54%), methyl ethyl ketone (62%,62%), methyl tert-butylether (56%49%), tetrahydrofuran (63%,56%), trans(1,2dichlroethene (64%), vinyl acetate (56%) and vinyl chloride (59%,53%), and high recoveries of acetone (430%, 489%)and methylene chloride (473%,559%). Based on this performance, 1,1dichloroethene, 1,2,4-trimethybenzene, bromomethane, cis-1,2dichloroethene, ethyl acetate, ethylbenzene, Freon 114, Freon 12, hexane, methyl ethyl ketone, methyl tert-butylether, tetrahydrofuran, trans(1,2-dichlroethene, vinyl acetate and vinyl chloride concentrations have been qualified as estimations when report from the repeated analyses of program samples. When present in repeated analyses, acetone and methylene chloride have also been qualified as estimations.

DUPLICATES

Two aliquots of the same sample are processed separately through all aspects of sample preparation and analysis. Results produced by the analysis of this pair of samples are compared as a measurement of precision. Poor precision may be indicative of sample non-homogeneity, method defects, or poor laboratory technique.

Field split duplicate samples of IA-02-03292023 were included in this delivery group. Each analyte that was detected in both of these samples produced concentrations that differed by 25% or less. The program acceptance criteria was satisfied.

REPORTED ANALYTES

Formal reports were provided for each sample. The data package also included total ion chromatograms and raw instrument printouts. Reference mass spectra were provided to confirm the identification of each analyte that was detected in this group of samples. SUMMARY OF QUALIFIED DATA

113-117 NORTH CLINTON

SAMPLED 03/29/23

			SPIKE	SPIKE	SPIKE	SPIKES	LCS/LCSD	
		SAMPLING	METH CL	1122TCE	ACETONE	BENZ CL	ACETONE	
OA-03292023	(C2304013-01)	ALL J/UJ	1.1J	1.0UJ	11J	0.86UJ	11J	
IA-02-03292023	(C2304013-02)	ALL J/UJ	1.8J		37J	0.86UJ	37J	
DUP-03292023	(C2304013-03)	ALL J/UJ	1.9J		29J	0.86UJ	29J	
IA-01-03292023	(C2304013-04)	ALL J/UJ	1.6J		33J	0.86UJ	33J	
IA-03-03292023	(C2304013-05)	ALL J/UJ	1.0J		8.5J	0.86UJ	8.5J	

Date: 21-Apr-23

CLIENT; Lab Order; Project: Lab ID:	LaBella Associates, P.0 C2304013 113-117 N. Clinton C2304013-001A	2.		C	Client Sample ID; Tag Number: Collection Date: Matrix:	OA-0. 232,4: 3/29/2 AIR	3292023 34 3023
Analyses		Result	DL	Qual	Units	DF	Date Analyzed
IUG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE-	1,1DCE	тс)-15			Analyst: RJP
1,1,1-Trichloroe	thane	< 0.82	0.82		ug/m3	1	4/8/2023 1:04:00 AM
1,1,2,2-Tetrach	oroethane	< 1,0	1.0		ug/m3	1	4/8/2023 1:04:00 AM
1,1,2-Trichloroe	lhane	< 0.82	0.82		ug/m3	1	4/8/2023 1:04:00 AM
1,1-Dichloroeth	ane	< 0.61	0.61		ug/m3	1	4/8/2023 1:04:00 AM
1,1-Dichloroethe	ene	< 0.16	0,16		ug/m3	1	4/8/2023 1:04:00 AM
1,2,4-Trichlorob	enzene	< 1.1	1.1		ug/m3	1	4/8/2023 1:04:00 AM
1,2,4-Trimethylt	benzene	< 0.74	0.74		ug/m3	1	4/8/2023 1:04:00 AM
1,2-Dibromoeth	ane	< 1.2	1.2		ug/m3	1	4/8/2023 1:04:00 AM
1,2-Dichloroben	zene	< 0.90	0.90		ug/m3	1	4/8/2023 1:04:00 AM
1,2-Dichloroetha	ane	< 0.61	0.61		ug/m3	1	4/8/2023 1:04:00 AM
1,2-Dichloroprop	páne	< 0.69	0.69		ug/m3	1	4/8/2023 1:04:00 AM
1,3,5-Trimethylt	penzene	< 0.74	0.74		ug/m3	1	4/8/2023 1:04:00 AM
1,3-butadiene		< 0.33	0.33		ug/m3	1	4/8/2023 1:04:00 AM
1,3-Dichloroben	zene	< 0.90	0.90		ug/m3	1	4/8/2023 1:04:00 AM
1,4-Dichloroben	zone	< 0.90	0.90		ug/m3	1	4/8/2023 1:04:00 AM
1,4-Dioxane		< 1.1	1.1		ug/m3	1	4/8/2023 1:04:00 AM
2,2,4-trimethylp	entane	< 0.70	0.70		ug/m3	1	4/8/2023 1:04:00 AM
4-ethyltoluene		< 0.74	0.74		ug/m3	1	4/8/2023 1:04:00 AM
Acetone -		11]	3.6		ug/m3	5	4/9/2023 5:23:00 PM
Allyl chloride		< 0.47	0.47		ug/m3	1	4/8/2023 1:04:00 AM
Benzene -		0.45 J	0.48	J	ug/m3	1	4/8/2023 1:04:00 AM
Benzyl chloride	15	< 0.86	0.86		ug/m3	1	4/8/2023 1:04:00 AM
Bromodichloron	lethane	< 1.0 600	1.0		ug/m3	1	4/8/2023 1:04:00 AM
Bromoform		< 1.6	1.6		ug/m3	1	4/8/2023 1:04:00 AM
Bromomethane		< 0.58	0.58		ug/m3	1	4/8/2023 1:04:00 AM
Carbon disulfide	-	0.53 J	0,47		ug/m3	1	4/8/2023 1:04:00 AM
Carbon tetrachic	oride 🗕	0.57 🕽	0.19		ug/m3	1	4/8/2023 1:04:00 AM
Chlorobenzene		< 0.69	0.69		ug/m3	1	4/8/2023 1:04:00 AM
Chloroethane		< 0.40	0.40		ug/m3	1	4/8/2023 1:04:00 AM
Chloroform		< 0.73	0.73		ug/m3	1	4/8/2023 1:04:00 AM
Chloromethane		1.1	0.31		ug/m3	1	4/8/2023 1:04:00 AM
cls-1,2-Dichloro	ethene	< 0.16	0.16		ug/m3	1	4/8/2023 1:04:00 AM
cis-1,3-Dichloro	propene	< 0.68	0.68		ug/m3	1	4/8/2023 1:04:00 AM
Cyclohexane		< 0.52	0.52		ug/m3	1	4/8/2023 1:04:00 AM
Dipromochlorom	nethane	< 1.3	1.3		ug/m3	1	4/8/2023 1:04:00 AM
Ethyl acetate		< 0.54	0.54		ug/m3	1	4/8/2023 1:04:00 AM
Ethylbenzene		< 0.65	0.65		ug/m3	1	4/8/2023 1:04:00 AM
Freon 11-		1.3 🔟	0.84		ug/m3	1	4/8/2023 1:04:00 AM
Freon 113		<1.1300	1.1		ug/m3	1	4/8/2023 1:04:00 AM
Freon 114		< 1.0	1.0		ug/m3	1	4/8/2023 1:04:00 AM

DL Detection Limit

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

E Estimated Value above quantitation range

J Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection

SC Sub-Contracted

Page 1 of 10

Centek/SanAir Technologies Laboratory

Date: 21-Apr-23

Lab ID: C23	04013-001A	Matrix	: AlR	
Project: 113-	117 N. Clinton	Collection Date	e: 3/29/202	3
Lab Order: C23	04013	Tag Number	r: 232,434	
CLIENT: LaB	ella Associates, P.C.	Client Sample ID	: OA-0329	2023

1UG/M3 W/ 0.2UG/M3 CT-TCE-V	C-DCE-1,1DCE	TO-	-15			Analyst: R.	JP
Freon 12	< 0.74	0.74		ug/m3	1	4/8/2023 1:04:00 AN	4
Heptane	< 0.61 (17)	0.61		ug/m3	1	4/8/2023 1:04:00 AM	1
Hexachloro-1,3-butadiene	< 1.6	1.6		ug/m3	1	4/8/2023 1:04:00 AN	4
Hexane	< 0.53	0.53		ug/m3	1	4/8/2023 1:04:00 AM	1
Isopropyl alcohol -	1.7 J	0.37		ug/m3	1	4/8/2023 1:04:00 AN	4
m&p-Xylene	< 1.3 5/17	1.3		ug/m3	1	4/8/2023 1:04:00 AM	1
Methyl Butyl Ketone	< 1.2	1.2		ug/m3	1	4/8/2023 1:04:00 AN	1
Methyl Ethyl Ketone 🗂	0.91	0.88		ug/m3	1	4/8/2023 1:04:00 AN	1
Methyl Isobutyl Ketone	< 1.250	1.2		ug/m3	1	4/8/2023 1:04:00 AN	1
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/8/2023 1:04:00 AN	1
Methylene chloride -	1.1 -	0.52		ug/m3	1	4/8/2023 1:04:00 AM	5
o-Xylene	< 0.65	0.65		ug/m3	1	4/8/2023 1:04:00 AN	1
Propylene	< 0.26	0.26		ug/m3	1	4/8/2023 1:04:00 AM	1
Styrene	< 0.64)	0.64		ug/m3	1	4/8/2023 1:04:00 AM	1
Tetrachloroethylene	LO=10 UJ	1.0	122	ug/m3	1	4/8/2023 1:04:00 AM	1
Tetrahydrofuran	< 0.44 00	0.44		ug/m3	1	4/8/2023 1:04:00 AM	1
Toluene -	0.41	0.57	J	ug/m3	1	4/8/2023 1:04:00 AM	1
trans-1,2-Dichloroethene	< 0.59 \/)	0.59		ug/m3	1	4/8/2023 1:04:00 AM	1
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/8/2023 1:04:00 AN	4
Trichtoroethene -	0.11 1	0.16	J	ug/m3	1	4/8/2023 1:04:00 AM	1
Vinyl acetate	< 0.53)	0.53		ug/m3	1	4/8/2023 1:04:00 AM	4
Vinyl Bromide	< 0.66 (17)	0.66		ug/m3	t	4/8/2023 1:04:00 AM	1
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/8/2023 1:04:00 AN	1

111

Qualifiers:

. Results reported are not blank corrected DL Detection Limit

- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection
- SC Sub-Contracted

CONTRACTOR IN MEMORY IN CONTRACTOR CONTRACTOR

Date: 21-Apr-23

9 XX

1UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE	E-1,1DCE	TO-1	5		Analyst: RJP
1,1,1-Trichloroethane	< 0.82	0.82	ug/m3	1	4/8/2023 1:48:00 AM
1,1,2,2-Tetrachloroethane	< 1.0	1.0	ug/m3	1	4/8/2023 1:48:00 AM
1,1,2-Trichloroethane	< 0.82	0.82	ug/m3	1	4/8/2023 1:48:00 AM
1,1-Dichloroethane	< 0.61	0.61	ug/m3	1	4/8/2023 1:48:00 AM
1,1-Dichloroethene	< 0.16	0.16	ug/m3	1	4/8/2023 1:48:00 AM
1,2,4-Trichlorobenzene	< 1.1	1.1	ug/m3	1	4/8/2023 1:48:00 AM
1,2,4-Trimethylbenzene -	1.2]	0.74	ug/m3	1	4/8/2023 1:48:00 AM
1,2-Dibromoethane	< 1.2	1.2	ug/m3	1	4/8/2023 1:48:00 AM
1,2-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/8/2023 1:48:00 AM
1,2-Dichloroethane	< 0.61	0.61	ug/m3	1	4/8/2023 1:48:00 AM
1,2-Dichloropropane	< 0.69	0.69	ug/m3	1	4/8/2023 1:48:00 AM
1,3,5-Trimethylbenzene —	0.93 🅽	0.74	ug/m3	1	4/8/2023 1:48:00 AM
1,3-butadiene	< 0.33	0.33	ug/m3	1	4/8/2023 1:48:00 AM
1,3-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/8/2023 1:48:00 AM
1,4-Dichlorobenzene	< 0.90	0.90	ug/m3	1	4/8/2023 1:48:00 AM
1,4-Dioxane	< 1.1	1.1	ug/m3	1	4/8/2023 1:48:00 AM
2,2,4-trimethylpentane	< 0.70	0.70	ug/m3	1	4/8/2023 1:48:00 AM
4-ethyltoluene	< 0.74	0.74	ug/m3	1	4/8/2023 1:48:00 AM
Acetone -	37 7	7.1	ug/m3	10	4/9/2023 6:06:00 PM
Allyl chloride	< 0.47	0.47	ug/m3	1	4/8/2023 1:48:00 AM
Benzene 🚤	1.1 J	0.48	ug/m3	1	4/8/2023 1:48:00 AM
Benzyl chloride	< 0.86	0.86	ug/m3	1	4/8/2023 1:48:00 AM
Bromodichloromethane	< 1.0 500	1.0	ug/m3	1	4/8/2023 1:48:00 AM
Bromoform	< 1.6	1.6	ug/m3	1	4/8/2023 1:48:00 AM
Bromomethane	< 0.58	0.58	ug/m3	1	4/8/2023 1:48:00 AM
Carbon disulfide -	0.34	0.47	J ug/m3	1	4/8/2023 1:48:00 AM
Carbon tetrachloride	0.57 7	0.19	ug/m3	1	4/8/2023 1:48:00 AM
Chlorobenzene	< 0.69	0.69	ug/m3	1	4/8/2023 1:48:00 AM
Chloroethane	< 0.40	0.40	ug/m3	1	4/8/2023 1:48:00 AM
Chloroform -	2.5 J	0.73	ug/m3	1	4/8/2023 1:48:00 AM
Chloromethane -	1.1 7	0.31	ug/m3	1	4/8/2023 1:48:00 AM
cis-1,2-Dichloroethene	< 0.16	0.16	ug/m3	1	4/8/2023 1:48:00 AM
cis-1,3-Dichloropropene	< 0.68	0,68	ug/m3	1	4/8/2023 1:48:00 AM
Cyclohexane	< 0.52	0.52	ug/m3	1	4/8/2023 1:48:00 AM
Dibromochloromethane	< 1.3	1.3	ug/m3	1	4/8/2023 1:48:00 AM
Ethyl acetate -	1.4 7	0.54	ug/m3	1	4/8/2023 1:48:00 AM
Ethylbenzene -	0.61	0.65	J ug/m3	1	4/8/2023 1:48:00 AM
Freon 11 🥌	1.3 1	0.84	ug/m3	1	4/8/2023 1:48:00 AM
Freon 113	< 1.1	1.1	ug/m3	1	4/8/2023 1:48:00 AM
Freon 114	< 1.0 70 5	1.0	ug/m3	1	4/8/2023 1:48:00 AM
······································		a a	4 44		
Qualifiers: . Results reported are not b	lank corrected	1	B Analyte do	tected in the as	sociated Method Blank
DL Detection Limit		NAM	E Estimated	Value above q	uantitation range
H Holding times for prepara	tion or analysis exceeded	1/18 0	J Analyte de	tected below q	uantitation limit

Holding times for preparation or analysis exceeded H

JN Non-routine analyte. Quantitation estimated.

s Spike Recovery outside accepted recovery limits ND Not Detected at the Limit of Detection

SC Sub-Contracted

Date: 21-Apr-23

				2 mil	Cinto	Dr	Date Analyzed
Analyses		Result	DL	Oual	Units	DE	Date Analyzad
Lab ID: C2	04013-002A				Matrix:	AĬŔ	
Project: 11:	-117 N. Clinton				Collection Date:	3/29/2	2023
Lab Order: C2	04013				Tag Number:	285,4	54
CLIENT: La	Bella Associates, l	P.C.		C	lient Sample ID:	IA-02	-03292023

