# Interim Remedial Measure Work Plan #2 820 Linden Ave BCP Site #828200

820 Linden Avenue Pittsford, Monroe County, New York



# Prepared for:

New York State Department of Environmental Conservation 6274 Avon-Lima Road Avon, New York 14414

# Prepared on behalf of:

Ridgecrest Associates, L.P. 135 Orchard Park BV Rochester, New York 14609

# Prepared by:

Stantec Consulting Services Inc. 61 Commercial Street, Suite 100 Rochester, New York 14614

November 2019



# Certification

| registered professional engineer and that this | ces Inc., certify that I am currently a New York State-<br>is Interim Remedial Measure Work Plan #2 was prepared<br>of the state of the state |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Signature                                      | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |



#### **EXECUTIVE SUMMARY**

The purpose of this Interim Remedial Measures (IRM) Work Plan #2 (IRM WP#2 or "Work Plan") is to present a plan for the excavation/in place closure of three septic systems (AOC3) as well as the removal of an impacted debris pile (AOC2) for the Brownfield Cleanup Program (BCP) 820 Linden Ave Site #C828200, located at 820 Linden Avenue in Pittsford, Monroe County, New York (the "Site"). Stantec Consulting Services, Inc. (Stantec) prepared this Work Plan on behalf of Ridgecrest Associates, L.P., the property owner and BCP "Participant", for submission to the New York State Department of Environmental Conservation (NYSDEC). This Work Plan identifies the proposed IRM2 tasks to be completed in general accordance with the BCP and NYSDEC's DER-10 Technical Guidance for Site Investigation and Remediation (DER-10; NYSDEC, 2010a). The Brownfield Cleanup Agreement between Ridgecrest Associates and NYSDEC was executed on April 14, 2018.

One additional interim remedial measure (IRM) has been implemented:

1. IRM1 consisted of design, construction, and operation of a sub-slab depressurization system (SSDS) to address soil vapor intrusion (SVI) in a portion of the southern tenant space. SSDS construction began on December 6, 2018 and was completed in March 2019 when the system became operational on March 1, 2019.

A third IRM is about to be implemented to supplement IRM1:

2. IRM3 consists of design, construction, and operation of the SSDS extension into an area of the southern tenant space that was constructed in 1954 and is outside the IRM1 SSDS radius of influence. This IRM was initiated in response to results of the post-IRM1 SSDS installation SVI sampling conducted on March 31, 2019. Construction of the IRM3 SSDS extension is anticipated to begin before the end of 2019.

The Site consists of an approximately 7.97-acre, L-shaped property improved with an approximately 108,400 square foot, L-shaped, one-story slab-on-grade building. Based on building permit records, the building was reportedly constructed in six phases with the first building permit issued in 1954 and the final in 1967.

Three Areas of Concern (AOCs) have been identified at the Site based on findings from the RI, SRI, and the 2016-2017 Phase II Environmental Site Assessment (ESA) and are summarized below:

 AOC1: Chlorinated Volatile Organic Compounds (VOCs) have been identified in subslab soil vapor beneath the JML tenant space at concentrations requiring mitigation. Chlorinated VOC impacts to sub-slab vapor were first identified from historical PSG surveys (ERM, 2004; Labella, 2005). The potential for soil vapor intrusion (SVI) was investigated by Stantec through combined sub-slab vapor and indoor air sampling in 2016-2017 as part of the Limited Phase II ESA (Stantec, 2017b). The following chlorinated

VOCs were identified as contaminants of concern (COCs) for this media: 1,1-dichloroethene (1,1-DCE); cis-1,2-dichloroethene (cis-1,2-DCE); tetrachloroethene (PCE); and trichloroethene (TCE). No source has been identified despite extensive shallow and deep soil and groundwater investigations in the areas of impact. Potential exposure has been or is being addressed through implementation of IRM1 and IRM3 with the installation and operation of the SSDS, long-term implementation of the Operations, Maintenance, and Monitoring Plan (OM&M Plan) as well as the site-wide Site Management Plan (SMP). Given the implementation of IRM1 and the upcoming implementation of IRM3, no additional investigation or remedial action beyond implementation of IRM1 and IRM3 is considered warranted at this time.

- 2. AOC-2: The debris pile located in the northeast corner of the parking lot area was found to contain elevated levels of polycyclic aromatic hydrocarbons (PAHs) associated with significant crushed asphalt contents. Removal of this debris pile will be conducted as part of IRM2 with confirmatory sampling conducted. No additional remedial action beyond implementation of IRM2 is considered warranted at this time.
- 3. AOC-3: Three former septic systems were identified during the test pit program. The buried structures will be addressed through proposed system removal or in place closure through IRM2 as described herein. This includes:
  - Proposed abandonment in place of the Southeast Septic System, contingent on sampling near tanks and in the leach field demonstrating favorable results. This proposed plan is based on historic records indicating this system was used for sanitary purposes and on non-impacted sampling results from the tank interior.
  - Proposed removal of the Southwest Septic System, including tanks, distribution box(s), and leach lines, as well as the east-west oriented cast iron pipe to the south of the tanks. Sampling results of the solids and water in the tank indicate the presence of VOCs, PCBs and mercury.
  - Proposed abandonment in place of the Northwest Septic System with removal of residual black tar-like material that was encountered above the distribution box during the SRI. Abandonment in place is proposed due to the close proximity of active utilities and tree root systems from large nearby trees. Sampling results of tank contents and in the vicinity of the tanks, distribution box and leach fields were below Commercial SCOs with the exception of exceedance of PAH SCOs for the black tar-like material and an exceedance of the Commercial SCO for mercury near Tank 2 at 8-10 ft bgs.

This Work Plan presents a plan to implement a Track 4 cleanup for Commercial/Industrial Use to address the debris pile (AOC-2) and the septic systems (AOC-3) along with any associated residual contamination.

There will be four major components to the proposed IRM2 program as summarized below:

- 1. Southeast Septic System Sample and Abandon in Place
  - Initial collection of investigation samples near tank and in leach field via Geoprobe to confirm that abandonment in place is acceptable.
  - If samples results do not reveal a source area of grossly contaminated soils under the tank, complete abandonment in place by filling distribution box with flowable fill (Tank 1 previously filled with soil by others).
  - If sample results reveal that a source area of grossly contaminated soils (as defined by visual, olfactory, elevated PID and analytical results) greatly exceeding the Commercial and/or Industrial SCOs, develop a focused remedial plan in consultation with NYSDEC to address the exceedance, potentially including removal of the tank (and contents), the distribution box and/or the leach field piping, and collecting confirmatory samples in consultation with NYSDEC during the field program.
- 2. Southwest Septic System Removal
  - Removal of tanks (and contents), distribution box(s) and leach field.
  - Removal of East-West oriented cast iron pipe south of tanks.
  - Confirmatory sampling.
- 3. Northwest Septic System Abandon in Place
  - Re-excavate and dispose off-Site the black tar-like material and intermixed soils
    previously excavated and backfilled into the excavation during the SRI down to the
    distribution box.
  - Fill Tank 2 and distribution box with flowable fill (Tank 1 previously filled with soil by others).
  - No further sampling needed.
- 4. Debris Pile
  - Loading and off-Site disposal.
  - Confirmatory sampling.

Implementation of the IRM2 field activities in accordance with this Work Plan is anticipated to begin by the Spring 2020 construction season and are anticipated to be completed in approximately 10-15 working days.

# **Table of Contents**

# **CERTIFICATION**

| EXEC | CUTIVE SUM | 1MARY                                                | i    |
|------|------------|------------------------------------------------------|------|
| ABBF | REVIATION  | S                                                    | VIII |
| 1.0  | INTRODU    | JCTION                                               | 1    |
| 1.1  |            | E AND CONTENTS OF WORK PLAN                          |      |
| 1.2  | ADDITIC    | NAL PLANS                                            | 2    |
| 2.0  | BACKG      | ROUND                                                | 3    |
| 2.1  | SITE DES   | CRIPTION AND HISTORY                                 | 3    |
| 2.2  | IDENTIFI(  | CATION OF SCGS                                       | 4    |
| 2.3  | OVERVII    | ew of previous interim remedial measures             | 4    |
| 2.4  | SUMMA      | ry of prior investigation results                    | 6    |
| 3.0  | SUMMA      | RY OF REMEDIAL AREAS OF CONCERN (RAOCS)              | 8    |
| 3.1  |            | - SOUTHEAST SEPTIC SYSTEM                            |      |
|      | 3.1.1      | Septic System Configuration                          |      |
|      | 3.1.2      | Characterization of Septic Tank System Contents      | 8    |
| 3.2  | RAOC-2     | ? – SOUTHWEST SEPTIC SYSTEM                          | 8    |
|      | 3.2.1      | Septic System Configuration                          | 9    |
|      | 3.2.2      | Characterization of Septic Tank System Contents      | 9    |
| 3.3  | RAOC-3     | B – NORTHWEST SEPTIC SYSTEM                          | 10   |
|      | 3.3.1      | Septic System Configuration                          | 10   |
|      | 3.3.2      | Characterization of Septic Tank System Contents      | 10   |
|      | 3.3.3      | Leach Field and Adjacent Soil Investigation Findings | 11   |
| 3.4  | RAOC-4     | I – DEBRIS PILE                                      | 12   |
| 4.0  | INTERIM    | REMEDIAL MEASURES                                    | 13   |
| 4.1  | GENERA     | AL REMEDIAL CONSTRUCTION INFORMATION                 | 13   |
|      | 4.1.1      | Remedial Engineer                                    | 13   |
|      | 4.1.2      | Construction Schedule                                | 13   |
|      | 4.1.3      | Work Hours                                           | 14   |
|      | 4.1.4      | Traffic Control                                      | 14   |
|      | 4.1.5      | Contingency Plan                                     |      |
|      | 4.1.6      | Worker Training and Monitoring                       |      |
|      | 4.1.7      | Agency Approvals and Permits                         |      |
|      | 4.1.8      | Emergency Contact Information                        |      |
| 4.2  |            | PARATION ACTIVITIES                                  |      |
|      | 4.2.1      | Utility Stakeout                                     |      |
|      | 4.2.2      | Erosion and Sedimentation Controls                   |      |
|      | 4.2.3      | Equipment and Material Staging                       | 15   |

| 9.0               | REFEREN  | ICES.                                                                                         | 31 |
|-------------------|----------|-----------------------------------------------------------------------------------------------|----|
| 8.0               | PROJEC   | T SCHEDULE                                                                                    | 30 |
| 7.2               | CONTRA   | ACTORS                                                                                        | 29 |
| <b>7.0</b> 7.1    |          | T ORGANIZATION                                                                                |    |
| 6.3               | CONSTR   | RUCTION COMPLETION REPORT                                                                     | 27 |
| 6.2               |          | OCUMENTATION                                                                                  |    |
| <b>6.0</b><br>6.1 |          | ENTATION AND REPORTING                                                                        |    |
| 5.6               | DATA US  | SABILITY                                                                                      | 25 |
| 5.5               |          | uality control samples                                                                        |    |
| 5.4               | _        | ED FILL                                                                                       |    |
| 5.3               |          | CHARACTERIZATION                                                                              |    |
| 5.2               |          | MATORY SOIL SAMPLING APPROACH                                                                 |    |
| <b>5.0</b> 5.1    |          | NG AND ANALYTICAL PROGRAM                                                                     |    |
| 4.10              | DEMOBI   | ILIZATION                                                                                     | 22 |
| 4.9               |          | CONTROL                                                                                       |    |
| 4.8               |          | TORATION                                                                                      |    |
| 4.7               | EXCAVA   | ATION BACKFILL                                                                                | 21 |
| 4.6               | WASTE [  | DISPOSAL                                                                                      | 20 |
| 4.5               | EXCAVA   | ATION STORMWATER MANAGEMENT                                                                   | 20 |
| 4.4               | SOIL SCI | REENING METHODS                                                                               |    |
|                   | 4.3.4    | RAOC-4: Debris Pile - Removal                                                                 |    |
|                   | 4.3.3    | RAOC-3: Northwest Septic System – Abandonment in-Place and Removal of Black Tar-Like Material | 18 |
|                   | 4.3.2    | RAOC-2: Southwest Septic System - Removal                                                     | 17 |
|                   | 4.3.1    | RAOC-1: Southeast Septic System – Sample and Abandon in-<br>Place                             |    |
| 4.3               |          | PTION OF RAOC APPROACH                                                                        | 17 |
|                   | 4.2.5    | Decontamination                                                                               |    |
|                   | 4.2.4    | Temporary Fencing                                                                             | 16 |

# **List of Figures**

| Figure 1 | Site Location Map                                                                                    |
|----------|------------------------------------------------------------------------------------------------------|
| Figure 2 | Site Layout and Previous Investigation Locations                                                     |
| Figure 3 | Overview of RAOCs                                                                                    |
| Figure 4 | Understanding of Sewer Configuration                                                                 |
| Figure 5 | RAOC-1: Southeast Septic System Proposed Abandonment in-Place and Investigation Sample Locations     |
| Figure 6 | RAOC-2: Southwest Septic System Proposed Removal and Confirmatory Sample Locations                   |
| Figure 7 | RAOC-3: Northwest Septic System Proposed Abandonment In-Place and Removal of Black Tar-Like Material |
| Figure 8 | RAOC-4: Debris Pile Proposed Removal and Confirmatory Sample Location                                |

# **List of Tables**

| Table 1 | Summary of Analytical Results for RI Soil Samples                              |
|---------|--------------------------------------------------------------------------------|
| Table 2 | Summary of Analytical Results for SRI Solid Samples                            |
| Table 3 | Summary of Solid Sample Results for Characterization of Septic System Contents |
| Table 4 | Summary of Water Sample Results for Characterization of Septic System Contents |
| Table 5 | Summary of Septic Tank Field Observations and Capacity Calculations            |
| Table 6 | Summary of Proposed Sampling Activities                                        |

# **List of Appendices**

Appendix A Quality Assurance Project Plan Addendum

Appendix B Health and Safety Plan

Appendix C Community Air Monitoring Plan

# **Abbreviations**

1,1-DCE 1,1-dichloroethene
AOC Area of Concern

ASP Analytical Services Protocol
BCP Brownfield Cleanup Program
CAMP Community Air Monitoring Plan
CCR Construction Completion Report

cis-1,2-DCE cis-1,2-dichloroethene
COC Contaminants of Concern

CVOC chlorinated volatile organic compound

cy cubic yards

DER Division of Environmental Remediation

DUSR Data Usability Summary Report EDD electronic data deliverable

ELAP Environmental Laboratory Accreditation Program

ERM Environmental Resources Management

ESA Environmental Site Assessment ft bgs feet below ground surface GPS Global positioning system GZA GeoEnvironmental, Inc. HASP Health and Safety Plan Interim Remedial Measure

JML Optical

MCDES Monroe County Department of Environmental Services

μg/kg microgram per kilogram

MS/MSD matrix spike/matrix spike duplicate

NEtFOSAA N-ethyl perfluorooctane sulfonamidoacetic acid

Newport Corporation

NYCRR New York Codes, Rules and Regulations

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

OBG O'Brien & Gere

OM&M Plan Operations, Maintenance and Monitoring Plan

PAH Polycyclic Aromatic Hydrocarbon



PCB polychlorinated biphenyls

PCE Tetrachloroethene

PFAS per- and polyfluoroalkyl substances

PFAS polyfluoroalkyl substances
PFOA perfluorooctanoic acid
PFOS Perfluorooctane sulfonate
PFOSA Perfluorooctane sulfonamide
PID photoionization detector
POGW Protection of Groundwater

ppb Part per billion

QA/QC Quality Assurance/Quality Control
QAPP Quality Assurance Project Plan
RAOC Remedial Area of Concern
RI Remedial Investigation

RIR Remedial Investigation Report
RIWP Remedial Investigation Work Plan

SCOs Soil Cleanup Objectives

SGVs Standards and Guidance Values

SMP Site Management Plan

SPLP Synthetic Precipitation Leaching Procedure

sq ft square feet

SSDS sub-slab depressurization system

SVI Soil Vapor Intrusion

SVOC semi-volatile organic compound

TAL target analyte list TCE Trichloroethene

TCL Target Compound List

TIC tentatively identified compound

TOGS Technical and Operational Guidance Series
USEPA United States Environmental Protection Agency

VOC Volatile Organic Compound

μg/L micrograms per liter



INTRODUCTION

#### 1.0 INTRODUCTION

This document presents the Interim Remedial Measures (IRM) Work Plan #2 (IRM WP#2 or "Work Plan") for the Brownfield Cleanup Program (BCP) 820 Linden Ave Site #C828200, located at 820 Linden Avenue in Pittsford, Monroe County, New York (the "Site"). A map showing the Site location is presented on Figure 1. Stantec Consulting Services, Inc. (Stantec) prepared this Work Plan on behalf of Ridgecrest Associates, L.P., the property owner and BCP "Participant", for submission to the New York State Department of Environmental Conservation (NYSDEC). This Work Plan identifies the proposed IRM tasks and remedial technologies to be completed in general accordance with the BCP and NYSDEC's DER-10 Technical Guidance for Site Investigation and Remediation (DER-10; NYSDEC, 2010a).

#### 1.1 PURPOSE AND CONTENTS OF WORK PLAN

The Site recently underwent a Remedial Investigation (RI) pursuant to the Remedial Investigation Work Plan (RIWP) dated September 2017 and conditionally approved by NYSDEC on May 21, 2018. During the RI, a debris pile located in the northeastern corner of the Site and containing asphalt and concrete was sampled. Three historical septic systems were encountered during the RI test pit program conducted in August 2018 and were further investigated during the Supplemental Remedial Investigation (SRI) in July 2019. The SRI was conducted according to a SRI WP originally submitted to NYSDEC on December 21, 2018 and approved by NYSDEC in letters dated May 9 and June 7, 2019.

To provide a timely response to these findings, IRM2 is proposed herein to address AOC-2 (debris pile) and AOC-3 (three former septic systems), collectively to be identified within this Work Plan as the four Remedial Areas of Concern (RAOCs) to mitigate the potential for migration of contaminants and to facilitate expedient Site closure. Based on a review of the RI and SRI findings, no further investigation or remediation of the Site is warranted beyond the implementation of this IRM2 and the SSDS extension in IRM3.

This IRM WP#2 includes the following items:

- A summary of the RI and SRI findings including historical records review relating to the four RAOCs;
- A listing of applicable Soil Cleanup Objectives (SCOs) and groundwater standards for the Site's current and reasonably anticipated future use;
- A description of the proposed IRM;
- Plans for confirmatory sampling, waste characterization, and soil/groundwater management for proper off-Site disposal; and
- A schedule for implementation and reporting.



INTRODUCTION

#### 1.2 ADDITIONAL PLANS

Additional complementary plans, including a Quality Assurance Project Plan (QAPP), Health and Safety Plan (HASP), and Community Air Monitoring Plan (CAMP) were prepared to supplement the RIWP and have been updated to support the activities proposed in this IRM WP#2. The IRM activities will be performed in accordance with this Work Plan and each of the following complementary plans:

- QAPP: Outlines the procedures to be used to assure that analytical results obtained as part of IRM WP#2 meet data quality objectives. The QAPP presented in the RIWP will be utilized with the addendum provided in Appendix A.
- **HASP:** Describes personal safety protection standards and procedures to be followed by Stantec personnel during the IRM field tasks (Appendix B). Subcontractors will be required to develop their own HASP, as well as to meet pertinent health and safety regulations.
- CAMP: Describes procedures for monitoring and controlling air quality issues related to VOCs and particulates (dust) that may arise during remedial excavation activities (Appendix C).
   This includes the generic DER-10 CAMP along with the May 21, 2018 comments provided by NYSDEC on the RIWP which outline CAMP procedures to be followed close to the occupied building.



**BACKGROUND** 

## 2.0 BACKGROUND

# 2.1 SITE DESCRIPTION AND HISTORY

The Site consists of an approximately 7.97-acre property improved with an approximately 108,400 square foot slab-on-grade building (Figure 2). The southern tenant space in this building is approximately 70,200 square feet and is currently occupied by JML Optical (JML). The northern tenant space is approximately 38,200 square feet and is currently occupied by Newport Corporation (Newport). Based on building permit records, the building was reportedly constructed in six phases. The first building permit was issued in 1954, with subsequent additions permitted for the rear and west side of the building in 1956, 1958, and 1959. A large addition immediately north of the original building was permitted in 1966. Each of the first five construction phases now comprise the current JML tenant space. The final construction phase, which now comprises the Newport tenant space, was permitted in 1967.

Land use at the Site, and at immediately-adjacent parcels to the east and west, is industrial/commercial. Both current tenants are optics manufacturing facilities: JML manufactures precision optical components for commercial, industrial and military applications, and Newport manufactures diffraction gratings for spectroscopic, telecommunications, and laser applications. However, in the future the building could be converted to a commercial use. Historical records indicate that the Site's manufacturing building has been occupied for optical industry use since the construction of the southern building in 1954. Pertinent historical records for properties adjacent to the Site are described in the 2017 Phase I ESA (Stantec, 2017a).

The Site is bounded by wooded land to the north, Linden Avenue and a railroad to the south. Adjoining properties include commercial and light industrial properties to the east, west, and south, as well as residential properties south of the railroad. A drainage ditch that runs along the western property boundary collects storm water drainage from two roof drain outfalls and pitches to the north.

Based on the subsurface investigations performed as part of Stantec's Limited Phase II Environmental Site Assessment (Stantec, 2017b) and 2018 RI, the general subsurface profile observed across the Site consists of the following deposits, in order of increasing depth: fill materials (where present) underlain by native unconsolidated overburden deposits (outwash sand) to the bottom of the borings. The test borings installed during the previous investigations extended to a maximum depth of 72 feet below ground surface (ft bgs), and bedrock was not encountered. Based on the Geologic Map of New York (1970; Finger Lakes Sheet), the Site is underlain by the Upper Silurian Penfield Dolostone of the Lockport Group. It is estimated that the depth to bedrock is approximately 110-120 ft bgs based on findings from a nearby investigation



**BACKGROUND** 

at Sigismondi Landfill (Site #C828011) as posted on the NYSDEC Environmental Site Remediation Database (https://www.dec.ny.gov/cfmx/extapps/derexternal/haz/details.cfm).

The overburden materials encountered beneath the surface cover (topsoil, concrete, or asphalt) generally consisted of a sand and gravel fill layer ranging from 0-9.5 ft bgs, underlain by native sand. The native soils were primarily comprised of fine to coarse sand and silty fine sand, with occasional and minor percentages of clay and gravel. Lenses of variably saturated clay and silt/clay ranging from 1 to 15 ft thick were encountered in shallow subsurface soil above the deep groundwater zone water table) on the eastern and southern portions of the Site.

Groundwater levels in Site monitoring wells range from approximately 41 to 62 ft bgs. Based on the well gauging data, groundwater flow direction is to the north/northeast towards Irondequoit Creek, which is located approximately 2,800 ft to the northeast of the Site and situated approximately 120 ft lower in elevation than the Site.

### 2.2 IDENTIFICATION OF SCGS

The regulatory Standards, Criteria and Guidelines (SCGs) established for environmental media at the Site is based on the intended future use of the property, which is not anticipated to change. The Site is anticipated to remain industrial. However, for flexibility in terms of potential future use and as a conservative approach, the Commercial Clean-Up track was selected for this Site. Therefore, the IRMs are intended to attain conditions at the Site which are protective of the Track 4 Commercial Use of the Site and are protective of public health and the environment. The specific SCGs are discussed in detail below.

**Soil:** Soil results will be compared to New York Codes, Rules and Regulations (NYCRR) Part 375 Restricted Use Soil Cleanup Objectives (SCOs) for Commercial and Industrial Uses. Pursuant to 6 NYCRR 375-6.5, the POGW SCOs are applicable when (1) soil contamination is present at levels exceeding POGW SCOs and (2) groundwater is impacted by that soil contamination as demonstrated by exceedances of groundwater standards for the specific compound(s) identified in on-Site source soil.

<u>Groundwater</u>: Groundwater results have been compared to Class GA standards and guidance values listed in NYSDEC's Ambient Water Quality Standards and Guidance Values, Division of Water Technical and Operational Guidance Series (TOGS 1.1.1) Memorandum dated October 22, 1993, Reissued June 1998, and addenda dated April 2000 and June 2004.

#### 2.3 OVERVIEW OF PREVIOUS INTERIM REMEDIAL MEASURES

A preceding IRM WP#1 was prepared to address the potential for soil vapor intrusion through construction and operation of a SSDS and was conditionally approved by NYSDEC on September 19, 2018. IRM WP#1 was prepared concurrently with the RIWP for the Site in response



BACKGROUND

to Limited Phase II Environmental Site Assessment (ESA) (and historical) SVI data indicating chlorinated solvent impacts to sub-slab vapor particularly beneath the southern tenant space of the occupied building. The finalized IRM WP#1 was issued on October 2, 2018 and construction of the SSDS began on December 6, 2018, following completion of a pre-construction limited asbestos survey on December 4, 2018. SSDS construction was completed in March 2019 and the system became operational on March 1, 2019. Two additional SVI monitoring points were installed in accordance with the IRM WP and per the request of NYSDEC: SS-13 in the northern tenant space (Newport, see Figure 2) and SS-14 in the southern tenant space (JML, see Figure 2). Sub-slab pressure field extension testing of the SSDS was performed in early March 2019 to demonstrate achievement of vacuum and radius of influence performance requirements. Post-SSDS installation SVI sampling was performed on March 31, 2019 in accordance with the approved IRM WP#1.

Based on the post-SSDS SVI sampling results, a Supplemental Interim Remedial Measures Work Plan (IRM WP#3) was prepared to detail the SSDS extension into the area of the southern tenant space (JML). IRM WP#3 was submitted on August 12, 2019 and approved on October 1, 2019. Implementation of IRM3 is planned during Fall 2019. Details of the complete SSDS installation and implementation of IRM1 and IRM3 will be documented in a Construction Completion Report (CCR).



**BACKGROUND** 

#### 2.4 SUMMARY OF PRIOR INVESTIGATION RESULTS

A detailed description of prior investigation results is provided in the RIWP (Stantec, 2017c). The Remedial Investigation Report (RIR) presents a detailed description of the RI and SRI investigation, results, and conclusions. Figure 2 depicts the investigation and sampling locations for the Limited Phase II ESA, RI, IRM1, and SRI. An overview of the applicable findings is included below.

Three Areas of Concern (AOCs) have been identified at the Site based on findings from the RI, SRI, and the 2016-2017 Phase II ESA and are summarized below.

AOC-1: Chlorinated Volatile Organic Compounds (VOCs) have been identified in sub-slab soil vapor beneath the JML tenant space at concentrations requiring mitigation. Chlorinated VOC impacts to sub-slab vapor were first identified from historical PSG surveys (ERM, 2004; Labella, 2005). The potential for SVI was investigated by Stantec through combined sub-slab vapor and indoor air sampling in 2016-2017 as part of the Limited Phase II ESA (Stantec, 2017b). The following chlorinated VOCs were identified as COCs for this media: 1,1-DCE; cis-1,2-DCE; PCE; and TCE. No source has been identified despite extensive shallow and deep soil and groundwater investigations in the areas of impact. Potential exposure has been or is being addressed through implementation of IRM1 and IRM3 with the installation and operation of the SSDS, which will be subject to the long-term OM&M Plan as well as the site-wide SMP. Given the implementation of IRM1 and the upcoming implementation of IRM3, no additional investigation or remedial action beyond implementation of IRM2 and IRM3 is considered warranted at this time.

<u>AOC-2</u>: The debris pile located in the northeast corner of the parking lot area was found to contain elevated levels of PAHs associated with significant crushed asphalt contents. Removal of this debris pile will be conducted in IRM2 with confirmatory sampling conducted. No additional action beyond implementation of IRM2 is considered warranted at this time.

<u>AOC-3</u>: Three former septic systems were identified during the test pit program. The buried structures will be addressed through proposed system removal or in place closure through this Work Plan. No additional investigation or remedial action beyond implementation of IRM2 is considered warranted at this time.

As per the RIR, instances where there were exceedances of Commercial or POGW SCOs or Groundwater standards or guidance values, but the issue does not rise to the level of an AOC, since there are no areas of grossly contaminated soil source areas, include:

 An isolated exceedance of the Commercial SCO for mercury in the sample adjacent to Northwest Septic System Tank 2. This sample was taken at 8-10 ft bgs and due to its isolated location and depth, and the proposed site use, it is not considered a concern. No additional investigation or remedial action is considered warranted.



#### BACKGROUND

- The PAH benzo(a) pyrene was the single semi-volatile organic compound (SVOC) reported to exceed Commercial SCOs in surface soil. It was detected at 0-2 inches at a concentration of 1,800 micrograms per kilogram (μg/kg) versus the respective commercial and Industrial SCOs of 1,000 and 1,100 μg/kg in a composite sample SS-4. The SS-4 composite was derived from discrete sampling locations SS-4a, SS-4b, and SS-4c along the vegetated berm near the eastern property line. This concentration is considered to be typical of a developed, urban setting and not of concern. This compound did not exceed SCOs at the 2-12 inch sample collected at this location. No additional investigation or remedial action is considered warranted.
- TCE was identified in groundwater in the eastern parking lot area in B/MW-101, B/MW-104, and B/MW-105. The inferred direction of groundwater flow suggests an off-Site source particularly given the non-detect results for all of the wells closer to the Site building. Adjacent upgradient properties 830 and 834 Linden Avenue have a history of manufacturing and light industry, based on the directory review findings of Site occupants as reported in Stantec's Phase I ESA (Stantec, 2017a). TCE in groundwater on the eastern side of the Site does not appear to be related to the 820 Linden Ave soil vapor results based on the direction of groundwater flow, the horizontal distance to the building (approximately 185 ft), and vertical separation between the water table and the building sub-base (approximately 45 ft). Groundwater TCE impacts do not warrant additional investigation or remediation given the likelihood of an off-Site source. Potential exposure pathways are addressed through implementation of IRM1 and IRM3, and preparation of the SMP.
- Acetone impacts to groundwater beneath the building were identified during Stantec's Limited Phase II ESA (Stantec, 2017b). Delineation of these impacts was addressed during the RI, which confirmed that groundwater acetone impacts are limited to beneath the building. Levels of acetone reported in Site soil samples meet both Commercial and Industrial SCOs, but in some cases exceed the POGW SCO. No further investigation or remedial action is recommended due to the following observations:
  - downgradient wells indicate that acetone in groundwater is not migrating beyond the building footprint.
  - o groundwater is not used for drinking water purposes.
  - o potential for exposure is minimal and can be managed through SSDS operation (IRM1 and IRM3), and the implementation of the SMP.
  - The feasibility of deep soil remediation beneath an existing and occupied building is not warranted for such minor impacts and low exposure risk.



SUMMARY OF REMEDIAL AREAS OF CONCERN (RAOCS)

# 3.0 SUMMARY OF REMEDIAL AREAS OF CONCERN (RAOCS)

An overview of the four remedial areas of concern (RAOCs) is depicted on Figure 3. The current understanding of the sewer configuration at the Site, which impacts remedial activities at the three former septic systems, is depicted on Figure 4. The following sub-sections provide a focused summary of each RAOC. Section 4.3 describes the proposed approach to address each of the RAOCs.

# 3.1 RAOC-1 - SOUTHEAST SEPTIC SYSTEM

The remnants of former Septic System #1, located in the southeast portion of the Site, were encountered during the test pit program. Based on 1972 correspondence from Bausch and Lomb to E. J. Delmonte Corp. (GZA, 1995), no chemicals were discharged through the southeast septic system as it was solely used for sanitary purposes.

# 3.1.1 Septic System Configuration

Figure 5 depicts the RAOC and the anticipated buried system configuration based on a historical drawing of the former septic system and field observations from the SRI. Septic System #1 consisted of one oval-shaped tank designated as TANK1-SE, contradictory to the historical installation drawing which depicted two circular tanks. It is unknown whether the drawing was in error, the system was modified over time, or the second tank was removed when the building transitioned onto the sanitary sewer line. The length of the tank is 6.3 ft and the width is 4.0 ft. The full depth of the tank was not measured, but observations from the RI test pit program indicated that the tank was at least 3.3 feet deep. The tank had a lid with two openings and was completely backfilled with soil. The estimated minimum volume of soil in TANK1-SE is 3.0 cubic yards (CY). A summary of septic tank field observations including dimensions, buried depths, content and capacity calculations are included on Table 5.

# 3.1.2 Characterization of Septic Tank System Contents

The only exceedance of Site SCGs encountered during the RI was for iron (Sample Location TP-5a; see Table 1). The soil sample was collected from within the tank, however, and may not be representative of surrounding soil. During the SRI, another sample of tank soil was collected for analysis of the waste characterization parameters pH and flashpoint; the results were acceptable for potential disposal as non-hazardous waste (see Table 3).

#### 3.2 RAOC-2 – SOUTHWEST SEPTIC SYSTEM

The remnants of former Septic System #2, located in the southwest portion of the Site, were encountered during the test pit program.



SUMMARY OF REMEDIAL AREAS OF CONCERN (RAOCS)

Based on 1972 correspondence from Bausch and Lomb to E. J. Delmonte Corp. (GZA, 1995), this system collected sanitary and process discharge. Process chemicals including acids, bases, "poisons (arsenic, antimony, mercury, etc.)", diphospyridine, sodium pyruvate, and biological organics were discharged to the system either directly or through neutralization tanks.

# 3.2.1 Septic System Configuration

Figure 6 depicts RAOC-2 and the anticipated buried system configuration based on a historical drawing of the former septic system and field observations from the SRI. Findings from the SRI confirmed the historical depiction of Septic System #2, with four rectangular tanks herein designated as TANK1-SW, TANK2-SW, TANK3-SW, and TANK4-SW. The tanks were similar in dimension, each 9.5 feet long and 5.0 feet wide, with depths ranging between 5.1 and 5.5 feet deep. The variability in depth may be a result of sediment accumulation at the tank base. TANK1-SW contained approximately 1.8 feet of water column, or an estimated ~640 gallons of water, and a thin layer of sediment. A sewage odor was observed while sampling TANK1-SW. TANK2-SW and TANK3-SW contained approximately 1.9 feet of water column, or an estimated ~675 gallons of water each and a thin layer of sediment. TANK4-SW was oriented perpendicular to the other three tanks as depicted in the historical drawing. TANK4-SW was empty, with a thin layer of soil at the bottom that was assumed to be infill from surrounding soil. A summary of septic tank field observations including dimensions, buried depths, content and capacity calculations are included on Table 5.

# 3.2.2 Characterization of Septic Tank System Contents

Although no exceedances of Site SCGs were detected in the RI soil samples (Sample Locations TP-4, TP-8a, and TP-8c; see Table 1), the samples were collected adjacent to the system structures; therefore, the sample results may not be representative of the soil conditions beneath the tank and related components.

Water samples were collected from Tanks 1, 2, and 3. As shown on Figure 6, Tank 1 is the furthest east and Tank 3 is the furthest west tank that contain water. Results are summarized in Table 4. No hazardous waste criteria were exceeded. While not directly applicable for tank water destined for off-Site disposal, Table 4 also provides a comparison to NYSDEC SGVs. Freon 113 and PCE were reported at concentrations in each of the tanks in exceedance of their 5 micrograms per liter ( $\mu$ g/L) groundwater standard. Freon 113 ranged from 88 to 680  $\mu$ g/L decreasing from Tank 1 (closest to the building) to Tank 3 (more westerly), as historical waste flow likely moved away from the building. Similarly, PCE ranged from 21 to 84  $\mu$ g/L with concentrations decreasing from Tank 1 to Tank 3.

The compound 4-isopropyltoluene was also detected in Tank 3 at a concentration only slightly exceeding the 5  $\mu$ g/L groundwater standard (5.4  $\mu$ g/L). No other compounds were detected.



SUMMARY OF REMEDIAL AREAS OF CONCERN (RAOCS)

Solids samples were collected from Tanks 1 and 4. Tank 1 contained water and sludge while Tank 4 contained soil that appeared to be infill from surrounding soils. While not directly applicable, Table 3 provides a comparison to SCOs. Tanks 1 and 4 solid samples had a few exceedances of UU and POGW SCOs for parameters not found to exceed standards in nearby groundwater. Otherwise, mercury, Freon 113, and PCBs exceeded the Commercial, but not the Industrial, SCOs in the Tank 1 sample. No Site use SCO exceedances were reported in the Tank 4 sample. Results of pH and flashpoint analyses, where collected, indicated the material was acceptable for potential disposal as non-hazardous waste.

#### 3.3 RAOC-3 – NORTHWEST SEPTIC SYSTEM

The remnants of former Septic System #3, located in the northwest portion of the Site, were encountered during the test pit program. Figure 7 depicts RAOC-3 and the anticipated buried system configuration based on a historical drawing of the former septic system and field observations from the SRI. Based on 1972 correspondence from Bausch and Lomb to E. J. Delmonte Corp. (GZA, 1995), this system collected cooling water, sanitary, and process water from the cafeteria, washrooms, and the chemistry laboratory. The discharge chemicals reportedly included organic solvents, acids, alkalis, ammonia residue, and various fixers and developers.

# 3.3.1 Septic System Configuration

The configuration of Septic System #3 depicted on the historical sketch was confirmed during the SRI, with two tanks (designated TANK1-NW and TANK2-NW, see Figure 7) and the distribution box exposed. Both tanks were rectangular. TANK1-NW was 9.2 feet long and 4.5 feet wide. TANK2-NW was 9.3 feet long and 4.5 feet wide. TANK1-NW did not have a lid and was full of an estimated 9.2 CY of soil; the depth of the tank was estimated to be 6.0 feet, based on the measurement of adjacent TANK2-NW. TANK2-NW was empty, with a thin layer of soil (assumed to be mostly infill from excavation activities) at the base. A summary of septic tank field observations including dimensions, buried depths, content and capacity calculations are included on Table 5.

# 3.3.2 Characterization of Septic Tank System Contents

Solid samples collected from both tanks in Septic System #3 and the system distribution box in the northwest portion of the Site were analyzed. Figure 7 depicts the numbering of the tanks with Tank 1 located closest to the building and Tank 2 located further north and adjacent to the distribution box. Table 3 provides a comparison to SCOs, which is relevant given the soil matrix of the samples and the proposed IRM of in place closure. There were no exceedances of any SCOs for the solid samples collected from within the tanks except iron, which is a common naturally-occurring metal. Iron was also the only compound detected in the sample collected from the distribution box that exceeded Site use SCOs. The only other exceedances in the



SUMMARY OF REMEDIAL AREAS OF CONCERN (RAOCS)

distribution box sample were for metals exceeding UU and/or POGW SCOs, however, the metals exceeding POGW SCOs were not detected in groundwater during Site investigations. Results of pH and flashpoint analyses indicated the material was acceptable for potential disposal as non-hazardous waste.

# 3.3.3 Leach Field and Adjacent Soil Investigation Findings

No exceedances of Site SCGs were detected in the RI soil sample collected adjacent to the top of the tank (Sample Location TP-1a; see Table 1. During the SRI, leach field soil samples LF-1, LF-3, and LF-4 from Septic System #3 in the northwest portion of the Site were collected from within the historically mapped leach field areas at depths of 4.5-6.5 ft bgs to target soil at and within 1-2 ft below the drain tile lines. The depth and approximate lateral alignment corresponded to the observed configuration of the drain outlets within the exposed distribution box. Leach field soil sample LF-2 was collected from within the historically mapped leach field area directly adjacent to and at a depth beneath the bottom of the distribution box at 6-8 ft bgs. Adjacent tank samples TANK1-NW and TANK2-NW were collected adjacent to the approximate center of each tank at depths of 8-10 ft bgs to target soil at and within 1-2 ft below the tank bottoms. Table 2 provides a summary of the analytical results and a comparison to SCOs.

The only detections in this soil sample group were metals and per- and polyfluoroalkyl substances (PFAS). Metals exceedances included common, naturally-occurring metals (calcium and iron), as well as an exceedance of UU, POGW, and Commercial, but not Industrial, SCOs for mercury in the sample adjacent to Tank 2. Mercury was not detected in the nearby well sampled during the Phase II ESA.

Low-level concentrations of PFAS were detected in both samples analyzed for PFAS: leach field sample LF-3 and the sample adjacent to Tank 1. In the leach field sample LF-3, N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA) was reported at 2.8 µg/kg. In the sample adjacent to Tank 1 (TANK1-NW), NEtFOSAA was also reported at 2.8 µg/kg, and perfluorooctanesulfonamide (PFOSA) and perfluorooctane sulfonate (PFOS) were reported at estimated ("J"-qualified) concentrations of 0.74 µg/kg and 1.5 µg/kg, respectively.

In the test pit excavated to expose the distribution box, a discrete occurrence of solid, black, tar-like material was encountered. NYSDEC required that this material be sampled; Stantec additionally collected a soil sample from the soil around the discrete occurrence that is representative of the remaining soil conditions in this area. The additional investigation samples were analyzed from this septic system area as part of the SRI: LIN-DBOX2-NW-SLD, collected from test pit spoils from the distribution box excavation area; and LIN-DBOX3-NW-SLD, a bulk sample of black, tar-like material encountered while digging down to the distribution box. Results are summarized in Table 2, which also provides a comparison to SCOs.



SUMMARY OF REMEDIAL AREAS OF CONCERN (RAOCS)

VOCs, SVOCs, and metals were detected in bulk sample LIN-DBOX3-NW-SLD. The reported concentrations, however, exceeded only UU SCOs except for two PAHs (fluoranthene and phenanthrene) that exceeded Commercial, but not Industrial, SCOs. The only exceedance for soil sample LIN-DBOX2-NW-SLD, representative of soil conditions in the area surrounding the discrete occurrence of the black material, was for iron, a common naturally-occurring metal.

#### 3.4 RAOC-4 - DEBRIS PILE

The debris pile soil sample (Sample Location DP-1; see Table 1 and Figure 8) exhibited exceedances of NYSDEC Commercial/Industrial Use SCOs and/or POGW SCOs for the following six PAHs: benzo(a)anthracene; benzo(a)pyrene; benzo(b)fluoranthene; benzo(k)fluoranthene; chrysene; and indeno(1,2,3-cd)pyrene. These exceedances are likely associated with the significant proportion of asphalt material observed in the pile.



INTERIM REMEDIAL MEASURES

# 4.0 INTERIM REMEDIAL MEASURES

The proposed IRM2 achieves protection of public health and the environment for the intended use of the property. The interim remedial plan for the excavation/in place closure of three septic systems as well as the removal of an impacted debris pile will allow for the planned continued Commercial/Industrial Use of the Site. The remedial plan is effective in both the short-term and long-term and reduces mobility, toxicity, and volume of contaminants. The remedial plan is cost-effective, able to be implemented, and uses standards and methods that are well established in the industry. This section provides detail on the proposed IRM2 work activities and describes the remedial methodologies and controls to be utilized during implementation of this Work Plan.

#### 4.1 GENERAL REMEDIAL CONSTRUCTION INFORMATION

# 4.1.1 Remedial Engineer

The Remedial Engineer is required by the State of New York to be a Professional Engineer, registered in New York. The Remedial Engineer must certify that the remediation requirements set forth in the Work Plan, and any other relevant provisions of ECL 27 1419, have been achieved in full conformance with the Plan. The Remedial Engineer for this portion of the project is Kevin Ignaszak, PE, of Stantec and his designated representatives. The Remedial Engineer will have primary direct responsibility for implementation of the remedial program for the Site and will certify in the CCR that the remedial activities were observed by environmental professionals under his supervision.

The Remedial Engineer and staff of environmental professionals (Project team) will coordinate the work of other contractors and subcontractors involved in remedial construction, including soil excavation, stockpiling, characterization, removal, disposal or reuse, air monitoring, emergency spill response services, import of backfill material, and management of waste transport and disposal. The Remedial Engineer or designated project team member will be responsible for appropriate communication with NYSDEC and New York State Department of Health (NYSDOH).

The Remedial Engineer will review the pre-remedial plans submitted by the Remedial Contractor for compliance with this Work Plan and will provide the certifications listed in the CCR.

## 4.1.2 Construction Schedule

A schedule for performance of the remedial work is discussed in Section 8.0. An updated schedule will be submitted to NYSDEC after their approval of the Work Plan has been provided and a Remedial Contractor has been retained.



INTERIM REMEDIAL MEASURES

#### 4.1.3 Work Hours

The working hours for operation of remedial construction activities will begin approximately at 7:00 AM and terminate approximately at 5:00 PM. No weekend or holiday work is planned. No excessive noise will be permitted beyond the property limits from 10:00 PM to 7:00 AM on any day of the week. Construction activities will be limited to 7:00 AM to 5:00 PM unless alternative hours are approved by the NYSDEC, the Tenants, and the Owner.

#### 4.1.4 Traffic Control

Vehicular traffic is present in the vicinity of the Site. The Remedial Contractor will provide a worker(s) at the Site entrance with flaggers, when deemed necessary, to ensure safe entry and exit of vehicles.

# 4.1.5 Contingency Plan

If underground tanks or other previously unidentified contaminant sources are found during on-Site remedial excavation, sampling will be performed on product, sediment, and/or surrounding soils. Chemical analytical work will include TAL metals, PCBs, TCL and CP-51 VOCs and SVOCs. These analyses will not be limited to CP-51 parameters where tanks are identified without prior approval by NYSDEC. Analyses will not be otherwise limited without NYSDEC approval. Identification of unknown or unexpected contaminated media identified by screening during invasive Site work will be promptly communicated by phone to NYSDEC's Project Manager. These findings will also be included in weekly and monthly progress reports.

## 4.1.6 Worker Training and Monitoring

Site workers involved with the handling of contaminated materials will have up-to-date OSHA HAZWOPER certification and medical monitoring. Attendance at a daily safety briefing will be mandatory for all workers.

# 4.1.7 Agency Approvals and Permits

The Work Plan will be performed following approval by the Departments and per requirements of the BCP. The required permits, if any, will be obtained from the appropriate agencies or municipalities by the Remedial Contractor prior to commencement of work. Wastes removed from the Site for off-Site disposal will be transported to permitted facilities by a permitted waste hauler(s).

# 4.1.8 Emergency Contact Information

A preliminary emergency contact sheet with names and phone numbers is included in the HASP, included as Appendix B. The list will be updated prior to the start of construction activities.



INTERIM REMEDIAL MEASURES

The contact sheet will define the specific project contacts for use by NYSDEC and NYSDOH in the case of a day or night emergency.

# 4.2 SITE PREPARATION ACTIVITIES

# 4.2.1 Utility Stakeout

The Remedial Contractor will be responsible for the identification of utilities that might be affected by work under the Work Plan and for implementation of all required, appropriate, or necessary health and safety measures during performance of work under this IRM WP. The Remedial Contractor will be responsible for safe execution of all invasive and other work performed under this Work Plan. The Participant's Remedial Contractor will obtain the local, State, or Federal permits or approvals pertinent to such work that may be required to perform work under this IRM WP (see Section 4.1.8).

The presence of utilities on the Site has been investigated by the Remedial Engineer and the identified utilities are anticipated to impede the planned work under this Work Plan. The Remedial Contractor will be responsible for the identification and protection of all existing utilities at the Site and will contact DigSafely New York prior to the start of work. Prior to implementing the IRMs described herein, preparation and pre-field work activities including utility clearance will be initiated. Based on historical drawings as well as findings and observations from the RI and SRI field programs, there are active overhead and buried utilities in close proximity to each of the three former septic systems (see Figures 4-7). Underground utility clearance of public utilities through DigSafelyNY will be supplemented by a private underground utility location effort to identify and mark out on-Site underground utility lines in the vicinity of the excavation areas. Extreme caution will be required when digging near active utilities, including hand digging when within 1-2 vertical and/or horizontal feet of the mark-out location.

#### 4.2.2 Erosion and Sedimentation Controls

Earthwork disturbance is involved with the implementation of IRM2. Best Management Practices will be employed for erosion and sediment controls (ESCs) including bermed and lined material stockpiles, vehicle decontamination and dust control measures. Existing asphalt surfaces will be kept free of loose soil to minimize the amount of potentially mobile sediment that could eventually be carried to the storm sewer.

#### 4.2.3 Equipment and Material Staging

An Equipment and Material Staging Area will be designated in a portion of the Site away from areas that will require remediation, as located in the field by the Owner, Remedial Contractor, and Remedial Engineer at the time of construction.



INTERIM REMEDIAL MEASURES

The Remedial Contractor will construct and maintain separate staging areas for the excavated system components and any excavated soil. The excavated materials will be stockpiled on polyethylene (poly) sheeting and covered by the same during non-working hours. The poly cover will be anchored or weighted at the edges to prevent stormwater and wind erosion. If excavated material contains significant free liquid that it drains from the surrounding matrix, measures will be taken to collect and contain the fluid. If feasible, any excavated soil or system components staged on-Site will not be mixed between RAOCs. As excavations are planned throughout the Site, multiple equipment and material staging areas may be required for different phases of work.

# 4.2.4 Temporary Fencing

The Site is currently open. A temporary perimeter construction fence will be installed along the western and southern perimeter of the southwest septic system area as shown on Figure 6. The purpose of the fencing will be to prevent unauthorized entry into the remediation work area. Backfilling will be performed as soon as practical after analytical results are received. Therefore, fencing shall be in place at all times for the shallow excavations that will temporarily remain open to await confirmatory soil sample results. The fencing shall remain in place until final backfilling of the area is completed.

Given the limited nature of work at the other RAOCs, no fencing is anticipated as being required. No fence will be required for the debris pile since the excavation below ground surface will be to an anticipated maximum depth of 6 inches and only the tops of the tanks in RAOCs -2 and -3 will be exposed and backfilled.

In addition to the construction fence, the Remedial Contractor shall erect and maintain orange construction fencing surrounding all open subsurface excavations until excavations have been backfilled to surrounding grade.

#### 4.2.5 Decontamination

The Remedial Contractor will construct a temporary decontamination pad consisting of poly and wood timbers that will be used to decontaminate the excavator bucket and other related equipment as necessary. The pad will be located in the field by the tenant(s), Remedial Contractor, and Remedial Engineer at the time of construction. Decontamination of the excavation equipment will be accomplished with a steam cleaner between RAOCs. It is not anticipated that truck tires will come into contact with contaminated wastes, but in the event they do, trucks leaving the Site will have their tires cleaned prior to entering the highway. The Remedial Engineer will be responsible for ensuring through visual observation that outbound trucks are cleaned at the Truck Wash Station before leaving the Site until the remedial construction is complete.



INTERIM REMEDIAL MEASURES

Decontamination water will be collected and temporarily stored in 55-gallon drums or a storage tank and properly disposed of off-Site at the end of the project. Accumulated sediments will be disposed of with the impacted Site soil. The decontamination pad construction materials will also be disposed of off-Site as non-hazardous waste along with PEE and other incidentals at the completion of the project.

#### 4.3 DESCRIPTION OF RAOC APPROACH

This section includes focused descriptions of specific tasks associated with addressing each of the RAOCs under the proposed IRM2.

# 4.3.1 RAOC-1: Southeast Septic System – Sample and Abandon in-Place

A RI sample of the soils infilling the tank only indicated an exceedance of iron. The approach to the southeast septic system includes initial collection of four investigation soil samples: one adjacent to the tank, one adjacent to the distribution box, and two in the leach field via Geoprobe. Proposed soil sample locations are depicted on Figure 5. Samples will be submitted for expedited turnaround from the analytical laboratory. The purpose of the soil sampling program is to confirm that abandonment in place is acceptable.

If samples meet SCGs, then the septic tank system will be abandoned in place. The following activities will be performed as depicted on Figure 5:

- 1. Access top of previously filled-in tank and expose inlet pipe entering tank;
- 2. Plug pipe inlet into tank with a 6-inch thick plug of concrete grout;
- 3. Backfill tank area with excavation spoils;
- 4. Access distribution box if located and remove cover;
- 5. Fill distribution box with flowable fill; and
- 6. Backfill distribution box area with cover and excavation spoils.

If the soil sample results reveal grossly contaminated soils greatly exceeding the Commercial SCOs, a focused remedial plan to address the exceedances will be developed in consultation with NYSDEC during the field program. Potential plans may include removal of the tank (and contents), distribution box and/or leach field piping with analysis of confirmatory soil samples.

# 4.3.2 RAOC-2: Southwest Septic System - Removal

Samples collected during the RI indicated several exceedances of SCGs. To address these impacts, complete septic system removal will be completed. The following activities will be performed as depicted on Figure 6:



INTERIM REMEDIAL MEASURES

- 1. Access and open Tanks 1, 2, 3 and 4;
- 2. Expose inlet pipe entering Tank 1, saw cut and plug pipe with a 6-inch thick plug of concrete grout;
- 3. Remove Tanks 1, 2, 3 and 4 and their contents, any stone bedding, and 6 inches of underlying soil;
- 4. Collect eight confirmatory soil samples from below the tanks as depicted on Figure 6;
- 5. Excavate, trace, and remove outlet pipe(s) from Tank 4 until they intersect the 6-inch diameter cast iron pipe, including any stone bedding, and 6 inches of underlying soil;
- 6. Expose 6-inch cast iron pipe in western direction;
- 7. Saw-cut western end of cast iron pipe and plug pipe with a 6-inch thick plug of concrete grout;
- 8. Expose 6-inch cast iron pipe in eastern direction;
- 9. Saw-cut eastern end of cast iron pipe and plug pipe with a 6-inch thick plug of concrete grout;
- 10. Remove isolated section of 6-inch diameter cast iron pipe;
- 11. If confirmatory soil samples do not reveal grossly contaminated soil remains present, , backfill tank excavations;
- 12. Continue to excavate, trace, and remove two outlet pipes originally from Tank 4 to the two distribution boxes, any stone bedding, and 6 inches of underlying soil;
- 13. Remove both distribution boxes, any stone bedding, and 6 inches of underlying soil;
- 14. Excavate, trace, and remove four leach field pipes from each distribution box, including any stone bedding, and 6 inches of underlying soil;
- 15. Collect four confirmatory soil samples from the leach field as depicted on Figure 6; and
- 16. If no grossly contaminated soil remains, backfill leach field excavations with a combination of excavated soils and imported fill, which will serve as a cover system if Commercial SCOs exceedances remain present.

If the soil sample results reveal grossly contaminated soil greatly exceeding the Commercial SCOs, a focused remedial plan to address the grossly contaminated soil will be developed in consultation with NYSDEC during the field program. Potential plans may include additional excavation with analysis of confirmatory soil samples.

# 4.3.3 RAOC-3: Northwest Septic System – Abandonment in-Place and Removal of Black Tar-Like Material

A sample of the black tar-like material demonstrated exceedances of SCGs; but samples collected from the septic system tank contents, adjacent to the tanks/distribution box, and leach field generally did not. The approach to address RAOC-3 includes excavation and removal of the residual black tar-like material and septic system abandonment in place. It is proposed that no remedial action is needed to address the isolated exceedance of the



INTERIM REMEDIAL MEASURES

Commercial SCO for mercury adjacent to Tank 2. The sample was taken at 8-10 ft bgs and due to the depth, remediation is not considered necessary.

The following activities will be performed as depicted on Figure 7:

- 1. Excavate and dispose of soils overlying distribution box cover intermixed with de minimis pieces of black tar-like material;
- 2. Transport and stage soils containing black tar-like materials to the debris pile (RAOC-4) for off-Site disposal;
- 3. Access top of distribution box;
- 4. Fill distribution box with flowable fill:
- 5. Access and open Tank-2;
- 6. Fill Tank-2 with flowable fill;
- 7. Access previously filled-in Tank-1 and expose inlet pipe entering tank;
- 8. Plug pipe inlet into Tank-1 with a 6-inch thick plug of concrete grout;
- 9. Backfill excavated areas with tank and distribution box covers, excavation spoils and imported fill.

No confirmatory soil samples are proposed from RAOC-3 due to sampling conducted during the SRI, including "DBOX2" (see Table 2) collected from the soils in the vicinity of the black tar-like material.

# 4.3.4 RAOC-4: Debris Pile - Removal

Samples collected during the RI indicated several exceedances of SCGs for the materials contained within the pile. The debris pile will be removed along with approximately 6 inches of cover/topsoil directly beneath the pile. The debris pile contents, including the soil intermixed with black tar-like material from RAOC-3, the bathtub pieces retrieved during the advancement of TP-6 during the RI, and underlying 6 inches of excavated material will be directly loaded into a truck for transport to an off-Site disposal facility. One confirmatory soil sample will be collected from the area. The debris pile location and proposed confirmatory soil sample is depicted on Figure 8.

#### 4.4 SOIL SCREENING METHODS

Visual, olfactory, and PID soil screening and assessment will be performed by an environmental professional under the direction of the Remedial Engineer during remedial excavations into known or potentially contaminated material to evaluate if grossly contaminated soil is still present. All soil screenings will be recorded in the field while excavation is taking place.



INTERIM REMEDIAL MEASURES

#### 4.5 EXCAVATION STORMWATER MANAGEMENT

Based on Site monitoring well gauging data, the anticipated maximum bottom excavation depth is well above the water table. Therefore, groundwater is not likely to be encountered. However, should accumulated water (perched groundwater or precipitation) conditions be encountered, it will be pumped out of the excavation and temporarily containerized in a frac tank or in drums. Containerized groundwater will be sampled and characterized as necessary prior to transportation and disposal.

#### 4.6 WASTE DISPOSAL

Wastes generated during the IRM program are anticipated to include the following:

- Debris pile contents (soil fill containing asphalt and concrete), bathtub pieces, and black tar-like material and intermixed soils);
- Southwest septic system tank contents (water and/or sediment/sludge or soil fill);
- Southwest septic system tanks (concrete) and related system components (including cast-iron and/or terracotta piping);
- Excavated soil from beneath the debris pile and in association with the Southwest Septic System (potential impacts to be assessed through waste characterization sampling of soil removed);
- Excavation fluids (groundwater or stormwater);
- Decontamination fluids and pad; and
- Polyethylene sheeting.

Waste materials will be handled, containerized, and disposed of in accordance with DER-10 guidance and applicable regulations. It is currently anticipated that the soil and water wastes will be non-hazardous; however, this will be confirmed through appropriate analyses as dictated by requirements of the disposal facility(s). The presence of PCE in the southwest area Tank 1 contents will be discussed with the disposal facility. This material may need to be separately drummed and disposed of as a hazardous waste. It is not anticipated that groundwater will be encountered in the excavations, however, disposal of groundwater would follow the same process as for the pumped septic tank water described below.

Any excavated soil will be stockpiled on-Site both on and under poly in manageable units to facilitate waste characterization. The soil stockpiles will be segregated based on the RAOC from which they originated so as not to co-mingle materials with potentially different contamination conditions until disposal at an off-Site NYSDEC Part 360-permitted facility is arranged. Pumped liquid from the tanks, where present, will be containerized and temporarily stored on-Site in either 55-gallon drums or poly storage tank(s). The tank water may potentially be discharged to the



INTERIM REMEDIAL MEASURES

municipal sanitary sewer in accordance with a temporary discharge permit applied for by the Remedial Contractor and issued by the Monroe County Department of Environmental Services (MCDES) provided contaminant concentrations are demonstrated by appropriate lab analyses to be within required limits. Otherwise, the containerized water will be disposed of at an off-Site NYSDEC Part 360-permitted facility.

The non-soil bulk solids (including the septic system and bathtub components) will stored on and under poly while staged on-Site. The bulk materials will likely be disposed of at an appropriate facility such as a NYSDEC Part 360-permitted landfill or C&D recycling facility. All concrete from the southwest area is proposed to be disposed off-Site. If feasible, concrete C&D material from non-impacted locations (i.e. meeting Commercial SCOs) may be reused on-Site as excavation backfill.

Transport of materials will be performed by licensed haulers in accordance with appropriate local, State, and Federal regulations, including 6 NYCRR Part 364. Haulers will be appropriately licensed and trucks properly placarded.

Material transported by trucks exiting the Site will be secured with tight-fitting covers. Loose-fitting canvas-type truck covers will be prohibited. If loads contain wet material capable of producing free liquid, truck liners will be used.

#### 4.7 EXCAVATION BACKFILL

The excavations will be backfilled to approximately 6 inches below existing grade with a combination of previously excavated spoils and imported run of bank gravel and compacted in 12 inch lifts with the excavator bucket. The imported material will be demonstrated to be sufficiently free of contamination through sampling and analysis in accordance with Table 5.4(e)10 of DER-10 and, if needed, NYSDEC's June 2019 Emerging Contaminants Memo.

Any soil that overlies the septic systems may be segregated and re-used as backfill assuming there are no visual, olfactory, or PID indications of impact. Any soil that is excavated at or below the septic system grade will be stockpiled separately and characterized for off-Site disposal (or for potential re-use based on DER-10 Table 5.4(e)4) and, if needed, NYSDEC's June 2019 Emerging Contaminants Memo.

#### 4.8 SITE RESTORATION

The Site will be restored to pre-remedial excavation conditions to the extent practicable. Excavations will be completed with 6 inches of imported topsoil and graded to match existing grades. Any ruts or other depressions caused as a result of the remedial activities will be fine graded and finished with topsoil as required. All topsoil areas will be hydroseeded. To the extent



INTERIM REMEDIAL MEASURES

any areas require a new cover system, six inches of imported bank run gravel and six inches of topsoil will be used.

#### 4.9 SURVEY CONTROL

The actual limits of excavation or work activities for RAOCs-1 through -4 will be established in the field at completion using a handheld GPS unit, such as the Trimble GeoXT, with sub-meter accuracy. Confirmatory sample locations will be recorded in the field using the handheld global positioning system (GPS) unit where feasible or utilizing measured field ties to permanent Site features.

#### 4.10 DEMOBILIZATION

After the completion of the remedial actions, Fencing, the Equipment and Materials Staging Areas, and the Decontamination Area will be dismantled and removed from the Site. Excess material (general refuse, decontamination materials, poly sheeting, etc.) will be disposed of in accordance with applicable rules and regulations.

Equipment will be properly decontaminated before removal from the Site.



SAMPLING AND ANALYTICAL PROGRAM

# 5.0 SAMPLING AND ANALYTICAL PROGRAM

Sampling and analytical activities will be conducted in accordance with standard environmental sampling and analytical guidelines and protocols contained in the QAPP as presented in the RIWP and Appendix A. Samples will be submitted to, and all analyses will be performed by, a NYSDOH ELAP-certified laboratory. Analytical reports will be prepared in accordance with the NYSDEC ASP Category B requirements, except for waste characterization samples. All sample data, except waste characterization samples, will be submitted to NYSDEC in the appropriate EQuIS Electronic Data Deliverable (EDD) format pursuant to DER-10.

Analytical summary tables will be prepared which summarize the data and compare them to the Site SCGs. This will include: SCOs for Commercial Use and Industrial Use, and POGW; NYSDEC Commissioner Policy CP-51 (NYSDEC, 2010b) Table 1 Supplemental SCOs for Commercial Use, Industrial Use, and POGW; and NYSDEC Class GA Water Quality Standards and Guidance Values for Groundwater (TOGS 1.1.1; NYSDEC, 1998).

Table 6 presents a summary of the proposed sampling and analyses for each RAOC. The proposed sampling scheme may be subject to change field based on field observations and actual excavation area.

#### 5.1 INVESTIGATION SAMPLING

Similar to sampling conducted at the Northwest Septic System during the SRI where abandonment in place is also proposed, sampling will be conducted in proximity to the tank and leach field and from within the distribution box (if located) (see Figure 5). As was performed in the Northwest Septic System area, to the extent practicable, samples near the tanks will be collected at a depth within 2 ft. beneath, and within 2 horizontal ft. from the tanks. To the extent practicable, samples near the leach field piping will be collected at a depth within 0.5 ft. beneath, and within 2 horizontal ft. from the piping. Full suite analyses are proposed (see Table 6).

#### 5.2 CONFIRMATORY SOIL SAMPLING APPROACH

Soil samples will be obtained in each RAOC to characterize the soil remaining on-Site (as compared to Site SCGs) following removal of the Southwest Septic System and the debris pile. Refer to Figures 6 and 8 and Table 6 for details regarding the proposed IRM confirmatory sampling activities.

For the Southwest Septic System excavations (RAOC-2), samples from the tank area will be obtained at a frequency of one bottom sample per every 5 ft of tank length per DER-10 Section 5.5 (as per Danielle Miles of NYSDEC September 5, 2018 e-mail correspondence). Samples from



SAMPLING AND ANALYTICAL PROGRAM

the leach field will be collected at a frequency of approximately one bottom sample for every 900 square feet (sq ft). Sidewall samples are not considered applicable as the sidewalls are primarily above the leach field piping.

For the debris pile removal (RAOC-4), given that the area is less than 900 sq ft and the excavation will only be 6-inches below grade, a single bottom sample will be collected to confirm that the impacted material is removed.

The confirmatory samples will include some or all of the following parameters (see Table 6):

- Target Compound List (TCL) VOCs plus up to 10 Tentatively Identified Compounds (TICs) by EPA Method 8260C;
- TCL semi-volatile organic compounds (SVOCs) plus up to 20 TICs by EPA Method 8270D;
- TCL Polychlorinated Biphenyls (PCBs) by EPA Method 8082A; and
- Target Analyte List (TAL) Metals by EPA Methods 6010C/7000-series.

For RAOC-2, sampling parameters will include those parameter classes for which elevated results were seen, including TCL VOCs, PCBs and TAL Metals. For RAOC-4, TCL SVOCs will be analyzed since PAHs were the only compounds that exceeded commercial SCOs in the RI debris pile sampling.

# 5.3 WASTE CHARACTERIZATION

Waste characterization will be performed for off-Site disposal in a manner suitable to the receiving facility and in conformance with applicable permits. Waste characterization sample parameters and frequency will be evaluated once a disposal facility has been identified. Sampling and analytical methods, sampling frequency, and analytical results will be reported in the CCR. Data available for soil/material to be disposed at a given facility must be submitted to the disposal facility with suitable explanation prior to shipment and receipt.

#### **5.4 IMPORTED FILL**

Materials proposed for import onto the Site will be approved by NYSDEC and the Remedial Engineer and will be in accordance with DER-10 Appendix 5 for Restricted Residential Use and CP-51 Table 1 for Restricted Residential, Table 2 and Table 3.

Testing for material anticipated to be reused or relocated on-Site will also include 1,4-dioxane using EPA Method 8270 and PFAS using EPA Method 537.1 (modified) at the frequencies as specified in NYSDEC's June 2019 Emerging Contaminants Memo. For 1,4-dioxane soil exceeding the Unrestricted SCO of 0.1 ppm will be rejected for reuse. If PFOA or PFOS are detected above 1 part per billion (ppb) then a soil sample will be submitted for Synthetic Precipitation Leaching



SAMPLING AND ANALYTICAL PROGRAM

Procedure (SPLP) analysis. If the SPLP analysis is above 70 ppt for combined PFOA and PFOS, then the material will be rejected for reuse.

A summary of anticipated imported fill samples is included on Table 6.

## 5.5 FIELD QUALITY CONTROL SAMPLES

Field QA/QC samples to be collected include field duplicates, trip blanks, rinsate blanks, and matrix spike/matrix spike duplicate analyses. Field duplicates and matrix spike/matrix spike duplicates will be collected at a rate of one per 20 field samples. Trip blanks will consist of deionized water provided by the analytical laboratory. Should aqueous sampling be needed, a trip blank will accompany each shipment of aqueous samples scheduled for analysis of VOCs. One rinsate blank will be collected for each type of non-dedicated sampling equipment used, and it will be collected by pouring deionized water over decontaminated equipment. The non-dedicated equipment planned for the IRM field program include the excavator bucket and hand shovel.

#### 5.6 DATA USABILITY

The confirmatory, investigation and imported fill sampling analytical data will undergo a data usability evaluation, summarized in a data usability summary report (DUSR). The data usability evaluation will be performed by a third party in accordance with the NYSDEC's "Guidance for the Development of Data Usability Summary Reports," revised 1997, and DER-10. Qualified analytical summary tables will be prepared which summarize the data and compare them to the applicable SCGs.



DOCUMENTATION AND REPORTING

## **6.0 DOCUMENTATION AND REPORTING**

Detailed documentation of Site activities will be maintained during the IRM field work activities. Reporting will include submission of a final written report to NYSDEC. Related follow-up to the IRM implementation will include preparation of a SMP to document engineering and institutional controls required to mitigate potential exposure to potential residual contamination.

## 6.1 SOIL AND MATERIALS DISPOSAL DOCUMENTATION

The following documentation will be obtained and reported by the Remedial Engineer for each disposal location used in this project to demonstrate and document that the disposal of material derived from the Site conforms with applicable laws:

- Email correspondence from the Remedial Engineer or Participant to the receiving facility with a waste profile describing the material to be disposed and requesting acceptance of the material. This correspondence will state that material to be disposed is contaminated material generated at an environmental remediation Site in New York State. The correspondence will provide the project identity and the name and phone number of the Remedial Engineer. The correspondence will include as an attachment a summary of the chemical data for the material being transported (including Site Characterization data); and
- A waste profile approval from the receiving facilities stating it is in receipt of the correspondence (above) and is approved to accept the material.

These email correspondences and approved waste profiles will be submitted to NYSDEC for review and approval; they will also be included in the CCR.

The CCR will include an accounting of the destination of the material removed from the Site during IRM2, including excavated soil, contaminated soil, solid waste, and hazardous waste, non-regulated material, and fluids. Documentation associated with disposal of hazardous material must also include records and approvals for receipt of the material, manifests for transportation, and Certificates of Disposal.

Documentation of weight tickets and use of a Bill of Lading system or equivalent will be used for off-Site movement of non-hazardous wastes and contaminated soils. This information will be reported in the CCR.



DOCUMENTATION AND REPORTING

### 6.2 FIELD DOCUMENTATION

Documentation of field activities, off Site disposal of wastes and environmental sampling will include the following:

<u>Field Notebook</u> - Field personnel will maintain a bound field notebook which will document dates, times, and duration of pertinent field events as well as excavation observations, construction quantities, sample locations/depths, and any modifications to the Work Plan. Notebook entries will be made on consecutive, numbered pages.

Project Photographs - Photographs will be taken of exterior field activities.

<u>Calibration Records</u> - Calibration records for field instrumentation will be maintained in the field notebook and/or in the project file directory.

<u>Safety Forms</u> - Project safety forms, air monitoring results, and other safety related documentation will be maintained.

<u>Disposal Documentation</u> – Copies of designated disposal facility approval to accept waste for disposal, signed Non-Hazardous Bills of Lading, signed Hazardous Waste Manifests (if any, not expected), and disposal facility confirmation of waste receipt with weight tickets.

<u>Chain-of-Custody Forms</u> - Sample handling will be recorded on chain-of-custody forms with associated labels and custody seals.

Refer to the QAPP (Appendix A) for additional detail regarding field documentation practices.

### 6.3 CONSTRUCTION COMPLETION REPORT

Upon receipt and review of the full set of analytical data generated by the IRMs and receipt of the DUSR, a CCR will be prepared, which will summarize the implementation methods, field observations, quantities, waste characterization and confirmatory soil sample laboratory results, Generator Waste Profiles, disposal facility approvals to accept waste, records of waste disposal, photographs, interpretations, conclusions, and recommendations.



PROJECT ORGANIZATION

## 7.0 PROJECT ORGANIZATION

A multi-disciplined team is proposed to perform the activities described in this document. The project team will include experienced Stantec staff and qualified contractors that are appropriately trained for their assigned duties and are acceptable to the NYSDEC.

### 7.1 PROJECT PERSONNEL

The principal personnel selected to perform the activities included in this document are presented below along with a brief description of their duties.

## Stephanie Reynolds-Smith, P.G. – Project Manager

- Provides overall project management;
- Provides managerial guidance to technical group;
- Serves as primary liaison between technical group and client;
- Serves as primary liaison with NYSDEC; and
- Prepares and reviews reports.

### Mike Storonsky – Managing Principal

- Provide technical guidance;
- Serve as liaison with client and NYSDEC; and
- Reviews reports.

### Kevin Ignaszak, P.E. – Professional Engineer

- Provides managerial guidance to technical group; and
- Prepares and reviews remediation plans and reports.

## Robert J. Mahoney, P.G. - Professional Geologist

- Provides managerial guidance to technical group; and
- Prepares and reviews investigation plans and reports, if needed.

## <u>Laura Best/Amanda Matkowsky/ Amanda Kelly or Kyle Stone – Field Geologist/Field</u> Scientist/Field Engineer

- IRM field task leader(s);
- Site Safety Officer(s);
- Provide immediate supervision of on-Site remedial activities;
- Ensure that samples are properly collected, stored, and subjected to the appropriate chainof-custody protocols;
- Maintain field equipment;



PROJECT ORGANIZATION

- Prepare field logs and maps;
- Provide technical representation at meetings; and
- Prepare reports.

## Field Technician - Environmental Engineer, Geologist, or Scientist

- Performs community air monitoring; and
- Provides field and office support as needed.

## Judy Harry (Data Validation Services) - Third Party Data Validator

- Project QA director;
- Assists in review of data; and
- Prepares DUSR(s).

## 7.2 CONTRACTORS

Qualified, experienced, and licensed or certified contractors/subcontractors will be retained to perform the IRMs under full-time observation by Stantec. One or more NYSDOH ELAP-certified laboratories will provide analytical services during the IRM program. All contractors/subcontractors are subject to the approval of the NYSDEC.



PROJECT SCHEDULE

## 8.0 PROJECT SCHEDULE

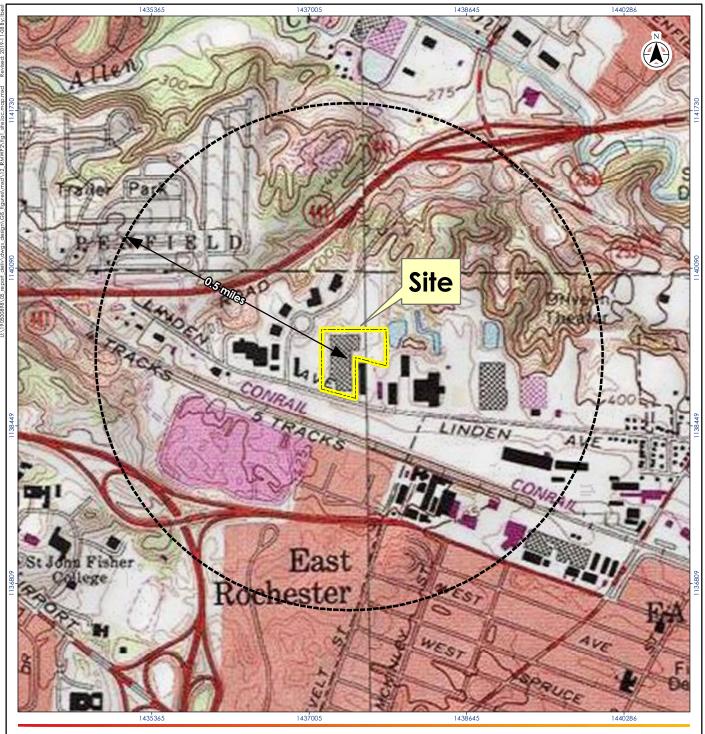
Stantec will provide NYSDEC with notification of the schedule for implementation of remedial action measures no less than one week prior to initiation of such activities.

Implementation of the IRM2 activities in accordance with this Work Plan is anticipated to begin by the Spring 2020 construction season. We are proposing to potentially wait until the spring construction season to implement this Work Plan to avoid potential increased costs and delays associated with winter field conditions which would adversely affect access through grassed lawn areas due to wet ground conditions, excavation activities, and proposed site restoration involving topsoil placement and seeding.

The IRM2 remedies are anticipated to be completed in approximately 10-15 working days. Updates and changes to the implementation schedule will be reported to NYSDEC as part of monthly progress reporting.



REFERENCES


## 9.0 REFERENCES

| ERM, 2004      | Results of Phase II Site Assessment Activities, Spectronic Facility, 820 Linden Avenue, Pittsford, New York. January 13, 2004.                                                                                    |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GZA, 1995      | Site Assessment and Operations Audit, Milton Roy Analytical<br>Products Division, 820 Linden Avenue, Rochester, New York. June<br>1995.                                                                           |
| Labella, 2005  | Phase II Environmental Site Assessment: Supplemental Passive Soil Gas Survey. June 2005.                                                                                                                          |
| NYSDEC, 1998   | Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1. June 1998 (April 2000 and June 2004 addenda). |
| NYSDEC, 2006   | 6NYCRR Part 375 Environmental Remediation Programs. December 14, 2006.                                                                                                                                            |
| NYSDEC, 2010a  | NYSDEC DER-10, Technical Guidance for Site Investigation and Remediation. May 3, 2010.                                                                                                                            |
| NYSDEC, 2010b  | NYSDEC Commissioner Policy CP-51 Soil Cleanup Guidance.<br>October 21, 2010.                                                                                                                                      |
| Stantec, 2017a | Phase I Environmental Site Assessment, 820 Linden Avenue, Town of Pittsford, Monroe County, New York. August 2017.                                                                                                |
| Stantec, 2017b | Limited Phase II Environmental Site Assessment for 820 Linden Avenue, Pittsford, New York. August 2017.                                                                                                           |
| Stantec, 2017c | Remedial Investigation Work Plan, B + L Site, 820 Linden Avenue, Pittsford, Monroe County, New York. September 2017.                                                                                              |
| Stantec, 2018  | IRM Work Plan, 820 Linden Ave Site, Pittsford, New York, Site # C828200. July 2018.                                                                                                                               |
| OBG, 2011      | Environmental Site Assessment, 820 Linden Avenue, Rochester, NY. April 2011.                                                                                                                                      |



## **FIGURES**







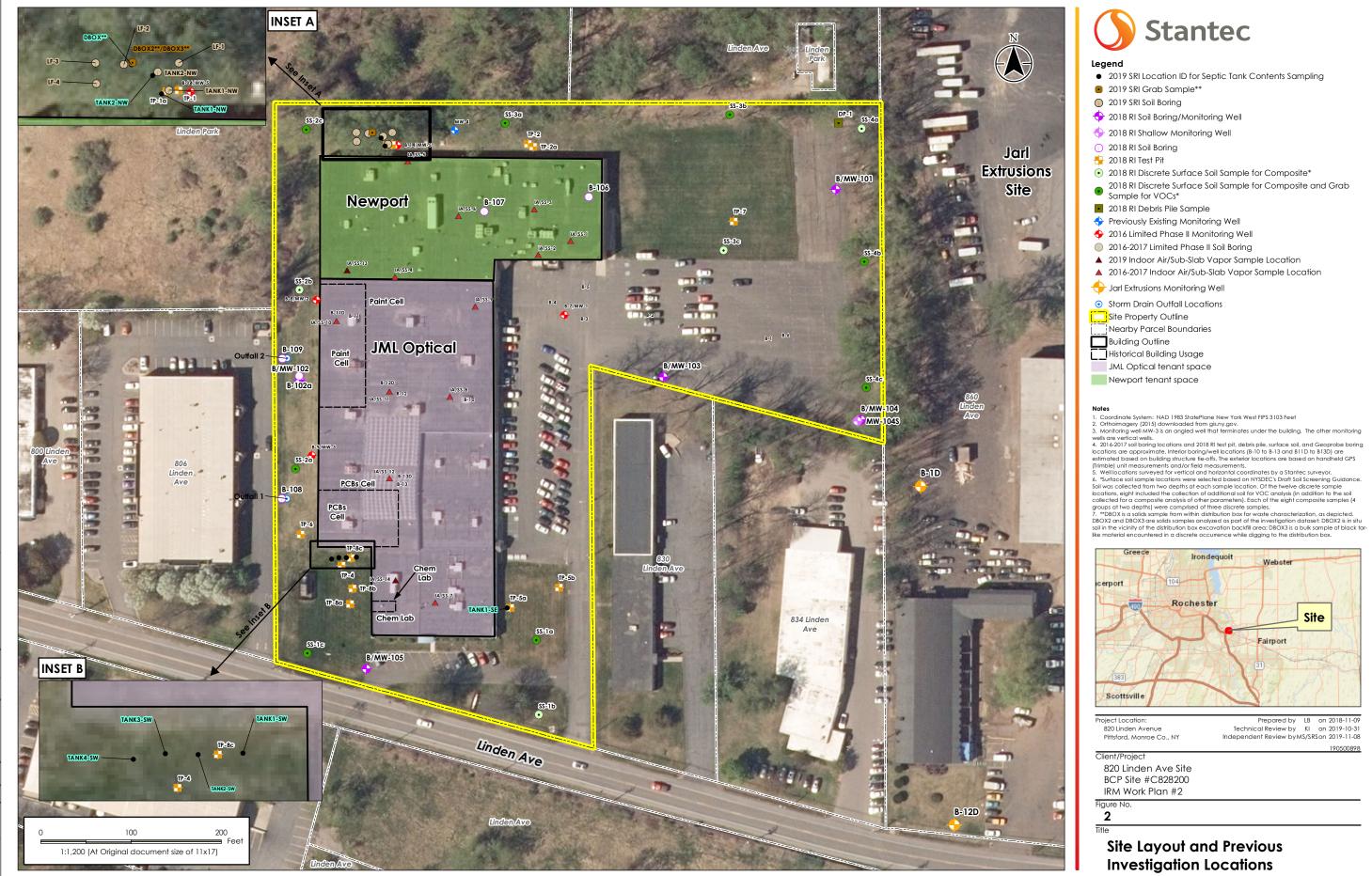
## Legend



- Notes

  1. Coordinate System: NAD 1983 StatePlane New York
  West FIPS 3103 Feet

  2. ArcGIS Basemaps: USA Topo Maps (main frame) and
  World Street Map (key map).


Disclaimer: Stantec assumes no responsibility for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and completeness of the data. The recipient releases Stantee, its officers, employees, consultants and agents, from any and all claims arising in any way from the content or provision of the data.





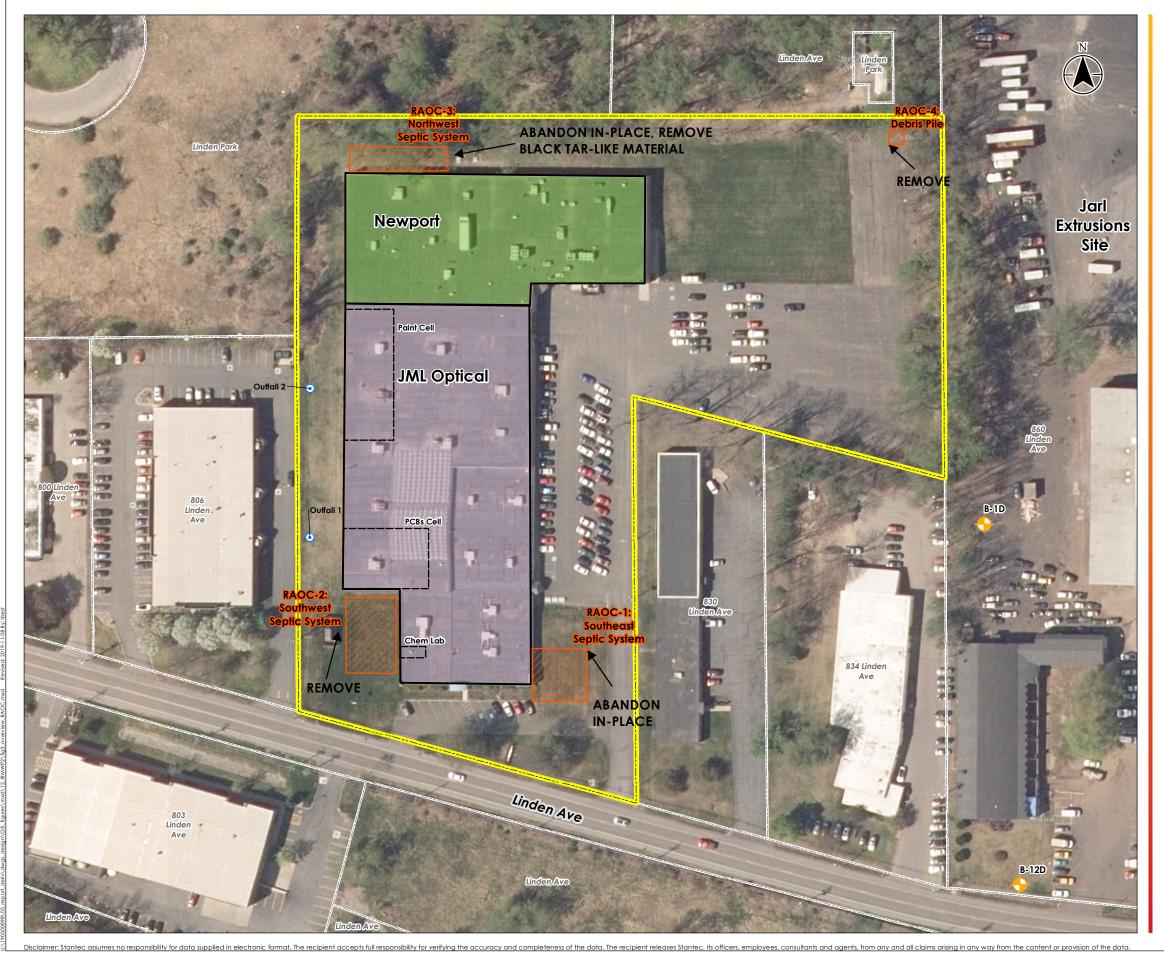
| Project Location                    | 190500898                                                                     |
|-------------------------------------|-------------------------------------------------------------------------------|
| 820 Linden Avenue                   | Prepared by LB on 2018-11-09                                                  |
| Pittsford, Monroe Co., NY<br>Indepe | Technical Review by KI on 2019-10-31<br>endent Review by MS/SRS on 2019-11-08 |
| Client/Project                      |                                                                               |
| 820 Linden Ave Site                 |                                                                               |
| BCP Site #C828200                   |                                                                               |
| IRM Work Plan #2                    |                                                                               |
| Figure No.                          |                                                                               |
| 1                                   |                                                                               |
| Title                               |                                                                               |

**Site Location Map** 



sibility for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and completeness of the data. The recipient releases Stantec, its officers, employees, consultants and agents, from any and all claims arising in any way from the accuracy and completeness of the data.




- 2019 SRI Location ID for Septic Tank Contents Sampling

- 2018 RI Discrete Surface Soil Sample for Composite\*



Prepared by LB on 2018-11-09 Technical Review by KI on 2019-10-31 Independent Review by MS/SRS on 2019-11-08

**Site Layout and Previous Investigation Locations** 





### Legend

Approximate Location of Remedial Areas of Concern (see Figures 5-8 for detail)

Site Property Outline

Building Outline

JML Optical tenant space

Newport tenant space

Historical Building Usage

Nearby Parcel Boundaries Jarl Extrusions Monitoring Well

Storm Drain Outfall Locations



1:1,200 (At Original document size of 11x17)

- 1. Coordinate System: NAD 1983 StatePlane New York West FIPS 3103 Feet
  2. Orthoimagery (2015) downloaded from gis.ny.gov.
  3. Site building is occupied by two tenants: JML Optical in the southern building section and Newport Corporation in the northern building section. Both current tenants are optics manufacturing facilities.



Project Location: 820 Linden Avenue Pittsford, Monroe Co., NY

Prepared by LB on 2018-11-01 Technical Review by KI on 2019-10-31 Independent Review by MS/SRS on 2019-11-08

Client/Project

820 Linden Ave Site BCP Site #C828200 IRM Work Plan #2

**Overview of RAOCs** 





Interior Newport Utility Features

- Clean-out confirmed location during RI video survey
- Clean-out based on available drawings (inaccessible)
- ⊕ Condensate Drain
- Floor Drain

Newport Interior Sewer Configuration

Based on available drawings (inaccessible)

Confirmed location/connection during RI video survey

RI Survey Video Transmitter Locations

- Sewer Line
- Storm Drain Line
- Exterior Sewer Lines (confirmed during RI sewer video survey and/or SRI)
- Apparent Historical/Inactive Sewer Line (investigated during SRI)
- Sewer Cleanout
- Additional Sewer Cleanout (observed during Test Pit program and investigated during SRI)
- Storm Drain
- Storm Drain Line
- ⊕ Floor Drains (JML)
- --- Floor Drain Line (JML)
- Manhole
- Grinder Pump
- Water Main
- Site Property Outline
- Nearby Parcel Boundaries
- Building Tenant Spaces
- Storm Drain Outfall Locations

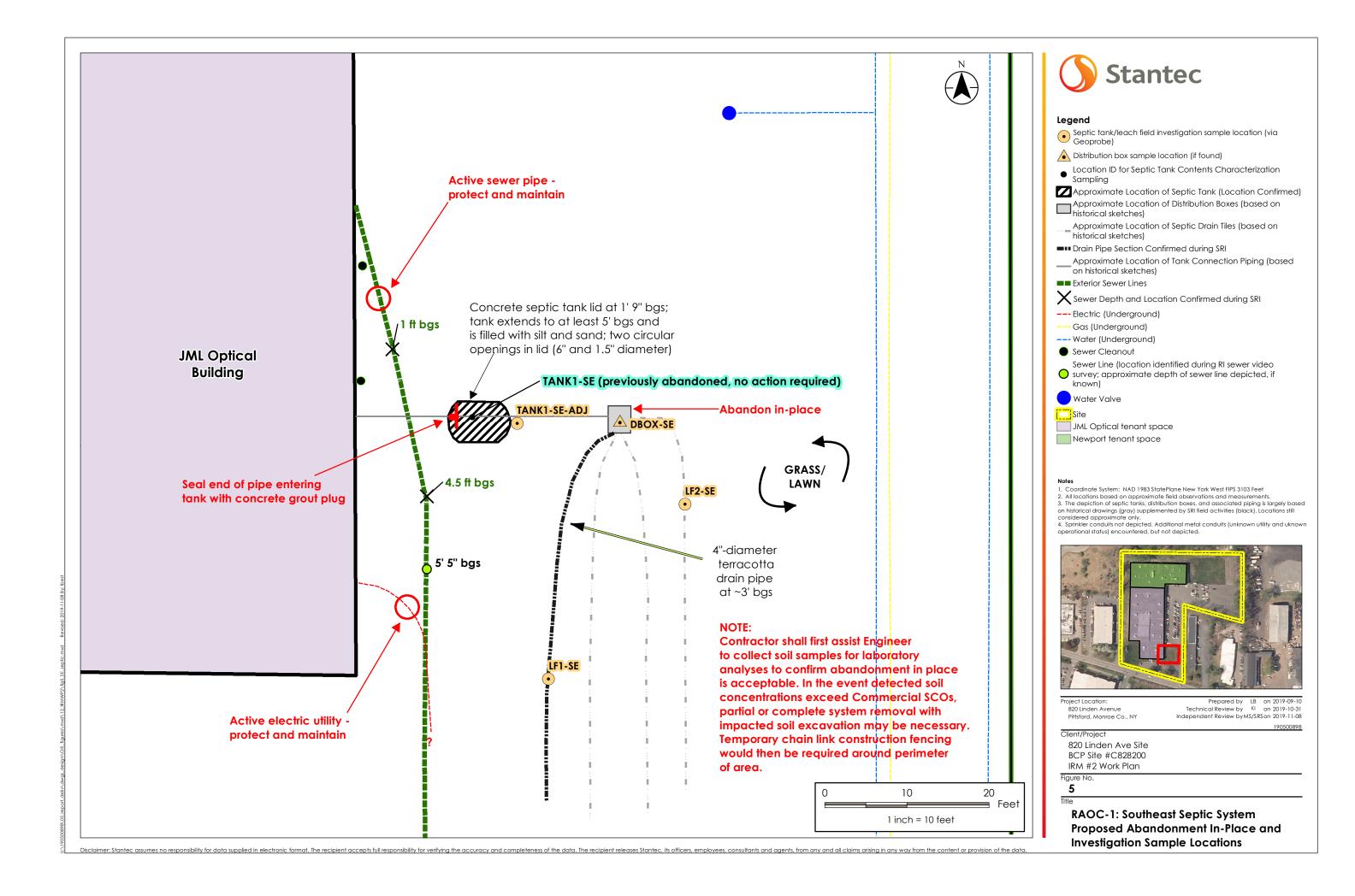
- . Coordinate System: NAD 1983 StatePlane New York West FIPS 3103 Feet
- 2. Ortholmagery (2015) downloaded from gis.ny.gov.
  3. Depths and locations depicted are approximate and based on multiple lines of evidence including the video survey, historical drawings, and field observations.

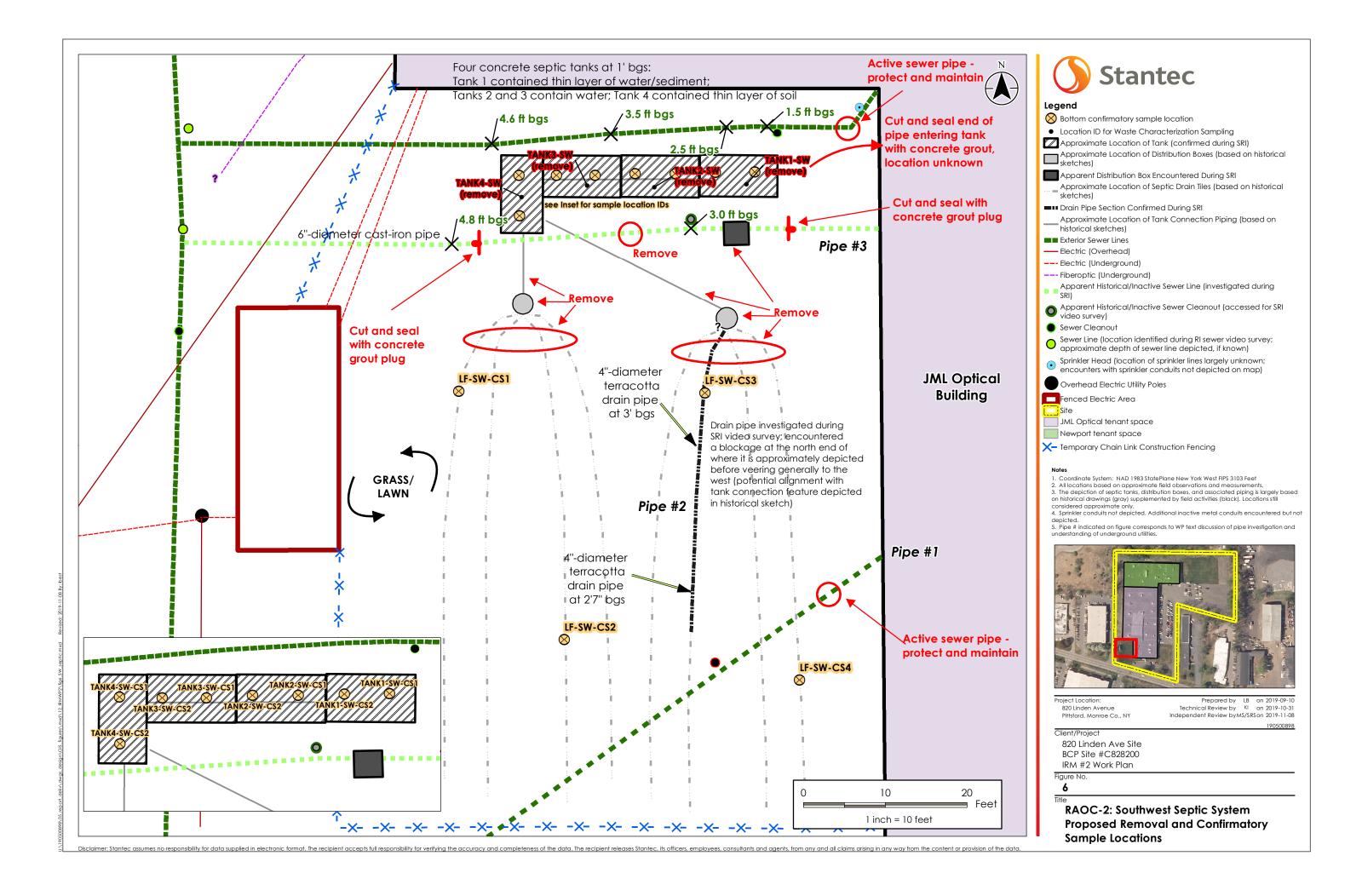


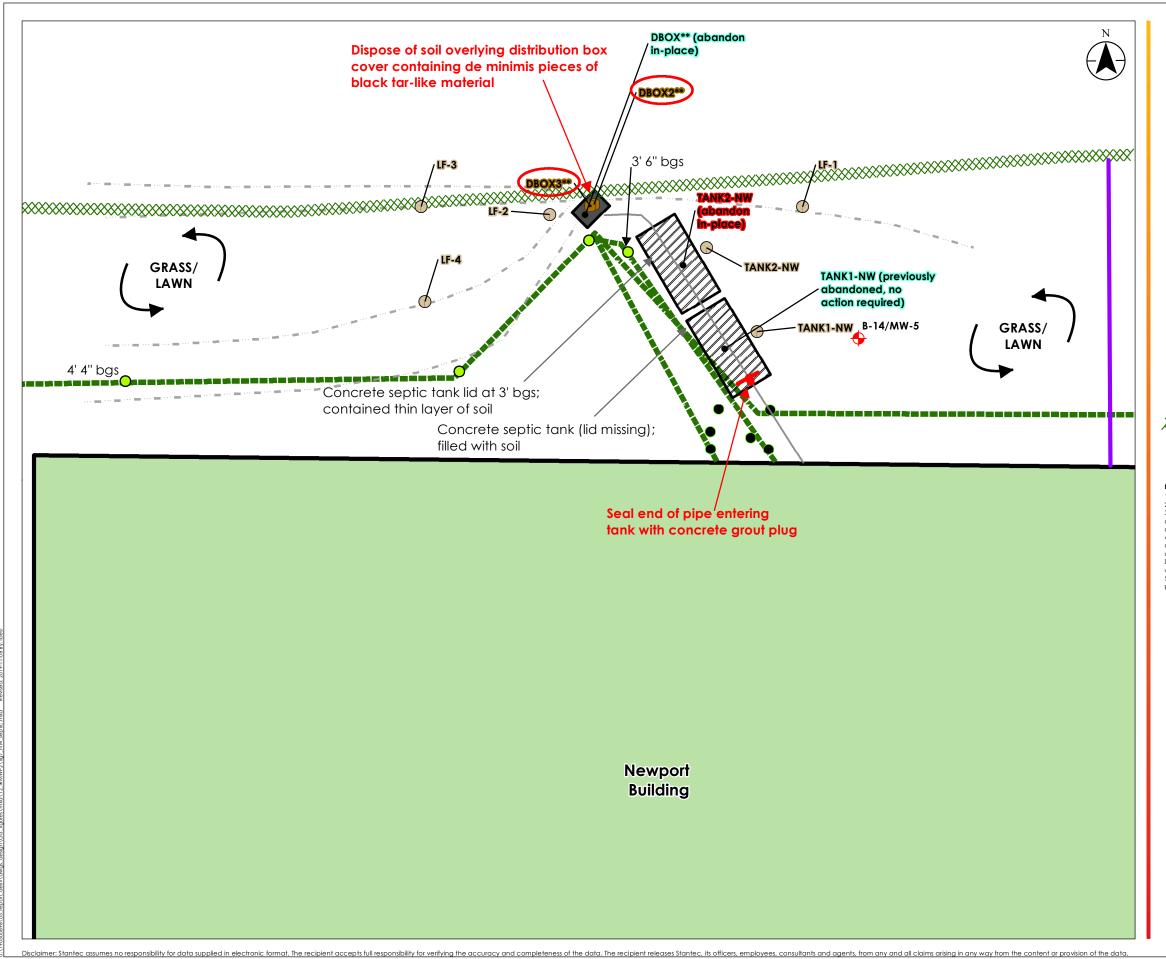
820 Linden Avenue Pittsford, Monroe Co., NY

Prepared by LB on 2018-12-05 Technical Review by KI on 2019-10-31 Independent Review by MS/SRS on 2019-11-08

Client/Project

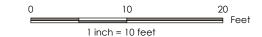

820 Linden Ave Site BCP Site #C828200 IRM #2 Work Plan


Figure No.




**Understanding of Sewer Configuration** 

imer: Stantec assumes no responsibility for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and completeness of the data. The recipient releases Stantec, its officers, employees, consultants and agents, from any and all claims arising in any way from the content or provision of the data.










- Location ID for Septic Tank Contents Characterization Sampling
- Grab Sample
- Soil Boring
- Approximate Location of Tank (exposed and sampled
- Approximate Location of Distribution Box (uncovered and sampled during SRI)
- Approximate Location of Septic Drain Tiles (based on historical sketches; see Note 5\*\*)
- Approximate Location of Tank Connection Piping (based on historical sketches)
- **■■** Exterior Sewer Lines
- Sewer Cleanout
- Sewer Line (location identified during RI sewer video survey; approximate depth of sewer line depicted, if
- Monitoring Well (2016 Investigation)
- Site
- JML Optical tenant space
- Newport tenant space
- Approximate Western Edge of Picnic Table Area
- Approximate Treeline



- 1. Coordinate System: NAD 1983 StatePlane New York West FIPS 3103 Feet
  2. All locations based on approximate field observations and measurements.
  3. The depiction of septic tanks, distribution boxes, and associated piping is largely based on historical drawings (gray) supplemented by SRI field activities (black). Locations shown are approximate.

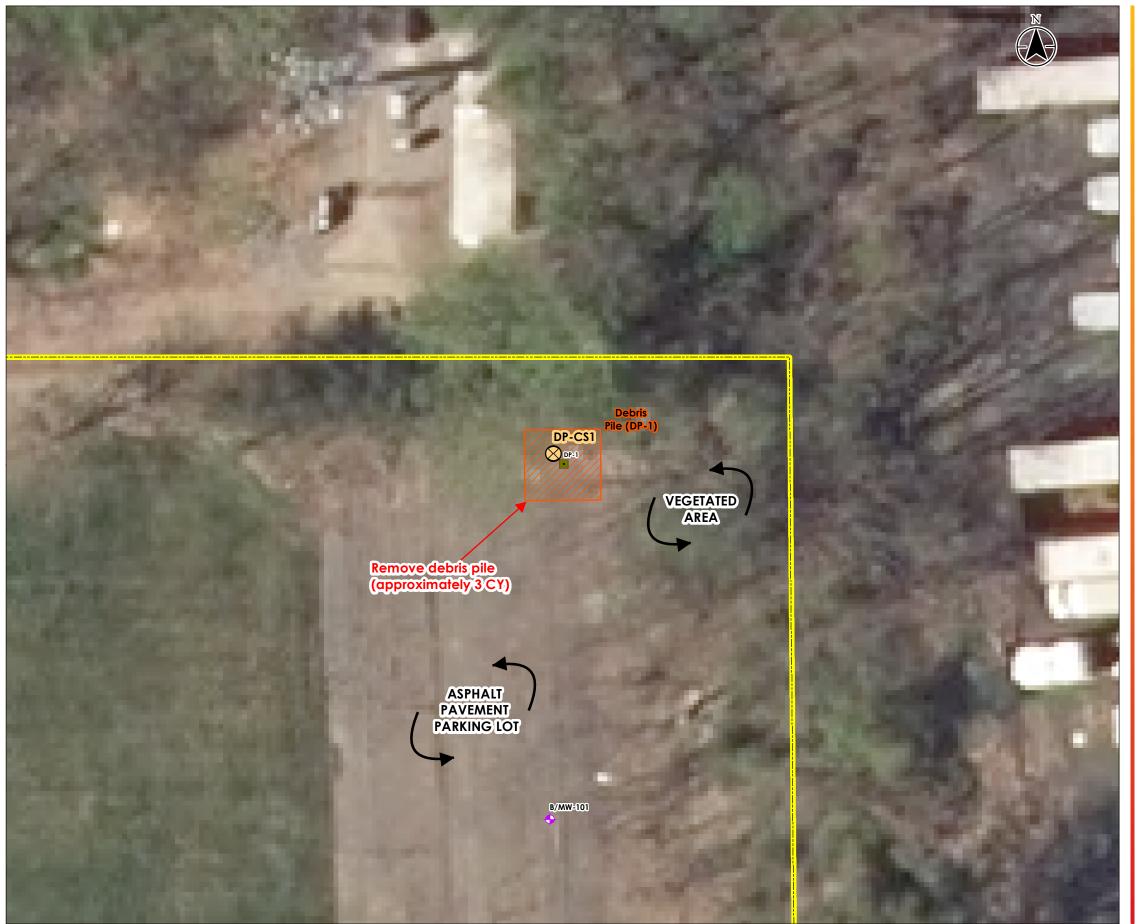
  4. \*DBOX is a solids sample from within distribution box for waste characterization, as
- depicted. DBOX2 and DBOX3 are solids samples analyzed as part of the investigation dataset: DBOX2 is in situ soil in the vicinity of the distribution box excavation backfill area; DBOX3 is a bulk sample of black tar-like material encountered in a discrete occurrence
- while digging to the distribution box.

  5. \*\*Inlet/loutlet holes observed in distribution box roughly align with historical sketch and provided approximate depth below ground surface for sampling reference.



820 Linden Avenue Pittsford, Monroe Co., NY

Technical Review by KI on 2019-10-31 Independent Review by MS/SRS on 2019-11-08

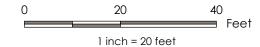

## Client/Project

820 Linden Ave Site BCP Site #C828200 IRM #2 Work Plan

### Figure No.

RAOC-3: Northwest Septic System **Proposed Abandonment In-Place** 

and Removal of Black Tar-Like Material




aimer: Stantec assumes no responsibility for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and completeness of the data. The recipient releases Stantec, its officers, employees, consultants and agents, from any and all claims arising in any way from the content or provision of the data



### Legend

- RI Debris Pile Sample
- Proposed bottom confirmatory sample location
- ZZ RAOC-4
- [] Site
- Building Outline
- JML Optical tenant space
- Newport tenant space



- Notes

  1. Coordinate System: NAD 1983 StatePlane New York West FIPS 3103 Feet
  2. 2015 Orthoimagery from gis.ny.gov.
  3. All locations based on approximate field observations and measurement
  wells surveyed by Stantec in 2018 RI.



Project Location: 820 Linden Avenue Pittsford, Monroe Co., NY

Prepared by LB on 2019-10-18 Technical Review by KI on 2019-10-31 Independent Review by MS/SRS on 2019-11-08

### Client/Project

820 Linden Ave Site BCP Site #C828200 IRM #2 Work Plan

Figure No.

**RAOC-4: Debris Pile** Proposed Removal and Confirmatory Sample Location

## **TABLES**



Summary of Analytical Results for RI Soil Samples IRM Work Plan #2
820 Linden Ave Site, BCP #C828200 820 Linden Avenue, Pittsford, NY

|                                        |                |                                                                                                                                                                                               |                                                                                            |                           |                 |                           | 1               |                 |                 | 1                         | i                         |                               |                           | i                         |                           |                           |                           |
|----------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------|-----------------|---------------------------|-----------------|-----------------|-----------------|---------------------------|---------------------------|-------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|
| Sample Location                        |                |                                                                                                                                                                                               |                                                                                            | B-1                       |                 | -2                        | B-3             | B-4             | B-5             | B-6                       | B-7                       | В                             |                           |                           | -9                        | B-10                      | B-11                      |
| Sample Date                            |                |                                                                                                                                                                                               |                                                                                            | 20-Jun-16                 | 20-Jun-16       | 20-Jun-16                 | 20-Jun-16       | 20-Jun-16       | 20-Jun-16       | 21-Jun-16                 | 21-Jun-16                 | 24-Jun-16                     | 24-Jun-16                 | 28-Jun-16                 | 29-Jun-16                 | 5-Jul-16                  | 5-Jul-16                  |
| Sample ID<br>Sample Depth              |                |                                                                                                                                                                                               |                                                                                            | B-1<br>4 - 5 ft           | B-2<br>4 - 5 ft | DUP-01<br>4 - 5 ft        | B-3<br>4 - 5 ft | B-4<br>4 - 5 ft | B-5<br>4 - 5 ft | B-6<br>4 - 5 ft           | B-7<br>4 - 5 ft           | B-8 (3.5-4.5)<br>3.5 - 4.5 ft | B-8 (60-61)<br>60 - 61 ft | B-9 (23-24)<br>23 - 24 ft | B-9 (85-86)<br>85 - 86 ft | B-10 (3-4)<br>3 - 4 ft    | B-11 (8-9)<br>8 - 9 ft    |
| Sampling Company                       |                |                                                                                                                                                                                               |                                                                                            | STANTEC                   | STANTEC         | STANTEC                   | STANTEC         | STANTEC         | STANTEC         | STANTEC                   | STANTEC                   | STANTEC                       | STANTEC                   | STANTEC                   | STANTEC                   | STANTEC                   | STANTEC                   |
| Laboratory                             |                |                                                                                                                                                                                               |                                                                                            | TAL                       | TAL             | TAL                       | TAL             | TAL             | TAL             | TAL                       | TAL                       | TAL                           | TAL                       | TAL                       | TAL                       | TAL                       | TAL                       |
| Laboratory Work Order                  |                |                                                                                                                                                                                               |                                                                                            | 480-102053-1              | 480-102053-1    | 480-102053-1              | 480-102053-1    | 480-102053-1    | 480-102053-1    | 480-102053-1              | 480-102053-1              | 480-102302-1                  | 480-102302-1              | 480-102302-1              | 480-102302-1              | 480-102705-1              | 480-102705-1              |
| Laboratory Sample ID                   |                |                                                                                                                                                                                               |                                                                                            | 480-102053-1              | 480-102053-2    | 480-102053-7              | 480-102053-3    | 480-102053-4    | 480-102053-5    | 480-102053-6              | 480-102053-8              | 480-102302-1                  | 480-102302-2              | 480-102382-1              | 480-102510-1              | 480-102705-1              | 480-102705-2              |
| Sample Type                            | Units          | NYSDEC-Part 375                                                                                                                                                                               | NYSDEC CP-51                                                                               |                           |                 | Field Duplicate           |                 |                 |                 |                           |                           |                               |                           |                           |                           |                           |                           |
| General Chemistry                      | <u> </u>       |                                                                                                                                                                                               |                                                                                            |                           |                 |                           |                 |                 |                 |                           |                           |                               |                           |                           |                           |                           |                           |
| Cyanide                                | mg/kg          | 27, <sup>AB</sup> 10,000, C 40,D                                                                                                                                                              | n/v                                                                                        | 1.1 U                     | 1.1 U           | 1.0 U                     | 1.0 U           | 1.0 U           | 1.0 U           | 1.1 U                     | 1.2 U                     | 1.1 U                         | 1.1 U                     | 1.0 U                     | 1.2 U                     | 0.99 U                    | 0.92 U                    |
| Metals                                 |                | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                       |                                                                                            |                           |                 |                           |                 |                 |                 | •                         | •                         |                               |                           | •                         |                           |                           |                           |
| Aluminum                               | mg/kg          | 10,000 <sub>a</sub> ABCD                                                                                                                                                                      | 10,000° EFG                                                                                | 12.800 <sup>ABCDEFG</sup> | 6,250           | 7,000                     | 8,420           | 7,620           | 5,600           | 8,340 J                   | 2,600                     | 8,730                         | 2,350                     | 2,970 J                   | 3,670                     | 4,600                     | 5,080                     |
| Antimony                               | mg/kg          | 10,000 ABCD                                                                                                                                                                                   | 10,000 EFG                                                                                 | 16.1 U                    | 15.3 U          | 15.9 U                    | 17.0 U          | 16.6 U          | 16.1 U          | 18.5 UJ                   | 17.5 U                    | 17.6 U                        | 18.7 U                    | 18.1 U                    | 18.9 U                    | 16.6 U                    | 15.0 U                    |
| Arsenic                                | mg/kg          | 13, A 16 BCD                                                                                                                                                                                  | n/v                                                                                        | 3.6                       | 2.0 U           | 2.1 U                     | 2.3 U           | 2.2 U           | 2.2 U           | 2.5 U                     | 2.3 U                     | 3.3                           | 2.5 U                     | 2.4 U                     | 2.5 U                     | 2.2 U                     | 2.0                       |
| Barium                                 | mg/kg          | 350 <sub>n</sub> <sup>A</sup> 400° 10,000 <sub>e</sub> ° 820°                                                                                                                                 | n/v                                                                                        | 35.9                      | 12.9            | 13.8                      | 22.6            | 17.7            | 13.4            | 29.7                      | 12.7                      | 85.7                          | 12.1                      | 12.1                      | 30.3                      | 12.6                      | 14.6                      |
| Beryllium                              | mg/kg          | 7.2 <sup>A</sup> 590 <sup>B</sup> 2,700 <sup>C</sup> 47 <sup>D</sup>                                                                                                                          | n/v                                                                                        | 0.51                      | 0.20 U          | 0.23                      | 0.23 U          | 0.22 U          | 0.22 U          | 0.26                      | 0.23 U                    | 0.31                          | 0.25 U                    | 0.24 U                    | 0.25 U                    | 0.22 U                    | 0.20                      |
| Cadmium                                | mg/kg          | 2.5 <sub>n</sub> <sup>A</sup> 9.3 <sup>B</sup> 60 <sup>C</sup> 7.5 <sup>D</sup>                                                                                                               | n/v                                                                                        | 0.21 U                    | 0.20 U          | 0.21 U                    | 0.23 U          | 0.22 U          | 0.22 U          | 0.36                      | 0.23 U                    | 0.23 U                        | 0.25 U                    | 0.24 U                    | 0.25 U                    | 0.22 U                    | 0.20 U                    |
| Calcium                                | mg/kg          | 10,000 <sub>e</sub> ABCD                                                                                                                                                                      | 10,000 <sub>a</sub> <sup>EFG</sup>                                                         | 1,550                     | 9,060 J         | 1,740 J                   | 4,900           | 3,870           | 4,940           | 3,720 J                   | 24,400 <sup>ABCDEFG</sup> | 22,900 <sup>ABCDEFG</sup>     | 21,500 <sup>ABCDEFG</sup> | 26,300 <sup>ABCDEFG</sup> | 27,800 <sup>ABCDEFG</sup> | 1,550                     | 3,020                     |
| Chromium<br>Cobalt                     | mg/kg<br>mg/kg | 30 <sub>n.i</sub> <sup>A</sup> 1,500 <sub>i</sub> <sup>B</sup> 6,800 <sub>i</sub> <sup>C</sup> <sub>NS.a</sub> <sup>D</sup> 10,000 <sub>e</sub> ABCD                                          | n/v<br>10,000° <sup>EEG</sup>                                                              | 14.7<br>6.8               | 7.8<br>2.5 J    | 8.5<br>3.8 J              | 9.5<br>2.6      | 9.3<br>2.6      | 10.6<br>2.5     | 11.0<br>4.2               | 5.4<br>1.9                | 11.6<br>6.0                   | 5.9<br>1.6                | 4.7<br>2.0                | 7.1<br>2.7                | 8.3<br>3.1                | 7.9<br>3.6                |
| Copper                                 | mg/kg          | 50 <sup>A</sup> 270 <sup>B</sup> 10,000 <sub>e</sub> <sup>C</sup> 1,720 <sup>D</sup>                                                                                                          | 10,000 <sub>a</sub>                                                                        | 17.5                      | 4.5 J           | 9.1 J                     | 3.9             | 4.6             | 5.5             | 18.0                      | 4.3                       | 25.7                          | 3.6                       | 4.1                       | 5.4                       | 4.2                       | 6.8                       |
| Iron                                   | mg/kg          | 10,000 <sub>e</sub> ABCD                                                                                                                                                                      | 10,000 <sub>a</sub> EFG                                                                    | 19,400 <sup>ABCDEFG</sup> | 7,380           | 10,900 <sup>ABCDEFG</sup> | 8,710           | 8,650           | 6,950           | 12,200 <sup>ABCDEFG</sup> | 6,270                     | 15,100 <sup>ABCDEFG</sup>     | 5,420                     | 5,880 J                   | 7,600                     | 12,300 <sup>ABCDEFG</sup> | 10,200 <sup>ABCDEFG</sup> |
| Lead                                   | mg/kg          | 63° 41.000° 3.900° 450°                                                                                                                                                                       | n/v                                                                                        | 5.9                       | 3.1             | 2.6                       | 4.3             | 3.0             | 2.5             | 15.5                      | 1.5                       | 9.0                           | 1.5                       | 1.3                       | 2.0                       | 1.8                       | 2.3                       |
| Magnesium                              | mg/kg          | 10.000 ABCD                                                                                                                                                                                   | n/v                                                                                        | 2,320                     | 5,560 J         | 1,890 J                   | 3,040           | 2,530           | 2,360           | 2,080 J                   | 4,980                     | 9,780                         | 3,830                     | 5,550                     | 7,420                     | 1,240                     | 1,810                     |
| Manganese                              | mg/kg          | 1,600 <sub>n</sub> <sup>A</sup> 10,000 <sub>e</sub> <sup>BC</sup> 2,000 <sub>q</sub> <sup>D</sup>                                                                                             | n/v                                                                                        | 382                       | 125 J           | 298 J                     | 172             | 121             | 115             | 313                       | 146                       | 646                           | 126                       | 177 J                     | 199                       | 232                       | 268                       |
| Mercury                                | mg/kg          | 0.18 <sub>n</sub> <sup>A</sup> 2.8 <sub>k</sub> <sup>B</sup> 5.7 <sub>k</sub> <sup>C</sup> 0.73 <sup>D</sup>                                                                                  | n/v                                                                                        | 0.022 U                   | 0.020 U         | 0.021 U                   | 0.044           | 0.022 U         | 0.021 U         | 0.022 U                   | 0.023 U                   | 0.065                         | 0.023 U                   | 0.024 U                   | 0.022 U                   | 0.021 U                   | 0.021 U                   |
| Nickel                                 | mg/kg          | 30 <sup>A</sup> 310 <sup>B</sup> 10,000 <sub>e</sub> <sup>C</sup> 130 <sup>D</sup>                                                                                                            | n/v                                                                                        | 15.4                      | 5.6             | 8.0                       | 6.0             | 6.1             | 6.1             | 9.0                       | 5.8 U                     | 12.9                          | 6.2 U                     | 6.0 U                     | 6.3 U                     | 5.9                       | 6.5                       |
| Potassium                              | mg/kg          | 10,000 <sub>e</sub> ABCD                                                                                                                                                                      | n/v                                                                                        | 1,890                     | 754             | 1,040                     | 755             | 705             | 740             | 981                       | 570                       | 1,400                         | 551                       | 650 J                     | 1,000                     | 764                       | 1,030                     |
| Selenium                               | mg/kg          | 3.9 <sub>n</sub> <sup>A</sup> 1,500 <sup>B</sup> 6,800 <sup>C</sup> 4 <sub>a</sub> <sup>D</sup>                                                                                               | n/v                                                                                        | 4.3 U                     | 4.1 U           | 4.2 U                     | 4.5 U           | 4.4 U           | 4.3 U           | 4.9 U                     | 4.7 U                     | 4.7 U                         | 5.0 U                     | 4.8 U                     | 5.0 U                     | 4.4 U                     | 4.0 U                     |
| Silver<br>Sodium                       | mg/kg          | 2 <sup>A</sup> 1,500 <sup>B</sup> 6,800 <sup>C</sup> 8.3 <sup>D</sup>                                                                                                                         | n/v<br>n/v                                                                                 | 0.54 U<br>419             | 0.51 U<br>601   | 0.53 U<br>922             | 0.57 U<br>266   | 0.55 U<br>220   | 0.54 U<br>151 U | 0.62 U<br>300             | 0.58 U<br>173             | 0.59 U<br>164 U               | 0.62 U<br>175 U           | 0.60 U<br>169 U           | 0.63 U<br>251             | 0.55 U<br>155 U           | 0.50 U<br>140 U           |
| Thallium                               | mg/kg<br>mg/kg | 10,000 <sub>e</sub> ABCD<br>10,000 <sub>e</sub> ABCD                                                                                                                                          | 10,000 <sub>a</sub> <sup>EFG</sup>                                                         | 6.4 U                     | 6.1 U           | 6.3 U                     | 6.8 U           | 6.6 U           | 6.5 U           | 7.4 U                     | 7.0 U                     | 7.0 U                         | 7.5 U                     | 7.3 U                     | 7.6 U                     | 6.6 U                     | 6.0 U                     |
| Vanadium                               | mg/kg          | 10,000 <sub>e</sub> ABCD                                                                                                                                                                      | 10,000 <sub>a</sub> EFG                                                                    | 27.0                      | 13.7            | 17.8                      | 15.7            | 15.6            | 12.2            | 19.1                      | 10.7                      | 19.6                          | 9.1                       | 9.5                       | 12.2                      | 23.3                      | 16.4                      |
| Zinc                                   | mg/kg          | 109 <sub>0</sub> <sup>A</sup> 10,000 <sub>e</sub> <sup>BC</sup> 2,480 <sup>D</sup>                                                                                                            | n/v                                                                                        | 31.7                      | 16.9            | 18.1                      | 22.4            | 18.2            | 14.3            | 35.1                      | 10.3                      | 34.3                          | 9.6                       | 11.3                      | 13.6                      | 12.8                      | 19.8                      |
| Polychlorinated Biphenyls              | 3 3            |                                                                                                                                                                                               | •                                                                                          | 1                         |                 |                           |                 |                 | -               |                           |                           |                               |                           |                           |                           |                           |                           |
| Aroclor 1016                           | μg/kg          | ABCD                                                                                                                                                                                          | n/v                                                                                        | 240 U                     | 210 U           | 250 U                     | 260 U           | 240 U           | 210 U           | 250 U                     | 230 U                     | 240 U                         | 210 U                     | 260 U                     | 240 U                     | 260 U                     | 200 U                     |
| Aroclor 1221                           | μg/kg          | ABCD                                                                                                                                                                                          | n/v                                                                                        | 240 U                     | 210 U           | 250 U                     | 260 U           | 240 U           | 210 U           | 250 U                     | 230 U                     | 240 U                         | 210 U                     | 260 U                     | 240 U                     | 260 U                     | 200 U                     |
| Aroclor 1232                           | μg/kg          | ABCD                                                                                                                                                                                          | n/v                                                                                        | 240 U                     | 210 U           | 250 U                     | 260 U           | 240 U           | 210 U           | 250 U                     | 230 U                     | 240 U                         | 210 U                     | 260 U                     | 240 U                     | 260 U                     | 200 U                     |
| Aroclor 1242                           | μg/kg          | ABCD<br>ABCD                                                                                                                                                                                  | n/v                                                                                        | 240 U                     | 210 U           | 250 U                     | 260 U           | 240 U           | 210 U           | 250 U                     | 230 U                     | 240 U                         | 210 U                     | 260 U                     | 240 U                     | 260 U                     | 200 U                     |
| Aroclor 1248                           | μg/kg          | ABCD<br>ABCD                                                                                                                                                                                  | n/v                                                                                        | 240 U                     | 210 U           | 250 U                     | 260 U           | 240 U           | 210 U           | 250 U                     | 230 U                     | 240 U                         | 210 U                     | 260 U                     | 240 U                     | 260 U                     | 200 U                     |
| Aroclor 1254<br>Aroclor 1260           | μg/kg          | ABCD                                                                                                                                                                                          | n/v<br>n/v                                                                                 | 240 U<br>240 U            | 210 U<br>210 U  | 250 U<br>250 U            | 260 U<br>260 U  | 240 U<br>240 U  | 210 U<br>210 U  | 250 U<br>250 U            | 230 U<br>230 U            | 240 U<br>240 U                | 210 U<br>210 U            | 260 U<br>260 U            | 240 U<br>240 U            | 260 U<br>260 U            | 200 U<br>200 U            |
| Aroclor 1260<br>Aroclor 1262           | μg/kg<br>μg/kg | OABCD                                                                                                                                                                                         | n/v                                                                                        | 240 U                     | 210 U           | 250 U                     | 260 U           | 240 U           | 210 U           | 250 U                     | 230 U                     | 240 U                         | 210 U                     | 260 U                     | 240 U                     | 260 U                     | 200 U                     |
| Aroclor 1268                           | μg/kg          | °ABCD                                                                                                                                                                                         | n/v                                                                                        | 240 U                     | 210 U           | 250 U                     | 260 U           | 240 U           | 210 U           | 250 U                     | 230 U                     | 240 U                         | 210 U                     | 260 U                     | 240 U                     | 260 U                     | 200 U                     |
| Polychlorinated Biphenyls (PCBs)       | μg/kg          | 100 <sup>A</sup> 1,000 <sup>B</sup> 25,000 <sup>C</sup> 3,200 <sup>D</sup>                                                                                                                    | n/v                                                                                        | ND                        | ND              | ND                        | ND              | ND              | ND              | ND                        | ND                        | ND                            | ND                        | ND                        | ND                        | ND                        | ND                        |
| Pesticides                             |                |                                                                                                                                                                                               |                                                                                            |                           |                 |                           |                 |                 |                 |                           |                           |                               |                           |                           |                           |                           |                           |
| Aldrin                                 | μg/kg          | 5 <sub>n</sub> <sup>A</sup> 680 <sup>B</sup> 1,400 <sup>C</sup> 190 <sup>D</sup>                                                                                                              | n/v                                                                                        | 1.8 U                     | 35 U            | 35 U                      | 36 U            | 17 U            | 35 U            | 39 U                      | 2.0 U                     | 2.0 U                         | 2.0 U                     | 2.0 U                     | 1.9 U                     | 1.8 U                     | 1.7 U                     |
| BHC, alpha-                            | μg/kg          | 20 <sup>AD</sup> 3,400 <sup>B</sup> 6,800 <sup>C</sup>                                                                                                                                        | n/v                                                                                        | 1.8 U                     | 35 U            | 35 U                      | 36 U            | 17 U            | 35 U            | 39 U                      | 2.0 U                     | 2.0 U                         | 2.0 U                     | 2.0 U                     | 1.9 U                     | 1.8 U                     | 1.7 U                     |
| BHC, beta-<br>BHC, delta-              | μg/kg<br>μg/kg | 36 <sup>A</sup> 3,000 <sup>B</sup> 14,000 <sup>C</sup> 90 <sup>D</sup><br>40 <sub>n</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 250 <sup>D</sup> | n/v<br>n/v                                                                                 | 1.8 U<br>1.8 U            | 35 U<br>35 U    | 35 U<br>35 U              | 36 U<br>36 U    | 17 U<br>17 U    | 35 U<br>35 U    | 39 U<br>39 U              | 2.0 U<br>2.0 U            | 2.0 U<br>2.0 U                | 2.0 U<br>2.0 U            | 2.0 U<br>2.0 U            | 1.9 U<br>1.9 U            | 1.8 U<br>1.8 U            | 1.7 U<br>1.7 U            |
| Camphechlor (Toxaphene)                | μg/kg<br>μg/kg | 100.000 A 500.000 B 1.000.000 CD                                                                                                                                                              | n/v<br>n/v                                                                                 | 1.6 U                     | 350 U           | 350 U                     | 360 U           | 17 U            | 350 U           | 39 U                      | 2.0 U                     | 2.0 U                         | 2.0 U                     | 2.0 U                     | 1.9 U                     | 1.6 U                     | 1.7 U                     |
| Chlordane, alpha-                      | μg/kg<br>μg/kg | 94 <sup>A</sup> 24.000 <sup>B</sup> 47.000 <sup>C</sup> 2.900 <sup>D</sup>                                                                                                                    | n/v                                                                                        | 1.8 U                     | 35 U            | 35 U                      | 36 U            | 17 U            | 35 U            | 39 U                      | 2.0 U                     | 2.0 U                         | 2.0 U                     | 2.0 U                     | 1.9 U                     | 1.8 U                     | 1.7 U                     |
| Chlordane, trans- (gamma-Chlordane)    | µg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                                                                                         | n/v                                                                                        | 1.8 U                     | 35 U            | 35 U                      | 36 U            | 17 U            | 35 U            | 39 U                      | 2.0 U                     | 2.0 U                         | 2.0 U                     | 2.0 U                     | 1.9 U                     | 1.8 U                     | 1.7 U                     |
| DDD (p,p'-DDD)                         | μg/kg          | 3.3 <sub>m</sub> <sup>A</sup> 92,000 <sup>B</sup> 180,000 <sup>C</sup> 14,000 <sup>D</sup>                                                                                                    | n/v                                                                                        | 1.8 U                     | 35 U            | 35 U                      | 36 U            | 17 U            | 35 U            | 39 U                      | 2.0 U                     | 2.0 U                         | 2.0 U                     | 2.0 U                     | 1.9 U                     | 1.8 U                     | 1.7 U                     |
| DDE (p,p'-DDE)                         | μg/kg          | 3.3 <sub>m</sub> <sup>A</sup> 62,000 <sup>B</sup> 120,000 <sup>C</sup> 17,000 <sup>D</sup>                                                                                                    | n/v                                                                                        | 1.8 U                     | 35 U            | 35 U                      | 36 U            | 17 U            | 35 U            | 39 U                      | 2.0 U                     | 2.0 U                         | 2.0 U                     | 2.0 U                     | 1.9 U                     | 1.8 U                     | 1.7 U                     |
| DDT (p,p'-DDT)                         | μg/kg          | 3.3 <sub>m</sub> <sup>A</sup> 47,000 <sup>B</sup> 94,000 <sup>C</sup> 136,000 <sup>D</sup>                                                                                                    | n/v                                                                                        | 1.8 U                     | 35 U            | 35 U                      | 36 U            | 17 U            | 35 U            | 39 U                      | 2.0 U                     | 2.0 U                         | 2.0 U                     | 2.0 U                     | 1.9 U                     | 1.8 U                     | 1.7 U                     |
| Dieldrin                               | μg/kg          | 5 <sub>n</sub> <sup>A</sup> 1,400 <sup>B</sup> 2,800 <sup>C</sup> 100 <sup>D</sup>                                                                                                            | n/v                                                                                        | 1.8 U                     | 35 U            | 35 U                      | 36 U            | 17 U            | 35 U            | 39 U                      | 2.0 U                     | 2.0 U                         | 2.0 U                     | 2.0 U                     | 1.9 U                     | 1.8 U                     | 1.7 U                     |
| Endosulfan I                           | μg/kg          | 2,400 <sub>i</sub> <sup>A</sup> 200,000 <sub>i</sub> <sup>B</sup> 920,000 <sub>i</sub> <sup>C</sup> 102,000 <sup>D</sup>                                                                      | n/v                                                                                        | 1.8 U                     | 35 U            | 35 U                      | 36 U            | 17 U            | 35 U            | 39 U                      | 2.0 U                     | 2.0 U                         | 2.0 U                     | 2.0 U                     | 1.9 U                     | 1.8 U                     | 1.7 U                     |
| Endosulfan II                          | μg/kg          | 2,400 <sub>i</sub> <sup>A</sup> 200,000 <sub>i</sub> <sup>B</sup> 920,000 <sub>i</sub> <sup>C</sup> 102,000 <sup>D</sup>                                                                      | n/v                                                                                        | 1.8 U                     | 35 U            | 35 U                      | 36 U            | 17 U            | 35 U            | 39 U                      | 2.0 U                     | 2.0 U                         | 2.0 U                     | 2.0 U                     | 1.9 U                     | 1.8 U                     | 1.7 U                     |
| Endosulfan Sulfate                     | μg/kg          | 2,400 <sub>i</sub> <sup>A</sup> 200,000 <sub>i</sub> <sup>B</sup> 920,000 <sub>i</sub> <sup>C</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                       | n/v                                                                                        | 1.8 U                     | 35 U            | 35 U                      | 36 U            | 17 U            | 35 U            | 39 U                      | 2.0 U                     | 2.0 U                         | 2.0 U                     | 2.0 U                     | 1.9 U                     | 1.8 U                     | 1.7 U<br>1.7 U            |
| Endrin<br>Endrin Aldehyde              | μg/kg<br>μg/kg | 14 <sup>A</sup> 89,000 <sup>B</sup> 410,000 <sup>C</sup> 60 <sup>D</sup><br>100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                               | n/v<br>n/v                                                                                 | 1.8 U<br>1.8 U            | 35 U<br>35 U    | 35 U<br>35 U              | 36 U<br>36 U    | 17 U<br>17 U    | 35 U<br>35 U    | 39 U<br>39 U              | 2.0 U<br>2.0 U            | 2.0 U<br>2.0 U                | 2.0 U<br>2.0 U            | 2.0 U<br>2.0 U            | 1.9 U<br>1.9 U            | 1.8 U<br>1.8 U            | 1.7 U<br>1.7 U            |
| Endrin Alderlyde<br>Endrin Ketone      | μg/kg<br>μg/kg | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 100,000 <sub>d</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 500,000                                                     | n/v<br>n/v                                                                                 | 1.8 U                     | 35 U            | 35 U                      | 36 U            | 17 U            | 35 U            | 39 U                      | 2.0 U                     | 2.0 U                         | 2.0 U                     | 2.0 U                     | 1.9 U                     | 1.8 U                     | 1.7 U                     |
| Heptachlor                             | μg/kg<br>μg/kg | 42 <sup>A</sup> 15,000 <sup>B</sup> 29,000 <sup>C</sup> 380 <sup>D</sup>                                                                                                                      | n/v                                                                                        | 1.8 U                     | 35 U            | 35 U                      | 36 U            | 17 U            | 35 U            | 39 U                      | 2.0 U                     | 2.0 U                         | 2.0 U                     | 2.0 U                     | 1.9 U                     | 1.8 U                     | 1.7 U                     |
| Heptachlor Epoxide                     | µg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                                                           | 500,000° 1,000,000° 20°                                                                    | 1.8 U                     | 35 U            | 35 U                      | 36 U            | 17 U            | 35 U            | 39 U                      | 2.0 U                     | 2.0 U                         | 2.0 U                     | 2.0 U                     | 1.9 U                     | 1.8 U                     | 1.7 U                     |
| Lindane (Hexachlorocyclohexane, gamma) | μg/kg          | 100 <sup>AD</sup> 9,200 <sup>B</sup> 23,000 <sup>C</sup>                                                                                                                                      | n/v                                                                                        | 1.8 U                     | 35 U            | 35 U                      | 36 U            | 17 U            | 35 U            | 39 U                      | 2.0 U                     | 2.0 U                         | 2.0 U                     | 2.0 U                     | 1.9 U                     | 1.8 U                     | 1.7 U                     |
| Methoxychlor (4,4'-Methoxychlor)       | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                      | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 900,000 <sup>G</sup> | 1.8 U                     | 35 U            | 35 U                      | 36 U            | 17 U            | 35 U            | 39 U                      | 2.0 U                     | 2.0 U                         | 2.0 U                     | 2.0 U                     | 1.9 U                     | 1.8 U                     | 1.7 U                     |
| See notes on last page.                |                |                                                                                                                                                                                               |                                                                                            |                           |                 |                           |                 |                 |                 |                           |                           |                               |                           |                           |                           |                           |                           |



190500898 Page 1 of 18  $\label{lem:u:light} \begin{tabular}{ll} U:\line 190500898\line 1905008\line 1905008\li$ 

820 Linden Avenue, Pittsford, NY

| <del></del> -                                                                                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                                                                                                               |              |              |                 | ī            |              | i i          | i             | 1            |               |              |              |              |              |             |
|------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------|--------------|-----------------|--------------|--------------|--------------|---------------|--------------|---------------|--------------|--------------|--------------|--------------|-------------|
| Sample Location                                                                                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           | B-1          | В            | -2              | B-3          | B-4          | B-5          | B-6           | B-7          | В             | -8           | В            | -9           | B-10         | B-11        |
| Sample Date                                                                                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           | 20-Jun-16    | 20-Jun-16    | 20-Jun-16       | 20-Jun-16    | 20-Jun-16    | 20-Jun-16    | 21-Jun-16     | 21-Jun-16    | 24-Jun-16     | 24-Jun-16    | 28-Jun-16    | 29-Jun-16    | 5-Jul-16     | 5-Jul-16    |
| Sample ID                                                                                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           | B-1          | B-2          | DUP-01          | B-3          | B-4          | B-5          | B-6           | B-7          | B-8 (3.5-4.5) | B-8 (60-61)  | B-9 (23-24)  | B-9 (85-86)  | B-10 (3-4)   | B-11 (8-9   |
| Sample Depth                                                                                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           | 4 - 5 ft     | 4 - 5 ft     | 4 - 5 ft        | 4 - 5 ft     | 4 - 5 ft     | 4 - 5 ft     | 4 - 5 ft      | 4 - 5 ft     | 3.5 - 4.5 ft  | 60 - 61 ft   | 23 - 24 ft   | 85 - 86 ft   | 3 - 4 ft     | 8 - 9 ft    |
| Sampling Company                                                                                     |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           | STANTEC      | STANTEC      | STANTEC         | STANTEC      | STANTEC      | STANTEC      | STANTEC       | STANTEC      | STANTEC       | STANTEC      | STANTEC      | STANTEC      | STANTEC      | STANTE      |
| Laboratory                                                                                           |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           | TAL          | TAL          | TAL             | TAL          | TAL          | TAL          | TAL           | TAL          | TAL           | TAL          | TAL          | TAL          | TAL          | TAL         |
| Laboratory Work Order                                                                                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           | 480-102053-1 | 480-102053-1 | 480-102053-1    | 480-102053-1 | 480-102053-1 | 480-102053-1 | 480-102053-1  | 480-102053-1 | 480-102302-1  | 480-102302-1 | 480-102302-1 | 480-102302-1 | 480-102705-1 | 480-10270   |
|                                                                                                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |              |              | 480-102053-1    |              |              |              |               | 480-102053-1 |               |              |              |              |              |             |
| Laboratory Sample ID                                                                                 | 11-14-         | NVODEO D+ OTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NYSDEC CP-51                                                                                                              | 480-102053-1 | 480-102053-2 |                 | 480-102053-3 | 480-102053-4 | 480-102053-5 | 480-102053-6  | 400-102053-0 | 480-102302-1  | 480-102302-2 | 480-102382-1 | 480-102510-1 | 480-102705-1 | 480-10270   |
| Sample Type                                                                                          | Units          | NYSDEC-Part 375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NTSDEC CP-ST                                                                                                              |              |              | Field Duplicate |              |              |              |               |              |               |              |              |              |              |             |
| Semi-Volatile Organic Compounds                                                                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           | •            | •            |                 | •            | •            |              | •             |              |               |              | •            |              | •            | •           |
|                                                                                                      | μg/kg          | 20,000 <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 98,000 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n/v                                                                                                                       | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 107,000 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n/v                                                                                                                       | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
| Acetophenone                                                                                         | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n/v                                                                                                                       | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
| Anthracene                                                                                           | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n/v                                                                                                                       | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      | μg/kg          | 100,000 <sub>a</sub> 1,000,000 <sub>d</sub> D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n/v                                                                                                                       | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n/v                                                                                                                       | 180 UJ       | 900 UJ       | 1,800 UJ        | 900 UJ       | 890 UJ       | 870 UJ       | 2,000 UJ      | 200 UJ       | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      | μg/kg          | 1,000 <sub>0</sub> A 5,600 <sup>B</sup> 11,000 <sup>C</sup> 1,000 <sub>0</sub> D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n/v                                                                                                                       | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
| * *                                                                                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           | 180 U        |              | 1,800 U         |              | 890 U        | 870 U        | · ·           | 200 U        |               | 200 U        |              | 200 U        | 180 U        | 170 U       |
|                                                                                                      | μg/kg          | 1,000 <sub>n</sub> <sup>A</sup> 1,000 <sub>g</sub> <sup>B</sup> 1,100 <sup>C</sup> 22,000 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n/v                                                                                                                       |              | 900 U        |                 | 900 U        |              |              | 2,000 U       |              | 210 U         |              | 200 U        |              |              |             |
| enzo(b)fluoranthene                                                                                  | µg/kg          | 1,000 <sub>n</sub> <sup>A</sup> 5,600 <sup>B</sup> 11,000 <sup>C</sup> 1,700 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n/v                                                                                                                       | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
| enzo(g,h,i)perylene                                                                                  | µg/kg          | 100,000 <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n/v                                                                                                                       | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      | μg/kg          | 800 <sub>n</sub> <sup>A</sup> 56.000 <sup>B</sup> 110.000 <sup>C</sup> 1.700 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n/v                                                                                                                       | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
| * *                                                                                                  | µg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 500,000° E 1,000,000° F                                                                                                   | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      | μg/kg          | 100,000 <sub>a</sub> 1,000,000 <sub>d</sub> 1,000,000 <sub>d</sub> CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n/v                                                                                                                       | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      | μg/kg<br>μg/kg | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/v                                                                                                                       | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      |                | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11/V                                                                                                                      | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      | µg/kg          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11/V                                                                                                                      |              |              |                 |              |              |              |               |              |               |              |              |              |              |             |
|                                                                                                      | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500,000a <sup>E</sup> 1,000,000a <sup>F</sup> 435,000 <sup>G</sup>                                                        | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n/V                                                                                                                       | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F 122,000 <sup>G</sup>                                                      | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      | μg/kg          | 100,000a <sup>A</sup> 1,000,000d <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n/v                                                                                                                       | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n/v                                                                                                                       | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
| Chloro-3-methyl phenol, 4-                                                                           | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n/v                                                                                                                       | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
| Chloroaniline, 4-                                                                                    | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F 220 <sup>G</sup>                                                          | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
| Chloronaphthalene, 2-                                                                                | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n/v                                                                                                                       | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F                                                                           | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      | µg/kg          | 100,000 A 500,000 B 1,000,000 CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n/v                                                                                                                       | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      | µg/kg          | 1.000° pt 200,000° 1.000° pt 200,000° pt 2 | n/v                                                                                                                       | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
| -                                                                                                    |                | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                           | 180 U        |              | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        |               | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      | μg/kg          | 330 <sub>m</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 330 <sub>f</sub> <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n/v                                                                                                                       |              | 900 U        |                 |              |              |              |               |              | 210 U         |              |              |              |              |             |
|                                                                                                      | μg/kg          | 330 <sub>m</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 330 <sub>f</sub> <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n/v                                                                                                                       | 360 U        | 1,700 U      | 3,500 U         | 1,800 U      | 1,700 U      | 1,700 U      | 3,900 U       | 390 U        | 400 U         | 390 U        | 400 U        | 380 U        | 360 U        | 330 U       |
|                                                                                                      | μg/kg          | 330 <sub>m</sub> <sup>A</sup> 560 <sup>B</sup> 1,100 <sup>C</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n/v                                                                                                                       | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      | µg/kg          | 7,000 <sup>A</sup> 350,000 <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 210,000 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 500,000a <sup>E</sup> 1,000,000a <sup>F</sup> 6,200 <sup>G</sup>                                                          | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F 8,100 <sup>G</sup>                                                        | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
| Dichlorobenzidine, 3,3'-                                                                             | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n/v                                                                                                                       | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
| Dichlorophenol, 2,4-                                                                                 | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F 400 <sup>G</sup>                                                          | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
| Diethyl Phthalate                                                                                    | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 7,100 <sup>G</sup>                                  | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
| Dimethyl Phthalate                                                                                   | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500,000a <sup>E</sup> 1,000,000a <sup>F</sup> 27,000 <sup>G</sup>                                                         | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n/v                                                                                                                       | 180 U        | 900 U        | 1.800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n/v                                                                                                                       | 360 U        | 1,700 U      | 3,500 U         | 1,800 U      | 1,700 U      | 1,700 U      | 3,900 U       | 390 U        | 400 U         | 390 U        | 400 U        | 380 U        | 360 U        | 330 U       |
|                                                                                                      | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 200 <sup>G</sup>                                    | 360 U        | 1,700 U      | 3,500 U         | 1,800 U      | 1,700 U      | 1,700 U      | 3,900 U       | 390 U        | 400 U         | 390 U        | 400 U        | 380 U        | 360 U        | 330 U       |
|                                                                                                      | μg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/v                                                                                                                       | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      | μg/kg<br>μg/kg | 100,000 <sub>a</sub> A 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 1,000/170 <sub>b s1</sub> <sup>G</sup>              | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           | 180 U        |              | 1,800 U         | 900 U        | 890 U        | 870 U        |               | 200 U        |               | 200 U        |              | 200 U        | 180 U        | 170 U       |
|                                                                                                      | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 120,000 <sup>G</sup>                                |              | 900 U        |                 |              |              |              | 2,000 U       |              | 210 U         |              | 200 U        |              |              |             |
|                                                                                                      | μg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n/v                                                                                                                       | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      | μg/kg          | 30,000 <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 386,000 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n/v                                                                                                                       | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      | μg/kg          | 330 <sub>m</sub> <sup>A</sup> 6,000 <sup>B</sup> 12,000 <sup>C</sup> 3,200 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 1,400 <sup>G</sup>                                  | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      | µg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/v                                                                                                                       | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      | µg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F                                                                           | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n/v                                                                                                                       | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
| ndeno(1,2,3-cd)pyrene                                                                                | μg/kg          | 500 <sub>n</sub> A 5,600 <sup>B</sup> 11,000 <sup>C</sup> 8,200 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n/v                                                                                                                       | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500.000° 1.000.000° 4.400°                                                                                                | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      | µg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 500,000° 1,000,000° 36,400°                                                                                               | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      | μg/kg          | 12,000 <sup>AD</sup> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n/v                                                                                                                       | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
| '                                                                                                    | μg/kg<br>μg/kg | 100.000, A 500.000, B 1.000.000, CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 500,000° 1,000,000° 400°                                                                                                  | 360 U        | 1.700 U      | 3,500 U         | 1.800 U      | 1,700 U      | 1,700 U      | 3,900 U       | 390 U        | 400 U         | 390 U        | 400 U        | 380 U        | 360 U        | 330 U       |
| · · · · · · · · · · · · · · · · · · ·                                                                |                | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 500,000 <sub>a</sub> 1,000,000 <sub>a</sub> 400 <sup>c</sup> 500,000 <sub>a</sub> 1,000,000 <sub>a</sub> 500 <sup>G</sup> | 360 U        | 1,700 U      | 3,500 U         | 1,800 U      | 1,700 U      | 1,700 U      | 3,900 U       | 390 U        | 400 U         | 390 U        | 400 U        | 380 U        | 360 U        | 330 U       |
|                                                                                                      | µg/kg          | , "A ' "B ' "CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |              |              |                 |              |              |              |               |              |               |              |              | 1 111        | 11111        |             |
| itroaniline, 4-                                                                                      | µg/kg          | 100,000 <sub>a</sub> ^ 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CB</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n/v                                                                                                                       | 360 U        | 1,700 U      | 3,500 U         | 1,800 U      | 1,700 U      | 1,700 U      | 3,900 U       | 390 U        | 400 U         | 390 U        | 400 U        | 380 U        | 360 U        | 330 U       |
|                                                                                                      | μg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 69,000 <sup>E</sup> 140,000 <sup>F</sup> 170 <sub>b</sub> <sup>G</sup>                                                    | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 300 <sup>G</sup>                                    | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      | μg/kg          | 100,000 <sub>a</sub> , 500,000 <sub>c</sub> , 1,000,000 <sub>d</sub> , CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 100 <sup>G</sup>                                    | 360 U        | 1,700 U      | 3,500 U         | 1,800 U      | 1,700 U      | 1,700 U      | 3,900 U       | 390 U        | 400 U         | 390 U        | 400 U        | 380 U        | 360 U        | 330 U       |
| -Nitrosodi-n-Propylamine                                                                             | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n/v                                                                                                                       | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F                                                                           | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      | µg/kg          | 800 <sub>m</sub> <sup>A</sup> 6.700 <sup>B</sup> 55.000 <sup>C</sup> 800 <sub>f</sub> <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n/v                                                                                                                       | 360 U        | 1,700 U      | 3,500 U         | 1,800 U      | 1,700 U      | 1,700 U      | 3,900 U       | 390 U        | 400 U         | 390 U        | 400 U        | 380 U        | 360 U        | 330 U       |
|                                                                                                      | μg/kg          | 100,000 <sup>A</sup> 500,000 <sub>6</sub> 1,000,000 <sub>d</sub> CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/v                                                                                                                       | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      | μg/kg<br>μg/kg | 330 <sub>m</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 330 <sub>f</sub> <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n/v                                                                                                                       | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |              |              |                 |              |              |              |               |              |               |              |              |              |              |             |
|                                                                                                      | μg/kg          | 100,000 <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n/v                                                                                                                       | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
|                                                                                                      | μg/kg          | 100,000 <sub>8</sub> 500,000 <sub>6</sub> 1,000,000 <sub>d</sub> CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 500,000a <sup>E</sup> 1,000,000a <sup>F</sup> 100 <sup>G</sup>                                                            | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
| Trichlorophenol, 2,4,5-                                                                              |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |              |              |                 |              |              |              |               |              |               |              |              |              |              |             |
| richlorophenol, 2,4,5-<br>richlorophenol, 2,4,6-                                                     | µg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500,000 <sub>a</sub> 1,000,000 <sub>a</sub> F                                                                             | 180 U        | 900 U        | 1,800 U         | 900 U        | 890 U        | 870 U        | 2,000 U       | 200 U        | 210 U         | 200 U        | 200 U        | 200 U        | 180 U        | 170 U       |
| richlorophenol, 2,4,5-<br>richlorophenol, 2,4,6-<br>otal SVOC                                        |                | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F<br>n/v                                                                    | 180 U<br>ND  | 900 U<br>ND  | 1,800 U<br>ND   | 900 U<br>ND  | 890 U<br>ND  | 870 U<br>ND  | 2,000 U<br>ND | 200 U<br>ND  | 210 U<br>ND   | 200 U<br>ND  | 200 U<br>ND  | 200 U<br>ND  | 180 U<br>ND  | 170 U<br>ND |
| chlorophenol, 2,4,5-<br>chlorophenol, 2,4,6-<br>tal SVOC                                             | µg/kg          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |              |              |                 |              |              |              |               |              |               |              |              |              |              |             |
| ichlorophenol, 2.4.5-<br>ichlorophenol, 2.4.6-<br>tal SVOC<br>VOC - Tentatively Identified Compounds | µg/kg          | n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                           |              |              |                 |              |              |              |               |              |               |              |              |              |              |             |

See notes on last page.