Freon 12	< 0.74	0.74		ug/m3	1	4/8/2023 1:48:00 AM
Heptane -	0.98 🎵	0.61		ug/m3	1	4/8/2023 1:48:00 AM
Hexachloro-1,3-butadiene	< 1.6 UT)	1.6		ug/m3	t	4/8/2023 1:48:00 AM
Hexane 🛌	0.74	0.53		ug/m3	1	4/8/2023 1:48:00 AM
Isopropyl alcohol 🥌	50 5 1	15		ug/m3	40	4/9/2023 6:48:00 PM
m&p-Xylene	1.9	1.3		ug/m3	1	4/8/2023 1:48:00 AM
Methyl Butyl Ketone	< 1.2 00	1.2		ug/m3	1	4/8/2023 1:48:00 AM
Methyl Ethyl Ketone 🗂	8.0 J	8.8	Ļ	ug/m3	10	4/9/2023 6:06:00 PM
Methyl Isobutyl Ketone	< 1.2\(1)	1.2		ug/m3	1	4/8/2023 1:48:00 AM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/8/2023 1:48:00 AM
Methylene chloride 😁	1.8	0.52		ug/m3	1	4/8/2023 1:48:00 AM
o-Xylene 🥌	0.69	0.65		ug/m3	1	4/8/2023 1:48:00 AM
Propylene	< 0.26 07	0.26		ug/m3	1	4/8/2023 1:48:00 AM
Styrene —	0.55	0.64	J	ug/m3	1	4/8/2023 1:48:00 AM
Tetrachloroethylene -	11 (👘	1.0		ug/m3	1	4/8/2023 1:48:00 AM
Tetrahydrofuran 🥌	4.4	0.44		ug/m3	1	4/8/2023 1:48:00 AM
Toluene -	2.8	0.57		ug/m3	1	4/8/2023 1:48:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	t	4/8/2023 1:48:00 AM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/8/2023 1:48:00 AM
Trichloroethene -	0.48 🎵	0.16		ug/m3	1	4/8/2023 1:48:00 AM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/8/2023 1:48:00 AM
Vinyl Bromide	< 0.66 >00	0.66		ug/m3	1	4/8/2023 1:48:00 AM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/8/2023 1:48:00 AM

1115

Qualifiers:

- . Results reported are not blank corrected
- DL. Detection Limit
- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
 - E Estimated Value above quantitation range
 - J Analyte detected below quantitation limit
 - ND Not Detected at the Limit of Detection
 - SC Sub-Contracted
- Page 4 of 10

Date: 21-Apr-23

CLIENT:		LaBella Associates, P.C	 2.		C	lien	t Sample ID:	Dup-0	3292023	a , , , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Lab Order:		C2304013				T	ag Number:	422,11	71	
Project:		113-117 N. Clinton				Col	ection Date:	3/29/20	023	
Lab ID:		C2304013-003A					Matrix:	AIR		
Analyses			Result	ÐL	Qual	Un	its	ĎF	Date An:	ilyzed
1UG/M3 W/ (0.200	M3 CT-TCE-VC-DCE-1	I.1DCE	тс)-15	******	WWWWWWWWWWWWW		An	alvst: RJP
1,1,1-Trichlo	proetha	INB	< 0.82	0.82		ug/r	n3	1	4/8/2023 2:	33:00 AM
1,1,2,2-Tetra	achlor	pethane	< 1.0	1.0		ug/r	n3	1	4/8/2023 2:	33:00 AM
1,1,2-Trichlo	proetha	ine	< 0.82	0.82		ug/r	n3	1	4/8/2023 2:	33:00 AM
1,1-Dichloroe	ethane	•	< 0.61	0.61		ug/r	n3	1	4/8/2023 2:	33:00 AM
1,1-Dichloroe	ethene)	< 0.16	0,16		ug/r	n3	1	4/8/2023 2:	33:00 AM
1,2,4-Trichlo	roben	zene	< 1.1	1.1		ug/r	n3	1	4/8/2023 2:	33:00 AM
1,2,4-Trimet	hylber	zene 🖛	1.2 J	0.74		ug/r	n3	1	4/8/2023 2:	33:00 AM
1.2-Dibromo	ethan	5	< 1.2)	1.2		ug/r	n3	1	4/8/2023 2:	33:00 AM
1,2-Dichlorol	benze	ne	< 0.90	0.90		ug/r	n3	1	4/8/2023 2:	33:00 AM
1,2-Dichloroe	ethane)	< 0.61	0.61		ug/r	n3	1	4/8/2023 2:	33:00 AM
1,2-Dichlorop	propar	18	< 0.69	0.69		ug/r	n3	1	4/8/2023 2:	33:00 AM
1,3,5-Trimeti	hylber	zene -	1.2 J	0.74		ug/r	n3	1	4/8/2023 2:	33:00 AM
1,3-butadien	e		< 0.33	0.33		ug/r	n3	1	4/8/2023 2:	33:00 AM
1,3-Dichlorol	benze	ne	< 0.90	0.90		uġ/r	n3	1	4/8/2023 2:	33:00 AM
1,4-Dichlorol	benze	ne	< 0.90	0,90		ug/r	n3	1	4/8/2023 2:	33:00 AM
1,4-Dioxane			< 1.1 201	1.1		ug/r	n3	1	4/8/2023 2:	33:00 AM
2,2,4-trimeth	hylpent	ane	< 0.70	0.70		ug/r	n3	1	4/8/2023 2:	33:00 AM
4-ethyltoluen	1e		< 0.74	0.74		ug/r	n3	1	4/8/2023 2:	33:00 AM
Acetone			29 J	7.1		ug/r	n3	10	4/9/2023 7:	31:00 PM
Allyl chloride	;		< 0.47UJ	0.47		ug/r	n3	1	4/8/2023 2:	33:00 AM
Benzene	12		1.1 J	0.48		ug/r	n3	1	4/8/2023 2:	33:00 AM
Benzyl chlori	ide		< 0.86)	0.86		ug/r	n3	1	4/8/2023 2:	33:00 AM
Bromodichia	romet	hane	< 1.0	1.0		ug/r	n3	1	4/8/2023 2:	33:00 AM
Bromoform			< 1.6 (1)	1.6		uq/r	n3	1	4/8/2023 2:	33:00 AM
Bromometha	ane		< 0.58	0.58		ua/r	n3	1	4/8/2023 2:	33:00 AM
Carbon disul	lfide -		0.34]	0.47	J	ug/r	n3	1	4/8/2023 2:	33:00 AM
Carbon tetra	chloric	le 🛶	0.57 3	0.19		uq/r	п3	1	4/8/2023 2:	33:00 AM
Chlorobenze	ne		< 0.69	0.69		ug/r	n3	1	4/8/2023 2:	33:00 AM
Chloroethane	e		< 0.40	0.40		ug/r	n3	1	4/8/2023 2:	33:00 AM
Chloroform -	-		2.7 5	0.73		ug/r	n3	1	4/8/2023 2:	33:00 AM
Chlorometha	ane 🗕	•	1.3]	0.31		ug/r	n3	1	4/8/2023 2:	33:00 AM
cis-1,2-Dichle	oroeth	ene	< 0.16	0.16		ug/r	n3	1	4/8/2023 2:	33:00 AM
cis-1,3-Dichle	oropro	pene	< 0.68	0.68		ug/r	n3	1	4/8/2023 2:	33:00 AM
Cyclohexane	3		< 0.52	0.52		ug/r	n3	1	4/8/2023 2:	33:00 AM
Dibromochlo	romet	hane	< 1.3	1.3		ug/r	n3	1	4/8/2023 2:	33:00 AM
Ethyl acetate	2		1.5 J	0.54		ug/r	n3	1	4/8/2023 2:	33:00 AM
Ethylbenzene	e 🦟		0.56 1	0.65	J	ug/r	n3	1	4/8/2023 2:	33:00 AM
Freon 11 -			1.4 1	0.84		ug/r	n3	1	4/8/2023 2:	33:00 AM
Freon 113			< 1.1 11	1.1		ug/r	n3	1	4/8/2023 2:	33:00 AM
Freon 114			< 1,0	1.0		ug/r	n3	1	4/8/2023 2:	33:00 AM
Qualifiers:		Results reported are not blan	k corrected	A11	· ···	B	Analyte detected	in the ass	ociated Method	Blank
	DL	Detection Limit		16	1	Е	Estimated Value	above qu	antitation range	
	н	Holding times for preparatio	n or analysis exceede	d /"		j	Analyte detected	below gu	antitation limit	
	JN	Non-routine analyte, Quantit	ation estimated.		1	ND	Not Detected at t	he Limit	of Detection	
	S	Spike Recovery outside acce	pted recovery limits			SC	Sub-Contracted			Page 5 of 10

Date: 21-Apr-23

Analyses		Result	DL	Qual	Units	DF	Date Analyzed
Lab ID:	C2304013-003A				Matrix:	AIR	
Project:	113-117 N. Clinton				Collection Date:	3/29/20)23
Lab Order:	C2304013				Tag Number:	422,11	71
CLIENT:	LaBella Associates, P.	C.		C	lient Sample ID:	Dup-03	3292023
****							· · · · · · · · · · · · · · · · · · ·

UG/M3 W/ 0.2UG/M3 CT-TCE-VC	-DCE-1,1DCE	TO.	-15			Analyst: RJF
Freon 12	< 0.74(2)	0.74		ug/m3	1	4/8/2023 2:33:00 AM
Heptane	0.94 🗂	0.61		ug/m3	1	4/8/2023 2:33:00 AM
Hexachloro-1,3-butadiene	< 1.6 03	1.6		ug/m3	1	4/8/2023 2:33:00 AM
Hexane 🛏	0.74	0.53		ug/m3	1	4/8/2023 2:33:00 AM
isopropyl alcohol —	52 4	15		ug/m3	40	4/9/2023 8:13:00 PM
n&p-Xylene —	1.6	1.3		ug/m3	1	4/8/2023 2:33:00 AM
Methyl Butyl Ketone	< 1.2 00	1.2		ug/m3	1	4/8/2023 2:33:00 AM
Methyl Ethyl Ketone 🕶	6.8 🍠	8.8	J	ug/m3	10	4/9/2023 7:31:00 PM
Methyl Isobutyl Ketone	< 1.2 \ (5)	1.2		ug/m3	1	4/8/2023 2:33:00 AM
Methyl tert-butyl ether	< 0.54	0.54		ug/m3	1	4/8/2023 2:33:00 AM
Aethylene chloride 🥣	1.9	0.52		ug/m3	1	4/8/2023 2:33:00 AM
-Xylene 🗝	0.65	0.65		ug/m3	1	4/8/2023 2:33:00 AM
Propylene	< 0.26	0.26		ug/m3	1	4/8/2023 2:33:00 AM
Styrene 👝	0.65	0.64	J	ug/m3	1	4/8/2023 2:33:00 AM
Fetrachloroethylene —	12	1.0		ug/m3	1	4/8/2023 2:33:00 AM
letrahydrofuran	4.8	0.44		ug/m3	1	4/8/2023 2:33:00 AM
Foluene —	2.9	0.57		ug/m3	1	4/8/2023 2:33:00 AM
rans-1,2-Dichloroethene	< 0.59 07	0.59		ug/m3	1	4/8/2023 2:33:00 AM
rans-1,3-Dichloropropene	< 0.68 03	0.68		vg/m3	1	4/8/2023 2:33:00 AM
Trichloroethene —	0.43 J	0.16		ug/m3	1	4/8/2023 2:33:00 AM
/inyl acetate	< 0.53	0.53		ug/m3	1	4/8/2023 2:33:00 AM
/inyl Bromide	< 0.66	0.66		ug/m3	1	4/8/2023 2:33:00 AM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/8/2023 2:33:00 AM

		······································		
Qualificrs:		Results reported are not blank corrected	в	Analyte detected in the associated Method Blank
	DL.	Detection Limit	E	Estimated Value above quantitation range
	Н	Holding times for preparation or analysis exceeded	J	Analyte detected below quantitation limit
	JN	Non-routine analyte. Quantitation estimated.	ND	Not Detected at the Limit of Detection

S Spike Recovery outside accepted recovery limits

SC Sub-Contracted

Date: 21-Apr-23

CLIENT:	LaBella Associates, P.C	2-		C	lient Sample ID	: IA-01	-03292023
Lab Order:	C2304013				Tag Number	: 212 1	416
Project	113 117 N. Olinton				Collection Date	. 2/20/2	2022
Lab ID.	CODO 4012 0011				Concetion Date	. 312912	.025
Cad ID:	C2304013-004A				Matrix	; AIR	
Analyses		Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2	UG/M3 CT-TCE-VC-DCE-1	,1DCE	тс)-15			Analyst: RJP
1,1,1-Trichloroe	ethane	< 0.82	0.82		ug/m3	1	4/7/2023 10:34:00 PM
1,1,2,2-Tetrach	loroethane	< 1.0	1.0		ug/m3	1	4/7/2023 10:34:00 PM
1,1.2-Trichloroe	ethane	< 0.82	0.82		ug/m3	1	4/7/2023 10:34:00 PM
1,1-Dichloroeth	lane	< 0.61	0,61		ug/m3	1	4/7/2023 10:34:00 PM
1,1-Dichloroeth	tene	< 0.16	0.16		ug/m3	1	4/7/2023 10:34:00 PM
1.2,4-Trichlorol	benzene	< 1.1	1.1		ug/m3	1	4/7/2023 10:34:00 PM
1,2,4-Trimethyl	benzene	0.98 3	0.74		ug/m3	1	4/7/2023 10:34:00 PM
1,2-Dibromoeth	lane	< 1.2)	1.2		ug/m3	1	4/7/2023 10:34:00 PM
1,2-Dichlorober	nzene	< 0.90	0.90		ug/m3	1	4/7/2023 10:34:00 PM
1,2-Dichloroeth	ane	< 0.61	0.61		ug/m3	1	4/7/2023 10:34:00 PM
1,2-Dichloropro	opane	< 0.69	0.69		ug/m3	1	4/7/2023 10:34:00 PM
1,3,5-Trimethyl	benzene 🛀	0.69	0.74	J	ug/m3	1	4/7/2023 10:34:00 PM
1,3-butadiene		< 0.33	0.33		ug/m3	1	4/7/2023 10:34:00 PM
1,3-Dichlorober	nzene	< 0.90	0.90		ug/m3	1	4/7/2023 10:34:00 PM
1,4-Dichlorober	nzene	< 0.90	0.90		ug/m3	1	4/7/2023 10:34:00 PM
1,4-Dioxane		< 1.1	1.1		ug/m3	1	4/7/2023 10:34:00 PM
2,2,4-trimethylp	pentane	< 0.70	0,70		ug/m3	1	4/7/2023 10:34:00 PM
4-ethyltoluene		< 0.74	0.74		ug/m3	1	4/7/2023 10:34:00 PM
Acetone 🛥		33 []	7.1		ug/m3	10	4/9/2023 4:00:00 PM
Aliyl chloride		< 0.4705	0.47		ug/m3	1	4/7/2023 10:34:00 PM
Benzene-		1.2 1	0.48		ug/m3	1	4/7/2023 10:34:00 PM
Benzyl chloride	6	< 0.86	0.86		ug/m3	1	4/7/2023 10:34:00 PM
Bromodichloron	nethane	< 1.0	1.0		ug/m3	1	4/7/2023 10:34:00 PM
Bromoform		< 1.6 0	1.6		ua/m3	1	4/7/2023 10:34:00 PM
Bromomethane	í.	< 0.58	0.58		ug/m3	1	4/7/2023 10:34:00 PM
Carbon disulfide	9	< 0.47	0.47		ug/m3	1	4/7/2023 10:34:00 PM
Carbon tetrachi	oride 🛥	0.57	0.19		ug/m3	1	4/7/2023 10:34:00 PM
Chlorobenzene		< 0.69 1 -1	0.69		ug/m3	1	4/7/2023 10:34:00 PM
Chloroethane		< 0.40	0,40		ug/m3	1	4/7/2023 10:34:00 PM
Chloroform		3.0)	0.73		ug/m3	1	4/7/2023 10:34:00 PM
Chloromethane	-	0.95	0.31		ug/m3	1	4/7/2023 10:34:00 PM
cis-1,2-Dichloro	ethene 🥣	0.36	0.16		ug/m3	1	4/7/2023 10:34:00 PM
cis-1,3-Dichloro	propene	< 0.68 07	0.68		ug/m3	1	4/7/2023 10:34:00 PM
Cyclohexane		< 0.5200	0.52		ug/m3	1	4/7/2023 10:34:00 PM
Dibromochloron	nethane	< 1.3 03	1.3		ug/m3	1	4/7/2023 10:34:00 PM
Ethyl acetate-		1.3	0.54		ug/m3	1	4/7/2023 10:34:00 PM
Ethylbenzene		0.52 1	0.65	J	ug/m3	1	4/7/2023 10:34:00 PM
Freon 11 -		1.3	0.84		ug/m3	1	4/7/2023 10:34:00 PM
Freon 113		<1.11/1	1.1		ug/m3	1	4/7/2023 10:34:00 PM
Freon 114		< 1.0	1.0		ug/m3	1	4/7/2023 10:34:00 PM
Qualifiers:	. Results reported are not blan	k corrected			B Analyte detecte	t in the as	sociated Method Blank
D	DL Detection Limit		01	1	E Estimated Valu	above au	antitation range
ł	1 Holding times for preparation) or analysis exceede	d ///	/	J Analyte detecte	d below at	uantitation limit

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

Spike Recovery outside accepted recovery limits S

Page 7 of 10

ND Not Detected at the Limit of Detection

SC Sub-Contracted

Date: 21-Apr-23

Analyses		Result	DL	Oual	Units	DF	Date Analyzed	
Lab ID:	C2304013-004A				Matri	x: AIR		
Project:	113-117 N. Clinton				Collection Dat	e: 3/29/2	:023	
Lab Order:	C2304013				Tag Numbe	r: 212,14	416	
CLIENT:	LaBella Associates, P.C.			C	lient Sample II): IA-01	-03292023	
******	· · · · · · · · · · · · · · · · · · ·	****			*****			

Anaryses	Result	DL	Qual	Units	DF	Date Analyzed
UG/M3 W/ 0.2UG/M3 CT-TCE-VC-DCE	-1,1DCE	то	-15			Analyst: RJP
Freon 12	< 0.74	0.74		ug/m3	1	4/7/2023 10:34:00 PM
Heptane 🛁	0.90 1	0.61		ug/m3	1	4/7/2023 10:34:00 PM
Hexachloro-1,3-butadiene	< 1.6 00	1.6		ug/m3	1	4/7/2023 10:34:00 PM
Hexane —	0.70	0.53		ug/m3	1	4/7/2023 10:34:00 PM
isopropyl alcohol 🦐	56 3	15		ug/m3	40	4/9/2023 4:42:00 PM
m&p-Xylene	1.6	1.3		ug/m3	1	4/7/2023 10:34:00 PM
Methyl Butyl Ketone	< 1.2 UD	1.2		ug/m3	1	4/7/2023 10:34:00 PM
Methyl Ethyl Ketone —	9.1 7	0.88		ug/m3	1	4/7/2023 10:34:00 PM
Methyl Isobutyl Ketone	< 1,2	1.2		ug/m3	1	4/7/2023 10:34:00 PM
Methyl tert-butyl ether	< 0.54 00	0.54		ug/m3	1 .	4/7/2023 10:34:00 PM
Methylene chloride -	1.61 1	0.52		ug/m3	1	4/7/2023 10:34:00 PM
o-Xylene 🛰	0.56	0.65	J	ug/m3	1	4/7/2023 10:34:00 PM
Propylene	< 0.26 0	0.26		ug/m3	1	4/7/2023 10:34:00 PM
Styrene 🛰	0.47)	0.64	J	ug/m3	1	4/7/2023 10:34:00 PM
Tetrachloroethylene -	13 1	1.0		ug/m3	1	4/7/2023 10:34:00 PM
Tetrahydrofuran —	4.0	0.44		ug/m3	1	4/7/2023 10:34:00 PM
Toluene -	3.1	0.57		ug/m3	1	4/7/2023 10:34:00 PM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	1	4/7/2023 10:34:00 PM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3	1	4/7/2023 10:34:00 PM
Trichloroethene -	0.48]	0.16		ug/m3	1	4/7/2023 10:34:00 PM
Vinyl acetate	< 0.53 1	0.53		ug/m3	1	4/7/2023 10:34:00 PM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/7/2023 10:34:00 PM
Vinyl chloride	< 0.10	0.10		ug/m3	1	4/7/2023 10:34:00 PM

Qualifiers:

DL Detection Limit

- H Holding times for preparation or analysis exceeded
- JN Non-routine analyte. Quantitation estimated.

. Results reported are not blank corrected

- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection
- SC Sub-Contracted

Date: 21-Apr-23

CLIENT:	LaBella Associates, P.C.			C	lient Sample ID:	IA-03-	-03292023
Lab Order:	C2304013				Tag Number:	284,43	32
Project:	113-117 N. Clinton				Collection Date:	3/29/2	023
Lab ID:	C2304013-005A				Matrix:	AIR	
Analyses		Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.21	UG/M3 CT-TCE-VC-DCE-1,	IDCE	то)-15			Analyst: RJP
1,1,1-Trichloroet	thane	< 0.82	0.82		ug/m3	1	4/8/2023 3:17:00 AM
1,1,2,2-Tetrachi	oroethane	< 1.0	1.0		ug/m3	1	4/8/2023 3:17:00 AM
1,1,2-Trichloroet	thane	< 0.82	0.82		ug/m3	1	4/8/2023 3:17:00 AM
1,1-Dichloroethe	ane	< 0.61	0.61		ug/m3	1	4/8/2023 3:17:00 AM
1,1-Dichloroethe	ene	< 0.16	0.16		ug/m3	1	4/8/2023 3:17:00 AM
1,2,4-Trichlorob	enzene	< 1.1	1.1		ug/m3	1	4/8/2023 3:17:00 AM
1,2,4-Trimethylb	oenzene -	0.93	0.74		ug/m3	1	4/8/2023 3:17:00 AM
1,2-Dibromoetha	ane	< 1.2	1.2		ug/m3	1	4/8/2023 3:17:00 AM
1,2-Dichloroben:	zene	< 0.90	0.90		ug/m3	1	4/8/2023 3:17:00 AM
1,2-Dichloroetha	ane	< 0.61	0.61		ug/m3	1	4/8/2023 3:17:00 AM
1,2-Dichloroprop	bane	< 0.69	0.69		ug/m3	1	4/8/2023 3:17:00 AM
1,3,5-Trimethylb	enzene	< 0.74	0.74		ua/m3	1	4/8/2023 3:17:00 AM
1,3-butadiene		< 0.33	0.33		ua/m3	1	4/8/2023 3:17:00 AM
1,3-Dichloroben:	zene	< 0.90)	0.90		ug/m3	1	4/8/2023 3-17-00 AM
1.4-Dichloroben:	zene	< 0.90	0.90		ug/m3	1	4/8/2023 3:17:00 AM
1,4-Dioxane		< 1.1	1.1		ug/m3	1	4/8/2023 3:17:00 AM
2,2,4-trimethylpe	entane	< 0.70	0.70		ua/m3	1	4/8/2023 3:17:00 AM
4-ethyltoluene		< 0.74	0.74		uo/m3	1	4/8/2023 3:17:00 AM
Acetone -		8.5 J	7.1		ug/m3	10	4/9/2023 8:56:00 PM
Allyl chloride		< 0.4700	0.47		ua/m3	1	4/8/2023 3:17:00 AM
Benzene		0.67 J	0.48		uo/m3	1	4/8/2023 3:17:00 AM
Benzyl chloride		< 0.86	0.86		ug/m3	1	4/8/2023 3:17:00 AM
Bromodichlorom	ethane	<1.0/1	10		ug/m3	1	4/8/2023 3:17:00 AM
Bromoform		< 1.6	16		ug/m3	1	4/8/2023 3:17:00 AM
Bromomethane		< 0.58	0.58		ua/m3		4/8/2023 3.17:00 AM
Carbon disulfide		< 0.47	0.47		ug/m3	1	A/8/2023 3.17.00 AM
Carbon tetrachic	pride —	0.577	0.19		ug/m3	÷	4/8/2023 3:17:00 AM
Chlorobenzene		< 0.69	0.69		ualma	1	4/8/2023 3.17.00 AM
Chloroethane		< 0.40	0.40		ug/m3	1	4/0/2023 3.17.00 MM
Chloroform -		0.59 7	0.73	a.	ua/m3		4/8/2023 3:17:00 AM
Chloromethane		107	0.31	v	ug/m3	,	4/8/2023 3:17:00 AM
cis-1.2-Dichloroe	ethene	< 0.16	0.16		ug/m3	1	4/0/2023 3.17.00 AN
cis-1.3-Dichloror	propene	< 0.68	0.10		ug/m3	1	4/8/2023 3:17:00 AM
Cyclohexane		< 0.52	0.50		ug/m3	1	4/8/2023 2:17:00 AM
Dibromochlorom	ethane	1307	1 2		ug/m3		4/0/2023 3.17.00 AM
	Sector Bar	1.5	0.64		ug/m3	4	4/0/2023 3:17:00 AM
Ethyl acetate					uu/1110		
Ethyl acetate		< 0.54	0.64		ualma	4	4/0/2023 3.17,00 AN
Ethyl acetate Ethylbenzene Ereon 11 -		< 0.65	0.65		ug/m3	1	4/8/2023 3:17:00 AM
Ethyl acetate Ethylbenzene Freon 11 -		< 0.65 1.3 1	0.65		ug/m3 ug/m3	1	4/8/2023 3:17:00 AM 4/8/2023 3:17:00 AM 4/8/2023 3:17:00 AM

Qualifiers: . Results reported are not blank corrected

DL Detection Limit

H Holding times for preparation or analysis exceeded

JN Non-routine analyte. Quantitation estimated.

S Spike Recovery outside accepted recovery limits

B Analyte detected in the associated Method Blank

Estimated Value above quantitation range E

J. Analyte detected below quantitation limit

ND Not Detected at the Limit of Detection SC Sub-Contracted

..

Page 9 of 10

.....

Date: 21-Apr-23

Analyses		Danuela.	N A 1			
Lab ID:	C2304013-005A			Matrix:	AIR	
Project:	113-117 N. Clinton			Collection Date:	3/29/202	23
Lab Order:	C2304013			Tag Number:	284,432	
CLIENT:	LaBella Associates, P.	¢.	C	lient Sample ID:	1A-03-03	3292023

Analyses	Result	DL	Qual	Units	DF	Date Analyzed
1UG/M3 W/ 0.2UG/M3 CT-TCE-V0	C-DCE-1,1DCE	то)-15			Analyst: P ID
Freon 12	< 0.74 UJ	0.74		ua/m3	1	4/8/2023 3:17:00 AM
Heptane —	0.66]	0.61		ug/m3	1	4/8/2023 3:17:00 AM
Hexachloro-1,3-butadiene	< 1.601	1.6		ug/m3	1	4/8/2023 3:17:00 AM
Hexane	0.74]	0.53		ug/m3	1	4/8/2023 3:17:00 AM
Isopropyl alcohol	14 1	3.7		ug/m3	10	4/9/2023 8:56:00 PM
m&p-Xylene —	1.2 1	1.3	J	ug/m3	1	4/8/2023 3:17:00 AM
Methyl Butyl Ketone	< 1.2 00	1.2		ua/m3	1	4/8/2023 3:17:00 AM
Methyl Ethyl Ketone -	0.86 1	0.88	J	ug/m3	i	4/8/2023 3:17:00 AM
Methyl Isobutyl Ketone	< 1.2\ (1	1.2		ug/m3	1	4/8/2023 3:17:00 AM
Methyl tert-butyl ether	< 0.54	0.54		ua/m3	1	4/8/2023 3:17:00 AM
Methylene chloride -	1.0	0.52		ug/m3	1	4/8/2023 3-17-00 AM
o-Xylene 🛥	0.48	0.65	J	uo/m3	1	4/8/2023 3:17:00 AM
Propylene	< 0.26	0.26		ua/m3		4/8/2023 3:17:00 AM
Styrene	< 0.64	0.64		ua/m3	,	4/8/2023 3:17:00 AM
Tetrachloroethylene	< 1.0	1.0		ug/m3		4/8/2023 2:17:00 AN
Tetrahydrofuran	< 0.44	0.44		ug/m3	4	4/0/2023 3.17.00 AM
Toluene -	1.4 1	0.57		ua/m3	4	4/8/2022 2:17:00 AM
trans-1,2-Dichloroethene	< 0.59	0.59		ug/m3	4	4/0/2023 3.17.00 AM
trans-1,3-Dichloropropene	< 0.68	0.68		ug/m3		4/0/2023 3.17.00 AM
Trichloroethene -	0.16 1	0.16		ug/m3	1	4/0/2023 3:17:00 AM
Vinyl acetate	< 0.53	0.53		ug/m3	1	4/0/2023 3:17:00 AM
Vinyl Bromide	< 0.66	0.66		ug/m3	1	4/0/2023 3:17:00 AM
Vinyl chloride	< 0.10	0.00		ug/m2	1	4/8/2023 3:17:00 AM
1	- 0.10	0.10		ugnns	1	4/8/2023 3:17:00 AM

112

Qualifiers:

11

Results reported are not blank corrected DL Detection Limit

- Holding times for preparation or analysis exceeded H
- JN Non-routine analyte. Quantitation estimated.
- Spike Recovery outside accepted recovery limits S
- B Analyte detected in the associated Method Blank
- E Estimated Value above quantitation range
- J Analyte detected below quantitation limit
- ND Not Detected at the Limit of Detection
- SC Sub-Contracted

	GC/MS QA-QC (Theck Report				
fune Fil fune Tim	e : C:\msdchem\1\da e : 7 Apr 2023 13	lta\AU040704.1 .:21 am	0			
)aily Ca	libration File : C:	\msdchem\l\da	ata\AU040704.D		17,188	
	(BFB)		10,328 (ISI) 51375	12,533 (IS2) 222952	(153) 191290	
"ile	Sample Surrog	ate Recovery	% Internal	Standard	Responses	
10040705	D ALCS1UG-040723	124 🗸	4	7337	202503	167434
10040706	.D AMB1UG-040723	73	4	9206	187681	163364
10040719	.D C2304013-004A	90,10,328	17.188	7312	180788	184420
10040720	.p C2304013-004A MS	116	51	0026 :	196915	208289
VU040721	.D C2304013-004A MSD	112	5:	1036 :	211802	224407
10040722	.D C2304013-001A	88 10.334 12	2,534 17,188	3413 :	191349	176071
10040723	.D C2304013-002A	92 10,328	21.533 17.188 50	0098 :	201967	208052
1040724	.D C2304013-003A	94 10,322 12,	17.188 534 48	3907 ;	197285	200731
1040725	.D C2304013-005A	88 10.328 12	17.188	3633 3	194347	175613
\U040727	.D ALCS1UGD-040723	124	51	1359 2	209627	189419
(fails) -	- fails 24hr time c	heck * - fa	ils criteria	n in La III <i>de la</i> la ve		

r F

Created: Fri Apr 14 14:31:01 2023 Instrument 1

GC/MS QA-QC C	heck Report				
fune File : C:\msdchem\l\da fune Time : 9 Apr 2023 9	ta\AU040902.D :53 am				
Daily Calibration File : C:	\msdchem\l\data\AU	J040902.D			
		10,328	12.534	17.188	
(BFB)		(151) 48137	(152) 188843	(193) 188602	
File Sample Surrog	ate Recovery %	Interna	l Standard	l Responses	
4U040903,D					
ALCS1UG-040923	102		47955	188975	190397
AU040904.D					
AMB1UG-040923	72		48451	169641	147458
AU040910.D	14 20 4 15	7159			
C2304013-004A 10X	74 12.533	E 100	44942	160627	145763
AU040911.D	10.378	17.188	un an mar in mar un in a	9 No. 13. 19 NJ. 65 AL 15 NJ NG 54	
C2304013-004A 40X	10 12,533		43763	154050	110060
4U040912.D	-10.328 I	17.188			
C2304013-001A 5X	(15) 12.534		44133	157575	143210
AU040913.D	10.228 1	7.188			
C2304013-002A 10X	(2) 12,539	•	44597	158259	135918
10040914.D	10.328 17	188			
C2304013-002A 40X	12 12,539		13328	152951	122449
\U040915.D	× 10,328 (2.188			
C2304013-003A 10X	16 12,533	1110	14868	155505	142289
\U040916.D	10:322 17	2,194			
C2304013-003A 40X	68* 12,539		44093	151946	124074
AU040917.D	10,328 1	1,188			
C2304013-005A 10X	(71) 12,534	4	4403	153285	122192
4U040928.D					
ALCS1UGD-040923	120	4	17335	175830	165376
(fails) - fails 24hr time c	heck * - fails c	riteria			

Created: Fri Apr 14 14:39:15 2023 Instrument 1

Date:	
21-4	
pr-23	

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

ланаралары каларарынан талары талу талары калараларын каларарын каларылык калары жаларын жаларын каларалары ка Каларарын каларарынын талары калары калары каларары каларары каларын калары жалары жаларын каларын каларары кала

CLIENT:
LaBella Associates, P.C

Work Order: C2304013 113-117 N. Clinton

Project:

TestCode: 0.20_NYS

Konk Order: TatCodi: 0.20,0/03 Forject: 113-117 N. Clinton Terror. C300013 Forject: 113-117 N. Clinton Factor. C30 Same ED: Rane D: Rane D: Rane D: Rane D: Centrol: 22222 Baler): F. RAE Factor. C30_NYS Units Rane D: Rane C Centrol: 22222 Baler): F. RAE Factor. C30_NYS Units Rane C Same D: Rane C Rane R Rane C Rane C <th>Work Order: C2304013 Project: 113-117 N. Sample ID: AMB1UG-040723 Client ID: ZZZZ Analyte Carbon disulfide Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorope</th> <th>Clinton SampType: MBLK</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Work Order: C2304013 Project: 113-117 N. Sample ID: AMB1UG-040723 Client ID: ZZZZ Analyte Carbon disulfide Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorobenzene Chlorobenzene Chlorobenzene Chlorope	Clinton SampType: MBLK							
Project. TateCode: 0.0, with power FreeCode: 0.0, with power 0.0, with power </th <th>Project: 113-117 N. Sample ID: AMB1UG-040723 Client ID: 22222 Analyte Carbon disulfide Carbon tetrachtoride Chloroethane Chloroethane Chloroethane Chloroethane Chlorometh</th> <th>Clinton SampType: MBLK</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Project: 113-117 N. Sample ID: AMB1UG-040723 Client ID: 22222 Analyte Carbon disulfide Carbon tetrachtoride Chloroethane Chloroethane Chloroethane Chloroethane Chlorometh	Clinton SampType: MBLK							
Sample ID: ABELIG Sent23 Samplyse MBLK TenCode: 0.03_MYS Unix PDV Pmp Date: Ranko: 2021 Ranko: 2021 Adhete Tealor: 10:15 Ranki ID: 60223 Tealor: 10:15 Ranko: 2012 Tealor: 10:15 Ranko: 2012 Tealor: 2012 Tealor: 2012 Serpio: 20123 Serpio: 20124 Serpio: 2012	Sample ID: AMB1UG-040723 Client ID: ZZZZZ Analyte Carbon disulfide Carbon tetrachloride Chloroeithane Chloroeithane Chloromethane Chloromethane Chloromethane cis-1,3-Dichloropropene cis-1,2-Dichloropropene cis-1,3-Dichloropropene Cyclohexane Dibromothane Ethyl acetate Ethyl acetate Acetate	SampType: MBLK					TestCode:	0.20_NYS	
Clarent Di. ZZZZ Balch ID RODRA Tentor. TO-15 Analysis Date Captor. 27322 Seque. 27322 Analysis Restal POL SYK value SXK value	Client ID: 22222 Analyte Analyte Carbon disulfide Carbon disulfide Carbon tetrachtoride Chlorobenzene Chlorobenane Chloromethane Chloromethane Chloromethane cis-1,3-Dichloroptopene cis-1,3-Dichloroptopene cis-1,3-Dichloroptopene Cyclohexane Dibromochloromethane Ethyl acetate Ethyl acetate Ethyl acetate Ethyl acetate Ethyl acetate Ethyl acetate Freon 113 Freon 113		TestCo	de: 0.20_NY	S Units: ppbV	Prep Date	ä	RunNo: 20221	
adole Rest Pol. Serve all state Pol. Serve all state Pol. Serve all state Pol. Serve all state Serve all	Analyte Carbon disulfade Carbon disulfade Carbon tetrachloride Chlorobenzene Chlorobenzene Chloromethane Chloromethane Chloromethane cis-1,3-Dichloropropene cis-1,3-Dichloropropene Cyclohexane Cyclohexane Cyclohexane Ethyl acetate Ethyl acetate Ethyl acetate Ethylbenzene Freon 11 Freon 12 Heptane Hexane Iscopropyl aicchol Iscopropyl aicchol	Batch ID: R20221	Test	No: TO-15		Analysis Date	s: 4/7/2023	SeqNo: 231242	
Carbon desufficie <015 0.15 Cutorinterranchicke <019	Carbon disulfáde Carbon tetrachloride Chlorobenzene Chloroefhane Chloroefhane Chloromethane Chloromethane cis-1,3-Dichloropene cis-1,3-Dichloropene cis-1,3-Dichloropene cis-1,3-Dichloropene Cyclohexane Dibromochloromethane Ethyl acetate Ethyl acetate Acetate	Result	POL	SPK value	SPK Ref Vai	%REC LowLimit	HighLimit RPD Ref Va	IGAN GAN	imit Qual
Carbon interchorie 6.000 0.001 Carbon interchorie 6.05 0.15 Chiorofhane 6.05 0.15 Chiorofhane 6.05 0.15 Chiorofhane 6.05 0.15 Chiorofhane 6.05 0.16 Diorochioronhane 6.05 0.16 Diorochioronhane 6.05 0.16 Chiorofhane 6.05 0.16 Diorochioronhane 6.05 0.16 Diorochioronhane 6.05 0.16 Chiorophane 6.05 0.16 Chiorophane 6.05 0.16 Chiorophane 6.05 0.16	Carbon tetrachioride Chlorobenzene Chloroethane Chloroethane Chloromethane Chloromethane cis-1,2-Dichloroptopene cis-1,3-Dichloroptopene Cyclohexane Cyclohexane Cyclohexane Ethyl acetate Ethyl acetate Ethyl acetate Ethyl acetate Ethyl acetate Ethyl acetate Freon 113 Freon 113 Freon 12 Hexane Hexane Isopropyl aicchol Isopropyl aicchol	< 0.15	0.15						
Cliotocheneeee 615 015 Chiotochenee 615 015 Chiotochenee 616 019 Chiotochenee 616 019 Chiotochenee 616 019 Set 1.3.Dichiotochene 615 015 Dioroconjacre 615 015 Dioroconjacre 615 015 Dioroconjacre 615 015 Ereon 11 6105 015 Ereon 12 6115 015 Ereon 12 6115 015 Ereon 13 6115 015 Ereon 14 6115 015 Ereon 12 6115 015 Ereon 12 6115 015 <	Chlorobenzene Ctiloroethane Chlorotorm Chloronethane Chloromethane cis-1,2-Dichiloropropene cis-1,3-Dichiloropropene Cyclohexane Cyclohexane Cyclohexane Ethyl acetate Ethyl acetate Ethyl acetate Ethyl acetate Freon 11 Freon 11 Freon 12 Heptane Hexane Isopropyl aicchol Isopropyl aicchol	< 0.030	0:030						
Chlorenthate 6.01 0.13 Chlorenthate - (15 0.13 Sat-J.2bichkorpetere - (15 0.13 Chlorenthate - (15 0.15 Ellyfleracte - (15 0.15 Ellyfleracte - (15 0.15 Feon 14 - (15 0.15	Ctiloroethane Chloroform Chloromethane cis-1,2-Dichloroperpene cis-1,3-Dichloroperpene cis-1,3-Dichloroperpene Cyclohexane Dibromochloromethane Ethyl acetate Ethyl acetate Ethyl acetate Ethyl acetate Freon 11 Freon 11 Freon 11 Freon 12 Heptane Hexane Isopropyl aicchol Isopropyl aicchol	< 0.15	0.15						
Chloronethane 615 015 Chloronethane 6016 013 Chloronethane 6016 013 Chloronethane 6016 013 Chloronethane 6015 013 Chloronethane 6015 013 Oktomosthane 6015 013 Effont1 6015 013 Fann 113 6015	Chlorotorm Chloromethane cis-1,2-Dichloroethene cis-1,3-Dichloropene cis-1,3-Dichloropene Cyclohexane Cyclohexane Ethyl acetate Ethyl acetate Ethyl acetate Ethyl acetate Ethyl acetate Freon 11 Freon 11 Freon 11 Heptane Hexane Isopropyl aicchol Isopropyl aicchol	< 0.15	0.15						
Chloromethane <015 015 c3:12.75/bit/oromethane <0.040	Chloromethane cis-1,2-Dichiloroptopene cis-1,3-Dichiloroptopene Cyclohexane Dibromochloromethane Ethyl acetate Ethylaenzene Ethylbenzene Ethylbenzene Freon 11 Freon 11 Freon 12 Hexane Hexane Isopropyl aicchol Sopropyl aicchol	< 0.15	0.15						
st: 2.3.2.Dickhororethere < 0.040 0.041 s: 3.3.2.3.2.Dickhororethere < 0.15	cis-1,2-Dichiloroethane cis-1,3-Dichiloropropene Cyclohexane Dibromochloromethana Ethyl acetate Ethylbenzene Ethylbenzene Freon 11 Freon 11 Freon 11 Freon 12 Heptane Hexane Isopropyl aicchol Sopropyl aicchol	< 0.15	0.15						
cis1,3Dbhlocopropere <015	cis-1,3-Dichloropropene Cyclohexane Dibromochloromethane Ethyl acetate Ethylbenzene Freon 11 Freon 11 Freon 11 Freon 12 Heptane Hexane Isopropyl aicchol Sopropyl aicchol	< 0.040	0.040						
Cyclothesine Cut15 0.15 Okronicolleomentane Cut5 0.15 Ethyleinzane Cut5 0.15 Fron 114 Cut5 0.15 Horan Cut5 0.	Cyclohexane Dibromochloromethane Ethyl acetate Ethylbenzene Freon 113 Freon 113 Freon 12 Heptane Hexane Isopropyl aicchol Sopropyl aicchol	< 0.15	0.15						
Disconcellaconnethate <015 015 Disconcellaconnethate <015	Dibromochloromethane Ethyl acetate Ethylbenzene Freon 11 Freon 11 Freon 12 Heptane Hexane Isopropyl alcohol Sopropyl alcohol	< 0.15	0.15						
Etyl actista 0.15 0.15 Etwn 11 < 0.15	Ethyl acetate Ethylbenzene Freon 11 Freon 113 Freon 12 Heptane Hexane Isopropyl alcohol Sopropyl alcohol	< 0.15	0,15						
Ethyltenzene < 0.15 0.15 Freen 11 < 0.15	Ethylbenzene Freon 11 Freon 113 Freon 114 Freon 12 Hexane Hexane Isopropyl alcohol Sopropyl alcohol	< 0.15	0.15						
Feen 11 < 0.15 0.15 0.15 Feen 113 < 0.15	Freon 11 Freon 113 Freon 114 Freon 12 Heptane Hexane Scopropyl alcochol Scopropyl alcochol	< 0.15	0.15						
Freen 113 < 0.15 0.15 Freen 114 < 0.15	Freon 113 Freon 114 Freon 12 Heptane Hexachtoro-1,3-butadiene Hexane Sopropy! aicchol	< 0.15	0.15						
Freen 114 < 0.15 0.15 Freen 12 0.15 0.15 Freen 12 0.15 0.15 Freen 12 0.15 0.15 Freen 12 0.15 0.15 Freen 13-butadiene < 0.15	Freon 114 Freon 12 Heptane Hexane Hexane Sopropyl alcohol Sopropyl alcohol	< 0.15	0,15						
Feon 12	Freon 12 Heptane Hexachtoro-1,3-butadiene Hexane Isopropyl altochol	< 0.15	0.15						
Heptane < 0.15	Heptane Hexachforo-1,3-butadiene Hexane Isopropyi alticchol	< 0.15	0.15						
	Hexachloro-1,3-butadiene Hexane Isopropyl altochol	< 0.15	0.15						
Hexane < 0.15 0.15 sopropyl alcohol < 0.15	Hexane Isopropyl alcohol M & A Vitano	< 0.15	0.15						
scopropyl atcrhol < 0.15 0.15 ndgr>Vylene < 0.30	isopropyi aicchol m&o Yutane	< 0.15	0.15						
m&p-Vytene < 0.30 0.30 wethyl Butyl Ketone < 0.30 0.30 wethyl Isobutyl Ketone < 0.30 0.30 wethyl Isobutyl Ketone < 0.50 0.30 wethyl Isobutyl Ketone < 0.50 0.30 wethyl Isobutyl Ketone < 0.55 0.15 Wethylene < 0.15 0.15 Yopplene < 0.15 0.15 Styrene < 0.15 0.15 Styrene < 0.15 0.15 Styrene < 0.15 0.15 Byrene < 0.15 0.15 Styrene < 0.15 0.15 Styrene < 0.15 0.15 Retaction started D. Denotes and table acrose quantiation immit Milferst . R ablo unside acceded J Analyte detected behve quantiation timmit R R PD ouside accepted recovery immis S Spike Recovery ouside accepted recovery outside accepted recovery outside accepted recovery outside acce	m P.n. Yulano	< 0.15	0.15						
Wethyl Butyl Ketone< 0.300.30Wethyl Ethyl Ketone< 0.30	in operation of the second s	< 0.30	0:30						
Wethyl Ethyl Kelone< 0.300.30Wethyl Kelone< 0.30	Methyl Butyl Ketone	< 0.30	0.30						
Wethyl Isobutyl Ketone< 0.300.30Wethyl Isobutyl Ketone< 0.15	Methyl Ethyl Kelone	< 0.30	0.30						
Wethyl tert-buryl ether<0.150.15Wethyl tert-buryl ether<0.15	Methyl Isobutyl Ketone	< 0.30	0:30						
Wethylene chloride< 0.150.15>-Xylene< 0.15	Methyl tert-butyl ether	< 0.15	0.15						
>Xylene < 0.15	Methylene chłoráde	< 0.15	0.15						
Pappylene < 0,15	o-Xylene	< 0.15	0.15						
Syrene < 0.15 0.15 Fetrachloroethylene < 0.15	Propylene	< 0.15	0.15						
Fetrachloroethykene < 0.15	Styrene	< 0.15	0.15						
[etrahydrofuran < 0.15	Tetrachloroethylene	< 0.15	0.15						
Qualifiers: Results reported are not blank corrected DL Detection Limit E Estimated Value above quaatitation range H Holding times for preparation or analysis exceeded J Analyte detected below quantitation limit ND Not Detected at the Limit of Detection R RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits ND	Tetrahydrofuran	< 0.15	0.15						
H Holding times for preparation or analysis exceeded J Analyte detected below quantitation limit ND Not Detected at the Limit of Detection R RPD outside accepted recovery limits S Spike Recovery outside accepted recovery limits	Qualifiers: Results reported	d are not blank corrected		DI. Detec	timit		E Estimated Value	above quantitation range	
R RPD outside accepted recovery limits S Spike Recovery outside accepted necovery limits	H Holding times 1	for preparation or analysis ex-	ceeded	ylenv. L	te detected below quantit	ation limit	ND Not Detected at 1	he Limit of Detection	
	R RPD outside ac	copted recovery limits		S Spike	Recovery outside accepts	ed neovery limits			c

CLIENT: Work Order:	LaBella As	sociates, P.C.												
Project:	113-117 N.	Clinton									FestCode: 0.	20 NYS		
Sample ID: AMB1L	JG-040723	SampType: A	MBLK	Te	stCode;	0.20_NYS	Units: ppbV		Prep Date			RunNo: 20221		
Client ID: ZZZZ		Batch ID: F	R20221		TestNo:	TO-15			Analysis Date	: 4/7/202	8	SeqNo: 231242		
Analyte			Result	ă.	or s	PK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RPI	DLimit Q	la Is
Toluene			< 0.15 V	Ó	15]
Irans-1,2-Dichloroel	there	824	< 0.15	0	15									
Irans-1,3-Dichloropt	ropene	1923	< 0.15	Ö	15									
Trichloroethene		v	0.030	0.0	30									
Vinyl acetate			< 0.15	ö	15									
Viny! Bromide		1	< 0.15	ö	15									
Vinyt chloride		v	0.040	0.0	40									
Surr. Bromofluor	otenzene	0	0.7300		0		Q	73.0	50.1	110				
Sample ID: AMB10	IG-040923	SampType: N	ABLK	Te	stCode:	D.20_NYS	Units: ppbV		Prep Date			RunNo: 20224		
Client ID: ZZZZ		Balch ID: R	220224		TestNo: '	10-15		*	Analysis Date	4/9/202	m	SeqNo: 231269		
Analyte			Result	ď	ar si	PK value	SPK Ref Val	%REC	LowLimit 1	HighLimit	RPD Ref Val	%RPD RPE	OLimit Qu	at
1,1,1-Trichloroethan	le		< 0.15 V	ö	15									7
1,1,2,2-Tetrachloroe	sthane		< 0.15	ö	15									
1, 1, 2-Trichloroethan	je	•	< 0.15	ö	15									
1.1-Dichloroethane			< 0.15	0	15									
1,1-Dichloroethene		v	0.040	0.0	40									
1,2,4-Trichiorebenza	ene	v	< 0.15	Ö	15									
1,2,4-Trimethylbenz	ene	*	< 0.15	ð	15									
1,2-Dibromoethane		v	< 0.15	0	15									
1,2-Dichiorobenzen	(J)	Y	< 0.15	G	15									
1,2-Dichioroetinane		X	< 0.15	ò	15									
1,2-Dichioropropane	<i>A</i> 1	Y	< 0.15	ò	15									
1,3,5-Trimelhylbenz	ene	v	< 0.15	ö	35									
1,3-buladiene		v	c 0.15	Ö	15									
1.3-Dichtorobenzent	6)	V	< 0.15	ò	15									
1.4-Dichlorobenzent	41	v	< 0.15	ò	15									
1,4-Dicxane		v	< 0.30	0	30									
2,2,4-trimethy ipenta	ne	v	< 0.15	ö	15									
Qualifiers:	Results reporte	ed are not biznk e	orrected		G	L Detectá	ta Limit			ц ц ц	stimated Value also	we quastitation rang		-
H	Holding times	for preparation o	r analysis exc	ccded	-	Analyte	detected helow quantiti	ation limit		N Q	ot Detected at the l	imit of Detection		
Я	RPD outside a	iccepted recovery	limits		s	Spike R	ecovery outside accepte	di recovery	y limits				Page.	3 of 5