190500898 Page 2 of 18  $\label{lem:u:light} \begin{tabular}{ll} U:\line 190500898\line 1905008\line 1905008\li$ 

820 Linden Avenue, Pittsford, NY

| The second control of  | Sample Location Sample Date Sample DB Sample DB Sample DPth Sampling Company Laboratory Laboratory Work Order Laboratory Sample ID Sample Type  Volatile Organic Compounds | Units                                         | NYSDEC-Part 375                                                                                          | NYSDEC CP-51                                                                              | B-1<br>20-Jun-16<br>B-1<br>4 - 5 ft<br>STANTEC<br>TAL<br>480-102053-1<br>480-102053-1 | 20-Jun-16<br>B-2<br>4 - 5 ft<br>STANTEC<br>TAL<br>480-102053-1<br>480-102053-2 | 20-Jun-16<br>DUP-01<br>4 - 5 ft<br>STANTEC<br>TAL<br>480-102053-1<br>480-102053-7<br>Field Duplicate | B-3<br>20-Jun-16<br>B-3<br>4 - 5 ft<br>STANTEC<br>TAL<br>480-102053-1<br>480-102053-3 | B-4<br>20-Jun-16<br>B-4<br>4 - 5 ft<br>STANTEC<br>TAL<br>480-102053-1<br>480-102053-4 | B-5<br>20-Jun-16<br>B-5<br>4 - 5 ft<br>STANTEC<br>TAL<br>480-102053-1<br>480-102053-5 | B-6<br>21-Jun-16<br>B-6<br>4 - 5 ft<br>STANTEC<br>TAL<br>480-102053-1<br>480-102053-6 | B-7<br>21-Jun-16<br>B-7<br>4 - 5 ft<br>STANTEC<br>TAL<br>480-102053-1<br>480-102053-8 | E 24-Jun-16 B-8 (3.5-4.5) 3.5 - 4.5 ft STANTEC TAL 480-102302-1 480-102302-1 | 3-8<br>24-Jun-16<br>B-8 (60-61)<br>60 - 61 ft<br>STANTEC<br>TAL<br>480-102302-1<br>480-102302-2 | B-9 (23-24)<br>23 - 24 ft<br>STANTEC<br>TAL<br>480-102302-1<br>480-102382-1 | 29-Jun-16<br>B-9 (85-86)<br>85 - 86 ft<br>STANTEC<br>TAL<br>480-102302-1<br>480-102510-1 | B-10<br>5-Jul-16<br>B-10 (3-4)<br>3 - 4 ft<br>STANTEC<br>TAL<br>480-102705-1<br>480-102705-1 | B-11<br>5-Jul-16<br>B-11 (8-9)<br>8 - 9 ft<br>STANTEC<br>TAL<br>480-102705-1<br>480-102705-2 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| The second control of the control of | Acetone                                                                                                                                                                    | ua/ka                                         | 50 <sup>AD</sup> 500,000 <sub>-</sub> B 1,000,000 <sub>4</sub> C                                         | n/v                                                                                       | 27 U                                                                                  | 26 U                                                                           | 26 U                                                                                                 | 26 U                                                                                  | 26 U                                                                                  | 26 U                                                                                  | 29 U                                                                                  | 30 U                                                                                  | 30 U                                                                         | 30 U                                                                                            | 30 U                                                                        | 28 U                                                                                     | 98 <sup>AD</sup>                                                                             | 25 U                                                                                         |
| The second content of  | Benzene                                                                                                                                                                    |                                               |                                                                                                          |                                                                                           |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U                                                                                        |
| The second control of  | Bromodichloromethane                                                                                                                                                       |                                               |                                                                                                          |                                                                                           |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U                                                                                        |
| Manual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Bromoform (Tribromomethane)                                                                                                                                                | μg/kg                                         |                                                                                                          |                                                                                           |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U                                                                                        |
| Secure Conf.   Proc.   | romomethane (Methyl bromide)                                                                                                                                               |                                               |                                                                                                          |                                                                                           |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U                                                                                        |
| Marchan, San   Part     |                                                                                                                                                                            |                                               |                                                                                                          |                                                                                           |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U<br>5.0 U                                                                               |
| we should be compared to the compared of the compared to the c |                                                                                                                                                                            |                                               |                                                                                                          |                                                                                           |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U                                                                                        |
| The Property of the Property o |                                                                                                                                                                            |                                               |                                                                                                          | _ ''''                                                                                    |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U                                                                                        |
| Proceedings   Procedings   Proceedings   Procedings   Proceedings   Pr   |                                                                                                                                                                            |                                               |                                                                                                          |                                                                                           |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U                                                                                        |
| with members of the property o | hlorobenzene (Monochlorobenzene)                                                                                                                                           | μg/kg                                         | 1,100 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                |                                                                                           |                                                                                       | 5.3 U                                                                          | 5.3 U                                                                                                | 5.3 U                                                                                 | 5.2 U                                                                                 | 5.2 U                                                                                 | 5.7 U                                                                                 |                                                                                       |                                                                              | 5.9 U                                                                                           | 6.0 U                                                                       | 5.5 U                                                                                    |                                                                                              | 5.0 U                                                                                        |
| Secondary   Seco   | nloroethane (Ethyl Chloride)                                                                                                                                               |                                               |                                                                                                          |                                                                                           |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U                                                                                        |
| Section   Sect   |                                                                                                                                                                            |                                               |                                                                                                          | ****                                                                                      |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U<br>5.0 U                                                                               |
| men-Schereperes 12- (2000) men-Schereperes 12- ( | nioromethane<br>vclohexane                                                                                                                                                 |                                               |                                                                                                          |                                                                                           |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U                                                                                        |
| Second   S   | ,                                                                                                                                                                          |                                               |                                                                                                          |                                                                                           |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U                                                                                        |
| Section Company   Compan   | ibromochloromethane                                                                                                                                                        |                                               |                                                                                                          | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F                                           | 5.4 U                                                                                 |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U                                                                                        |
| Section of the component   C   | ichlorobenzene, 1,2-                                                                                                                                                       | μg/kg                                         | 1,100 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                | n/v                                                                                       |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ichlorobenzene, 1,3-                                                                                                                                                       |                                               |                                                                                                          |                                                                                           |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U                                                                                        |
| Secondary   1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                            |                                               |                                                                                                          |                                                                                           |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U                                                                                        |
| Secondary   Seco   |                                                                                                                                                                            |                                               |                                                                                                          |                                                                                           |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U<br>5.0 U                                                                               |
| Secondary   Seco   |                                                                                                                                                                            |                                               |                                                                                                          | T                                                                                         |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U                                                                                        |
| Secure   S   | chloroethene, 1,1-                                                                                                                                                         |                                               |                                                                                                          |                                                                                           |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U                                                                                        |
| Interpretation   1.2   Implies   1.2   Impli   | ichloroethene, cis-1,2-                                                                                                                                                    |                                               | 250 <sup>AD</sup> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 2                                          | n/v                                                                                       |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ichloroethene, trans-1,2-                                                                                                                                                  |                                               |                                                                                                          | 200                                                                                       |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ichloropropane, 1,2-                                                                                                                                                       |                                               |                                                                                                          |                                                                                           |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U<br>5.0 U                                                                               |
| Internation      |                                                                                                                                                                            |                                               |                                                                                                          | ****                                                                                      |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | thylbenzene                                                                                                                                                                |                                               |                                                                                                          | T                                                                                         |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U                                                                                        |
| resplicatione (PC)/memen   sights   10,0000_2^2 500.000_1^2,100.00.000_2^2   54 U 53 U 53 U 53 U 52 U 52 U 57 U 60 U 59 U 59 U 60 U 55 U 54 U 19 V 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | thylene Dibromide (Dibromoethane, 1,2-)                                                                                                                                    |                                               | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup> | n/v                                                                                       | 5.4 U                                                                                 |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       | 5.7 U                                                                                 | 6.0 U                                                                                 |                                                                              | 5.9 U                                                                                           | 6.0 U                                                                       |                                                                                          |                                                                                              | 5.0 U                                                                                        |
| Compression   Compress   Compre   | exanone, 2- (Methyl Butyl Ketone)                                                                                                                                          |                                               |                                                                                                          | n/v                                                                                       |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 25 U                                                                                         |
| pysic   public   pu   | opropylbenzene                                                                                                                                                             |                                               |                                                                                                          |                                                                                           |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U                                                                                        |
| Pigfflag   120 <sup>rd</sup> 500,0000,000,000,000,000,000,000,000,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                            |                                               |                                                                                                          | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 10,000 <sup>G</sup> |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U                                                                                        |
| 100,000_\$00,000_\$00_\$000_\$00_\$000_\$00_\$00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                            |                                               |                                                                                                          | F00 000 E 1 000 000 F 200G                                                                |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U<br>25 U                                                                                |
| Might   Migh   |                                                                                                                                                                            |                                               |                                                                                                          |                                                                                           |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 25 U                                                                                         |
| Nymich Chloride (Dichibromethane)   Nymich Chloride (Dichibromet   | ethyl tert-butyl ether (MTBE)                                                                                                                                              |                                               |                                                                                                          | n/v                                                                                       |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U                                                                                        |
| hitalene hit | ethylcyclohexane                                                                                                                                                           |                                               |                                                                                                          | n/v                                                                                       | 5.4 U                                                                                 | 5.3 U                                                                          | 5.3 U                                                                                                | 5.3 U                                                                                 | 5.2 U                                                                                 | 5.2 U                                                                                 | 5.7 U                                                                                 | 6.0 U                                                                                 | 5.9 U                                                                        | 5.9 U                                                                                           | 6.0 U                                                                       | 5.5 U                                                                                    | 5.4 U                                                                                        | 5.0 U                                                                                        |
| pyleperage, p. pylep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ethylene Chloride (Dichloromethane)                                                                                                                                        |                                               |                                                                                                          | T                                                                                         |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U                                                                                        |
| ene   µg/kg   100,000,\squares   500,000_\squares   | aphthalene                                                                                                                                                                 |                                               |                                                                                                          | n/v                                                                                       |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U                                                                                        |
| achiorethane, 1,1,2,2-    up/kg   100,000_*000,000_000_000_000_000_000_000_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ropylbenzene, n-<br>lyrene                                                                                                                                                 |                                               |                                                                                                          | 500 000 E 1 000 000 F                                                                     |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U<br>5.0 U                                                                               |
| achiorestheria (PCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                            |                                               |                                                                                                          |                                                                                           |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U                                                                                        |
| lene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | trachloroethene (PCE)                                                                                                                                                      |                                               | 1,300 <sup>AD</sup> 150,000 <sup>B</sup> 300,000 <sup>C</sup>                                            |                                                                                           | 5.4 U                                                                                 | 5.3 U                                                                          | 5.3 U                                                                                                | 5.3 U                                                                                 | 5.2 U                                                                                 | 5.2 U                                                                                 | 5.7 U                                                                                 | 6.0 U                                                                                 | 5.9 U                                                                        | 5.9 U                                                                                           | 6.0 U                                                                       | 5.5 U                                                                                    | 5.4 U                                                                                        | 5.0 U                                                                                        |
| National Professional Control  | oluene                                                                                                                                                                     | μg/kg                                         | 700 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                  | n/v                                                                                       | 0.10                                                                                  | 5.3 U                                                                          | 5.3 U                                                                                                | 5.3 U                                                                                 | 5.2 U                                                                                 | 5.2 U                                                                                 |                                                                                       | 6.0 U                                                                                 |                                                                              | 5.9 U                                                                                           | 6.0 U                                                                       | 5.5 U                                                                                    |                                                                                              | 5.0 U                                                                                        |
| historethane, 1,1,2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | chlorobenzene, 1,2,4-                                                                                                                                                      |                                               | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup> |                                                                                           |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U                                                                                        |
| hloroethene (TCE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                            |                                               |                                                                                                          | ****                                                                                      |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U                                                                                        |
| hlorofluromethane (Freon 11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                            |                                               |                                                                                                          |                                                                                           |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U<br>5.0 U                                                                               |
| hidrotrifluoroethane (Freon 113)   µg/kg   100,000,\(^{\hat{1}}_{\hat{0}}\), 000,\(^{\hat{0}}_{\hat{0}}\), 000,\(^{\hat{0}}_{\ | ichlorofluoromethane (Freon 11)                                                                                                                                            |                                               |                                                                                                          | n/v                                                                                       |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U                                                                                        |
| hethylbenzene, 1,2,4- hethylbenzene, 1,3,5-  | ichlorotrifluoroethane (Freon 113)                                                                                                                                         |                                               |                                                                                                          | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 6,000 <sup>G</sup>  |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U                                                                                        |
| # Chloride # pg/kg   20\(^{\Delta}\) 1000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | imethylbenzene, 1,2,4-                                                                                                                                                     | μg/kg                                         | 3,600 <sup>AD</sup> 190,000 <sup>B</sup> 380,000 <sup>C</sup>                                            | n/v                                                                                       |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U                                                                                        |
| ne, m & p-   pg/kg   260, 500,000, g   1,000,000, g   1,600, 0     pg/kg   260, 500,000, g   1,000,000, g   1,600, 0     pg/kg   260, 500,000, g   1,000,000, g   1,000,000 | rimethylbenzene, 1,3,5-                                                                                                                                                    |                                               |                                                                                                          |                                                                                           |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U                                                                                        |
| ne, o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | inyl Chloride                                                                                                                                                              |                                               |                                                                                                          |                                                                                           |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 UJ                                                                                       |
| nes, Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                            |                                               |                                                                                                          | T                                                                                         |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 10 U<br>5.0 U                                                                                |
| ni VOC µg/kg n/v n/v ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ylene, o-<br>ylenes, Total                                                                                                                                                 |                                               |                                                                                                          |                                                                                           |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | 5.0 U                                                                                        |
| C - Tentatively Identified Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | otal VOC                                                                                                                                                                   |                                               |                                                                                                          |                                                                                           |                                                                                       |                                                                                |                                                                                                      |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                                       |                                                                              |                                                                                                 |                                                                             |                                                                                          |                                                                                              | ND                                                                                           |
| · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                            | , , <u>, , , , , , , , , , , , , , , , , </u> | •                                                                                                        |                                                                                           |                                                                                       | •                                                                              |                                                                                                      | ·                                                                                     | •                                                                                     |                                                                                       | U                                                                                     | •                                                                                     | U                                                                            |                                                                                                 | ·                                                                           |                                                                                          |                                                                                              |                                                                                              |
| 4VOCTICS   140/kg   n/v   n/v   n/v   -   -   -   -   -   -   -   -   622   36   -   -   -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | al VOC TICs                                                                                                                                                                | μg/kg                                         | n/v                                                                                                      | n/v                                                                                       | _                                                                                     | -                                                                              | -                                                                                                    | _                                                                                     | -                                                                                     | _                                                                                     | -                                                                                     | -                                                                                     | 62.2                                                                         | 36                                                                                              | -                                                                           | -                                                                                        | -                                                                                            | _                                                                                            |

See notes on last page.



190500898 Page 3 of 18  $\label{lem:u:light} \begin{tabular}{ll} U:\line 190500898\line 1905008\line 1905008\li$ 

## Table 1 Summary of Analytical Results for RI Soil Samples IRM Work Plan #2

IRM Work Plan #2 820 Linden Ave Site, BCP #C828200 820 Linden Avenue, Pittsford, NY

| Sample Location Sample Date Sample ID Sample Depth Sampling Company Laboratory Laboratory Work Order Laboratory Sample ID Sample Type | Units          | NYSDEC-Part 375                                                                                                                                                                      | NYSDEC CP-51                                                                               | B-12-Jan-17<br>LIN-B11D-S1<br>28 - 29 ft<br>STANTEC<br>TAL<br>480-112267-1 | 1D 12-Jan-17<br>LIN-B11D-S2<br>60 - 60.5 ft<br>STANTEC<br>TAL<br>480-112267-1<br>480-112267-7 | B-12<br>5-Jul-16<br>B-12 (8-9)<br>8 - 9 ft<br>STANTEC<br>TAL<br>480-102705-1<br>480-102705-3 | 11-Jan-17<br>LIN-B12D-S1<br>28 - 28.5 ft<br>STANTEC<br>TAL<br>480-112267-1<br>480-112267-8 | B-1<br>11-Jan-17<br>LIN-B12D-S2<br>40.5 - 41.5 ft<br>STANTEC<br>TAL<br>480-112267-1<br>480-112267-9 | 2D<br>11-Jan-17<br>LIN-B12D-S3<br>58 - 58.5 ft<br>STANTEC<br>TAL<br>480-112267-1<br>480-112267-10 | 11-Jan-17<br>LIN-DUP-S<br>58 - 58.5 ft<br>STANTEC<br>TAL<br>480-112267-1<br>480-112267-11<br>Field Duplicate | 5-Jul-16<br>B-13 (2-3)<br>2 - 3 ft<br>STANTEC<br>TAL<br>480-102705-1<br>480-102705-4 | -13<br>5-Jul-16<br>B-13 (7-8)<br>7 - 8 ft<br>STANTEC<br>TAL<br>480-102705-1<br>480-102705-5 | B-<br>12-Jan-17<br>LIN-B13D-S1<br>48 - 48.5 ft<br>STANTEC<br>TAL<br>480-112267-1<br>480-112267-12 | 13D<br>12-Jan-17<br>LIN-B13D-S2<br>54.5 - 55.5 ft<br>STANTEC<br>TAL<br>480-112267-1<br>480-112267-1 | 13-Sep-16<br>B-10 (3-4)<br>3 - 4 ft<br>STANTEC<br>TAL<br>480-106008-1<br>480-106008-1 | B-14 (MW-5)<br>13-Sep-16<br>DUP0916<br>3 - 4 ft<br>STANTEC<br>TAL<br>480-106008-1<br>480-106008-3<br>Field Duplicate | 14-Sep-16<br>B-10 (62-63)<br>62 - 63 ft<br>STANTEC<br>TAL<br>480-106008-1<br>480-106008-2 |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| General Chemistry                                                                                                                     | <u> </u>       |                                                                                                                                                                                      |                                                                                            | •                                                                          |                                                                                               |                                                                                              |                                                                                            |                                                                                                     |                                                                                                   |                                                                                                              |                                                                                      |                                                                                             |                                                                                                   |                                                                                                     |                                                                                       |                                                                                                                      | -                                                                                         |
| Cyanide                                                                                                                               | mg/kg          | 27 <sub>i</sub> <sup>AB</sup> 10,000 <sub>e</sub> <sup>C</sup> 40 <sub>i</sub> <sup>D</sup>                                                                                          | n/v                                                                                        | -                                                                          | -                                                                                             | 0.93 U                                                                                       | -                                                                                          | -                                                                                                   | -                                                                                                 | -                                                                                                            | 0.99 U                                                                               | 0.98 U                                                                                      | -                                                                                                 | -                                                                                                   | -                                                                                     | -                                                                                                                    | -                                                                                         |
| Metals                                                                                                                                |                | 1000                                                                                                                                                                                 |                                                                                            |                                                                            |                                                                                               | 1                                                                                            | 1                                                                                          |                                                                                                     |                                                                                                   |                                                                                                              |                                                                                      |                                                                                             | 7                                                                                                 |                                                                                                     | 7                                                                                     |                                                                                                                      |                                                                                           |
| Aluminum                                                                                                                              | mg/kg          | 10,000 <sub>e</sub> ABCD                                                                                                                                                             | 10,000 <sub>a</sub> EFG                                                                    | -                                                                          | -                                                                                             | 3,610                                                                                        | -                                                                                          | -                                                                                                   | -                                                                                                 | -                                                                                                            | 5,320                                                                                | 4,720                                                                                       | -                                                                                                 | -                                                                                                   | -                                                                                     | -                                                                                                                    | -                                                                                         |
| Antimony<br>Arsenic                                                                                                                   | mg/kg          | 10,000 <sub>e</sub> ABCD<br>13 <sub>a</sub> A 16 <sub>a</sub> BCD                                                                                                                    | 10,000 <sub>a</sub> EFG                                                                    | -                                                                          | -                                                                                             | 15.1 U<br>2.0 U                                                                              | -                                                                                          | -                                                                                                   | -                                                                                                 | -                                                                                                            | 16.8 U<br>2.2 U                                                                      | 16.5 U<br>2.2 U                                                                             | -                                                                                                 | -                                                                                                   | -                                                                                     | -                                                                                                                    | -                                                                                         |
| Barium                                                                                                                                | mg/kg<br>mg/kg | 350 <sub>n</sub> <sup>A</sup> 400 <sup>B</sup> 10,000 <sub>e</sub> <sup>C</sup> 820 <sup>D</sup>                                                                                     | n/v<br>n/v                                                                                 | _                                                                          | _                                                                                             | 11.2                                                                                         | _                                                                                          | _                                                                                                   |                                                                                                   | -                                                                                                            | 37.9                                                                                 | 34.1                                                                                        | _                                                                                                 | _                                                                                                   | _                                                                                     | _                                                                                                                    | 1 [                                                                                       |
| Beryllium                                                                                                                             | mg/kg          | 7.2 <sup>A</sup> 590 <sup>B</sup> 2,700 <sup>C</sup> 47 <sup>D</sup>                                                                                                                 | n/v                                                                                        | -                                                                          | -                                                                                             | 0.20 U                                                                                       | -                                                                                          | -                                                                                                   | _                                                                                                 | _                                                                                                            | 0.24                                                                                 | 0.22                                                                                        | -                                                                                                 | _                                                                                                   | -                                                                                     | _                                                                                                                    | 1 -                                                                                       |
| Cadmium                                                                                                                               | mg/kg          | 2.5 <sub>n</sub> <sup>A</sup> 9.3 <sup>B</sup> 60 <sup>C</sup> 7.5 <sup>D</sup>                                                                                                      | n/v                                                                                        | -                                                                          | -                                                                                             | 0.20 U                                                                                       | -                                                                                          | -                                                                                                   | -                                                                                                 | -                                                                                                            | 0.22 U                                                                               | 0.22 U                                                                                      | -                                                                                                 | -                                                                                                   | -                                                                                     | -                                                                                                                    | -                                                                                         |
| Calcium                                                                                                                               | mg/kg          | 10,000 <sub>e</sub> <sup>ABCD</sup>                                                                                                                                                  | 10,000 <sub>a</sub> <sup>EFG</sup>                                                         | -                                                                          | -                                                                                             | 1,910                                                                                        | -                                                                                          | -                                                                                                   | -                                                                                                 | -                                                                                                            | 84,300 <sup>ABCDEFG</sup>                                                            | 101,000 <sup>ABCDEFG</sup>                                                                  | -                                                                                                 | -                                                                                                   | -                                                                                     | -                                                                                                                    | -                                                                                         |
| Chromium                                                                                                                              | mg/kg          | 30 <sub>n.1</sub> <sup>A</sup> 1,500 <sub>i</sub> <sup>B</sup> 6,800 <sub>i</sub> <sup>C</sup> <sub>NS.a</sub> <sup>D</sup>                                                          | n/v                                                                                        | -                                                                          | -                                                                                             | 6.9                                                                                          | -                                                                                          | -                                                                                                   | -                                                                                                 | -                                                                                                            | 6.9                                                                                  | 6.8                                                                                         | -                                                                                                 | -                                                                                                   | -                                                                                     | -                                                                                                                    | -                                                                                         |
| Cobalt                                                                                                                                | mg/kg          | 10,000 <sub>e</sub> ABCD                                                                                                                                                             | 10,000 <sub>a</sub> EFG                                                                    | -                                                                          | -                                                                                             | 2.1                                                                                          | -                                                                                          | -                                                                                                   | -                                                                                                 | -                                                                                                            | 2.3                                                                                  | 2.2                                                                                         | -                                                                                                 | -                                                                                                   | -                                                                                     | -                                                                                                                    | 1 -                                                                                       |
| Copper                                                                                                                                | mg/kg          | 50 <sup>A</sup> 270 <sup>B</sup> 10,000 <sub>e</sub> <sup>C</sup> 1,720 <sup>D</sup>                                                                                                 | n/v                                                                                        | -                                                                          | -                                                                                             | 3.6                                                                                          | -                                                                                          | -                                                                                                   | -                                                                                                 | -                                                                                                            | 7.2                                                                                  | 10.5<br>6,670                                                                               | -                                                                                                 | -                                                                                                   | -                                                                                     | -                                                                                                                    | i -                                                                                       |
| Iron<br>Lead                                                                                                                          | mg/kg          | 10,000 <sub>e</sub> ABCD                                                                                                                                                             | 10,000 <sub>a</sub> EFG                                                                    | 1 -                                                                        | -                                                                                             | 7,350<br>1.4                                                                                 | -                                                                                          | -                                                                                                   | -                                                                                                 | -                                                                                                            | 7,020<br>10.7                                                                        | 13.1                                                                                        | -                                                                                                 | -                                                                                                   | -                                                                                     | -                                                                                                                    | 1                                                                                         |
| Lead<br>Magnesium                                                                                                                     | mg/kg          | 63 <sub>n</sub> <sup>A</sup> 1,000 <sup>B</sup> 3,900 <sup>C</sup> 450 <sup>D</sup>                                                                                                  | n/v<br>n/v                                                                                 | 1 -                                                                        | -                                                                                             | 1.4<br>1.140                                                                                 | -                                                                                          | -                                                                                                   | -                                                                                                 | -                                                                                                            |                                                                                      |                                                                                             | -                                                                                                 | -                                                                                                   | -                                                                                     | -                                                                                                                    | 1                                                                                         |
| Manganese                                                                                                                             | mg/kg<br>mg/kg | 10,000 <sub>e</sub> ABCD<br>1,600 <sub>n</sub> A 10,000 <sub>e</sub> BC 2,000 <sub>n</sub> D                                                                                         | n/v<br>n/v                                                                                 |                                                                            | -                                                                                             | 1,140                                                                                        | -                                                                                          | -                                                                                                   | -                                                                                                 | -                                                                                                            | 28,600 <sup>ABCD</sup><br>271                                                        | <b>39,200<sup>ABCD</sup></b> 302                                                            | -                                                                                                 | _                                                                                                   | _                                                                                     | -                                                                                                                    |                                                                                           |
| Mercury                                                                                                                               | mg/kg          | 0.18 <sub>n</sub> A 2.8 <sub>k</sub> B 5.7 <sub>k</sub> C 0.73 <sup>D</sup>                                                                                                          | n/v                                                                                        | -                                                                          | -                                                                                             | 0.018 U                                                                                      | -                                                                                          | -                                                                                                   | -                                                                                                 | _                                                                                                            | 0.021 U                                                                              | 0.020 U                                                                                     | -                                                                                                 | _                                                                                                   | -                                                                                     |                                                                                                                      | 1 - 1                                                                                     |
| Nickel                                                                                                                                | mg/kg          | 30 <sup>A</sup> 310 <sup>B</sup> 10.000 <sub>0</sub> <sup>C</sup> 130 <sup>D</sup>                                                                                                   | n/v                                                                                        | -                                                                          | -                                                                                             | 5.0 U                                                                                        | -                                                                                          | _                                                                                                   | _                                                                                                 | -                                                                                                            | 5.6 U                                                                                | 5.7                                                                                         | -                                                                                                 | _                                                                                                   | -                                                                                     | _                                                                                                                    | -                                                                                         |
| Potassium                                                                                                                             | mg/kg          | 10,000 <sub>e</sub> ABCD                                                                                                                                                             | n/v                                                                                        | -                                                                          | -                                                                                             | 694                                                                                          | -                                                                                          | -                                                                                                   | -                                                                                                 | -                                                                                                            | 1,230                                                                                | 1,100                                                                                       | -                                                                                                 | -                                                                                                   | -                                                                                     | -                                                                                                                    | -                                                                                         |
| Selenium                                                                                                                              | mg/kg          | 3.9 <sub>n</sub> <sup>A</sup> 1,500 <sup>B</sup> 6,800 <sup>C</sup> 4 <sub>a</sub> <sup>D</sup>                                                                                      | n/v                                                                                        | -                                                                          | -                                                                                             | 4.0 U                                                                                        | -                                                                                          | -                                                                                                   | -                                                                                                 | -                                                                                                            | 4.5 U                                                                                | 4.4 U                                                                                       | -                                                                                                 | -                                                                                                   | -                                                                                     | -                                                                                                                    | -                                                                                         |
| Silver<br>Sodium                                                                                                                      | mg/kg<br>mg/kg | 2 <sup>A</sup> 1,500 <sup>B</sup> 6,800 <sup>C</sup> 8.3 <sup>D</sup><br>10,000 <sub>e</sub> ABCD                                                                                    | n/v<br>n/v                                                                                 | -                                                                          | -                                                                                             | 0.50 U<br>141 U                                                                              | -                                                                                          | -                                                                                                   | -                                                                                                 | -                                                                                                            | 0.56 U<br>270                                                                        | 0.55 U<br>238                                                                               | -                                                                                                 | -                                                                                                   | -                                                                                     | -                                                                                                                    | 1 -                                                                                       |
| Thallium                                                                                                                              | mg/kg          | 10.000 ABCD                                                                                                                                                                          | 10,000 <sub>a</sub>                                                                        | -                                                                          | -                                                                                             | 6.0 U                                                                                        | -                                                                                          | -                                                                                                   | _                                                                                                 | -                                                                                                            | 6.7 U                                                                                | 6.6 U                                                                                       | -                                                                                                 | -                                                                                                   |                                                                                       | _                                                                                                                    | 1                                                                                         |
| Vanadium                                                                                                                              | mg/kg          | 10,000 <sub>e</sub> ABCD                                                                                                                                                             | 10,000a<br>10,000a <sup>EFG</sup>                                                          | _                                                                          | -                                                                                             | 13.0                                                                                         | _                                                                                          | _                                                                                                   | _                                                                                                 | _                                                                                                            | 10.4                                                                                 | 8.6                                                                                         | _                                                                                                 | _                                                                                                   | _                                                                                     | _                                                                                                                    | 1                                                                                         |
| Zinc                                                                                                                                  | mg/kg          | 109 <sub>n</sub> <sup>A</sup> 10,000 <sub>e</sub> <sup>BC</sup> 2,480 <sup>D</sup>                                                                                                   | n/v                                                                                        | -                                                                          | -                                                                                             | 10.7                                                                                         | -                                                                                          | -                                                                                                   | _                                                                                                 | -                                                                                                            | 37.7                                                                                 | 37.2                                                                                        | -                                                                                                 | _                                                                                                   | -                                                                                     | _                                                                                                                    | -                                                                                         |
| Polychlorinated Biphenyls                                                                                                             |                |                                                                                                                                                                                      |                                                                                            |                                                                            |                                                                                               | •                                                                                            |                                                                                            |                                                                                                     |                                                                                                   | •                                                                                                            | •                                                                                    |                                                                                             | •                                                                                                 |                                                                                                     | •                                                                                     |                                                                                                                      |                                                                                           |
| Aroclor 1016                                                                                                                          | μg/kg          | ABCD                                                                                                                                                                                 | n/v                                                                                        | -                                                                          | -                                                                                             | 220 U                                                                                        | -                                                                                          | -                                                                                                   | -                                                                                                 | -                                                                                                            | 230 U                                                                                | 260 U                                                                                       | -                                                                                                 | -                                                                                                   | -                                                                                     | -                                                                                                                    | -                                                                                         |
| Aroclor 1221                                                                                                                          | μg/kg          | ABCD ABCD                                                                                                                                                                            | n/v                                                                                        | -                                                                          | -                                                                                             | 220 U                                                                                        | -                                                                                          | -                                                                                                   | -                                                                                                 | -                                                                                                            | 230 U                                                                                | 260 U                                                                                       | -                                                                                                 | -                                                                                                   | -                                                                                     | -                                                                                                                    | -                                                                                         |
| Aroclor 1232                                                                                                                          | μg/kg          | ABCD<br>ABCD                                                                                                                                                                         | n/v                                                                                        | -                                                                          | -                                                                                             | 220 U                                                                                        | -                                                                                          | -                                                                                                   | -                                                                                                 | -                                                                                                            | 230 U                                                                                | 260 U                                                                                       | -                                                                                                 | -                                                                                                   | -                                                                                     | -                                                                                                                    | -                                                                                         |
| Aroclor 1242<br>Aroclor 1248                                                                                                          | μg/kg<br>μg/kg | ABCD                                                                                                                                                                                 | n/v<br>n/v                                                                                 | -                                                                          | -                                                                                             | 220 U<br>220 U                                                                               | -                                                                                          | -                                                                                                   | -                                                                                                 | -                                                                                                            | 230 U<br>230 U                                                                       | 260 U<br>260 U                                                                              | -                                                                                                 | -                                                                                                   | -                                                                                     | -                                                                                                                    | 1 - 1                                                                                     |
| Aroclor 1246<br>Aroclor 1254                                                                                                          | μg/kg          | ABCD                                                                                                                                                                                 | n/v                                                                                        |                                                                            | -                                                                                             | 220 U                                                                                        | -                                                                                          | -                                                                                                   |                                                                                                   | _                                                                                                            | 230 U                                                                                | 260 U                                                                                       | -                                                                                                 | _                                                                                                   |                                                                                       | _                                                                                                                    | 1 - 1                                                                                     |
| Aroclor 1260                                                                                                                          | μg/kg          | ABCD                                                                                                                                                                                 | n/v                                                                                        | -                                                                          | _                                                                                             | 220 U                                                                                        | -                                                                                          | _                                                                                                   | _                                                                                                 | _                                                                                                            | 230 U                                                                                | 260 U                                                                                       | -                                                                                                 | _                                                                                                   | -                                                                                     | _                                                                                                                    | -                                                                                         |
| Aroclor 1262                                                                                                                          | μg/kg          | ABCD                                                                                                                                                                                 | n/v                                                                                        | -                                                                          | -                                                                                             | 220 U                                                                                        | -                                                                                          | -                                                                                                   | -                                                                                                 | -                                                                                                            | 230 U                                                                                | 260 U                                                                                       | -                                                                                                 | -                                                                                                   | -                                                                                     | -                                                                                                                    | -                                                                                         |
| Aroclor 1268                                                                                                                          | μg/kg          | ABCD                                                                                                                                                                                 | n/v                                                                                        | -                                                                          | -                                                                                             | 220 U                                                                                        | -                                                                                          | -                                                                                                   | -                                                                                                 | -                                                                                                            | 230 U                                                                                | 260 U                                                                                       | -                                                                                                 | -                                                                                                   | -                                                                                     | -                                                                                                                    | -                                                                                         |
| Polychlorinated Biphenyls (PCBs)                                                                                                      | μg/kg          | 100 <sup>A</sup> 1,000 <sup>B</sup> 25,000 <sup>C</sup> 3,200 <sup>D</sup>                                                                                                           | n/v                                                                                        | -                                                                          | -                                                                                             | ND                                                                                           | -                                                                                          | -                                                                                                   | -                                                                                                 | -                                                                                                            | ND                                                                                   | ND                                                                                          | -                                                                                                 | -                                                                                                   | -                                                                                     | -                                                                                                                    |                                                                                           |
| Pesticides                                                                                                                            | In. I          | F A 000B 4 +00C +00D                                                                                                                                                                 | 1                                                                                          | 1                                                                          |                                                                                               | 4711                                                                                         |                                                                                            |                                                                                                     |                                                                                                   |                                                                                                              | 2011                                                                                 | 470                                                                                         | I                                                                                                 |                                                                                                     | I                                                                                     |                                                                                                                      |                                                                                           |
| Aldrin<br>BHC, alpha-                                                                                                                 | μg/kg<br>μg/kg | 5 <sub>n</sub> <sup>A</sup> 680 <sup>B</sup> 1,400 <sup>C</sup> 190 <sup>D</sup><br>20 <sup>AD</sup> 3,400 <sup>B</sup> 6,800 <sup>C</sup>                                           | n/v<br>n/v                                                                                 | ]                                                                          | -                                                                                             | 1.7 U<br>1.7 U                                                                               | -                                                                                          | -                                                                                                   | _                                                                                                 | -                                                                                                            | 3.6 U<br>3.6 U                                                                       | 1.7 U<br>1.7 U                                                                              | -                                                                                                 | _                                                                                                   | -                                                                                     |                                                                                                                      | 1 [                                                                                       |
| BHC, beta-                                                                                                                            | μg/kg          | 36 <sup>A</sup> 3,000 <sup>B</sup> 14,000 <sup>C</sup> 90 <sup>D</sup>                                                                                                               | n/v                                                                                        | _                                                                          | -                                                                                             | 1.7 U                                                                                        | _                                                                                          | <u>-</u>                                                                                            | _                                                                                                 | _                                                                                                            | 3.6 U                                                                                | 1.7 U                                                                                       | -                                                                                                 | _                                                                                                   | _                                                                                     | _                                                                                                                    | 1                                                                                         |
| BHC, delta-                                                                                                                           | μg/kg          | 40 <sub>n</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 250 <sup>D</sup>                                                                  | n/v                                                                                        | -                                                                          | -                                                                                             | 1.7 U                                                                                        | -                                                                                          | -                                                                                                   | -                                                                                                 | -                                                                                                            | 3.6 U                                                                                | 1.7 U                                                                                       | -                                                                                                 | -                                                                                                   | -                                                                                     | -                                                                                                                    | -                                                                                         |
| Camphechlor (Toxaphene)                                                                                                               | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                             | n/v                                                                                        | -                                                                          | -                                                                                             | 17 U                                                                                         | -                                                                                          | -                                                                                                   | -                                                                                                 | -                                                                                                            | 36 U                                                                                 | 17 U                                                                                        | -                                                                                                 | -                                                                                                   | -                                                                                     | -                                                                                                                    | -                                                                                         |
| Chlordane, alpha-                                                                                                                     | μg/kg          | 94 <sup>A</sup> 24,000 <sup>B</sup> 47,000 <sup>C</sup> 2,900 <sup>D</sup>                                                                                                           | n/v                                                                                        | -                                                                          | -                                                                                             | 1.7 U                                                                                        | -                                                                                          | -                                                                                                   | -                                                                                                 | -                                                                                                            | 3.6 U                                                                                | 1.7 U                                                                                       | -                                                                                                 | -                                                                                                   | -                                                                                     | -                                                                                                                    | 1 -                                                                                       |
| Chlordane, trans- (gamma-Chlordane) DDD (p,p'-DDD)                                                                                    | μg/kg<br>μg/kg | 100,000 <sub>a</sub> A 1,000,000 <sub>d</sub> D<br>3.3 <sub>m</sub> A 92.000 B 180.000 C 14.000 D                                                                                    | n/v<br>n/v                                                                                 | -                                                                          | -                                                                                             | 1.7 U<br>1.7 U                                                                               | -                                                                                          | -                                                                                                   | -                                                                                                 | -                                                                                                            | 3.6 U<br>3.6 U                                                                       | 1.7 U<br>1.7 U                                                                              | -                                                                                                 |                                                                                                     | -                                                                                     | _                                                                                                                    | 1                                                                                         |
| DDE (p,p'-DDE)                                                                                                                        | μg/kg<br>μg/kg | 3.3 <sub>m</sub> 92,000 180,000 14,000<br>3.3 <sub>m</sub> 62,000 <sup>B</sup> 120,000 <sup>C</sup> 17,000 <sup>D</sup>                                                              | n/v                                                                                        | [                                                                          | -                                                                                             | 1.7 U                                                                                        |                                                                                            |                                                                                                     |                                                                                                   | -                                                                                                            | 3.6 U                                                                                | 1.7 U                                                                                       |                                                                                                   | [                                                                                                   | ]                                                                                     | ] [                                                                                                                  | 1                                                                                         |
| DDT (p,p'-DDT)                                                                                                                        | μg/kg          | 3.3 <sub>m</sub> A 47,000 94,000 136,000 1                                                                                                                                           | n/v                                                                                        | _                                                                          | _                                                                                             | 1.7 U                                                                                        | _                                                                                          | _                                                                                                   | _                                                                                                 | _                                                                                                            | 3.6 U                                                                                | 1.7 U                                                                                       | _                                                                                                 | _                                                                                                   | _                                                                                     | _                                                                                                                    | 1 -                                                                                       |
| Dieldrin                                                                                                                              | μg/kg          | 5 <sub>n</sub> <sup>A</sup> 1,400 <sup>B</sup> 2,800 <sup>C</sup> 100 <sup>D</sup>                                                                                                   | n/v                                                                                        | 1 -                                                                        | -                                                                                             | 1.7 U                                                                                        | _                                                                                          | <u>-</u>                                                                                            | _                                                                                                 | _                                                                                                            | 4.0                                                                                  | 1.7 U                                                                                       | _                                                                                                 | _                                                                                                   | _                                                                                     |                                                                                                                      | 1 -                                                                                       |
| Endosulfan I                                                                                                                          | μg/kg          | 2,400 <sub>i</sub> <sup>A</sup> 200,000 <sub>i</sub> <sup>B</sup> 920,000 <sub>i</sub> <sup>C</sup> 102,000 <sup>D</sup>                                                             | n/v                                                                                        | 1 -                                                                        | -                                                                                             | 1.7 U                                                                                        | _                                                                                          | <u>-</u>                                                                                            | <u>-</u>                                                                                          | _                                                                                                            | 3.6 U                                                                                | 1.7 U                                                                                       | _                                                                                                 | _                                                                                                   | _                                                                                     | _                                                                                                                    | 1 -                                                                                       |
| Endosulfan II                                                                                                                         | μg/kg          | 2,400 <sub>i</sub> <sup>A</sup> 200,000 <sub>i</sub> <sup>B</sup> 920,000 <sub>i</sub> <sup>C</sup> 102,000 <sup>D</sup>                                                             | n/v                                                                                        | -                                                                          | -                                                                                             | 1.7 U                                                                                        | -                                                                                          | -                                                                                                   | _                                                                                                 | -                                                                                                            | 3.6 U                                                                                | 1.7 U                                                                                       | -                                                                                                 | -                                                                                                   | -                                                                                     | _                                                                                                                    | -                                                                                         |
| Endosulfan Sulfate                                                                                                                    | μg/kg          | 2,400 <sub>i</sub> <sup>A</sup> 200,000 <sub>i</sub> <sup>B</sup> 920,000 <sub>i</sub> <sup>C</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                              | n/v                                                                                        | -                                                                          | -                                                                                             | 1.7 U                                                                                        | -                                                                                          | -                                                                                                   | -                                                                                                 | -                                                                                                            | 3.6 U                                                                                | 1.7 U                                                                                       | -                                                                                                 | -                                                                                                   | -                                                                                     | -                                                                                                                    | -                                                                                         |
| Endrin                                                                                                                                | μg/kg          | 14 <sup>A</sup> 89,000 <sup>B</sup> 410,000 <sup>C</sup> 60 <sup>D</sup>                                                                                                             | n/v                                                                                        | -                                                                          | -                                                                                             | 1.7 U                                                                                        | -                                                                                          | -                                                                                                   | -                                                                                                 | -                                                                                                            | 3.6 U                                                                                | 1.7 U                                                                                       | -                                                                                                 | -                                                                                                   | -                                                                                     | -                                                                                                                    | -                                                                                         |
| Endrin Aldehyde                                                                                                                       | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                             | n/v                                                                                        | -                                                                          | -                                                                                             | 1.7 U                                                                                        | -                                                                                          | -                                                                                                   | -                                                                                                 | -                                                                                                            | 3.6 U                                                                                | 1.7 U                                                                                       | -                                                                                                 | -                                                                                                   | -                                                                                     | -                                                                                                                    | 1 -                                                                                       |
| Endrin Ketone<br>Heptachlor                                                                                                           | μg/kg<br>μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>42 <sup>A</sup> 15,000 <sup>B</sup> 29,000 <sup>C</sup> 380 <sup>D</sup> | n/v<br>n/v                                                                                 | 1 :                                                                        | -                                                                                             | 1.7 U<br>1.7 U                                                                               |                                                                                            | -                                                                                                   |                                                                                                   | _                                                                                                            | 3.6 U<br>3.6 U                                                                       | 1.7 U<br>1.7 U                                                                              |                                                                                                   | ]                                                                                                   |                                                                                       | ]                                                                                                                    | 1 [                                                                                       |
| Heptachlor Epoxide                                                                                                                    | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 20 <sup>G</sup>      | ] -                                                                        | -                                                                                             | 1.7 U                                                                                        |                                                                                            |                                                                                                     |                                                                                                   | _                                                                                                            | 3.6 U                                                                                | 1.7 U                                                                                       | -                                                                                                 | ] -                                                                                                 | ] -                                                                                   | -                                                                                                                    | 1 -                                                                                       |
| Lindane (Hexachlorocyclohexane, gamma)                                                                                                | μg/kg          | 100 <sup>AD</sup> 9,200 <sup>B</sup> 23,000 <sup>C</sup>                                                                                                                             | n/v                                                                                        | -                                                                          | -                                                                                             | 1.7 U                                                                                        | -                                                                                          | -                                                                                                   | _                                                                                                 | -                                                                                                            | 3.6 U                                                                                | 1.7 U                                                                                       | -                                                                                                 | -                                                                                                   | -                                                                                     | _                                                                                                                    | -                                                                                         |
| Methoxychlor (4,4'-Methoxychlor)                                                                                                      | μg/kg          | 100,000 <sub>a</sub> A 500,000 <sub>c</sub> B 1,000,000 <sub>d</sub> CD                                                                                                              | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 900,000 <sup>G</sup> | -                                                                          | -                                                                                             | 1.7 U                                                                                        | -                                                                                          | -                                                                                                   | -                                                                                                 | -                                                                                                            | 3.6 U                                                                                | 1.7 U                                                                                       | -                                                                                                 | -                                                                                                   | -                                                                                     | -                                                                                                                    |                                                                                           |
| See notes on last page.                                                                                                               |                |                                                                                                                                                                                      |                                                                                            |                                                                            |                                                                                               |                                                                                              |                                                                                            |                                                                                                     |                                                                                                   |                                                                                                              |                                                                                      |                                                                                             |                                                                                                   |                                                                                                     |                                                                                       |                                                                                                                      |                                                                                           |

See notes on last page.



190500898
U:\190500898\05\_report\_deliv\deliverables\work\_plan\IRMWP.2\2\_Tables\tb1\_RI.soil\_CL.LB\_20191014.xlsx

Page 4 of 18

## Summary of Analytical Results for RI Soil Samples IRM Work Plan #2

820 Linden Ave Site, BCP #C828200

820 Linden Avenue, Pittsford, NY

|                                                           | 1 1            | ı                                                                                                                                    |                                                                                                              |              | 445          | I            | ı            | _              | 400           |                 | i –          | 40           | ı –           | 400            |              | D 44 (***** **  |              |
|-----------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------|--------------|--------------|--------------|----------------|---------------|-----------------|--------------|--------------|---------------|----------------|--------------|-----------------|--------------|
| Sample Location                                           |                |                                                                                                                                      |                                                                                                              |              | 11D          | B-12         |              |                | 12D           | 1               |              | 13           |               | 13D            |              | B-14 (MW-5)     |              |
| Sample Date                                               |                |                                                                                                                                      |                                                                                                              | 12-Jan-17    | 12-Jan-17    | 5-Jul-16     | 11-Jan-17    | 11-Jan-17      | 11-Jan-17     | 11-Jan-17       | 5-Jul-16     | 5-Jul-16     | 12-Jan-17     | 12-Jan-17      | 13-Sep-16    | 13-Sep-16       | 14-Sep-16    |
| Sample ID                                                 |                |                                                                                                                                      |                                                                                                              | LIN-B11D-S1  | LIN-B11D-S2  | B-12 (8-9)   | LIN-B12D-S1  | LIN-B12D-S2    | LIN-B12D-S3   | LIN-DUP-S       | B-13 (2-3)   | B-13 (7-8)   | LIN-B13D-S1   | LIN-B13D-S2    | B-10 (3-4)   | DUP0916         | B-10 (62-63) |
| Sample Depth                                              |                |                                                                                                                                      |                                                                                                              | 28 - 29 ft   | 60 - 60.5 ft | 8 - 9 ft     | 28 - 28.5 ft | 40.5 - 41.5 ft | 58 - 58.5 ft  | 58 - 58.5 ft    | 2 - 3 ft     | 7 - 8 ft     | 48 - 48.5 ft  | 54.5 - 55.5 ft | 3 - 4 ft     | 3 - 4 ft        | 62 - 63 ft   |
| Sampling Company                                          |                |                                                                                                                                      |                                                                                                              | STANTEC      | STANTEC      | STANTEC      | STANTEC      | STANTEC        | STANTEC       | STANTEC         | STANTEC      | STANTEC      | STANTEC       | STANTEC        | STANTEC      | STANTEC         | STANTEC      |
| Laboratory                                                |                |                                                                                                                                      |                                                                                                              | TAL          | TAL          | TAL          | TAL          | TAL            | TAL           | TAL             | TAL          | TAL          | TAL           | TAL            | TAL          | TAL             | TAL          |
| Laboratory Work Order                                     |                |                                                                                                                                      |                                                                                                              | 480-112267-1 | 480-112267-1 | 480-102705-1 | 480-112267-1 | 480-112267-1   | 480-112267-1  | 480-112267-1    | 480-102705-1 | 480-102705-1 | 480-112267-1  | 480-112267-1   | 480-106008-1 | 480-106008-1    | 480-106008-1 |
| Laboratory Sample ID                                      |                |                                                                                                                                      |                                                                                                              | 480-112267-6 | 480-112267-7 | 480-102705-3 | 480-112267-8 | 480-112267-9   | 480-112267-10 | 480-112267-11   | 480-102705-4 | 480-102705-5 | 480-112267-12 | 480-112267-13  | 480-106008-1 | 480-106008-3    | 480-106008-2 |
| Sample Type                                               | Units          | NYSDEC-Part 375                                                                                                                      | NYSDEC CP-51                                                                                                 | 400-112201-0 | 400-112201-1 | 400-102700-0 | 400-112201-0 | 400-112201-0   | 400-112201-10 | Field Duplicate | 400-102/00-4 | 400-102700-0 | 400-112207-12 | 400-112201-10  | 400-100000-1 | Field Duplicate | 400-100000-2 |
| oumple Type                                               | Omits          | NIODEO-I UN OIO                                                                                                                      | NIODEO OF ST                                                                                                 |              |              |              |              |                |               | ricia Bapileate |              |              |               |                |              | Ticia Bapileate |              |
| emi-Volatile Organic Compounds                            |                |                                                                                                                                      |                                                                                                              |              |              |              |              |                |               |                 |              |              |               |                |              |                 |              |
| Acenaphthene                                              | μg/kg          | 20,000 <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 98,000 <sup>D</sup>                        | n/v                                                                                                          | -            | -            | 170 U        | -            | -              | -             | -               | 180 U        | 180 U        | -             | -              | -            | -               | -            |
| Acenaphthylene                                            | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 107,000 <sup>D</sup>         | n/v                                                                                                          | -            | _            | 170 U        | -            | -              | -             | -               | 180 U        | 180 U        | -             | -              | -            | _               | -            |
| Acetophenone                                              | μg/kg          | 100,000 <sub>a</sub> A 1,000,000 <sub>d</sub> D                                                                                      | n/v                                                                                                          | _            | _            | 170 U        | _            | _              | _             | _               | 180 U        | 180 U        | _             | _              | -            | _               | _            |
| Anthracene                                                | μg/kg          | 100,000 <sub>a</sub> A 500,000 <sub>c</sub> B 1,000,000 <sub>d</sub> CD                                                              | n/v                                                                                                          | _            | _            | 170 U        | _            | _              | _             | _               | 180 U        | 180 U        | _             | _              | _            | _               | _            |
| Atrazine                                                  | μg/kg          | 100,000 <sub>a</sub> 1,000,000 <sub>d</sub> D                                                                                        | n/v                                                                                                          | -            | _            | 170 U        | _            | _              | _             | _               | 180 U        | 180 U        | _             | _              | _            | _               | _            |
| Benzaldehyde                                              | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                                | n/v                                                                                                          | _            | _            | 170 U        | _            | _              | _             | _               | 180 U        | 180 U        | _             | _              | _            | _               |              |
| Benzo(a)anthracene                                        | μg/kg          | 1,000 <sub>0</sub> <sup>A</sup> 5,600 <sup>B</sup> 11,000 <sup>C</sup> 1,000 <sub>0</sub> <sup>D</sup>                               | n/v                                                                                                          | _            | _            | 170 U        | _            | _              | _             | _               | 180 U        | 180 U        | _             | _              | _            | _               | _            |
| ***                                                       |                |                                                                                                                                      |                                                                                                              |              |              |              |              |                |               |                 |              |              | _             | _              | _            | _               |              |
| Benzo(a)pyrene                                            | μg/kg          | 1,000 <sub>n</sub> <sup>A</sup> 1,000 <sub>g</sub> <sup>B</sup> 1,100 <sup>C</sup> 22,000 <sup>D</sup>                               | n/v                                                                                                          | -            | -            | 170 U        | -            | -              | -             | -               | 180 U        | 180 U        | -             | -              | -            | -               | -            |
| enzo(b)fluoranthene                                       | μg/kg          | 1,000 <sub>n</sub> A 5,600 <sup>B</sup> 11,000 <sup>C</sup> 1,700 <sup>D</sup>                                                       | n/v                                                                                                          | -            | -            | 170 U        | -            | -              | -             | -               | 180 U        | 180 U        | -             | -              | -            | -               | -            |
| enzo(g,h,i)perylene                                       | μg/kg          | 100,000 <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                          | n/v                                                                                                          | -            | -            | 170 U        | -            | -              | -             | -               | 180 U        | 180 U        | -             | -              | -            | -               | -            |
| enzo(k)fluoranthene                                       | μg/kg          | 800 <sub>n</sub> <sup>A</sup> 56,000 <sup>B</sup> 110,000 <sup>C</sup> 1,700 <sup>D</sup>                                            | n/v                                                                                                          | -            | _            | 170 U        | _            | _              | -             | _               | 180 U        | 180 U        | _             | _              | _            | _               | _            |
| iphenyl, 1,1'- (Biphenyl)                                 | μg/kg          | 100,000 A 1,000,000 D                                                                                                                | 500,000° 1,000,000°                                                                                          | _            | _            | 170 U        | I -          | _              | l .           | _               | 180 U        | 180 U        | _             | _              | _            | _               | _            |
| sis(2-Chloroethoxy)methane                                |                | 100,000 <sub>a</sub> 1,000,000 <sub>d</sub> 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                      | n/v                                                                                                          | _            | _            | 170 U        | Ī _          |                |               |                 | 180 U        | 180 U        | _             |                |              | _               | Ī .          |
|                                                           | μg/kg          |                                                                                                                                      | n/v                                                                                                          | _            | _            | 170 U        | · -          | _              | _             | _               | 180 U        | 180 U        | _             | _              | _            | _               | _            |
| bis(2-Chloroethyl)ether                                   | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                             | 11/V                                                                                                         | -            | _            |              | I -          | _              | _             | _               |              |              | -             | _              | -            | _               | _            |
| Bis(2-Chloroisopropyl)ether (2,2-oxybis(1-Chloropropane)) | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                             | 11/V                                                                                                         | -            | _            | 170 U        | I -          | _              | _             | -               | 180 U        | 180 U        | -             | _              | -            | _               | _            |
| Bis(2-Ethylhexyl)phthalate (DEHP)                         | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 435,000 <sup>G</sup>                   | -            | -            | 170 U        | · -          | -              | -             | -               | 180 U        | 180 U        | -             | -              | -            | -               | _            |
| Bromophenyl Phenyl Ether, 4-                              | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                             | n/v                                                                                                          | -            | -            | 170 U        | -            | -              | -             | -               | 180 U        | 180 U        | -             | -              | -            | -               | -            |
| Butyl Benzyl Phthalate                                    | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 122,000 <sup>G</sup>                   | -            | -            | 170 U        | -            | -              | -             | -               | 180 U        | 180 U        | -             | -              | -            | -               | -            |
| Caprolactam                                               | μg/kg          | 100,000a <sup>A</sup> 1,000,000d <sup>D</sup>                                                                                        | n/v                                                                                                          | -            | -            | 170 U        | -            | -              | -             | -               | 180 U        | 180 U        | -             | -              | -            | -               | -            |
| Carbazole                                                 | μg/kg          | 100,000 <sub>a</sub> , 500,000 <sub>c</sub> , 1,000,000 <sub>d</sub> , 50                                                            | n/v                                                                                                          | -            | -            | 170 U        | -            | -              | -             | -               | 180 U        | 180 U        | -             | -              | -            | -               | -            |
| Chloro-3-methyl phenol, 4-                                | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                             | n/v                                                                                                          | -            | -            | 170 U        | -            | -              | -             | -               | 180 U        | 180 U        | -             | -              | -            | -               | -            |
| Chloroaniline, 4-                                         | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 220 <sup>G</sup>                       | -            | -            | 170 U        | -            | -              | -             | -               | 180 U        | 180 U        | -             | -              | -            | -               | -            |
| Chloronaphthalene, 2-                                     | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                             | n/v                                                                                                          | -            | -            | 170 U        | -            | -              | -             | -               | 180 U        | 180 U        | -             | -              | -            | -               | -            |
| Chlorophenol, 2- (ortho-Chlorophenol)                     | µg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup>                                        | -            | -            | 170 U        | -            | -              | -             | -               | 180 U        | 180 U        | -             | -              | -            | -               | -            |
| Chlorophenyl Phenyl Ether, 4-                             | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                             | n/v                                                                                                          | -            | -            | 170 U        | -            | -              | -             | -               | 180 U        | 180 U        | -             | -              | -            | -               | -            |
| Chrysene                                                  | μg/kg          | 1,000 <sub>0</sub> A 56,000 <sup>B</sup> 110,000 <sup>C</sup> 1,000 <sub>0</sub> D                                                   | n/v                                                                                                          | _            | _            | 170 U        | _            | _              | _             | _               | 180 U        | 180 U        | -             | _              | -            | _               | _            |
| Cresol, o- (Methylphenol, 2-)                             | μg/kg          | 330 <sub>m</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 330 <sub>f</sub> <sup>D</sup>    | n/v                                                                                                          | _            | _            | 170 U        | _            | _              | _             | _               | 180 U        | 180 U        | _             | _              | _            | _               | _            |
| Cresol, p- (Methylphenol, 4-)                             | μg/kg          | 330 <sub>m</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 330 <sub>f</sub> <sup>D</sup>    | n/v                                                                                                          |              |              | 330 U        |              |                |               |                 | 350 U        | 350 U        |               |                |              |                 |              |
| Dibenzo(a,h)anthracene                                    |                | 330 <sub>m</sub> <sup>A</sup> 560 <sup>B</sup> 1,100 <sup>C</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                | n/v                                                                                                          | _            | _            | 170 U        | _            | _              | _             | _               | 180 U        | 180 U        | -             | _              | _            | _               | _            |
|                                                           | μg/kg          |                                                                                                                                      |                                                                                                              | -            | -            |              | _            | -              | -             | -               |              |              | -             | -              | -            | -               | -            |
| Dibenzofuran                                              | μg/kg          | 7,000 <sup>A</sup> 350,000 <sup>B</sup> 1,000,000 <sub>d</sub> 210,000 <sup>D</sup>                                                  | 500,000a 1,000,000a 6,200 G                                                                                  | -            | -            | 170 U        | -            | -              | -             | -               | 180 U        | 180 U        | -             | -              | -            | -               | -            |
| Dibutyl Phthalate (DBP)                                   | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                             | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F 8,100 <sup>G</sup>                                           | -            | -            | 170 U        | -            | -              | -             | -               | 180 U        | 180 U        | -             | -              | -            | -               | -            |
| Dichlorobenzidine, 3,3'-                                  | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                             | n/v                                                                                                          | -            | -            | 170 U        | -            | -              | -             | -               | 180 U        | 180 U        | -             | -              | -            | -               | -            |
| Dichlorophenol, 2,4-                                      | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>E</sup> 400 <sup>G</sup>                       | -            | -            | 170 U        | -            | -              | -             | -               | 180 U        | 180 U        | -             | -              | -            | -               | -            |
| Diethyl Phthalate                                         | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>E</sup> 7,100 <sup>G</sup>                     | -            | -            | 170 U        | -            | -              | -             | -               | 180 U        | 180 U        | -             | -              | -            | -               | -            |
| Dimethyl Phthalate                                        | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 27,000 <sup>G</sup>                    | -            | -            | 170 U        | -            | -              | -             | -               | 180 U        | 180 U        | -             | -              | -            | -               | -            |
| Dimethylphenol, 2,4-                                      | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                             | n/v                                                                                                          | -            | -            | 170 U        | -            | -              | -             | -               | 180 U        | 180 U        | -             | -              | -            | -               | -            |
| Dinitro-o-cresol, 4,6-                                    | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                             | n/v                                                                                                          | -            | -            | 330 U        | -            | -              | -             | -               | 350 U        | 350 U        | -             | -              | -            | -               | -            |
| Dinitrophenol, 2,4-                                       | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 200 <sup>G</sup>                       | -            | -            | 330 U        | -            | -              | -             | -               | 350 U        | 350 U        | -             | -              | -            | -               | -            |
| Dinitrotoluene, 2,4-                                      | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                             | n/v                                                                                                          | -            | -            | 170 U        | -            | -              | -             | -               | 180 U        | 180 U        | -             | -              | -            | -               | -            |
| Dinitrotoluene, 2,6-                                      | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 1,000/170 <sub>b.s1</sub> <sup>G</sup> | -            | -            | 170 U        | -            | -              | -             | -               | 180 U        | 180 U        | -             | -              | -            | -               | -            |
| Di-n-Octyl phthalate                                      | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 120,000 <sup>G</sup>                   | -            | -            | 170 U        | -            | -              | -             | -               | 180 U        | 180 U        | -             | -              | -            | -               | -            |
| luoranthene                                               | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                             | n/v                                                                                                          | -            | -            | 170 U        | -            | -              | -             | -               | 180 U        | 180 U        | -             | -              | -            | -               | -            |
| luorene                                                   | μg/kg          | 30,000 <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 386,000 <sup>D</sup>                       | n/v                                                                                                          | -            | -            | 170 U        | -            | _              | -             | -               | 180 U        | 180 U        | -             | _              | -            | -               | -            |
| lexachlorobenzene                                         | µg/kg          | 330 <sub>m</sub> <sup>A</sup> 6,000 <sup>B</sup> 12,000 <sup>C</sup> 3,200 <sup>D</sup>                                              | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 1,400 <sup>G</sup>                     | -            | -            | 170 U        | -            | _              | -             | -               | 180 U        | 180 U        | -             | _              | -            | -               | -            |
| Hexachlorobutadiene (Hexachloro-1,3-butadiene)            | μg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                  | n/v                                                                                                          | -            | _            | 170 U        | _            | _              | -             | _               | 180 U        | 180 U        | _             | _              | _            | _               | _            |
| Hexachlorocyclopentadiene                                 | μg/kg          | 100,000a A 500,000c B 1,000,000d CD                                                                                                  | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup>                                        | -            | _            | 170 U        | _            | _              | -             | _               | 180 U        | 180 U        | _             | _              | _            | _               | _            |
| lexachloroethane                                          | µg/kg          | 100,000a <sup>A</sup> 500,000c <sup>B</sup> 1,000,000d <sup>CD</sup>                                                                 | n/v                                                                                                          | _            | _            | 170 U        | I -          | _              | _             | l -             | 180 U        | 180 U        | -             | _              | _            | _               | _            |
| ndeno(1,2,3-cd)pyrene                                     | μg/kg          | 500 <sub>n</sub> <sup>A</sup> 5,600 <sup>B</sup> 11,000 <sup>C</sup> 8,200 <sup>D</sup>                                              | n/v                                                                                                          | _            | _            | 170 U        | I -          | _              | l <u>.</u>    | _               | 180 U        | 180 U        | _             | _              | _            | _               | _            |
| * ***                                                     |                |                                                                                                                                      |                                                                                                              | -            | _            |              | I -          | _              | _             | _               |              |              | 1             | _              | _            | _               | _            |
| sophorone                                                 | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                             | 500,000a 1,000,000a 4,400 G                                                                                  | -            | _            | 170 U        | I -          | _              |               | _               | 180 U        | 180 U        | -             | _              | -            | _               | _            |
| Methylnaphthalene, 2-                                     | μg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                  | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 36,400 <sup>G</sup>                    | -            | _            | 170 U        | I -          | _              |               | _               | 180 U        | 180 U        | -             | _              | -            | _               | _            |
| Naphthalene                                               | μg/kg          | 12,000 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                           | n/v                                                                                                          | -            | -            | 170 U        | -            | -              | -             | -               | 180 U        | 180 U        | -             | -              | -            | -               | -            |
| litroaniline, 2-                                          | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 400 <sup>G</sup>                       | -            | -            | 330 U        | -            | -              | -             | -               | 350 U        | 350 U        | -             | -              | -            | -               | -            |
| litroaniline, 3-                                          | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 500 <sup>G</sup>                       | -            | -            | 330 U        | -            | -              | -             | -               | 350 U        | 350 U        | -             | -              | -            | -               | -            |
| litroaniline, 4-                                          | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                             | n/v                                                                                                          | -            | -            | 330 U        | -            | -              | -             | -               | 350 U        | 350 U        | -             | -              | -            | -               | -            |
| litrobenzene                                              | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                             | 69,000 <sup>E</sup> 140,000 <sup>F</sup> 170 <sub>b</sub> <sup>G</sup>                                       | -            | -            | 170 U        | -            | -              | -             | -               | 180 U        | 180 U        | -             | -              | -            | -               | -            |
| litrophenol, 2-                                           | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>E</sup> 300 <sup>G</sup>                       | -            | -            | 170 U        | -            | -              | -             | -               | 180 U        | 180 U        | -             | -              | -            | -               | -            |
| litrophenol, 4-                                           | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                             | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F 100 <sup>G</sup>                                             | -            | -            | 330 U        | -            | -              | -             | -               | 350 U        | 350 U        | -             | -              | -            | -               | -            |
| I-Nitrosodi-n-Propylamine                                 | µg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                  | n/v                                                                                                          | -            | -            | 170 U        | -            | -              | -             | -               | 180 U        | 180 U        | -             | -              | -            | -               | -            |
| -Nitrosodiphenylamine                                     | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                             | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F                                                              | -            | -            | 170 U        | -            | -              | -             | -               | 180 U        | 180 U        | -             | -              | -            | -               | -            |
| Pentachlorophenol                                         | μg/kg          | 800 <sub>m</sub> A 6,700 <sup>B</sup> 55,000 <sup>C</sup> 800 <sub>f</sub> D                                                         | n/v                                                                                                          | -            | -            | 330 U        | -            | -              | -             | -               | 350 U        | 350 U        | -             | -              | -            | -               | -            |
| Phenanthrene                                              | μg/kg          | 100,000 <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                          | n/v                                                                                                          | -            | -            | 170 U        | -            | -              | -             | -               | 180 U        | 180 U        | -             | -              | -            | -               | -            |
| 'henol                                                    | μg/kg          | 330 <sub>m</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 330 <sub>f</sub> <sup>D</sup>    | n/v                                                                                                          | -            | -            | 170 U        | -            | _              | -             | -               | 180 U        | 180 U        | -             | _              | -            | -               | -            |
| Pyrene                                                    | μg/kg          | 100.000 <sup>A</sup> 500.000. <sup>B</sup> 1.000.000. <sup>CD</sup>                                                                  | n/v                                                                                                          | -            | _            | 170 U        | _            | _              | -             | _               | 180 U        | 180 U        | _             | _              | _            | _               | _            |
| richlorophenol, 2,4,5-                                    | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 100 <sup>G</sup>                       | _            | _            | 170 U        | I -          | _              | _             | _               | 180 U        | 180 U        | -             | _              | _            | _               | _            |
| richlorophenol, 2,4,6-                                    | μg/kg<br>μg/kg | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 100,000 <sub>d</sub> 500,000 <sub>d</sub> 1,000,000 <sub>d</sub> CD | 500,000 <sub>a</sub> 1,000,000 <sub>a</sub> 100                                                              | _            | 1 -          | 170 U        | I -          |                | 1 -           | 1 -             | 180 U        | 180 U        |               | 1 -            |              | 1 -             | 1 -          |
| Fotal SVOC                                                | μg/kg<br>μg/kg | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> n/v                                                                 | 1,000,000 <sub>a</sub> 1,000,000 <sub>a</sub> n/v                                                            | _            | _            | ND           | Ī _          |                |               |                 | ND           | ND           | _             |                |              | _               | _            |
|                                                           | μg/kg          | 11/ V                                                                                                                                | 11/V                                                                                                         | -            | -            | חאי          |              | -              | -             | -               | ואט          | ואט          |               | -              | -            | -               |              |
| SVOC - Tentatively Identified Compounds                   |                | n/v                                                                                                                                  |                                                                                                              |              |              |              |              |                |               |                 | 1,300        |              |               |                |              |                 |              |
| otal SVOC TICs                                            | μg/kg          |                                                                                                                                      | n/v                                                                                                          |              |              | ND           |              |                |               |                 |              | 9,050        |               |                |              |                 |              |