CLIENT:	LaBella Ass	sociates. P.C.											
Work Order:	C2304013												
Project:	113-117 N.	Clinton								FestCode: 0.	SAN_02.		
Sample ID: AMB1	UG-040923	SampType: MBLK		TestCod	E: 0.20 NYS	Units: ppbV		Prep Da	le:		RinNo: 20224		
Client ID: ZZZZ		Batch ID: R20224	_	TestN	o: TO-15		4	Inatysis Da	ite: 4/9/20.	23	SeqNo: 231269	<i>в</i>	
Analyte		Result	5	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD RF	PDLimit	Qual
4-ethyltoluene		< 0.15		0.15									
Acetone		< 0.30	>	0.30									
Allyt chloride		< 0.15		0.15									
Benzene		< 0.15		0.15									
Benzyl chłoride		< 0.15		0.15									
Bromodichlorometi	tane	< 0.15		0.15									
Bromoform		< 0.15		0.15									
Bromomethane		< 0.15		0.15									
Carbon disulfide		< 0.15		0.15									
Carbon letrachloric	e	< 0.030	~	0:030									
Chlorobenzene		< 0.15		0.15									
Chloroethane		< 0.15		0.15									
Chloroform		< 0.15		0.15									
Chloromethane		< 0.15		0.15									
cis-1,2-Dichloroeth	ene	< 0.040	0	1.040									
cis-1,3-Dichloropro	pene	< 0.15		0.15									
Cyclohexane		< 0.15		0.15									
Dibromochloromet	lane	< 0.15		0.15									
Ethyl acetate		< 0.15		0.15									
Ethylbenzene		< 0.15		0.15									
Freon 11		< 0.15		0.15									
Freon 113		< 0.15		0.15									
Freon 114		< 0.15		0.15									
Freon 12		< 0.15		0.15									
Heptane		< 0.15		0.15									
Hexachioro-1, 3-but	adiene	< 0.15		0.15									
Hexane		< 0.15	- 1751	0.15									
Isopropyi alcohot		< 0.15	ienii	0.15									
m&p-Xyiene		< 0.30	1000	0.30									
Methyl Butyl Keton		< 0.30	100	0.30									
Methyl Ethyl Ketork		< 0.30	1431	0.30									
Qualifiers:	Results reported	d are not blank corrected	-		DL Defectiv	sa Limit			н н Н	stimated Value abo	we quantitation ran	De	
н	Holding times !	for preparation or analys	is exected	p	J Analyse	detected below quantitat	tion limit		A Q	iot Detected at the 1	Limit of Detection	L.	
R	RPD outside ac	scepted recovery limits			S Spike R	ecovery outside accepter	I recovery	linits		1. The second se		1	
		and the first statement of the second s				frances						Pag	e 4 of 5

CLIENT: LaBella As	sociates, P.C.										
Work Order: C2304013											
Project: 113-117 N.	Clinton							TestCo	de: 0.20_NYS		
Sample ID: AMB1UG-040923	SampType: MBLI		TestCode	C 0.20 NY	S Units: ppbV		Prep Date		RunNo: 29224		
Client ID: ZZZZ	Batch ID: R202	24	TestNo	c To-15			Analysis Date	: 4/9/2023	SeqNo: 23126	60	*******
Analyte	Resu	H	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD F	kef Val %RPD R	PDLimit	Qual
Methyl Isobutyl Ketone	< 0.3	> 05	0.30]
Methyl tert-butyl elher	< 0.1	5	0.15								
Methylene chloride	< 0.1	5	0.15								
o-Xylene	< 0.1	ŝ	0.15								
Propylene	< 0.1	5	0.15								
Styrene	< 0.1	S	0.15								
Tetrachtoroethylene	< 0.1	5	0.15								
Tetrahydrofuran	< 0.1	ŝ	0.15								
Toluene	< 0.1	5	0.15								
Irans-1,2-Dichloroethene	< 0.1	5	0.15								
trans-1,3-Dichloropropene	< 0.1	5	0.15								
Trichloroethene	< 0.03	0	0.030								
Vinyi acetate	< 0.1	5	0.15								
Vinyl Bromide	< 0.1	5	0.15								
Vinyl chloride	< 0.04	0	040								
Surr: Bromefluorabenzene	0.720	0	0	4	Ð	72.0	50.1	110			
Qualifiers: Results reports	ed are not blank correc	ted		DL Detec	tion Limit			E Estimated	Value above quantitation ras	nee	
H Holding times	for preparation or ana	lysis exceede	q	J Analy	te detected below quanti	lation limit		ND Not Detec	ted at the Limit of Detection		
R PD outside a	iccepted secovery limit	s		S Spike	Recovery outside accept	ied recover	y limits			Day	2,70 3 44

Page S of 5

3
1
dF
4
ite
ã

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

· · · · · · · · · · · · · · · · · · ·	
CLIENT:	LaBella Associates, P.C.
Work Order:	C2304013

Project: 113-117 N.	. Clinton						Tes	tCode: 0.	20_NYS		
Sample ID: C2304013-004A	SampType: MS	TestCor	ie: 0.20 NYS	Units: ppbV		Prep Dat	ē:		RunNo: 20	221	
Client ID: IA-01-03292023	Batch ID: R20221	Testh	lo: T0-15		~	Analysis Dal	e: 4/7/2023		SeqNo: 23	1251	
Anaiyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit R	PD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	1.030	0.15	+	0	103	51.3	146]
1, f, 2, 2-Jeirachloroethane	0.9100	0.15	4	o	91.0	59.4	121				
1,1.2-Trichloroethane	0.9800	0.15	+	0	98.0	59.1	128				
1,1-Dichloroethane	0.8400	0.15	-	0	84.0	67.5	118				
1,1-Dichloroethere	0.6800	0.040	-	Ö	68.0	55.3	121				
1,2,4-Trichlorobenzene	2.320	0.15	-	Ċ	232	72	184				s
1,2,4-Trimethy!benzene	1.320	0.15	-	0.2	E	55.1	165				
1,2-Dibromoethane	0.8500	0.15	-	ø	85.0	61.9	124				
1,2-Dichlorobenzene	1.140	0.15	-	0	114	47.6	157				
1,2-Dichloroethane	0.8600	0.15	-	0	86.0	67.5	122				
1,2-Dichloropropane	0.9700	0.15	-	0	97.0	57.6	127				
1,3,5-Trimethylbenzene	1.130	0.15	-	0.14	0.66	54.6	146				
1.3-butadiene	1.600	0.15	-	0	160	62	174				
1,3-Dichlorobenzene	1.090	0.15	-	0	109	67.3	134				
1,4-Dichlorobenzene	1.160	0.15	-	0	116	64.1	136				
1.4-Dioxane	0.9600	0:30	-	0	90.06	62	125				
2,2,4-trimethylpentane	0.9700	0.15		o	0.79	65	128				
4-elhyłołuene	1.010	0.15	t-	0	101	32.2	179				
Acetone	16.78	0:30	-	13.88	290	30.4	160				s
Allyi chloride	0.8900	0.15	F	0	89.0	47.5	142				g
Benzene	1.400	0.15	÷	0.37	103	42.1	152				
Benzyf chloride	1.710	0.15	-	0	171	35.4	181				
Bromodichloromethane	1.090	0.15	-	0	109	54.5	133				
Bromoform	1.090	0.15	-	0	109	25.8	146				
Bromomethane	0.7300	0.15	-	D	73.0	63.9	125				
Qualifiers: Results report	ed are not blank corrected		Df. Detect	ion Limit			E Estin	aated Value abo	we quantitatio	n range	
El Eloking times	s for preparation or analysis exc	erded	J Analyt	e detected below quanti	ation limit		ND Not	Detected at the l	Limit of Detect	tion	
R RPD outside a	accepted recovery limits		S Spikel	Recovery outside accept	ed recovery	i limits				ď	()-1

Page 1 of 3

CLAENT:	I aRella As	sociates P.C							and a second	
Work Order:	C2304013									
Project:	113-117 N	Clinton						TestCode:	0.20_NYS	
Sample ID: C2304	013-004A	SampType: MS	TestCode	SYN_02.0 ::	Units: ppbV		Prep Date	er.	RunNo: 20221	
Client ID: IA-01-(3292023	Batch ID: R20221	TesiN	: TO-15			Analysis Date	2: 4/7/2023	SeqNo: 231251	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	- Qual
Carbon disulfide		0.8600	0.15	F	0	86.0	56	115		
Carbon tetrachiorid	a	1.090	0.030		0.09	100	20.3	172		
Chlorobenzene		0.8400	0.15	***	٥	84.0	65.9	117		
Chloroethane		0.7600	0.15	4.444	Q	78.0	50.7	140		
Chloroform		1.470	0.15	y m	0.62	85.0	54.6	126		
Chloromethane		1.540	0.15	ę.,	0.46	108	35.4	148		
cis-1.2-Dichloroeth	sne	0.8300	0.040	Ann	0.09	74.0	59.6	119		
cis-1,3-Dichloropro	pene	0.9800	0.15	¥*	0	98.0	55.5	133		
Cyclohexane		1.000	0.15	++	o	\$00	23	168		
Dibromochlorometh	ane	0.9700	0.15	***	Q	97.0	44.5	143		
Ethyl acetate		1.230	0.15	-	0.36	87.0	57.1	129		
Ethylbenzene		0.9600	0.15		0.12	84.0	61.3	130		
Freon 11		1.080	0.15	-	0.23	85.D	14.7	173		
Freon 113		0.8300	0.15	۲	0	89.0	71.4	127		
Freon 114		0.8100	0.15	÷	Ċ	81.0	52.6	153		
Freon 12		0.8100	0.15	-	Ċ	81.0	47.5	133		
Heptane		1.290	0.15	-	0.22	107	49.9	137		
Hexachloro-1_3-but	adiene	1.000	0.15	-	o	100	56.7	\$49		
Hexane		1.050	0.15	-	0.2	85.0	40.7	\$52		
Isopropyl alcohol		33.80	0.15	-	32.9	0.09	8.56	176		
m&p-Xylene		2.180	0:30	2	0.36	91.0	54.5	138		
Methyl Butyl Ketone		0.9700	0.30	۲	0	97.0	41.5	156		
Methyl Ethyl Ketone		4.540	0.30	~	3.09	145	26.1	145		S
Methyl Isobutyl Kek	and	0.8700	0:30	٣	0	87.0	48.7	129		
Methyl tert-butyl eth	er	0.7100	0.15	-	D	71.0	57	129		
Methylene chloride		2.980	0.15	-	0.45	253	49.6	†20 ⁻		S
o-Xylene		1.020	0.15	-	0.13	89.0	55.1	142		
Propylene		6.560 /	0.15	-	0	656/	64.8	224		S
Styrene		060'1	0.15	F	0.11	92.0	60.3	132		
Tetrachicroethylene		2.620	0.15	-	1.86	76.0	68.1	126		
Tetrahydrofuran		2.470	0.15	-	1.35	112	27.9	162		
Qualifiers:	Results report	ed are not bitnk corrected		DI. Detecti	on 1. imit			E Estimated Value	above quantitution range	
H	Holding times	for preparation or analysis exc	eeded	J Analyte	detected below quant	titation limit		ND Not Detected at 1	he Limit of Detection	
R	RPD outside a	accepted recovery limits		S Spike B	tecovery outside arrey	pted recovery	· limits		b	age 2 of 3

CLIENT: LaBe	Ila Associates, P.C.								
Work Order: C230	4013								
Project: 113-1	17 N. Clinton						TestCode:	20_NYS	
Sample ID: C2304013-004	A SampType: MS	TestCov	te: 0.20_NYS	Units: ppbV		Prep Dat	e:	RunNo: 20221	
Client ID: IA-01-0329202	3 Balch ID: R20221	Testh	Vo: TO-15			Anatysis Dal	e: 4/7/2023	SeqNo: 231251	
Analyte	Resut	PQL	SPK value	SPK Ref Val	%REC	5 of we imit	HighLimit RPD Ref Val	%RPD RPDLimit	Quai
Toluene	1.800	0.15	-	0.82	98.0	41.2	147		
frans-1,2-Dichloroethene	0.8200	0.15	-	0	82.0	46.3	148		
trans-1,3-Dichloropropene	1.040	0.15	-	o	104	50.1	146		
Trichtoroethene	1.010	0:030	÷	0.09	92.0	46	136		
Vinyl acetate	0.7700	0.15	۳	0	77.0	8.27	177		
Vinyl Bromide	0.8700	0.15	۲	0	87.0	57.1	141		
Vinyl chloride	0.7500	0.040	F	0	75.0	54.5	130		
Surr: Bromofluorobenzer	t. 160	0		0	116	87.8	122		

The second secon

Estimated Value above quantitation range Not Detected at the Limit of Detection а Q Spike Recovery outside accepted recovery limits Analyte detected helow quantitation limit Detection Limit ų s u D Holding times for preparation or analysis exceeded or the second Results reported are not blank corrected RPD outside accepted recovery limits · I a Qualifiers:

Page 3 of 3

-23
rdh-
21
Date:

CENTEK LABORATORIES, LLC

ANALYTICAL QC SUMMARY REPORT

LaBella Associates, P.C. Work Order: CLIENT:

sil !!

C2304013 113-117 N. Clinton

Project: 113-117 N	. Clinton						Π	estCode: 0	SYN_02.		
Sample ID: C2304013-004A	SampType: MSD	TestCo	de: 0.20_NYS	Units: ppbV		Prep Da	te:		RunNo: 202	121	
Client ID: IA-01-03292023	Batch ID: R20221	Test	Vo: TO-15			Analysis Da	te: 4/8/202	3	SeqNo: 231	252	
Anatyte	Result	POL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
1,1,1-Trichloroethane	0.9600	0.15	-	Q	96.D	50.5	144	1.03	7.04	12.3	
1, 1, 2, 2-Jetrachioroethane	0.8600	0.15		Q	86.0	61.9	117	0.91	5.65	11	
1,1,2-Trichloroethane	0.9200	0.15	ų.n.	0	92.0	59.5	124	0.58	6.32	13.9	
1.1-Dichlomethane	0.8500	0.15	* **	Q	85.0	68.4	117	0.84	1.18	9.68	
1,1-Dichloroethene	0.6900	0.040	¥*	0	69.0	57.6	115	0.68	1.46	15.8	
1,2,4-Trichlorobenzene	2.140	0.15	Yar	Q	214	37.5	248	2.32	8.07	19	
1,2,4-Trimethylbenzene	1.230	0.15	¥.	0.2	103	58.6	162	1.32	7.06	16.6	
1,2-Dibromoethane	0.8200	0.15	4nı	0	82.0	61.3	120	0.85	3.59	6.77	
1,2-Dichlorobenzene	1.050	0.15	**	0	105	35.6	169	1.14	8.22	¢1.1	
1,2-Dichloroethane	0.8500	0,15	4	0	85.0	71.8	117	0.86	1.17	9.42	
1,2-Dichloropropane	0.9100	0.15	4m	0	91.0	56.3	127	0.97	6.38	11.3	
1,3,5-Trimethylbenzene	1.000	0.15	*-	0.14	86.0	59.4	147	1.13	12.2	14.9	
1,3-butadiene	1.530	0.15	ά	0	153	24.6	233	1.6	4.47	29.1	
1,3-Dichlorotenzene	1.000	0.15	dra	C	100	73.3	127	1.09	8.61	11.8	
1,4-Dichlorobenzene	1.090	0.15	***	0	109	70.1	129	1.16	6.22	11.8	
1,4-Dioxane	0.8700	0.30	۴	0	87.0	64.4	124	0.9	3.39	13.7	
2,2,4-trimethylpentane	0.9500	0.15	¥1.00	Ð	95.0	72.2	121	76.0	2.08	13.1	
4-ethyttoluene	1.010	0.15	4	0	101	27.2	167	1.01	0	18.7	
Acetone	16.71 🗸	0.30	ţus	13.68	283 /	-3.52	152	16.78	0.418	18.7	S
Altyl chloride	0.9300	0.15	*	0	93.0	83	124	0.89	4.40	12.1	
Benzene	1.320	0.15	ken	0.37	95.0	50	143	4.	5.88	20.8	
Benzy ³ chloride	1.650	0.15	*~	0	165	36.9	180	1.71	3.57	18.7	
Bromodichloromethane	1.050	0.15	Aur	0	105	55.5	131	1.09	3.74	13.2	
Bromoform	1.040	0.15	¥**	0	104	27.8	144	1,09	4.69	7.99	
Bromomethane	0.7300	0.15	*	O	73.0	57.3	131	0.73	D	16.2	
Qualifiers: Results report	ted are not blank corrected		DL Detect	ion Lizht			່ ເມື ່ ເມ	stimated Value ab	ove quantitation		
H Holding time	s for preparation or analysis exc	ceded	J Analys	e delected below quanti	tation binit		z Q	of Detected at the	Limit of Detect	ticit	
R RPD outside	accepted recovery limits		S Spike i	Recovery outside accept	разоват ра	: limits				ŝ	C.7. 1

Page I of 3

CLIENT: Lal	aBella Associates, P.C.

C2304013 Work Order:

Project: 113-117 N	4. Clinton						Г	estCode: (.20_NYS		
Sample ID: C2304013-004A	SampType: MSD	TestCode	: 0.20 NYS	Units: ppbV		Prep Dat			RunNo: 202	21	
Client ID: 1A-01-03292023	Batch ID: R20221	TestNo	c TO-15			Analysis Dat	e: 4/8/202	6	SeqNo: 231	252	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Quai
Carbon disulfide	0.8700	0.15	-	0	87.0	53.8	120	0.85	1.16	10.2]
Carbon tetrachloride	1.050	0:030	÷	0.09	96.0	28.9	156	1.09	3.74	14.4	
Chlorobenzene	0.7900	0.15	**	Ō	79.0	68.4	112	0.84	6.13	6.19	
Chloroethane	0.7900	0.15	-	0	79.0	47.7	145	0.78	1.27	18.6	
Chloroform	1.450	0.15	-	0.62	83.0	64.1	123	1.47	1.37	8.53	
Chloromethane	1.550	D.15	Ŧ	0.46	109	36.8	143	1.54	0.647	21.2	
cis-1,2-Dichioroethene	0.8600	0.040	-	0.09	0.77	64.6	115	0.83	3.55	8.13	
cis-1,3-Dichioropropere	0.9300	D.15	-	D	93.0	53.3	135	0.98	5.24	12.8	
Cyclohexane	0.9700	0.15	-	0	97.0	22.8	171	-	3.05	38.2	
Dibromochioromethane	0.9100	D.15	-	0	91.0	44.5	140	0.97	6.33	6.88	
Ethyl acelate	1.260	0.15	-	0.36	90.06	64.4	124	1.23	2.41	11.6	
Ethylbenzene	0.9100	D.15	-	0.12	79.0	65.3	125	0.96	5.35	11.1	
Freon 11	1.060	0.15	-	0.23	83.0	57.1	130	1.08	1.87	10.4	
Freon 113	0.8800	0.15	-	0	88.0	70.9	122	0.89	1.13	11.7	
Freon 114	0.8000	0.15	F	٥	80.0	46.7	158	0.81	3.24	14.9	
Freon 12	0.8000	0.15	F	Q	80.0	48.2	132	0.81	1.24	14.4	
Heptane	1.260	0.15	-	0.22	104	43.6	143	1.29	2.35	13.3	
Hexachloro-1,3-butadiene	0.9500	0.15	-	0	95.0	65.2	135	•	5.13	12.6	
Hexane	1.020	0.15	-	0.2	82.0	57.2	136	1.05	2.90	10.9	
Isopropy! alcoho!	33.09	0.15	-	32.9	19.0	32.5	143	33.8	2.12	38.2	s
m&p-Xylene	2.050	0.30	3	0.36	84.5	60	130	2.18	6.15	15.8	
Methyl Butyl Ketone	0.9100	0.30	-	0	91.0	46.2	153	0.97	6.38	10.1	
Methyl Ethyl Ketone	4.500 V	0.30	-	3.09	141	55.6	113	4.54	0.835	18.5	S
Methyl Isobutył Ketone	0.8200	0.30	-	D	82.0	63	119	0.87	5.92	25.9	
Methyl tert-butyl ether	0.7400	0.15	-	0	74.0	64.6	123	0.71	4.14	15.6	
Methylene chloride	3.010	0.15	-	0.45	256 :	50.1	118	2.98	1.00	10.4	S
o-Xylene	0.9600	0.15	-	0.13	83.0	54.8	138	1.02	6.06	16.8	
Propylene	6.440 🗸	0.15	-	o	644 1	82.3	249	6.56	1.85	9.07	S
Styrene	0.9600	0.15	۲	0.11	85.0	59	127	1.03	7.04	12	
Tetrachioroethylene	2.490	0.15	**	1.86	63.0	55.2	130	2.62	5.09	9.19	
Tetrahydrofuran	2.530	0.15	-	1.35	118	17.5	154	2.47	2.40	14.2	
Qualifiers: Results repor	rted are not blank corrected		DL Detectio	n Limit			<u>а</u> ц	stimated Value al	ove quantitation	i ជាក្ខេខ	
H Holding lim.	es for preparation or analysis exc	seded	J Analyte	detected below quant	itation limit		N QN	of Detected at the	: Limit of Detect	លោ	
R RPD outside	accepted recovery limits		S Spike R	daooe apistuo viravooa	ted recovery	· limits				Pa	8e 2 of 3

LaBella Associates, P.C. CLIENT:

Work Order: C2304013

Project: 113-117 h	 Clinton 						ļ	estCode: 0	SAN_02.		
Sample ID: C2304013-004A Client ID: IA-01-03292023	SampType: MSD Batch ID: R20221	TestCo	de: 0.20_NYS Vo: TO-15	Units: ppbV		Prep Dal	e: 4/8/202	6	RunNo: 202 SeqNo: 231	252	
Analyte	Result	ЪQĻ	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Vai	%RPD	RPDLimit	Qual
Toluene	1.710	0.15	-	0.82	89.0 V	21.3	164	1.8	5.13	27.9	
trans-1,2-Dichloroethene	0.8400	0.15		٥	84.0	39.2	153	0.82	2.41	34 5	
trans-1,3-Dichloropropene	0.9500	0.15	***	0	95.0	43.5	152	1.04	9.05	8.87	۵
Trichloroethene	0.9400	0.030	(gen	0.09	85.0	50.1	128	1.01	7.18	0.89	1
Vinyl acetale	0.8400	0.15		Ð	84.0	65.6	136	0.77	8.70	6 26	
Viny! Bromide	0.8900	0.15	+	0	89.0	51.4	147	0.87	2.27	18.3	
Vinyi chloride	0.7400	0.040	*-	0	74.0	48	135	0.75	1.34	14.5	
Surr. Bromofluorobenzene	1.120	0	-	0	112	90.4	120	0	Φ	9 0	

Estimated Vatue above quantitation range -----Not Detected at the Limit of Detection w g Spike Recovery outside accepted recovery limits Analyte detected below quantitation limit DL Detection Limit - v ** ** * * ** Holding times for preparation or analysis exceeded -----Results reported are not blank corrected RPD outside accepted recovery limits . Т М Qualifiers:

Page 3 of 3

	J		
	LL		
	ŝ		
	RII		
	TO		
	RA		
	BO		
	LA		
	EK		
ú	E		1
1		State of the	
P.M.	1000		

ANALYTICAL QC SUMMARY REPORT

Date: 21-Apr-23

-----...

CLIENT:	LaBella Associates, P.C.
Work Order:	C2304013
Project:	113-117 N Clinton

Project: 113-117 N.	Clinton						TestCode: 0	SAN 070	
Sample ID: ALCS1UG-040723	SampType: LCS	TestCo	de: 0.20_NYS	Units: ppbV		Prep Date:		RunNo: 20221	
Client ID: ZZZZ	Batch ID: R20221	Tesh	lo: TO-15			Analysis Date:	4/7/2023	SeqNo: 231243	
Analyte	Result	PQL	SPK value	SPK Ref Vai	%REC	LowLimit H	ighLimit RPD Ref Val	UDAA DAA%	imit Qual
1,1.1-Trichforcethane	1.010	0.15	***	٥	101	71.2	132		
1, 1, 2, 2-Tetrachioroethane	1.070	0.15	-	0	107	72.5	133		
1,1,2-Trichloroethane	0.9100	0.15	y	0	91.0	78.5	127		
1, 1-Dichloroethane	0.9100	0.15	***	0	91,0	67.8	128		
1,1-Dichtoroethene	0.7200	0.040	4 444	0	72.0	73.3	126		S
1,2,4-Trichlorobenzene	1.240	0.15	**	0	324	24.9	166		
1,2,4-Trimethylbenzene	0.8600	0.15	ų.	0	86.0	78.3	114		
1,2-Dibromoelhane	0.9800	0.15		0	98.0	63.1	133		
1,2-Dichiorobenzene	1.060	0.15	,-	0	106	73.3	136		
1,2-Dichloroethane	0.8900	0.15	*-	0	89.0	65.8	126		
1,2-Dichioropropane	0.9600	0,15	ţ	0	96.0	67	137		
1,3,5-Trimethylbenzene	0.9600	0.15	4	0	96.0	44.3	163		
1, 3-butadiene	0.9200	0.15	٣	0	92.0	48	149		
1,3-Dichiorobenzene	1.060	0.15	100	O	106	83.3	127		
1,4-Dichiorobenzene	1.120	0.15	*	¢	112	82.6	135		
1,4-Dioxane	0.8400	0.30	٣	0	84.0	75.9	109		
2,2.4-Inimethylpeniane	0.9100	0.15	ęب	0	91.0	68.5	132		
4-ethyltoluene	0.9400	0.15	*	0	94.0	43.5	162		
Acetone	2.360	0.30	-	0	236	54,8	153		S
Allyl chtoride	0.8900	0.15	۹۳	0	89.0	59.4	124		
Велделе	0.9500	0.15	**	Q	95.0	77	128		
Benzyl chłoride	1,470	0.15	۴.	0	147	27.5	178		
Bromodichloromethane	1.010	0.15	4-	0	101	73.2	132		
Bromoform	1.240	0.15	*	0	124	40.4	172		
Bromomethane	0.7800	0.15	***	O	78.0	62.2	142		
Qualifiers: Results report	ed are not blank corrected		Dl. Detecti	on Limit			E Estimated Value al	bove quantitation range	an a agasa sana sa sa sa sa sa sa sa
H Holding times	: for preparation or analysis ex	papaao	J Analyte	detected below grunt	itation limit		ND Not Detected at the	e Limit of Detection	
R RPD outside a	scupted recovery limits		S Spike F	(covery outside accep	ted recover	y limits			Poor I of S

Page 1 of 5
CLIENT:	LaBella As	sociates, P.C.										
Work Order:	C2304013											
Project:	113-117 N	. Clinton						TestCoo	le: 0.20_1	SYV		
Sample ID: ALCS	IUG-040723	SampType: LCS	TestCode	5: 0.20 NYS	Units: ppbV		Prep Dat	i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.i.	Run	No: 20221		
Client ID: ZZZZ		Batch ID: R20221	TestNo	»: TO-15		-	Analysis Dal	e: 4/7/2023	Seq	No: 23124	5	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Re	i Val	%RPD R	PDLimit	Qual
Carbon disulfide		0.8900	0.15	-	0	0.68	99	118]
Carbon tetrachiloric	le	0.9800	0.030		0	98.0	55.1	158				
Chlorobenzene		0.9300	0.15	•	0	93.0	85.1	114				
Chloroethane		0.8100	0.15		0	81.0	57	144				
Chloroform		0.9000	0.15	**	0	90.0	74.1	122				
Chloromethane		0.9000	0.15	γn	0	90.0	53.4	153				
cis-1,2-Dichloroeth	ene	0.7800	0.040	den.	Ð	78.0	603	128				
cis-1,3-Dichloropro	pene	0.9500	0.15	4	0	95.0	71.9	125				
Cyclonexane		0.8500	0.15	494	0	85.0	65.9	128				
Dibromochloromet	hane	1.110	0.15	4	0	111	59.4	145				
Ethyl acetate		0.8400	0.15	*	Ċ	84.0	54.1	127				
Ethylbenzene		0.8200	0.15	4m	0	82.0	79.4	111				
Freon 11		1.000	0.15	4.	¢	100	72.6	132				
Freon 113		0.8800	0.15	~	0	88.0	76.6	123				
Freon 114		0.8400	0.15	4	0	84.0	64.9	142				
Freon 12		0.8400	0.15	**	0	84.0	61.6	139				
Heptane		0.9300	0.15	*	ð	93.0	61.6	134				
Hexachloro-1,3-bu	adiene	1.160	0.15	***	O	116	66.7	132				
Hexane		0.7900	0.15	4	Ð	79.0	63.9	124				
Isopropyi alcohol		1.070	0.15	•	Ċ	107	50.6	137				
m&p-Xylene		1.810	0.30	2	o	30.5	83.9	117				
Methyl Burtyl Keton	a)	0.9400	0.30	•**	Ċ	94.0	57.9	126				
Methyl Ethyl Keton	¢	0.8200	0.30	*~-	0	82.0	69.2	115				
Methyl Isobutyl Ket	ອນອ	1.050	0.30	4 00.	Ð	105	62.9	126				
Methyl leri-butyl et	Ter	0.7200	0.15	*	Ö	72.0	65	116				
Methylene chloride		2.580	0.15	4	ð	258	50.4	154				s
o-Xylene		0.9600	0.15	4	ð	98.0	75.1	139				
Propylene		1.040	0.15	4 0 0	0	104	52.8	137				
Styrene		0.9400	0.15	**	Ð	94.0	82	122				
Tetrachioroethylen	65	0.9600	0.15	***	Ø	96.0	76.8	129				
Tetrahydrofuran		0.8500	0.15	*	Ċ	85.0	49.6	140				
Qualifiers:	Results report	ed are not blank corrected		Dl. Detecti	on Limit			E Estimated	value above qui	antiation ra	វទ្ធុ៩	
H	Holding times	for preparation of analysis e	xceeded	J Analyti	detected below quanti	tation fimit		ND Not Detecte	at at the Limit o	of Detection		
R	RPD outside a	scopted recovery limits		S Spike	lecovery outside accept	red recovery	- limits				Pa_{1}	ge 2 of 5

CLIENT: Work Order:	LaBella As C2304013	sociates, P.C.								
Project:	113-117 N.	. Clinton						TestCode:	0.20_NYS	
Sample ID: ALCS	IUG-040723	SampType: LCS	TestCode	5: 0.20 NYS	Units: ppbV		Prep Date		RUANO: 20221	
Client ID: ZZZ2		Batch ID: R20221	TestNo	X TO-15		~	Analysis Date	:: 4/7/2023	SeqNo: 231243	
Analyte		Result	ΡQL	SPK value	SPK Ref Vai	%REC	LowLimit	HighLimil RPD Ref Val	I %RPD RPDLimit	Qual
Toluene		0.9600	0.15	-	0	96.0	81.1	114]
trans-1,2-Dichloroe	there	0.8300	0.15		Q	83.0	66.7	127		
trans-1,3-Dichlorop	гореле	0.9700	0.15	~	0	0.79	61.3	127		
Trichloroethene		0.8800	0:030	4 ~	0	38.0	70.4	130		
Vinyl acetate		0.7800	0.15	den.	0	78.0	49.3	125		
Vinyi Bromide		0.9400	0.15	har	0	94.0	63.1	145		
Vinyl chloride		0.7700	0.040	**	Ö	0.77	58.2	150		
Surr. Bromofluoi	obenzene	1.240	-	4	0	124	36	121		s
Sample ID: ALCS1	UG-040923	SampType: LCS	TestCode	C 0.20 NYS	Units: ppbV		Prep Date	1.5	RunNo: 20224	
Client ID: 22222	142	Batch ID: R20224	TestNo	: TO-15		đ	Inatysis Date	4/9/2023	SeqNo: 231270	
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	%RPD RPDLimit	Qual
1,1,1-Trichloroetha	he	0.8800	0.15		0	88.0	71.2	132		
1,1,2,2-Tetrachtoro	ethane	0.8000	0.15	***	0	80.0	72.5	133		
1, f, 2-Trichloroetha	16	0.8400	0.15	**	0	84.0	78.5	127		
1,1-Dichloroethane		0.7200	0.15	F	D	72.0	67.8	128		
1,1-Dichloraethene		0.5600	0.040	**		56.0	73.3	126		ა
1,2,4-Trichlorobenz	ene	0.8900	0.15	۲	0	89.0	24.9	166		
1,2,4-Trimethylben	zene	0.6000	0.15		0	60.0	78.3	114		S
1,2-Dibromoethane		0.7600	0.15		0	76.0	63.1	133		
1,2-Dichlorobenzen	Ð	0.7200	0.15	-	0	72.0	73.3	136		S
1,2-Dichloroethane		0.7100	0.15	-	0	71.0	65.8	126		
1,2-Dichloropropan	Ð	0.8200	0.15	1	0	82.0	67	137		
1,3,5-Trimethylben:	sene	0.6500	0.15	+	0	65.0	44.3	163		
1,3-butadiene		0.7900	0.15	-	0	79.0	48	149		
1,3-Dichlorobenzen	¢	0.7600	0.15	۲	0	76.0	83.3	127		ŝ
1,4-Dichlorobenzen	e	0.8000	0.15	÷	0	80.0	82.6	135		S
1,4-Dioxane		0.7300	0.30	-	0	73.0	75.9	109		s
2,2,4-trimethy/pent:	ane	0.7700	0.15	-	0	77.0	68.5	132		
Qualifiers: .	Results report	ed are not blank corrected		DI, Detect	ion Limit			E Estimated Value	s above quantitation range	
H	Holding times	for preparation of analysis exi	ceded	J Analyt	e detected below quanti	itation himit		ND Not Detected at	the Limit of Detection	
R	RPD outside a	occepted recovery limits		S Spike	Recovery outside accept	ted recovery	r limits		E.	2000 2 000

rage J of 5

LaBella Associates, P.C. C2304013 113-117 N. Climton

CLIENT:

Work Order: Project

(E

annon and a share a share a share a star and the start of a start start and the start of the sta

rrojece: 115-117.N.	Clinton						l'estCode:	0.20_NYS		
Sample ID: ALCS1UG-040923	SampType: LCS	TestCode	SYN_0.20 NYS	Units: ppbV		Prep Dat	E.	RunNo: 202	224	
Client ID: ZZZZ	Batch ID: R20224	TestNo	0: 10-15		~	Anatysis Dal	e: 4/9/2023	SeqNo: 231	1270	
Analyte	Result	Pol	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Va	RPD	RPDLimit	Qual
4-ethylioluene	0.5800	0.15	-	0	58.0	43.5	162			
Acetone	4.300	0:30	-	0	430	54.8	153			ŝ
Allyl chloride	0.7900	0.15	F	0	0.97	59.4	124			
Benzene	0.8200	0.15	-	0	82.0	11	128			
Benzyl chloride	1.100	0.15		0	110	27.5	178			
Bromodichforomethane	0.8900	0.15	***	0	69 0	73.2	132			
Bromoform	0.9200	0.15		0	92.0	40.4	172			
Bromomethane	0.6100	0.15	4	Q	61.0	52.2	142			S
Carbon disulfade	0.7200	0.15	gan	o	72.0	66	118			
Carbon letrachioride	0.8900	0:030	y nu	0	89.0	55.1	158			
Chlorobenzene	0.7200	0.15	Υ	0	72.0	85.1	114			S
Chloroethane	0.6500	0.15	4100	0	65.0	57	144			
Chloroform	0.7400	0.15	411	0	74.0	74.1	122			ა
Chloromethane	0.7300	0.15	***	Ð	73.0	53.4	153			
cis-1,2-Dichloroethene	0.6600	0.040	**	0	66.0	60.9	128			
cis-1,3-Dichloropropene	0.7900	0.15		0	79.0	71.9	125			
Cyclohexane	0.6900	0.15	**	o	69.0	65.9	128			
Dibromochloromethane	0.8500	0.15	а т -	Ð	85.0	59.4	145			
Ethyl acetate	0.6200	0.15	4	o	62.0	E.	127			
Ethylbenzene	0.6300	0.15	***	Ō	63.0	79.4	111			S
Freon 11	0.8200	0.15	*	Ö	82.0	72.6	132			
Freon 113	0.7300	0.15	**	Ċ	73.0	76.6	123			S
Freon 114	0.6500	0.15	*-	o	65.0	64.9	142			
Freon 12	0.6500	0.15		0	65.0	61.6	139			
Heptane	0.7600	0.15	***	0	76.0	61.6	134			
Hexachloro-1,3-butadiene	0.8300	0.15	**	a	83.0	66.7	132			
Hexane	0.6100	0.15	*	0	61.0	63.9	124			S
Isopropył alcohol	1.090	0.15	**	D	109	50.6	137			
m&p-Xylene	1.310	0.30	2	ð	65.5	83.9	117			ഗ
Methyl Butyl Ketone	0.7200	0.30	-	0	72.0	57.9	126			
Methyl Ethyl Ketone	0.6200	0.30	-	٥	62.0	69.2	115			S
Qualifiers: Results report	ed are not blank corrected		DI. Detecti	on Limit			E Estimated Value	above quantitation	n range	
H Holding times	for preparation or analysis ex-	teeded	J Analyti	c detected below quant	itation famit		ND Not Detected at	the Limit of Detect	non	
R RPD outside a	ecepted recovery limits		S Spikel	Recovery outside accep	ted recoven	r limits			6	2.7 1

Page 4 of 5

LaBella Associates, P.C. CLIENT:

C2304013 Work Order: •

And a second rate of the second rate of the second se

Project: 113-117 N.	Clinton						Tes	tCode: 0.	20_NYS		
Sample ID: ALCS1UG-040923	SampType: LCS	TestCoc	le: 0.20_NYS	Units: ppbV		Prep Dat	ai		RunNo: 20	224	
Client ID: ZZZZ	Batch ID: R20224	Test	lo: TO-15			Analysis Date	e: 4/9/2023		SeqNo: 23'	1270	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLitmit	HighLimit Ri	PD Ref Val	%RPD	RPDLimit	Qual
Methyl Isobutyl Ketone	0.7100	0:30	-	0	71.0	62.9	126]
Methyl tert-butyl efter	0.5600	0.15	د	0	56.0	65	116				S
Methylene chloride	4.730	0.15	£	Q	473	50.4	154				ŝ
o-Xyiene	0.6700	0.15	¥.a	0	67.0	75.1	139				ŝ
Propylene	1.070	0.15	A	0	107	52.3	137				
Styrene	0.6700	0.15	Yen	0	67.0	82	122				S
Tetrachloroethylene	0.7600	0.15	ţ.	0	76.0	76.8	129				s
Tetrahydrofuran	0.6300	0.15	4	0	63.0	49.6	140				
Toluene	0.7100	0.15	*	0	71.0	81.1	114				S
trans-1,2-Dichloroethene	0.6400	0.15	+-	0	64.0	66.7	127				S
trans-1.3-Dichloropropene	0.8200	0.15	*	0	82.0	61.3	127				
Trichloroethene	006610	0:030		0	0.99	70.4	130				
Vinyi acetate	0.5600	0.15	-	0	56.0	49.3	125				
Vinyl Bromide	0.7500	0.15	-	0	75.0	63.1	145				
Vinyl chloride	0.5900	0.040	-	ð	59.0	58.2	150				
Surr. Bromofluorobanzene	1.020	o	-	Ð	102	96 96	121				

Page 5 of 5 Estimated Value above quantitation range Not Detected at the Limit of Detection шĝ Spike Recovery outside accepted recovery limits Analyte detected below quantitation limit Dl. Detection Limit - s Holding times for preparation or analysis exceeded Results reported are not blank corrected RPD outside accepted recovery limits -----. ж. ж Qualifiers:

23	
-id	
1-1	
e,	
Dat	

CENTEK LABORATORIES, LLC 1

ANALYTICAL QC SUMMARY REPORT

... -----

LaBella Associates, P.C. C2304013 113-117 N. Clinton Work Order: CLIENT:

Project: 113-117 N.	Clinton						H	estCode: 0	20 NYS		
Sample ID: ALCS1UGD-040723	SampType: LCSD	TestCo	te: 0.20_NYS	Units: ppbV		Prep Date	×		RunNe: 202	221	
Client ID: ZZZZ	Batch ID: R20221	Test	Vo: TO-15			Analysis Date	4/8/202	63	SeqNo: 231	244	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	0dX%	RPDLimit	Qual
1,1,1-Trichloroethane	0.9600	0.15	+	0	96.0	73.7	135	1.01	5.08	26.4]
1, 1, 2, 2-Tetrachloroethane	0.9600	0.15	-	0	96.0	62.8	147	1.07	10.8	22	
1, t, 2-Frichloroethane	0.9100	0.15	-	Ð	91.0	69.1	141	0.91	D	27.3	
1,1-Dichloroethane	0.8700	0.15	-	0	87.0	66.8	136	0.91	4.49	21	
1,1-Dichloroethene	0.7300	0.040	-	Ó	73.0	69.2	134	0.72	1.38	15.7	
1,2,4-Trichlorobenzene	1.190	0.15	-	0	119	42	151	1.24	4.12	45	
1,2,4-Trimethylbenzene	0.8300	0.15	-	0	83.D	72.7	125	0.86	3.55	17.4	
1,2-Dibromoethane	0.9000	0.15		ð	30.D	73.6	129	0.98	8.51	25	
1,2-Dichlorobenzene	0.9700	0.15	-	Ö	97.0	72.8	140	1.06	8.87	20.9	
1,2-Dichforoethane	0.8300	0.15	-	Ö	83.0	65.2	135	0.89	6.98	18.2	
1,2-Dichloropropane	0.9400	0.15	-	¢	94.0	56.1	154	0.96	2.11	33.2	
1,3,5-Trimethylbenzene	0.9000	0.15	-	0	90.0	73	131	Ð.96	6.45	20.4	
1,3-butadiene	0.9300	0.15	-	0	0768	57.9	158	0.92	1.08	33.5	
1,3-Dichlorobenzene	1.010	0.15	-	0	101	81.2	131	1.06	4.83	14.6	
1,4-Dichlorobenzene	1.070	0.15	-	Ð	107	80	137	1.12	4.57	17.2	
1,4-Dioxane	0.8900	0.30	-	0	89.0	70.4	120	0.84	5.78	13.4	
2,2,4-trimethylpentane	0.9100	0.15		0	61.0	60.3	158	0.91	٥	35.6	
4-ethyltoiuene	0.9000	0.15	*-	ð	90.09	74	126	0.94	4.35	22.5	
Acetone	2.820	0:30	*	¢	282	46.8	174	2.36	17.8	46.7	S
Ally! chloride	0.9400	0.15	4	0	94.0	54.5	142	0.89	5.46	24.4	
Benzene	0.9200	0.15	-	0	92.0	68.4	142	0.95	3.21	22.7	
Benzyl chloride	1.430	0.15	**	0	143	28	184	1.47	2.76	74.5	
Bromodich!oromethane	0.9700	0.15	+	0	0.79	65	143	1.01	4.04	27.4	
Bromoform	1.080	0.15	-	0	108	48.3	160	1.24	13.8	39	
Bromomethane	0.7700	0.15	-	0	77.0	54.3	159	0.78	1.29	41.5	
Qualifiers: Results reporte	cé are not blank corrected		DI, Detect	ion Lisnit			ш	stimated Value at	bove quantitatio	น าลถุยุษ	
H Holding times	for preparation or analysis ex	credod	J Amhya	e detected below quant	itation linai		N Q	of Detected at the	: Limit of Detect	tion	
R RPD putside a	iccepted recovery limits		S Spike	Repovery outside accep	ied recover	y limits				ď	5 1 06 5

Page 1 of 5

CLIENT:	LaBella Associates, P.C.
Work Order:	C2304013

Project:	113-117 N.	Clinton								estCode: (SYN_02.0		
Sample ID: ALC:	S1UGD-040723	SampType:	LCSD	TestCod	e: 0.20_NY	S Units: ppbV		Prep Date			RunNo: 202	221	
Client ID: ZZZ	22	Batch ID:	R20221	TestN	o: TO-15			Analysis Date	181202	8	SegNo: 231	1244	
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Carbon disulfide			0.8300	0.15	***	0	83.0 V	62.2	122	0.89	6.98	21.3	
Carbon letrachilo	ride		0.9400	0:030	410	0	94.0	68.7	150	0.98	4.17	40.9	
Chlorobenzene			0.8700	0.15		0	87.0	78.7	124	0.93	6.67	7.32	
Chloroethane			0.8000	0.15	¥	Q	80.0	41.8	175	0.81	1.24	54	
Chloroform			0.8600	0.15	Ase.	0	36.0	72.3	130	0.9	4.55	15.9	
Chloromethane			0.9300	0.15	**	Q	93.0	50.1	168	0.0	3.28	37.5	
cis-1,2-Dichloroe	there		0.7800	0.040	4 π	Q	78.0	60.3	143	0.78	Ċ	25.5	
cis-1,3-Dichlorop	ropene		0.9300	0.15	Area .	0	93.0	69.8	133	0.95	2.13	21.4	
Cyclohexane			0.8600	0.15	****	0	86.0	73.4	132	0.85	26.5	18.5	
Dibromochlarom	sthane		0.9700	0.15	4	ø	67.0	61.5	143	£.11	13.5	24.4	
Ethyl acetate			0.8100	0.15	¥	0	81.0	58.7	135	D.84	3.64	15.5	
Ethylbenzene			0.8000	0.15	. fra	¢	80.0	7.4.7	122	0.82	2.47	7.46	
Freon 11			0.8800	0.15	***	0	88.0	62.7	147	-	12.8	36.1	
Freon 113			0.8500	0.15	**	¢	85.0	70.7	134	D.88	3.47	17.5	
Freon 114			0.8200	0.15	***	0	82.0	59.5	156	0.84	2.41	36.7	
Freon 12			0.8200	0.15	***	0	82.0	56.7	152	0.84	2.41	36.4	
Heptane			0.9300	0.15	*-	0	93.0	59.4	144	0.93	0	22.8	
Hexachloro-1,3-5	utadiene		1.010	0.15	**	0	101	69.6	134	1.16	13.8	23.7	
Hexane			0.8000	0.15	**	0	80.0	67	133	0.79	1.26	25.4	
Isopropyi akohol			1.240	0.15	**	G	124	51	141	1.07	14.7	26.5	
m&p-Xylene			1.740	0.30	7	0	87.0	76.9	130	1.81	3.94	12.6	
Methyl Butyl Ketc	ме		0.8900	0.30	***	0	89.0	55.2	137	0.94	5.46	20	
Methyl Ethyl Keto	не		0.7900	0.30	1	Q	79.0	66.5	124	0.82	3.73	23.1	
Methyl Isobutyl K	etone		0.9000	0.30	4	Q	0.09	59.9	138	1.05	15.4	26	
Methyl tert-butyl c	sther		0.7300	0.15	*	0	73.0	65.9	124	0.72	1.38	20.9	
Methylene chlorio	e		2.770	0.15	4	Q	277	62	148	2.58	7.10	16.8	S
o-Xytene			0.9100	0.15	Yuu	0	91.0	70.1	150	0.98	7.41	21.4	
Propylene			1.210	0.15	***	0	121	57.2	145	1,04	15.1	24.1	
Styrene			0.9100	0.15	~ *	G	910	76.3	132	0.94	3.24	19.4	
Tetrachloroethyle	ne		0.8800	0.15	447	0	88.0	73.9	133	0.96	8.70	0;	
Tetrahydrofuran			0.8400	0.15	Ŧ	0	84,0	57.6	140	0.85	1.18	17.3	
Qualifiers:	Results reported	d are not blank	corrected		DL Detec	stion Linut			ш ш	stimated Value a	bove quantitation	ม าวมธุอ	
Т	Holding times	for preparation	or analysis exc	eeded	J Analy	ste detected below quan	tétation limit		CR CR	lot Detected at th	e Limit of Detect	tion	
64	RPD outside ac	ccepted recover	y limits		S Spike	Recovery outside acce	pted recovery	y limits				4	age 2 of 5
												00000	

CLIENT: LaBella As Work Order: C2304013	sociates, P.C.										
Project: 113-117 N.	Clinton						Ite	stCode: 0	.20_NYS		
Sample ID: ALCS1UGD-040723	SampType: LCSD	TestCode	0.20 NYS	Units: ppbV		Prep Dat	aj		RunNo: 2023	E.	
Client ID: ZZZZZ	Batch ID: R20221	TestNo	TO-15			Analysis Dat	e: 4/8/2023		SeqNo: 2312	44	
Analyte	Result	POL	SPK value	SPK Ref Vai	%REC	Lowinit	HighLimit	RPD Ref Vai	0dy%	RPOLimit	Quai
Toluene	0.8500	0.15	Ŧ	0	85.0 V	72.8	128	0.96	12.2	8.7	۲
trans-1,2-Dichloroethene	0.8200	0.15	-	0	82.0	67	134	0.83	1.21	18.2	
trans-1,3-Dichkoropropene	0.9100	0.15	-	0	91.0	69	126	0.97	6.38	37.7	
Trichloroethene	0.9000	0:030	-	0	0.06	67.4	138	0.88	2.25	14.3	
Vinyl acetate	0.8000	0.15	-	Ð	80.0	57.3	130	0.78	2.53	27.8	
Vinyl Bromide	0.9100	0.15	£	0	91.0	57.8	154	0.94	3.24	44.5	
Vinyl chloride	0.8000	0.040	-	o	80.0	52.4	165	0.77	3.82	41.9	
Surr: Bromofluorobenzene	1.240	0	-	0	124	88.1	129	o	٥	0	
Sample ID: ALCS1UGD-040923	SampType: LCSD	TestCode:	0.20_NYS	Units: ppbV		Prep Dat	6		RunNo: 2022	4	
Client ID: ZZZZ	Batch ID: R20224	TestNo:	TO-15		~	Analysis Dat	e: 4/10/202		SeqNo: 2312	71	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	PD Ref Val	%RPD	RPDLimit	Qual
1.1.1-Trichloroethane	0.8600	0.15	-	Ð	86.0	73.7	136	0.88	2.30	26.4	
1,1,2,2-Tetrachloroethane	0.8300	0.15		0	83.0	62.8	147	0.8	3.68	22	
1,1,2-Trichioroethane	0.8300	0.15	-	0	83.0	69.1	141	0.84	1.20	27.3	
1,1-Dichloroethane	0.6600	0.15	-	0	66.0	66.8	136	0.72	8.70	21	S
1,1-Dichloroethene	0.5200	0.040	Ţ	0	52.0	69.2	134	0.56	7.41	15.7	Ś
1,2,4-Trichiorobenzene	1.080	0.15	-	0	108	42	151	0.89	19.3	45	
1,2,4-Trimethylbenzene	0.6800	0.15	-	D	68.0	72.7	125	0.6	12.5	17.4	s
1,2-Dibromoethane	0.7700	0,15	-	0	77.0	73.6	129	0.76	1.31	25	
 2-Dichlorobenzene 	0.8500	0.15	-	0	85.0	72.8	140	0.72	16.6	20.9	
1,2-Dichloroethane	0.6500	0.15	-	0	65.0	65.2	135	0.71	8.82	18.2	S
1,2-Dichloropropane	0.8000	0.15	-	0	80.0	56.1	154	0.82	2.47	33.2	
3.3.5-Trimethytbenzene	0.7700	0.15	-	0	77.0	73	131	0.65	16.9	20.4	
1,3-butadiene	0.7000	0.15	-	D	70.0	57.9	158	0.79	12.1	33.5	
1,3-Dichlorobenzene	0.8800	0.15	-	o	88.0	81.2	131	0.76	14.5	14.6	œ
1,4-Dichlorobenzene	0.9200	0.15	-	Ō	92.0	80	137	0.8	14.0	17.2	
1,4-Dioxane	0.7500	0.30		0	75.0	70.4	120	0.73	2.70	13.4	
2,2,4-frimethytpentane	0.7200	0.15	-	0	72.0	60.3	158	0.77	6.71	35.6	
Qualifiers: Results reporte	ed are not blank corrected		DI. Detectio	an Limia			E Es	imsted Value at	ove quantitation	range	
H Holding times	for preparation or analysis ex	cecded	J Analyte	detected below quanti	tation limit		ND No	Detected at the	Limit of Detection	5	
R RPD outside a	ccepted recovery limits		S Spike R	ecovery outside accept	ievocer bei	/ limits				Pa	ge 3 of 5
)

...