Stantec

190500898 Page 5 of 18

820 Linden Avenue, Pittsford, NY

| Sample Location Sample Date Sample ID Sample Depth Sampling Company Laboratory Laboratory Work Order Laboratory Sample ID Sample Type  Volatile Organic Compounds | Units          | NYSDEC-Part 375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NYSDEC CP-51                                                                                           | B-<br>12-Jan-17<br>LIN-B11D-S1<br>28 - 29 ft<br>STANTEC<br>TAL<br>480-112267-1<br>480-112267-6 | 11D<br>12-Jan-17<br>LIN-B11D-S2<br>60 - 60.5 ft<br>STANTEC<br>TAL<br>480-112267-1<br>480-112267-7 | B-12<br>5-Jul-16<br>B-12 (8-9)<br>8 - 9 ft<br>STANTEC<br>TAL<br>480-102705-1<br>480-102705-3 | 11-Jan-17<br>LIN-B12D-S1<br>28 - 28.5 ft<br>STANTEC<br>TAL<br>480-112267-1<br>480-112267-8 | B-<br>11-Jan-17<br>LIN-B12D-S2<br>40.5 - 41.5 ft<br>STANTEC<br>TAL<br>480-112267-1<br>480-112267-9 | 2D<br>11-Jan-17<br>LIN-B12D-S3<br>58 - 58.5 ft<br>STANTEC<br>TAL<br>480-112267-1<br>480-112267-10 | 11-Jan-17<br>LIN-DUP-S<br>58 - 58.5 ft<br>STANTEC<br>TAL<br>480-112267-1<br>480-112267-11<br>Field Duplicate | B-<br>5-Jul-16<br>B-13 (2-3)<br>2 - 3 ft<br>STANTEC<br>TAL<br>480-102705-1<br>480-102705-4 | 13<br>5-Jul-16<br>B-13 (7-8)<br>7 - 8 ft<br>STANTEC<br>TAL<br>480-102705-1<br>480-102705-5 | B-<br>12-Jan-17<br>LIN-B13D-S1<br>48 - 48.5 ft<br>STANTEC<br>TAL<br>480-112267-1<br>480-112267-12 | 13D<br>12-Jan-17<br>LIN-B13D-S2<br>54.5 - 55.5 ft<br>STANTEC<br>TAL<br>480-112267-1<br>480-112267-13 | 13-Sep-16<br>B-10 (3-4)<br>3 - 4 ft<br>STANTEC<br>TAL<br>480-106008-1<br>480-106008-1 | B-14 (MW-5)<br>13-Sep-16<br>DUP0916<br>3 - 4 ft<br>STANTEC<br>TAL<br>480-106008-1<br>480-106008-3<br>Field Duplicate | 14-Sep-16<br>B-10 (62-63)<br>62 - 63 ft<br>STANTEC<br>TAL<br>480-106008-1<br>480-106008-2 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| Acetone                                                                                                                                                           | μg/kg          | 50 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n/v                                                                                                    | 26 U                                                                                           | 53 <sup>AD</sup>                                                                                  | 25 U                                                                                         | 42                                                                                         | 35                                                                                                 | 95 <sup>AD</sup>                                                                                  | 92 <sup>AD</sup>                                                                                             | 28                                                                                         | 70 J <sup>AD</sup>                                                                         | 120 <sup>AD</sup>                                                                                 | 550 U                                                                                                | 31 U                                                                                  | 25 U                                                                                                                 | 30 U                                                                                      |
| Benzene                                                                                                                                                           | µg/kg          | 60 <sup>AD</sup> 44,000 <sup>B</sup> 89,000 <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n/v                                                                                                    | 5.2 U                                                                                          | 5.6 U                                                                                             | 5.0 U                                                                                        | 5.1 U                                                                                      | 5.1 U                                                                                              | 5.2 U                                                                                             | 5.3 U                                                                                                        | 5.5 U                                                                                      | 5.2 U                                                                                      | 5.1 U                                                                                             | 110 U                                                                                                | 6.2 U                                                                                 | 5.1 U                                                                                                                | 6.0 U                                                                                     |
| Bromodichloromethane                                                                                                                                              | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n/v                                                                                                    | 5.2 U                                                                                          | 5.6 U                                                                                             | 5.0 U                                                                                        | 5.1 U                                                                                      | 5.1 U                                                                                              | 5.2 U                                                                                             | 5.3 U                                                                                                        | 5.5 U                                                                                      | 5.2 U                                                                                      | 5.1 U                                                                                             | 110 U                                                                                                | 6.2 U                                                                                 | 5.1 U                                                                                                                | 6.0 U                                                                                     |
| Bromoform (Tribromomethane)                                                                                                                                       | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n/v                                                                                                    | 5.2 U                                                                                          | 5.6 U                                                                                             | 5.0 U                                                                                        | 5.1 U                                                                                      | 5.1 U                                                                                              | 5.2 U                                                                                             | 5.3 U                                                                                                        | 5.5 U                                                                                      | 5.2 U                                                                                      | 5.1 U                                                                                             | 110 U                                                                                                | 6.2 U                                                                                 | 5.1 U                                                                                                                | 6.0 U                                                                                     |
| Bromomethane (Methyl bromide)                                                                                                                                     | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n/v                                                                                                    | 5.2 U<br>5.2 U                                                                                 | 5.6 U<br>5.6 U                                                                                    | 5.0 U<br>5.0 U                                                                               | 5.1 U<br>5.1 U                                                                             | 5.1 U<br>5.1 U                                                                                     | 5.2 U<br>5.2 U                                                                                    | 5.3 U<br>5.3 U                                                                                               | 5.5 U<br>5.5 U                                                                             | 5.2 U<br>5.2 U                                                                             | 5.1 U<br>5.1 U                                                                                    | 110 U<br>110 U                                                                                       | 6.2 U<br>6.2 U                                                                        | 5.1 U<br>5.1 U                                                                                                       | 6.0 U<br>6.0 U                                                                            |
| Butylbenzene, n-<br>Butylbenzene, sec- (2-Phenylbutane)                                                                                                           | μg/kg<br>μg/kg | 12,000 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup><br>11,000 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n/v<br>n/v                                                                                             | 5.2 U<br>5.2 U                                                                                 | 5.6 U                                                                                             | 5.0 U                                                                                        | 5.1 U<br>5.1 U                                                                             | 5.1 U<br>5.1 U                                                                                     | 5.2 U                                                                                             | 5.3 U<br>5.3 U                                                                                               | 5.5 U<br>5.5 U                                                                             | 5.2 U                                                                                      | 5.1 U<br>5.1 U                                                                                    | 110 U                                                                                                | 6.2 U                                                                                 | 5.1 U<br>5.1 U                                                                                                       | 6.0 U                                                                                     |
| Butylbenzene, tert-                                                                                                                                               | μg/kg          | 5,900 <sup>AD</sup> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 5,900 <sup>AD</sup> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n/v                                                                                                    | 5.2 U                                                                                          | 5.6 U                                                                                             | 5.0 U                                                                                        | 5.1 U                                                                                      | 5.1 U                                                                                              | 5.2 U                                                                                             | 5.3 U                                                                                                        | 5.5 U                                                                                      | 5.2 U                                                                                      | 5.1 U                                                                                             | 110 U                                                                                                | 6.2 U                                                                                 | 5.1 U                                                                                                                | 6.0 U                                                                                     |
| Carbon Disulfide                                                                                                                                                  | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 2,700 <sup>G</sup>               | 5.2 U                                                                                          | 5.6 U                                                                                             | 5.0 U                                                                                        | 5.1 U                                                                                      | 5.1 U                                                                                              | 5.2 U                                                                                             | 5.3 U                                                                                                        | 5.5 U                                                                                      | 5.2 U                                                                                      | 5.1 U                                                                                             | 110 U                                                                                                | 6.2 U                                                                                 | 5.1 U                                                                                                                | 6.0 U                                                                                     |
| Carbon Tetrachloride (Tetrachloromethane)                                                                                                                         | μg/kg          | 760 <sup>AD</sup> 22,000 <sup>B</sup> 44,000 <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n/v                                                                                                    | 5.2 U                                                                                          | 5.6 U                                                                                             | 5.0 U                                                                                        | 5.1 U                                                                                      | 5.1 U                                                                                              | 5.2 U                                                                                             | 5.3 U                                                                                                        | 5.5 U                                                                                      | 5.2 U                                                                                      | 5.1 U                                                                                             | 110 U                                                                                                | 6.2 U                                                                                 | 5.1 U                                                                                                                | 6.0 U                                                                                     |
| Chlorobenzene (Monochlorobenzene)                                                                                                                                 | μg/kg          | 1,100 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n/v                                                                                                    | 5.2 U                                                                                          | 5.6 U                                                                                             | 5.0 U                                                                                        | 5.1 U                                                                                      | 5.1 U                                                                                              | 5.2 U                                                                                             | 5.3 U                                                                                                        | 5.5 U                                                                                      | 5.2 U                                                                                      | 5.1 U                                                                                             | 110 U                                                                                                | 6.2 U                                                                                 | 5.1 U                                                                                                                | 6.0 U                                                                                     |
| Chloroethane (Ethyl Chloride) Chloroform (Trichloromethane)                                                                                                       | μg/kg<br>μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 1,900 <sup>G</sup>               | 5.2 U<br>5.2 U                                                                                 | 5.6 U<br>5.6 U                                                                                    | 5.0 U<br>5.0 U                                                                               | 5.1 U<br>5.1 U                                                                             | 5.1 U<br>5.1 U                                                                                     | 5.2 U<br>5.2 U                                                                                    | 5.3 U<br>5.3 U                                                                                               | 5.5 U<br>5.5 U                                                                             | 5.2 U<br>5.2 U                                                                             | 5.1 U<br>5.1 U                                                                                    | 110 U<br>110 U                                                                                       | 6.2 U<br>6.2 U                                                                        | 5.1 U<br>5.1 U                                                                                                       | 6.0 U<br>6.0 U                                                                            |
| Chloromethane                                                                                                                                                     | μg/kg<br>μg/kg | 370 <sup>AD</sup> 350,000 <sup>B</sup> 700,000 <sup>C</sup><br>100,000 <sub>A</sub> 500,000 <sub>B</sub> 1,000,000 <sub>A</sub> CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n/v                                                                                                    | 5.2 U                                                                                          | 5.6 U                                                                                             | 5.0 U                                                                                        | 5.1 U                                                                                      | 5.1 U                                                                                              | 5.2 U                                                                                             | 5.3 U                                                                                                        | 5.5 U                                                                                      | 5.2 U                                                                                      | 5.1 U                                                                                             | 110 U                                                                                                | 6.2 U                                                                                 | 5.1 U                                                                                                                | 6.0 U                                                                                     |
| Cyclohexane                                                                                                                                                       | μg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/v                                                                                                    | 5.2 U                                                                                          | 5.6 U                                                                                             | 5.0 U                                                                                        | 5.1 U                                                                                      | 5.1 U                                                                                              | 5.2 U                                                                                             | 5.3 U                                                                                                        | 5.5 U                                                                                      | 5.2 U                                                                                      | 5.1 U                                                                                             | 110 U                                                                                                | 6.2 U                                                                                 | 5.1 U                                                                                                                | 6.0 U                                                                                     |
| Dibromo-3-Chloropropane, 1,2- (DBCP)                                                                                                                              | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n/v                                                                                                    | 5.2 U                                                                                          | 5.6 U                                                                                             | 5.0 U                                                                                        | 5.1 U                                                                                      | 5.1 U                                                                                              | 5.2 U                                                                                             | 5.3 U                                                                                                        | 5.5 U                                                                                      | 5.2 U                                                                                      | 5.1 U                                                                                             | 110 U                                                                                                | 6.2 U                                                                                 | 5.1 U                                                                                                                | 6.0 U                                                                                     |
| Dibromochloromethane                                                                                                                                              | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup>                                  | 5.2 U                                                                                          | 5.6 U                                                                                             | 5.0 U                                                                                        | 5.1 U                                                                                      | 5.1 U                                                                                              | 5.2 U                                                                                             | 5.3 U                                                                                                        | 5.5 U                                                                                      | 5.2 U                                                                                      | 5.1 U                                                                                             | 110 U                                                                                                | 6.2 U                                                                                 | 5.1 U                                                                                                                | 6.0 U                                                                                     |
| Dichlorobenzene, 1,2-                                                                                                                                             | μg/kg          | 1,100 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n/v                                                                                                    | 5.2 U                                                                                          | 5.6 U                                                                                             | 5.0 U                                                                                        | 5.1 U                                                                                      | 5.1 U                                                                                              | 5.2 U                                                                                             | 5.3 U                                                                                                        | 5.5 U                                                                                      | 5.2 U                                                                                      | 5.1 U                                                                                             | 110 U                                                                                                | 6.2 U                                                                                 | 5.1 U                                                                                                                | 6.0 U                                                                                     |
| Dichlorobenzene, 1,3-<br>Dichlorobenzene, 1,4-                                                                                                                    | μg/kg<br>μg/kg | 2,400 <sup>AD</sup> 280,000 <sup>B</sup> 560,000 <sup>C</sup><br>1,800 <sup>AD</sup> 130,000 <sup>B</sup> 250,000 <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n/v<br>n/v                                                                                             | 5.2 U<br>5.2 U                                                                                 | 5.6 U<br>5.6 U                                                                                    | 5.0 U<br>5.0 U                                                                               | 5.1 U<br>5.1 U                                                                             | 5.1 U<br>5.1 U                                                                                     | 5.2 U<br>5.2 U                                                                                    | 5.3 U<br>5.3 U                                                                                               | 5.5 U<br>5.5 U                                                                             | 5.2 U<br>5.2 U                                                                             | 5.1 U<br>5.1 U                                                                                    | 110 U<br>110 U                                                                                       | 6.2 U<br>6.2 U                                                                        | 5.1 U<br>5.1 U                                                                                                       | 6.0 U<br>6.0 U                                                                            |
| Dichlorodifluoromethane (Freon 12)                                                                                                                                | μg/kg          | 1,800 130,000 250,000 100,000 CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n/v                                                                                                    | 5.2 U                                                                                          | 5.6 U                                                                                             | 5.0 U                                                                                        | 5.1 U                                                                                      | 5.1 U                                                                                              | 5.2 U                                                                                             | 5.3 U                                                                                                        | 5.5 U                                                                                      | 5.2 U                                                                                      | 5.1 U                                                                                             | 110 U                                                                                                | 6.2 U                                                                                 | 5.1 U                                                                                                                | 6.0 U                                                                                     |
| Dichloroethane, 1,1-                                                                                                                                              | μg/kg          | 270 <sup>AD</sup> 240.000 <sup>B</sup> 480.000 <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n/v                                                                                                    | 5.2 U                                                                                          | 5.6 U                                                                                             | 5.0 U                                                                                        | 5.1 U                                                                                      | 5.1 U                                                                                              | 5.2 U                                                                                             | 5.3 U                                                                                                        | 5.5 U                                                                                      | 5.2 U                                                                                      | 5.1 U                                                                                             | 110 U                                                                                                | 6.2 U                                                                                 | 5.1 U                                                                                                                | 6.0 U                                                                                     |
| Dichloroethane, 1,2-                                                                                                                                              | μg/kg          | 20 <sub>m</sub> <sup>A</sup> 30,000 <sup>B</sup> 60,000 <sup>C</sup> 20 <sub>a</sub> <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n/v                                                                                                    | 5.2 U                                                                                          | 5.6 U                                                                                             | 5.0 U                                                                                        | 5.1 U                                                                                      | 5.1 U                                                                                              | 5.2 U                                                                                             | 5.3 U                                                                                                        | 5.5 U                                                                                      | 5.2 U                                                                                      | 5.1 U                                                                                             | 110 U                                                                                                | 6.2 U                                                                                 | 5.1 U                                                                                                                | 6.0 U                                                                                     |
| Dichloroethene, 1,1-                                                                                                                                              | μg/kg          | 330 <sup>AD</sup> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n/v                                                                                                    | 5.2 U                                                                                          | 5.6 U                                                                                             | 5.0 U                                                                                        | 5.1 U                                                                                      | 5.1 U                                                                                              | 5.2 U                                                                                             | 5.3 U                                                                                                        | 5.5 U                                                                                      | 5.2 U                                                                                      | 5.1 U                                                                                             | 110 U                                                                                                | 6.2 U                                                                                 | 5.1 U                                                                                                                | 6.0 U                                                                                     |
| Dichloroethene, cis-1,2-                                                                                                                                          | μg/kg          | 250 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n/v<br>n/v                                                                                             | 5.2 U                                                                                          | 5.6 U                                                                                             | 5.0 U<br>5.0 U                                                                               | 5.1 U                                                                                      | 5.1 U<br>5.1 U                                                                                     | 5.2 U                                                                                             | 5.3 U                                                                                                        | 5.5 U<br>5.5 U                                                                             | 5.2 U                                                                                      | 5.1 U                                                                                             | 110 U                                                                                                | 6.2 U                                                                                 | 5.1 U                                                                                                                | 6.0 U<br>6.0 U                                                                            |
| Dichloroethene, trans-1,2-<br>Dichloropropane, 1,2-                                                                                                               | μg/kg<br>μg/kg | 190 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup><br>100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup>                                  | 5.2 U<br>5.2 U                                                                                 | 5.6 U<br>5.6 U                                                                                    | 5.0 U                                                                                        | 5.1 U<br>5.1 U                                                                             | 5.1 U                                                                                              | 5.2 U<br>5.2 U                                                                                    | 5.3 U<br>5.3 U                                                                                               | 5.5 U                                                                                      | 5.2 U<br>5.2 U                                                                             | 5.1 U<br>5.1 U                                                                                    | 110 U<br>110 U                                                                                       | 6.2 U<br>6.2 U                                                                        | 5.1 U<br>5.1 U                                                                                                       | 6.0 U                                                                                     |
| Dichloropropene, cis-1,3-                                                                                                                                         | μg/kg          | 100,000a 500,000c 1,000,000d 100,000d 1 | n/v                                                                                                    | 5.2 U                                                                                          | 5.6 U                                                                                             | 5.0 U                                                                                        | 5.1 U                                                                                      | 5.1 U                                                                                              | 5.2 U                                                                                             | 5.3 U                                                                                                        | 5.5 U                                                                                      | 5.2 U                                                                                      | 5.1 U                                                                                             | 110 U                                                                                                | 6.2 U                                                                                 | 5.1 U                                                                                                                | 6.0 U                                                                                     |
| Dichloropropene, trans-1,3-                                                                                                                                       | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>b</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n/v                                                                                                    | 5.2 U                                                                                          | 5.6 U                                                                                             | 5.0 U                                                                                        | 5.1 U                                                                                      | 5.1 U                                                                                              | 5.2 U                                                                                             | 5.3 U                                                                                                        | 5.5 U                                                                                      | 5.2 U                                                                                      | 5.1 U                                                                                             | 110 U                                                                                                | 6.2 U                                                                                 | 5.1 U                                                                                                                | 6.0 U                                                                                     |
| Ethylbenzene                                                                                                                                                      | μg/kg          | 1,000 <sup>AD</sup> 390,000 <sup>B</sup> 780,000 <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n/v                                                                                                    | 5.2 U                                                                                          | 5.6 U                                                                                             | 5.0 U                                                                                        | 5.1 U                                                                                      | 5.1 U                                                                                              | 5.2 U                                                                                             | 5.3 U                                                                                                        | 5.5 U                                                                                      | 5.2 U                                                                                      | 5.1 U                                                                                             | 110 U                                                                                                | 6.2 U                                                                                 | 5.1 U                                                                                                                | 6.0 U                                                                                     |
| Ethylene Dibromide (Dibromoethane, 1,2-)                                                                                                                          | μg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/v                                                                                                    | 5.2 U                                                                                          | 5.6 U                                                                                             | 5.0 U                                                                                        | 5.1 U                                                                                      | 5.1 U                                                                                              | 5.2 U                                                                                             | 5.3 U                                                                                                        | 5.5 U                                                                                      | 5.2 U                                                                                      | 5.1 U                                                                                             | 110 U                                                                                                | 6.2 U                                                                                 | 5.1 U                                                                                                                | 6.0 U                                                                                     |
| Hexanone, 2- (Methyl Butyl Ketone)                                                                                                                                | μg/kg<br>μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/v<br>500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F 2,300 <sup>G</sup>                              | 26 U<br>5.2 U                                                                                  | 28 U<br>5.6 U                                                                                     | 25 U<br>5.0 U                                                                                | 25 U<br>5.1 U                                                                              | 26 U<br>5.1 U                                                                                      | 26 U<br>5.2 U                                                                                     | 27 U<br>5.3 U                                                                                                | 27 U<br>5.5 U                                                                              | 26 U<br>5.2 U                                                                              | 26 U<br>5.1 U                                                                                     | 550 U<br>110 U                                                                                       | 31 U<br>6.2 U                                                                         | 25 U<br>5.1 U                                                                                                        | 30 U<br>6.0 U                                                                             |
| Isopropylbenzene Isopropyltoluene, p- (Cymene)                                                                                                                    | μg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 100,000 <sub>d</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 100,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 500,000 <sub>a</sub> 1,000,000 <sub>a</sub> 2,300 500,000 <sub>a</sub> 1,000,000 <sub>a</sub> 10,000 G | 5.2 U                                                                                          | 5.6 U                                                                                             | 5.0 U                                                                                        | 5.1 U                                                                                      | 5.1 U                                                                                              | 5.2 U                                                                                             | 5.3 U                                                                                                        | 5.5 U                                                                                      | 5.2 U                                                                                      | 5.1 U                                                                                             | 110 U                                                                                                | 6.2 U                                                                                 | 5.1 U                                                                                                                | 6.0 U                                                                                     |
| Methyl Acetate                                                                                                                                                    | μg/kg          | 100,000a 500,000c 1,000,000d CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n/v                                                                                                    | 26 U                                                                                           | 28 U                                                                                              | 5.0 U                                                                                        | 25 U                                                                                       | 26 U                                                                                               | 26 U                                                                                              | 27 U                                                                                                         | 5.5 U                                                                                      | 5.2 U                                                                                      | 26 U                                                                                              | 550 U                                                                                                | 31 U                                                                                  | 25 U                                                                                                                 | 30 U                                                                                      |
| Methyl Ethyl Ketone (MEK) (2-Butanone)                                                                                                                            | μg/kg          | 120 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 300 <sup>G</sup>                 | 26 U                                                                                           | 28 U                                                                                              | 25 U                                                                                         | 25 U                                                                                       | 26 U                                                                                               | 26 U                                                                                              | 27 U                                                                                                         | 27 U                                                                                       | 26 UJ                                                                                      | 26 U                                                                                              | 550 U                                                                                                | 31 U                                                                                  | 25 U                                                                                                                 | 30 UJ                                                                                     |
| Methyl Isobutyl Ketone (MIBK)                                                                                                                                     | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 1,000 <sup>G</sup>               | 26 U                                                                                           | 28 U                                                                                              | 25 U                                                                                         | 25 U                                                                                       | 26 U                                                                                               | 26 U                                                                                              | 27 U                                                                                                         | 27 U                                                                                       | 26 UJ                                                                                      | 26 U                                                                                              | 550 U                                                                                                | 31 U                                                                                  | 25 U                                                                                                                 | 30 U                                                                                      |
| Methyl tert-butyl ether (MTBE)                                                                                                                                    | μg/kg          | 930 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n/v                                                                                                    | 5.2 U                                                                                          | 5.6 U                                                                                             | 5.0 U<br>5.0 U                                                                               | 5.1 U<br>5.1 U                                                                             | 5.1 U<br>5.1 U                                                                                     | 5.2 U                                                                                             | 5.3 U                                                                                                        | 5.5 U                                                                                      | 5.2 U                                                                                      | 5.1 U<br>5.1 U                                                                                    | 110 U<br>110 U                                                                                       | 6.2 U                                                                                 | 5.1 U<br>5.1 U                                                                                                       | 6.0 U                                                                                     |
| Methylcyclohexane<br>Methylene Chloride (Dichloromethane)                                                                                                         | μg/kg<br>μg/kg | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 50 <sup>AD</sup> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n/v<br>n/v                                                                                             | 5.2 U<br>5.2 U                                                                                 | 5.6 U<br>5.6 U                                                                                    | 5.0 U                                                                                        | 5.1 U<br>5.1 U                                                                             | 5.1 U<br>5.1 U                                                                                     | 5.2 U<br>5.2 U                                                                                    | 5.3 U<br>5.3 U                                                                                               | 5.5 U<br>5.5 U                                                                             | 5.2 U<br>5.2 U                                                                             | 5.1 U<br>5.1 U                                                                                    | 110 U                                                                                                | 6.2 U<br>6.2 U                                                                        | 5.1 U<br>5.1 U                                                                                                       | 6.0 U<br>6.0 U                                                                            |
| Naphthalene                                                                                                                                                       | μg/kg          | 12,000 <sup>AD</sup> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n/v                                                                                                    | 5.2 U                                                                                          | 5.6 U                                                                                             | 5.0 U                                                                                        | 5.1 U                                                                                      | 5.1 U                                                                                              | 5.2 U                                                                                             | 5.3 U                                                                                                        | 5.5 U                                                                                      | 5.2 U                                                                                      | 5.1 U                                                                                             | 110 U                                                                                                | 6.2 U                                                                                 | 5.1 U                                                                                                                | 6.0 U                                                                                     |
| Propylbenzene, n-                                                                                                                                                 | μg/kg          | 3,900 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n/v                                                                                                    | 5.2 U                                                                                          | 5.6 U                                                                                             | 5.0 U                                                                                        | 5.1 U                                                                                      | 5.1 U                                                                                              | 5.2 U                                                                                             | 5.3 U                                                                                                        | 5.5 U                                                                                      | 5.2 U                                                                                      | 5.1 U                                                                                             | 110 U                                                                                                | 6.2 U                                                                                 | 5.1 U                                                                                                                | 6.0 U                                                                                     |
| Styrene                                                                                                                                                           | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup>                                  | 5.2 U                                                                                          | 5.6 U                                                                                             | 5.0 U                                                                                        | 5.1 U                                                                                      | 5.1 U                                                                                              | 5.2 U                                                                                             | 5.3 U                                                                                                        | 5.5 U                                                                                      | 5.2 U                                                                                      | 5.1 U                                                                                             | 110 U                                                                                                | 6.2 U                                                                                 | 5.1 U                                                                                                                | 6.0 U                                                                                     |
| Tetrachloroethane, 1,1,2,2-                                                                                                                                       | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> ,500,000 <sub>c</sub> <sup>B</sup> ,1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F 600 <sup>G</sup>                                       | 5.2 U                                                                                          | 5.6 U                                                                                             | 5.0 U                                                                                        | 5.1 U                                                                                      | 5.1 U                                                                                              | 5.2 U                                                                                             | 5.3 U                                                                                                        | 5.5 U                                                                                      | 5.2 UJ                                                                                     | 5.1 U                                                                                             | 110 U                                                                                                | 6.2 U                                                                                 | 5.1 U                                                                                                                | 6.0 UJ                                                                                    |
| Tetrachloroethene (PCE) Toluene                                                                                                                                   | μg/kg<br>μg/kg | 1,300 <sup>AD</sup> 150,000 <sup>B</sup> 300,000 <sup>C</sup><br>700 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500,000a <sup>E</sup> 1,000,000a <sup>F</sup>                                                          | 5.2 U<br>5.2 U                                                                                 | 5.6 U<br>5.6 U                                                                                    | 5.0 U<br>5.0 U                                                                               | 5.1 U<br>5.1 U                                                                             | 5.1 U<br>5.1 U                                                                                     | 5.2 U<br>5.2 U                                                                                    | 5.3 U<br>5.3 U                                                                                               | 5.5 U<br>5.5 U                                                                             | 5.2 U<br>5.2 U                                                                             | 5.1 U<br>5.1 U                                                                                    | 110 U<br>110 U                                                                                       | 6.2 U<br>6.2 U                                                                        | 5.1 U<br>5.1 U                                                                                                       | 6.0 U<br>6.0 U                                                                            |
| Trichlorobenzene, 1,2,4-                                                                                                                                          | μg/kg<br>μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 3,400 <sup>G</sup>               | 5.2 U<br>5.2 U                                                                                 | 5.6 U                                                                                             | 5.0 U                                                                                        | 5.1 U<br>5.1 U                                                                             | 5.1 U<br>5.1 U                                                                                     | 5.2 U<br>5.2 U                                                                                    | 5.3 U<br>5.3 U                                                                                               | 5.5 U<br>5.5 U                                                                             | 5.2 U                                                                                      | 5.1 U<br>5.1 U                                                                                    | 110 U                                                                                                | 6.2 U                                                                                 | 5.1 U<br>5.1 U                                                                                                       | 6.0 U                                                                                     |
| Trichloroethane, 1,1,1-                                                                                                                                           | μg/kg          | 680 <sup>AD</sup> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 680 <sup>AD</sup> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n/v                                                                                                    | 5.2 U                                                                                          | 5.6 U                                                                                             | 5.0 U                                                                                        | 5.1 U                                                                                      | 5.1 U                                                                                              | 5.2 U                                                                                             | 5.3 U                                                                                                        | 5.5 U                                                                                      | 5.2 U                                                                                      | 5.1 U                                                                                             | 110 U                                                                                                | 6.2 U                                                                                 | 5.1 U                                                                                                                | 6.0 U                                                                                     |
| Trichloroethane, 1,1,2-                                                                                                                                           | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n/v                                                                                                    | 5.2 U                                                                                          | 5.6 U                                                                                             | 5.0 U                                                                                        | 5.1 U                                                                                      | 5.1 U                                                                                              | 5.2 U                                                                                             | 5.3 U                                                                                                        | 5.5 U                                                                                      | 5.2 U                                                                                      | 5.1 U                                                                                             | 110 U                                                                                                | 6.2 U                                                                                 | 5.1 U                                                                                                                | 6.0 U                                                                                     |
| Trichloroethene (TCE)                                                                                                                                             | μg/kg          | 470 <sup>AD</sup> 200,000 <sup>B</sup> 400,000 <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n/v                                                                                                    | 5.2 U                                                                                          | 5.6 U                                                                                             | 5.0 U                                                                                        | 5.1 U                                                                                      | 5.1 U                                                                                              | 5.2 U                                                                                             | 5.3 U                                                                                                        | 5.5 U                                                                                      | 5.2 U                                                                                      | 5.1 U                                                                                             | 110 U                                                                                                | 6.2 U                                                                                 | 5.1 U                                                                                                                | 6.0 U                                                                                     |
| Trichlorofluoromethane (Freon 11)                                                                                                                                 | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n/v                                                                                                    | 5.2 U                                                                                          | 5.6 U                                                                                             | 5.0 U                                                                                        | 5.1 U                                                                                      | 5.1 U                                                                                              | 5.2 U                                                                                             | 5.3 U                                                                                                        | 5.5 U                                                                                      | 5.2 U                                                                                      | 5.1 U                                                                                             | 110 U                                                                                                | 6.2 U                                                                                 | 5.1 U                                                                                                                | 6.0 U                                                                                     |
| Trichlorotrifluoroethane (Freon 113) Trimethylbenzene, 1,2,4-                                                                                                     | μg/kg<br>μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 6,000 <sup>G</sup><br>n/v        | 5.2 U<br>5.2 U                                                                                 | 5.6 U<br>5.6 U                                                                                    | 5.0 U<br>5.0 U                                                                               | 5.1 U<br>5.1 U                                                                             | 5.1 U<br>5.1 U                                                                                     | 5.2 U<br>5.2 U                                                                                    | 5.3 U<br>5.3 U                                                                                               | 5.5 U<br>5.5 U                                                                             | 5.2 U<br>5.2 U                                                                             | 5.1 U<br>5.1 U                                                                                    | 110 U<br>110 U                                                                                       | 6.2 U<br>6.2 U                                                                        | 5.1 U<br>5.1 U                                                                                                       | 6.0 U<br>6.0 U                                                                            |
| Trimethylbenzene, 1,3,5-                                                                                                                                          | μg/kg<br>μg/kg | 3,600 <sup>AD</sup> 190,000 <sup>B</sup> 380,000 <sup>C</sup><br>8,400 <sup>AD</sup> 190,000 <sup>B</sup> 380,000 <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n/v                                                                                                    | 5.2 U                                                                                          | 5.6 U                                                                                             | 5.0 U                                                                                        | 5.1 U                                                                                      | 5.1 U                                                                                              | 5.2 U                                                                                             | 5.3 U                                                                                                        | 5.5 U                                                                                      | 5.2 U                                                                                      | 5.1 U<br>5.1 U                                                                                    | 110 U                                                                                                | 6.2 U                                                                                 | 5.1 U                                                                                                                | 6.0 U                                                                                     |
| Vinyl Chloride                                                                                                                                                    | μg/kg          | 20 <sup>AD</sup> 13,000 <sup>B</sup> 27,000 <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n/v                                                                                                    | 5.2 U                                                                                          | 5.6 U                                                                                             | 5.0 UJ                                                                                       | 5.1 U                                                                                      | 5.1 U                                                                                              | 5.2 U                                                                                             | 5.3 U                                                                                                        | 5.5 UJ                                                                                     | 5.2 UJ                                                                                     | 5.1 U                                                                                             | 110 U                                                                                                | 6.2 U                                                                                 | 5.1 U                                                                                                                | 6.0 U                                                                                     |
| Xylene, m & p-                                                                                                                                                    | μg/kg          | 260 <sub>p</sub> <sup>A</sup> 500,000 <sub>c,p</sub> <sup>B</sup> 1,000,000 <sub>d,p</sub> <sup>C</sup> 1,600 <sub>p</sub> <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n/v                                                                                                    | 10 U                                                                                           | 11 U                                                                                              | 10 U                                                                                         | 10 U                                                                                       | 10 U                                                                                               | 10 U                                                                                              | 11 U                                                                                                         | 11 U                                                                                       | 10 U                                                                                       | 10 U                                                                                              | 220 U                                                                                                | 12 U                                                                                  | 10 U                                                                                                                 | 12 U                                                                                      |
| Xylene, o-                                                                                                                                                        | μg/kg          | 260 <sub>p</sub> <sup>A</sup> 500,000 <sub>c,p</sub> <sup>B</sup> 1,000,000 <sub>d,p</sub> <sup>C</sup> 1,600 <sub>p</sub> <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n/v                                                                                                    | 5.2 U                                                                                          | 5.6 U                                                                                             | 5.0 U                                                                                        | 5.1 U                                                                                      | 5.1 U                                                                                              | 5.2 U                                                                                             | 5.3 U                                                                                                        | 5.5 U                                                                                      | 5.2 U                                                                                      | 5.1 U                                                                                             | 110 U                                                                                                | 6.2 U                                                                                 | 5.1 U                                                                                                                | 6.0 U                                                                                     |
| Xylenes, Total                                                                                                                                                    | μg/kg          | 260 <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 1,600 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n/v                                                                                                    | 10 U                                                                                           | 11 U                                                                                              | 10 U                                                                                         | 10 U                                                                                       | 10 U                                                                                               | 10 U                                                                                              | 11 U                                                                                                         | 11 U                                                                                       | 10 U                                                                                       | 10 U                                                                                              | 220 U                                                                                                | 12 U                                                                                  | 10 U                                                                                                                 | 12 U                                                                                      |
| Total VOC                                                                                                                                                         | μg/kg          | n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/v                                                                                                    | ND                                                                                             | 53                                                                                                | ND                                                                                           | 42                                                                                         | 35                                                                                                 | 95                                                                                                | 92                                                                                                           | 28                                                                                         | 70                                                                                         | 120                                                                                               | 110                                                                                                  | ND                                                                                    | ND                                                                                                                   | ND                                                                                        |
| VOC - Tentatively Identified Compounds                                                                                                                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                        | 1                                                                                              |                                                                                                   | 1                                                                                            |                                                                                            |                                                                                                    |                                                                                                   |                                                                                                              | ı                                                                                          |                                                                                            |                                                                                                   |                                                                                                      | 1                                                                                     |                                                                                                                      |                                                                                           |
| Total VOC TICs                                                                                                                                                    | μg/kg          | n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/v                                                                                                    | -                                                                                              | -                                                                                                 | -                                                                                            | 5.4                                                                                        | -                                                                                                  | -                                                                                                 | -                                                                                                            | -                                                                                          | -                                                                                          | 8.7                                                                                               | 20,880                                                                                               | -                                                                                     | -                                                                                                                    | -                                                                                         |

See notes on last page.



190500898 Page 6 of 18  $\label{lem:u:light} \begin{tabular}{ll} U:\line 190500898\line 1905008\line 1905008\li$ 

Summary of Analytical Results for RI Soil Samples IRM Work Plan #2
820 Linden Ave Site, BCP #C828200 820 Linden Avenue, Pittsford, NY

|                                                                                |                         |                                                                                                                                                                                                                                                                                                  |                                                                                              |                           |                           |                           |                           |                           |                  |                |              |                           |                           |                 |                  | -                         |
|--------------------------------------------------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|------------------|----------------|--------------|---------------------------|---------------------------|-----------------|------------------|---------------------------|
| Sample Location                                                                | 1 1                     |                                                                                                                                                                                                                                                                                                  | ĺ                                                                                            |                           | B/MW-101                  |                           | I B/MV                    | V-102                     | B-102a           | l              | B/MW-103     |                           | 1                         | B/MV            | V-104            |                           |
|                                                                                |                         |                                                                                                                                                                                                                                                                                                  |                                                                                              | 05 1:140                  |                           | 05 1:140                  |                           |                           |                  | 04 1::140      |              | 04 1:140                  | 00 1::1 40                |                 |                  | 00 1:140                  |
| Sample Date                                                                    |                         |                                                                                                                                                                                                                                                                                                  |                                                                                              | 25-Jul-18                 | 25-Jul-18                 | 25-Jul-18                 | 23-Jul-18                 | 23-Jul-18                 | 24-Jul-18        | 24-Jul-18      | 24-Jul-18    | 24-Jul-18                 | 26-Jul-18                 | 26-Jul-18       | 26-Jul-18        | 26-Jul-18                 |
| Sample ID                                                                      |                         |                                                                                                                                                                                                                                                                                                  |                                                                                              | LIN-B101-S1               | LIN-FD1-S                 | LIN-B101-S2               | LIN-B102-S1               | LIN-B102-S2               | LIN-B102a-S      | LIN-B103-S1    | LIN-B103-S3  | LIN-B103-S2               | LIN-B104-S2               | LIN-FD2-S       | LIN-B104-S1      | LIN-B104-S3               |
| Sample Depth                                                                   |                         |                                                                                                                                                                                                                                                                                                  |                                                                                              | 15 - 17 ft                | 15 - 17 ft                | 57 - 60 ft                | 2 - 3.5 ft                | 50.5 - 52 ft              | 7 - 8 ft         | 8 - 10 ft      | 19 - 19.5 ft | 49 - 51 ft                | 4 - 8 ft                  | 4 - 8 ft        | 10.5 - 11 ft     | 45 - 49 ft                |
| Sampling Company                                                               |                         |                                                                                                                                                                                                                                                                                                  |                                                                                              | STANTEC                   | STANTEC                   | STANTEC                   | STANTEC                   | STANTEC                   | STANTEC          | STANTEC        | STANTEC      | STANTEC                   | STANTEC                   | STANTEC         | STANTEC          | STANTEC                   |
| Laboratory                                                                     |                         |                                                                                                                                                                                                                                                                                                  |                                                                                              | TAL                       | TAL                       | TAL                       | TAL                       | TAL                       | TAL              | TAL            | TAL          | TAL                       | TAL                       | TAL             | TAL              | TAL                       |
| Laboratory Work Order                                                          |                         |                                                                                                                                                                                                                                                                                                  |                                                                                              | 460-161448-1              | 460-161448-1              | 460-161448-1              | 460-161196-1              | 460-161196-1              | 460-161196-1     | 460-161196-1   | 460-161448-1 | 460-161196-1              | 460-161448-1              | 460-161448-1    | 460-161448-1     | 460-161448-1              |
| Laboratory Sample ID                                                           |                         |                                                                                                                                                                                                                                                                                                  |                                                                                              | 460-161448-1              | 460-161448-3              | 460-161448-2              | 460-161196-1              | 460-161196-2              | 460-161196-3     | 460-161196-4   | 460-161448-4 | 460-161196-5              | 460-161448-8              | 460-161448-6    | 460-161448-7     | 460-161448-9              |
| Sample Type                                                                    | Units                   | NYSDEC-Part 375                                                                                                                                                                                                                                                                                  | NYSDEC CP-51                                                                                 |                           | Field Duplicate           |                           |                           |                           |                  |                |              |                           |                           | Field Duplicate | 1                |                           |
| Campio Typo                                                                    | 00                      |                                                                                                                                                                                                                                                                                                  | 1 110220 01 01                                                                               |                           | i ioia Bapiloato          |                           |                           |                           |                  |                |              |                           |                           | o.u Dupilouto   | 1                |                           |
| General Chemistry                                                              |                         |                                                                                                                                                                                                                                                                                                  |                                                                                              |                           |                           |                           |                           |                           |                  |                |              |                           |                           |                 |                  |                           |
| Cyanide                                                                        | mg/kg                   | 27, AB 10,000 C 40, D                                                                                                                                                                                                                                                                            | n/v                                                                                          | -                         | -                         | -                         | -                         | -                         | I -              | 1.1 U          | -            | 1.2 U                     | 0.27 U                    | 0.28 U          | -                | 0.25 U                    |
| Metals                                                                         |                         | 27 10,000   10                                                                                                                                                                                                                                                                                   |                                                                                              |                           |                           |                           |                           |                           | I                |                |              |                           |                           |                 |                  |                           |
| Aluminum                                                                       | mg/kg                   | 10,000 <sub>e</sub> ABCD                                                                                                                                                                                                                                                                         | 10,000 <sub>a</sub> EFG                                                                      | 3,450                     | 4,030                     | 2,000                     | 4,900                     | 2,720                     | _                | 3,260          | _            | 2,060                     | 10.400 <sup>ABCDEFG</sup> | _               | _                | 1,820                     |
| Antimony                                                                       | mg/kg                   | 10,000 <sub>e</sub> ABCD                                                                                                                                                                                                                                                                         | 10,000a EFG                                                                                  | 32.0 U                    | 29.1 U                    | 37.8 U                    | 33.6 UJ                   | 36.0 U                    |                  | 30.2 U         |              | 37.0 U                    | 34.2 U                    |                 | 1                | 30.1 U                    |
| Arsenic                                                                        | mg/kg                   | 13 <sub>0</sub> <sup>A</sup> 16 <sub>0</sub> <sup>BCD</sup>                                                                                                                                                                                                                                      | 10,000a<br>n/v                                                                               | 4.3 U                     | 3.9 U                     | 5.0 U                     | 1.1 J                     | 1.3 J                     | _                | 1.2 J          | _            | 1.4 J                     | 4.7                       | _               | · ·              | 4.0 U                     |
|                                                                                |                         |                                                                                                                                                                                                                                                                                                  |                                                                                              |                           |                           |                           |                           |                           | -                |                | -            |                           | ***                       | -               | · .              |                           |
| Barium                                                                         | mg/kg                   | 350 <sub>n</sub> <sup>A</sup> 400 <sup>B</sup> 10,000 <sub>e</sub> <sup>C</sup> 820 <sup>D</sup>                                                                                                                                                                                                 | n/v                                                                                          | 12.2                      | 14.0                      | 21.8                      | 13.2                      | 18.9                      | -                | 9.0            | -            | 21.5                      | 53.8                      | -               | · ·              | 13.6                      |
| Beryllium                                                                      | mg/kg                   | 7.2 <sup>A</sup> 590 <sup>B</sup> 2,700 <sup>C</sup> 47 <sup>D</sup>                                                                                                                                                                                                                             | n/v                                                                                          | 0.43 U                    | 0.39 U                    | 0.50 U                    | 0.27 J                    | 0.22 J                    | -                | 0.25 J         | -            | 0.15 J                    | 0.63                      | -               | · ·              | 0.40 U                    |
| Cadmium                                                                        | mg/kg                   | 2.5 <sub>n</sub> <sup>A</sup> 9.3 <sup>B</sup> 60 <sup>C</sup> 7.5 <sup>D</sup>                                                                                                                                                                                                                  | n/v                                                                                          | 0.43 U                    | 0.39 U                    | 0.50 U                    | 0.45 U                    | 0.48 U                    | -                | 0.40 U         | -            | 0.49 U                    | 0.46 U                    | -               |                  | 0.40 U                    |
| Calcium                                                                        | mg/kg                   | 10,000 <sub>e</sub> <sup>ABCD</sup>                                                                                                                                                                                                                                                              | 10,000 <sub>a</sub> <sup>EFG</sup>                                                           | 30,400 <sup>ABCDEFG</sup> | 26,000 <sup>ABCDEFG</sup> | 27,800 <sup>ABCDEFG</sup> | 1,730                     | 34,600 <sup>ABCDEFG</sup> | -                | 1,610          | -            | 25,000 <sup>ABCDEFG</sup> | 3,220                     | -               | - '              | 26,600 <sup>ABCDEFG</sup> |
| Chromium                                                                       | mg/kg                   | 30 <sub>0</sub> A 1.500 B 6.800 C NS D                                                                                                                                                                                                                                                           | n/v                                                                                          | 6.4                       | 7.4                       | 4.9                       | 7.1                       | 5.7                       | _                | 5.3            | _            | 3.5                       | 15.4                      | _               | - '              | 3.1                       |
| Cobalt                                                                         | mg/kg                   | 10,000 <sub>e</sub> ABCD                                                                                                                                                                                                                                                                         | 10,000 EFG                                                                                   | 3.1                       | 3.6                       | 1.8                       | 3.7                       | 2.4                       | l <u>-</u>       | 2.9            | _            | 1.8                       | 9.0                       | _               | · - '            | 1.9                       |
|                                                                                | mg/kg                   | 50 <sup>A</sup> 270 <sup>B</sup> 10,000 <sub>e</sub> <sup>C</sup> 1,720 <sup>D</sup>                                                                                                                                                                                                             | 10,000 <sub>a</sub>                                                                          | 6.3                       | 7.9                       | 4.2                       | 8.2                       | 6.1                       |                  | 6.4            | _            | 4.3                       | 18.5                      | _               |                  | 4.2                       |
| Copper                                                                         |                         |                                                                                                                                                                                                                                                                                                  |                                                                                              |                           |                           |                           | 0.Z                       |                           | -                |                | -            |                           | 10.0                      | -               | · .              |                           |
| Iron                                                                           | mg/kg                   | 10,000 <sub>e</sub> ABCD                                                                                                                                                                                                                                                                         | 10,000 <sub>a</sub> EFG                                                                      | 8,580                     | 9,880                     | 5,520                     | 10,800 <sup>ABCDEFG</sup> | 8,260                     | -                | 8,030          | -            | 5,520                     | 22,700 <sup>ABCDEFG</sup> | -               | · - '            | 4,920                     |
| Lead                                                                           | mg/kg                   | 63 <sub>n</sub> <sup>A</sup> 1,000 <sup>B</sup> 3,900 <sup>C</sup> 450 <sup>D</sup>                                                                                                                                                                                                              | n/v                                                                                          | 2.5                       | 3.0                       | 2.5 U                     | 2.5                       | 2.4                       | -                | 2.4            | -            | 1.3 J                     | 8.2                       | -               | - '              | 2.0 U                     |
| Magnesium                                                                      | mg/kg                   | 10,000 <sub>e</sub> ABCD                                                                                                                                                                                                                                                                         | n/v                                                                                          | 6,100                     | 6,460                     | 6,290                     | 1,410                     | 8,260                     | l <u>-</u>       | 1,210          | l <u>-</u>   | 5,480                     | 3,800                     | _               | · - '            | 5,110                     |
| =                                                                              |                         |                                                                                                                                                                                                                                                                                                  |                                                                                              |                           |                           |                           |                           |                           | _                |                |              |                           |                           |                 |                  |                           |
| Manganese                                                                      | mg/kg                   | 1,600 <sub>n</sub> <sup>A</sup> 10,000 <sub>e</sub> <sup>BC</sup> 2,000 <sub>a</sub> <sup>D</sup>                                                                                                                                                                                                | n/v                                                                                          | 267                       | 310                       | 171                       | 305                       | 221                       | -                | 234            | -            | 162                       | 551                       | -               | · ·              | 157                       |
| Mercury                                                                        | mg/kg                   | $0.18_{n}^{A} 2.8_{k}^{B} 5.7_{k}^{C} 0.73^{D}$                                                                                                                                                                                                                                                  | n/v                                                                                          | 0.018 U                   | 0.018 U                   | 0.021 U                   | 0.019 U                   | 0.020 U                   | -                | 0.017 U        | -            | 0.021 U                   | 0.020 U                   | -               | · - '            | 0.017 U                   |
| Nickel                                                                         | mg/kg                   | 30 <sup>A</sup> 310 <sup>B</sup> 10,000 <sub>e</sub> <sup>C</sup> 130 <sup>D</sup>                                                                                                                                                                                                               | n/v                                                                                          | 10.7 U                    | 9.7 U                     | 12.6 U                    | 7.1 J                     | 5.1 J                     | -                | 5.7 J          | -            | 4.5 J                     | 21.2                      | -               | - '              | 10.0 U                    |
| Potassium                                                                      | mg/kg                   | 10,000 <sub>e</sub> ABCD                                                                                                                                                                                                                                                                         | n/v                                                                                          | 533                       | 595                       | 356                       | 452                       | 445                       | -                | 379            | -            | 340                       | 1,310                     | -               | - '              | 284                       |
| Selenium                                                                       | mg/kg                   | 3.9 <sub>a</sub> <sup>A</sup> 1,500 <sup>B</sup> 6,800 <sup>C</sup> 4 <sub>a</sub> <sup>D</sup>                                                                                                                                                                                                  | n/v                                                                                          | 8.5 U                     | 7.8 U                     | 10.1 U                    | 8.9 U                     | 9.6 U                     | -                | 8.1 U          | -            | 9.9 U                     | 9.1 U                     | -               | i - '            | 8.0 U                     |
| Silver                                                                         | mg/kg                   | 2 <sup>A</sup> 1,500 <sup>B</sup> 6,800 <sup>C</sup> 8.3 <sup>D</sup>                                                                                                                                                                                                                            | n/v                                                                                          | 1.1 U                     | 0.97 U                    | 1.3 U                     | 1.1 U                     | 1.2 U                     | _                | 1.0 U          | _            | 1.2 U                     | 1.1 U                     | _               | _ '              | 1.0 U                     |
| Sodium                                                                         | mg/kg                   | 10,000 <sub>a</sub> ABCD                                                                                                                                                                                                                                                                         | n/v                                                                                          | 298 U                     | 272 U                     | 353 U                     | 313 U                     | 119 J                     | _                | 111 J          | _            | 100 J                     | 319 U                     | _               | _ '              | 281 U                     |
| Thallium                                                                       | mg/kg                   | 10,000 <sub>e</sub> <sup>ABCD</sup>                                                                                                                                                                                                                                                              | 10,000 <sub>a</sub>                                                                          | 12.8 U                    | 11.6 U                    | 15.1 U                    | 13.4 U                    | 14.4 U                    | _                | 12.1 U         | _            | 14.8 U                    | 13.7 U                    |                 |                  | 12.0 U                    |
|                                                                                |                         | 10,000 <sub>e</sub> ABCD                                                                                                                                                                                                                                                                         | 10,000 <sub>a</sub><br>10,000 <sub>a</sub> <sup>EFG</sup>                                    |                           |                           |                           |                           |                           | -                |                | -            |                           |                           | -               | · .              |                           |
| Vanadium                                                                       | mg/kg                   | 10,000 <sub>e</sub> ====                                                                                                                                                                                                                                                                         |                                                                                              | 10.0                      | 11.6                      | 6.6                       | 13.8                      | 11.6                      | -                | 9.8            | -            | 6.8                       | 23.1                      | -               | · ·              | 6.7                       |
| Zinc                                                                           | mg/kg                   | 109 <sub>n</sub> <sup>A</sup> 10,000 <sub>e</sub> <sup>BC</sup> 2,480 <sup>D</sup>                                                                                                                                                                                                               | n/v                                                                                          | 14.2                      | 16.6                      | 8.7                       | 16.7                      | 12.0                      | -                | 14.2           | -            | 8.4                       | 41.4                      | -               |                  | 12.9                      |
| Polychlorinated Biphenyls                                                      |                         |                                                                                                                                                                                                                                                                                                  |                                                                                              |                           |                           |                           |                           |                           |                  |                |              |                           |                           |                 |                  |                           |
| Aroclor 1016                                                                   | μg/kg                   | ABCD                                                                                                                                                                                                                                                                                             | n/v                                                                                          | -                         |                           | -                         | -                         | -                         | -                | 36 U           | -            | 41 U                      | 44 U                      | 42 U            | -                | 35 U                      |
| Aroclor 1221                                                                   | μg/kg                   | °ABCD                                                                                                                                                                                                                                                                                            | n/v                                                                                          |                           |                           |                           |                           |                           |                  | 36 U           |              | 41 U                      | 44 U                      | 42 U            | ·                | 35 U                      |
| Aroclor 1232                                                                   | μg/kg<br>μg/kg          | OABCD                                                                                                                                                                                                                                                                                            | n/v                                                                                          | -                         |                           | _                         | · -                       |                           | _                | 36 U           | _            | 41 U                      | 44 U                      | 42 U            | · ·              | 35 U                      |
|                                                                                |                         | OABCD                                                                                                                                                                                                                                                                                            |                                                                                              | -                         | -                         | -                         | -                         | -                         | -                |                | -            |                           |                           |                 | · .              |                           |
| Aroclor 1242                                                                   | μg/kg                   | ABCD                                                                                                                                                                                                                                                                                             | n/v                                                                                          | -                         | -                         | -                         | -                         | -                         | -                | 36 U           | -            | 41 U                      | 44 U                      | 42 U            | · ·              | 35 U                      |
| Aroclor 1248                                                                   | μg/kg                   | ABCD                                                                                                                                                                                                                                                                                             | n/v                                                                                          | -                         | -                         | -                         | -                         | -                         | -                | 36 U           | -            | 41 U                      | 44 U                      | 42 U            | · - '            | 35 U                      |
| Aroclor 1254                                                                   | μg/kg                   | ABCD ABCD                                                                                                                                                                                                                                                                                        | n/v                                                                                          | -                         | -                         | -                         | -                         | -                         | -                | 36 U           | -            | 41 U                      | 44 U                      | 42 U            | - '              | 35 U                      |
| Aroclor 1260                                                                   | μg/kg                   | ABCD                                                                                                                                                                                                                                                                                             | n/v                                                                                          | -                         | -                         | -                         | -                         | -                         | -                | 36 U           | -            | 41 U                      | 44 U                      | 42 U            | - '              | 35 U                      |
| Aroclor 1262                                                                   | μg/kg                   | ABCD                                                                                                                                                                                                                                                                                             | n/v                                                                                          | -                         | -                         | -                         | -                         | -                         | -                | 36 U           | -            | 41 U                      | 44 U                      | 42 U            | - '              | 35 U                      |
| Aroclor 1268                                                                   | μg/kg                   | ABCD                                                                                                                                                                                                                                                                                             | n/v                                                                                          | -                         | _                         | _                         | _                         | _                         | _                | 36 U           | _            | 41 U                      | 44 U                      | 42 U            | _ '              | 35 U                      |
| Polychlorinated Biphenyls (PCBs)                                               | μg/kg                   | 100 <sup>A</sup> 1.000 <sup>B</sup> 25.000 <sup>C</sup> 3.200 <sup>D</sup>                                                                                                                                                                                                                       | n/v                                                                                          | -                         | _                         | _                         | _                         | _                         | _                | ND             | _            | ND                        | ND                        | ND              | i -              | ND                        |
| Pesticides                                                                     | 110.01                  | 100 1,000 20,000 0,200                                                                                                                                                                                                                                                                           |                                                                                              |                           |                           |                           |                           |                           | 1                | 1              |              |                           |                           |                 |                  |                           |
| Aldrin                                                                         | ualka                   | 5 <sub>0</sub> <sup>A</sup> 680 <sup>B</sup> 1,400 <sup>C</sup> 190 <sup>D</sup>                                                                                                                                                                                                                 | n/u                                                                                          |                           |                           |                           |                           |                           |                  | 3.6 U          |              | 4.1 UJ                    | 4.4 U                     | 4.2 U           |                  | 3.5 U                     |
| BHC, alpha-                                                                    | μg/kg                   |                                                                                                                                                                                                                                                                                                  | n/v<br>n/v                                                                                   | _                         | _                         | _                         | 1 -                       | _                         | 1 -              | 3.6 U          | _            | 4.1 UJ                    | 4.4 U                     | 4.2 U           |                  | 3.5 U                     |
|                                                                                | μg/kg                   | 20 <sup>AD</sup> 3,400 <sup>B</sup> 6,800 <sup>C</sup>                                                                                                                                                                                                                                           |                                                                                              | -                         | _                         | _                         | · -                       | -                         | · -              |                | _            |                           |                           |                 |                  |                           |
| BHC, beta-                                                                     | μg/kg                   | 36 <sup>A</sup> 3,000 <sup>B</sup> 14,000 <sup>C</sup> 90 <sup>D</sup>                                                                                                                                                                                                                           | n/v                                                                                          | -                         | -                         | -                         | I -                       | -                         | -                | 3.6 U          | -            | 4.1 UJ                    | 4.4 U                     | 4.2 U           | · ·              | 3.5 U                     |
| BHC, delta-                                                                    | μg/kg                   | 40 <sub>n</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 250 <sup>D</sup>                                                                                                                                                                              | n/v                                                                                          | -                         | -                         | -                         | -                         | -                         | -                | 3.6 U          | -            | 4.1 UJ                    | 4.4 U                     | 4.2 U           |                  | 3.5 U                     |
| Camphechlor (Toxaphene)                                                        | μg/kg                   | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                         | n/v                                                                                          | -                         | -                         | -                         | -                         | -                         | -                | 36 U           | -            | 41 UJ                     | 44 U                      | 42 U            | '                | 35 U                      |
| Chlordane, alpha-                                                              | μg/kg                   | 94 <sup>A</sup> 24,000 <sup>B</sup> 47,000 <sup>C</sup> 2,900 <sup>D</sup>                                                                                                                                                                                                                       | n/v                                                                                          | -                         | -                         | -                         | -                         | _                         | -                | 3.6 U          | _            | 4.1 UJ                    | 4.4 U                     | 4.2 U           | - '              | 3.5 U                     |
| Chlordane, trans- (gamma-Chlordane)                                            | μg/kg                   | 100,000 <sub>a</sub> <sup>A</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                                                                                                                                                                                            | n/v                                                                                          | -                         | _                         | _                         | -                         | _                         | -                | 3.6 U          | _            | 4.1 UJ                    | 4.4 U                     | 4.2 U           | - '              | 3.5 U                     |
| DDD (p,p'-DDD)                                                                 | μg/kg                   | 3.3 <sub>m</sub> <sup>A</sup> 92,000 <sup>B</sup> 180,000 <sup>C</sup> 14,000 <sup>D</sup>                                                                                                                                                                                                       | n/v                                                                                          | _                         | _                         | _                         | I -                       | _                         | _                | 3.6 U          | _            | 4.1 UJ                    | 4.4 U                     | 4.2 U           | · - '            | 3.5 U                     |
|                                                                                |                         |                                                                                                                                                                                                                                                                                                  | n/v                                                                                          | _                         |                           |                           | _                         |                           | _                | 3.6 U          | _            | 4.1 UJ                    | 4.4 U                     | 4.2 U           |                  | 3.5 U                     |
| DDE (p,p'-DDE)                                                                 | μg/kg                   | 3.3 <sub>m</sub> <sup>A</sup> 62,000 <sup>B</sup> 120,000 <sup>C</sup> 17,000 <sup>D</sup>                                                                                                                                                                                                       |                                                                                              | -                         | _                         | _                         | · -                       | -                         | · -              |                | _            |                           |                           |                 | · ·              |                           |
| DDT (p,p'-DDT)                                                                 | μg/kg                   | $3.3_{\rm m}^{\rm A}47,000^{\rm B}94,000^{\rm C}136,000^{\rm D}$                                                                                                                                                                                                                                 | n/v                                                                                          | -                         | -                         | -                         | -                         | -                         | -                | 3.6 U          | -            | 4.1 UJ                    | 4.4 U                     | 4.2 U           |                  | 3.5 U                     |
| Dieldrin                                                                       | μg/kg                   | 5 <sub>n</sub> A 1,400 <sup>B</sup> 2,800 <sup>C</sup> 100 <sup>D</sup>                                                                                                                                                                                                                          | n/v                                                                                          | -                         | -                         | _                         | -                         | _                         | -                | 3.6 U          | _            | 4.1 UJ                    | 4.4 U                     | 4.2 U           | '                | 3.5 U                     |
| Endosulfan I                                                                   | μg/kg                   | 2,400, a 200,000, b 920,000, c 102,000 b                                                                                                                                                                                                                                                         | n/v                                                                                          | _                         | _                         | _                         | l <u>-</u>                | _                         | _                | 3.6 U          | _            | 4.1 UJ                    | 4.4 U                     | 4.2 U           |                  | 3.5 U                     |
| Endosulfan II                                                                  |                         |                                                                                                                                                                                                                                                                                                  | n/v                                                                                          | _                         | _                         |                           |                           | I                         |                  | 3.6 U          | Ī .          | 4.1 UJ                    | 4.4 U                     | 4.2 U           |                  | 3.5 U                     |
| Endoundti II                                                                   | μg/kg                   | 2,400, <sup>A</sup> 200,000, <sup>B</sup> 920,000, <sup>C</sup> 102,000 <sup>D</sup>                                                                                                                                                                                                             |                                                                                              | _                         | _                         | _                         | 1 -                       | _                         | · -              |                | _            |                           |                           |                 | · .              |                           |
| Fundamentary College                                                           | μg/kg                   | 2,400 <sub>i</sub> <sup>A</sup> 200,000 <sub>i</sub> <sup>B</sup> 920,000 <sub>i</sub> <sup>C</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                                                                                                                          | n/v                                                                                          | -                         | -                         | -                         | · -                       | -                         | -                | 3.6 U          | -            | 4.1 UJ                    | 4.4 U                     | 4.2 U           |                  | 3.5 U                     |
| Endosulfan Sulfate                                                             | μg/kg                   | 14 <sup>A</sup> 89,000 <sup>B</sup> 410,000 <sup>C</sup> 60 <sup>D</sup>                                                                                                                                                                                                                         | n/v                                                                                          | -                         | -                         | -                         | I -                       | -                         | -                | 3.6 U          | -            | 4.1 UJ                    | 4.4 U                     | 4.2 U           | · ·              | 3.5 U                     |
| Endrin                                                                         |                         | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                         | n/v                                                                                          | -                         | -                         | -                         | -                         | -                         | -                | 3.6 U          | -            | 4.1 UJ                    | 4.4 U                     | 4.2 U           | · - '            | 3.5 U                     |
| Endrin<br>Endrin Aldehyde                                                      | μg/kg                   |                                                                                                                                                                                                                                                                                                  |                                                                                              |                           |                           | 1                         | 1                         |                           | i .              | 3.6 U          |              | 4.4.111                   | 4.4 U                     | 4.011           |                  | 3.5 U                     |
| Endrin                                                                         | μg/kg<br>μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                         | n/v                                                                                          | -                         | -                         | -                         | -                         | -                         | -                | 3.0 U          | -            | 4.1 UJ                    | 4.4 0                     | 4.2 U           |                  | 0.0 0                     |
| Endrin<br>Endrin Aldehyde                                                      | µg/kg                   | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                         | n/v<br>n/v                                                                                   | -<br>-                    | -                         | -                         | -                         | -                         | -                | 3.6 U          | -            | 4.1 UJ                    | 4.4 U                     | 4.2 U           | ļ <u>-</u>       | 3.5 U                     |
| Endrin<br>Endrin Aldehyde<br>Endrin Ketone                                     | μg/kg<br>μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>42 <sup>A</sup> 15,000 <sup>B</sup> 29,000 <sup>C</sup> 380 <sup>D</sup>                                                                                                             | n/v                                                                                          | -<br>-<br>-               | -<br>-<br>-               | -                         | -                         | -                         | -<br>-<br>-      |                | -<br>-<br>-  |                           |                           |                 | -<br>-<br>-      |                           |
| Endrin<br>Endrin Aldehyde<br>Endrin Ketone<br>Heptachlor<br>Heptachlor Epoxide | μg/kg<br>μg/kg<br>μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>42 <sup>A</sup> 15,000 <sup>B</sup> 29,000 <sup>C</sup> 380 <sup>D</sup><br>100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup> | n/v<br>500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 20 <sup>G</sup> | -<br>-<br>-               | -<br>-<br>-               | -<br>-<br>-               | -                         | <u> </u>                  | -                | 3.6 U<br>3.6 U | -            | 4.1 UJ<br>4.1 UJ          | 4.4 U<br>4.4 U            | 4.2 U<br>4.2 U  | -                | 3.5 U<br>3.5 U            |
| Endrin<br>Endrin Aldehyde<br>Endrin Ketone<br>Heptachlor                       | μg/kg<br>μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>42 <sup>A</sup> 15,000 <sup>B</sup> 29,000 <sup>C</sup> 380 <sup>D</sup>                                                                                                             | n/v                                                                                          | -<br>-<br>-<br>-          | -<br>-<br>-               | -<br>-<br>-<br>-          | -                         | -<br>-<br>-<br>-          | -<br>-<br>-<br>- | 3.6 U          | -<br>-<br>-  | 4.1 UJ                    | 4.4 U                     | 4.2 U           | -<br>-<br>-<br>- | 3.5 U                     |

See notes on last page.



190500898 Page 7 of 18 

820 Linden Avenue, Pittsford, NY

| Sample Location                                                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                              |                | B/MW-101        |                | B/M\                | N-102          | B-102a         |                | B/MW-103            |                |                | B/MV            | V-104          |                |
|--------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------|-----------------|----------------|---------------------|----------------|----------------|----------------|---------------------|----------------|----------------|-----------------|----------------|----------------|
| Sample Date                                                        |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                            | 25-Jul-18      | 25-Jul-18       | 25-Jul-18      | 23-Jul-18           | 23-Jul-18      | 24-Jul-18      | 24-Jul-18      | 24-Jul-18           | 24-Jul-18      | 26-Jul-18      | 26-Jul-18       | 26-Jul-18      | 26-Jul-18      |
| mple ID                                                            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                              | LIN-B101-S1    | LIN-FD1-S       | LIN-B101-S2    | LIN-B102-S1         | LIN-B102-S2    | LIN-B102a-S    | LIN-B103-S1    | LIN-B103-S3         | LIN-B103-S2    | LIN-B104-S2    | LIN-FD2-S       | LIN-B104-S1    | LIN-B104-S     |
| mple Depth                                                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                              | 15 - 17 ft     | 15 - 17 ft      | 57 - 60 ft     | 2 - 3.5 ft          | 50.5 - 52 ft   | 7 - 8 ft       | 8 - 10 ft      | 19 - 19.5 ft        | 49 - 51 ft     | 4 - 8 ft       | 4 - 8 ft        | 10.5 - 11 ft   | 45 - 49 ft     |
| ampling Company                                                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                              | STANTEC<br>TAL | STANTEC<br>TAL  | STANTEC<br>TAL | STANTEC             | STANTEC<br>TAL | STANTEC<br>TAL | STANTEC<br>TAL | STANTEC             | STANTEC<br>TAL | STANTEC<br>TAL | STANTEC<br>TAL  | STANTEC<br>TAL | STANTEC<br>TAL |
| aboratory                                                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                              | 460-161448-1   | 460-161448-1    | 460-161448-1   | TAL<br>460-161196-1 | 460-161196-1   | 460-161196-1   | 460-161196-1   | TAL<br>460-161448-1 | 460-161196-1   | 460-161448-1   | 460-161448-1    | 460-161448-1   | 460-161448     |
| aboratory Work Order.<br>aboratory Sample ID                       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                              | 460-161448-1   | 460-161448-3    | 460-161448-2   | 460-161196-1        | 460-161196-2   | 460-161196-3   | 460-161196-4   | 460-161448-4        | 460-161196-5   | 460-161448-8   | 460-161448-6    | 460-161448-7   | 460-161448     |
| Sample Type                                                        | Units          | NYSDEC-Part 375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NYSDEC CP-51                                                                                                 | 400-101440-1   | Field Duplicate | 400-101440-2   | 400-101100-1        | 400-101100-2   | 400-101100-0   | 400-101100-4   | 400-101440-4        | 400-101100-0   | 400-101440-0   | Field Duplicate | 400-101440-1   | 400-101440     |
| Semi-Volatile Organic Compounds                                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                              |                |                 |                |                     |                |                |                |                     |                |                |                 |                |                |
| cenaphthene                                                        | μg/kg          | 20,000 <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 98,000 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/v                                                                                                          | -              | -               | -              | -                   | -              | -              | 370 U          | -                   | 420 U          | 450 U          | 420 U           | -              | 360 U          |
| cenaphthylene                                                      | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 107,000 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n/v                                                                                                          | -              | -               | -              | -                   | -              | -              | 370 U          | -                   | 420 U          | 450 U          | 420 U           | -              | 360 U          |
| cetophenone                                                        | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n/v                                                                                                          | -              | -               | -              | -                   | -              | -              | 370 U          | -                   | 420 U          | 450 U          | 420 U           | -              | 360 U          |
| nthracene                                                          | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n/v                                                                                                          | -              | -               | -              | -                   | -              | -              | 370 U          | -                   | 420 U          | 450 U          | 420 U           | -              | 360 U          |
| trazine                                                            | µg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n/v                                                                                                          | -              | -               | -              | -                   | -              | -              | 370 UJ         | -                   | 420 UJ         | 450 U          | 420 U           | -              | 360 U          |
| enzaldehyde<br>enzo(a)anthracene                                   | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 1,000,000 <sub>d</sub> <sup>D</sup><br>1.000 <sub>a</sub> <sup>A</sup> 5.600 <sup>B</sup> 11.000 <sup>C</sup> 1.000 <sub>a</sub> <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n/v<br>n/v                                                                                                   | -              | -               | -              | -                   | -              | -              | 370 U<br>370 U | -                   | 420 U<br>420 U | 450 U<br>450 U | 420 U<br>420 U  | -              | 360 U<br>360 U |
|                                                                    | μg/kg          | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                              | -              | -               | -              | -                   | -              | -              | 370 U          | -                   | 420 U          | 450 U          | 420 U           | -              | 360 U          |
| enzo(a)pyrene                                                      | μg/kg          | 1,000 <sub>n</sub> <sup>A</sup> 1,000 <sub>g</sub> <sup>B</sup> 1,100 <sup>C</sup> 22,000 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n/v                                                                                                          | -              | -               | -              | -                   | -              | -              |                | -                   |                |                |                 | -              |                |
| nzo(b)fluoranthene                                                 | μg/kg          | 1,000 <sub>n</sub> 5,600 <sup>B</sup> 11,000 <sup>C</sup> 1,700 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n/v                                                                                                          | -              | -               | -              | -                   | -              | -              | 370 U          | -                   | 420 U          | 450 U          | 420 U           | -              | 360 U          |
| nzo(g,h,i)perylene                                                 | μg/kg          | 100,000 <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n/v                                                                                                          | -              | -               | -              | -                   | -              | -              | 370 U          | -                   | 420 U          | 450 U          | 420 U           | -              | 360 U          |
| enzo(k)fluoranthene                                                | µg/kg          | 800 <sub>n</sub> 56,000 <sup>B</sup> 110,000 <sup>C</sup> 1,700 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n/v                                                                                                          | -              | -               | -              | -                   | -              | <u> </u>       | 370 U          | -                   | 420 U          | 450 U          | 420 U           | -              | 360 U          |
| phenyl, 1,1'- (Biphenyl)<br>s(2-Chloroethoxy)methane               | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 1,000,000 <sub>d</sub> <sup>D</sup><br>100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F<br>n/v                                                       | -              | _               | _              | -                   | -              | <u> </u>       | 370 U<br>370 U | -                   | 420 U<br>420 U | 450 U<br>450 U | 420 U<br>420 U  | -              | 360 U<br>360 U |
| s(2-Chloroethoxy)methane<br>s(2-Chloroethyl)ether                  | μg/kg<br>μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n/v<br>n/v                                                                                                   |                |                 | ]              |                     |                |                | 370 U          |                     | 420 U          | 450 U          | 420 U           |                | 360 U          |
| s(2-Chloroisopropyl)ether (2,2-oxybis(1-Chloropropane))            | μg/kg<br>μg/kg | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 100,000 <sub>d</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 100,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n/v                                                                                                          | ] -            | -               | ] -            | -                   | -              |                | 370 U          |                     | 420 U          | 450 U          | 420 U           | -              | 360 U          |
| s(2-Ethylhexyl)phthalate (DEHP)                                    | μg/kg          | 100,000 <sub>a</sub> 300,000 <sub>c</sub> 1,000,000 <sub>d</sub> 100,000 <sub>d</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 435,000 <sup>G</sup>                   | _              | _               | _              | _                   | _              |                | 370 U          | _                   | 420 U          | 450 U          | 420 U           | _              | 360 U          |
| omophenyl Phenyl Ether, 4-                                         | μg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n/v                                                                                                          | -              | -               | -              | -                   | -              | - 1            | 370 U          | -                   | 420 U          | 450 U          | 420 U           | -              | 360 U          |
| tyl Benzyl Phthalate                                               | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 122,000 <sup>G</sup>                   | -              | -               | -              | -                   | -              | -              | 370 U          | -                   | 420 U          | 450 U          | 420 U           | -              | 360 U          |
| prolactam                                                          | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n/v                                                                                                          | -              | -               | -              | -                   | -              | -              | 370 U          | -                   | 420 U          | 450 U          | 420 U           | -              | 360 U          |
| ırbazole                                                           | μg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n/v                                                                                                          | -              | -               | -              | -                   | -              | -              | 370 U          | -                   | 420 U          | 450 U          | 420 U           | -              | 360 U          |
| nloro-3-methyl phenol, 4-                                          | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n/v                                                                                                          | -              | -               | -              | -                   | -              | -              | 370 U          | -                   | 420 U          | 450 U          | 420 U           | -              | 360 U          |
| nloroaniline, 4-                                                   | µg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F 220 <sup>G</sup>                                             | -              | -               | -              | -                   | -              | -              | 370 U          | -                   | 420 U          | 450 U          | 420 U           | -              | 360 U          |
| loronaphthalene, 2-                                                | μg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n/v                                                                                                          | -              | -               | -              | -                   | -              | -              | 370 U<br>370 U | -                   | 420 U<br>420 U | 450 U<br>450 U | 420 U<br>420 U  | -              | 360 U<br>360 U |
| lorophenol, 2- (ortho-Chlorophenol)<br>lorophenyl Phenyl Ether, 4- | μg/kg<br>μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F<br>n/v                                                       | _              | _               | _              | _                   | _              |                | 370 U          | _                   | 420 U          | 450 U          | 420 U           | _              | 360 U          |
| nrysene                                                            | µg/kg          | 1,000 <sub>o</sub> <sup>A</sup> 56,000 <sup>B</sup> 110,000 <sup>C</sup> 1,000 <sub>o</sub> <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n/v                                                                                                          |                |                 | _              |                     | _              |                | 370 U          | _                   | 420 U          | 450 U          | 420 U           | _              | 360 U          |
| esol, o- (Methylphenol, 2-)                                        | μg/kg          | 330 <sub>m</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 330 <sub>f</sub> <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n/v                                                                                                          |                |                 | _              |                     |                |                | 370 U          | _                   | 420 U          | 450 U          | 420 U           | _              | 360 U          |
| resol, p- (Methylphenol, 4-)                                       | µg/kg          | 330 <sub>m</sub> A 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 330 <sub>f</sub> 330 <sub>f</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n/v                                                                                                          | _              | _               | _              |                     | _              |                | 710 U          | _                   | 810 U          | 860 U          | 820 U           | _              | 700 U          |
| ibenzo(a,h)anthracene                                              | µg/kg          | 330 <sub>m</sub> <sup>A</sup> 560 <sup>B</sup> 1,100 <sup>C</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n/v                                                                                                          | -              | _               | _              | -                   | _              | -              | 370 U          | _                   | 420 U          | 450 U          | 420 U           | _              | 360 U          |
| ibenzofuran                                                        | µg/kg          | 7,000 <sup>A</sup> 350,000 <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 210,000 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 6,200 <sup>G</sup>                     | -              | _               | _              | -                   | -              | -              | 370 U          | -                   | 420 U          | 450 U          | 420 U           | -              | 360 U          |
| ibutyl Phthalate (DBP)                                             | μg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F 8,100 <sup>G</sup>                                           | -              | -               | -              | -                   | -              | -              | 370 U          | -                   | 420 U          | 450 U          | 420 U           | -              | 360 U          |
| ichlorobenzidine, 3,3'-                                            | µg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _ n/v                                                                                                        | -              | -               | -              | -                   | -              | -              | 370 U          | -                   | 420 U          | 450 U          | 420 U           | -              | 360 U          |
| ichlorophenol, 2,4-                                                | µg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 400 <sup>G</sup>                       | -              | -               | -              | -                   | -              | -              | 370 U          | -                   | 420 U          | 450 U          | 420 U           | -              | 360 U          |
| iethyl Phthalate                                                   | μg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>E</sup> 7,100 <sup>G</sup>                     | -              | -               | -              | -                   | -              | -              | 370 U          | -                   | 420 U          | 450 U          | 420 U           | -              | 360 U          |
| imethyl Phthalate                                                  | µg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 500,000a 1,000,000a 27,000 n/v                                                                               | -              | -               | -              | -                   | -              | -              | 370 U<br>370 U | -                   | 420 U<br>420 U | 450 U<br>450 U | 420 U<br>420 U  | -              | 360 U<br>360 U |
| imethylphenol, 2,4-<br>initro-o-cresol, 4,6-                       | μg/kg<br>μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n/v                                                                                                          | -              | -               | -              | -                   | _              | -              | 710 U          | -                   | 810 U          | 860 U          | 820 U           | -              | 700 U          |
| initrophenol, 2,4-                                                 | μg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 100,000 <sub>d</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 500,000 <sub>d</sub> 500,0 | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F 200 <sup>G</sup>                                             |                | _               | _              |                     | _              | _              | 710 U          | _                   | 810 U          | 860 U          | 820 U           | _              | 700 U          |
| initrotoluene, 2,4-                                                | µg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n/v                                                                                                          | _              | _               | _              | _                   | _              | _              | 370 U          | _                   | 420 U          | 450 U          | 420 U           | _              | 360 U          |
| initrotoluene, 2,6-                                                | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 1,000/170 <sub>b.s1</sub> <sup>G</sup> | -              | _               | _              | -                   | -              | -              | 370 U          | -                   | 420 U          | 450 U          | 420 U           | -              | 360 U          |
| i-n-Octyl phthalate                                                | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 120,000 <sup>G</sup>                   | -              | -               | -              | -                   | -              | -              | 370 U          | -                   | 420 U          | 450 U          | 420 U           | -              | 360 U          |
| luoranthene                                                        | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n/v                                                                                                          | -              | -               | -              | -                   | -              | -              | 370 U          | -                   | 420 U          | 450 U          | 420 U           | -              | 360 U          |
| uorene                                                             | μg/kg          | 30,000 <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 386,000 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/v                                                                                                          | -              | -               | -              | -                   | -              | -              | 370 U          | -                   | 420 U          | 450 U          | 420 U           | -              | 360 U          |
| exachlorobenzene                                                   | μg/kg          | 330 <sub>m</sub> <sup>A</sup> 6,000 <sup>B</sup> 12,000 <sup>C</sup> 3,200 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 1,400 <sup>G</sup>                     | -              | -               | -              | -                   | -              | -              | 370 U          | -                   | 420 U          | 450 U          | 420 U           | -              | 360 U          |
| exachlorobutadiene (Hexachloro-1,3-butadiene)                      | µg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n/v                                                                                                          | -              | -               | -              | -                   | -              | <u> </u>       | 370 U          | -                   | 420 U          | 450 U          | 420 U           | -              | 360 U          |
| exachlorocyclopentadiene                                           | µg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F                                                              | -              | _               | _              | -                   | -              | <u> </u>       | 370 U<br>370 U | -                   | 420 U<br>420 U | 450 U<br>450 U | 420 U<br>420 U  | -              | 360 U<br>360 U |
| xachloroethane                                                     | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>500 <sub>a</sub> <sup>A</sup> 5,600 <sup>B</sup> 11,000 <sup>C</sup> 8,200 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n/v<br>n/v                                                                                                   | -              | _               | _              | _                   | _              | <u> </u>       | 370 U<br>370 U | -                   | 420 U<br>420 U | 450 U<br>450 U | 420 U<br>420 U  | _              | 360 U          |
| deno(1,2,3-cd)pyrene                                               | μg/kg          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _ '''                                                                                                        | -              | _               | _              | _                   | _              | <u> </u>       | 370 U<br>370 U | -                   | 420 U<br>420 U | 450 U<br>450 U | 420 U<br>420 U  | _              |                |
| phorone                                                            | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500,000 E 1,000,000 F 4,400 G                                                                                | -              | -               | -              | -                   | -              | -              | 370 U          | -                   | 420 U          | 450 U          | 420 U           | -              | 360 U<br>360 U |
| ethylnaphthalene, 2-<br>phthalene                                  | μg/kg<br>μg/kg | 100,000 A 500,000 B 1,000,000 C 12,000 AD 500,000 B 1,000,000 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 500,000 <sub>a</sub> 1,000,000 <sub>a</sub> 36,400 <sup>G</sup>                                              | ] -            | ] [             | [              | ]                   | [              | ] [            | 370 U          | -                   | 420 U          | 450 U          | 420 U           | -              | 360 U          |
| roaniline, 2-                                                      | μg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 100,000 <sub>d</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 500,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F 400 <sup>G</sup>                                             | _              | _               | _              | _                   | _              |                | 710 U          | _                   | 810 U          | 860 U          | 820 U           | _              | 700 U          |
| roaniline, 3-                                                      | µg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 500,000° 1,000,000° 500°                                                                                     | -              | _               | _              | -                   | _              | _              | 710 U          | _                   | 810 U          | 860 U          | 820 U           | _              | 700 U          |
| roaniline, 4-                                                      | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n/v                                                                                                          | -              | -               | -              | -                   | -              | -              | 710 U          | -                   | 810 U          | 860 U          | 820 U           | -              | 700 U          |
| robenzene                                                          | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 69,000 <sup>E</sup> 140,000 <sup>F</sup> 170 <sub>b</sub> <sup>G</sup>                                       | -              | -               | -              | -                   | -              | -              | 370 U          | -                   | 420 U          | 450 U          | 420 U           | -              | 360 U          |
| ophenol, 2-                                                        | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 300 <sup>G</sup>                       | -              | -               | -              | -                   | -              | -              | 370 U          | -                   | 420 U          | 450 U          | 420 U           | -              | 360 U          |
| rophenol, 4-                                                       | µg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 100 <sup>G</sup>                       | -              | -               | -              | -                   | -              | -              | 710 U          | -                   | 810 U          | 860 U          | 820 U           | -              | 700 U          |
| Nitrosodi-n-Propylamine                                            | μg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n/v                                                                                                          | -              | -               | -              | -                   | -              | · .            | 370 U          | -                   | 420 U          | 450 U          | 420 U           | -              | 360 U          |
| Nitrosodiphenylamine                                               | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>800 <sub>m</sub> <sup>A</sup> 6,700 <sup>B</sup> 55,000 <sup>C</sup> 800 <sub>c</sub> <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F                                                              | -              | -               | -              | -                   | -              | <u> </u>       | 370 U<br>710 U | -                   | 420 U<br>810 U | 450 U<br>860 U | 420 U<br>820 U  | -              | 360 U<br>700 U |
| entachlorophenol<br>denanthrene                                    | μg/kg          | 100,000 <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n/v<br>n/v                                                                                                   | -              | _               | _              | _                   | _              |                | 370 U          | -                   | 420 U          | 450 U          | 420 U           | _              | 360 U          |
| ienanthrene<br>nenol                                               | μg/kg<br>μg/kg | 330 <sub>m</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 330 <sub>f</sub> <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n/v<br>n/v                                                                                                   | ]              | ] -             | ] -            | ]                   |                |                | 370 U          | -                   | 420 U          | 450 U          | 420 U           | ]              | 360 U          |
| rene                                                               | μg/kg          | 100,000 <sup>A</sup> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 330 <sub>f</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n/v                                                                                                          | _              | _               | _              | _                   | _              | ] -            | 370 U          | _                   | 420 U          | 450 U          | 420 U           | _              | 360 U          |
| chlorophenol, 2,4,5-                                               | µg/kg          | 100,000 300,000 1,000,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 100 <sup>G</sup>                       | _              | _               | _              | _                   | _              | _              | 370 U          | _                   | 420 U          | 450 U          | 420 U           | _              | 360 U          |
| ichlorophenol, 2,4,6-                                              | μg/kg          | 100,000a A 500,000c B 1,000,000d CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 500,000a 1,000,000a 100                                                                                      | -              | -               | -              | -                   | -              | - 1            | 370 U          | -                   | 420 U          | 450 U          | 420 U           | -              | 360 U          |
| otal SVOC                                                          | μg/kg          | n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n/v                                                                                                          |                |                 |                |                     |                | <u> </u>       | ND             |                     | ND             | ND             | ND              |                | ND             |
| VOC - Tentatively Identified Compounds                             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                              |                |                 |                |                     |                |                |                |                     |                |                |                 |                |                |
| tal SVOC TICs                                                      | μg/kg          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n/v                                                                                                          | -              |                 |                | _                   | _              |                | 350 JN         | -                   | 6,300 J        | -              | -               |                |                |



190500898 Page 8 of 18  $\label{lem:u:light} \begin{tabular}{ll} U:\line 190500898\line 1905008\line 1905008\li$ 

820 Linden Avenue, Pittsford, NY

| Sample Location                           | Í     | I                                                                                                                                       | 1                                                                                         | Ì            | B/MW-101        |                  | I B/M\       | V-102        | B-102a       | Ì            | B/MW-103     |                     | Ì            | B/MV            | V-104        |                  |
|-------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------|-----------------|------------------|--------------|--------------|--------------|--------------|--------------|---------------------|--------------|-----------------|--------------|------------------|
| Sample Date                               |       |                                                                                                                                         |                                                                                           | 25-Jul-18    | 25-Jul-18       | 25-Jul-18        | 23-Jul-18    | 23-Jul-18    | 24-Jul-18    | 24-Jul-18    | 24-Jul-18    | 24-Jul-18           | 26-Jul-18    | 26-Jul-18       | 26-Jul-18    | 26-Jul-18        |
| Sample ID                                 |       |                                                                                                                                         |                                                                                           | LIN-B101-S1  | LIN-FD1-S       | LIN-B101-S2      | LIN-B102-S1  | LIN-B102-S2  | LIN-B102a-S  | LIN-B103-S1  | LIN-B103-S3  | LIN-B103-S2         | LIN-B104-S2  | LIN-FD2-S       | LIN-B104-S1  | LIN-B104-S3      |
| Sample Depth                              |       |                                                                                                                                         |                                                                                           | 15 - 17 ft   | 15 - 17 ft      | 57 - 60 ft       | 2 - 3.5 ft   | 50.5 - 52 ft | 7 - 8 ft     | 8 - 10 ft    | 19 - 19.5 ft | 49 - 51 ft          | 4 - 8 ft     | 4 - 8 ft        | 10.5 - 11 ft | 45 - 49 ft       |
| Sampling Company                          |       |                                                                                                                                         |                                                                                           | STANTEC      | STANTEC         | STANTEC          | STANTEC      | STANTEC      | STANTEC      | STANTEC      | STANTEC      | STANTEC             | STANTEC      | STANTEC         | STANTEC      | STANTEC          |
| Laboratory                                |       |                                                                                                                                         |                                                                                           | TAL          | TAL             | TAL              | TAL          | TAL          | TAL          | TAL          | TAL          | TAL                 | TAL          | TAL             | TAL          | TAL              |
| Laboratory Work Order                     |       |                                                                                                                                         |                                                                                           | 460-161448-1 | 460-161448-1    | 460-161448-1     | 460-161196-1 | 460-161196-1 | 460-161196-1 | 460-161196-1 | 460-161448-1 | 460-161196-1        | 460-161448-1 | 460-161448-1    | 460-161448-1 | 460-161448-1     |
| Laboratory Sample ID                      |       |                                                                                                                                         |                                                                                           | 460-161448-1 | 460-161448-3    | 460-161448-2     | 460-161196-1 | 460-161196-2 | 460-161196-3 | 460-161196-4 | 460-161448-4 | 460-161196-5        | 460-161448-8 | 460-161448-6    | 460-161448-7 | 460-161448-9     |
| Sample Type                               | Units | NYSDEC-Part 375                                                                                                                         | NYSDEC CP-51                                                                              | 400-101440-1 | Field Duplicate | 400-101440-2     | 400-101130-1 | 400-101130-2 | 400-101130-3 | 400-101130-4 | 400-101440-4 | 400-101130-3        | 400-101440-0 | Field Duplicate | 400-101440-7 | 400-101440-3     |
|                                           |       |                                                                                                                                         |                                                                                           |              |                 |                  |              |              |              |              |              |                     |              |                 |              |                  |
| Volatile Organic Compounds                |       |                                                                                                                                         |                                                                                           |              |                 |                  |              |              |              |              |              |                     |              |                 |              |                  |
| Acetone                                   | μg/kg | 50 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                  | n/v                                                                                       | 5.3 U        | 7.3             | 63 <sup>AD</sup> | 23 J-        | 50 J-        | 49 J-        | 5.2 UJ       | 5.8 UJ       | 61 J- <sup>AD</sup> | -            | -               | 10           | 59 <sup>AD</sup> |
| Benzene                                   | μg/kg | 60 <sup>AD</sup> 44,000 <sup>B</sup> 89,000 <sup>C</sup>                                                                                | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Bromodichloromethane                      | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Bromoform (Tribromomethane)               | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Bromomethane (Methyl bromide)             | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Butylbenzene, n-                          | μg/kg | 12,000 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                              | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Butylbenzene, sec- (2-Phenylbutane)       | μg/kg | 11,000 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                              | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Butylbenzene, tert-                       | μg/kg | 5,900 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                               | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Carbon Disulfide                          | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 2,700 <sup>G</sup>  | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Carbon Tetrachloride (Tetrachloromethane) | μg/kg | 760 <sup>AD</sup> 22,000 <sup>B</sup> 44,000 <sup>C</sup>                                                                               | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Chlorobenzene (Monochlorobenzene)         | μg/kg | 1,100 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                               | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Chloroethane (Ethyl Chloride)             | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 1,900 <sup>G</sup>  | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Chloroform (Trichloromethane)             | μg/kg | 370 <sup>AD</sup> 350,000 <sup>B</sup> 700,000 <sup>C</sup>                                                                             | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Chloromethane                             | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Cyclohexane                               | μg/kg | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                     | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Dibromo-3-Chloropropane, 1,2- (DBCP)      | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Dibromochloromethane                      | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F                                           | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Dichlorobenzene, 1,2-                     | μg/kg | 1,100 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                               | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Dichlorobenzene, 1,3-                     | μg/kg | 2,400 <sup>AD</sup> 280,000 <sup>B</sup> 560,000 <sup>C</sup>                                                                           | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Dichlorobenzene, 1,4-                     | μg/kg | 1,800 <sup>AD</sup> 130,000 <sup>B</sup> 250,000 <sup>C</sup>                                                                           | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Dichlorodifluoromethane (Freon 12)        | μg/kg | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                     | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Dichloroethane, 1,1-                      | μg/kg | 270 <sup>AD</sup> 240,000 <sup>B</sup> 480,000 <sup>C</sup>                                                                             | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Dichloroethane, 1,2-                      | μg/kg | 20 <sub>m</sub> <sup>A</sup> 30,000 <sup>B</sup> 60,000 <sup>C</sup> 20 <sub>a</sub> <sup>D</sup>                                       | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Dichloroethene, 1,1-                      | μg/kg | 330 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                 | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Dichloroethene, cis-1,2-                  | μg/kg | 250 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                 | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Dichloroethene, trans-1,2-                | μg/kg | 190 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                 | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Dichloropropane, 1,2-                     | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F                                           | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Dichloropropene, cis-1,3-                 | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Dichloropropene, trans-1,3-               | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Ethylbenzene                              | μg/kg | 1,000 <sup>AD</sup> 390,000 <sup>B</sup> 780,000 <sup>C</sup>                                                                           | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Ethylene Dibromide (Dibromoethane, 1,2-)  | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Hexanone, 2- (Methyl Butyl Ketone)        | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                | n/v                                                                                       | 5.3 U        | 5.2 U           | 6.2 U            | 5.1 UJ       | 6.0 UJ       | 5.0 UJ       | 5.2 UJ       | 5.8 UJ       | 5.6 UJ              | -            | -               | 6.1 U        | 5.0 U            |
| Isopropylbenzene                          | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 2,300 <sup>G</sup>  | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Isopropyltoluene, p- (Cymene)             | μg/kg | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                     | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 10,000 <sup>G</sup> | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Methyl Acetate                            | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                | n/v                                                                                       | 5.3 U        | 5.2 U           | 6.2 U            | 5.1 UJ       | 6.0 UJ       | 5.0 UJ       | 5.2 UJ       | 5.8 UJ       | 5.6 UJ              | -            | -               | 6.1 U        | 5.0 U            |
| Methyl Ethyl Ketone (MEK) (2-Butanone)    | μg/kg | 120 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                 | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 300 <sup>G</sup>    | 5.3 U        | 5.2 U           | 6.2 U            | 5.1 UJ       | 6.0 UJ       | 5.0 UJ       | 5.2 UJ       | 5.8 UJ       | 5.6 UJ              | -            | -               | 6.1 U        | 5.0 U            |
| Methyl Isobutyl Ketone (MIBK)             | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 1,000 <sup>G</sup>  | 5.3 U        | 5.2 U           | 6.2 U            | 5.1 UJ       | 6.0 UJ       | 5.0 UJ       | 5.2 UJ       | 5.8 UJ       | 5.6 UJ              | -            | -               | 6.1 U        | 5.0 U            |
| Methyl tert-butyl ether (MTBE)            | μg/kg | 930 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                 | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Methylcyclohexane                         | μg/kg | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                     | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Methylene Chloride (Dichloromethane)      | μg/kg | 50 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                  | n/v                                                                                       | 2.6          | 1.8             | 5.6              | 3.8 UJ       | 16 J-        | 1.0 UJ       | 1.4 UJ       | 5.5 J-       | 8.5 UJ              | -            | -               | 12           | 1.1              |
| Naphthalene                               | μg/kg | 12,000 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                              | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 0.22 J-      | 0.21 J-      | 1.2 UJ       | 0.21 J-             | -            | -               | 1.2 U        | 0.99 U           |
| Propylbenzene, n-                         | μg/kg | 3,900 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                               | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Styrene                                   | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F                                           | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Tetrachloroethane, 1,1,2,2-               | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 600 <sup>G</sup>    | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Tetrachloroethene (PCE)                   | μg/kg | 1,300 <sup>AD</sup> 150,000 <sup>B</sup> 300,000 <sup>C</sup>                                                                           | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F                                           | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 0.62 J-      | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Toluene                                   | μg/kg | 700 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                 | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Trichlorobenzene, 1,2,4-                  | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 3,400 <sup>G</sup>  | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Trichloroethane, 1,1,1-                   | μg/kg | 680 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                 | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Trichloroethane, 1,1,2-                   | μg/kg | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                     | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Trichloroethene (TCE)                     | μg/kg | 470 <sup>AD</sup> 200,000 <sup>B</sup> 400,000 <sup>C</sup>                                                                             | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 0.21 J-      | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Trichlorofluoromethane (Freon 11)         | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 0.64 J-      | 0.65 J-      | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Trichlorotrifluoroethane (Freon 113)      | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 6,000 <sup>G</sup>  | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Trimethylbenzene, 1,2,4-                  | μg/kg | 3,600 <sup>AD</sup> 190,000 <sup>B</sup> 380,000 <sup>C</sup>                                                                           | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 0.10 J-      | 0.12 J-      | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Trimethylbenzene, 1,3,5-                  | μg/kg | 8,400 <sup>AD</sup> 190,000 <sup>B</sup> 380,000 <sup>C</sup>                                                                           | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Vinyl Chloride                            | μg/kg | 20 <sup>AD</sup> 13,000 <sup>B</sup> 27,000 <sup>C</sup>                                                                                | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Xylene, m & p-                            | μg/kg | 260 <sub>p</sub> <sup>A</sup> 500,000 <sub>c,p</sub> <sup>B</sup> 1,000,000 <sub>d,p</sub> <sup>C</sup> 1,600 <sub>p</sub> <sup>D</sup> | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Xylene, o-                                | μg/kg | 260 <sub>p</sub> <sup>A</sup> 500,000 <sub>c,p</sub> <sup>B</sup> 1,000,000 <sub>d,p</sub> <sup>C</sup> 1,600 <sub>p</sub> <sup>D</sup> | n/v                                                                                       | 1.1 U        | 1.0 U           | 1.2 U            | 1.0 UJ       | 1.2 UJ       | 1.0 UJ       | 1.0 UJ       | 1.2 UJ       | 1.1 UJ              | -            | -               | 1.2 U        | 0.99 U           |
| Xylenes, Total                            | μg/kg | 260 <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 1,600 <sup>D</sup>                               | n/v                                                                                       | 2.1 U        | 2.1 U           | 2.5 U            | 2.0 UJ       | 2.4 UJ       | 2.0 UJ       | 2.1 UJ       | 2.3 UJ       | 2.3 UJ              | -            | -               | 2.5 U        | 2.0 U            |
| Total VOC                                 | μg/kg | n/v                                                                                                                                     | n/v                                                                                       | 2.6          | 9.1             | 68.6             | 23           | 67.47        | 49.97        | 0.33         | 5.5          | 61.21               | -            | -               | 22           | 60.1             |
| VOC - Tentatively Identified Compounds    |       |                                                                                                                                         |                                                                                           |              |                 |                  |              |              |              |              |              |                     |              |                 |              |                  |
| Total VOC TICs                            | μg/kg | n/v                                                                                                                                     | n/v                                                                                       |              |                 |                  | -            |              | -            | -            |              |                     | -            | -               | -            |                  |
|                                           |       |                                                                                                                                         |                                                                                           |              |                 |                  |              |              |              |              |              |                     |              |                 |              |                  |

See notes on last page.



190500898 Page 9 of 18  $\label{lem:u:light} \begin{tabular}{ll} U:\line 190500898\line 1905008\line 1905008\li$ 

820 Linden Avenue, Pittsford, NY

| Onwella Lacation                       | ĵ              |                                                                                                                                                                                          | İ                                                                                          | İ                | B/MW-105     | i                         | B-106              | B-107              | B-108              | l 84           | 109             | DP-1                      |              | S-1a         | SS-            | daha           |              | i-1c         |
|----------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------|--------------|---------------------------|--------------------|--------------------|--------------------|----------------|-----------------|---------------------------|--------------|--------------|----------------|----------------|--------------|--------------|
| Sample Location Sample Date            |                |                                                                                                                                                                                          |                                                                                            | 27-Jul-18        | 27-Jul-18    | 27-Jul-18                 | B-106<br>31-Jul-18 | 8-107<br>31-Jul-18 | 8-108<br>30-Jul-18 | 30-Jul-18      | 30-Jul-18       | 30-Jul-18                 | 30-Jul-18    | 30-Jul-18    | 30-Jul-18      | 30-Jul-18      | 30-Jul-18    | 30-Jul-18    |
| Sample ID                              |                |                                                                                                                                                                                          |                                                                                            | LIN-B105-S1      | LIN-B105-S3  | LIN-B105-S2               | LIN-B106-S         | LIN-B107-S         | LIN-B108-s         | LIN-B109-s     | LIN-FD3-s       | LIN-DP-s                  | LIN-SS1a-t-s | LIN-SS1a-b-s | LIN-SS1-t-s    | LIN-SS1-b-s    | LIN-SS1c-t-s | LIN-SS1c-b-s |
| Sample Depth                           |                |                                                                                                                                                                                          |                                                                                            | 4 - 8 ft         | 15 - 16 ft   | 35 - 38 ft                | 7 - 7.5 ft         | 3.2 - 3.7 ft       | 5 - 8 ft           | 5 - 8 ft       | 5 - 8 ft        | 2 5. 6                    | 0 - 2 in     | 2 - 12 in    | 0 - 2 in       | 2 - 12 in      | 0 - 2 in     | 2 - 12 in    |
| Sampling Company                       |                |                                                                                                                                                                                          |                                                                                            | STANTEC          | STANTEC      | STANTEC                   | STANTEC            | STANTEC            | STANTEC            | STANTEC        | STANTEC         | STANTEC                   | STANTEC      | STANTEC      | STANTEC        | STANTEC        | STANTEC      | STANTEC      |
| Laboratory                             |                |                                                                                                                                                                                          |                                                                                            | TAL              | TAL          | TAL                       | TAL                | TAL                | TAL                | TAL            | TAL             | TAL                       | TAL          | TAL          | TAL            | TAL            | TAL          | TAL          |
| Laboratory Work Order                  |                |                                                                                                                                                                                          |                                                                                            | 460-161452-1     | 460-161452-1 | 460-161452-1              | 460-161797-1       | 460-161797-1       | 460-161576-1       | 460-161576-1   | 460-161576-1    | 460-161576-1              | 460-161576-1 | 460-161576-1 | 460-161576-1   | 460-161576-1   | 460-161576-1 | 460-161576-1 |
| Laboratory Sample ID                   |                |                                                                                                                                                                                          |                                                                                            | 460-161452-1     | 460-161452-3 | 460-161452-2              | 460-161797-2       | 460-161797-3       | 460-161576-27      | 460-161576-28  | 460-161576-26   | 460-161576-17             | 460-161576-1 | 460-161576-2 | 460-161576-18  | 460-161576-19  | 460-161576-3 | 460-161576-4 |
| Sample Type                            | Units          | NYSDEC-Part 375                                                                                                                                                                          | NYSDEC CP-51                                                                               |                  |              |                           |                    |                    |                    |                | Field Duplicate |                           |              |              |                |                |              |              |
| General Chemistry                      |                |                                                                                                                                                                                          | •                                                                                          |                  |              |                           |                    |                    | •                  |                |                 | •                         |              |              |                |                |              |              |
| Cyanide                                | mg/kg          | 27 <sub>i</sub> <sup>AB</sup> 10,000 <sub>e I</sub> <sup>C</sup> 40 <sub>i</sub> <sup>D</sup>                                                                                            | n/v                                                                                        | 0.23 U           | -            | 0.22 U                    | -                  | -                  | -                  | 0.25 U         | -               | 0.54                      | -            | -            | -              | -              | =            | -            |
| Metals                                 |                |                                                                                                                                                                                          |                                                                                            |                  |              |                           |                    |                    |                    |                |                 |                           |              |              |                |                |              |              |
| Aluminum                               | mg/kg          | 10,000 <sub>e</sub> <sup>ABCD</sup>                                                                                                                                                      | 10,000 <sub>a</sub> <sup>EFG</sup>                                                         | 5,470            | -            | 2,350                     | -                  | -                  | 3,260              | 2,580          | 2,820           | 3,520                     | -            | -            | 6,190          | 6,360          | -            | -            |
| Antimony                               | mg/kg          | 10,000 <sub>e</sub> ABCD                                                                                                                                                                 | 10,000 <sub>a</sub> <sup>EFG</sup>                                                         | 29.0 UJ          | -            | 28.0 U                    | -                  | -                  | 32.1 U             | 28.3 U         | 32.8 U          | 31.4 U                    | -            | -            | 33.7 U         | 32.6 U         | -            | -            |
| Arsenic                                | mg/kg          | 13 <sub>n</sub> <sup>A</sup> 16 <sub>a</sub> <sup>BCD</sup>                                                                                                                              | n/v                                                                                        | 3.9 U            | -            | 3.7 U                     | -                  | -                  | 4.3 U              | 3.8 U          | 4.4 U           | 4.2 U                     | -            | -            | 4.5 U          | 4.4 U          | -            | -            |
| Barium                                 | mg/kg          | 350 <sub>n</sub> <sup>A</sup> 400 <sup>B</sup> 10,000 <sub>e</sub> <sup>C</sup> 820 <sup>D</sup>                                                                                         | n/v<br>n/v                                                                                 | 10.5             | -            | 8.8<br>0.37 U             | -                  | -                  | 13.6<br>0.43 U     | 8.9<br>0.38 U  | 9.9<br>0.44 U   | 31.2<br>0.42 U            | -            | -            | 35.1<br>0.45 U | 30.3<br>0.44 U | -            | -            |
| Beryllium<br>Cadmium                   | mg/kg<br>mg/kg | 7.2 <sup>A</sup> 590 <sup>B</sup> 2,700 <sup>C</sup> 47 <sup>D</sup><br>2.5 <sub>0</sub> <sup>A</sup> 9.3 <sup>B</sup> 60 <sup>C</sup> 7.5 <sup>D</sup>                                  | n/v                                                                                        | 0.39 U<br>0.39 U | -            | 0.37 U                    | -                  | -                  | 0.43 U             | 0.38 U         | 0.44 U          | 0.42 U                    | -            | _            | 0.45 U         | 0.44 U         | -            | _            |
| Calcium                                | mg/kg          | 10,000 <sub>e</sub> ABCD                                                                                                                                                                 | 10,000 <sub>a</sub> EFG                                                                    | 882              | _            | 27.300 <sup>ABCDEFG</sup> |                    | 1 [                | 1,790              | 1,370          | 1,510           | 61.300 <sup>ABCDEFG</sup> | _            | _            | 3,800          | 4,280          | _            | 1            |
| Chromium                               | mg/kg          | 30 <sub>n.l</sub> <sup>A</sup> 1,500 <sub>i</sub> <sup>B</sup> 6,800 <sub>i</sub> <sup>C</sup> <sub>NS.a</sub> <sup>D</sup>                                                              | n/v                                                                                        | 6.0              | I -          | 4.0                       | -                  | 1 -                | 5.9                | 4.7            | 5.3             | 17.0                      | _            | _            | 11.0           | 9.2            | <u>-</u>     | 1 -          |
| Cobalt                                 | mg/kg          | 10,000 ABCD                                                                                                                                                                              | 10,000 EFG                                                                                 | 3.0              | -            | 2.3                       | -                  | -                  | 3.0                | 2.5            | 2.7             | 2.8                       | -            | -            | 2.6            | 2.5            | -            | -            |
| Copper                                 | mg/kg          | 50 <sup>A</sup> 270 <sup>B</sup> 10,000 <sub>e</sub> <sup>C</sup> 1,720 <sup>D</sup>                                                                                                     | n/v                                                                                        | 6.0              | -            | 5.5                       | -                  | -                  | 12.1               | 5.6            | 5.8             | 22.9                      | -            | -            | 13.5           | 9.3            | -            | -            |
| Iron                                   | mg/kg          | 10,000 <sub>e</sub> ABCD                                                                                                                                                                 | 10,000 <sub>a</sub> <sup>EFG</sup>                                                         | 8,020            | -            | 6,580                     | -                  | -                  | 8,810              | 7,040          | 7,760           | 11,100 <sup>ABCDEFG</sup> | -            | -            | 9,020          | 8,630          | -            | -            |
| Lead                                   | mg/kg          | 63 <sub>n</sub> <sup>A</sup> 1,000 <sup>B</sup> 3,900 <sup>C</sup> 450 <sup>D</sup>                                                                                                      | n/v                                                                                        | 2.5              | -            | 1.9 U                     | -                  | -                  | 3.1                | 2.3            | 3.3             | 42.1                      | -            | -            | 29.5           | 17.2           | -            | -            |
| Magnesium                              | mg/kg          | 10,000 <sub>e</sub> <sup>ABCD</sup>                                                                                                                                                      | n/v                                                                                        | 1,290 J          | -            | 5,470                     | -                  | -                  | 1,460              | 1,020          | 1,080           | 24,600 <sup>ABCD</sup>    | -            | -            | 2,060          | 2,230          | -            | -            |
| Manganese                              | mg/kg          | 1,600 <sub>n</sub> <sup>A</sup> 10,000 <sub>e</sub> <sup>BC</sup> 2,000 <sub>a</sub> <sup>D</sup>                                                                                        | n/v                                                                                        | 143 J            | -            | 211                       | -                  | -                  | 95.1               | 211            | 219             | 365                       | -            | -            | 250            | 217            | -            | -            |
| Mercury                                | mg/kg          | $0.18_{\rm h}^{\rm A} 2.8_{\rm k}^{\rm B} 5.7_{\rm k}^{\rm C} 0.73^{\rm D}$                                                                                                              | n/v                                                                                        | 0.019 U          | -            | 0.018 U                   | -                  | -                  | 0.024              | 0.018 U        | 0.018 U         | 0.048                     | -            | -            | 0.057          | 0.042          | -            | -            |
| Nickel<br>Potassium                    | mg/kg          | 30 <sup>A</sup> 310 <sup>B</sup> 10,000 <sub>e</sub> <sup>C</sup> 130 <sup>D</sup><br>10,000 <sub>e</sub> <sup>ABCD</sup>                                                                | n/v<br>n/v                                                                                 | 9.7 U<br>317     | -            | 9.3 U<br>334              | -                  | -                  | 10.7 U<br>413      | 9.4 U<br>345   | 10.9 U<br>376   | 12.5<br>888               | -            | -            | 11.2 U<br>357  | 10.9 U<br>353  | -            | -            |
| Selenium                               | mg/kg<br>mg/kg | 3.9 <sub>a</sub> <sup>A</sup> 1,500 <sup>B</sup> 6,800 <sup>C</sup> 4 <sub>a</sub> <sup>D</sup>                                                                                          | n/v                                                                                        | 7.7 U            |              | 7.5 U                     | -                  |                    | 8.6 U              | 7.6 U          | 8.8 U           | 8.4 U                     | -            |              | 9.0 U          | 8.7 U          | -            | 1 -          |
| Silver                                 | mg/kg          | 2 <sup>A</sup> 1,500 <sup>B</sup> 6,800 <sup>C</sup> 8.3 <sup>D</sup>                                                                                                                    | n/v                                                                                        | 0.97 U           | _            | 0.93 U                    | -                  | -                  | 1.1 U              | 0.94 U         | 1.1 U           | 1.0 U                     | -            | -            | 1.1 U          | 1.1 U          | -            | -            |
| Sodium                                 | mg/kg          | 10,000 <sub>e</sub> ABCD                                                                                                                                                                 | n/v                                                                                        | 271 U            | -            | 261 U                     | -                  | -                  | 300 U              | 264 U          | 306 U           | 293 U                     | -            | -            | 314 U          | 305 U          | -            | -            |
| Thallium                               | mg/kg          | 10,000 <sub>e</sub> ABCD                                                                                                                                                                 | 10,000 <sub>aEFG</sub>                                                                     | 11.6 U           | -            | 11.2 U                    | -                  | -                  | 12.9 U             | 11.3 U         | 13.1 U          | 12.6 U                    | -            | -            | 13.5 U         | 13.1 U         | -            | -            |
| Vanadium<br>Zinc                       | mg/kg          | 10,000 <sub>e</sub> <sup>ABCD</sup><br>109 <sub>n</sub> <sup>A</sup> 10,000 <sub>e</sub> <sup>BC</sup> 2,480 <sup>D</sup>                                                                | 10,000 <sub>a</sub> EFG                                                                    | 12.0<br>14.6     | -            | 8.6                       | -                  | -                  | 11.2               | 9.5<br>14.9    | 10.7<br>15.8    | 12.1                      | -            | -            | 12.3<br>42.7   | 12.2<br>37.5   | -            | -            |
| Polychlorinated Biphenyls              | mg/kg          | 109 <sub>n</sub> 10,000 <sub>e</sub> 2,480                                                                                                                                               | n/v                                                                                        | 14.0             | -            | 12.9                      | -                  | _                  | 153 <sup>A</sup>   | 14.9           | 15.6            | 178 <sup>A</sup>          | -            | -            | 42.7           | 37.5           | -            |              |
| Aroclor 1016                           | ua/ka          | ABCD                                                                                                                                                                                     | n/v                                                                                        | 36 U             |              | 36 U                      |                    |                    |                    | 37 U           | _               | 38 U                      |              |              |                |                |              |              |
| Aroclor 1221                           | μg/kg<br>μg/kg | OABCD                                                                                                                                                                                    | n/v                                                                                        | 36 U             | _            | 36 U                      | -                  |                    | _                  | 37 U           | _               | 38 U                      | -            | _            |                | _              | -            | 1 -          |
| Aroclor 1232                           | µg/kg          | ABCD                                                                                                                                                                                     | n/v                                                                                        | 36 U             | -            | 36 U                      | -                  | -                  | -                  | 37 U           | -               | 38 U                      | -            | -            | -              | _              | -            | -            |
| Aroclor 1242                           | μg/kg          | ABCD<br>ABCD                                                                                                                                                                             | n/v                                                                                        | 36 U             | -            | 36 U                      | -                  | -                  | -                  | 37 U           | -               | 38 U                      | -            | -            | -              | -              | -            | -            |
| Aroclor 1248                           | μg/kg          | ABCD<br>ABCD                                                                                                                                                                             | n/v                                                                                        | 36 U             | -            | 36 U                      | -                  | -                  | -                  | 37 U           | -               | 38 U                      | -            | -            | -              | -              | -            | -            |
| Aroclor 1254<br>Aroclor 1260           | μg/kg<br>μg/kg | ABCD                                                                                                                                                                                     | n/v<br>n/v                                                                                 | 36 U<br>36 U     | -            | 36 U<br>36 U              | -                  | -                  | -                  | 37 U<br>37 U   | -               | 38 U<br>38 U              | -            | -            | -              | -              | -            | -            |
| Aroclor 1262                           | μg/kg          | OABCD                                                                                                                                                                                    | n/v                                                                                        | 36 U             |              | 36 U                      | -                  | -                  |                    | 37 U           | -               | 38 U                      | -            |              | -              | -              | -            | 1 -          |
| Aroclor 1268                           | μg/kg          | ABCD                                                                                                                                                                                     | n/v                                                                                        | 36 U             | -            | 36 U                      | -                  | -                  | -                  | 37 U           | -               | 38 U                      | -            | -            | -              | _              | -            | -            |
| Polychlorinated Biphenyls (PCBs)       | μg/kg          | 100 <sup>A</sup> 1,000 <sup>B</sup> 25,000 <sup>C</sup> 3,200 <sup>D</sup>                                                                                                               | n/v                                                                                        | ND               | -            | ND                        | -                  | -                  | -                  | ND             | -               | ND                        | -            | -            | -              | -              | -            | -            |
| Pesticides                             |                |                                                                                                                                                                                          |                                                                                            |                  |              |                           |                    |                    | T                  |                |                 |                           |              |              |                |                |              |              |
| Aldrin<br>BHC, alpha-                  | μg/kg          | 5 <sub>n</sub> <sup>A</sup> 680 <sup>B</sup> 1,400 <sup>C</sup> 190 <sup>D</sup>                                                                                                         | n/v<br>n/v                                                                                 | 3.6 U<br>3.6 U   | -            | 3.6 U<br>3.6 U            | -                  | -                  | -                  | 3.7 U<br>3.7 U | -               | 3.8 U<br>3.8 U            | -            | -            | -              | -              | -            | -            |
| BHC, alpna-<br>BHC, beta-              | μg/kg<br>μg/kg | 20 <sup>AD</sup> 3,400 <sup>B</sup> 6,800 <sup>C</sup><br>36 <sup>A</sup> 3,000 <sup>B</sup> 14,000 <sup>C</sup> 90 <sup>D</sup>                                                         | n/v<br>n/v                                                                                 | 3.6 UJ           | _            | 3.6 U                     | -                  |                    | -                  | 3.7 U<br>3.7 U | _               | 3.8 U                     | -            |              |                |                | -            |              |
| BHC, delta-                            | μg/kg          | 40 <sub>n</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 250 <sup>D</sup>                                                                      | n/v                                                                                        | 3.6 UJ           | -            | 3.6 U                     | -                  | ] -                | ] -                | 3.7 U          |                 | 3.8 U                     | -            | -            | ] -            | [              | -            | į -          |
| Camphechlor (Toxaphene)                | µg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                 | n/v                                                                                        | 36 U             | -            | 36 U                      | -                  | -                  | -                  | 37 U           | -               | 38 U                      | -            | -            | -              |                | -            | -            |
| Chlordane, alpha-                      | μg/kg          | 94 <sup>A</sup> 24,000 <sup>B</sup> 47,000 <sup>C</sup> 2,900 <sup>D</sup>                                                                                                               | n/v                                                                                        | 3.6 U            | -            | 3.6 U                     | -                  | -                  | -                  | 3.7 U          | -               | 3.8 U                     | -            | -            | -              | -              | -            | -            |
| Chlordane, trans- (gamma-Chlordane)    | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                                                                                    | n/v                                                                                        | 3.6 U            | -            | 3.6 U                     | -                  | -                  | -                  | 3.7 U          | -               | 3.8 U                     | -            | -            | -              | -              | -            | -            |
| DDD (p,p'-DDD) DDE (p,p'-DDE)          | μg/kg          | 3.3 <sub>m</sub> <sup>A</sup> 92,000 <sup>B</sup> 180,000 <sup>C</sup> 14,000 <sup>D</sup>                                                                                               | n/v<br>n/v                                                                                 | 3.6 U            | _            | 3.6 U                     | -                  | · -                | -                  | 3.7 U<br>3.7 U | -               | 3.8 U                     | -            | -            | · -            | · -            | <del>-</del> | -            |
|                                        | μg/kg          | 3.3 <sub>m</sub> <sup>A</sup> 62,000 <sup>B</sup> 120,000 <sup>C</sup> 17,000 <sup>D</sup><br>3.3 <sub>m</sub> <sup>A</sup> 47,000 <sup>B</sup> 94,000 <sup>C</sup> 136,000 <sup>D</sup> |                                                                                            | 3.6 U<br>3.6 U   | _            | 3.6 U                     | -                  | _                  | _                  | 3.7 U<br>3.7 U | _               | 3.8 U<br>3.8 U            | -            | _            | _              |                | -            | -            |
| DDT (p,p'-DDT)<br>Dieldrin             | μg/kg          | 3.3 <sub>m</sub> · 47,000 · 94,000 · 136,000 · 5 <sub>n</sub> A 1,400 B 2,800 C 100 D                                                                                                    | n/v<br>n/v                                                                                 | 3.6 U            | _            | 3.6 U<br>3.6 U            | -                  | 1 -                | _                  | 3.7 U<br>3.7 U | _               | 3.8 U                     | -            | _            | 1 -            |                | -            | -            |
| Endosulfan I                           | μg/kg<br>μg/kg | 2,400 <sup>A</sup> 200,000 <sup>B</sup> 920,000 <sup>C</sup> 102,000 <sup>D</sup>                                                                                                        | n/v                                                                                        | 3.6 U            |              | 3.6 U                     |                    |                    | _                  | 3.7 U          | _               | 3.8 U                     | _            | _            |                |                | -            | <u>-</u>     |
| Endosulfan II                          | μg/kg<br>μg/kg | 2,400 <sub>i</sub> 200,000 <sub>i</sub> 920,000 <sub>i</sub> 102,000<br>2,400 <sub>i</sub> 200,000 <sub>i</sub> 920,000 <sub>i</sub> 102,000                                             | n/v                                                                                        | 3.6 UJ           | -            | 3.6 U                     | -                  | ] [                |                    | 3.7 U          | -               | 3.8 U                     | -            | -            | ] [            | [              | -            | 1 -          |
| Endosulfan Sulfate                     | μg/kg          | 2,400 <sub>i</sub> <sup>A</sup> 200,000 <sub>i</sub> <sup>B</sup> 920,000 <sub>i</sub> <sup>C</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                  | n/v                                                                                        | R                | -            | 3.6 U                     | -                  | -                  | -                  | 3.7 U          | -               | 3.8 U                     | -            | -            | -              | - 1            | -            | -            |
| Endrin                                 | μg/kg          | 14 <sup>A</sup> 89,000 <sup>B</sup> 410,000 <sup>C</sup> 60 <sup>D</sup>                                                                                                                 | n/v                                                                                        | 3.6 U            | -            | 3.6 U                     | -                  | -                  | -                  | 3.7 U          | -               | 3.8 U                     | -            | -            | -              | -              | -            | -            |
| Endrin Aldehyde                        | μg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                                                      | n/v                                                                                        | R                | -            | 3.6 U                     | -                  | -                  | -                  | 3.7 U          | -               | 3.8 U                     | -            | -            | -              | -              | -            | -            |
| Endrin Ketone<br>Heptachlor            | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>42 <sup>A</sup> 15.000 <sup>B</sup> 29.000 <sup>C</sup> 380 <sup>D</sup>     | n/v<br>n/v                                                                                 | R<br>3.6 U       | _            | 3.6 U<br>3.6 U            | -                  |                    | -                  | 3.7 U<br>3.7 U | -               | 3.8 U<br>3.8 U            | -            | _            |                |                | -            | -            |
| Heptachlor Epoxide                     | μg/kg<br>μg/kg | 42``15,000° 29,000° 380°<br>100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                     | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 20 <sup>G</sup>      | 3.6 U            | ] -          | 3.6 U                     | -                  | ] [                |                    | 3.7 U<br>3.7 U | -               | 3.8 U                     | -            |              | ] [            |                | -            | 1 -          |
| Lindane (Hexachlorocyclohexane, gamma) | μg/kg          | 100 <sup>AD</sup> 9.200 <sup>B</sup> 23.000 <sup>C</sup>                                                                                                                                 | n/v                                                                                        | 3.6 U            | _            | 3.6 U                     | -                  | _                  | -                  | 3.7 U          | _               | 3.8 U                     | -            | _            | _              |                | -            | -            |
| Methoxychlor (4,4'-Methoxychlor)       | μg/kg          | 100,000 A 500,000 B 1,000,000 CD                                                                                                                                                         | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 900,000 <sup>G</sup> | 3.6 UJ           | -            | 3.6 U                     | -                  | -                  | -                  | 3.7 U          | -               | 3.8 U                     | -            | -            | -              | -              | -            | -            |
| See notes on last page.                |                |                                                                                                                                                                                          |                                                                                            |                  |              |                           |                    |                    |                    | -              |                 |                           |              |              |                |                |              |              |

See notes on last page.



190500898 Page 10 of 18  $\label{lem:u:light} \begin{tabular}{ll} U:\line 190500898\line 1905008\line 1905008\li$ 

## Summary of Analytical Results for RI Soil Samples IRM Work Plan #2

820 Linden Ave Site, BCP #C828200

820 Linden Avenue, Pittsford, NY

| ample Location                                                |       |                                                                                                                                                                                   |                                                                                            |                 | B/MW-105     |                | B-106        | B-107        | B-108         | В-             | 109             | DP-1                   | SS           | 6-1a         | SS-           | 1abc          | l s          | S-1c     |
|---------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------|--------------|----------------|--------------|--------------|---------------|----------------|-----------------|------------------------|--------------|--------------|---------------|---------------|--------------|----------|
| ample Date                                                    |       |                                                                                                                                                                                   |                                                                                            | 27-Jul-18       | 27-Jul-18    | 27-Jul-18      | 31-Jul-18    | 31-Jul-18    | 30-Jul-18     | 30-Jul-18      | 30-Jul-18       | 30-Jul-18              | 30-Jul-18    | 30-Jul-18    | 30-Jul-18     | 30-Jul-18     | 30-Jul-18    | 30-Jul-1 |
| ample ID                                                      |       |                                                                                                                                                                                   |                                                                                            | LIN-B105-S1     | LIN-B105-S3  | LIN-B105-S2    | LIN-B106-S   | LIN-B107-S   | LIN-B108-s    | LIN-B109-s     | LIN-FD3-s       | LIN-DP-s               | LIN-SS1a-t-s | LIN-SS1a-b-s | LIN-SS1-t-s   | LIN-SS1-b-s   | LIN-SS1c-t-s | LIN-SS1c |
| nple Depth                                                    |       |                                                                                                                                                                                   |                                                                                            | 4 - 8 ft        | 15 - 16 ft   | 35 - 38 ft     | 7 - 7.5 ft   | 3.2 - 3.7 ft | 5 - 8 ft      | 5 - 8 ft       | 5 - 8 ft        | LIN-DI -3              | 0 - 2 in     | 2 - 12 in    | 0 - 2 in      | 2 - 12 in     | 0 - 2 in     | 2 - 12 i |
| mpling Company                                                |       |                                                                                                                                                                                   |                                                                                            | STANTEC         | STANTEC      | STANTEC        | STANTEC      | STANTEC      | STANTEC       | STANTEC        | STANTEC         | STANTEC                | STANTEC      | STANTEC      | STANTEC       | STANTEC       | STANTEC      | STANTE   |
| boratory                                                      |       |                                                                                                                                                                                   |                                                                                            | TAL             | TAL          | TAL            | TAL          | TAL          | TAL           | TAL            | TAL             | TAL                    | TAL          | TAL          | TAL           | TAL           | TAL          | TAL      |
| aboratory Work Order                                          |       |                                                                                                                                                                                   |                                                                                            | 460-161452-1    | 460-161452-1 | 460-161452-1   | 460-161797-1 | 460-161797-1 | 460-161576-1  | 460-161576-1   | 460-161576-1    | 460-161576-1           | 460-161576-1 | 460-161576-1 | 460-161576-1  | 460-161576-1  | 460-161576-1 | 460-1615 |
| boratory Sample ID                                            |       |                                                                                                                                                                                   |                                                                                            | 460-161452-1    | 460-161452-3 | 460-161452-2   | 460-161797-2 | 460-161797-3 | 460-161576-27 | 460-161576-28  | 460-161576-26   | 460-161576-17          | 460-161576-1 | 460-161576-2 | 460-161576-18 | 460-161576-19 | 460-161576-3 | 460-1615 |
| ample Type                                                    | Units | NYSDEC-Part 375                                                                                                                                                                   | NYSDEC CP-51                                                                               | 400-101402-1    | 400-101402-0 | 400-101402-2   | 400-101757-2 | 400-101707-0 | 400-101070-27 | 400-101070-20  | Field Duplicate | 400-101070-17          | 400-101010-1 | 400-101070-2 | 400-101070-10 | 400-101010-10 | 400-101010-0 | 400-1010 |
|                                                               |       |                                                                                                                                                                                   |                                                                                            |                 |              |                |              |              |               |                |                 |                        |              |              |               |               |              |          |
| mi-Volatile Organic Compounds                                 |       |                                                                                                                                                                                   |                                                                                            | -               |              |                |              |              |               |                |                 |                        |              |              |               |               |              |          |
| naphthene                                                     | μg/kg | 20,000 <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 98,000 <sup>D</sup>                                                                     | n/v                                                                                        | 370 UJ          | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            | -        |
| naphthylene                                                   | µg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 107,000 <sup>D</sup>                                                      | n/v                                                                                        | 370 UJ          | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            | -        |
| tophenone                                                     | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                                                                             | n/v                                                                                        | 370 UJ          | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            | -        |
| hracene                                                       | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                          | n/v                                                                                        | 370 U           | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            | -        |
| azine                                                         | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                                                                             | n/v                                                                                        | 370 U           | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            | -        |
| zaldehyde                                                     | µg/kg | 100,000 <sub>a</sub> <sup>A</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                                                                             | n/v                                                                                        | 370 UJ          | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            | -        |
| nzo(a)anthracene                                              | µg/kg | 1,000 <sub>n</sub> <sup>A</sup> 5,600 <sup>B</sup> 11,000 <sup>C</sup> 1,000 <sub>g</sub> <sup>D</sup>                                                                            | n/v                                                                                        | 370 U           | -            | 370 U          | -            | -            | -             | 380 U          | -               | 29,000 <sup>ABCD</sup> | -            | -            | -             | -             | -            | -        |
| zo(a)pyrene                                                   | μg/kg | 1,000 <sub>0</sub> A 1,000 <sub>0</sub> B 1,100 <sup>C</sup> 22,000 <sup>D</sup>                                                                                                  | n/v                                                                                        | 370 U           | -            | 370 U          | -            | -            | -             | 380 U          | -               | 31.000 <sup>ABCD</sup> | -            | -            | -             | -             | -            | -        |
| zo(b)fluoranthene                                             | μg/kg | 1,000 <sup>A</sup> 5,600 <sup>B</sup> 11,000 <sup>C</sup> 1,700 <sup>D</sup>                                                                                                      | n/v                                                                                        | 370 U           | _            | 370 U          | _            | -            | -             | 380 U          | _               | 49,000 <sup>ABCD</sup> | -            | _            | _             | _             | _            | _        |
| zo(g,h,i)perylene                                             | µg/kg | 100,000 <sup>A</sup> 500,000 <sub>B</sub> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                    | n/v                                                                                        | 370 U           | _            | 370 U          | _            | _            | _             | 380 U          | _               | 24,000                 | _            | _            | _             | _             | _            | _        |
| zo(k)fluoranthene                                             | µg/kg | 800 <sub>n</sub> <sup>A</sup> 56,000 <sup>B</sup> 110,000 <sup>C</sup> 1,700 <sup>D</sup>                                                                                         | n/v                                                                                        | 370 U           |              | 370 U          |              |              |               | 380 U          |                 | 20,000 <sup>AD</sup>   |              |              |               |               |              |          |
|                                                               |       |                                                                                                                                                                                   |                                                                                            |                 | _            |                | Ī            | _            | _             |                | _               |                        | -            | _            | _             | _             | _            | _        |
| nenyl, 1,1'- (Biphenyl)                                       | µg/kg | 100,000 <sub>a</sub> <sup>A</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                                                                             | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F                                            | 370 UJ          | _            | 370 U<br>370 U | · -          | · -          | _             | 380 U<br>380 U | _               | 7,800 U                | -            | _            | · -           | _             | · -          | 1        |
| 2-Chloroethoxy)methane                                        | µg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                          | n/v                                                                                        | 370 UJ          | _            |                | _            | _            | _             |                | _               | 7,800 U                | -            | _            | -             | _             | · -          | -        |
| (2-Chloroethyl)ether                                          | µg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                          | n/v                                                                                        | 370 UJ          | -            | 370 U          | _            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | _             | I -          | -        |
| (2-Chloroisopropyl)ether (2,2-oxybis(1-Chloropropane))        | µg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                          | 11/V                                                                                       | 370 UJ<br>370 U | -            | 370 U          | -            | -            | -             | 380 U<br>380 U | _               | 7,800 U<br>7,800 U     | -            | _            | -             | _             | _            | -        |
| i(2-Ethylhexyl)phthalate (DEHP)<br>omophenyl Phenyl Ether, 4- | µg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                          | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 435,000 <sup>G</sup> | 370 U<br>370 U  | _            | 370 U<br>370 U | _            | _            | _             | 380 U<br>380 U | _               | 7,800 U<br>7,800 U     | -            | _            | _             | _             | · -          | _        |
|                                                               | µg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                          | 11/V                                                                                       |                 | -            |                | -            | -            | -             |                | -               |                        | -            | -            | -             | -             | -            | -        |
| yl Benzyl Phthalate<br>orolactam                              | µg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>100,000 <sub>a</sub> <sup>A</sup> 1,000,000 <sub>d</sub> <sup>D</sup> | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 122,000 <sup>G</sup> | 370 U<br>370 U  | _            | 370 U<br>370 U | · -          | · -          | · -           | 380 U<br>380 U | _               | 7,800 U<br>7,800 U     | -            | _            | · -           | _             | · -          | 1        |
| bazole                                                        | μg/kg | 100,000 <sub>a</sub> 1,000,000 <sub>d</sub> 100,000 <sub>d</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                   | n/v                                                                                        | 370 U           | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            | -        |
| oro-3-methyl phenol, 4-                                       | µg/kg |                                                                                                                                                                                   | n/v                                                                                        | 370 U           | -            |                | -            | -            | -             | 380 U          | -               |                        | -            | -            | -             | -             | -            | -        |
|                                                               | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                          |                                                                                            |                 | -            | 370 U          | -            | -            | -             |                | -               | 7,800 U<br>7,800 U     | -            | -            | -             | -             | -            | -        |
| proaniline, 4-                                                | µg/kg | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                                               | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 220 <sup>G</sup>     | 370 U           | -            | 370 U          | -            | -            | -             | 380 U          | -               |                        | -            | -            | -             | -             | -            | -        |
| oronaphthalene, 2-                                            | µg/kg |                                                                                                                                                                                   | n/v                                                                                        | 370 UJ          | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            | -        |
| prophenol, 2- (ortho-Chlorophenol)                            | µg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                          | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup>                      | 370 UJ          | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            | -        |
| prophenyl Phenyl Ether, 4-                                    | µg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                          | n/v                                                                                        | 370 U           | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            | -        |
| ysene                                                         | μg/kg | 1,000 <sub>n</sub> <sup>A</sup> 56,000 <sup>B</sup> 110,000 <sup>C</sup> 1,000 <sub>g</sub> <sup>D</sup>                                                                          | n/v                                                                                        | 370 U           | -            | 370 U          | -            | -            | -             | 380 U          | -               | 41,000 <sup>AD</sup>   | -            | -            | -             | -             | -            | -        |
| esol, o- (Methylphenol, 2-)                                   | µg/kg | 330 <sub>m</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 330 <sub>f</sub> <sup>D</sup>                                                 | n/v                                                                                        | 370 UJ          | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            | -        |
| sol, p- (Methylphenol, 4-)                                    | μg/kg | 330 <sub>m</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 330 <sub>f</sub> <sup>D</sup>                                                 | n/v                                                                                        | 720 UJ          | -            | 720 U          | -            | -            | -             | 730 U          | -               | 15,000 U               | -            | -            | -             | -             | -            | -        |
| enzo(a,h)anthracene                                           | µg/kg | 330 <sub>m</sub> <sup>A</sup> 560 <sup>B</sup> 1,100 <sup>C</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                                             | n/v                                                                                        | 370 U           | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            | -        |
| penzofuran                                                    | µg/kg | 7,000 <sup>A</sup> 350,000 <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 210,000 <sup>D</sup>                                                                                  | 500,000a 1,000,000a 6,200G                                                                 | 370 UJ          | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            | -        |
| utyl Phthalate (DBP)                                          | µg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                          | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 8,100 <sup>G</sup>   | 370 U           | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            | -        |
| hlorobenzidine, 3,3'-                                         | µg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                          | n/v                                                                                        | 370 U           | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            | -        |
| hlorophenol, 2,4-                                             | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                          | 500,000 <sub>g</sub> <sup>E</sup> 1,000,000 <sub>g</sub> <sup>F</sup> 400 <sup>G</sup>     | 370 U           | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            | -        |
| ethyl Phthalate                                               | µg/kg | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                                               | 500,000 <sub>a</sub> 1,000,000 <sub>a</sub> 7,100 <sup>G</sup>                             | 370 U           | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            | -        |
| nethyl Phthalate                                              | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                          | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 27,000 <sup>G</sup>  | 370 U           | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            | -        |
| nethylphenol, 2,4-                                            | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                          | n/v                                                                                        | 370 UJ          | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            | -        |
| itro-o-cresol, 4,6-                                           | µg/kg | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub>                                                                                                                  | n/v                                                                                        | 720 UJ          | -            | 720 U          | -            | -            | -             | 730 U          | -               | 15,000 U               | -            | -            | -             | -             | -            | -        |
| itrophenol, 2,4-                                              | µg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                          | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 200 <sup>G</sup>     | 720 UJ          | -            | 720 U          | -            | -            | -             | 730 U          | -               | 15,000 U               | -            | -            | -             | -             | -            | -        |
| nitrotoluene, 2,4-                                            | µg/kg | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                                               | n/v                                                                                        | 370 U           | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            | -        |
| itrotoluene, 2,6-                                             | µg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                          | 500,000a 1,000,000a 1,000/170b,s1                                                          | 370 U           | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            | -        |
| n-Octyl phthalate                                             | µg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                          | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 120,000 <sup>G</sup> | 370 U           | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            | -        |
| pranthene                                                     | μg/kg | 100,000a <sup>A</sup> 500,000c <sup>B</sup> 1,000,000d <sup>CD</sup>                                                                                                              | n/v                                                                                        | 370 U           | -            | 370 U          | -            | -            | -             | 380 U          | -               | 81,000                 | -            | -            | -             | -             | -            | -        |
| orene                                                         | µg/kg | 30,000 <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 386,000 <sup>D</sup>                                                                    | n/v                                                                                        | 370 U           | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            | -        |
| xachlorobenzene                                               | µg/kg | 330 <sub>m</sub> <sup>A</sup> 6,000 <sup>B</sup> 12,000 <sup>C</sup> 3,200 <sup>D</sup>                                                                                           | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 1,400 <sup>G</sup>   | 370 U           | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            | -        |
| kachlorobutadiene (Hexachloro-1,3-butadiene)                  | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                          | n/v                                                                                        | 370 UJ          | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            | -        |
| achlorocyclopentadiene                                        | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                          | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F                                            | 370 UJ          | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            | -        |
| achloroethane                                                 | µg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                          | n/v                                                                                        | 370 UJ          | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            | -        |
| eno(1,2,3-cd)pyrene                                           | μg/kg | 500 <sub>n</sub> <sup>A</sup> 5,600 <sup>B</sup> 11,000 <sup>C</sup> 8,200 <sup>D</sup>                                                                                           | n/v                                                                                        | 370 U           | -            | 370 U          | -            | -            | -             | 380 U          | -               | 28,000 <sup>ABCD</sup> | -            | -            | -             | -             | -            | -        |
| phorone                                                       | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                          | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 4,400 <sup>G</sup>   | 370 UJ          | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            | -        |
| hylnaphthalene, 2-                                            | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                          | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 36,400 <sup>G</sup>  | 370 UJ          | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            | -        |
| hthalene                                                      | μg/kg | 12,000 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                        | n/v                                                                                        | 370 UJ          | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            | -        |
| paniline, 2-                                                  | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                          | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F 400 <sup>G</sup>                           | 720 U           | -            | 720 U          | -            | -            | -             | 730 U          | -               | 15,000 U               | -            | -            | -             | -             | -            | -        |
| aniline, 3-                                                   | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                          | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 500 <sup>G</sup>     | 720 U           | -            | 720 U          | -            | -            | -             | 730 U          | -               | 15,000 U               | -            | -            | -             | -             | -            |          |
| aniline, 4-                                                   | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                          | n/v                                                                                        | 720 U           | -            | 720 U          | -            | -            | -             | 730 U          | -               | 15,000 U               | -            | -            | -             | -             | -            |          |
| penzene                                                       | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                          | 69,000 <sup>E</sup> 140,000 <sup>F</sup> 170 <sub>b</sub> <sup>G</sup>                     | 370 UJ          | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            | .        |
| phenol, 2-                                                    | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                          | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F 300 <sup>G</sup>                           | 370 UJ          | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            |          |
| phenol, 4-                                                    | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                          | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 100 <sup>G</sup>     | 720 U           | -            | 720 U          | -            | -            | -             | 730 U          | -               | 15,000 U               | -            | -            | -             | -             | -            |          |
| rosodi-n-Propylamine                                          | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                          | n/v                                                                                        | 370 UJ          | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            |          |
| rosodiphenylamine                                             | µg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                          | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F                                            | 370 U           | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            |          |
| achlorophenol                                                 | µg/kg | 800 <sub>m</sub> A 6,700 <sup>B</sup> 55,000 <sup>C</sup> 800 <sub>f</sub> D                                                                                                      | n/v                                                                                        | 720 U           | -            | 720 U          | -            | -            | -             | 730 U          | -               | 15,000 U               | -            | -            | -             | -             | -            |          |
| nanthrene                                                     | μg/kg | 100,000 <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                       | n/v                                                                                        | 370 U           | -            | 370 U          | -            | -            | -             | 380 U          | -               | 29,000                 | -            | -            | -             | -             | -            |          |
| nol                                                           | μg/kg | $330_{\rm m}^{\rm A} 500,000_{\rm c}^{\rm B} 1,000,000_{\rm d}^{\rm C} 330_{\rm f}^{\rm D}$                                                                                       | n/v                                                                                        | 370 U           | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            |          |
| ne                                                            | μg/kg | 100,000 <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                       | n/v                                                                                        | 370 U           | -            | 370 U          | -            | -            | -             | 380 U          | -               | 64,000                 | -            | -            | -             | -             | -            |          |
| nlorophenol, 2,4,5-                                           | µg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                          | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 100 <sup>G</sup>     | 370 U           | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            |          |
| hlorophenol, 2,4,6-                                           | µg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                          | 500,000 <sub>a</sub> <sup>É</sup> 1,000,000 <sub>a</sub> <sup>F</sup>                      | 370 U           | -            | 370 U          | -            | -            | -             | 380 U          | -               | 7,800 U                | -            | -            | -             | -             | -            | 1 .      |
| al SVOC                                                       | μg/kg | n/v                                                                                                                                                                               | n/v                                                                                        | ND              |              | ND             |              | <u> </u> -   | <u> </u> -    | ND             |                 | 396,000                |              |              | <u> </u> -    |               | <u> </u> -   |          |
| OC - Tentatively Identified Compounds                         |       |                                                                                                                                                                                   |                                                                                            |                 |              |                |              |              |               |                |                 |                        |              |              |               |               |              |          |
| , ,                                                           | μg/kg | n/v                                                                                                                                                                               | n/v                                                                                        | <del>-</del>    |              | -              | <u> </u>     | 1            |               | <u> </u>       |                 | 91,000 JN              |              |              |               |               |              |          |



190500898 Page 11 of 18  $\label{lem:u:light} \begin{tabular}{ll} U:\line 190500898\line 1905008\line 1905008\li$ 

820 Linden Avenue, Pittsford, NY

| Sample Location Sample Date Sample ID Sample Depth Sampling Company Laboratory Laboratory Work Order Laboratory Sample ID |                |                                                                                                                                                                                                                      |                                                                                          | 27-Jul-18<br>LIN-B105-S1<br>4 - 8 ft<br>STANTEC<br>TAL<br>460-161452-1<br>460-161452-1 | B/MW-105<br>27-Jul-18<br>LIN-B105-S3<br>15 - 16 ft<br>STANTEC<br>TAL<br>460-161452-1<br>460-161452-3 | 27-Jul-18<br>LIN-B105-S2<br>35 - 38 ft<br>STANTEC<br>TAL<br>460-161452-1<br>460-161452-2 | B-106<br>31-Jul-18<br>LIN-B106-S<br>7 - 7.5 ft<br>STANTEC<br>TAL<br>460-161797-1<br>460-161797-2 | B-107<br>31-Jul-18<br>LIN-B107-S<br>3.2 - 3.7 ft<br>STANTEC<br>TAL<br>460-161797-1<br>460-161797-3 | B-108<br>30-Jul-18<br>LIN-B108-s<br>5 - 8 ft<br>STANTEC<br>TAL<br>460-161576-1<br>460-161576-27 | B-<br>30-Jul-18<br>LIN-B109-s<br>5 - 8 ft<br>STANTEC<br>TAL<br>460-161576-1<br>460-161576-28 | 30-Jul-18<br>LIN-FD3-s<br>5 - 8 ft<br>STANTEC<br>TAL<br>460-161576-1<br>460-161576-26 | DP-1<br>30-Jul-18<br>LIN-DP-s<br>STANTEC<br>TAL<br>460-161576-1<br>460-161576-17 | 30-Jul-18<br>LIN-SS1a-t-s<br>0 - 2 in<br>STANTEC<br>TAL<br>460-161576-1<br>460-161576-1 | 30-Jul-18<br>LIN-SS1a-b-s<br>2 - 12 in<br>STANTEC<br>TAL<br>460-161576-1<br>460-161576-2 | SS-<br>30-Jul-18<br>LIN-SS1-t-s<br>0 - 2 in<br>STANTEC<br>TAL<br>460-161576-1<br>460-161576-18 | 1abc<br>30-Jul-18<br>LIN-SS1-b-s<br>2 - 12 in<br>STANTEC<br>TAL<br>460-161576-1<br>460-161576-19 | 30-Jul-18<br>LIN-SS1c-t-s<br>0 - 2 in<br>STANTEC<br>TAL<br>460-161576-1<br>460-161576-3 | S-1c  30-Jul-18 LIN-SS1c-b-s 2 - 12 in STANTEC TAL 460-161576-1 460-161576-4 |
|---------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Sample Type                                                                                                               | Units          | NYSDEC-Part 375                                                                                                                                                                                                      | NYSDEC CP-51                                                                             |                                                                                        |                                                                                                      |                                                                                          |                                                                                                  |                                                                                                    |                                                                                                 |                                                                                              | Field Duplicate                                                                       |                                                                                  |                                                                                         |                                                                                          |                                                                                                |                                                                                                  |                                                                                         |                                                                              |
| Volatile Organic Compounds                                                                                                |                | AD                                                                                                                                                                                                                   |                                                                                          | 1                                                                                      |                                                                                                      |                                                                                          |                                                                                                  | T                                                                                                  |                                                                                                 |                                                                                              |                                                                                       |                                                                                  |                                                                                         |                                                                                          |                                                                                                |                                                                                                  |                                                                                         |                                                                              |
| Acetone                                                                                                                   | μg/kg          | 50 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                               | n/v                                                                                      | 6.2                                                                                    | 22                                                                                                   | 11                                                                                       | 5.1 U                                                                                            | 11                                                                                                 | 5.5 U                                                                                           | 5.3 U                                                                                        | 5.3 U                                                                                 | 5.3 U                                                                            | 5.5 U                                                                                   | 4.9 U                                                                                    | -                                                                                              | -                                                                                                | 5.4 U                                                                                   | 5.3 U                                                                        |
| Benzene<br>Bromodichloromethane                                                                                           | μg/kg          | 60 <sup>AD</sup> 44,000 <sup>B</sup> 89,000 <sup>C</sup>                                                                                                                                                             | n/v                                                                                      | 1.1 U<br>1.1 U                                                                         | 1.2 U<br>1.2 U                                                                                       | 1.2 U<br>1.2 U                                                                           | 1.0 U<br>1.0 U                                                                                   | 0.96 U<br>0.96 U                                                                                   | 1.1 U<br>1.1 U                                                                                  | 1.1 U<br>1.1 U                                                                               | 1.1 U<br>1.1 U                                                                        | 1.1 U<br>1.1 U                                                                   | 1.1 U<br>8.2                                                                            | 0.98 U<br>0.98 U                                                                         | -                                                                                              | -                                                                                                | 1.1 U<br>1.1 U                                                                          | 1.1 U<br>1.1 U                                                               |
| Bromoform (Tribromomethane)                                                                                               | μg/kg<br>μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup> | n/v<br>n/v                                                                               | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 6.2<br>1.1 U                                                                            | 0.98 U                                                                                   | -                                                                                              | -                                                                                                | 1.1 U                                                                                   | 1.1 UJ                                                                       |
| Bromomethane (Methyl bromide)                                                                                             | μg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 100,000 <sub>d</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 50                                                                                 | n/v                                                                                      | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   |                                                                                                | _                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Butylbenzene, n-                                                                                                          | μg/kg          | 12,000 <sup>AD</sup> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 12,000 <sup>AD</sup> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 1                                                                                  | n/v                                                                                      | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | _                                                                                              | _                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Butylbenzene, sec- (2-Phenylbutane)                                                                                       | μg/kg          | 11,000 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                           | n/v                                                                                      | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | _                                                                                              | _                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Butylbenzene, tert-                                                                                                       | μg/kg          | 5,900 <sup>AD</sup> 500,000° B 1,000,000° C                                                                                                                                                                          | n/v                                                                                      | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | _                                                                                              | _                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Carbon Disulfide                                                                                                          | µg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                                                                                  | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 2,700 <sup>G</sup> | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | _                                                                                              | _                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Carbon Tetrachloride (Tetrachloromethane)                                                                                 | μg/kg          | 760 <sup>AD</sup> 22,000 <sup>B</sup> 44,000 <sup>C</sup>                                                                                                                                                            | n/v                                                                                      | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | -                                                                                              | _                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Chlorobenzene (Monochlorobenzene)                                                                                         | μg/kg          | 1,100 <sup>AD</sup> 500,000 <sub>G</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                            | n/v                                                                                      | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | -                                                                                              | _                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Chloroethane (Ethyl Chloride)                                                                                             | μg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                                                                                  | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 1,900 <sup>G</sup> | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | -                                                                                              | -                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Chloroform (Trichloromethane)                                                                                             | μg/kg          | 370 <sup>AD</sup> 350,000 <sup>B</sup> 700,000 <sup>C</sup>                                                                                                                                                          | n/v                                                                                      | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 26                                                                                      | 0.98 U                                                                                   | -                                                                                              | -                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Chloromethane                                                                                                             | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | n/v                                                                                      | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | -                                                                                              | -                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Cyclohexane                                                                                                               | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | n/v                                                                                      | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | -                                                                                              | -                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Dibromo-3-Chloropropane, 1,2- (DBCP)                                                                                      | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | n/v                                                                                      | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | -                                                                                              | -                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Dibromochloromethane                                                                                                      | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup>                    | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 2.4                                                                                     | 0.98 U                                                                                   | -                                                                                              | -                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Dichlorobenzene, 1,2-                                                                                                     | μg/kg          | 1,100 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                            | n/v                                                                                      | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | -                                                                                              | -                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Dichlorobenzene, 1,3-                                                                                                     | μg/kg          | 2,400 <sup>AD</sup> 280,000 <sup>B</sup> 560,000 <sup>C</sup>                                                                                                                                                        | n/v                                                                                      | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | -                                                                                              | -                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Dichlorobenzene, 1,4-                                                                                                     | μg/kg          | 1,800 <sup>AD</sup> 130,000 <sup>B</sup> 250,000 <sup>C</sup>                                                                                                                                                        | n/v                                                                                      | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | -                                                                                              | -                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Dichlorodifluoromethane (Freon 12)<br>Dichloroethane, 1,1-                                                                | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | n/v<br>n/v                                                                               | 1.1 U<br>1.1 U                                                                         | 1.2 U                                                                                                | 1.2 U<br>1.2 U                                                                           | 1.0 U<br>1.0 U                                                                                   | 0.96 U<br>0.96 U                                                                                   | 1.1 U<br>1.1 U                                                                                  | 1.1 U<br>1.1 U                                                                               | 1.1 U<br>1.1 U                                                                        | 1.1 U<br>1.1 U                                                                   | 1.1 U<br>1.1 U                                                                          | 0.98 U<br>0.98 U                                                                         | -                                                                                              | -                                                                                                | 1.1 U<br>1.1 U                                                                          | 1.1 U<br>1.1 U                                                               |
| Dichloroethane, 1,1-<br>Dichloroethane, 1,2-                                                                              | μg/kg<br>μg/kg | 270 <sup>AD</sup> 240,000 <sup>B</sup> 480,000 <sup>C</sup><br>20 <sub>m</sub> A 30,000 <sup>B</sup> 60,000 <sup>C</sup> 20 <sub>a</sub> D                                                                           | n/v                                                                                      | 1.1 U                                                                                  | 1.2 U<br>1.2 U                                                                                       | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | -                                                                                              | -                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Dichloroethene, 1,1-                                                                                                      | μg/kg          | 330 <sup>AD</sup> 500,000 B 1,000,000 C                                                                                                                                                                              | n/v                                                                                      | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   |                                                                                                | _                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Dichloroethene, cis-1,2-                                                                                                  | μg/kg          | 250 <sup>AD</sup> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 2                                                                                                                                                      | n/v                                                                                      | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | _                                                                                              | <u> </u>                                                                                         | 1.1 U                                                                                   | 1.1 U                                                                        |
| Dichloroethene, trans-1,2-                                                                                                | μg/kg          | 190 <sup>AD</sup> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> C                                                                                                                                                      | n/v                                                                                      | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | _                                                                                              | _                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Dichloropropane, 1,2-                                                                                                     | μg/kg          | 100.000 <sub>a</sub> <sup>A</sup> 500.000 <sub>c</sub> <sup>B</sup> 1.000.000 <sub>d</sub> <sup>CD</sup>                                                                                                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup>                    | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | _                                                                                              | _                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Dichloropropene, cis-1,3-                                                                                                 | µg/kg          | 100,000 A 500,000 B 1,000,000 CD                                                                                                                                                                                     | n/v                                                                                      | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | -                                                                                              | _                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Dichloropropene, trans-1,3-                                                                                               | μg/kg          | 100,000 A 500,000 B 1,000,000 CD                                                                                                                                                                                     | n/v                                                                                      | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | -                                                                                              | _                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Ethylbenzene                                                                                                              | μg/kg          | 1,000 <sup>AD</sup> 390,000 <sup>B</sup> 780,000 <sup>C</sup>                                                                                                                                                        | n/v                                                                                      | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | -                                                                                              | _                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Ethylene Dibromide (Dibromoethane, 1,2-)                                                                                  | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | n/v                                                                                      | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | -                                                                                              | _                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Hexanone, 2- (Methyl Butyl Ketone)                                                                                        | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | n/v                                                                                      | 5.6 U                                                                                  | 6.1 U                                                                                                | 6.1 U                                                                                    | 5.1 U                                                                                            | 4.8 U                                                                                              | 5.5 U                                                                                           | 5.3 U                                                                                        | 5.3 U                                                                                 | 5.3 U                                                                            | 5.5 U                                                                                   | 4.9 U                                                                                    | -                                                                                              | -                                                                                                | 5.4 U                                                                                   | 5.3 U                                                                        |
| Isopropylbenzene                                                                                                          | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 2,300 <sup>G</sup> | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | -                                                                                              | -                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Isopropyltoluene, p- (Cymene)                                                                                             | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | 500,000a <sup>E</sup> 1,000,000a <sup>F</sup> 10,000 <sup>G</sup>                        | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | -                                                                                              | -                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Methyl Acetate                                                                                                            | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | n/v                                                                                      | 5.6 U                                                                                  | 6.1 U                                                                                                | 6.1 U                                                                                    | 5.1 U                                                                                            | 4.8 U                                                                                              | 5.5 U                                                                                           | 5.3 U                                                                                        | 5.3 U                                                                                 | 5.3 U                                                                            | 5.5 U                                                                                   | 4.9 U                                                                                    | -                                                                                              | -                                                                                                | 5.4 U                                                                                   | 5.3 U                                                                        |
| Methyl Ethyl Ketone (MEK) (2-Butanone)                                                                                    | μg/kg          | 120 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                              | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 300 <sup>G</sup>   | 5.6 U                                                                                  | 6.1 U                                                                                                | 6.1 U                                                                                    | 5.1 U                                                                                            | 4.8 U                                                                                              | 5.5 U                                                                                           | 5.3 U                                                                                        | 5.3 U                                                                                 | 5.3 U                                                                            | 5.5 U                                                                                   | 4.9 U                                                                                    | -                                                                                              | -                                                                                                | 5.4 U                                                                                   | 5.3 U                                                                        |
| Methyl Isobutyl Ketone (MIBK)                                                                                             | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 1,000 <sup>G</sup> | 5.6 U                                                                                  | 6.1 U                                                                                                | 6.1 U                                                                                    | 5.1 U                                                                                            | 4.8 U                                                                                              | 5.5 U                                                                                           | 5.3 U                                                                                        | 5.3 U                                                                                 | 5.3 U                                                                            | 5.5 U                                                                                   | 4.9 U                                                                                    | -                                                                                              | -                                                                                                | 5.4 U                                                                                   | 5.3 U                                                                        |
| Methyl tert-butyl ether (MTBE)                                                                                            | μg/kg          | 930 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                              | n/v                                                                                      | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | -                                                                                              | -                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Methylcyclohexane                                                                                                         | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | n/v                                                                                      | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | -                                                                                              | -                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Methylene Chloride (Dichloromethane)                                                                                      | μg/kg          | 50 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                               | n/v                                                                                      | 2.5                                                                                    | 2.4                                                                                                  | 3.3                                                                                      | 1.6                                                                                              | 2.1                                                                                                | 1.1 U                                                                                           | 1.2                                                                                          | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | -                                                                                              | -                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Naphthalene                                                                                                               | μg/kg          | 12,000 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                           | n/v                                                                                      | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | -                                                                                              | -                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Propylbenzene, n-                                                                                                         | μg/kg          | 3,900 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                            | n/v                                                                                      | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | -                                                                                              | -                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Styrene                                                                                                                   | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup>                    | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | -                                                                                              | -                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Fetrachloroethane, 1,1,2,2-                                                                                               | μg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                                                                                  | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F 600 <sup>G</sup>                         | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | -                                                                                              | -                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Fetrachloroethene (PCE)                                                                                                   | μg/kg          | 1,300 <sup>AD</sup> 150,000 <sup>B</sup> 300,000 <sup>C</sup>                                                                                                                                                        | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup>                    | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U<br>0.96 U                                                                                   | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | -                                                                                              | -                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Foluene<br>Frichlorobenzene, 1.2.4-                                                                                       | μg/kg          | 700 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                              | n/v                                                                                      | 1.1 U<br>1.1 U                                                                         | 1.2 U<br>1.2 U                                                                                       | 1.2 U<br>1.2 U                                                                           | 1.0 U<br>1.0 U                                                                                   | 0.96 U                                                                                             | 1.1 U<br>1.1 U                                                                                  | 1.1 U<br>1.1 U                                                                               | 1.1 U<br>1.1 U                                                                        | 1.1 U<br>1.1 U                                                                   | 1.1 U<br>1.1 U                                                                          | 0.98 U<br>0.98 U                                                                         | -                                                                                              | -                                                                                                | 1.1 U<br>1.1 U                                                                          | 1.1 U<br>1.1 U                                                               |
| richlorobenzene, 1,2,4-<br>Frichloroethane, 1,1,1-                                                                        | μg/kg<br>μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>680 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                  | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 3,400 <sup>G</sup> | 1.1 U<br>1.1 U                                                                         | 1.2 U<br>1.2 U                                                                                       | 1.2 U<br>1.2 U                                                                           | 1.0 U<br>1.0 U                                                                                   | 0.96 U<br>0.96 U                                                                                   | 1.1 U<br>1.1 U                                                                                  | 1.1 U<br>1.1 U                                                                               | 1.1 U<br>1.1 U                                                                        | 1.1 U<br>1.1 U                                                                   | 1.1 U<br>1.1 U                                                                          | 0.98 U<br>0.98 U                                                                         |                                                                                                | -                                                                                                | 1.1 U<br>1.1 U                                                                          | 1.1 U<br>1.1 U                                                               |
| Frichloroethane, 1,1,1-                                                                                                   | μg/kg<br>μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | n/v                                                                                      | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   |                                                                                                | I                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Frichloroethane, 1,1,2-                                                                                                   | μg/kg<br>μg/kg | 470 <sup>AD</sup> 200,000 <sup>B</sup> 400,000 <sup>C</sup>                                                                                                                                                          | n/v                                                                                      | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   |                                                                                                | I                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Frichlorofluoromethane (Freon 11)                                                                                         | μg/kg          | 100.000 <sub>a</sub> <sup>A</sup> 500.000 <sub>a</sub> <sup>B</sup> 1.000.000 <sub>a</sub> <sup>CD</sup>                                                                                                             | n/v                                                                                      | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | 1                                                                                              | -                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Trichlorotrifluoroethane (Freon 113)                                                                                      | μg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 100.000 <sub>d</sub> CD                                                                                                                             | 500,000a <sup>E</sup> 1,000,000a <sup>F</sup> 6,000 <sup>G</sup>                         | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | _                                                                                              | _                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Trimethylbenzene, 1,2,4-                                                                                                  | μg/kg          | 3,600 <sup>AD</sup> 190,000 <sup>B</sup> 380,000 <sup>C</sup>                                                                                                                                                        | n/v                                                                                      | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | -                                                                                              | _                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Trimethylbenzene, 1,3,5-                                                                                                  | μg/kg          | 8,400 <sup>AD</sup> 190,000 <sup>B</sup> 380,000 <sup>C</sup>                                                                                                                                                        | n/v                                                                                      | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | _                                                                                              | _                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Vinyl Chloride                                                                                                            | μg/kg          | 20 <sup>AD</sup> 13.000 <sup>B</sup> 27.000 <sup>C</sup>                                                                                                                                                             | n/v                                                                                      | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | -                                                                                              | _                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Xylene, m & p-                                                                                                            | μg/kg          | 260 <sub>p</sub> <sup>A</sup> 500,000 <sub>c,D</sub> <sup>B</sup> 1,000,000 <sub>d,D</sub> <sup>C</sup> 1,600 <sub>p</sub> <sup>D</sup>                                                                              | n/v                                                                                      | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | -                                                                                              | _                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Kylene, o-                                                                                                                | μg/kg          | 260 <sub>p</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 1,600 <sub>p</sub> <sup>D</sup>                                                                                  | n/v                                                                                      | 1.1 U                                                                                  | 1.2 U                                                                                                | 1.2 U                                                                                    | 1.0 U                                                                                            | 0.96 U                                                                                             | 1.1 U                                                                                           | 1.1 U                                                                                        | 1.1 U                                                                                 | 1.1 U                                                                            | 1.1 U                                                                                   | 0.98 U                                                                                   | -                                                                                              | _                                                                                                | 1.1 U                                                                                   | 1.1 U                                                                        |
| Kylenes, Total                                                                                                            | μg/kg          | 260 <sup>A</sup> 500,000 <sub>G</sub> 1,000,000 <sub>d</sub> 1,600 <sup>D</sup>                                                                                                                                      | n/v                                                                                      | 2.3 U                                                                                  | 2.4 U                                                                                                | 2.5 U                                                                                    | 2.1 U                                                                                            | 1.9 U                                                                                              | 2.2 U                                                                                           | 2.1 U                                                                                        | 2.1 U                                                                                 | 2.1 U                                                                            | 2.2 U                                                                                   | 2.0 U                                                                                    | -                                                                                              | _                                                                                                | 2.2 U                                                                                   | 2.1 U                                                                        |
| otal VOC                                                                                                                  | μg/kg          | n/v                                                                                                                                                                                                                  | n/v                                                                                      | 8.7                                                                                    | 24.4                                                                                                 | 14.3                                                                                     | 1.6                                                                                              | 13.1                                                                                               | ND                                                                                              | 1.2                                                                                          | ND                                                                                    | ND                                                                               | 36.6                                                                                    | ND                                                                                       |                                                                                                |                                                                                                  | ND                                                                                      | ND                                                                           |
| OC - Tentatively Identified Compounds                                                                                     |                |                                                                                                                                                                                                                      |                                                                                          |                                                                                        |                                                                                                      | •                                                                                        |                                                                                                  |                                                                                                    |                                                                                                 |                                                                                              |                                                                                       |                                                                                  |                                                                                         |                                                                                          |                                                                                                |                                                                                                  |                                                                                         |                                                                              |
| al VOC TICs                                                                                                               | μg/kg          | n/v                                                                                                                                                                                                                  | n/v                                                                                      | _                                                                                      | _                                                                                                    |                                                                                          |                                                                                                  | _                                                                                                  | _                                                                                               | _                                                                                            |                                                                                       | 10 JN                                                                            | _                                                                                       | _                                                                                        | _                                                                                              |                                                                                                  | _                                                                                       | 7.7 J                                                                        |
| NUI V 0 0 1100                                                                                                            | μy/κy          | 11/V                                                                                                                                                                                                                 | 11/V                                                                                     | <del> </del>                                                                           | _                                                                                                    | -                                                                                        |                                                                                                  |                                                                                                    | <u> </u>                                                                                        | <u> </u>                                                                                     | _                                                                                     | IU JIN                                                                           |                                                                                         |                                                                                          |                                                                                                |                                                                                                  |                                                                                         | 1.13                                                                         |

See notes on last page.



190500898 Page 12 of 18  $\label{lem:u:light} \begin{tabular}{ll} U:\line 190500898\line 1905008\line 1905008\li$ 

## Table 1 Summary of Analytical Results for RI Soil Samples IRM Work Plan #2

820 Linden Ave Site, BCP #C828200 820 Linden Avenue, Pittsford, NY

| O-male Leasting                        | 1 1   | _                                                                                                                                       | 1                                                                                          | 1 00                      | 2-                        | 1 00                      | naha.                     | 1 00                      | 2-                        |                           |                           |                           | naha.                    | 1                         | 2.25                      | 1 00                     | 4aha                     |
|----------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------|--------------------------|---------------------------|---------------------------|--------------------------|--------------------------|
| Sample Location                        |       |                                                                                                                                         |                                                                                            |                           | -2a                       |                           | 2abc                      |                           | -2c                       |                           | 3-3a                      | SS-3                      |                          |                           | S-3b                      |                          | -4abc                    |
| Sample Date                            |       |                                                                                                                                         |                                                                                            | 30-Jul-18<br>LIN-SS2a-t-s | 30-Jul-18<br>LIN-SS2a-b-s | 30-Jul-18<br>LIN-SS2-t-s  | 30-Jul-18<br>LIN-SS2-b-s  | 30-Jul-18<br>LIN-SS2c-t-s | 30-Jul-18<br>LIN-SS2c-b-s | 30-Jul-18<br>LIN-SS3a-t-s | 30-Jul-18<br>LIN-SS3a-b-s | 30-Jul-18<br>LIN-SS3-t-s  | 30-Jul-18<br>LIN-SS3-b-s | 30-Jul-18<br>LIN-SS3b-t-s | 30-Jul-18<br>LIN-SS3b-b-s | 30-Jul-18<br>LIN-SS4-t-s | 30-Jul-18<br>LIN-SS4-b-s |
| Sample ID<br>Sample Depth              |       |                                                                                                                                         |                                                                                            | 0 - 2 in                  | 2 - 12 in                 | 0 - 2 in                  | 2 - 12 in                 | 0 - 2 in                  | 2 - 12 in                 | 0 - 2 in                  | 2 - 12 in                 | 0 - 2 in                  | 2 - 12 in                | 0 - 2 in                  | 2 - 12 in                 | 0 - 2 in                 | 2 - 12 in                |
| Sampling Company                       |       |                                                                                                                                         |                                                                                            | STANTEC                    STANTEC                   | STANTEC                   | STANTEC                  | STANTEC                  |
| Laboratory                             |       |                                                                                                                                         |                                                                                            | TAL                        TAL                       | TAL                       | TAL                      | TAL                      |
| Laboratory Work Order                  |       |                                                                                                                                         |                                                                                            | 460-161576-1              | 460-161576-1              | 460-161576-1              | 460-161576-1              | 460-161576-1              | 460-161576-1              | 460-161576-1              | 460-161576-1              | 460-161576-1              | 460-161576-1             | 460-161576-1              | 460-161576-1              | 460-161576-1             | 460-161576-1             |
| Laboratory Sample ID                   |       |                                                                                                                                         |                                                                                            | 460-161576-5              | 460-161576-6              | 460-161576-20             | 460-161576-21             | 460-161576-7              | 460-161576-8              | 460-161576-9              | 460-161576-10             | 460-161576-22             | 460-161576-23            | 460-161576-11             | 460-161576-12             | 460-161576-24            | 460-161576-25            |
| Sample Type                            | Units | NYSDEC-Part 375                                                                                                                         | NYSDEC CP-51                                                                               | 400-101070-0              | 400-101010-0              | 400-101070-20             | 400-101070-21             | 400-101070-7              | 400-101070-0              | 400-101070-5              | 400-101010-10             | 400-101010-22             | 400-101070-20            | 400-1010/0-11             | 400-101010-12             | 400-101010-24            | 400-101010-20            |
| Canaral Chamiatry                      |       |                                                                                                                                         |                                                                                            |                           |                           |                           |                           |                           |                           |                           |                           |                           |                          |                           |                           |                          |                          |
| General Chemistry Cyanide              | mg/kg | 27, AB 10,000 a C 40, D                                                                                                                 | n/v                                                                                        | <u> </u>                  | -                         | 0.26 U                    | 0.26 U                    | 1 -                       | -                         | _                         |                           | 1 -                       | -                        | T -                       | -                         | 0.27 U                   | 1.0                      |
| Metals                                 | 155 [ | 27 10,000   10                                                                                                                          |                                                                                            |                           |                           |                           |                           |                           |                           | I.                        |                           |                           |                          | •                         |                           |                          |                          |
| Aluminum                               | mg/kg | 10,000 <sub>e</sub> ABCD                                                                                                                | 10,000 <sub>a</sub> EFG                                                                    | -                         | -                         | 7,380                     | 6,160                     | -                         | -                         | -                         | -                         | 7,290                     | 5,850                    | -                         | -                         | 5,930                    | 6,580                    |
| Antimony                               | mg/kg | 10,000 <sub>e</sub> ABCD                                                                                                                | 10,000 <sub>a</sub> EFG                                                                    | -                         | -                         | 31.5 U                    | 32.1 U                    | -                         | -                         | -                         | -                         | 32.4 UJ                   | 29.5 U                   | -                         | -                         | 32.9 U                   | 32.7 U                   |
| Arsenic                                | mg/kg | 13 <sub>n</sub> <sup>A</sup> 16 <sub>a</sub> <sup>BCD</sup>                                                                             | n/v                                                                                        | -                         | -                         | 4.2 U                     | 4.3 U                     | -                         | -                         | -                         | -                         | 4.3 U                     | 3.9 U                    | -                         | -                         | 4.4 U                    | 4.4 U                    |
| Barium                                 | mg/kg | 350 <sub>n</sub> <sup>A</sup> 400 <sup>B</sup> 10,000 <sub>e</sub> <sup>C</sup> 820 <sup>D</sup>                                        | n/v                                                                                        | -                         | -                         | 24.8                      | 24.8                      | -                         | -                         | -                         | -                         | 27.9                      | 23.3                     | -                         | -                         | 27.4                     | 26.2                     |
| Beryllium                              | mg/kg | 7.2 <sup>A</sup> 590 <sup>B</sup> 2,700 <sup>C</sup> 47 <sup>D</sup>                                                                    | n/v                                                                                        | -                         | -                         | 0.42 U                    | 0.43 U                    | -                         | -                         | -                         | -                         | 0.43 U                    | 0.39 U                   | -                         | -                         | 0.44 U                   | 0.44 U                   |
| Cadmium                                | mg/kg | 2.5 <sub>n</sub> <sup>A</sup> 9.3 <sup>B</sup> 60 <sup>C</sup> 7.5 <sup>D</sup>                                                         | n/v                                                                                        | -                         | -                         | 0.42 U                    | 0.43 U                    | -                         | -                         | -                         | -                         | 0.43 U                    | 0.39 U                   | -                         | -                         | 0.44 U                   | 0.44 U                   |
| Calcium                                | mg/kg | 10,000 <sub>e</sub> ABCD                                                                                                                | 10,000 <sub>a</sub> <sup>EFG</sup>                                                         | -                         | -                         | 2,120                     | 2,200                     | -                         | -                         | -                         | -                         | 2,260                     | 1,850                    | -                         | -                         | 4,590                    | 3,010                    |
| Chromium                               | mg/kg | 30 <sub>n.i</sub> <sup>A</sup> 1,500 <sub>i</sub> <sup>B</sup> 6,800 <sub>i</sub> <sup>C</sup> <sub>NS.a</sub> <sup>D</sup>             | n/v                                                                                        | -                         | -                         | 9.7                       | 8.2                       | -                         | -                         | -                         | -                         | 9.6                       | 7.7                      | -                         | -                         | 16.4                     | 19.4                     |
| Cobalt                                 | mg/kg | 10,000 <sub>e</sub> <sup>ABCD</sup>                                                                                                     | 10,000 <sub>a</sub> <sup>EFG</sup>                                                         | -                         | -                         | 4.8                       | 3.7                       | -                         | -                         | -                         | -                         | 4.0                       | 2.9                      | -                         | -                         | 2.4                      | 2.7                      |
| Copper                                 | mg/kg | 50 <sup>A</sup> 270 <sup>B</sup> 10,000 <sub>e</sub> <sup>C</sup> 1,720 <sup>D</sup>                                                    | n/v                                                                                        | -                         | -                         | 11.2                      | 8.5                       | -                         | -                         | -                         | -                         | 10.4                      | 8.8                      | -                         | -                         | 8.4                      | 8.5                      |
| Iron                                   | mg/kg | 10,000 <sub>e</sub> ABCD                                                                                                                | 10,000 <sub>a</sub> <sup>EFG</sup>                                                         | -                         | -                         | 13,100 <sup>ABCDEFG</sup> | 10,900 <sup>ABCDEFG</sup> | -                         | -                         | -                         | -                         | 10,800 <sup>ABCDEFG</sup> | 8,240                    | -                         | -                         | 7,410                    | 8,080                    |
| Lead                                   | mg/kg | 63 <sub>n</sub> <sup>A</sup> 1,000 <sup>B</sup> 3,900 <sup>C</sup> 450 <sup>D</sup>                                                     | n/v                                                                                        | -                         | -                         | 7.5                       | 12.3                      | -                         | -                         | -                         | -                         | 24.2                      | 17.8                     | -                         | -                         | 26.3                     | 28.4                     |
| Magnesium                              | mg/kg | 10,000 <sub>e</sub> ABCD                                                                                                                | n/v                                                                                        | -                         | -                         | 1,940                     | 1,670                     | -                         | -                         | -                         | -                         | 1,690                     | 1,310                    | -                         | -                         | 2,030                    | 1,550                    |
| Manganese                              | mg/kg | 1,600 <sub>n</sub> <sup>A</sup> 10,000 <sub>e</sub> <sup>BC</sup> 2,000 <sub>g</sub> <sup>D</sup>                                       | n/v                                                                                        | -                         | _                         | 356                       | 310                       | -                         | _                         | -                         | _                         | 283                       | 205                      | -                         | _                         | 181                      | 170                      |
| Mercury                                | mg/kg | 0.18 <sub>a</sub> <sup>A</sup> 2.8 <sub>k</sub> <sup>B</sup> 5.7 <sub>k</sub> <sup>C</sup> 0.73 <sup>D</sup>                            | n/v                                                                                        | -                         | _                         | 0.030                     | 0.034                     | -                         | -                         | -                         | _                         | 0.039                     | 0.040                    | -                         | _                         | 0.064                    | 0.069                    |
| Nickel                                 | mg/kg | 30 <sup>A</sup> 310 <sup>B</sup> 10,000° C 130 <sup>D</sup>                                                                             | n/v                                                                                        | -                         | _                         | 11.2                      | 10.7 U                    | -                         | -                         | -                         | _                         | 10.8 U                    | 9.8 U                    | -                         | _                         | 11.0 U                   | 10.9 U                   |
| Potassium                              | mg/kg | 10,000 <sub>e</sub> ABCD                                                                                                                | n/v                                                                                        | -                         | -                         | 672                       | 502                       | -                         | _                         | -                         | -                         | 654                       | 374                      | -                         | -                         | 454                      | 440                      |
| Selenium                               | mg/kg | $3.9_{0}^{A} 1,500^{B} 6,800^{C} 4_{0}^{D}$                                                                                             | n/v                                                                                        | -                         | -                         | 8.4 U                     | 8.6 U                     | -                         | -                         | -                         | -                         | 8.6 U                     | 7.9 U                    | -                         | -                         | 8.8 U                    | 8.7 U                    |
| Silver                                 | mg/kg | 2 <sup>A</sup> 1,500 <sup>B</sup> 6,800 <sup>C</sup> 8.3 <sup>D</sup>                                                                   | n/v                                                                                        | -                         | -                         | 1.1 U                     | 1.1 U                     | -                         | -                         | -                         | -                         | 1.1 U                     | 0.98 U                   | -                         | -                         | 1.1 U                    | 1.1 U                    |
| Sodium                                 | mg/kg | 10,000 <sub>e</sub> ABCD                                                                                                                | n/v                                                                                        | -                         | -                         | 294 U                     | 300 U                     | -                         | -                         | -                         | -                         | 302 U                     | 275 U                    | -                         | -                         | 307 U                    | 305 U                    |
| Thallium                               | mg/kg | 10,000 <sub>e</sub> ABCD                                                                                                                | 10,000 <sub>a</sub>                                                                        | -                         | -                         | 12.6 U                    | 12.9 U                    | -                         | -                         | -                         | -                         | 12.9 U                    | 11.8 U                   | -                         | -                         | 13.2 U                   | 13.1 U                   |
| Vanadium                               | mg/kg | 10,000 <sub>e</sub> <sup>ABCD</sup>                                                                                                     | 10,000 <sub>a</sub> EFG                                                                    | -                         | -                         | 17.7                      | 14.7                      | -                         | -                         | -                         | -                         | 14.9                      | 11.5                     | -                         | -                         | 10.9                     | 11.8                     |
| Zinc                                   | mg/kg | 109 <sub>n</sub> <sup>A</sup> 10,000 <sub>e</sub> <sup>BC</sup> 2,480 <sup>D</sup>                                                      | n/v                                                                                        | -                         | -                         | 30.2                      | 31.2                      | -                         | -                         | -                         | -                         | 43.9                      | 44.5                     | -                         | -                         | 47.2                     | 46.7                     |
| Polychlorinated Biphenyls              |       |                                                                                                                                         |                                                                                            |                           |                           |                           |                           |                           |                           |                           |                           |                           |                          |                           |                           |                          | <u> </u>                 |
| Aroclor 1016                           | μg/kg | ABCD                                                                                                                                    | n/v                                                                                        | -                         | -                         | 37 U                      | 37 U                      | -                         | -                         | -                         | -                         | -                         | -                        | -                         | -                         | 38 U                     | 37 U                     |
| Aroclor 1221                           | μg/kg | ABCD                                                                                                                                    | n/v                                                                                        | -                         | _                         | 37 U                      | 37 U                      | -                         | _                         | -                         | _                         | -                         | _                        | -                         | _                         | 38 U                     | 37 U                     |
| Aroclor 1232                           | μg/kg | ABCD                                                                                                                                    | n/v                                                                                        | -                         | -                         | 37 U                      | 37 U                      | -                         | -                         | -                         | -                         | -                         | -                        | -                         | -                         | 38 U                     | 37 U                     |
| Aroclor 1242                           | μg/kg | ABCD                                                                                                                                    | n/v                                                                                        | -                         | -                         | 37 U                      | 37 U                      | -                         | -                         | -                         | -                         | -                         | -                        | -                         | -                         | 38 U                     | 37 U                     |
| Aroclor 1248                           | μg/kg | ABCD                                                                                                                                    | n/v                                                                                        | -                         | -                         | 37 U                      | 37 U                      | -                         | -                         | -                         | -                         | -                         | -                        | -                         | -                         | 38 U                     | 37 U                     |
| Aroclor 1254                           | μg/kg | ABCD                                                                                                                                    | n/v                                                                                        | -                         | -                         | 37 U                      | 37 U                      | -                         | -                         | -                         | -                         | -                         | -                        | -                         | -                         | 38 U                     | 37 U                     |
| Aroclor 1260                           | μg/kg | ABCD                                                                                                                                    | n/v                                                                                        | -                         | -                         | 37 U                      | 37 U                      | -                         | -                         | -                         | -                         | -                         | -                        | -                         | -                         | 38 U                     | 37 U                     |
| Aroclor 1262                           | μg/kg | ABCD                                                                                                                                    | n/v                                                                                        | -                         | -                         | 37 U                      | 37 U                      | -                         | -                         | -                         | -                         | -                         | -                        | -                         | -                         | 38 U                     | 37 U                     |
| Aroclor 1268                           | μg/kg | ABCD                                                                                                                                    | n/v                                                                                        | -                         | -                         | 37 U                      | 37 U                      | -                         | -                         | -                         | -                         | -                         | -                        | -                         | -                         | 38 U                     | 37 U                     |
| Polychlorinated Biphenyls (PCBs)       | μg/kg | 100 <sup>A</sup> 1,000 <sup>B</sup> 25,000 <sup>C</sup> 3,200 <sup>D</sup>                                                              | n/v                                                                                        | -                         | -                         | ND                        | ND                        | -                         | -                         | -                         | -                         | -                         | -                        | -                         | -                         | ND                       | ND                       |
| Pesticides                             | 1     | A B C D                                                                                                                                 |                                                                                            | •                         |                           |                           |                           | •                         |                           | 1                         |                           | ,                         |                          | •                         |                           |                          |                          |
| Aldrin                                 | μg/kg | 5 <sub>n</sub> <sup>A</sup> 680 <sup>B</sup> 1,400 <sup>C</sup> 190 <sup>D</sup>                                                        | n/v                                                                                        | -                         | -                         | 3.7 U                     | 3.7 U                     | -                         | -                         | -                         | -                         | -                         | -                        | -                         | -                         | 3.8 U                    | 3.7 U                    |
| BHC, alpha-                            | μg/kg | 20 <sup>AD</sup> 3,400 <sup>B</sup> 6,800 <sup>C</sup>                                                                                  | n/v                                                                                        | -                         | -                         | 3.7 U                     | 3.7 U                     | -                         | -                         | -                         | -                         | -                         | -                        | -                         | -                         | 3.8 U                    | 3.7 U                    |
| BHC, beta-                             | μg/kg | 36 <sup>A</sup> 3,000 <sup>B</sup> 14,000 <sup>C</sup> 90 <sup>D</sup>                                                                  | n/v                                                                                        | -                         | -                         | 3.7 U                     | 3.7 U                     | -                         | -                         | -                         | -                         | -                         | -                        | -                         | -                         | 3.8 U                    | 3.7 U                    |
| BHC, delta-                            | μg/kg | 40 <sub>n</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 250 <sup>D</sup>                     | n/v                                                                                        | -                         | -                         | 3.7 U                     | 3.7 U                     | · -                       | -                         | -                         | -                         | -                         | -                        |                           | -                         | 3.8 U                    | 3.7 U                    |
| Camphechlor (Toxaphene)                | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                | n/v                                                                                        | -                         | -                         | 37 U<br>3.7 U             | 37 U                      | · -                       | -                         | -                         | -                         | -                         | -                        |                           | -                         | 38 U                     | 37 U<br>3.7 U            |
| Chlordane, alpha-                      | μg/kg | 94 <sup>A</sup> 24,000 <sup>B</sup> 47,000 <sup>C</sup> 2,900 <sup>D</sup>                                                              | n/v                                                                                        | -                         | -                         | 3.7 U<br>3.7 U            | 3.7 U<br>3.7 U            | · -                       | -                         | -                         | -                         | -                         | -                        |                           | -                         | 3.8 U<br>3.8 U           | 3.7 U<br>3.7 U           |
| Chlordane, trans- (gamma-Chlordane)    | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                                   | n/v                                                                                        | · -                       | _ <del>-</del>            | 3.7 U<br>3.7 U            | 3.7 U<br>3.7 U            | · -                       | _                         | _                         | _                         | _                         | -                        | _                         | _                         | 3.8 U<br>3.8 U           | 3.7 U<br>3.7 U           |
| DDD (p,p'-DDD)                         | μg/kg | 3.3 <sub>m</sub> <sup>A</sup> 92,000 <sup>B</sup> 180,000 <sup>C</sup> 14,000 <sup>D</sup>                                              | n/v                                                                                        | · -                       | _ <del>-</del>            |                           |                           | · -                       | _                         | _                         | _                         | _                         | -                        | _                         | _                         |                          |                          |
| DDE (p,p'-DDE)                         | μg/kg | 3.3 <sub>m</sub> <sup>A</sup> 62,000 <sup>B</sup> 120,000 <sup>C</sup> 17,000 <sup>D</sup>                                              | n/v                                                                                        | -                         | -                         | 3.7 U                     | 3.7 U                     | _                         | -                         | -                         | -                         | -                         | -                        | -                         | _                         | 3.8 U                    | 3.7 U                    |
| DDT (p,p'-DDT)                         | μg/kg | 3.3 <sub>m</sub> <sup>A</sup> 47,000 <sup>B</sup> 94,000 <sup>C</sup> 136,000 <sup>D</sup>                                              | n/v                                                                                        | -                         | -                         | 3.7 U                     | 3.7 U                     | -                         | -                         | -                         | -                         | -                         | -                        | -                         | -                         | 3.8 U                    | 3.7 U                    |
| Dieldrin                               | μg/kg | 5 <sub>n</sub> <sup>A</sup> 1,400 <sup>B</sup> 2,800 <sup>C</sup> 100 <sup>D</sup>                                                      | n/v                                                                                        | -                         | -                         | 3.7 U                     | 3.7 U                     | -                         | -                         | -                         | -                         | -                         | -                        | -                         | -                         | 63 <sup>A</sup>          | 52 <sup>A</sup>          |
| Endosulfan I                           | μg/kg | 2,400 <sub>i</sub> <sup>A</sup> 200,000 <sub>i</sub> <sup>B</sup> 920,000 <sub>i</sub> <sup>C</sup> 102,000 <sup>D</sup>                | n/v                                                                                        | -                         | -                         | 3.7 U                     | 3.7 U                     | -                         | -                         | -                         | -                         | -                         | -                        | -                         | -                         | 3.8 U                    | 3.7 U                    |
| Endosulfan II                          | μg/kg | 2,400 <sub>i</sub> <sup>A</sup> 200,000 <sub>i</sub> <sup>B</sup> 920,000 <sub>i</sub> <sup>C</sup> 102,000 <sup>D</sup>                | n/v                                                                                        | -                         | -                         | 3.7 U                     | 3.7 U                     | -                         | -                         | -                         | -                         | -                         | -                        | -                         | -                         | 3.8 U                    | 3.7 U                    |
| Endosulfan Sulfate                     | μg/kg | 2,400 <sub>i</sub> <sup>A</sup> 200,000 <sub>i</sub> <sup>B</sup> 920,000 <sub>i</sub> <sup>C</sup> 1,000,000 <sub>d</sub> <sup>D</sup> | n/v                                                                                        | -                         | -                         | 3.7 U                     | 3.7 U                     | -                         | -                         | -                         | -                         | -                         | -                        | -                         | -                         | 3.8 U                    | 3.7 U                    |
| Endrin                                 | μg/kg | 14 <sup>A</sup> 89,000 <sup>B</sup> 410,000 <sup>C</sup> 60 <sup>D</sup>                                                                | n/v                                                                                        | -                         | -                         | 3.7 U                     | 3.7 U                     | -                         | -                         | -                         | -                         | -                         | -                        | -                         | -                         | 3.8 U                    | 3.7 U                    |
| Endrin Aldehyde                        | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                | n/v                                                                                        | -                         | -                         | 3.7 U                     | 3.7 U                     | -                         | -                         | -                         | -                         | -                         | -                        | -                         | -                         | 3.8 U                    | 3.7 U                    |
| Endrin Ketone                          | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                | n/v                                                                                        | -                         | -                         | 3.7 U                     | 3.7 U                     | -                         | -                         | -                         | -                         | -                         | -                        | -                         | -                         | 3.8 U                    | 3.7 U                    |
| Heptachlor                             | μg/kg | 42 <sup>A</sup> 15,000 <sup>B</sup> 29,000 <sup>C</sup> 380 <sup>D</sup>                                                                | n/v                                                                                        | -                         | -                         | 3.7 U                     | 3.7 U                     | -                         | -                         | -                         | -                         | -                         | -                        | -                         | -                         | 3.8 U                    | 3.7 U                    |
| Heptachlor Epoxide                     | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 20 <sup>G</sup>      | -                         | -                         | 3.7 U                     | 3.7 U                     | -                         | -                         | -                         | -                         | -                         | -                        | -                         | -                         | 3.8 U                    | 3.7 U                    |
| Lindane (Hexachlorocyclohexane, gamma) | μg/kg | 100 <sup>AD</sup> 9,200 <sup>B</sup> 23,000 <sup>C</sup>                                                                                | n/v                                                                                        | -                         | -                         | 3.7 U                     | 3.7 U                     | -                         | -                         | -                         | -                         | -                         | -                        | -                         | -                         | 3.8 U                    | 3.7 U                    |
| Methoxychlor (4,4'-Methoxychlor)       | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 900,000 <sup>G</sup> | -                         | -                         | 3.7 U                     | 3.7 U                     | <u> </u>                  | -                         | -                         | -                         | -                         | -                        |                           | -                         | 3.8 U                    | 3.7 U                    |
| See notes on last page.                |       |                                                                                                                                         |                                                                                            |                           |                           |                           |                           |                           |                           |                           |                           |                           |                          |                           |                           |                          |                          |

See notes on last page.



190500898
U:\190500898\05\_report\_deliv\deliverables\work\_plan\\RMWP.2\2\_Tables\tb11\_R\.soil\_CL.LB\_20191014.x\lsx

## Summary of Analytical Results for RI Soil Samples IRM Work Plan #2

820 Linden Ave Site, BCP #C828200

820 Linden Avenue, Pittsford, NY

| mple Location                                         | 1              | 1                                                                                                                                                                                                                    |                                                                                                              | ss           | 5-2a         | SS-            | 2abc           | SS           | 3-2c         | ss           | 3-3a          | SS-3          | Babc          | ss            | 5-3b          | SS-                  | -4abc      |
|-------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------|--------------|----------------|----------------|--------------|--------------|--------------|---------------|---------------|---------------|---------------|---------------|----------------------|------------|
| mple Date                                             |                |                                                                                                                                                                                                                      |                                                                                                              | 30-Jul-18    | 30-Jul-18    | 30-Jul-18      | 30-Jul-18      | 30-Jul-18    | 30-Jul-18    | 30-Jul-18    | 30-Jul-18     | 30-Jul-18     | 30-Jul-18     | 30-Jul-18     | 30-Jul-18     | 30-Jul-18            | 30-Jul-1   |
| mple ID                                               |                |                                                                                                                                                                                                                      |                                                                                                              | LIN-SS2a-t-s | LIN-SS2a-b-s | LIN-SS2-t-s    | LIN-SS2-b-s    | LIN-SS2c-t-s | LIN-SS2c-b-s | LIN-SS3a-t-s | LIN-SS3a-b-s  | LIN-SS3-t-s   | LIN-SS3-b-s   | LIN-SS3b-t-s  | LIN-SS3b-b-s  | LIN-SS4-t-s          | LIN-SS4-   |
| mple Depth                                            |                |                                                                                                                                                                                                                      |                                                                                                              | 0 - 2 in     | 2 - 12 in    | 0 - 2 in       | 2 - 12 in      | 0 - 2 in     | 2 - 12 in    | 0 - 2 in     | 2 - 12 in     | 0 - 2 in      | 2 - 12 in     | 0 - 2 in      | 2 - 12 in     | 0 - 2 in             | 2 - 12 i   |
| mpling Company                                        |                |                                                                                                                                                                                                                      |                                                                                                              | STANTEC      | STANTEC      | STANTEC        | STANTEC        | STANTEC      | STANTEC      | STANTEC      | STANTEC       | STANTEC       | STANTEC       | STANTEC       | STANTEC       | STANTEC              | STANTE     |
| boratory                                              |                |                                                                                                                                                                                                                      |                                                                                                              | TAL          | TAL          | TAL            | TAL            | TAL          | TAL          | TAL          | TAL           | TAL           | TAL           | TAL           | TAL           | TAL                  | TAL        |
| boratory Work Order                                   |                |                                                                                                                                                                                                                      |                                                                                                              | 460-161576-1 | 460-161576-1 | 460-161576-1   | 460-161576-1   | 460-161576-1 | 460-161576-1 | 460-161576-1 | 460-161576-1  | 460-161576-1  | 460-161576-1  | 460-161576-1  | 460-161576-1  | 460-161576-1         | 460-16157  |
| boratory Sample ID                                    |                |                                                                                                                                                                                                                      |                                                                                                              | 460-161576-5 | 460-161576-6 | 460-161576-20  | 460-161576-21  | 460-161576-7 | 460-161576-8 | 460-161576-9 | 460-161576-10 | 460-161576-22 | 460-161576-23 | 460-161576-11 | 460-161576-12 | 460-161576-24        | 460-16157  |
| mple Type                                             | Units          | NYSDEC-Part 375                                                                                                                                                                                                      | NYSDEC CP-51                                                                                                 |              |              |                |                |              |              |              |               |               |               |               |               |                      |            |
| emi-Volatile Organic Compounds                        | -              | <u> </u>                                                                                                                                                                                                             |                                                                                                              |              | 1            | <u> </u>       | 1              | <u> </u>     | 1            |              | 1             |               |               | <u> </u>      | 1             |                      |            |
| enaphthene                                            | μg/kg          | 20,000 <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 98,000 <sup>D</sup>                                                                                                        | n/v                                                                                                          | -            | -            | 380 U          | 370 U          | -            | -            | -            | -             | -             | -             | -             | -             | 390 U                | 380 U      |
| enaphthylene                                          | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 107,000 <sup>D</sup>                                                                                         | n/v                                                                                                          | -            | -            | 380 U          | 370 U          | -            | -            | -            | -             | -             | -             | -             | -             | 390 U                | 380 U      |
| etophenone                                            | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                                                                                                                | n/v                                                                                                          | -            | -            | 380 U          | 370 U          | -            | -            | -            | -             | -             | -             | -             | -             | 390 U                | 380 U      |
| hracene                                               | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | n/v                                                                                                          | -            | -            | 380 U          | 370 U          | -            | -            | -            | -             | -             | -             | -             | -             | 390 U                | 380 U      |
| zine                                                  | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                                                                                                                | n/v                                                                                                          | -            | -            | 380 U          | 370 U          | -            | -            | -            | -             | -             | -             | -             | -             | 390 U                | 380 (      |
| zaldehyde                                             | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                                                                                                                | n/v                                                                                                          | -            | -            | 380 U          | 370 U          | -            | -            | -            | -             | -             | -             | -             | -             | 390 U                | 380 (      |
| zo(a)anthracene                                       | µg/kg          | 1,000 <sub>n</sub> <sup>A</sup> 5,600 <sup>B</sup> 11,000 <sup>C</sup> 1,000 <sub>g</sub> <sup>D</sup>                                                                                                               | n/v                                                                                                          | -            | -            | 380 U          | 540            | -            | -            | -            | -             | -             | -             | -             | -             | 1,600 <sup>AD</sup>  | 560        |
| zo(a)pyrene                                           | μg/kg          | 1,000 <sub>n</sub> <sup>A</sup> 1,000 <sub>q</sub> <sup>B</sup> 1,100 <sup>C</sup> 22,000 <sup>D</sup>                                                                                                               | n/v                                                                                                          | -            | -            | 380 U          | 430            | -            | -            | -            | -             | -             | -             | -             | -             | 1,800 <sup>ABC</sup> | 630        |
| zo(b)fluoranthene                                     | μg/kg          | 1,000 <sub>n</sub> 5,600 <sup>B</sup> 11,000 <sup>C</sup> 1,700 <sup>D</sup>                                                                                                                                         | n/v                                                                                                          | -            | -            | 380 U          | 560            | -            | -            | -            | -             | -             | -             | -             | -             | 2.600 <sup>AD</sup>  | 930        |
| zo(g,h,i)perylene                                     | μg/kg          | 100,000 <sup>A</sup> 500,000 <sub>6</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                          | n/v                                                                                                          | -            | _            | 380 U          | 370 U          | -            | _            | -            | _             | -             | -             | -             | _             | 1,200                | 450        |
| zo(k)fluoranthene                                     | μg/kg          | 800 <sub>n</sub> <sup>A</sup> 56,000 <sup>B</sup> 110,000 <sup>C</sup> 1,700 <sup>D</sup>                                                                                                                            | n/v                                                                                                          | -            | _            | 380 U          | 370 U          | -            | _            | -            | _             | -             | _             | -             | _             | 1,000 <sup>A</sup>   | 380 (      |
| enyl, 1,1'- (Biphenyl)                                | µg/kg          | 100,000 A 1,000,000 D                                                                                                                                                                                                | 500,000°E 1,000,000°E                                                                                        | -            | _            | 380 U          | 370 U          | -            | _            | -            | _             | _             | _             | -             | _             | 390 U                | 380 (      |
| -Chloroethoxy)methane                                 | μg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                                                                                  | n/v                                                                                                          | -            | _            | 380 U          | 370 U          | -            | _            | -            | _             | -             | _             | -             | _             | 390 U                | 380        |
| 2-Chloroethyl)ether                                   | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | n/v                                                                                                          | -            | -            | 380 U          | 370 U          | -            | -            | -            | -             | -             | -             | -             | _             | 390 U                | 380        |
| 2-Chloroisopropyl)ether (2,2-oxybis(1-Chloropropane)) | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | n/v                                                                                                          | -            | -            | 380 U          | 370 U          | -            | -            | -            | -             | -             | -             | -             | -             | 390 U                | 380        |
| 2-Ethylhexyl)phthalate (DEHP)                         | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 435,000 <sup>G</sup>                   | -            | -            | 380 U          | 370 U          | -            | -            | -            | -             | -             | -             | -             | -             | 390 U                | 380        |
| nophenyl Phenyl Ether, 4-                             | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | n/v                                                                                                          | -            | -            | 380 U          | 370 U          | -            | -            | -            | -             | -             | -             | -             | -             | 390 U                | 380        |
| I Benzyl Phthalate                                    | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 122,000 <sup>G</sup>                   | -            | -            | 380 U          | 370 U          | -            | -            | -            | -             | -             | -             | -             | -             | 390 U                | 380        |
| rolactam                                              | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                                                                                                                | n/v                                                                                                          | -            | -            | 380 U          | 370 U          | -            | -            | -            | -             | -             | -             | -             | -             | 390 U                | 380        |
| pazole                                                | μg/kg          | 100,000 <sub>a</sub> , 500,000 <sub>c</sub> , 1,000,000 <sub>d</sub>                                                                                                                                                 | n/v                                                                                                          | -            | -            | 380 U          | 370 U          | -            | -            | -            | -             | -             | -             | -             | -             | 390 U                | 380        |
| ro-3-methyl phenol, 4-                                | μg/kg          | 100,000 <sub>a</sub> , 500,000 <sub>c</sub> , 1,000,000 <sub>d</sub> , 50                                                                                                                                            | _ n/v                                                                                                        | -            | -            | 380 U          | 370 U          | -            | -            | -            | -             | -             | -             | -             | -             | 390 U                | 380        |
| roaniline, 4-                                         | µg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 220 <sup>G</sup>                       | -            | -            | 380 U          | 370 U          | -            | -            | -            | -             | -             | -             | -             | -             | 390 U                | 380        |
| ronaphthalene, 2-                                     | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | _n/v                                                                                                         | -            | -            | 380 U          | 370 U          | -            | -            | -            | -             | -             | -             | -             | -             | 390 U                | 380        |
| rophenol, 2- (ortho-Chlorophenol)                     | μg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                                                                                  | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F                                                              | -            | -            | 380 U          | 370 U          | -            | -            | -            | -             | -             | -             | -             | -             | 390 U                | 380        |
| rophenyl Phenyl Ether, 4-                             | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | n/v                                                                                                          | -            | -            | 380 U          | 370 U          | -            | -            | -            | -             | -             | -             | -             | -             | 390 U                | 380        |
| /sene                                                 | μg/kg          | 1,000 <sub>n</sub> <sup>A</sup> 56,000 <sup>B</sup> 110,000 <sup>C</sup> 1,000 <sub>g</sub> <sup>D</sup>                                                                                                             | n/v                                                                                                          | -            | -            | 380 U          | 480            | -            | -            | -            | -             | -             | -             | -             | -             | 2,000 <sup>AD</sup>  | 680        |
| sol, o- (Methylphenol, 2-)                            | μg/kg          | 330 <sub>m</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 330 <sub>f</sub> <sup>D</sup>                                                                                    | n/v                                                                                                          | -            | -            | 380 U          | 370 U          | -            | -            | -            | -             | -             | -             | -             | -             | 390 U                | 380        |
| sol, p- (Methylphenol, 4-)                            | μg/kg          | 330 <sub>m</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 330 <sub>f</sub> <sup>D</sup>                                                                                    | n/v                                                                                                          | -            | -            | 730 U          | 730 U          | -            | -            | -            | -             | -             | -             | -             | -             | 760 U                | 740        |
| enzo(a,h)anthracene                                   | μg/kg          | 330 <sub>m</sub> <sup>A</sup> 560 <sup>B</sup> 1,100 <sup>C</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                                                                                | n/v                                                                                                          | -            | -            | 380 U          | 370 U          | -            | -            | -            | -             | -             | -             | -             | -             | 390 U                | 380 (      |
| enzofuran                                             | μg/kg          | 7,000 <sup>A</sup> 350,000 <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 210,000 <sup>D</sup>                                                                                                                     | 500,000a 1,000,000a 6,200 G                                                                                  | -            | -            | 380 U          | 370 U          | -            | -            | -            | -             | -             | -             | -             | -             | 390 U                | 380 (      |
| ityl Phthalate (DBP)                                  | μg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> D                                                                                                                                                   | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 8,100 <sup>G</sup>                     | -            | -            | 380 U          | 370 U          | -            | -            | -            | -             | -             | -             | -             | -             | 390 U                | 380 (      |
| nlorobenzidine, 3,3'-                                 | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | n/v                                                                                                          | -            | -            | 380 U          | 370 U          | -            | -            | -            | -             | -             | -             | -             | -             | 390 U                | 380        |
| llorophenol, 2,4-                                     | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | 500,000 <sub>a</sub> 1,000,000 <sub>a</sub> 400 <sup>G</sup>                                                 | -            | -            | 380 U          | 370 U          | -            | -            | -            | -             | -             | -             | -             | -             | 390 U                | 380        |
| hyl Phthalate                                         | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | 500,000 t 1,000,000 f 7,100 G                                                                                | -            | -            | 380 U          | 370 U          | -            | -            | -            | -             | -             | -             | -             | -             | 390 U                | 380        |
| ethyl Phthalate<br>ethylphenol, 2,4-                  | µg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>E</sup> 27,000 <sup>G</sup>                    | -            | -            | 380 U<br>380 U | 370 U<br>370 U | -            | -            | -            | -             | -             | -             | -             | -             | 390 U<br>390 U       | 380<br>380 |
|                                                       | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | n/v                                                                                                          | -            | -            | 730 U          | 730 U          | -            | -            | -            | -             | -             | -             | -             | -             | 760 U                | 740        |
| ro-o-cresol, 4,6-<br>rophenol, 2,4-                   | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup> | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F 200 <sup>G</sup>                                             | -            | -            | 730 U          | 730 U          | -            | -            | -            | -             | -             | -             | -             | -             | 760 U                | 740        |
| rotoluene, 2,4-                                       | μg/kg<br>μg/kg | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 100,000 <sub>d</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 100,000                                                                            | 500,000 <sub>a</sub> 1,000,000 <sub>a</sub> 200                                                              | _            | _            | 380 U          | 370 U          | _            | -            | -            | _             | _             | -             | -             | _             | 390 U                | 380        |
| trotoluene, 2,6-                                      | μg/kg<br>μg/kg | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 100,000 <sub>d</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 100,000                                                                            | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 1,000/170 <sub>b.s1</sub> <sup>G</sup> | ]            | _            | 380 U          | 370 U          | _            | _            | _            | _             | 1 [           | _             | ]             | _             | 390 U                | 380        |
| -Octyl phthalate                                      | μg/kg<br>μg/kg | 100,000 <sub>a</sub> A 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                                                                                | 500,000a 1,000,000a 1,000/170b.s1                                                                            | ]            | ]            | 380 U          | 370 U          | _            |              | -            | _             |               | -             |               | ]             | 390 U                | 380        |
| ranthene                                              | μg/kg          | 100,000a 500,000c 1,000,000d CD                                                                                                                                                                                      | n/v                                                                                                          | _            | _            | 380 U          | 1,100          | _            | _            | _            | _             | _             | _             | _             | _             | 4,000                | 1,50       |
| rene                                                  | μg/kg          | 30,000 <sup>A</sup> 500,000 <sub>C</sub> 1,000,000 <sub>d</sub> 386,000 <sup>D</sup>                                                                                                                                 | n/v                                                                                                          | _            |              | 380 U          | 370 U          | _            | _            | _            | _             | _             | _             |               | _             | 390 U                | 380        |
| achlorobenzene                                        | μg/kg          | 330 <sub>m</sub> <sup>A</sup> 6,000 <sup>B</sup> 12,000 <sup>C</sup> 3,200 <sup>D</sup>                                                                                                                              | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 1,400 <sup>G</sup>                     | _            | _            | 380 U          | 370 U          | _            | _            | -            | _             | _             | _             | _             | _             | 390 U                | 380        |
| achlorobutadiene (Hexachloro-1,3-butadiene)           | µg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | n/v                                                                                                          | -            | _            | 380 U          | 370 U          | -            | _            | -            | _             | _             | _             | -             | _             | 390 U                | 380        |
| achlorocyclopentadiene                                | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | 500,000 <sub>a</sub> 1,000,000 <sub>a</sub> F                                                                | -            | -            | 380 U          | 370 U          | -            | -            | -            | -             | -             | -             | -             | _             | 390 U                | 380        |
| achloroethane                                         | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | n/v                                                                                                          | -            | -            | 380 U          | 370 U          | -            | -            | -            | -             | -             | -             | -             | -             | 390 U                | 380        |
| no(1,2,3-cd)pyrene                                    | µg/kg          | 500 <sub>n</sub> <sup>A</sup> 5,600 <sup>B</sup> 11,000 <sup>C</sup> 8,200 <sup>D</sup>                                                                                                                              | n/v                                                                                                          | -            | _            | 380 U          | 370 U          | -            | _            | -            | _             | _             | _             | -             | _             | 1.400 <sup>A</sup>   | 510        |
| norone                                                | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 4,400 <sup>G</sup>                     | _            | _            | 380 U          | 370 U          | _            | _            | _            | _             | _             | _             | _             | _             | 390 U                | 380        |
| ylnaphthalene, 2-                                     | μg/kg          | 100,000a 500,000c 1,000,000d CD                                                                                                                                                                                      | 500,000a 1,000,000a 4,400 500,000a 1,000,000                                                                 | -            | _            | 380 U          | 370 U          | -            | _            | -            | _             | _             | _             | -             | _             | 390 U                | 380        |
| nthalene                                              | μg/kg          | 12,000 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                           | n/v                                                                                                          | -            | _            | 380 U          | 370 U          | -            | _            | -            | _             | -             | _             | -             | _             | 390 U                | 380        |
| aniline, 2-                                           | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F 400 <sup>G</sup>                                             | -            | -            | 730 U          | 730 U          | -            | -            | -            | -             | -             | -             | -             | -             | 760 U                | 740        |
| niline, 3-                                            | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 500 <sup>G</sup>                       | -            | -            | 730 U          | 730 U          | -            | -            | -            | -             | -             | -             | -             | -             | 760 U                | 740        |
| niline, 4-                                            | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | n/v                                                                                                          | -            | -            | 730 U          | 730 U          | -            | -            | -            | -             | -             | -             | -             | -             | 760 U                | 740        |
| enzene                                                | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | 69,000 <sup>E</sup> 140,000 <sup>F</sup> 170 <sub>b</sub> <sup>G</sup>                                       | -            | -            | 380 U          | 370 U          | -            | -            | -            | -             | -             | -             | -             | -             | 390 U                | 380        |
| enol, 2-                                              | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>E</sup> 300 <sup>G</sup>                       | -            | -            | 380 U          | 370 U          | -            | -            | -            | -             | -             | -             | -             | -             | 390 U                | 380        |
| nenol, 4-                                             | μg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> D                                                                                                                                                   | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 100 <sup>G</sup>                       | -            | -            | 730 U          | 730 U          | -            | -            | -            | -             | -             | -             | -             | -             | 760 U                | 740        |
| osodi-n-Propylamine                                   | μg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                                                                                  | n/v                                                                                                          | -            | -            | 380 U          | 370 U          | -            | -            | -            | -             | -             | -             | -             | -             | 390 U                | 380        |
| sodiphenylamine                                       | μg/kg          | 100,000g <sup>A</sup> 500,000g <sup>B</sup> 1,000,000g <sup>CD</sup>                                                                                                                                                 | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F                                                              | -            | -            | 380 U          | 370 U          | -            | -            | -            | -             | -             | -             | -             | -             | 390 U                | 380        |
| chlorophenol                                          | μg/kg          | 800 <sub>m</sub> <sup>A</sup> 6,700 <sup>B</sup> 55,000 <sup>C</sup> 800 <sub>f</sub> <sup>D</sup>                                                                                                                   | n/v                                                                                                          | -            | -            | 730 U          | 730 U          | -            | -            | -            | -             | -             | -             | -             | -             | 760 U                | 740        |
| anthrene                                              | μg/kg          | 100,000 <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                          | n/v                                                                                                          | -            | -            | 380 U          | 530            | -            | -            | -            | -             | -             | -             | -             | -             | 1,400                | 55         |
| ol                                                    | μg/kg          | 330 <sub>m</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 330 <sub>f</sub> <sup>D</sup>                                                                                    | n/v                                                                                                          | -            | -            | 380 U          | 370 U          | -            | -            | -            | -             | -             | -             | -             | -             | 390 U                | 380        |
| ne                                                    | μg/kg          | 100,000 <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                          | n/v                                                                                                          | -            | -            | 380 U          | 950            | -            | -            | -            | -             | -             | -             | -             | -             | 3,300                | 1,2        |
| orophenol, 2,4,5-                                     | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F 100 <sup>G</sup>                                             | -            | -            | 380 U          | 370 U          | -            | -            | -            | -             | -             | -             | -             | -             | 390 U                | 380        |
| lorophenol, 2,4,6-                                    | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup>                                        | -            | -            | 380 U          | 370 U          | -            | -            | -            | -             | -             | -             | -             | -             | 390 U                | 380        |
| ISVOC                                                 | μg/kg          | n/v                                                                                                                                                                                                                  | n/v                                                                                                          |              | -            | ND             | 4,590          | -            | -            | -            | -             | -             | -             | -             | -             | 20,300               | 7,0        |
| DC - Tentatively Identified Compounds                 |                |                                                                                                                                                                                                                      |                                                                                                              |              |              |                |                |              |              |              |               |               |               |               |               |                      |            |
| SVOC TICs                                             | μg/kg          | n/v                                                                                                                                                                                                                  | n/v                                                                                                          | _            | -            | 860 JN         | 2,540 JN       | _            |              |              | I -           |               |               | _             |               | 11,180 JN            | 4,960      |

Stantec 190500898 Page 14 of 18

## Summary of Analytical Results for RI Soil Samples IRM Work Plan #2

820 Linden Ave Site, BCP #C828200

820 Linden Avenue, Pittsford, NY

| Colatile Organic Compounds  cetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Jnits NYSDEC-Part 375  19/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n/v<br>n/v<br>n/v<br>n/v<br>n/v                                                          | 30-Jul-18<br>LIN-SS2a-t-s<br>0 - 2 in<br>STANTEC<br>TAL<br>460-161576-5<br>4.9 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U | 3-2a 30-Jul-18 LIN-SS2a-b-s 2 - 12 in STANTEC TAL 460-161576-1 460-161576-6  5.3 U 1.1 U 1.1 U 1.1 U 1.1 U 1.1 U 1.1 U 1.1 U | 30-Jul-18 LIN-SS2-1-s 0 - 2 in STANTEC TAL 460-161576-1 460-161576-20 | 2abc 30-Jul-18 LIN-SS2-b-s 2 - 12 in STANTEC TAL 460-161576-1 460-161576-21 | 30-Jul-18<br>LIN-SS2c-t-s<br>0 - 2 in<br>STANTEC<br>TAL<br>460-161576-1<br>460-161576-7 | -2c 30-Jul-18 LIN-SS2c-b-s 2 - 12 in STANTEC TAL 460-161576-1 460-161576-8  | 30-Jul-18<br>LIN-SS3a-t-s<br>0 - 2 in<br>STANTEC<br>TAL<br>460-161576-9<br>460-161576-9 | -3a 30-Jul-18 LIN-SS3a-b-s 2 - 12 in STANTEC TAL 460-161576-1 460-161576-10  | SS-3 30-Jul-18 LIN-SS3-1-s 0 - 2 in STANTEC TAL 460-161576-1 460-161576-22 | 30-Jul-18<br>LIN-SS3-b-s<br>2 - 12 in<br>STANTEC<br>TAL<br>460-161576-1<br>460-161576-23 | 30-Jul-18<br>LIN-SS3b-t-s<br>0 - 2 in<br>STANTEC<br>TAL<br>460-161576-1<br>460-161576-11 | 3-3b 30-Jul-18 LIN-SS3b-b-s 2 - 12 in STANTEC TAL 460-161576-1 460-161576-12 4.9 U 0.98 U 0.98 U | 30-Jul-18<br>LIN-SS44-s<br>0 - 2 in<br>STANTEC<br>TAL<br>460-161576-24 | -4abc 30-Jul-18 LIN-SS4-b-s 2 - 12 in STANTEC TAL 460-161576- 460-161576-2 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------|
| ample ID ample Depth ampling Company aboratory aboratory Work Order aboratory Sample ID ample Type  Colatile Organic Compounds cetone enzene enzene romodichloromethane romoform (Tribromomethane) romomethane (Methyl bromide) utylbenzene, n- utylbenzene, tert- arbon Disulfide garbon Tetrachloride (Tetrachloromethane) hlorobenzene (Monochlorobenzene) hlorobenzene (Ethyl Chloride) hloroform (Trichloromethane) hloromethane (Ethyl Chloride) hloromethane puglihoromethane puglihorometh | 19/kg 50 <sup>AD</sup> 500,000, B 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000,000,000,000,000,000,000,000,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | π/ν<br>π/ν<br>π/ν<br>π/ν<br>π/ν<br>π/ν                                                   | LIN-SS2a-t-s<br>0 - 2 in<br>STANTEC<br>TAL<br>460-161576-1<br>460-161576-5<br>4.9 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U                  | LIN-SS2a-b-s<br>2 - 12 in<br>STANTEC<br>TAL<br>460-161576-1<br>460-161576-6<br>5.3 U<br>1.1 U<br>1.1 U<br>1.1 U<br>1.1 U     | LIN-SS2-t-s<br>0 - 2 in<br>STANTEC<br>TAL<br>460-161576-1             | LIN-SS2-b-s<br>2 - 12 in<br>STANTEC<br>TAL<br>460-161576-1                  | LIN-SS2c-t-s<br>0 - 2 in<br>STANTEC<br>TAL<br>460-161576-1<br>460-161576-7              | LIN-SS2c-b-s<br>2 - 12 in<br>STANTEC<br>TAL<br>460-161576-1<br>460-161576-8 | LIN-SS3a-t-s<br>0 - 2 in<br>STANTEC<br>TAL<br>460-161576-1<br>460-161576-9              | LIN-SS3a-b-s<br>2 - 12 in<br>STANTEC<br>TAL<br>460-161576-1<br>460-161576-10 | LIN-SS3-t-s<br>0 - 2 in<br>STANTEC<br>TAL<br>460-161576-1                  | LIN-SS3-b-s<br>2 - 12 in<br>STANTEC<br>TAL<br>460-161576-1                               | LIN-SS3b-t-s<br>0 - 2 in<br>STANTEC<br>TAL<br>460-161576-1<br>460-161576-11              | LIN-SS3b-b-s<br>2 - 12 In<br>STANTEC<br>TAL<br>460-161576-1<br>460-161576-12                     | LIN-SS4-t-s<br>0 - 2 in<br>STANTEC<br>TAL<br>460-161576-1              | LIN-SS4-b-<br>2 - 12 in<br>STANTEC<br>TAL<br>460-161576                    |
| imple Depth impling Company iboratory Work Order iboratory Sample ID imple Type  University Sample ID incompanie ID  | 19/kg 50 <sup>AD</sup> 500,000, B 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000,000,000,000,000,000,000,000,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | π/ν<br>π/ν<br>π/ν<br>π/ν<br>π/ν<br>π/ν                                                   | 0 - 2 in<br>STANTEC<br>TAL<br>460-161576-1<br>460-161576-5<br>4.9 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U                                            | 2 - 12 in<br>STANTEC<br>TAL<br>460-161576-1<br>460-161576-6<br>5.3 U<br>1.1 U<br>1.1 U<br>1.1 U<br>1.1 U                     | 0 - 2 in<br>STANTEC<br>TAL<br>460-161576-1                            | 2 - 12 in<br>STANTEC<br>TAL<br>460-161576-1                                 | 0 - 2 in<br>STANTEC<br>TAL<br>460-161576-1<br>460-161576-7                              | 2 - 12 in<br>STANTEC<br>TAL<br>460-161576-1<br>460-161576-8                 | 0 - 2 in<br>STANTEC<br>TAL<br>460-161576-1<br>460-161576-9                              | 2 - 12 in<br>STANTEC<br>TAL<br>460-161576-1<br>460-161576-10                 | 0 - 2 in<br>STANTEC<br>TAL<br>460-161576-1                                 | 2 - 12 in<br>STANTEC<br>TAL<br>460-161576-1                                              | 0 - 2 in<br>STANTEC<br>TAL<br>460-161576-1<br>460-161576-11                              | 2 - 12 in<br>STANTEC<br>TAL<br>460-161576-1<br>460-161576-12                                     | 0 - 2 in<br>STANTEC<br>TAL<br>460-161576-1                             | 2 - 12 in<br>STANTE<br>TAL<br>460-16157                                    |
| impling Company inhoratory Work Order inhoratory Work Order inhoratory Sample ID imple Type United States of the Compounds in the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compound States of the Compoun | 19/kg 50 <sup>AD</sup> 500,000, B 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000,000,000,000,000,000,000,000,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | π/ν<br>π/ν<br>π/ν<br>π/ν<br>π/ν<br>π/ν                                                   | STANTEC<br>TAL<br>460-161576-1<br>460-161576-5<br>4.9 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U                                                        | STANTEC<br>TAL<br>460-161576-1<br>460-161576-6<br>5.3 U<br>1.1 U<br>1.1 U<br>1.1 U<br>1.1 U                                  | STANTEC<br>TAL<br>460-161576-1                                        | STANTEC<br>TAL<br>460-161576-1                                              | STANTEC<br>TAL<br>460-161576-1<br>460-161576-7<br>5.4 U<br>1.1 U<br>1.1 U               | STANTEC<br>TAL<br>460-161576-1<br>460-161576-8<br>5.7 U<br>1.1 U            | STANTEC<br>TAL<br>460-161576-1<br>460-161576-9<br>5.3 U<br>1.1 U                        | STANTEC<br>TAL<br>460-161576-1<br>460-161576-10<br>5.1 U<br>1.0 U            | STANTEC<br>TAL<br>460-161576-1                                             | STANTEC<br>TAL<br>460-161576-1                                                           | STANTEC<br>TAL<br>460-161576-1<br>460-161576-11                                          | STANTEC<br>TAL<br>460-161576-1<br>460-161576-12                                                  | STANTEC<br>TAL<br>460-161576-1                                         | STANTE<br>TAL<br>460-16157                                                 |
| ampling Company aboratory Work Order aboratory Work Order aboratory Sample ID ample Type  Olatile Organic Compounds  zetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19/kg 50 <sup>AD</sup> 500,000, B 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000,000,000,000,000,000,000,000,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | π/ν<br>π/ν<br>π/ν<br>π/ν<br>π/ν<br>π/ν                                                   | TAL 460-161576-1 460-161576-5  4.9 U 0.98 U 0.98 U 0.98 U 0.98 U 0.98 U 0.98 U 0.98 U 0.98 U 0.98 U                                                                                            | TAL 460-161576-1 460-161576-6  5.3 U 1.1 U 1.1 U 1.1 U 1.1 U 1.1 U 1.1 U 1.1 U                                               | STANTEC<br>TAL<br>460-161576-1                                        | TAL<br>460-161576-1                                                         | TAL<br>460-161576-1<br>460-161576-7<br>5.4 U<br>1.1 U<br>1.1 U                          | TAL<br>460-161576-1<br>460-161576-8<br>5.7 U<br>1.1 U                       | STANTEC<br>TAL<br>460-161576-1<br>460-161576-9<br>5.3 U<br>1.1 U                        | TAL<br>460-161576-1<br>460-161576-10<br>5.1 U<br>1.0 U                       | TAL<br>460-161576-1                                                        | TAL<br>460-161576-1                                                                      | TAL<br>460-161576-1<br>460-161576-11<br>5.4 U<br>1.1 U                                   | TAL<br>460-161576-1<br>460-161576-12<br>4.9 U<br>0.98 U                                          | TAL<br>460-161576-1                                                    | TAL<br>460-161576                                                          |
| aboratory aboratory aboratory Work Order aboratory Work Order aboratory Sample ID ample Type  Colatile Organic Compounds  Detection enzene enzene romodichloromethane romoform (Tribromomethane) promomethane (Methyl bromide) utylbenzene, n- utylbenzene, sec- (2-Phenylbutane) utylbenzene, tert- arbon Disulfide praton Disulfide promomethane (Ethyl Chloride) hlorobenzene (Monochlorobenzene) hloroberm (Ethyl Chloride) hloromethane promomethane promo | 19/kg 50 <sup>AD</sup> 500,000, B 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000,000,000,000,000,000,000,000,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | π/ν<br>π/ν<br>π/ν<br>π/ν<br>π/ν<br>π/ν                                                   | TAL 460-161576-1 460-161576-5  4.9 U 0.98 U 0.98 U 0.98 U 0.98 U 0.98 U 0.98 U 0.98 U 0.98 U 0.98 U                                                                                            | TAL 460-161576-1 460-161576-6  5.3 U 1.1 U 1.1 U 1.1 U 1.1 U 1.1 U 1.1 U 1.1 U                                               | TAL<br>460-161576-1                                                   | TAL<br>460-161576-1                                                         | TAL<br>460-161576-1<br>460-161576-7<br>5.4 U<br>1.1 U<br>1.1 U                          | TAL<br>460-161576-1<br>460-161576-8<br>5.7 U<br>1.1 U                       | TAL<br>460-161576-1<br>460-161576-9<br>5.3 U<br>1.1 U                                   | TAL<br>460-161576-1<br>460-161576-10<br>5.1 U<br>1.0 U                       | TAL<br>460-161576-1                                                        | TAL<br>460-161576-1                                                                      | TAL<br>460-161576-1<br>460-161576-11<br>5.4 U<br>1.1 U                                   | TAL<br>460-161576-1<br>460-161576-12<br>4.9 U<br>0.98 U                                          | TAL<br>460-161576-1                                                    | TAL<br>460-16157                                                           |
| aboratory Work Order aboratory Sample ID ample Type  Colatile Organic Compounds  cetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19/kg 50 <sup>AD</sup> 500,000, B 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000,000,000,000,000,000,000,000,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | π/ν<br>π/ν<br>π/ν<br>π/ν<br>π/ν<br>π/ν                                                   | 4.9 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U                                                                                      | 460-161576-1<br>460-161576-6<br>5.3 U<br>1.1 U<br>1.1 U<br>1.1 U<br>1.1 U<br>1.1 U                                           | 460-161576-1                                                          | 460-161576-1                                                                | 460-161576-1<br>460-161576-7<br>5.4 U<br>1.1 U<br>1.1 U                                 | 460-161576-1<br>460-161576-8<br>5.7 U<br>1.1 U                              | 460-161576-1<br>460-161576-9<br>5.3 U<br>1.1 U                                          | 460-161576-1<br>460-161576-10<br>5.1 U<br>1.0 U                              | 460-161576-1                                                               | 460-161576-1                                                                             | 460-161576-1<br>460-161576-11<br>5.4 U<br>1.1 U                                          | 460-161576-1<br>460-161576-12<br>4.9 U<br>0.98 U                                                 | 460-161576-1                                                           | 460-161576                                                                 |
| Aboratory Sample ID ample Type  Volatile Organic Compounds  cetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19/kg 50 <sup>AD</sup> 500,000, B 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000,000,000,000,000,000,000,000,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | π/ν<br>π/ν<br>π/ν<br>π/ν<br>π/ν<br>π/ν                                                   | 4.9 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U                                                                                                | 5.3 U<br>1.1 U<br>1.1 U<br>1.1 U<br>1.1 U<br>1.1 U<br>1.1 U                                                                  |                                                                       |                                                                             | 460-161576-7<br>5.4 U<br>1.1 U<br>1.1 U                                                 | <b>460-161576-8</b> 5.7 U 1.1 U                                             | 460-161576-9<br>5.3 U<br>1.1 U                                                          | 460-161576-10<br>5.1 U<br>1.0 U                                              |                                                                            |                                                                                          | 460-161576-11<br>5.4 U<br>1.1 U                                                          | 4.9 U<br>0.98 U                                                                                  |                                                                        |                                                                            |
| ample Type  Colatile Organic Compounds  Describe enzene enzene romodichloromethane romoform (Tribromomethane) per compounds  per compound compounds  per compound compounds  per compound compounds  per compound compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compounds  per compou | 19/kg 50 <sup>AD</sup> 500,000, B 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000,000,000,000,000,000,000,000,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | π/ν<br>π/ν<br>π/ν<br>π/ν<br>π/ν<br>π/ν                                                   | 4.9 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U                                                                                                                    | 5.3 U<br>1.1 U<br>1.1 U<br>1.1 U<br>1.1 U<br>1.1 U                                                                           | 460-161576-20                                                         | -<br>-<br>-<br>-<br>-                                                       | 5.4 U<br>1.1 U<br>1.1 U                                                                 | 5.7 U<br>1.1 U                                                              | 5.3 U<br>1.1 U                                                                          | 5.1 U<br>1.0 U                                                               | 460-161576-22<br>-<br>-                                                    | 460-161576-23<br>-<br>-                                                                  | 5.4 U<br>1.1 U                                                                           | 4.9 U<br>0.98 U                                                                                  | 460-161576-24                                                          | 460-161576-                                                                |
| Colatile Organic Compounds  cetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19/kg 50 <sup>AD</sup> 500,000, B 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000, G 1,000,000,000,000,000,000,000,000,000,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | π/ν<br>π/ν<br>π/ν<br>π/ν<br>π/ν<br>π/ν                                                   | 0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U                                                                                                                             | 1.1 U<br>1.1 U<br>1.1 U<br>1.1 U<br>1.1 U                                                                                    | -<br>-<br>-<br>-<br>-                                                 | -<br>-<br>-<br>-                                                            | 1.1 U<br>1.1 U                                                                          | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | -<br>-                                                                     | <u> </u>                                                                                 | 1.1 U                                                                                    | 0.98 U                                                                                           |                                                                        | <br>                                                                       |
| cetone UKE enzene UKE enzene UKE romodichloromethane UKE romomothane (Methyl bromide) UKE romomethane (Methyl bromide) UKE utylbenzene, n- UKE utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- uty | 19/kg 60 <sup>50</sup> 44,000 <sup>8</sup> 89,000 <sup>c</sup> 100,000, <sup>8</sup> 500,000, <sup>8</sup> 1,000,000, 19/kg 100,000, <sup>8</sup> 500,000, <sup>8</sup> 1,000,000, 19/kg 100,000, <sup>8</sup> 500,000, <sup>8</sup> 1,000,000, 12,000, <sup>8</sup> 500,000, <sup>8</sup> 1,000,000, 12,000, <sup>8</sup> 500,000, <sup>8</sup> 1,000,000, 100,000, 100,000, 100,000, 100,000, <sup>8</sup> 5,900,000, <sup>8</sup> 1,000,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | π/ν π/ν π/ν π/ν π/ν π/ν π/ν π/ν                                                          | 0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U                                                                                                                             | 1.1 U<br>1.1 U<br>1.1 U<br>1.1 U<br>1.1 U                                                                                    | -<br>-<br>-<br>-<br>-                                                 | -<br>-<br>-<br>-                                                            | 1.1 U<br>1.1 U                                                                          | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        |                                                                            | -<br>-                                                                                   | 1.1 U                                                                                    | 0.98 U                                                                                           | -<br>-<br>-                                                            |                                                                            |
| cetone UKE enzene UKE enzene UKE romodichloromethane UKE romomothane (Methyl bromide) UKE romomethane (Methyl bromide) UKE utylbenzene, n- UKE utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- uty | 19/kg 60 <sup>50</sup> 44,000 <sup>8</sup> 89,000 <sup>c</sup> 100,000, <sup>8</sup> 500,000, <sup>8</sup> 1,000,000, 19/kg 100,000, <sup>8</sup> 500,000, <sup>8</sup> 1,000,000, 19/kg 100,000, <sup>8</sup> 500,000, <sup>8</sup> 1,000,000, 12,000, <sup>8</sup> 500,000, <sup>8</sup> 1,000,000, 12,000, <sup>8</sup> 500,000, <sup>8</sup> 1,000,000, 100,000, 100,000, 100,000, 100,000, <sup>8</sup> 5,900,000, <sup>8</sup> 1,000,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | π/ν π/ν π/ν π/ν π/ν π/ν π/ν π/ν                                                          | 0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U                                                                                                                             | 1.1 U<br>1.1 U<br>1.1 U<br>1.1 U<br>1.1 U                                                                                    | -<br>-<br>-<br>-<br>-                                                 | -<br>-<br>-<br>-                                                            | 1.1 U<br>1.1 U                                                                          | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        |                                                                            | -                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | -<br>-<br>-                                                            |                                                                            |
| cetone UKE enzene UKE enzene UKE romodichloromethane UKE romomothane (Methyl bromide) UKE romomethane (Methyl bromide) UKE utylbenzene, n- UKE utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- utylbenzene, tert- uty | 19/kg 60 <sup>50</sup> 44,000 <sup>8</sup> 89,000 <sup>c</sup> 100,000, <sup>8</sup> 500,000, <sup>8</sup> 1,000,000, 19/kg 100,000, <sup>8</sup> 500,000, <sup>8</sup> 1,000,000, 19/kg 100,000, <sup>8</sup> 500,000, <sup>8</sup> 1,000,000, 12,000, <sup>8</sup> 500,000, <sup>8</sup> 1,000,000, 12,000, <sup>8</sup> 500,000, <sup>8</sup> 1,000,000, 100,000, 100,000, 100,000, 100,000, <sup>8</sup> 5,900,000, <sup>8</sup> 1,000,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | π/ν π/ν π/ν π/ν π/ν π/ν π/ν π/ν                                                          | 0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U                                                                                                                             | 1.1 U<br>1.1 U<br>1.1 U<br>1.1 U<br>1.1 U                                                                                    | -<br>-<br>-<br>-<br>-                                                 | -<br>-<br>-<br>-                                                            | 1.1 U<br>1.1 U                                                                          | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | -                                                                          | -                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | -                                                                      |                                                                            |
| enzene   promodichloromethane  promodichloromethane  promoform (Tribromomethane)  promomethane (Methyl bromide)  promomethane (Methyl bromide)  promomethane (Methyl bromide)  promomethane (Methyl bromide)  promomethane, sec- (2-Phenylbutane)  promomethane, tert-  promomethane  prom | 19/kg 60 <sup>50</sup> 44,000 <sup>8</sup> 89,000 <sup>c</sup> 100,000, <sup>8</sup> 500,000, <sup>8</sup> 1,000,000, 19/kg 100,000, <sup>8</sup> 500,000, <sup>8</sup> 1,000,000, 19/kg 100,000, <sup>8</sup> 500,000, <sup>8</sup> 1,000,000, 12,000, <sup>8</sup> 500,000, <sup>8</sup> 1,000,000, 12,000, <sup>8</sup> 500,000, <sup>8</sup> 1,000,000, 100,000, 100,000, 100,000, 100,000, <sup>8</sup> 5,900,000, <sup>8</sup> 1,000,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | π/ν π/ν π/ν π/ν π/ν π/ν π/ν π/ν                                                          | 0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U                                                                                                                             | 1.1 U<br>1.1 U<br>1.1 U<br>1.1 U<br>1.1 U                                                                                    | -<br>-<br>-                                                           | -<br>-<br>-                                                                 | 1.1 U<br>1.1 U                                                                          | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | -                                                                          | -                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | -                                                                      | -                                                                          |
| romodichloromethane  promoform (Tribromomethane)  promoform (Tribromomethane)  putylbenzene, (Methyl bromide)  putylbenzene, sec- (2-Phenylbutane)  putylbenzene, sec- (2-Phenylbutane)  putylbenzene, tert-  putylbenzene, tert-  putylbenzene, tert-  putylbenzene, tert-  putylbenzene, (Tetrachloromethane)  putylbenzene, (Monochlorobenzene)  putylbenzene (Monochlorobenzene)  putylbenzene (Ethyl Chloride)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ig/kg         100,000_a^5 500,000_b^8 1,000,000,           100,000_a^5 500,000_b^8 1,000,000,         100,000_a^5 500,000_b^8 1,000,000,           Ig/kg         100,000_a^5 500,000_b^8 1,000,000,           Ig/kg         12,000^{40} 500,000_b^8 1,000,000,           Ig/kg         1,000^{40} 500,000_b^8 1,000,000,           Ig/kg         100,000_a^5 500,000_b^8 1,000,000,           Ig/kg         760^4 22,000^8 44,000^c           Ig/kg         1,100^4 500,000_b^8 1,000,000,           Ig/kg         100,000_a^5 500,000_b^8 1,000,000,           Ig/kg         370^6 350,000_b^8 700,000^6 700,000^6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ה הלי<br>הלי<br>הלי<br>הלי<br>הלי<br>הלי                                                 | 0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U                                                                                                                                       | 1.1 U<br>1.1 U<br>1.1 U<br>1.1 U                                                                                             | -<br>-<br>-                                                           | -<br>-                                                                      | 1.1 U                                                                                   |                                                                             |                                                                                         |                                                                              | -                                                                          | -                                                                                        |                                                                                          |                                                                                                  | _                                                                      | _                                                                          |
| omoform (Tribromomethane)  upomomethane (Methyl bromide)  upomomethane (Methyl bromide)  upomomethane (Methyl bromide)  upomomethane (Methyl bromide)  upomomethane, sec- (2-Phenylbutane)  upomomethane (Ethyl Chloromethane)  upomomethane (Ethyl Chloride)  upomomethane (Ethyl Chloride)  upomomethane  upomometha | 100,000a 500,000e 1,000,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 100,000, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n/v<br>n/v<br>n/v<br>n/v<br>n/v                                                          | 0.98 U<br>0.98 U<br>0.98 U<br>0.98 U<br>0.98 U                                                                                                                                                 | 1.1 U<br>1.1 U<br>1.1 U                                                                                                      | -<br>-<br>-                                                           |                                                                             |                                                                                         |                                                                             |                                                                                         |                                                                              |                                                                            |                                                                                          |                                                                                          |                                                                                                  |                                                                        | -                                                                          |
| romomethane (Methyl bromide)  utylbenzene, n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100,000, 500,000, 1,000,000, 1,000,000, 12,000, 500,000, 1,000,000, 12,000, 500,000, 1,000,000, 1,000,000, 1,000,000,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/v<br>n/v<br>n/v<br>n/v                                                                 | 0.98 U<br>0.98 U<br>0.98 U<br>0.98 U                                                                                                                                                           | 1.1 U<br>1.1 U                                                                                                               | -                                                                     | -                                                                           |                                                                                         |                                                                             |                                                                                         | 1.0 U                                                                        | -                                                                          | -                                                                                        | 1.1 U                                                                                    |                                                                                                  | _                                                                      | 1                                                                          |
| Itylbenzene, n-  Itylbenzene, sec- (2-Phenylbutane)  Itylbenzene, sec- (2-Phenylbutane)  Itylbenzene, tert-  Itylbenzene, tert | 12,000 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000, 19/kg 11,000 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000, 19/kg 11,000,000, 5,900 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000, 19/kg 100,000 <sub>c</sub> <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>c</sub> 1,000,00 | n/v<br>n/v<br>n/v                                                                        | 0.98 U<br>0.98 U<br>0.98 U                                                                                                                                                                     | 1.1 U                                                                                                                        | -                                                                     |                                                                             | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | -                                                                          | -                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | -                                                                      | -                                                                          |
| Itylbenzene, n-  Itylbenzene, sec- (2-Phenylbutane)  Itylbenzene, sec- (2-Phenylbutane)  Itylbenzene, tert-  Itylbenzene, tert | 12,000 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000, 19/kg 11,000 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000, 19/kg 11,000,000, 5,900 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000, 19/kg 100,000 <sub>c</sub> <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>c</sub> 1,000,00 | n/v<br>n/v<br>n/v                                                                        | 0.98 U<br>0.98 U                                                                                                                                                                               |                                                                                                                              |                                                                       | -                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | -                                                                          | -                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | -                                                                      | -                                                                          |
| Infilbenzene, sec- (2-Phenylbutane)  Lytylbenzene, tert-  Lytynbenzene,  | Ig/kg 11,000 <sup>AD</sup> 500,000 <sup>B</sup> 1,000,000, 1g/kg 5,900 <sup>AD</sup> 500,000 <sup>B</sup> 1,000,000, 19/kg 100,000 <sup>A</sup> 100,000 <sup>A</sup> 1000,000, 1000,000, 1000,000, 1000,000,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n/v<br>n/v                                                                               | 0.98 U<br>0.98 U                                                                                                                                                                               |                                                                                                                              | -                                                                     | _                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | _                                                                          | _                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | _                                                                      | _                                                                          |
| trylbenzene, tert- urbon Disulfide  pton Tetrachloride (Tetrachloromethane)  plorobenzene (Monochlorobenzene)  ploroform (Trichloromethane)  ploroform (Trichloromethane)  ploroform (Trichloromethane)  ploroform (Trichloromethane)  ploroformethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ig/kg         5,900 <sup>AD</sup> 500,000, B 1,000,000,           jg/kg         100,000, 500,000, B 1,000,000,           jg/kg         760 <sup>AD</sup> 22,000B 44,000°           jg/kg         1,100 <sup>AD</sup> 500,000, B 1,000,000,           jg/kg         100,000, 500,000, B 1,000,000,           jg/kg         370 <sup>AD</sup> 350,000B 700,000°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n/v                                                                                      | 0.98 U                                                                                                                                                                                         |                                                                                                                              | _                                                                     | _                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | _                                                                          | _                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | _                                                                      | _                                                                          |
| Irbon Disulfide   IPE Irbon Tetrachloride (Tetrachloromethane)   IPE Irbon Tetrachloride (Tetrachloromethane)   IPE Irbon Tetrachloromethane)   IPE Irbon Tetrachloromethane)   IPE Irbon Tetrachloromethane)   IPE Irbon Tetrachloromethane   IPE Irbon Disulfide   IPE | Ig/kg 100,000, 500,000, 1,000,000, 1,000,000, 1,000,000,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 2,700 <sup>G</sup> |                                                                                                                                                                                                | 1.1 U                                                                                                                        | 1                                                                     | _                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | _                                                                          | -                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | _                                                                      | _                                                                          |
| urbon Tetrachloride (Tetrachloromethane)  µс lorobenzene (Monochlorobenzene)  µс loroethane (Ethyl Chloride)  µс loroform (Trichloromethane)  µс loromethane  µс loromethane  µс lorohexane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1g/kg 760 <sup>AD</sup> 22,000 <sup>B</sup> 44,000 <sup>C</sup> 1,100 <sup>AD</sup> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 1,000,000 <sub>d</sub> 1,000,000 <sub>d</sub> 1,000,000 <sub>d</sub> 370 <sup>AD</sup> 350,000 <sup>B</sup> 1,000,000 <sup>C</sup> 370 <sup>AD</sup> 350,000 <sup>B</sup> 700,000 <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 500,000a <sup>L</sup> 1,000,000a <sup>L</sup> 2,700 <sup>S</sup> n/v                     | 0 08 11                                                                                                                                                                                        |                                                                                                                              | -                                                                     | -                                                                           |                                                                                         |                                                                             |                                                                                         |                                                                              | -                                                                          | -                                                                                        |                                                                                          |                                                                                                  | -                                                                      | -                                                                          |
| nlorobenzene (Monochlorobenzene) μς nloroethane (Ethyl Chloride) μς nloroform (Trichloromethane) μς nloromethane μς yclohexane μς                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | gg/kg 1,100 <sup>AD</sup> 500,000 <sub>c</sub> B 1,000,000 <sub>d</sub> gg/kg 100,000 <sub>a</sub> A 500,000 <sub>c</sub> B 1,000,000 <sub>d</sub> gg/kg 370 <sup>AD</sup> 350,000 <sup>B</sup> 700,000 <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n/v                                                                                      |                                                                                                                                                                                                | 1.1 U                                                                                                                        | I -                                                                   | -                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | -                                                                          | -                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | I -                                                                    | -                                                                          |
| nloroethane (Ethyl Chloride) μς nloroform (Trichloromethane) μς nloromethane μς rclohexane μς                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ug/kg 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>c</sub><br>ug/kg 370 <sup>AD</sup> 350,000 <sup>B</sup> 700,000 <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/u                                                                                      | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | -                                                                     | -                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | -                                                                          | -                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | -                                                                      | -                                                                          |
| nloroethane (Ethyl Chloride) μς nloroform (Trichloromethane) μς nloromethane μς rclohexane μς                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ug/kg 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>c</sub><br>ug/kg 370 <sup>AD</sup> 350,000 <sup>B</sup> 700,000 <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11/V                                                                                     | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | -                                                                     | -                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | -                                                                          | -                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | -                                                                      | -                                                                          |
| nloroform (Trichloromethane) μς nloromethane μς rclohexane μς                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ug/kg 370 <sup>AD</sup> 350,000 <sup>B</sup> 700,000 <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 1,900 <sup>G</sup> | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | l -                                                                   | _                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | -                                                                          | _                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | l -                                                                    | _                                                                          |
| nloromethane μς<br>yclohexane μς                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n/v                                                                                      | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        |                                                                       |                                                                             | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        |                                                                            | _                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           |                                                                        |                                                                            |
| /clohexane μο                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                          |                                                                                                                                                                                                |                                                                                                                              | _                                                                     | _                                                                           |                                                                                         |                                                                             |                                                                                         |                                                                              | -                                                                          | _                                                                                        |                                                                                          |                                                                                                  | 1 -                                                                    | _                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                          | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | -                                                                     | -                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | -                                                                          | -                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | -                                                                      | -                                                                          |
| bromo-3-Chloropropane, 1,2- (DBCP) μς                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ug/kg 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n/v                                                                                      | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | -                                                                     | -                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | -                                                                          | -                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | -                                                                      | -                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/kg 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n/v                                                                                      | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | -                                                                     | -                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | -                                                                          | -                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | -                                                                      | -                                                                          |
| bromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ug/kg 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F                                          | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | -                                                                     | _                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | _                                                                          | _                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | I -                                                                    | _                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ig/kg 1,100 <sup>AD</sup> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/v                                                                                      | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | _                                                                     | _                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | _                                                                          | _                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | _                                                                      | _                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                          | 0.98 U                                                                                                                                                                                         |                                                                                                                              | _                                                                     |                                                                             | 1.1 U                                                                                   |                                                                             |                                                                                         | 1.0 U                                                                        |                                                                            |                                                                                          |                                                                                          | 0.98 U                                                                                           | _                                                                      |                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2,400 <sup>AD</sup> 280,000 <sup>B</sup> 560,000 <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n/v                                                                                      |                                                                                                                                                                                                | 1.1 U                                                                                                                        | -                                                                     | -                                                                           |                                                                                         | 1.1 U                                                                       | 1.1 U                                                                                   |                                                                              | -                                                                          | -                                                                                        | 1.1 U                                                                                    |                                                                                                  | -                                                                      | -                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ıg/kg 1,800 <sup>AD</sup> 130,000 <sup>B</sup> 250,000 <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n/v                                                                                      | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | -                                                                     | -                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | -                                                                          | -                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | -                                                                      | -                                                                          |
| chlorodifluoromethane (Freon 12) μg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ug/kg 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n/v                                                                                      | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | -                                                                     | -                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | -                                                                          | -                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | -                                                                      | -                                                                          |
| chloroethane, 1,1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ug/kg 270 <sup>AD</sup> 240,000 <sup>B</sup> 480,000 <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n/v                                                                                      | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | -                                                                     | _                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | -                                                                          | -                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | _                                                                      | _                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/kg 20 <sub>m</sub> <sup>A</sup> 30,000 <sup>B</sup> 60,000 <sup>C</sup> 20 <sub>n</sub> <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n/v                                                                                      | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | _                                                                     | _                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        |                                                                            | _                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | _                                                                      | _                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n/v                                                                                      | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        |                                                                       |                                                                             | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        |                                                                            |                                                                                          | 1.1 U                                                                                    | 0.98 U                                                                                           |                                                                        |                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                          |                                                                                                                                                                                                |                                                                                                                              | _                                                                     | -                                                                           |                                                                                         |                                                                             |                                                                                         |                                                                              | -                                                                          | -                                                                                        |                                                                                          |                                                                                                  | _                                                                      | -                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/kg 250 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n/v                                                                                      | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | -                                                                     | -                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | -                                                                          | -                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | -                                                                      | -                                                                          |
| ichloroethene, trans-1,2- μg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ug/kg 190 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n/v                                                                                      | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | -                                                                     | -                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | -                                                                          | -                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | -                                                                      | -                                                                          |
| ichloropropane, 1,2- µg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ug/kg 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F                                          | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | -                                                                     | _                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | -                                                                          | -                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | -                                                                      | -                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/kg 100,000° 500,000° 1,000,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | _                                                                     | _                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | _                                                                          | _                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | _                                                                      | _                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/kg 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                          | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | _                                                                     |                                                                             | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        |                                                                            | _                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           |                                                                        |                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                          |                                                                                                                                                                                                |                                                                                                                              | 1                                                                     | _                                                                           |                                                                                         |                                                                             |                                                                                         |                                                                              | _                                                                          | -                                                                                        |                                                                                          |                                                                                                  | _                                                                      | _                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,000 <sup>AD</sup> 390,000 <sup>B</sup> 780,000 <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n/v                                                                                      | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | -                                                                     | -                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | -                                                                          | -                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | -                                                                      | -                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/kg 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n/v                                                                                      | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | -                                                                     | -                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | -                                                                          | -                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | -                                                                      | -                                                                          |
| exanone, 2- (Methyl Butyl Ketone) µç                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ug/kg 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/v                                                                                      | 4.9 U                                                                                                                                                                                          | 5.3 U                                                                                                                        | -                                                                     | -                                                                           | 5.4 U                                                                                   | 5.7 U                                                                       | 5.3 U                                                                                   | 5.1 U                                                                        | -                                                                          | -                                                                                        | 5.4 U                                                                                    | 4.9 U                                                                                            | -                                                                      | -                                                                          |
| opropylbenzene µg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ug/kg 100,000° 500,000° 1,000,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500,000° 1,000,000° 2,300°                                                               | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | -                                                                     | _                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | -                                                                          | -                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | _                                                                      | _                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ig/kg 100,000° A 200,000° B 1,000,000°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                          | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | _                                                                     |                                                                             | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        |                                                                            |                                                                                          | 1.1 U                                                                                    | 0.98 U                                                                                           |                                                                        |                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                          |                                                                                                                                                                                                |                                                                                                                              | 1                                                                     | _                                                                           |                                                                                         |                                                                             |                                                                                         |                                                                              | _                                                                          | -                                                                                        |                                                                                          |                                                                                                  | _                                                                      | _                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/kg 100,000g A 500,000g 1,000,000g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                          | 4.9 U                                                                                                                                                                                          | 5.3 U                                                                                                                        | -                                                                     | -                                                                           | 5.4 U                                                                                   | 5.7 U                                                                       | 5.3 U                                                                                   | 5.1 U                                                                        | -                                                                          | -                                                                                        | 5.4 U                                                                                    | 4.9 U                                                                                            | -                                                                      | -                                                                          |
| ethyl Ethyl Ketone (MEK) (2-Butanone) µg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ıg/kg 120 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 500,000 <sub>a</sub> 1,000,000 <sub>a</sub> 300 <sup>G</sup>                             | 4.9 U                                                                                                                                                                                          | 5.3 U                                                                                                                        | -                                                                     | -                                                                           | 5.4 U                                                                                   | 5.7 U                                                                       | 5.3 U                                                                                   | 5.1 U                                                                        | -                                                                          | -                                                                                        | 5.4 U                                                                                    | 4.9 U                                                                                            | -                                                                      | -                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/kg 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 1,000 <sup>G</sup> | 4.9 U                                                                                                                                                                                          | 5.3 U                                                                                                                        | -                                                                     | -                                                                           | 5.4 U                                                                                   | 5.7 U                                                                       | 5.3 U                                                                                   | 5.1 U                                                                        | -                                                                          | -                                                                                        | 5.4 U                                                                                    | 4.9 U                                                                                            | -                                                                      | -                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/kg 930 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n/v                                                                                      | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | -                                                                     | _                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | -                                                                          | -                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | _                                                                      | _                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/kg 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n/v                                                                                      | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | l -                                                                   | _                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | <u> </u>                                                                   | _                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | l .                                                                    | _                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n/v                                                                                      | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | Ī                                                                     |                                                                             | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        |                                                                            | -                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | Ī                                                                      | 1                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19/kg 50 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                          |                                                                                                                                                                                                |                                                                                                                              | I -                                                                   | _                                                                           |                                                                                         |                                                                             |                                                                                         |                                                                              | -                                                                          | -                                                                                        |                                                                                          |                                                                                                  | 1 -                                                                    | 1                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/kg 12,000 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n/v                                                                                      | 1.4                                                                                                                                                                                            | 1.1 U                                                                                                                        | i -                                                                   | -                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | -                                                                          | -                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | I -                                                                    | -                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/kg 3,900 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n/v                                                                                      | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | -                                                                     | -                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | -                                                                          | -                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | -                                                                      | -                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/kg 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F                                          | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | -                                                                     | -                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | -                                                                          | -                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | -                                                                      | -                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/kg 100,000° 500,000° 1,000,000°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 500,000° 1,000,000° 600°                                                                 | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | -                                                                     | _                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | _                                                                          | _                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | I -                                                                    | _                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/kg 1,300 <sup>AD</sup> 150,000 <sup>B</sup> 300,000 <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 500,000a 1,000,000a 000                                                                  | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | _                                                                     |                                                                             | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        |                                                                            |                                                                                          | 1.1 U                                                                                    | 0.98 U                                                                                           | _                                                                      |                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                          |                                                                                                                                                                                                |                                                                                                                              | 1 -                                                                   | _                                                                           |                                                                                         |                                                                             |                                                                                         |                                                                              | · ·                                                                        | -                                                                                        |                                                                                          |                                                                                                  | 1 -                                                                    | 1                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/kg 700 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n/v                                                                                      | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | i -                                                                   | -                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | -                                                                          | -                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | I -                                                                    | -                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/kg 100,000 <sub>a</sub> A 500,000 <sub>c</sub> B 1,000,000 <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                          | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | -                                                                     | -                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | -                                                                          | -                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | -                                                                      | -                                                                          |
| chloroethane, 1,1,1- μς                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ıg/kg 680 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n/v                                                                                      | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | -                                                                     | -                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | -                                                                          | -                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | -                                                                      | -                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/kg 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n/v                                                                                      | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | -                                                                     | _                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | _                                                                          | -                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | -                                                                      | _                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/kg 470 <sup>AD</sup> 200,000 <sup>B</sup> 400,000 <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n/v                                                                                      | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | _                                                                     |                                                                             | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | 1                                                                          |                                                                                          | 1.1 U                                                                                    | 0.98 U                                                                                           | _                                                                      |                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 47'0 200,000 400,000°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                          | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | 1 -                                                                   | _                                                                           | 1.1 U                                                                                   |                                                                             | 1.1 U                                                                                   | 1.0 U                                                                        | ·                                                                          | -                                                                                        |                                                                                          |                                                                                                  | 1 -                                                                    | 1                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/kg 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n/v                                                                                      |                                                                                                                                                                                                |                                                                                                                              | i -                                                                   | -                                                                           |                                                                                         | 1.1 U                                                                       |                                                                                         |                                                                              | -                                                                          | -                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | I -                                                                    | -                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/kg 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 6,000 <sup>G</sup> | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | -                                                                     | -                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | -                                                                          | -                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | 1 -                                                                    | -                                                                          |
| methylbenzene, 1,2,4- µg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ug/kg 3,600 <sup>AD</sup> 190,000 <sup>B</sup> 380,000 <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n/v                                                                                      | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | -                                                                     | -                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | -                                                                          | -                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | -                                                                      | -                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/kg 8,400 <sup>AD</sup> 190,000 <sup>B</sup> 380,000 <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n/v                                                                                      | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | 1 -                                                                   | _                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | _                                                                          | _                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | 1 -                                                                    | 1 -                                                                        |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19/14 0,400 190,000 360,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | · ·                                                                                      | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | _                                                                     |                                                                             | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | _                                                                          | -                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | _                                                                      | 1                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/kg 20 <sup>AD</sup> 13,000 <sup>B</sup> 27,000 <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n/v                                                                                      |                                                                                                                                                                                                |                                                                                                                              | I -                                                                   | -                                                                           |                                                                                         |                                                                             |                                                                                         |                                                                              | -                                                                          | -                                                                                        |                                                                                          |                                                                                                  | I -                                                                    | -                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/kg 260 <sub>p</sub> <sup>A</sup> 500,000 <sub>c.p</sub> <sup>B</sup> 1,000,000 <sub>d.p</sub> <sup>C</sup> 1,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | I -                                                                   | -                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | -                                                                          | -                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | I -                                                                    | -                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/kg 260 <sub>p</sub> <sup>A</sup> 500,000 <sub>c,p</sub> <sup>B</sup> 1,000,000 <sub>d,p</sub> <sup>C</sup> 1,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          | 0.98 U                                                                                                                                                                                         | 1.1 U                                                                                                                        | -                                                                     | -                                                                           | 1.1 U                                                                                   | 1.1 U                                                                       | 1.1 U                                                                                   | 1.0 U                                                                        | -                                                                          | -                                                                                        | 1.1 U                                                                                    | 0.98 U                                                                                           | -                                                                      | -                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ug/kg 260 <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 1,60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                          | 2.0 U                                                                                                                                                                                          | 2.1 U                                                                                                                        | -                                                                     | _                                                                           | 2.2 U                                                                                   | 2.3 U                                                                       | 2.1 U                                                                                   | 2.1 U                                                                        | _                                                                          | -                                                                                        | 2.2 U                                                                                    | 2.0 U                                                                                            | -                                                                      | -                                                                          |
| 1 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ua/ka n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n/v                                                                                      | 1.4                                                                                                                                                                                            | ND                                                                                                                           | 1 -                                                                   | _                                                                           | ND                                                                                      | ND                                                                          | ND                                                                                      | ND                                                                           | _                                                                          | _                                                                                        | ND                                                                                       | ND                                                                                               | 1 -                                                                    | 1 -                                                                        |
| C - Tentatively Identified Compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -o···o 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11/ ¥                                                                                    | 1.7                                                                                                                                                                                            | .10                                                                                                                          |                                                                       | -                                                                           |                                                                                         | .10                                                                         |                                                                                         | .10                                                                          |                                                                            | -                                                                                        |                                                                                          |                                                                                                  |                                                                        |                                                                            |

See notes on last page.



190500898 Page 15 of 18  $\label{lem:u:light} \begin{tabular}{ll} U:\line 190500898\line 1905008\line 1905008\li$ 

820 Linden Avenue, Pittsford, NY

|                                                          |                |                                                                                                                                         |                                                                                       | _             |               |               |               |                | _              | _              | i.                        |                  | _              |              |                |
|----------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------|---------------|---------------|---------------|----------------|----------------|----------------|---------------------------|------------------|----------------|--------------|----------------|
| Sample Location                                          |                |                                                                                                                                         |                                                                                       | SS            | -4b           | ss            | -4c           | TP-1a          | TP-2a          | TP-4           | TP-5a                     | TP-6             | TP-7           | TP-8a        | TP-8c          |
| Sample Date                                              |                |                                                                                                                                         |                                                                                       | 30-Jul-18     | 30-Jul-18     | 30-Jul-18     | 30-Jul-18     | 16-Aug-18      | 16-Aug-18      | 17-Aug-18      | 17-Aug-18                 | 17-Aug-18        | 16-Aug-18      | 17-Aug-18    | 17-Aug-18      |
| Sample ID                                                |                |                                                                                                                                         |                                                                                       | LIN-SS4b-t-s  | LIN-SS4b-b-s  | LIN-SS4c-t-s  | LIN-SS4c-b-s  | LIN-TP1-S      | LIN-TP2a-s     | LIN-TP4-s      | LIN-TP5a-s                | LIN-TP6-s        | LIN-TP7-S      | LIN-TP8a-s   | LIN-TP8c-s     |
| Sample Depth                                             |                |                                                                                                                                         |                                                                                       | 0 - 2 in      | 2 - 12 in     | 0 - 2 in      | 2 - 12 in     | 3 ft           | 2.5 ft         | 3.5 ft         | 3 - 3.5 ft                | 2 ft             | 6 ft           | 2.4 ft       | 1 ft           |
| Sampling Company                                         |                |                                                                                                                                         |                                                                                       | STANTEC       | STANTEC       | STANTEC       | STANTEC       | STANTEC        | STANTEC        | STANTEC        | STANTEC                   | STANTEC          | STANTEC        | STANTEC      | STANTEC        |
| Laboratory                                               |                |                                                                                                                                         |                                                                                       | TAL           | TAL           | TAL           | TAL           | TAL            | TAL            | TAL            | TAL                       | TAL              | TAL            | TAL          | TAL            |
| Laboratory Work Order                                    |                |                                                                                                                                         |                                                                                       | 460-161576-1  | 460-161576-1  | 460-161576-1  | 460-161576-1  | 460-162801-1   | 460-162801-1   | 460-162801-1   | 460-162801-1              | 460-162801-1     | 460-162801-1   | 460-162801-1 | 460-162801-1   |
| Laboratory Sample ID                                     |                |                                                                                                                                         |                                                                                       | 460-161576-13 | 460-161576-14 | 460-161576-15 | 460-161576-16 | 460-162801-2   | 460-162872-1   | 460-162872-3   | 460-162872-2              | 460-162872-4     | 460-162801-3   | 460-162872-5 | 460-162872-6   |
| Sample Type                                              | Units          | NYSDEC-Part 375                                                                                                                         | NYSDEC CP-51                                                                          |               |               |               |               |                |                |                |                           |                  |                |              |                |
|                                                          |                |                                                                                                                                         |                                                                                       |               |               |               |               |                |                |                |                           |                  |                |              |                |
| General Chemistry                                        |                | AB                                                                                                                                      | ,                                                                                     |               |               |               |               |                |                | 0.0511         | 0.0511                    |                  |                | 1            | T              |
| Cyanide                                                  | mg/kg          | 27 <sub>i</sub> <sup>AB</sup> 10,000 <sub>B</sub> <sup>C</sup> 40 <sub>i</sub> <sup>D</sup>                                             | n/v                                                                                   | -             | -             | -             | -             | 0.24 U         | 0.23 U         | 0.25 U         | 0.25 U                    | 0.26 U           | 0.23 U         | -            | 0.29 U         |
| Metals                                                   |                | ADCD                                                                                                                                    | FFC                                                                                   | 1             |               |               |               | 1              | I .            | ľ              | 1                         |                  | 1              | 1            | Т              |
| Aluminum                                                 | mg/kg          | 10,000 <sub>e</sub> ABCD                                                                                                                | 10,000 <sub>a</sub> EFG                                                               | -             | -             | -             | -             | 5,450          | 5,500          | 5,490          | 7,230                     | 6,070            | 3,600          | -            | 5,200          |
| Antimony                                                 | mg/kg          | 10,000 ABCD                                                                                                                             | 10,000 <sub>a</sub> EFG                                                               | -             | -             | -             | -             | 31.3 U         | 30.4 U         | 31.2 U         | 34.1 U                    | 31.7 U           | 30.4 U         | -            | 36.5 U         |
| Arsenic                                                  | mg/kg          | 13 <sub>n</sub> 16 <sub>a</sub> BCD                                                                                                     | n/v                                                                                   | -             | -             | -             | -             | 4.2 U          | 4.1 U          | 4.2 U          | 5.8                       | 4.2 U            | 4.1 U          | -            | 4.9 U          |
| Barium                                                   | mg/kg          | 350 <sub>n</sub> <sup>A</sup> 400 <sup>B</sup> 10,000 <sub>e</sub> <sup>C</sup> 820 <sup>D</sup>                                        | n/v                                                                                   | -             | -             | -             | -             | 23.4           | 19.3           | 32.2           | 91.0                      | 78.6             | 8.3            | -            | 19.3           |
| Beryllium                                                | mg/kg          | 7.2 <sup>A</sup> 590 <sup>B</sup> 2,700 <sup>C</sup> 47 <sup>D</sup>                                                                    | n/v                                                                                   | -             | -             | -             | -             | 0.42 U         | 0.41 U         | 0.42 U         | 0.45 U                    | 0.42 U           | 0.41 U         | -            | 0.49 U         |
| Cadmium                                                  | mg/kg          | 2.5 <sub>n</sub> <sup>A</sup> 9.3 <sup>B</sup> 60 <sup>C</sup> 7.5 <sup>D</sup>                                                         | n/v                                                                                   | -             | -             | -             | -             | 0.42 U         | 0.41 U         | 0.42 U         | 0.45 U                    | 0.42 U           | 0.41 U         | -            | 0.49 U         |
| Calcium                                                  | mg/kg          | 10,000 <sub>e</sub> ABCD                                                                                                                | 10,000 <sub>a</sub> <sup>EFG</sup>                                                    | -             | -             | -             | -             | 1,760          | 1,200          | 1,210          | 3,910                     | 1,850            | 570            | -            | 1,480          |
| Chromium                                                 | mg/kg          | 30 <sub>n.i</sub> <sup>A</sup> 1,500 <sub>i</sub> <sup>B</sup> 6,800 <sub>i</sub> <sup>C</sup> <sub>NS.a</sub> <sup>D</sup>             | n/v                                                                                   | -             | -             | -             | -             | 6.5            | 6.5            | 6.1            | 14.2                      | 6.7              | 3.0            | -            | 5.2            |
| Cobalt                                                   | mg/kg          | 10,000 <sub>e</sub> ABCD                                                                                                                | 10,000 <sub>a</sub> EFG                                                               | -             | -             | -             | _             | 3.5<br>12.2    | 2.8<br>4.7     | 2.5<br>8.0     | 4.3<br>15.8               | 2.1<br>13.7      | 2.0<br>3.9     | _            | 2.2<br>12.1    |
| Copper                                                   | mg/kg          | 50 <sup>A</sup> 270 <sup>B</sup> 10,000 <sub>e</sub> <sup>C</sup> 1,720 <sup>D</sup>                                                    | n/v                                                                                   | -             | -             | -             | -             |                |                |                | 15.8                      |                  |                | -            |                |
| Iron                                                     | mg/kg          | 10,000 <sub>e</sub> ABCD                                                                                                                | 10,000 <sub>a</sub> <sup>EFG</sup>                                                    | -             | -             | -             | -             | 8,050          | 6,120          | 7,350          | 12,100 <sup>ABCDEFG</sup> | 8,500            | 3,940          | -            | 6,610          |
| Lead                                                     | mg/kg          | 63 <sub>n</sub> <sup>A</sup> 1,000 <sup>B</sup> 3,900 <sup>C</sup> 450 <sup>D</sup>                                                     | n/v                                                                                   | -             | -             | -             | -             | 7.7            | 3.0            | 22.4           | 207 <sup>A</sup>          | 49.9             | 2.0 U          | -            | 14.0           |
| Magnesium                                                | mg/kg          | 10,000 <sub>e</sub> ABCD                                                                                                                | n/v                                                                                   | -             | -             | -             | -             | 1,350          | 1,040          | 998            | 2,510                     | 805              | 876            | -            | 1,100          |
| Manganese                                                | mg/kg          | 1,600 <sub>n</sub> <sup>A</sup> 10,000 <sub>e</sub> <sup>BC</sup> 2,000 <sub>a</sub> <sup>D</sup>                                       | n/v                                                                                   | -             | -             | -             | -             | 191            | 75.8           | 227            | 431                       | 503              | 118            | -            | 112            |
| Mercury                                                  | mg/kg          | 0.18 <sub>n</sub> <sup>A</sup> 2.8 <sub>k</sub> <sup>B</sup> 5.7 <sub>k</sub> <sup>C</sup> 0.73 <sup>D</sup>                            | n/v                                                                                   | -             | -             | -             | -             | 0.019          | 0.016 U        | 0.033          | 0.088                     | 0.043            | 0.016 U        | -            | 0.031          |
| Nickel                                                   | mg/kg          | 30 <sup>A</sup> 310 <sup>B</sup> 10,000 <sub>e</sub> <sup>C</sup> 130 <sup>D</sup>                                                      | n/v                                                                                   | -             | -             | -             | -             | 10.4 U         | 10.1 U         | 10.4 U         | 11.4 U                    | 10.6 U           | 10.1 U         | -            | 12.2 U         |
| Potassium                                                | mg/kg          | 10,000 <sub>e</sub> ABCD                                                                                                                | n/v                                                                                   | -             | -             | -             | -             | 348            | 209            | 230            | 317                       | 207              | 143            | -            | 249            |
| Selenium                                                 | mg/kg          | 3.9 <sub>n</sub> A 1,500 <sup>B</sup> 6,800 <sup>C</sup> 4 <sub>a</sub> D                                                               | n/v                                                                                   | -             | -             | -             | -             | 8.4 U          | 8.1 U          | 8.3 U          | 9.1 U                     | 8.5 U            | 8.1 U          | -            | 9.7 U          |
| Silver                                                   | mg/kg          | 2 <sup>A</sup> 1,500 <sup>B</sup> 6,800 <sup>C</sup> 8.3 <sup>D</sup>                                                                   | n/v                                                                                   | -             | -             | -             | -             | 1.0 U          | 1.0 U          | 1.0 U          | 1.1 U                     | 1.1 U            | 1.0 U          | -            | 1.2 U          |
| Sodium                                                   | mg/kg          | 10,000 <sub>e</sub> <sup>ABCD</sup><br>10,000 <sub>e</sub> <sup>ABCD</sup>                                                              | n/v<br>10,000。 <sup>EFG</sup>                                                         | -             | -             | -             | -             | 293 U          | 284 U          | 291 U          | 318 U                     | 296 U            | 284 U          | -            | 340 U          |
| Thallium<br>Vanadium                                     | mg/kg<br>mg/kg | 10,000 <sub>e</sub> ABCD                                                                                                                | 10,000 <sub>a</sub> 10,000 <sub>a</sub>                                               | -             | -             | -             | -             | 12.5 U<br>8.7  | 12.2 U<br>11.5 | 12.5 U<br>8.0  | 13.6 U<br>12.9            | 12.7 U<br>8.1    | 12.2 U<br>5.1  | -            | 14.6 U<br>7.4  |
| Zinc                                                     | mg/kg          | 10,000 <sub>e</sub><br>109 <sub>0</sub> <sup>A</sup> 10,000 <sub>e</sub> <sup>BC</sup> 2,480 <sup>D</sup>                               | 10,000 <sub>a</sub>                                                                   | -             | -             | -             | -             | 24.3           | 14.8           | 49.4           | 187 <sup>A</sup>          | 156 <sup>A</sup> | 10.4           | -            | 36.3           |
| Polychlorinated Biphenyls                                | Hig/kg         | 109 <sub>n</sub> 10,000 <sub>e</sub> 2,480                                                                                              | 10/4                                                                                  | -             | -             | _             | -             | 24.3           | 14.0           | 49.4           | 187                       | 156              | 10.4           | _            | 30.3           |
|                                                          |                | ARCD                                                                                                                                    | ,                                                                                     | 1             |               |               |               | 0511           | 0511           |                | 2011                      |                  | 0511           |              | T              |
| Aroclor 1016<br>Aroclor 1221                             | μg/kg          | ABCD                                                                                                                                    | n/v<br>n/v                                                                            | -             | -             | -             | -             | 35 U<br>35 U   | 35 U<br>35 U   | 36 U<br>36 U   | 39 U<br>39 U              | 36 U<br>36 U     | 35 U<br>35 U   | -            | 41 U<br>41 U   |
| Aroclor 1221<br>Aroclor 1232                             | μg/kg<br>μg/kg | OABCD                                                                                                                                   | n/v                                                                                   | _             | -             | -             | -             | 35 U           | 35 U           | 36 U           | 39 U                      | 36 U             | 35 U           | _            | 41 U           |
| Aroclor 1232<br>Aroclor 1242                             | μg/kg          | OABCD                                                                                                                                   | n/v                                                                                   | _             | _             | _             | _             | 35 U           | 35 U           | 36 U           | 39 U                      | 36 U             | 35 U           |              | 41 U           |
| Aroclor 1242<br>Aroclor 1248                             | μg/kg          | ABCD                                                                                                                                    | n/v                                                                                   |               | _             |               | ]             | 35 U           | 35 U           | 36 U           | 39 U                      | 36 U             | 35 U           | ]            | 41 U           |
| Aroclor 1254                                             | μg/kg          | °ABCD                                                                                                                                   | n/v                                                                                   | _             | _             | _             | _             | 35 U           | 35 U           | 36 U           | 39 U                      | 36 U             | 35 U           | _            | 41 U           |
| Aroclor 1260                                             | μg/kg          | ABCD                                                                                                                                    | n/v                                                                                   | _             | _             | _             | _             | 35 U           | 35 U           | 36 U           | 39 U                      | 36 U             | 35 U           | _            | 41 U           |
| Aroclor 1262                                             | μg/kg          | ABCD                                                                                                                                    | n/v                                                                                   | _             | _             | _             | _             | 35 U           | 35 U           | 36 U           | 39 U                      | 36 U             | 35 U           | _            | 41 U           |
| Aroclor 1268                                             | μg/kg          | <sup>o</sup> ABCD                                                                                                                       | n/v                                                                                   | -             | -             | -             | _             | 35 U           | 35 U           | 36 U           | 39 U                      | 36 U             | 35 U           | -            | 41 U           |
| Polychlorinated Biphenyls (PCBs)                         | μg/kg          | 100 <sup>A</sup> 1,000 <sup>B</sup> 25,000 <sup>C</sup> 3,200 <sup>D</sup>                                                              | n/v                                                                                   | -             | -             | -             | -             | ND             | ND             | ND             | ND                        | ND               | ND             | -            | ND             |
| Pesticides                                               |                |                                                                                                                                         |                                                                                       |               |               |               |               |                |                |                |                           |                  |                |              |                |
| Aldrin                                                   | μg/kg          | 5 <sub>n</sub> <sup>A</sup> 680 <sup>B</sup> 1,400 <sup>C</sup> 190 <sup>D</sup>                                                        | n/v                                                                                   | -             | -             | -             | -             | 3.5 U          | 3.5 U          | 3.6 U          | 3.9 U                     | 3.6 U            | 3.5 U          | -            | 4.1 U          |
| BHC, alpha-                                              | μg/kg          | 20 <sup>AD</sup> 3,400 <sup>B</sup> 6,800 <sup>C</sup>                                                                                  | n/v                                                                                   | -             | -             | -             | -             | 3.5 U          | 3.5 U          | 3.6 U          | 3.9 U                     | 3.6 U            | 3.5 U          | -            | 4.1 U          |
| BHC, beta-                                               | μg/kg          | 36 <sup>A</sup> 3,000 <sup>B</sup> 14,000 <sup>C</sup> 90 <sup>D</sup>                                                                  | n/v                                                                                   | -             | -             | -             | -             | 3.5 U          | 3.5 U          | 3.6 U          | 3.9 U                     | 3.6 U            | 3.5 U          | -            | 4.1 U          |
| BHC, delta-                                              | μg/kg          | 40 <sub>n</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 250 <sup>D</sup>                     | n/v                                                                                   | -             | -             | -             | -             | 3.5 U          | 3.5 U          | 3.6 U          | 3.9 U                     | 3.6 U            | 3.5 U          | -            | 4.1 U          |
| Camphechlor (Toxaphene)                                  | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                | n/v                                                                                   | -             | -             | -             | -             | 35 U           | 35 U           | 36 U           | 39 U                      | 36 U             | 35 U           | -            | 41 U           |
| Chlordane, alpha-                                        | μg/kg          | 94 <sup>A</sup> 24,000 <sup>B</sup> 47,000 <sup>C</sup> 2,900 <sup>D</sup>                                                              | n/v                                                                                   | -             | -             | -             | -             | 3.5 U          | 3.5 U          | 3.6 U          | 3.9 U                     | 3.6 U            | 3.5 U          | -            | 4.1 U          |
| Chlordane, trans- (gamma-Chlordane)                      | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                                   | n/v                                                                                   | -             | -             | -             | -             | 3.5 U          | 3.5 U          | 3.6 U<br>3.6 U | 8.6                       | 3.6 U<br>3.6 U   | 3.5 U          |              | 4.1 U<br>4.1 U |
| DDD (p,p'-DDD)                                           | μg/kg          | 3.3 <sub>m</sub> <sup>A</sup> 92,000 <sup>B</sup> 180,000 <sup>C</sup> 14,000 <sup>D</sup>                                              | n/v                                                                                   | -             | -             | -             | _             | 3.5 U          | 3.5 U          |                | 3.9 U                     |                  | 3.5 U          | _            |                |
| DDE (p,p'-DDE)                                           | μg/kg          | 3.3 <sub>m</sub> <sup>A</sup> 62,000 <sup>B</sup> 120,000 <sup>C</sup> 17,000 <sup>D</sup>                                              | n/v                                                                                   | -             | -             | -             | -             | 3.5 U          | 3.5 U          | 3.6 U          | 39 <sup>A</sup>           | 3.6 U            | 3.5 U          | -            | 4.1 U          |
| DDT (p,p'-DDT)                                           | μg/kg          | 3.3 <sub>m</sub> <sup>A</sup> 47,000 <sup>B</sup> 94,000 <sup>C</sup> 136,000 <sup>D</sup>                                              | n/v                                                                                   | -             | -             | -             | -             | 3.5 U          | 3.5 U          | 3.6 U          | 13 <sup>A</sup>           | 3.6 U            | 3.5 U          | -            | 4.1 U          |
| Dieldrin                                                 | μg/kg          | 5 <sub>n</sub> <sup>A</sup> 1,400 <sup>B</sup> 2,800 <sup>C</sup> 100 <sup>D</sup>                                                      | n/v                                                                                   | -             | -             | -             | -             | 3.5 U          | 3.5 U          | 3.6 U          | 35 <sup>A</sup>           | 3.6 U            | 3.5 U          | -            | 5.0            |
| Endosulfan I                                             | μg/kg          | 2,400 <sub>i</sub> <sup>A</sup> 200,000 <sub>i</sub> <sup>B</sup> 920,000 <sub>i</sub> <sup>C</sup> 102,000 <sup>D</sup>                | n/v                                                                                   | -             | -             | -             | -             | 3.5 U          | 3.5 U          | 3.6 U          | 3.9 U                     | 3.6 U            | 3.5 U          | -            | 4.1 U          |
| Endosulfan II                                            | μg/kg          | 2,400, <sup>A</sup> 200,000, <sup>B</sup> 920,000, <sup>C</sup> 102,000 <sup>D</sup>                                                    | n/v                                                                                   | -             | -             | -             | -             | 3.5 U          | 3.5 U          | 3.6 U          | 3.9 U                     | 3.6 U            | 3.5 U          | -            | 4.1 U          |
| Endosulfan Sulfate                                       | μg/kg          | 2,400 <sub>i</sub> <sup>A</sup> 200,000 <sub>i</sub> <sup>B</sup> 920,000 <sub>i</sub> <sup>C</sup> 1,000,000 <sub>d</sub> <sup>D</sup> | n/v                                                                                   | -             | -             | -             | -             | 3.5 U          | 3.5 U          | 3.6 U          | 3.9 U                     | 3.6 U            | 3.5 U          | -            | 4.1 U          |
| Endrin                                                   | μg/kg          | 14 <sup>A</sup> 89,000 <sup>B</sup> 410,000 <sup>C</sup> 60 <sup>D</sup>                                                                | n/v                                                                                   | -             | -             | -             | -             | 3.5 U          | 3.5 U          | 3.6 U          | 3.9 U                     | 3.6 U            | 3.5 U          | -            | 4.1 U          |
| Endrin Aldehyde                                          | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                | n/v                                                                                   | -             | -             | -             | -             | 3.5 U          | 3.5 U          | 3.6 U          | 3.9 U                     | 3.6 U            | 3.5 U          | -            | 4.1 U          |
| Endrin Ketone                                            | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                | n/v                                                                                   | -             | -             | -             | -             | 3.5 U          | 3.5 U          | 3.6 U          | 3.9 U                     | 3.6 U            | 3.5 U          | -            | 4.1 U          |
| Heptachlor                                               | μg/kg          | 42 <sup>A</sup> 15,000 <sup>B</sup> 29,000 <sup>C</sup> 380 <sup>D</sup>                                                                | n/v                                                                                   | -             | -             | -             | -             | 3.5 U          | 3.5 U          | 3.6 U          | 3.9 U                     | 3.6 U            | 3.5 U          | -            | 4.1 U          |
| Heptachlor Epoxide                                       | μg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 100,000                                                                | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 20 <sup>G</sup> | -             | -             | -             | -             | 3.5 U          | 3.5 U          | 3.6 U          | 3.9 U                     | 3.6 U            | 3.5 U          |              | 4.1 U          |
| Lindane (Hexachlorocyclohexane, gamma)                   | μg/kg<br>μg/kg | 100 <sup>AD</sup> 9,200 <sup>B</sup> 23,000 <sup>C</sup><br>100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD         | n/v<br>500,000 <sup>E</sup> 1,000,000 <sup>F</sup> 900,000 <sup>G</sup>               | -             | -             | -             | _             | 3.5 U<br>3.5 U | 3.5 U<br>3.5 U | 3.6 U<br>3.6 U | 3.9 U<br>3.9 U            | 3.6 U<br>3.6 U   | 3.5 U<br>3.5 U | _            | 4.1 U<br>4.1 U |
| Methoxychlor (4,4'-Methoxychlor) See notes on last page. | µg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub>                                                                        |                                                                                       | -             | -             | -             | -             | J.D U          | J.D U          | 3.0 U          | J.9 U                     | 3.0 U            | J.5 U          |              | 4. I U         |

See notes on last page.



190500898 Page 16 of 18  $\label{lem:u:light} \begin{tabular}{ll} U:\line 190500898\line 1905008\line 1905008\li$ 

## Summary of Analytical Results for RI Soil Samples IRM Work Plan #2

820 Linden Ave Site, BCP #C828200

820 Linden Avenue, Pittsford, NY

| Sample Location                                          | 1 1            |                                                                                                                                                                |                                                                                                              |               | -4b           | ce            | -4c           | TP-1a          | TP-2a          | TP-4           | TP-5a          | TP-6           | TP-7           | TP-8a        | TP-8c          |
|----------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------|---------------|---------------|---------------|----------------|----------------|----------------|----------------|----------------|----------------|--------------|----------------|
|                                                          |                |                                                                                                                                                                |                                                                                                              |               |               |               |               |                |                |                |                |                |                |              |                |
| ample Date                                               |                |                                                                                                                                                                |                                                                                                              | 30-Jul-18     | 30-Jul-18     | 30-Jul-18     | 30-Jul-18     | 16-Aug-18      | 16-Aug-18      | 17-Aug-18      | 17-Aug-18      | 17-Aug-18      | 16-Aug-18      | 17-Aug-18    | 17-Aug-18      |
| imple ID                                                 |                |                                                                                                                                                                |                                                                                                              | LIN-SS4b-t-s  | LIN-SS4b-b-s  | LIN-SS4c-t-s  | LIN-SS4c-b-s  | LIN-TP1-S      | LIN-TP2a-s     | LIN-TP4-s      | LIN-TP5a-s     | LIN-TP6-s      | LIN-TP7-S      | LIN-TP8a-s   | LIN-TP8c-s     |
| imple Depth                                              |                |                                                                                                                                                                |                                                                                                              | 0 - 2 in      | 2 - 12 in     | 0 - 2 in      | 2 - 12 in     | 3 ft           | 2.5 ft         | 3.5 ft         | 3 - 3.5 ft     | 2 ft           | 6 ft           | 2.4 ft       | 1 ft           |
| ampling Company                                          |                |                                                                                                                                                                |                                                                                                              | STANTEC       | STANTEC       | STANTEC       | STANTEC       | STANTEC        | STANTEC        | STANTEC        | STANTEC        | STANTEC        | STANTEC        | STANTEC      | STANTEC        |
| aboratory                                                |                |                                                                                                                                                                |                                                                                                              | TAL           | TAL           | TAL           | TAL           | TAL            | TAL            | TAL            | TAL            | TAL            | TAL            | TAL          | TAL            |
| aboratory Work Order                                     |                |                                                                                                                                                                |                                                                                                              | 460-161576-1  | 460-161576-1  | 460-161576-1  | 460-161576-1  | 460-162801-1   | 460-162801-1   | 460-162801-1   | 460-162801-1   | 460-162801-1   | 460-162801-1   | 460-162801-1 | 460-162801-1   |
| aboratory Sample ID                                      |                |                                                                                                                                                                |                                                                                                              | 460-161576-13 | 460-161576-14 | 460-161576-15 | 460-161576-16 | 460-162801-2   | 460-162872-1   | 460-162872-3   | 460-162872-2   | 460-162872-4   | 460-162801-3   | 460-162872-5 | 460-162872-6   |
| Sample Type                                              | Units          | NYSDEC-Part 375                                                                                                                                                | NYSDEC CP-51                                                                                                 | 100 1010/010  | 100 101010 11 |               |               |                | 100 102012 1   | 100 102012 0   | 100 102012 2   | 100 102012 1   | 100 102001 0   | 100 102012 0 |                |
| Sumple Type                                              | Oints          | 14105E3-1 alt 070                                                                                                                                              | 110520 01 -01                                                                                                |               |               |               |               |                |                |                |                |                |                |              |                |
| emi-Volatile Organic Compounds                           |                |                                                                                                                                                                |                                                                                                              |               |               |               |               |                |                |                |                |                |                |              |                |
| cenaphthene                                              | μg/kg          | 20,000 <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 98,000 <sup>D</sup>                                                  | n/v                                                                                                          | -             | -             | -             |               | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| cenaphthylene                                            | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 107,000 <sup>D</sup>                                   | n/v                                                                                                          | -             | -             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| cetophenone                                              | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                                                          | n/v                                                                                                          | -             | -             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| nthracene                                                | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                       | n/v                                                                                                          | -             | -             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| trazine                                                  | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                                                          | n/v                                                                                                          | -             | -             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| enzaldehyde                                              | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                                                          | n/v                                                                                                          | -             | -             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| enzo(a)anthracene                                        | μg/kg          | 1,000 <sub>0</sub> A 5,600 <sup>B</sup> 11,000 <sup>C</sup> 1,000 <sub>0</sub> D                                                                               | n/v                                                                                                          | -             | -             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| enzo(a)pyrene                                            | μg/kg          | 1,000 <sub>0</sub> <sup>A</sup> 1,000 <sub>0</sub> <sup>B</sup> 1,100 <sup>C</sup> 22,000 <sup>D</sup>                                                         | n/v                                                                                                          |               |               |               |               | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          |              | 410 U          |
|                                                          |                | · · · · · · · · · · · · · · · · · · ·                                                                                                                          |                                                                                                              | _             | -             | -             | -             |                |                |                |                |                |                | Ī -          |                |
| enzo(b)fluoranthene                                      | μg/kg          | 1,000 <sub>n</sub> <sup>A</sup> 5,600 <sup>B</sup> 11,000 <sup>C</sup> 1,700 <sup>D</sup>                                                                      | n/v                                                                                                          | -             | -             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| enzo(g,h,i)perylene                                      | μg/kg          | 100,000 <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                    | n/v                                                                                                          | -             | -             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| enzo(k)fluoranthene                                      | μg/kg          | 800 <sub>n</sub> <sup>A</sup> 56,000 <sup>B</sup> 110,000 <sup>C</sup> 1,700 <sup>D</sup>                                                                      | n/v                                                                                                          | -             | -             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| iphenyl, 1,1'- (Biphenyl)                                | µg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                                                          | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup>                                        | -             | _             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| is(2-Chloroethoxy)methane                                | µg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                            | n/v                                                                                                          | -             | _             | -             | _             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | _            | 410 U          |
| is(2-Chloroethyl)ether                                   | µg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                            | n/v                                                                                                          | -             | _             | _             | _             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | _            | 410 U          |
| is(2-Chloroisopropyl)ether (2,2-oxybis(1-Chloropropane)) | μg/kg          | 100,000a 500,000c 1,000,000d 100,000d CD                                                                                                                       | n/v                                                                                                          | -             | _             | _             | _             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | _            | 410 U          |
| is(2-Ethylhexyl)phthalate (DEHP)                         | μg/kg<br>μg/kg | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 100,000 <sub>d</sub> CD                                                                       | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 435,000 <sup>G</sup>                   |               | _             | _             |               | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | Ī            | 410 U          |
| romophenyl Phenyl Ether, 4-                              |                | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                            | n/v                                                                                                          | _             | _             | _             | _             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          |              | 410 U          |
| utyl Benzyl Phthalate                                    | μg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 100,000 <sub>d</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 500,000 <sub>c</sub> 100,000 | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 122,000 <sup>G</sup>                   |               | l .           |               |               | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | Ī            | 410 U          |
| aprolactam                                               | μg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 100,000 <sub>a</sub> 1,000,000 <sub>d</sub> 1                                                 | 000,000 <sub>a</sub> 1,000,000 <sub>a</sub> 122,000 n/v                                                      | _             | _             | -             |               | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | · -          | 410 U          |
|                                                          | µg/kg          | 100,000 <sub>a</sub> 1,000,000 <sub>d</sub><br>100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                             | T                                                                                                            | -             | -             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| arbazole                                                 | μg/kg          |                                                                                                                                                                | n/v                                                                                                          | -             | -             | -             | -             |                |                |                |                |                |                | -            |                |
| nloro-3-methyl phenol, 4-                                | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                       | n/v                                                                                                          | -             | -             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| nloroaniline, 4-                                         | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                       | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 220 <sup>G</sup>                       | -             | -             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| hloronaphthalene, 2-                                     | μg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                            | n/v                                                                                                          | -             | -             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| hlorophenol, 2- (ortho-Chlorophenol)                     | μg/kg          | 100,000a 500,000c 1,000,000d CD                                                                                                                                | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup>                                        | -             | -             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| hlorophenyl Phenyl Ether, 4-                             | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                       | n/v                                                                                                          | -             | -             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| Chrysene                                                 | μg/kg          | 1,000 <sub>n</sub> <sup>A</sup> 56,000 <sup>B</sup> 110,000 <sup>C</sup> 1,000 <sub>g</sub> <sup>D</sup>                                                       | n/v                                                                                                          | -             | -             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| cresol, o- (Methylphenol, 2-)                            | μg/kg          | $330_{\rm m}^{\rm A} 500,000_{\rm c}^{\rm B} 1,000,000_{\rm d}^{\rm C} 330_{\rm f}^{\rm D}$                                                                    | n/v                                                                                                          | -             | -             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| cresol, p- (Methylphenol, 4-)                            | μg/kg          | 330 <sub>m</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 330 <sub>f</sub> <sup>D</sup>                              | n/v                                                                                                          | -             | -             | -             | -             | 700 U          | 680 U          | 710 U          | 780 U          | 700 U          | 680 U          | -            | 800 U          |
| ibenzo(a,h)anthracene                                    | μg/kg          | 330 <sub>m</sub> <sup>A</sup> 560 <sup>B</sup> 1,100 <sup>C</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                          | n/v                                                                                                          | -             | -             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| libenzofuran                                             | µg/kg          | 7,000 <sup>A</sup> 350,000 <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 210,000 <sup>D</sup>                                                               | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 6,200 <sup>G</sup>                     | _             | _             | _             | _             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | _            | 410 U          |
| Dibutyl Phthalate (DBP)                                  | µg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                            | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 8,100 <sup>G</sup>                     | _             | _             | _             | _             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | _            | 410 U          |
| Dichlorobenzidine, 3,3'-                                 | µg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                       | n/v                                                                                                          | _             | _             | _             | _             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | _            | 410 U          |
| Dichlorophenol, 2,4-                                     | µg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                            | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 400 <sup>G</sup>                       | _             | _             | _             | _             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | _            | 410 U          |
| Diethyl Phthalate                                        | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                       | 500,000a 1,000,000a 7,100G                                                                                   | _             | _             | _             | _             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          |              | 410 U          |
| Dimethyl Phthalate                                       | µg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                            | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 27,000 <sup>G</sup>                    | _             | _             | _             | _             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | _            | 410 U          |
| Dimethylphenol, 2,4-                                     | μg/kg          | 100,000a 500,000c 1,000,000d 100,000d A 500,000c 1,000,000d CD                                                                                                 | n/v                                                                                                          | _             | _             | _             | _             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          |              | 410 U          |
| Dinitro-o-cresol, 4,6-                                   |                | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                            | n/v                                                                                                          | _             |               | _             | _             | 700 U          | 680 U          | 710 U          | 780 U          | 700 U          | 680 U          | _            | 800 U          |
|                                                          | µg/kg          |                                                                                                                                                                | 500 000 E 4 000 000 F 200G                                                                                   | -             | -             | -             | -             |                | 680 U          | 710 U          | 780 U          |                |                | _            |                |
| Dinitrophenol, 2,4-                                      | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                       | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 200 <sup>G</sup>                       | -             | -             | -             | -             | 700 U          |                |                |                | 700 U          | 680 U          | -            | 800 U          |
| Dinitrotoluene, 2,4-                                     | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                       | n/v                                                                                                          | -             | -             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| Dinitrotoluene, 2,6-                                     | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                       | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 1,000/170 <sub>b,s1</sub> <sup>G</sup> | -             | -             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| Di-n-Octyl phthalate                                     | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                       | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 120,000 <sup>G</sup>                   | -             | -             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| luoranthene                                              | μg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                            | n/v                                                                                                          | -             | -             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| luorene                                                  | μg/kg          | 30,000 <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 386,000 <sup>D</sup>                                                 | n/v                                                                                                          | -             | -             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| lexachlorobenzene                                        | μg/kg          | 330 <sub>m</sub> <sup>A</sup> 6,000 <sup>B</sup> 12,000 <sup>C</sup> 3,200 <sup>D</sup>                                                                        | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 1,400 <sup>G</sup>                     | -             | -             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| exachlorobutadiene (Hexachloro-1,3-butadiene)            | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                       | n/v                                                                                                          | -             | -             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| exachlorocyclopentadiene                                 | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                       | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup>                                        | -             | -             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| exachloroethane                                          | µg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                       | n/v                                                                                                          | -             | -             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| deno(1,2,3-cd)pyrene                                     | µg/kg          | 500 <sub>n</sub> <sup>A</sup> 5,600 <sup>B</sup> 11,000 <sup>C</sup> 8,200 <sup>D</sup>                                                                        | n/v                                                                                                          | -             | -             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| ophorone                                                 | µg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                       | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 4,400 <sup>G</sup>                     | _             | _             | _             |               | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | _            | 410 U          |
| ethylnaphthalene, 2-                                     | µg/kg          | 100,000a 500,000c 1,000,000d 100,000d CD                                                                                                                       | 500,000° 1,000,000° 4,400° 500,000° 1,000,000° 36,400°                                                       | -             | _             | _             | _             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | _            | 410 U          |
| aphthalene                                               | μg/kg<br>μg/kg | 12,000 <sup>AD</sup> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 12,000,000 <sub>d</sub> 1,000,000 <sub>d</sub> 1                                              | n/v                                                                                                          |               | _             | _             |               | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | Ī            | 410 U          |
| itroaniline, 2-                                          | μg/kg<br>μg/kg | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 100,000 <sub>d</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 100,000                      | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F 400 <sup>G</sup>                                             | I -           | [             |               |               | 700 U          | 680 U          | 710 U          | 780 U          | 700 U          | 680 U          | l            | 800 U          |
| itroaniline, 3-                                          | μg/kg<br>μg/kg | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 100,000 <sub>d</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 500,000 <sub>c</sub> 100,000 |                                                                                                              |               | l .           |               |               | 700 U          | 680 U          | 710 U          | 780 U          | 700 U          | 680 U          | Ī            | 800 U          |
|                                                          |                | _v _B _CD                                                                                                                                                      | 500,000 <sub>a</sub> 1,000,000 <sub>a</sub> 500 <sup>G</sup>                                                 | · -           | _             | -             | _             |                | 1111           |                |                |                |                | · -          |                |
| tropenzene                                               | µg/kg          | 100,000 <sub>a</sub> <sup>2</sup> 500,000 <sub>c</sub> <sup>3</sup> 1,000,000 <sub>d</sub> <sup>23</sup>                                                       | n/v<br>69,000 <sup>E</sup> 140,000 <sup>F</sup> 170 <sub>h</sub> <sup>G</sup>                                | _             | _             | -             |               | 700 U<br>360 U | 680 U<br>350 U | 710 U<br>360 U | 780 U<br>400 U | 700 U<br>360 U | 680 U<br>350 U | _            | 800 U<br>410 U |
| trobenzene                                               | µg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                       |                                                                                                              | _             | -             | -             | -             |                |                |                |                |                |                | _            |                |
| trophenol, 2-                                            | µg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                       | 500,000 E 1,000,000 F 100G                                                                                   | -             | -             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | _            | 410 U          |
| trophenol, 4-                                            | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                       | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 100 <sup>G</sup>                       | -             | -             | -             | -             | 700 U          | 680 U          | 710 U          | 780 U          | 700 U          | 680 U          | _            | 800 U          |
| Nitrosodi-n-Propylamine                                  | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                       | n/v                                                                                                          | -             | -             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| Nitrosodiphenylamine                                     | μg/kg          | 100,000g <sup>A</sup> 500,000c <sup>B</sup> 1,000,000d <sup>CD</sup>                                                                                           | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup>                                        | -             | -             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| entachlorophenol                                         | μg/kg          | 800 <sub>m</sub> <sup>A</sup> 6,700 <sup>B</sup> 55,000 <sup>C</sup> 800 <sub>f</sub> <sup>D</sup>                                                             | n/v                                                                                                          | -             | -             | -             | -             | 700 U          | 680 U          | 710 U          | 780 U          | 700 U          | 680 U          | -            | 800 U          |
| nenanthrene                                              | μg/kg          | 100,000 <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                    | n/v                                                                                                          | -             | -             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| henol                                                    | μg/kg          | 330 <sub>m</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 330 <sub>f</sub> <sup>D</sup>                              | n/v                                                                                                          | -             | -             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| rene                                                     | μg/kg          | 100,000 <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                    | n/v                                                                                                          | -             | -             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| ichlorophenol, 2,4,5-                                    | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                       | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 100 <sup>G</sup>                       | -             | -             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| ichlorophenol, 2,4,6-                                    | µg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                            | 500,000° 1,000,000°                                                                                          | -             | _             | -             | -             | 360 U          | 350 U          | 360 U          | 400 U          | 360 U          | 350 U          | -            | 410 U          |
| otal SVOC                                                | µg/kg          | n/v                                                                                                                                                            | n/v                                                                                                          | -             | _             | _             | _             | ND.            | ND             | ND             | ND             | ND             | ND             | _            | ND             |
| VOC - Tentatively Identified Compounds                   | פיייפ          | -9 *                                                                                                                                                           |                                                                                                              | 1             |               |               |               |                |                |                |                |                |                |              | ,              |
| otal SVOC TICs                                           |                |                                                                                                                                                                |                                                                                                              | 1             |               |               |               |                | ı              | 1              | 005            | 0.45 ***       |                | 1            |                |
|                                                          | μg/kg          | n/v                                                                                                                                                            | n/v                                                                                                          | _             | _             | _             | _             | -              | _              | _              | 800 JN         | 340 JN         | _              | -            | 350 JN         |



190500898 Page 17 of 18  $\label{lem:u:light} \begin{tabular}{ll} U:\line 190500898\line 1905008\line 1905008\li$ 

820 Linden Avenue, Pittsford, NY

|                                                                        |                |                                                                                                                                                                                                                      | <u></u>                                                                                         | 1              |                |                |                  | ·                |                  |                | <u></u>        |                  |                  |                |                |
|------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------|----------------|----------------|------------------|------------------|------------------|----------------|----------------|------------------|------------------|----------------|----------------|
| Sample Location                                                        |                |                                                                                                                                                                                                                      |                                                                                                 |                | 6-4b           | SS             |                  | TP-1a            | TP-2a            | TP-4           | TP-5a          | TP-6             | TP-7             | TP-8a          | TP-8c          |
| Sample Date                                                            |                |                                                                                                                                                                                                                      |                                                                                                 | 30-Jul-18      | 30-Jul-18      | 30-Jul-18      | 30-Jul-18        | 16-Aug-18        | 16-Aug-18        | 17-Aug-18      | 17-Aug-18      | 17-Aug-18        | 16-Aug-18        | 17-Aug-18      | 17-Aug-18      |
| Sample ID                                                              |                |                                                                                                                                                                                                                      |                                                                                                 | LIN-SS4b-t-s   | LIN-SS4b-b-s   | LIN-SS4c-t-s   | LIN-SS4c-b-s     | LIN-TP1-S        | LIN-TP2a-s       | LIN-TP4-s      | LIN-TP5a-s     | LIN-TP6-s        | LIN-TP7-S        | LIN-TP8a-s     | LIN-TP8c-s     |
| Sample Depth                                                           |                |                                                                                                                                                                                                                      |                                                                                                 | 0 - 2 in       | 2 - 12 in      | 0 - 2 in       | 2 - 12 in        | 3 ft             | 2.5 ft           | 3.5 ft         | 3 - 3.5 ft     | 2 ft             | 6 ft             | 2.4 ft         | 1 ft           |
| Sampling Company                                                       |                |                                                                                                                                                                                                                      |                                                                                                 | STANTEC        | STANTEC        | STANTEC        | STANTEC          | STANTEC          | STANTEC          | STANTEC        | STANTEC        | STANTEC          | STANTEC          | STANTEC        | STANTEC        |
| Laboratory                                                             |                |                                                                                                                                                                                                                      |                                                                                                 | TAL            | TAL            | TAL            | TAL              | TAL              | TAL              | TAL            | TAL            | TAL              | TAL              | TAL            | TAL            |
| Laboratory Work Order                                                  |                |                                                                                                                                                                                                                      |                                                                                                 | 460-161576-1   | 460-161576-1   | 460-161576-1   | 460-161576-1     | 460-162801-1     | 460-162801-1     | 460-162801-1   | 460-162801-1   | 460-162801-1     | 460-162801-1     | 460-162801-1   | 460-162801-1   |
| Laboratory Sample ID                                                   | 11-14-         | NIVODEO B. et off                                                                                                                                                                                                    | NVODEO OD 54                                                                                    | 460-161576-13  | 460-161576-14  | 460-161576-15  | 460-161576-16    | 460-162801-2     | 460-162872-1     | 460-162872-3   | 460-162872-2   | 460-162872-4     | 460-162801-3     | 460-162872-5   | 460-162872-6   |
| Sample Type                                                            | Units          | NYSDEC-Part 375                                                                                                                                                                                                      | NYSDEC CP-51                                                                                    |                |                |                |                  |                  |                  |                |                |                  |                  |                |                |
| Volatile Organic Compounds                                             | <u> </u>       |                                                                                                                                                                                                                      | <u> </u>                                                                                        | <del></del>    | 1              | <u> </u>       |                  |                  | <u> </u>         | <u> </u>       | <u> </u>       | <u> </u>         |                  |                |                |
| Acetone                                                                | μg/kg          | 50 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                               | n/v                                                                                             | 5.5 U          | 5.2 U          | 7.7            | 5.0 U            | 4.9 U            | 4.6 U            | 5.5 U          | 5.2 U          | 4.7 U            | 4.7 U            | 5.6 U          | 5.5 U          |
| Benzene                                                                | μg/kg          | 60 <sup>AD</sup> 44,000 <sup>B</sup> 89,000 <sup>C</sup>                                                                                                                                                             | n/v                                                                                             | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Bromodichloromethane                                                   | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | n/v                                                                                             | 1.1 U          | 1.0 U          | 1.1 U          | 7.1              | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Bromoform (Tribromomethane)                                            | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | n/v                                                                                             | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 UJ         | 1.0 U          | 0.94 UJ          | 0.95 U           | 1.1 UJ         | 1.1 UJ         |
| Bromomethane (Methyl bromide)                                          | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | n/v                                                                                             | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Butylbenzene, n-                                                       | μg/kg          | 12,000 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                           | n/v                                                                                             | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Butylbenzene, sec- (2-Phenylbutane)                                    | μg/kg          | 11,000 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                           | n/v                                                                                             | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Butylbenzene, tert-                                                    | μg/kg          | 5,900 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                            | n/v                                                                                             | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Carbon Disulfide                                                       | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 2,700 <sup>G</sup>        | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Carbon Tetrachloride (Tetrachloromethane)                              | μg/kg          | 760 <sup>AD</sup> 22,000 <sup>B</sup> 44,000 <sup>C</sup>                                                                                                                                                            | n/v                                                                                             | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Chlorobenzene (Monochlorobenzene)                                      | μg/kg          | 1,100 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                            | n/v                                                                                             | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Chloroethane (Ethyl Chloride)                                          | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 1,900 <sup>G</sup>        | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Chloroform (Trichloromethane)                                          | μg/kg          | 370 <sup>AD</sup> 350,000 <sup>B</sup> 700,000 <sup>C</sup>                                                                                                                                                          | n/v<br>n/v                                                                                      | 1.1 U<br>1.1 U | 1.0 U<br>1.0 U | 1.1 U<br>1.1 U | 23               | 0.98 U           | 0.91 U<br>0.91 U | 1.1 U<br>1.1 U | 1.0 U<br>1.0 U | 0.94 U<br>0.94 U | 0.95 U           | 1.1 U<br>1.1 U | 1.1 U<br>1.1 U |
| Chloromethane                                                          | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | n/v<br>n/v                                                                                      | 1.1 U<br>1.1 U | 1.0 U          | 1.1 U<br>1.1 U | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U<br>1.1 U | 1.0 U          |                  | 0.95 U           | 1.1 U<br>1.1 U | 1.1 U<br>1.1 U |
| Cyclohexane Dibromo-3-Chloropropane, 1,2- (DBCP)                       | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup> | n/v<br>n/v                                                                                      | 1.1 U<br>1.1 U | 1.0 U          | 1.1 U<br>1.1 U | 0.99 U<br>0.99 U | 0.98 U<br>0.98 U | 0.91 U           | 1.1 U<br>1.1 U | 1.0 U          | 0.94 U<br>0.94 U | 0.95 U<br>0.95 U | 1.1 U<br>1.1 U | 1.1 U<br>1.1 U |
| Dibromochloromethane                                                   | μg/kg<br>μg/kg | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 100,000 <sub>a</sub> 500,000 <sub>c</sub> B 1,000,000 <sub>d</sub> CD                                                                               | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup>                           | 1.1 U          | 1.0 U          | 1.1 U          | 1.9              | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Dichlorobenzene, 1,2-                                                  | μg/kg          | 1,100 <sup>AD</sup> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub>                                                                                                                                                      | n/v                                                                                             | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Dichlorobenzene, 1,3-                                                  | μg/kg          | 2.400 <sup>AD</sup> 280.000 <sup>B</sup> 560.000 <sup>C</sup>                                                                                                                                                        | n/v                                                                                             | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Dichlorobenzene, 1,4-                                                  | μg/kg          | 1,800 <sup>AD</sup> 130,000 <sup>B</sup> 250,000 <sup>C</sup>                                                                                                                                                        | n/v                                                                                             | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Dichlorodifluoromethane (Freon 12)                                     | μg/kg          | 1,800 130,000 230,000<br>100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                                                         | n/v                                                                                             | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Dichloroethane, 1,1-                                                   | μg/kg          | 270 <sup>AD</sup> 240.000 <sup>B</sup> 480.000 <sup>C</sup>                                                                                                                                                          | n/v                                                                                             | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Dichloroethane, 1,2-                                                   | μg/kg          | 20 <sub>m</sub> <sup>A</sup> 30,000 <sup>B</sup> 60,000 <sup>C</sup> 20 <sub>a</sub> <sup>D</sup>                                                                                                                    | n/v                                                                                             | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Dichloroethene, 1,1-                                                   | μg/kg          | 330 <sup>AD</sup> 500,000, B 1,000,000, C                                                                                                                                                                            | n/v                                                                                             | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Dichloroethene, cis-1,2-                                               | μg/kg          | 250 <sup>AD</sup> 500.000° B 1.000.000° C                                                                                                                                                                            | n/v                                                                                             | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Dichloroethene, trans-1,2-                                             | μg/kg          | 190 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                              | n/v                                                                                             | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Dichloropropane, 1,2-                                                  | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup>                           | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Dichloropropene, cis-1,3-                                              | μg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                                                                                  | n/v                                                                                             | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Dichloropropene, trans-1,3-                                            | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | n/v                                                                                             | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Ethylbenzene                                                           | μg/kg          | 1,000 <sup>AD</sup> 390,000 <sup>B</sup> 780,000 <sup>C</sup>                                                                                                                                                        | n/v                                                                                             | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Ethylene Dibromide (Dibromoethane, 1,2-)                               | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | n/v                                                                                             | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Hexanone, 2- (Methyl Butyl Ketone)                                     | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | n/v                                                                                             | 5.5 U          | 5.2 U          | 5.7 U          | 5.0 U            | 4.9 U            | 4.6 U            | 5.5 U          | 5.2 U          | 4.7 U            | 4.7 U            | 5.6 U          | 5.5 U          |
| Isopropylbenzene                                                       | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 2,300 <sup>G</sup>        | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Isopropyltoluene, p- (Cymene)                                          | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 10,000 <sup>G</sup>       | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Methyl Acetate                                                         | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | n/v                                                                                             | 5.5 U          | 5.2 U          | 5.7 U          | 5.0 U            | 4.9 U            | 4.6 U            | 5.5 U          | 5.2 U          | 4.7 U            | 4.7 U            | 5.6 U          | 5.5 U          |
| Methyl Ethyl Ketone (MEK) (2-Butanone)                                 | μg/kg          | 120 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                              | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 300 <sup>G</sup>          | 5.5 U          | 5.2 U          | 5.7 U          | 5.0 U            | 4.9 U            | 4.6 U            | 5.5 U          | 5.2 U          | 4.7 U            | 4.7 U            | 5.6 U          | 5.5 U          |
| Methyl Isobutyl Ketone (MIBK)                                          | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> E 1,000 <sup>G</sup>                              | 5.5 U          | 5.2 U          | 5.7 U          | 5.0 U            | 4.9 U            | 4.6 U            | 5.5 U          | 5.2 U          | 4.7 U            | 4.7 U            | 5.6 U          | 5.5 U          |
| Methyl tert-butyl ether (MTBE)                                         | μg/kg          | 930 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                              | n/v                                                                                             | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Methylcyclohexane                                                      | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | n/v                                                                                             | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Methylene Chloride (Dichloromethane)                                   | μg/kg          | 50 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                               | n/v                                                                                             | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.3            | 4.1            |
| Naphthalene                                                            | μg/kg          | 12,000 <sup>AD</sup> 500,000 <sub>E</sub> 1,000,000 <sub>d</sub> C                                                                                                                                                   | n/v                                                                                             | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Propylbenzene, n-                                                      | μg/kg          | 3,900 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                            | n/v                                                                                             | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Styrene                                                                | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F                                                 | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Tetrachloroethane, 1,1,2,2-                                            | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 600 <sup>G</sup>          | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Tetrachloroethene (PCE)                                                | μg/kg          | 1,300 <sup>AD</sup> 150,000 <sup>B</sup> 300,000 <sup>C</sup>                                                                                                                                                        | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F                                                 | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U<br>1.1 U | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Toluene                                                                | μg/kg          | 700 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                              | n/v                                                                                             | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           |                | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Trichlorobenzene, 1,2,4-                                               | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>680 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                  | 500,000a <sup>E</sup> 1,000,000a <sup>F</sup> 3,400 <sup>G</sup>                                | 1.1 U<br>1.1 U | 1.0 U<br>1.0 U | 1.1 U<br>1.1 U | 0.99 U<br>0.99 U | 0.98 U<br>0.98 U | 0.91 U<br>0.91 U | 1.1 U<br>1.1 U | 1.0 U<br>1.0 U | 0.94 U<br>0.94 U | 0.95 U<br>0.95 U | 1.1 U<br>1.1 U | 1.1 U<br>1.1 U |
| Trichloroethane, 1,1,1-                                                | μg/kg          |                                                                                                                                                                                                                      | n/v                                                                                             | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Trichloroethane, 1,1,2-                                                | μg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 100,000 <sub>d</sub>                                                                                                                                |                                                                                                 |                |                |                |                  |                  |                  | 1.1 U          |                |                  |                  |                |                |
| Trichloroethene (TCE)                                                  | μg/kg          | 470 <sup>AD</sup> 200,000 <sup>B</sup> 400,000 <sup>C</sup>                                                                                                                                                          | n/v                                                                                             | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           |                | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Trichlorofluoromethane (Freon 11) Trichlorotrifluoroethane (Freon 113) | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup> | 500 000 E 1 000 000 F 6 000G                                                                    | 1.1 U<br>1.1 U | 1.0 U<br>1.0 U | 1.1 U<br>1.1 U | 0.99 U<br>0.99 U | 0.98 U<br>0.98 U | 0.91 U<br>0.91 U | 1.1 U<br>1.1 U | 1.0 U<br>1.0 U | 0.94 U<br>0.94 U | 0.95 U<br>0.95 U | 1.1 U<br>1.1 U | 1.1 U<br>1.1 U |
| Trimethylbenzene, 1,2,4-                                               | μg/kg<br>μg/kg | 3.600 <sup>AD</sup> 190.000 <sup>B</sup> 380.000 <sup>C</sup>                                                                                                                                                        | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 6,000 <sup>G</sup><br>n/v | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Trimethylbenzene, 1,3,5-                                               | μg/kg<br>μg/kg | 8,400 <sup>AD</sup> 190,000 <sup>B</sup> 380,000 <sup>C</sup>                                                                                                                                                        | n/v                                                                                             | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Vinyl Chloride                                                         | μg/kg<br>μg/kg | 20 <sup>AD</sup> 13,000 <sup>B</sup> 27,000 <sup>C</sup>                                                                                                                                                             | n/v                                                                                             | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Xylene, m & p-                                                         | μg/kg<br>μg/kg | 260 <sub>p</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 1,600 <sub>p</sub> <sup>D</sup>                                                                                  | n/v                                                                                             | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Xylene, o-                                                             | μg/kg          | 260 <sub>p</sub> 500,000 <sub>c,p</sub> 1,000,000 <sub>d,p</sub> 1,600 <sub>p</sub> 260 <sub>p</sub> 500,000 <sub>d,p</sub> 1,000,000 <sub>d,p</sub> 1,600 <sub>p</sub>                                              | n/v                                                                                             | 1.1 U          | 1.0 U          | 1.1 U          | 0.99 U           | 0.98 U           | 0.91 U           | 1.1 U          | 1.0 U          | 0.94 U           | 0.95 U           | 1.1 U          | 1.1 U          |
| Xylenes, Total                                                         | μg/kg<br>μg/kg | 260 <sub>p</sub> 500,000 <sub>c,p</sub> 1,000,000 <sub>d,p</sub> 1,600 <sub>p</sub><br>260 <sup>A</sup> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 1,600 <sup>D</sup>                                               | n/v                                                                                             | 2.2 U          | 2.1 U          | 2.3 U          | 2.0 U            | 2.0 U            | 1.8 U            | 2.2 U          | 2.1 U          | 1.9 U            | 1.9 U            | 2.2 U          | 2.2 U          |
| Total VOC                                                              | μg/kg<br>μg/kg | n/v                                                                                                                                                                                                                  | n/v                                                                                             | ND             | ND             | 7.7            | 32               | ND               | ND               | ND             | ND             | ND               | ND               | 1.3            | 4.1            |
| VOC - Tentatively Identified Compounds                                 |                | . o. T                                                                                                                                                                                                               |                                                                                                 | 1              |                |                | UZ.              |                  |                  | .,,,,,         |                |                  |                  |                | 20.1           |
| Total VOC TICs                                                         | μg/kg          | n/v                                                                                                                                                                                                                  | n/v                                                                                             | _              | -              | -              | -                | _                | -                | -              | -              | -                | -                | -              | -              |
|                                                                        | rarra          | ****                                                                                                                                                                                                                 |                                                                                                 |                |                | •              |                  |                  |                  | •              |                |                  | 1                | <u> </u>       |                |

See notes on last page.



190500898 Page 18 of 18  $\label{lem:u:light} \begin{tabular}{ll} U:\line 190500898\line 1905008\line 1905008\li$ 

Table 2
Summary of Analytical Results for SRI Solid Samples
IRM Work Plan #2
820 Linden Ave Site, BCP #C828200
820 Linden Avenue, Pittsford, NY

|                                                                                                                                 | 1              |                                                                                                                                                                                                                      |                                                                                            | 1                                | OV NIM               |                     | 1 '                       |                           |                           | 1                                |                       | <b></b>                       |
|---------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------|----------------------|---------------------|---------------------------|---------------------------|---------------------------|----------------------------------|-----------------------|-------------------------------|
| Sample Location<br>Sample Date                                                                                                  |                |                                                                                                                                                                                                                      |                                                                                            | 25-Jul-19                        | OX-NW 26-Jul-19      | LF-1<br>25-Jul-19   | LF-2<br>25-Jul-19         | LI<br>25-Jul-19           | F-3<br>25-Jul-19          | LF-4<br>25-Jul-19                | TANK1-NW<br>25-Jul-19 | TANK2-NW<br>25-Jul-19         |
| Sample ID                                                                                                                       |                |                                                                                                                                                                                                                      |                                                                                            | LIN-DBOX2-NW-S                   | LIN-DB0X3-NW-SLD     | LIN-LF1-S           | LIN-LF2-S                 | LIN-LF3-S                 | LIN-LFDUP-S               | LIN-LF4-S                        | LIN-TANK1NW-S         | LIN-TANK2NW-S                 |
| Sampling Company                                                                                                                |                |                                                                                                                                                                                                                      |                                                                                            | STANTEC                          | STANTEC              | STANTEC             | STANTEC                   | STANTEC                   | STANTEC                   | STANTEC                          | STANTEC               | STANTEC                       |
| _aboratory<br>_aboratory Work Order                                                                                             |                |                                                                                                                                                                                                                      |                                                                                            | TAL<br>480-156805-1              | TAL<br>480-156805-1  | TAL<br>480-156805-1 | TAL<br>480-156805-1       | TAL<br>480-156805-1       | TAL<br>480-156805-1       | TAL<br>480-156805-1              | TAL<br>480-156805-1   | TAL<br>480-156805-1           |
| Laboratory Sample ID                                                                                                            |                |                                                                                                                                                                                                                      |                                                                                            | 480-156805-9                     | 480-156853-1         | 480-156805-3        | 480-156805-4              | 480-156805-5              | 480-156805-10             | 480-156805-6                     | 480-156805-7          | 480-156805-8                  |
| Sample Type                                                                                                                     | Units          | NYSDEC-Part 375                                                                                                                                                                                                      | NYSDEC CP-51                                                                               |                                  |                      |                     |                           |                           | Field Duplicate           | 1                                |                       |                               |
| General Chemistry                                                                                                               |                |                                                                                                                                                                                                                      |                                                                                            |                                  |                      |                     |                           |                           |                           | <u> </u>                         | <u> </u>              |                               |
| Cyanide                                                                                                                         | mg/kg          | 27 <sup>AB</sup> 10,000 <sub>e.</sub> <sup>C</sup> 40 <sup>D</sup>                                                                                                                                                   | n/v                                                                                        | 0.96 U                           | 0.95 U               | 1.0 U               | 1.1 U                     | 1.1 U                     | 1.0 U                     | 1.2 U                            | 1.0 U                 | 1.2 U                         |
| lashpoint                                                                                                                       | deg F          | n/v                                                                                                                                                                                                                  | n/v                                                                                        | -                                | > 180                | -                   | -                         | -                         | -                         | -                                |                       | -                             |
| oH, lab                                                                                                                         | S.U.           | n/v                                                                                                                                                                                                                  | n/v                                                                                        | -                                | 7.6                  | -                   | -                         | -                         | -                         | -                                | -                     | -                             |
| Temperature, Lab  Metals                                                                                                        | deg C          | n/v                                                                                                                                                                                                                  | n/v                                                                                        | -                                | 21.1                 | -                   | -                         | -                         | -                         |                                  | -                     | -                             |
| Aluminum                                                                                                                        | mg/kg          | 10,000 <sub>e</sub> ABCD                                                                                                                                                                                             | 10,000 <sub>a</sub> EFG                                                                    | 7,060                            | 1,680                | 7,380               | 4,120                     | 4,530                     | 4,220                     | 9,670                            | 6,680 J               | 8,560                         |
| Antimony                                                                                                                        | mg/kg          | 10 000 ABCD                                                                                                                                                                                                          | 10,000a EFG                                                                                | 16.2 U                           | 15.3 U               | 16.2 U              | 15.8 U                    | 17.7 U                    | 16.1 U                    | 17.7 U                           | 16.3 UJ               | 18.3 U                        |
| Arsenic                                                                                                                         | mg/kg          | 13 <sub>0</sub> A 16 <sub>a</sub> BCD                                                                                                                                                                                | n/v                                                                                        | 3.0                              | 2.0 U                | 2.8                 | 2.6                       | 2.5                       | 2.7                       | 5.7                              | 2.7 J                 | 3.3                           |
| arium<br>eryllium                                                                                                               | mg/kg<br>mg/kg | 350 <sub>n</sub> A 400 <sup>B</sup> 10,000 <sub>e</sub> <sup>C</sup> 820 <sup>D</sup><br>7.2 <sup>A</sup> 590 <sup>B</sup> 2.700 <sup>C</sup> 47 <sup>D</sup>                                                        | n/v<br>n/v                                                                                 | 22.8<br>0.30                     | 7.2<br>0.20 U        | 24.2<br>0.28        | 15.0<br>0.23              | 16.6<br>0.24 U            | 15.6<br>0.21              | 38.4<br>0.49                     | 20.1<br>0.28 J        | 26.2<br>0.51                  |
| admium                                                                                                                          | mg/kg          | 2.5 <sub>0</sub> A 9.3 <sup>B</sup> 60 <sup>C</sup> 7.5 <sup>D</sup>                                                                                                                                                 | n/v                                                                                        | 0.22 U                           | 0.20 U               | 0.22 U              | 0.23<br>0.21 U            | 0.24 U                    | 0.21 U                    | 0.49<br>0.24 U                   | 0.22 UJ               | 0.80                          |
| alcium                                                                                                                          | mg/kg          | 10,000 ABCD                                                                                                                                                                                                          | 10,000 <sub>a</sub> EFG                                                                    | 1,890                            | 468                  | 1,690               | 23,200 <sup>ABCDEFG</sup> | 26.400 <sup>ABCDEFG</sup> | 29,200 <sup>ABCDEFG</sup> | 2,340                            | 6,050 J               | 3,740                         |
| hromium                                                                                                                         | mg/kg          | 30 <sub>n</sub> A 1,500 B 6,800 NS D                                                                                                                                                                                 | n/v                                                                                        | 8.9                              | 2.6                  | 9.9                 | 6.3                       | 7.3                       | 6.6                       | 14.1                             | 9.4                   | 13.8                          |
| obalt                                                                                                                           | mg/kg          | 10,000 <sub>e</sub> ABCD                                                                                                                                                                                             | 10,000 <sub>a</sub> EFG                                                                    | 4.0                              | 0.76                 | 3.2                 | 3.2                       | 3.7                       | 3.5                       | 7.1                              | 3.5                   | 10.8                          |
| opper                                                                                                                           | mg/kg          | 50 <sup>A</sup> 270 <sup>B</sup> 10,000 <sub>e</sub> <sup>C</sup> 1,720 <sup>D</sup>                                                                                                                                 | n/v                                                                                        | 8.9                              | 3.2                  | 7.7                 | 5.3                       | 6.0                       | 6.7                       | 11.6                             | 10.1                  | 30.3                          |
| on<br>ead                                                                                                                       | mg/kg          | 10,000 <sub>e</sub> <sup>ABCD</sup><br>63 <sub>0</sub> <sup>A</sup> 1,000 <sup>B</sup> 3,900 <sup>C</sup> 450 <sup>D</sup>                                                                                           | 10,000 <sub>a</sub> <sup>EFG</sup><br>n/v                                                  | 10,600 <sup>ABCDEFG</sup><br>6.4 | 2,380<br>5.9         | 9,700<br>5.9        | 8,360<br>1.9              | 9,650<br>2.1              | 8,740<br>2.2              | 19,000 <sup>ABCDEFG</sup><br>5.3 | 9,880<br>4.2          | 12,100 <sup>ABCDEFG</sup> 6.8 |
| ead<br>lagnesium                                                                                                                | mg/kg<br>mg/kg | 63 <sub>n</sub> · 1,000 3,900 450 10,000 <sub>e</sub> ABCD                                                                                                                                                           | n/v<br>n/v                                                                                 | 1,660                            | 5.9<br>392           | 5.9<br>1,500        | 1.9<br>5,110              | 2.1<br>6,270              | 7,560                     | 2,600                            | 4.2<br>2,480 J        | 1,930                         |
| anganese                                                                                                                        | mg/kg          | 1,600 <sub>n</sub> A 10,000 <sub>e</sub> BC 2,000 <sub>a</sub> D                                                                                                                                                     | n/v                                                                                        | 239 B                            | 52.8 B               | 206 B               | 227 B                     | 317 B                     | 324 B                     | 187 B                            | 213 B                 | 162 B                         |
| ercury                                                                                                                          | mg/kg          | 0.18 <sub>n</sub> A 2.8 <sub>k</sub> B 5.7 <sub>k</sub> C 0.73 <sup>D</sup>                                                                                                                                          | n/v                                                                                        | 0.021 U                          | 0.021 U              | 0.035               | 0.022 U                   | 0.024 U                   | 0.021 U                   | 0.025 U                          | 0.022 U               | 3.2 <sup>ABD</sup>            |
| ckel                                                                                                                            | mg/kg          | 30 <sup>A</sup> 310 <sup>B</sup> 10,000, <sup>C</sup> 130 <sup>D</sup>                                                                                                                                               | n/v                                                                                        | 8.9                              | 5.1 U                | 7.6                 | 6.6                       | 7.4                       | 6.7                       | 15.0                             | 8.0                   | 11.5                          |
| otassium                                                                                                                        | mg/kg          | 10,000 <sub>e</sub> <sup>ABCD</sup>                                                                                                                                                                                  | n/v                                                                                        | 1,040                            | 241                  | 781                 | 969                       | 1,040                     | 943                       | 1,590                            | 816                   | 1,430                         |
| elenium<br>Iver                                                                                                                 | mg/kg<br>mg/kg | 3.9 <sub>n</sub> <sup>A</sup> 1,500 <sup>B</sup> 6,800 <sup>C</sup> 4 <sub>a</sub> <sup>D</sup><br>2 <sup>A</sup> 1,500 <sup>B</sup> 6.800 <sup>C</sup> 8.3 <sup>D</sup>                                             | n/v<br>n/v                                                                                 | 4.3 U<br>0.54 U                  | 4.1 U<br>0.51 U      | 4.3 U<br>0.54 U     | 4.2 U<br>0.53 U           | 4.7 U<br>0.59 U           | 4.3 U<br>0.54 U           | 4.7 U<br>0.59 U                  | 4.3 UJ<br>0.54 U      | 4.9 U<br>0.61 U               |
| odium                                                                                                                           | mg/kg          | 10 000 ABCD                                                                                                                                                                                                          | n/v                                                                                        | 151 U                            | 143 U                | 152 U               | 153                       | 165 U                     | 165                       | 165 U                            | 152 UJ                | 580                           |
| nallium                                                                                                                         | mg/kg          | 10 000 ABCD                                                                                                                                                                                                          | 10,000 <sub>a</sub> EFG                                                                    | 6.5 U                            | 6.1 U                | 6.5 U               | 6.3 U                     | 7.1 U                     | 6.4 U                     | 7.1 U                            | 6.5 U                 | 7.3 U                         |
| anadium                                                                                                                         | mg/kg          | 10.000. ABCD                                                                                                                                                                                                         | 10,000 EFG                                                                                 | 17.2                             | 19.9                 | 16.4                | 12.8                      | 15.0                      | 13.3                      | 26.9                             | 15.9                  | 18.6                          |
| olychlorinated Biphenyls                                                                                                        | mg/kg          | 109 <sub>n</sub> A 10,000 <sub>e</sub> BC 2,480 <sup>D</sup>                                                                                                                                                         | n/v                                                                                        | 22.2                             | 10.6                 | 23.8                | 14.8                      | 17.3                      | 17.0                      | 25.5                             | 20.2 J-               | 77.6                          |
| roclor 1016                                                                                                                     | μg/kg          | ABCD                                                                                                                                                                                                                 | n/v                                                                                        | 190 U                            | 11,000 U             | 260 U               | 250 U                     | 270 U                     | 240 U                     | 270 U                            | 230 U                 | 280 U                         |
| roclor 1221                                                                                                                     | μg/kg          | °ABCD                                                                                                                                                                                                                | n/v                                                                                        | 190 U                            | 11,000 U             | 260 U               | 250 U                     | 270 U                     | 240 U                     | 270 U                            | 230 U                 | 280 U                         |
| roclor 1232                                                                                                                     | μg/kg          | ABCD                                                                                                                                                                                                                 | n/v                                                                                        | 190 U                            | 11,000 U             | 260 U               | 250 U                     | 270 U                     | 240 U                     | 270 U                            | 230 U                 | 280 U                         |
| oclor 1242                                                                                                                      | μg/kg          | GABCD<br>BCD                                                                                                                                                                                                         | n/v                                                                                        | 190 U                            | 11,000 U             | 260 U               | 250 U                     | 270 U                     | 240 U                     | 270 U                            | 230 U                 | 280 U                         |
| oclor 1248<br>oclor 1254                                                                                                        | μg/kg          | ABCD                                                                                                                                                                                                                 | n/v                                                                                        | 190 U<br>190 U                   | 11,000 U<br>11,000 U | 260 U<br>260 U      | 250 U<br>250 U            | 270 U<br>270 U            | 240 U<br>240 U            | 270 U<br>270 U                   | 230 U<br>230 U        | 280 U<br>280 U                |
| rocior 1254<br>rocior 1260                                                                                                      | μg/kg<br>μg/kg | ABCD                                                                                                                                                                                                                 | n/v<br>n/v                                                                                 | 190 U                            | 11,000 U             | 260 U               | 250 U                     | 270 U                     | 240 U                     | 270 U                            | 230 U                 | 280 U                         |
| roclor 1262                                                                                                                     | μg/kg          | °ABCD                                                                                                                                                                                                                | n/v                                                                                        | 190 U                            | 11,000 U             | 260 U               | 250 U                     | 270 U                     | 240 U                     | 270 U                            | 230 U                 | 280 U                         |
| roclor 1268                                                                                                                     | μg/kg          | ABCD                                                                                                                                                                                                                 | n/v                                                                                        | 190 U                            | 11,000 U             | 260 U               | 250 U                     | 270 U                     | 240 U                     | 270 U                            | 230 U                 | 280 U                         |
| olychlorinated Biphenyls (PCBs)                                                                                                 | μg/kg          | 100 <sup>A</sup> 1,000 <sup>B</sup> 25,000 <sup>C</sup> 3,200 <sup>D</sup>                                                                                                                                           | n/v                                                                                        | ND                               | ND                   | ND                  | ND                        | ND                        | ND                        | ND                               | ND                    | ND                            |
| Pesticides<br>Aldrin                                                                                                            | μg/kg          | 5, A 680 <sup>B</sup> 1,400 <sup>C</sup> 190 <sup>D</sup>                                                                                                                                                            | n/v                                                                                        | 1.8 U                            | 6,800 U              | 180 U               | 1.8 U                     | 1.9 U                     | 1.7 U                     | 2.0 U                            | 1.8 U                 | 4.0 U                         |
| iHC, alpha-                                                                                                                     | μg/kg<br>μg/kg | 20 <sup>AD</sup> 3,400 <sup>B</sup> 6,800 <sup>C</sup>                                                                                                                                                               | n/v                                                                                        | 1.8 U                            | 6,800 U              | 180 U               | 1.8 U                     | 1.9 U                     | 1.7 U                     | 2.0 U                            | 1.8 U                 | 4.0 U                         |
| HC, beta-                                                                                                                       | μg/kg          | 36 <sup>A</sup> 3,000 <sup>B</sup> 14,000 <sup>C</sup> 90 <sup>D</sup>                                                                                                                                               | n/v                                                                                        | 1.8 U                            | 6,800 U              | 180 U               | 1.8 U                     | 1.9 U                     | 1.7 U                     | 2.0 U                            | 1.8 U                 | 4.0 U                         |
| HC, delta-                                                                                                                      | μg/kg          | 40 <sub>n</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 250 <sup>D</sup>                                                                                                  | n/v                                                                                        | 1.8 U                            | 6,800 U              | 180 U               | 1.8 U                     | 1.9 U                     | 1.7 U                     | 2.0 U                            | 1.8 U                 | 4.0 U                         |
| amphechlor (Toxaphene)<br>hlordane, alpha-                                                                                      | μg/kg<br>μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>94 <sup>A</sup> 24,000 <sup>B</sup> 47,000 <sup>C</sup> 2,900 <sup>D</sup>                               | n/v<br>n/v                                                                                 | 18 U<br>1.8 U                    | 68,000 U<br>6,800 U  | 1,800 U<br>180 U    | 18 U<br>1.8 U             | 19 U<br>1.9 U             | 17 U<br>1.7 U             | 20 U<br>2.0 U                    | 18 U<br>1.8 U         | 40 U<br>4.5                   |
| hlordane, apria-<br>hlordane, trans- (gamma-Chlordane)                                                                          | μg/kg<br>μg/kg | 100,000 A 1,000 2,900                                                                                                                                                                                                | n/v                                                                                        | 1.8 U                            | 6,800 U              | 180 U               | 1.8 U                     | 1.9 U                     | 1.7 U                     | 2.0 U                            | 1.8 U                 | 4.0 U                         |
| DD (p,p'-DDD)                                                                                                                   | μg/kg          | 3.3 <sub>m</sub> <sup>A</sup> 92,000 <sup>B</sup> 180,000 <sup>C</sup> 14,000 <sup>D</sup>                                                                                                                           | n/v                                                                                        | 1.8 U                            | 6,800 U              | 180 U               | 1.8 U                     | 1.9 U                     | 1.7 U                     | 2.0 U                            | 1.8 U                 | 4.0 U                         |
| DE (p,p'-DDE)                                                                                                                   | μg/kg          | 3.3 <sub>m</sub> <sup>A</sup> 62,000 <sup>B</sup> 120,000 <sup>C</sup> 17,000 <sup>D</sup>                                                                                                                           | n/v                                                                                        | 1.8 U                            | 6,800 U              | 180 U               | 1.8 U                     | 1.9 U                     | 1.7 U                     | 2.0 U                            | 1.8 U                 | 4.0 U                         |
| DT (p,p'-DDT)                                                                                                                   | μg/kg          | 3.3 <sub>m</sub> <sup>A</sup> 47,000 <sup>B</sup> 94,000 <sup>C</sup> 136,000 <sup>D</sup>                                                                                                                           | n/v                                                                                        | 1.8 U                            | 6,800 U              | 180 U               | 1.8 U                     | 1.9 U                     | 1.7 U                     | 2.0 U                            | 1.8 U                 | 4.0 U                         |
| ieldrin<br>ndosulfan I                                                                                                          | μg/kg<br>μg/kg | 5 <sub>n</sub> <sup>A</sup> 1,400 <sup>B</sup> 2,800 <sup>C</sup> 100 <sup>D</sup><br>2,400 <sub>1</sub> <sup>A</sup> 200,000 <sub>1</sub> <sup>B</sup> 920,000 <sub>1</sub> <sup>C</sup> 102,000 <sup>D</sup>       | n/v<br>n/v                                                                                 | 1.8 U<br>1.8 U                   | 6,800 U<br>6.800 U   | 180 U<br>180 U      | 1.8 U<br>1.8 U            | 1.9 U<br>1.9 U            | 1.7 U<br>1.7 U            | 2.0 U<br>2.0 U                   | 1.8 U<br>1.8 U        | 4.0 U<br>4.0 U                |
| ndosulfan II                                                                                                                    | μg/kg<br>μg/kg | 2,400 <sub>i</sub> 200,000 <sub>i</sub> 920,000 <sub>i</sub> 102,000<br>2,400 <sub>i</sub> 200,000 <sub>i</sub> 920,000 <sub>i</sub> 102,000 <sup>D</sup>                                                            | n/v                                                                                        | 1.8 U                            | 6,800 U              | 180 U               | 1.8 U                     | 1.9 U                     | 1.7 U                     | 2.0 U                            | 1.8 U                 | 4.0 U                         |
| ndosulfan Sulfate                                                                                                               | μg/kg          | 2,400, <sup>A</sup> 200,000, <sup>B</sup> 920,000, <sup>C</sup> 1,000,000, <sup>D</sup>                                                                                                                              | n/v                                                                                        | 1.8 U                            | 6,800 U              | 180 U               | 1.8 U                     | 1.9 U                     | 1.7 U                     | 2.0 U                            | 1.8 U                 | 4.0 U                         |
| ndrin                                                                                                                           | μg/kg          | 14 <sup>A</sup> 89,000 <sup>B</sup> 410,000 <sup>C</sup> 60 <sup>D</sup>                                                                                                                                             | n/v                                                                                        | 1.8 U                            | 6,800 U              | 180 U               | 1.8 U                     | 1.9 U                     | 1.7 U                     | 2.0 U                            | 1.8 U                 | 4.0 U                         |
| ıdrin Aldehyde<br>ıdrin Ketone                                                                                                  | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup> | n/v<br>n/v                                                                                 | 1.8 U<br>1.8 U                   | 6,800 U<br>6,800 U   | 180 U<br>180 U      | 1.8 U<br>1.8 U            | 1.9 U<br>1.9 U            | 1.7 U<br>1.7 U            | 2.0 U<br>2.0 U                   | 1.8 U<br>1.8 U        | 10 J<br>4.0 U                 |
| eptachlor                                                                                                                       | μg/kg<br>μg/kg | 42 <sup>A</sup> 15,000 <sup>B</sup> 29,000 <sup>C</sup> 380 <sup>D</sup>                                                                                                                                             | n/v                                                                                        | 1.8 U                            | 6,800 U              | 180 U               | 1.8 U                     | 1.9 U                     | 1.7 U                     | 2.0 U                            | 1.8 U                 | 4.0 U                         |
| eptachlor Epoxide                                                                                                               | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 20 <sup>G</sup>      | 1.8 U                            | 6,800 U              | 180 U               | 1.8 U                     | 1.9 U                     | 1.7 U                     | 2.0 U                            | 1.8 U                 | 4.0 U                         |
| ndane (Hexachlorocyclohexane, gamma)                                                                                            | μg/kg          | 100 <sup>AD</sup> 9.200 <sup>B</sup> 23.000 <sup>C</sup>                                                                                                                                                             | n/v                                                                                        | 1.8 U                            | 6,800 U              | 180 U               | 1.8 U                     | 1.9 U                     | 1.7 U                     | 2.0 U                            | 1.8 U                 | 4.0 U                         |
| ethoxychlor (4,4'-Methoxychlor) er- and Polyfluoroalkyl Substances (PFAS)                                                       | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 900,000 <sup>G</sup> | 1.8 U                            | 6,800 U              | 180 U               | 1.8 U                     | 1.9 U                     | 1.7 U                     | 2.0 U                            | 1.8 U                 | 4.0 U                         |
| er- and Polyfluoroalkyl Substances (PFAS) (N-methyl perfluorooctanesulfonamido) acetic acid (NMeFOSAA)                          | μg/kg          | n/v                                                                                                                                                                                                                  | n/v                                                                                        | 1                                |                      |                     |                           | 2.3 U                     | 2.1 U                     |                                  | 2.3 U                 |                               |
| 2 Fluorotelomer sulfonic acid                                                                                                   | μg/kg<br>μg/kg | n/v<br>n/v                                                                                                                                                                                                           | n/v                                                                                        |                                  |                      |                     |                           | 2.3 U                     | 2.1 U                     | 1                                | 2.3 U                 | ] [                           |
| 2 Fluorotelomer sulfonic acid                                                                                                   | μg/kg          | n/v                                                                                                                                                                                                                  | n/v                                                                                        | -                                | -                    | -                   | -                         | 2.3 U                     | 2.1 U                     | -                                | 2.3 U                 | -                             |
| ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)                                                                         | μg/kg          | n/v                                                                                                                                                                                                                  | n/v                                                                                        | -                                | -                    | -                   | -                         | 2.8                       | 2.1 U                     | 1 -                              | 2.8                   | -                             |
| erfluorobutane Sulfonate (PFBS)                                                                                                 | μg/kg          | n/v                                                                                                                                                                                                                  | n/v                                                                                        | -                                | -                    | -                   | -                         | 0.23 U<br>0.23 U          | 0.21 U<br>0.21 U          | 1 -                              | 0.23 U<br>0.23 U      | -                             |
| erfluorobutanoic Acid (PFBA)<br>erfluorodecane Sulfonate (PFDS)                                                                 | μg/kg<br>μg/kg | n/v<br>n/v                                                                                                                                                                                                           | n/v<br>n/v                                                                                 |                                  |                      | -                   |                           | 0.23 U<br>0.23 U          | 0.21 U<br>0.21 U          | 1 - 1                            | 0.23 U<br>0.23 U      | ]                             |
| erfluorodecanoic Acid (PFDA)                                                                                                    | μg/kg<br>μg/kg | n/v                                                                                                                                                                                                                  | n/v                                                                                        | -                                |                      | -                   | -                         | 0.23 U                    | 0.21 U                    | 1                                | 0.23 U                | -                             |
| erfluorododecanoic Acid (PFDoA)                                                                                                 | μg/kg          | n/v                                                                                                                                                                                                                  | n/v                                                                                        | -                                | -                    | -                   | -                         | 0.23 U                    | 0.21 U                    | -                                | 0.23 U                | -                             |
| erfluoroheptane Sulfonate (PFHpS)                                                                                               | μg/kg          | n/v                                                                                                                                                                                                                  | n/v                                                                                        | -                                | -                    | -                   | -                         | 0.23 U                    | 0.21 U                    | -                                | 0.23 U                | -                             |
| erfluoroheptanoic Acid (PFHpA)<br>erfluorohexanesulfonic acid (PFHxS)                                                           | μg/kg          | n/v                                                                                                                                                                                                                  | n/v                                                                                        | -                                | -                    | -                   | -                         | 0.23 U<br>0.23 U          | 0.21 U<br>0.21 U          | 1 -                              | 0.23 U<br>0.23 U      | -                             |
| erfluoronexanesuifonic acid (PFHxS) erfluorohexanoic Acid (PFHxA)                                                               | μg/kg<br>μg/kg | n/v<br>n/v                                                                                                                                                                                                           | n/v<br>n/v                                                                                 |                                  | -                    | -                   |                           | 0.23 U<br>0.23 U          | 0.21 U<br>0.21 U          | 1 - 1                            | 0.23 U<br>0.23 U      | ]                             |
| erfluoro-nexanoic Acid (PF-nxA)<br>erfluoro-n-Octanoic Acid (PFOA)                                                              | μg/kg<br>μg/kg | n/v<br>n/v                                                                                                                                                                                                           | n/v                                                                                        |                                  |                      | -                   |                           | 0.23 U                    | 0.21 U                    | 1                                | 0.23 U<br>0.58 U      | ]                             |
| erfluorononanoic Acid (PFNA)                                                                                                    | μg/kg          | n/v                                                                                                                                                                                                                  | n/v                                                                                        | -                                | -                    | -                   | -                         | 0.23 U                    | 0.21 U                    | -                                | 0.23 U                | -                             |
| erfluorooctane Sulfonate (PFOS)                                                                                                 | μg/kg          | n/v                                                                                                                                                                                                                  | n/v                                                                                        | -                                | -                    | -                   | -                         | 0.57 U                    | 0.53 U                    | 1 -                              | 1.5 J                 | -                             |
| erfluorooctanesulfonamide (PFOSA)                                                                                               | μg/kg          | n/v                                                                                                                                                                                                                  | n/v                                                                                        | -                                | -                    | -                   | -                         | 0.23 U                    | 0.21 U                    | 1 -                              | 0.74 J                | -                             |
| erfluoropentanoic Acid (PFPeA)<br>erfluorotetradecanoic Acid (PFTeA)                                                            | μg/kg<br>μg/kg | n/v<br>n/v                                                                                                                                                                                                           | n/v<br>n/v                                                                                 |                                  |                      | -                   |                           | 0.23 U<br>0.23 U          | 0.21 U<br>0.21 U          | 1 1                              | 0.23 U<br>0.23 U      |                               |
|                                                                                                                                 |                | n/v                                                                                                                                                                                                                  | n/v                                                                                        | 1 1                              |                      | -                   |                           | 0.23 U                    | 0.21 U                    | 1 - 1                            | 0.23 U                | 1                             |
| erfluorotridecanoic Acid (PFTriA)                                                                                               | μα/κα          |                                                                                                                                                                                                                      |                                                                                            |                                  |                      |                     |                           |                           |                           |                                  |                       |                               |
| erfluoroundecanoic Acid (PFUnÁ)                                                                                                 | μg/kg<br>μg/kg | n/v                                                                                                                                                                                                                  | n/v                                                                                        | -                                | -                    | -                   | -                         | 0.23 U                    | 0.21 U                    | -                                | 0.23 U                | -                             |
| Perfluorotridecanoic Acid (PFTriA)<br>Perfluoroundecanoic Acid (PFUnA)<br>Sum of PFAS Analyte List<br>Sum of PFOS & PFOA Ratios |                |                                                                                                                                                                                                                      |                                                                                            |                                  | -                    | -                   | -                         |                           |                           | -                                |                       | -                             |

See notes on last page.



U/190500898/05\_report\_deliv/deliverables/work\_plan\lRMWP.2\2\_Tables\tbl2\_SRLsoil\_CLLB\_20191014.xlsx

Table 2
Summary of Analytical Results for SRI Solid Samples
IRM Work Plan #2
820 Linden Ave Site, BCP #C828200
820 Linden Avenue, Pittsford, NY

| Sample Location                                           | 1 1   |                                                                                                                                   |                                                                                                              | DB             | DX-NW                 | LF-1         | LF-2         | L            | F-3             | LF-4         | TANK1-NW      | TANK2-NW     |
|-----------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------|-----------------------|--------------|--------------|--------------|-----------------|--------------|---------------|--------------|
| Sample Date                                               |       |                                                                                                                                   |                                                                                                              | 25-Jul-19      | 26-Jul-19             | 25-Jul-19    | 25-Jul-19    | 25-Jul-19    | 25-Jul-19       | 25-Jul-19    | 25-Jul-19     | 25-Jul-19    |
| Sample ID                                                 |       |                                                                                                                                   |                                                                                                              | LIN-DBOX2-NW-S | LIN-DB0X3-NW-SLD      | LIN-LF1-S    | LIN-LF2-S    | LIN-LF3-S    | LIN-LFDUP-S     | LIN-LF4-S    | LIN-TANK1NW-S | LIN-TANK2NW  |
| Sampling Company                                          |       |                                                                                                                                   |                                                                                                              | STANTEC        | STANTEC               | STANTEC      | STANTEC      | STANTEC      | STANTEC         | STANTEC      | STANTEC       | STANTEC      |
| Laboratory                                                |       |                                                                                                                                   |                                                                                                              | TAL            | TAL                   | TAL          | TAL          | TAL          | TAL             | TAL          | TAL           | TAL          |
| Laboratory Work Order                                     |       |                                                                                                                                   |                                                                                                              | 480-156805-1   | 480-156805-1          | 480-156805-1 | 480-156805-1 | 480-156805-1 | 480-156805-1    | 480-156805-1 | 480-156805-1  | 480-156805-1 |
| Laboratory Sample ID                                      |       |                                                                                                                                   |                                                                                                              | 480-156805-9   | 480-156853-1          | 480-156805-3 | 480-156805-4 | 480-156805-5 | 480-156805-10   | 480-156805-6 | 480-156805-7  | 480-156805-8 |
| Sample Type                                               | Units | NYSDEC-Part 375                                                                                                                   | NYSDEC CP-51                                                                                                 |                |                       |              |              |              | Field Duplicate |              |               |              |
| O! V-I-til- O!- Od-                                       |       |                                                                                                                                   |                                                                                                              |                |                       |              |              |              |                 |              |               |              |
| Semi-Volatile Organic Compounds  Acenaphthene             | μg/kg | 20,000 <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 98,000 <sup>D</sup>                     | n/v                                                                                                          | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Acenaphthylene                                            | μg/kg | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 107,000 <sup>D</sup>                                             | n/v                                                                                                          | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Acetophenone                                              | μg/kg | 100,000a 1,000,000d 107,000                                                                                                       | n/v                                                                                                          | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8.000 U      |
| Anthracene                                                | µg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                          | n/v                                                                                                          | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Atrazine                                                  | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                             | n/v                                                                                                          | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Benzaldehyde                                              | μg/kg | 100,000 <sub>a</sub> 1,000,000 <sub>d</sub> D                                                                                     | n/v                                                                                                          | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8.000 U      |
| Benzo(a)anthracene                                        | µg/kg | 1,000, A 5,600 B 11,000 C 1,000, D                                                                                                | n/v                                                                                                          | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Benzo(a)pyrene                                            | μg/kg | 1,000, A 1,000, B 1,100° 22,000°                                                                                                  | n/v                                                                                                          | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Benzo(b)fluoranthene                                      | μg/kg | 1,000 <sub>n</sub> 5,600 <sup>B</sup> 11,000 <sup>C</sup> 1,700 <sup>D</sup>                                                      | n/v                                                                                                          | 890 U          | 260.000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8.000 U      |
| Benzo(g,h,i)perylene                                      | μg/kg | 100,000 <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                       | n/v                                                                                                          | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Benzo(k)fluoranthene                                      | μg/kg | 800, A 56,000 B 110,000 C 1,700 D                                                                                                 | n/v                                                                                                          | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Biphenyl                                                  | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                             | 500,000a <sup>E</sup> 1,000,000a <sup>F</sup>                                                                | 890 U          | 260.000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8.000 U      |
| Bis(2-Chloroethoxy)methane                                | µg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                          | n/v                                                                                                          | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Bis(2-Chloroethyl)ether                                   | µg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                          | n/v                                                                                                          | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Bis(2-Chloroisopropyl)ether (2,2-oxybis(1-Chloropropane)) | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                          | n/v                                                                                                          | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Bis(2-Ethylhexyl)phthalate (DEHP)                         | µg/kg | 100,000a 500,000a 1,000,000a CD                                                                                                   | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 435,000 <sup>G</sup>                   | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 280          | 420           | 8,000 U      |
| Bromophenyl Phenyl Ether, 4-                              | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                          | n/v                                                                                                          | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Butyl Benzyl Phthalate                                    | μg/kg | 100,000a A 500,000c B 1,000,000d CD                                                                                               | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 122,000 <sup>G</sup>                   | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8.000 U      |
| Caprolactam                                               | µg/kg | 100,000 <sub>a</sub> <sup>A</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                             | n/v                                                                                                          | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Carbazole                                                 | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                          | n/v                                                                                                          | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Chloro-3-methyl phenol, 4-                                | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                          | n/v                                                                                                          | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Chloroaniline, 4-                                         | µg/kg | 100,000a 500,000c 1,000,000d CD                                                                                                   | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F 220 <sup>G</sup>                                             | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Chloronaphthalene, 2-                                     | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                          | n/v                                                                                                          | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Chlorophenol, 2- (ortho-Chlorophenol)                     | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                          | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup>                                        | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8.000 U      |
| Chlorophenyl Phenyl Ether, 4-                             | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                          | n/v                                                                                                          | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Chrysene                                                  | μg/kg | 1,000 <sub>0</sub> <sup>A</sup> 56,000 <sup>B</sup> 110,000 <sup>C</sup> 1,000 <sub>0</sub> <sup>D</sup>                          | n/v                                                                                                          | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Cresol. o- (Methylphenol. 2-)                             | μg/kg | 330 <sub>m</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 330 <sub>f</sub> <sup>D</sup> | n/v                                                                                                          | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8.000 U      |
| Cresol, p- (Methylphenol, 4-)                             | μg/kg | 330 <sub>m</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 330 <sub>f</sub> <sup>D</sup> | n/v                                                                                                          | 1,700 U        | 500,000 U             | 350 U        | 350 U        | 390 U        | 350 U           | 400 U        | 350 U         | 16,000 U     |
| Dibenzo(a,h)anthracene                                    | μg/kg | 330 <sub>m</sub> <sup>A</sup> 560 <sup>B</sup> 1,100 <sup>C</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                             | n/v                                                                                                          | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Dibenzofuran                                              | μg/kg | 7,000 <sup>A</sup> 350,000 <sup>B</sup> 1,000,000, <sup>C</sup> 210,000 <sup>D</sup>                                              | 500.000 E 1.000.000 F 6.200 G                                                                                | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8.000 U      |
| Dibutyl Phthalate (DBP)                                   | μg/kg | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                               | 500,000 E 1,000,000 F 8,100 G                                                                                | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Dichlorobenzidine, 3,3'-                                  | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                          | n/v                                                                                                          | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Dichlorophenol, 2,4-                                      | μg/kg | 100,000 A 500,000 B 1,000,000 CD                                                                                                  | 500,000° 1,000,000° 400°                                                                                     | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Diethyl Phthalate                                         | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                          | 500,000a 1,000,000a 7,100G                                                                                   | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Dimethyl Phthalate                                        | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                          | 500,000a 1,000,000a 27,000G                                                                                  | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Dimethylphenol, 2,4-                                      | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                          | n/v                                                                                                          | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Dinitro-o-cresol, 4,6-                                    | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                          | n/v                                                                                                          | 1,700 U        | 500,000 U             | 350 U        | 350 U        | 390 U        | 350 U           | 400 U        | 350 U         | 16,000 U     |
| Dinitrophenol, 2,4-                                       | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                          | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F 200 <sup>G</sup>                                             | 1,700 U        | 500,000 U             | 350 U        | 350 U        | 390 U        | 350 U           | 400 U        | 350 U         | 16,000 U     |
| Dinitrotoluene, 2,4-                                      | μg/kg | 100,000 A 500,000 B 1,000,000 CD                                                                                                  | n/v                                                                                                          | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Dinitrotoluene, 2,6-                                      | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                          | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 1,000/170 <sub>b s1</sub> <sup>G</sup> | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Di-n-Octyl phthalate                                      | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                          | 500,000a 1,000,000a 120,000G                                                                                 | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Dioxane, 1,4-                                             | μg/kg | 100 <sub>m</sub> <sup>A</sup> 130,000 <sup>B</sup> 250,000 <sup>C</sup> 100 <sub>f</sub> <sup>D</sup>                             | n/v                                                                                                          | 1,000 U        | 300,000 U             | 210 U        | 210 U        | 230 U        | 210 U           | 240 U        | 210 U         | 9,400 U      |
| Fluoranthene                                              | μg/kg | 100,000° a 200,000° B 1,000,000° CD                                                                                               | n/v                                                                                                          | 890 U          | 530.000 <sup>AB</sup> | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Fluorene                                                  | μg/kg | 30,000 <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 386,000 <sup>D</sup>                    | n/v                                                                                                          | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Hexachlorobenzene                                         | μg/kg | 330 <sub>m</sub> <sup>A</sup> 6,000 <sup>B</sup> 12,000 <sup>C</sup> 3,200 <sup>D</sup>                                           | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 1,400 <sup>G</sup>                     | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Hexachlorobutadiene (Hexachloro-1,3-butadiene)            | µg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                          | n/v                                                                                                          | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Hexachlorocyclopentadiene                                 | µg/kg | 100,000a 500,000a 1,000,000a CD                                                                                                   | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F                                                              | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Hexachloroethane                                          | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                          | n/v                                                                                                          | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Indeno(1,2,3-cd)pyrene                                    | μg/kg | 500 <sub>0</sub> 5,600 <sup>B</sup> 11,000 <sup>C</sup> 8,200 <sup>D</sup>                                                        | n/v                                                                                                          | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Isophorone                                                | µg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                          | 500,000° E 1,000,000° F 4,400°                                                                               | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Methylnaphthalene, 2-                                     | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                          | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 36,400 <sup>G</sup>                    | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Naphthalene                                               | μg/kg | 12,000 <sup>ÅD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                        | n/v                                                                                                          | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Nitroaniline, 2-                                          | μg/kg | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                               | 500,000° 1,000,000° 400°                                                                                     | 1,700 U        | 500,000 U             | 350 U        | 350 U        | 390 U        | 350 U           | 400 U        | 350 U         | 16,000 U     |
| Nitroaniline, 3-                                          | μg/kg | 100,000a A 500,000c B 1,000,000d CD                                                                                               | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 500 <sup>G</sup>                       | 1,700 U        | 500,000 U             | 350 U        | 350 U        | 390 U        | 350 U           | 400 U        | 350 U         | 16,000 U     |
| Nitroaniline, 4-                                          | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                          | n/v                                                                                                          | 1,700 U        | 500,000 U             | 350 U        | 350 U        | 390 U        | 350 U           | 400 U        | 350 U         | 16,000 U     |
| Nitrobenzene                                              | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                          | 69,000 <sup>E</sup> 140,000 <sup>F</sup> 170 <sub>h</sub> <sup>G</sup>                                       | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Nitrophenol, 2-                                           | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                          | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 300 <sup>G</sup>                       | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Nitrophenol, 4-                                           | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                          | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 100 <sup>G</sup>                       | 1,700 U        | 500,000 U             | 350 U        | 350 U        | 390 U        | 350 U           | 400 U        | 350 U         | 16,000 U     |
| N-Nitrosodi-n-Propylamine                                 | µg/kg | 100,000a 500,000a 1,000,000a CD                                                                                                   | n/v                                                                                                          | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| n-Nitrosodiphenylamine                                    | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                          | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup>                                        | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Pentachlorophenol                                         | μg/kg | 800 <sub>m</sub> <sup>A</sup> 6,700 <sup>B</sup> 55,000 <sup>C</sup> 800 <sub>f</sub> <sup>D</sup>                                | n/v                                                                                                          | 1,700 U        | 500,000 U             | 350 U        | 350 U        | 390 U        | 350 U           | 400 U        | 350 U         | 16,000 U     |
| Phenanthrene                                              | μg/kg | 100,000 <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                       | n/v                                                                                                          | 890 U          | 550,000 B             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Phenol                                                    |       | 330 <sub>m</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 330 <sub>f</sub> <sup>D</sup> | n/v                                                                                                          | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
|                                                           | μg/kg |                                                                                                                                   |                                                                                                              | 890 U          |                       |              |              |              |                 |              |               | 8,000 U      |
| Pyrene                                                    | μg/kg | 100,000 <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                       | n/v                                                                                                          |                | 440,000 <sup>A</sup>  | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         |              |
| Trichlorophenol, 2,4,5-                                   | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                          | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 100 <sup>G</sup>                       | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Trichlorophenol, 2,4,6-                                   | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                          | 500,000a 1,000,000a F                                                                                        | 890 U          | 260,000 U             | 180 U        | 180 U        | 200 U        | 180 U           | 210 U        | 180 U         | 8,000 U      |
| Total SVOC                                                | ua/ka | n/v                                                                                                                               | n/v                                                                                                          | ND             | 1,520,000             | ND           | ND           | ND           | l ND            | 280          | 420           | ND           |

Stantec

190500898
U:\190500898\05\_report\_deliv\deliverables\work\_plan\IRMWP.2\2\_Tables\tbl2\_SRI.soil\_CLLB\_20191014.xlsx

Table 2
Summary of Analytical Results for SRI Solid Samples
IRM Work Plan #2
820 Linden Ave Site, BCP #C828200
820 Linden Avenue, Pittsford, NY

| Sample Location                           | 1 1   | ı                                                                                                                                                                                                                                                            |                                                                                          | DD             | OX-NW            | LF-1              | LF-2              |              | :-3             | LF-4              | TANK1-NW              | TANK2-NW               |
|-------------------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------|------------------|-------------------|-------------------|--------------|-----------------|-------------------|-----------------------|------------------------|
| Sample Location Sample Date               |       |                                                                                                                                                                                                                                                              |                                                                                          | 25-Jul-19      | 26-Jul-19        | LF-1<br>25-Jul-19 | LF-2<br>25-Jul-19 | 25-Jul-19    | 3<br>25-Jul-19  | LF-4<br>25-Jul-19 | 1ANK1-NW<br>25-Jul-19 | 1 ANK2-NW<br>25-Jul-19 |
|                                           |       |                                                                                                                                                                                                                                                              |                                                                                          |                |                  |                   |                   |              |                 |                   |                       |                        |
| Sample ID                                 |       |                                                                                                                                                                                                                                                              |                                                                                          | LIN-DBOX2-NW-S | LIN-DB0X3-NW-SLD | LIN-LF1-S         | LIN-LF2-S         | LIN-LF3-S    | LIN-LFDUP-S     | LIN-LF4-S         | LIN-TANK1NW-S         | LIN-TANK2NW-           |
| Sampling Company                          |       |                                                                                                                                                                                                                                                              |                                                                                          | STANTEC        | STANTEC          | STANTEC           | STANTEC           | STANTEC      | STANTEC         | STANTEC           | STANTEC               | STANTEC                |
| Laboratory                                |       |                                                                                                                                                                                                                                                              |                                                                                          | TAL            | TAL              | TAL               | TAL               | TAL          | TAL             | TAL               | TAL                   | TAL                    |
| Laboratory Work Order                     |       |                                                                                                                                                                                                                                                              |                                                                                          | 480-156805-1   | 480-156805-1     | 480-156805-1      | 480-156805-1      | 480-156805-1 | 480-156805-1    | 480-156805-1      | 480-156805-1          | 480-156805-1           |
| Laboratory Sample ID                      |       | 10/00E0 B 10EE                                                                                                                                                                                                                                               | 10/00550 00 54                                                                           | 480-156805-9   | 480-156853-1     | 480-156805-3      | 480-156805-4      | 480-156805-5 | 480-156805-10   | 480-156805-6      | 480-156805-7          | 480-156805-8           |
| Sample Type                               | Units | NYSDEC-Part 375                                                                                                                                                                                                                                              | NYSDEC CP-51                                                                             |                |                  |                   |                   |              | Field Duplicate |                   |                       |                        |
| Volatile Organic Compounds                |       |                                                                                                                                                                                                                                                              |                                                                                          | 1              |                  |                   |                   |              |                 |                   |                       |                        |
| Acetone                                   | μg/kg | 50 <sup>AD</sup> 500,000 <sub>6</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                       | n/v                                                                                      | 27 U           | 25 UJ            | 27 U              | 27 U              | 29 U         | 27 U            | 29 U              | 26 U                  | 30 U                   |
| Benzene                                   | μg/kg | 60 <sup>AD</sup> 44.000 <sup>B</sup> 89.000 <sup>C</sup>                                                                                                                                                                                                     | n/v                                                                                      | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Bromodichloromethane                      | µg/kg | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> CD                                                                                                                                                                                          | n/v                                                                                      | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Bromoform (Tribromomethane)               | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                     | n/v                                                                                      | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Bromomethane (Methyl bromide)             | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                     | n/v                                                                                      | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Butylbenzene, n-                          | μg/kg | 12,000 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                   | n/v                                                                                      | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Butylbenzene, sec- (2-Phenylbutane)       | μg/kg | 11,000 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                   | n/v                                                                                      | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Butylbenzene, tert-                       | μg/kg | 5,900 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                    | n/v                                                                                      | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Carbon Disulfide                          | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                     | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 2,700 <sup>G</sup> | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Carbon Tetrachloride (Tetrachloromethane) | μg/kg | 760 <sup>AD</sup> 22,000 <sup>B</sup> 44,000 <sup>C</sup>                                                                                                                                                                                                    | n/v                                                                                      | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Chlorobenzene (Monochlorobenzene)         | μg/kg | 1,100 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                    | n/v                                                                                      | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Chloroethane (Ethyl Chloride)             | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                     | 500,000a <sup>E</sup> 1,000,000a <sup>F</sup> 1,900 <sup>G</sup>                         | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Chloroform (Trichloromethane)             | µg/kg | 370 <sup>AD</sup> 350,000 <sup>B</sup> 700,000 <sup>C</sup>                                                                                                                                                                                                  | n/v                                                                                      | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Chloromethane                             | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                     | n/v                                                                                      | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Cyclohexane                               | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                     | n/v                                                                                      | 5.3 U          | 10 J             | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Dibromo-3-Chloropropane, 1,2- (DBCP)      | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                     | n/v                                                                                      | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 UJ                | 6.0 U                  |
| Dibromochloromethane                      | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                     | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F                                          | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Dichlorobenzene, 1,2-                     | μg/kg | 1,100 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                    | n/v                                                                                      | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Dichlorobenzene, 1,3-                     | μg/kg | 2,400 <sup>AD</sup> 280,000 <sup>B</sup> 560,000 <sup>C</sup>                                                                                                                                                                                                | n/v                                                                                      | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Dichlorobenzene, 1,4-                     | μg/kg | 1.800 <sup>AD</sup> 130.000 <sup>B</sup> 250.000 <sup>C</sup>                                                                                                                                                                                                | n/v                                                                                      | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Dichlorodifluoromethane (Freon 12)        | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                     | n/v                                                                                      | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Dichloroethane, 1,1-                      | μg/kg | 270 <sup>AD</sup> 240.000 <sup>B</sup> 480.000 <sup>C</sup>                                                                                                                                                                                                  | n/v                                                                                      | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Dichloroethane, 1,2-                      | μg/kg | 20 <sub>m</sub> A 30,000 <sup>B</sup> 60,000 <sup>C</sup> 20 <sub>a</sub> <sup>D</sup>                                                                                                                                                                       | n/v                                                                                      | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Dichloroethene, 1,1-                      | μg/kg | 330 <sup>AD</sup> 500,000 <sub>6</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                      | n/v                                                                                      | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Dichloroethene, cis-1,2-                  | μg/kg | 250 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                      | n/v                                                                                      | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Dichloroethene, trans-1,2-                | μg/kg | 190 <sup>AD</sup> 500,000 <sub>6</sub> 1,000,000 <sub>d</sub> C                                                                                                                                                                                              | n/v                                                                                      | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Dichloropropane, 1,2-                     | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                     | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup>                    | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Dichloropropene, cis-1,3-                 | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                     | n/v                                                                                      | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Dichloropropene, trans-1,3-               | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                     | n/v                                                                                      | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Ethylbenzene                              | μg/kg | 1,000 <sup>AD</sup> 390,000 <sup>B</sup> 780,000 <sup>C</sup>                                                                                                                                                                                                | n/v                                                                                      | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Ethylene Dibromide (Dibromoethane, 1,2-)  | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                     | n/v                                                                                      | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Hexanone, 2- (Methyl Butyl Ketone)        | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                     | n/v                                                                                      | 27 U           | 25 UJ            | 27 U              | 27 U              | 29 U         | 27 U            | 29 U              | 26 U                  | 30 U                   |
| Isopropylbenzene                          | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                     | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F 2,300 <sup>G</sup>                       | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Isopropyltoluene, p- (Cymene)             | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                     | 500,000a 1,000,000a 10,000G                                                              | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Methyl Acetate                            | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                     | n/v                                                                                      | 27 U           | 25 UJ            | 27 U              | 27 U              | 29 U         | 27 U            | 29 U              | 26 U                  | 30 U                   |
| Methyl Ethyl Ketone (MEK) (2-Butanone)    | μg/kg | 120 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                      | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F 300 <sup>G</sup>                         | 27 U           | 25 UJ            | 27 U              | 27 U              | 29 U         | 27 U            | 29 U              | 26 UJ                 | 30 U                   |
| Methyl Isobutyl Ketone (MIBK)             | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                     | 500,000a 1,000,000a 1,000G                                                               | 27 U           | 25 UJ            | 27 U              | 27 U              | 29 U         | 27 U            | 29 U              | 26 UJ                 | 30 U                   |
| Methyl tert-butyl ether (MTBE)            | μg/kg | 930 <sup>AD</sup> 500,000 <sub>6</sub> 1,000,000 <sub>d</sub> C                                                                                                                                                                                              | n/v                                                                                      | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Methylcyclohexane                         | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                     | n/v                                                                                      | 5.3 U          | 5.4 J            | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Methylene Chloride (Dichloromethane)      | μg/kg | 50 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                       | n/v                                                                                      | 5.3 U          | 5.2 J            | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Naphthalene                               | μg/kg | 12,000 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                   | n/v                                                                                      | 5.3 U          | 33 J             | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Propylbenzene, n-                         | μg/kg | 3,900 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                    | n/v                                                                                      | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Styrene                                   | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                     | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup>                    | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Tetrachloroethane, 1,1,2,2-               | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                     | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F 600 <sup>G</sup>                         | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 UJ                | 6.0 U                  |
| Tetrachloroethene (PCE)                   | μg/kg | 1,300 <sup>AD</sup> 150,000 <sup>B</sup> 300,000 <sup>C</sup>                                                                                                                                                                                                | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup>                    | 5.3 U          | 9.7 J            | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Toluene                                   | μg/kg | 700 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                      | n/v                                                                                      | 5.3 U          | 5.2 J            | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Trichlorobenzene, 1,2,4-                  | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                     | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 3,400 <sup>G</sup> | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Trichloroethane, 1,1,1-                   | μg/kg | 680 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                      | n/v                                                                                      | 5.3 U          | 5.0 J            | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Trichloroethane, 1,1,2-                   | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                     | n/v                                                                                      | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Trichloroethene (TCE)                     | μg/kg | 470 <sup>AD</sup> 200,000 <sup>B</sup> 400,000 <sup>C</sup>                                                                                                                                                                                                  | n/v                                                                                      | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Trichlorofluoromethane (Freon 11)         | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                     | n/v                                                                                      | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Trichlorotrifluoroethane (Freon 113)      | μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                     | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 6,000 <sup>G</sup> | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Trimethylbenzene, 1,2,4-                  | μg/kg | 3,600 <sup>AD</sup> 190,000 <sup>B</sup> 380,000 <sup>C</sup>                                                                                                                                                                                                | n/v                                                                                      | 5.3 U          | 38 J             | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Trimethylbenzene, 1,3,5-                  | μg/kg | 8,400 <sup>AD</sup> 190,000 <sup>B</sup> 380,000 <sup>C</sup>                                                                                                                                                                                                | n/v                                                                                      | 5.3 U          | 22 J             | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Vinyl Chloride                            | μg/kg | 20 <sup>AD</sup> 13,000 <sup>B</sup> 27,000 <sup>C</sup>                                                                                                                                                                                                     | n/v                                                                                      | 5.3 U          | 5.0 UJ           | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Xylene, m & p-                            | μg/kg | 260 <sub>p</sub> <sup>A</sup> 500,000 <sub>c.p</sub> <sup>B</sup> 1,000,000 <sub>d.p</sub> <sup>C</sup> 1,600 <sub>p</sub> <sup>D</sup>                                                                                                                      | n/v                                                                                      | 11 U           | 10 UJ            | 11 U              | 11 U              | 12 U         | 11 U            | 12 U              | 10 U                  | 12 U                   |
| Xylene, o-                                | μg/kg | 260 <sub>o</sub> <sup>A</sup> 500,000 <sub>c</sub> <sub>o</sub> <sup>B</sup> 1,000,000 <sub>d</sub> , <sup>C</sup> 1,600 <sub>o</sub> <sup>D</sup> 260 <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 1,600 <sup>D</sup> | n/v                                                                                      | 5.3 U          | 9.0 J            | 5.4 U             | 5.4 U             | 5.8 U        | 5.3 U           | 5.9 U             | 5.2 U                 | 6.0 U                  |
| Xylenes, Total                            | μg/kg |                                                                                                                                                                                                                                                              | n/v                                                                                      | 11 U           | 10 UJ            | 11 U              | 11 U              | 12 U         | 11 U            | 12 U              | 10 U                  | 12 U                   |
| Total VOC                                 | μg/kg | n/v                                                                                                                                                                                                                                                          | n/v                                                                                      | ND             | 142.5 J          | ND                | ND                | ND           | ND              | ND                | ND                    | ND                     |
| VOC - Tentatively Identified Compounds    |       |                                                                                                                                                                                                                                                              |                                                                                          |                |                  |                   |                   |              |                 |                   |                       |                        |
| Total VOC TICs                            | μg/kg | n/v                                                                                                                                                                                                                                                          | n/v                                                                                      | -              | 2,420 J          | -                 | -                 | -            | -               | _                 | -                     | -                      |

Stantec

#### Table 2

#### Summary of Analytical Results for SRI Solid Samples

IRM Work Plan #2

820 Linden Ave Site. BCP #C828200

820 Linden Avenue, Pittsford, NY

Notes: NYSDEC-Part 375 NYSDEC 6 NYCRR Part 375 Soil Clean-up Objectives (SCOs)

NYSDEC 6 NYCRR Part 375 - Unrestricted Use Soil Cleanup Objectives
NYSDEC 6 NYCRR Part 375 - Restricted Use SCO - Protection of Human Health - Commercial

NYSDEC 6 NYCRR Part 376 - Restricted Use SCO - Protection of Human Health - Lommercial NYSDEC 6 NYCRR Part 375 - Restricted Use SCO - Protection of Human Health - Industrial NYSDEC 6 NYCRR Part 375 - Restricted Use SCO - Protection of Groundwater NYSDEC CP-51 New York State Department of Environmental Conservation, DEC Policy CP-51, October 21, 2010

Table 1 Supplemental Soil Cleanup Objectives - Commercial Table 1 Supplemental Soil Cleanup Objectives - Industrial Table 1 Supplemental Soil Cleanup Objectives - Protection of Groundwater

6.5<sup>A</sup> Concentration exceeds the indicated standard.

Measured concentration did not exceed the indicated standard.

0.03 U Analyte was not detected at a concentration greater than the laboratory reporting limit.

No standard/guideline value.

Parameter not analyzed / not available.

The SCOs for unrestricted use were capped at a maximum value of 100 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3

SCOs for organic contaminants (volatile organic compounds, semivolatile organic compounds, and pesticides) are ca Based on rural background study

Based on rural background study. The value of 1.0 refers to SVOC analyses while the 0.17b refers to VOC analyses. nic compounds, and pesticides) are capped at 100 ppm for residential use, 500 ppm for commercial use, 1000 ppm for industrial use. SCOs for metals are capped at 10,000 ppm.

Based on rural background study. The value of 1,0 refers to SVOC analses while the 0.17b refers to VOC analyses.

The SCOs for commercial use were capped at a maximum value of 500 mg/kg. See TSD Section 9.3.

The SCOs for commercial use were capped at a maximum value of 500 mg/kg. See TSD Section 9.3.

The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 mg/kg (Organics) and 10000 mg/kg (Inorganics). See 6 NYCRR Part 375 TSD Section 9.3.

The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3.

The SCOs for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3.

The SCOS for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3.

The SCOS for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3.

The SCOS for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3.

The SCOS for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3.

The SCOS for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3.

The SCOS for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3.

The SCOS for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3.

The SCOS for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3.

The SCOS for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3.

The SCOS for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3.

The SCOS for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3.

The SCOS for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3.

The SCOS for meta

This SCO is the sum of endosulfan I, endosulfan II, and endosulfan sulfate.

This SCO is the lower of the values for mercury (elemental) or mercury (inorganic salts). See 6 NYCRR Part 375 TSD Table 5.6-1.

For constituents where the calculated SCO was lower than the Contract Required Quantitation Limit (CRQL), the CRQL is used as the Track 1 SCO value.

For constituents where the calculated SCO was lower than the rural soil background concentration as determined by the DEC/DOH rural soil survey, the rural soil background concentration is used as the Track 1 SCO value for this use of the site. For constituents where the calculated SCO was lower than the rural soil background concentration as determined by the DEC/DOH rural soil survey, the rural soil background concentration is used as the Track 1 SCO value for this use of the site. The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for the total species of this contaminant is below the specific SCO.

No SCO has been established for this compound. No SCO has been established for total chromium; however, see standards for trivialent and hexavalent chromium.

Standard is applicable to total PCBs, and the individual Aroclors should be added for comparison.

The criterion is applicable to total xylenes, and the individual isomers should be added for comparison.

Greater than.

Indicates analyte was found in associated blank, as well as in the sample.

The reported result is an estimated value.

The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased low.

Not detected



190500898 U:\190500898\05\_report\_deliv\deliverables\work\_plan\IRMWP.2\2\_Tables\tbl2\_SRI.soil\_CL.LB\_20191014.xlsx Page 4 of 4

| ample Location<br>ample Date<br>ample ID<br>ampling Company<br>aboratory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STANTEC<br>TALBU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TANK1-NW<br>25-Jul-19<br>LIN-TANK1NW-WC-S<br>STANTEC<br>TALBU                                                                                                                                                                                                                                                                                                                                                                                                                                                     | STANTEC<br>TALBU                     | TANK1-SW<br>23-Jul-19<br>LIN-TANK1SW-WC-SED<br>STANTEC<br>TALBU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | STANTEC<br>TALBU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STANTEC<br>TALBU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| aboratory Work Order<br>aboratory Sample ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11-14-                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NYODEO D-4 275                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NYSDEC CP-51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 480-156805-2<br>480-156805-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 480-156805-2<br>480-156805-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 480-156763-1<br>480-156764-2         | 480-156763-1<br>480-156764-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 480-156805-2<br>480-156805-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 480-156763<br>480-156764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ample Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NYSDEC-Part 375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NTSDEC CP-51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| general Chemistry yanide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27 <sup>AB</sup> 10,000 <sub>e,I</sub> <sup>C</sup> 40 <sub>i</sub> <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                    | 3.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.0 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.1 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ashpoint<br>H, lab                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | deg F<br>S.U.                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n/v<br>n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n/v<br>n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | > 176<br>7.9 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | > 176<br>7.8 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | > 176<br>7.0 J                       | -<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | > 176<br>7.4 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| emperature, Lab<br>letals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | deg C                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 21.1 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.0 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20.6 J                               | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21.3 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| luminum<br>ntimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mg/kg<br>mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10,000 <sub>e</sub> <sup>ABCD</sup><br>10,000 <sub>e</sub> <sup>ABCD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10,000 <sub>a</sub> <sup>EFG</sup><br>10,000 <sub>a</sub> <sup>EFG</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6,530<br>16.9 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6,150<br>16.0 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                    | 751<br>68.7 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6,100<br>16.0 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>10,400<sup>ABCDE</sup></b><br>17.5 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| rsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 13 <sub>n</sub> <sup>A</sup> 16 <sub>g</sub> <sup>BCD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                    | 9.2 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.3 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| arium<br>eryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/kg<br>mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 350 <sub>n</sub> A 400 <sup>B</sup> 10,000 <sub>e</sub> C 820 <sup>D</sup><br>7.2 <sup>A</sup> 590 <sup>B</sup> 2,700 <sup>C</sup> 47 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n/v<br>n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 209<br>0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21.4<br>0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                    | 36.4<br>0.92 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 18.5<br>0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39.0<br>0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| admium<br>alcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mg/kg<br>mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.5 <sub>n</sub> A 9.3 <sup>B</sup> 60 <sup>C</sup> 7.5 <sup>D</sup><br>10,000 <sub>e</sub> ABCD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n/v<br>10,000 <sub>a</sub> <sup>EFG</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>5.7<sup>A</sup></b><br>6,040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.21 U<br>1,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                    | 1.1<br>7,010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.21 U<br>2,150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.57<br>2,930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| hromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 30 <sub>n,I</sub> A 1,500 <sub>i</sub> B 6,800 <sub>i</sub> C <sub>NS,q</sub> D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 61.2 <sup>A</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                    | 7.7<br>2.3 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| obalt<br>opper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/kg<br>mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10,000 <sub>e</sub> <sup>ABCD</sup><br>50 <sup>A</sup> 270 <sup>B</sup> 10,000 <sub>e</sub> <sup>C</sup> 1,720 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10,000 <sub>a</sub> <sup>EFG</sup><br>n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.4<br>48.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.6<br>10.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                    | 75.3 <sup>A</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.0<br>8.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.7<br>30.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| on<br>ead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mg/kg<br>mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10,000 <sub>e</sub> <sup>ABCD</sup><br>63 <sub>n</sub> <sup>A</sup> 1,000 <sup>B</sup> 3,900 <sup>C</sup> 450 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10,000 <sub>a</sub> <sup>EFG</sup><br>n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14,600 <sup>ABCDEFG</sup><br>95.2 <sup>A</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8,280<br>6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                    | 1,500<br>55.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 11,000 <sup>ABCDEFG</sup> 3.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10,400 <sup>ABCDE</sup><br>25.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| agnesium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10,000 <sub>e</sub> ABCD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                    | 237                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ercury                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mg/kg<br>mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,600 <sub>n</sub> <sup>A</sup> 10,000 <sub>e</sub> <sup>BC</sup> 2,000 <sub>g</sub> <sup>D</sup><br>0.18 <sub>n</sub> <sup>A</sup> 2.8 <sub>k</sub> <sup>B</sup> 5.7 <sub>k</sub> <sup>C</sup> 0.73 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n/v<br>n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 129 B<br>0.95 <sup>AD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 105 B<br>0.023 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                    | 16.0<br>3.1 <sup>ABD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 122 B<br>0.020 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 164<br>0.41 <sup>A</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ickel<br>otassium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mg/kg<br>mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 30 <sup>A</sup> 310 <sup>B</sup> 10,000 <sub>e</sub> <sup>C</sup> 130 <sup>D</sup><br>10,000 <sub>e</sub> <sup>ABCD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n/v<br>n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 13.1<br>931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.3<br>613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                    | 22.9 U<br>196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.3<br>937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.6<br>848                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| elenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.9 <sub>n</sub> <sup>A</sup> 1,500 <sup>B</sup> 6,800 <sup>C</sup> 4 <sub>g</sub> <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.5 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.3 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                    | 18.3 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.3 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.7 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| odium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mg/kg<br>mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 <sup>A</sup> 1,500 <sup>B</sup> 6,800 <sup>C</sup> 8.3 <sup>D</sup><br>10,000 <sub>e</sub> ABCD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n/v<br>n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>117<sup>AD</sup></b><br>158 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.53 U<br>149 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                    | 2.3 U<br>641 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.53 U<br>159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.58 U<br>164 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| hallium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10,000 <sub>e</sub> <sup>ABCD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10,000 <sub>a</sub> EFG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.4 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                    | 27.5 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.4 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.0 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| anadium<br>inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mg/kg<br>mg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10,000 <sub>e</sub> <sup>ABCD</sup><br>109 <sub>n</sub> <sup>A</sup> 10,000 <sub>e</sub> <sup>BC</sup> 2,480 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10,000 <sub>a</sub> <sup>EFG</sup><br>n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15.5<br>36.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.6<br>24.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                    | 2.3 U<br>223 <sup>A</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18.0<br>20.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16.7<br>77.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| olychlorinated Biphenyls                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ualka                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ABCD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nhı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 270.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 250 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                    | 1 100 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 260 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 270.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| roclor 1016<br>roclor 1221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | μg/kg<br>μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ABCD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n/v<br>n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 270 U<br>270 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 250 U<br>250 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                    | 1,100 UJ<br>1,100 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 260 U<br>260 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 270 U<br>270 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| roclor 1232<br>roclor 1242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | μg/kg<br>μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ABCD<br>o<br>ABCD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n/v<br>n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 270 U<br>270 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 250 U<br>250 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                    | 1,100 UJ<br>1,100 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 260 U<br>260 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 270 U<br>270 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| roclor 1248<br>roclor 1254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ABCD<br>O<br>ABCD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n/v<br>n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 270 U<br>270 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 250 U<br>250 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                    | 1,100 UJ<br>5,200 J-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 260 U<br>260 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 270 U<br>270 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| roclor 1260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | μg/kg<br>μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ABCD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 270 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 250 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                    | 1,100 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 260 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 270 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| roclor 1262<br>roclor 1268                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | μg/kg<br>μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ABCD<br>o<br>ABCD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n/v<br>n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 270 U<br>270 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 250 U<br>250 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                    | 1,100 UJ<br>1,100 UJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 260 U<br>260 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 270 U<br>270 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| olychlorinated Biphenyls (PCBs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100 <sup>A</sup> 1,000 <sup>B</sup> 25,000 <sup>C</sup> 3,200 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                    | 5,200 J- <sup>ABD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| drin description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 <sub>n</sub> A 680 <sup>B</sup> 1,400 <sup>C</sup> 190 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                    | 380 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.7 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| HC, alpha-<br>HC, beta-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | μg/kg<br>μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 20 <sup>AD</sup> 3,400 <sup>B</sup> 6,800 <sup>C</sup><br>36 <sup>A</sup> 3,000 <sup>B</sup> 14,000 <sup>C</sup> 90 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n/v<br>n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18 U<br>18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.8 U<br>1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                    | 380 U<br>380 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.7 U<br>1.7 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.8 U<br>9.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| HC, delta-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40 <sub>n</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 250 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                    | 380 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.7 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| amphechlor (Toxaphene)<br>hlordane, alpha-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | μg/kg<br>μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>94 <sup>A</sup> 24,000 <sup>B</sup> 47,000 <sup>C</sup> 2,900 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n/v<br>n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 180 U<br>18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18 U<br>1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                    | 3,800 U<br>380 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17 U<br>1.7 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 98 U<br>54 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| hlordane, trans- (gamma-Chlordane)<br>DD (p,p'-DDD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μg/kg<br>μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100,000 <sub>a</sub> <sup>A</sup> 1,000,000 <sub>d</sub> <sup>D</sup><br>3.3 <sub>m</sub> <sup>A</sup> 92,000 <sup>B</sup> 180,000 <sup>C</sup> 14,000 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n/v<br>n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18 U<br>18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.8 U<br>1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                    | 380 U<br>380 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.7 U<br>1.7 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27 J<br>9.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DE (p,p'-DDE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.3 <sub>m</sub> A 62,000 B 120,000 T7,000 A 17,000 A 17,000 B 120,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/v<br>n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18 U<br>18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.8 U<br>1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                    | 380 U<br>380 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.7 U<br>1.7 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.8 U<br>9.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DT (p,p'-DDT)<br>ieldrin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/kg<br>μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5 <sub>n</sub> <sup>A</sup> 1,400 <sup>B</sup> 2,800 <sup>C</sup> 100 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n/v<br>n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                    | 380 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.7 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 180 <sup>AD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