CLIENT: LaBella Associates, P.C. Work Order: C2304013

Project: 113-117 N.	Clinton						F	estCode: 0	SYN_020		
Sample ID: ALCS1UGD-040923	SampType: LCSD	TestCode	: 0.20 NYS	Units: ppbV		Prep Date			RunNo: 2022	4	
Client ID: ZZZZ	Batch ID: R20224	TestNo	: TO-15			Analysis Dale	4/10/20	23	SeqNo: 2312	T	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit F	fighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
4-ethyltoluene	0.7100	0.15	~	0	71.0	74	126	0.58	20.2	22.5	s
Acetone	4.890	0:30		0	489	46.8	174	4.3	12.8	46.7	s
Allyl chioride	0.7500	0.15	-	٥	75.0	54.6	142	0.79	5.19	24.4	
Benzene	0.7900	0.15	T	٥	79.0	68.4	142	0.82	3.73	22.7	
Benzyl chłoride	1.150	0.15	T	0	115	28	184	t. 1 . 1	4.44	74.1	
Bromodichloromethane	0.8800	0.15	~	Q	88.0	65	143	0.89	1.13	27.4	
Bromoform	1.040	0.15	۲ ۳	Ģ	104	48.3	160	0.92	12.2	39	
Bromomethane	0.5400	0.15		Q	54.0	54.3	159	0.61	12.2	41.5	s
Carbon disulfide	0.7800	0.15	¥.	Ģ	78.0	62.2	122	0.72	8.00	21.3	
Carbon letrachioride	0.8900	0.030	4~	Q	0.68	68.7	150	0.89	0	40.9	
Chiorobenzene	0.7300	0.15	Yere	0	73.0	78.7	124	0.72	1.38	7.32	S
Chloroethane	0.5500	0.15	Ann	Q	55.0 1	41.8	175	0.65	16.7	54	
Chloroform	0.7000	0.15	4.au	Q	70.0	72.3	130	0.74	5.56	15.9	S
Chloromelhane	0.7700	0.15	4	٥	11.0	50.1	168	0.73	5.33	37.5	
cis-1,2-Dichloroelhene	0.6400	0.040	~	Q	64.0	60.3	143	0.66	3.08	25.5	
cis-1,3-Dichloropropere	0.7600	0.15		φ	76.0	69.8	133	0.79	3.87	21.4	
Cyclohexane	0.6500	0.15	ų	a	65.0	73.4	132	0.69	5.97	18.5	ŝ
Dibromochloromethane	0.9100	0.15	**	Q	91.0	61.5	143	0.85	6.82	24.4	
Ethyl acetate	0.5600	0.15	***	Q	56.0	58.7	135	0.62	10.2	15.1	ŝ
Ethylbenzene	0.6000	0.15	**	Q	60.0	74.7	122	0.63	4.88	7.46	S
Freon 11	0.7300	0.15	-	0	73.0	62.7	147	0.82	11.6	36.1	
Freon 113	0.6800	0.15		0	68.0	70.7	134	0.73	7.09	17.5	s
Freon 114	0.5800	0,15		٥	58.0	59.5	156	0.65	11.4	36.7	S
Freon 12	0.5800	0.15	***	0	58.0	56.7	152	0.65	11.4	36.4	
Heplane	0.6900	0.15	1	a	69.0	59.4	144	0.76	9.66	22.8	
Hexachloro-1,3-butadiene	0.9300	0.15	्रमुख्य	0	93.0	69.69	134	0.83	11.4	23.7	
Hexane	0.5400	0.15		0	54.0	67	133	0.61	12.2	25.4	S
(sopropyl alcohol	1.030	0.15		0	103	51	141	1.09	5.66	26.5	
m&p-Xylene	1.380	0.30	7	0	69.0	76.9	\$30	1.31	5.20	12.6	S
Methyl Butyl Ketone	0.6600	0.30	•	0	66.0	56.2	137	0.72	8.70	20	
Methyl Ethyl Ketone	0.6200	0.30	•	٥	62.0	66.5	124	0.62	0	23.1	ŝ
Qualifiers: Results reports	ed are not blank corrected		DL Detecti	an Limit			ц Н Н	stimated Value al	ove guantitation i	ange	
H Holding times	i for preparation or analysis exc	peeded	J Analyte	detected below quant	citation limit		N DN	of Detected at the	: Limit of Detection	<u>ت</u>	
R RPD outside a	accepted recovery limits		S Spike R	ecovery outside accet	oted recover	· himits				6	

And the state of t

Page 4 of 5

LaBella Associates, P.C. C2304013

CLIENT:

Work Order:

						F	estCode: 0	SYN_02.		
mpType: LCSD	TestCoc	le: 0.20_NYS	Units: ppbV		Prep Dat			RunNo: 20	224	
Satch ID: R20224	Test	lo: TO-15		-	Anałysis Dat	e: 4/10/20	23	SegNo: 231	1271	
Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
0.6800	0.30	**	0	68.0	59.9	138	0.71	4.32	26	
0.4900	0.15	4m.	0	49.0	6.93	124	0.55	13.3	20.9	S
5.590	0.15	4uu	0	559	62	148	4.73	16.7	16.8	Ş
0.7600	0.15	4 -	0	76.0	70.1	150	0.67	12.6	21.4	
1.070	0.15	**	0	107	57.2	145	1.07	0	24.1	
0.7600	0.15	*-	0	76.0	76.3	132	0.67	12.6	19.4	ŝ
0.8200	0.15	444	0	82.0	73.9	133	0.76	7.59	10	
0.5600	0.15	-	ð	56.0	57.6	140	0.63	11.8	17.3	S
0.7100	0.15	-	Ð	71.0	72.8	128	0.71	0	8.7	S
0.5900	0.15	-	Ö	59.0	67	134	0.64	8.13	18.2	S
0.7700	0.15	T	D	0.77	69	126	0.62	6.29	37.7	
1.120	0:030	F	ð	112	67.4	138	0.99	12.3	14.3	
0.5000	0.15	-	0	50.0	57.3	130	0.56	11.3	27.8	ŝ
0.6700	0.15	-	D	67.0	57.8	154	0.75	11.3	44.5	
0.5300	0.040	-	0	£3.0	52.4	165	0.59	10.7	41.9	
1.200	0	-	0	120	88.1	129	φ	0	0	
5 00	npType: LCSD atch ID: R20224 Result 0.6800 0.4900 5.590 0.7600 1.070 0.7600 0.7700 0.5900 0.7100 0.5900 0.5900 0.5700 0.55000 0.5500 0.5500000000	npType: LCSD TestCoc atch ID: R20224 TestCoc Result PQL 0.6800 0.30 0.4900 0.30 0.4900 0.15 0.4900 0.15 0.7500 0.15 0.7500 0.15 0.7500 0.15 0.7100 0.15 0.7700 0.15 0.7700 0.15 0.7700 0.15 0.7700 0.15 0.7700 0.15 0.5900 0.15 0.7700 0.15 0.5900 0.15 0.5900 0.15 0.5000 0.15 0.5000 0.15 0.5000 0.15 0.5000 0.15 0.5000 0.15 0.5300 0.040 1.200 0.040	npType: LCSD TestCode: 0.20_NYS atch ID: R20224 TestMo: To-ris Result PQL SPK value 1 0.6800 0.30 1 1 0.4900 0.30 1 1 0.4900 0.15 1 1 0.4900 0.15 1 1 0.4900 0.15 1 1 0.7600 0.15 1 1 0.7600 0.15 1 1 0.7100 0.15 1 1 0.7700 0.15 1 1 1 0.7700 0.15 1 1 1 1 0.7700 0.15 1 1 1 1 1 1 1 1 0.7700 0.15 0.15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	npType: LCSD TestCode:: 0.20NYS Units: ppbV atch ID: R20224 TestMo: To-16 Inits: ppbV Result PQL SPK walue SPK Ref Val 0 0.68000 0.30 1 0 0 0.49000 0.15 1 0 0 0.58000 0.15 1 0 0 0.76000 0.15 1 0 0 0.76000 0.15 1 0 0 0.77000 0.15 1 0 0 0 0.77000 0.15 1 0 0 0 0 0.77000 0.15 1 0	npType: LCSD TestCode: 0.26NYS Units: ppbV atch ID: Result TestMo: TO-15 Nits: ppbV Result PQL SPK value SPK Ref Val %REC 0.68000 0.30 1 0 68.0 0.49000 0.15 1 0 68.0 0.5590 0.15 1 0 68.0 0.7600 0.15 1 0 68.0 0.7600 0.15 1 0 76.0 0.7600 0.15 1 0 76.0 0.7700 0.15 1 0 76.0 0.7700 0.15 1 0 71.0 0.7700 0.15 1 0 71.0 0.7700 0.15 1 0 71.0 0.7700 0.15 1 0 71.0 0.7700 0.15 1 0 71.0 0.7700 0.15 1 <td>npType: LCSD TestCode: 0.20_NYS Units: ppbV Prep Dat atch ID: R20224 TestNo: To-15 Analysis Dat Atch ID: R20224 TestNo: To-15 Analysis Dat Result PQL SPK value SPK Ref Val %REC LowLinit 0.6800 0.30 0.15 1 0 68.0 59.9 0.7600 0.15 1 0 68.0 59.9 65.9 0.7600 0.15 1 0 69.0 70.1 70.1 1.070 0.15 1 0 68.0 75.2 57.6 0.7600 0.15 1 0 70.0 73.9 57.6 73.9 0.75000 0.15 1 0 71.0 77.0 57.6 0.7700 0.15 1 0 71.0 57.6 57.4 0.7700 0.15 1 0 59.0 67.4 67.4</td> <td>npType: LCSD TestCode: 0.1 mis: ppbV Prep Date: $410/20$ atch ID: R20224 TestToode: 0.20 w/s JestToode: 0.16800 0.30 1 Analysis 0.16810 $410/20$ Result PQL SPK value SPK Ref Val SAREC LowLinit HighLinit 0.6800 0.30 1 0 68.0 59.9 138 0.4900 0.15 1 0 68.0 53.9 138 0.4900 0.15 1 0 68.0 53.9 138 0.4900 0.15 1 0 68.0 53.9 138 0.4900 0.15 1 0 70.0 70.1 150 1.0700 0.15 1 0 70.0 70.3 132 0.7500 0.15 1 0 70.0 70.3 132 0.7500 0.15 1 0 710.0 710.0 72</td> <td>OpType: LCSD TestCode: D.20_NYS Units: ppbV Prep Date: 41002023 atch ID: R20224 TestIvo: TO-15 Analysis Date: 41002023 atch ID: R20224 TestIvo: TO-15 Analysis Date: 41002023 atch ID: R2024 PCU SPK value SPK Ref Val %REC LowLinit HighLinit RPD Result PCU SPK value SPK Ref Val %REC LowLinit HighLinit RPD 0.68800 0.15 1 0 68.0 53.9 53.9 0.71 0.7600 0.15 1 0 68.0 57.2 148 4.73 0.7600 0.15 1 0 68.0 57.2 146 0.66 0.7600 0.15 1 0 68.0 70.1 150 0.67 0.7600 0.15 1 0 68.0 77.2 146 0.67 0.7700 0.15</td> <td>OpTYPPE LCSD TestCode: 0.20_ WYS LCSD TestCode: 0.20_ WYS RunNo: 201 atch ID: RE2024 TestNo: TO-15 Analysis Date: 4/10/2023 SeqNo: 23 Result PQL SPK kef Val %REC LowLimit HighLimit RPD Ref Val %RPD Result PQL SPK kef Val %REC LowLimit HighLimit RPD Ref Val %RPD 0.4900 0.15 1 0 68.0 55.9 133 0.71 4.32 0.4900 0.15 1 0 68.0 70.1 150 0.75 123 0.7500 0.15 1 0 68.0 76.0 70.1 150 726 726 0.7500 0.15 1 0 76.0 76.0 76.0 73.3 16.7 726 0.7500 0.15 1 0 76.0 76.0 76.0 77.6 728 17.8<td>pripper: LCSD TestCode: D.Idis: ppbV Prep Date: Analysis Date:<!--</td--></td></td>	npType: LCSD TestCode: 0.20_NYS Units: ppbV Prep Dat atch ID: R20224 TestNo: To-15 Analysis Dat Atch ID: R20224 TestNo: To-15 Analysis Dat Result PQL SPK value SPK Ref Val %REC LowLinit 0.6800 0.30 0.15 1 0 68.0 59.9 0.7600 0.15 1 0 68.0 59.9 65.9 0.7600 0.15 1 0 69.0 70.1 70.1 1.070 0.15 1 0 68.0 75.2 57.6 0.7600 0.15 1 0 70.0 73.9 57.6 73.9 0.75000 0.15 1 0 71.0 77.0 57.6 0.7700 0.15 1 0 71.0 57.6 57.4 0.7700 0.15 1 0 59.0 67.4 67.4	npType: LCSD TestCode: 0.1 mis: ppbV Prep Date: $410/20$ atch ID: R20224 TestToode: 0.20 w/s JestToode: 0.16800 0.30 1 Analysis 0.16810 $410/20$ Result PQL SPK value SPK Ref Val SAREC LowLinit HighLinit 0.6800 0.30 1 0 68.0 59.9 138 0.4900 0.15 1 0 68.0 53.9 138 0.4900 0.15 1 0 68.0 53.9 138 0.4900 0.15 1 0 68.0 53.9 138 0.4900 0.15 1 0 70.0 70.1 150 1.0700 0.15 1 0 70.0 70.3 132 0.7500 0.15 1 0 70.0 70.3 132 0.7500 0.15 1 0 710.0 710.0 72	OpType: LCSD TestCode: D.20_NYS Units: ppbV Prep Date: 41002023 atch ID: R20224 TestIvo: TO-15 Analysis Date: 41002023 atch ID: R20224 TestIvo: TO-15 Analysis Date: 41002023 atch ID: R2024 PCU SPK value SPK Ref Val %REC LowLinit HighLinit RPD Result PCU SPK value SPK Ref Val %REC LowLinit HighLinit RPD 0.68800 0.15 1 0 68.0 53.9 53.9 0.71 0.7600 0.15 1 0 68.0 57.2 148 4.73 0.7600 0.15 1 0 68.0 57.2 146 0.66 0.7600 0.15 1 0 68.0 70.1 150 0.67 0.7600 0.15 1 0 68.0 77.2 146 0.67 0.7700 0.15	OpTYPPE LCSD TestCode: 0.20_ WYS LCSD TestCode: 0.20_ WYS RunNo: 201 atch ID: RE2024 TestNo: TO-15 Analysis Date: 4/10/2023 SeqNo: 23 Result PQL SPK kef Val %REC LowLimit HighLimit RPD Ref Val %RPD Result PQL SPK kef Val %REC LowLimit HighLimit RPD Ref Val %RPD 0.4900 0.15 1 0 68.0 55.9 133 0.71 4.32 0.4900 0.15 1 0 68.0 70.1 150 0.75 123 0.7500 0.15 1 0 68.0 76.0 70.1 150 726 726 0.7500 0.15 1 0 76.0 76.0 76.0 73.3 16.7 726 0.7500 0.15 1 0 76.0 76.0 76.0 77.6 728 17.8 <td>pripper: LCSD TestCode: D.Idis: ppbV Prep Date: Analysis Date:<!--</td--></td>	pripper: LCSD TestCode: D.Idis: ppbV Prep Date: Analysis Date: </td

Page 5 of 5 Estimated Value above quantitation range Not Detected at the Limit of Detection щ Spike Recovery outside accepted recovery limits Analyte detected below quantitation limit - -- --------DL Detection Limit - 5 Holding times for preparation or analysis exceeded Results reported are not blank corrected RPD outside accepted recovery limits . I 4 Qualifiers:
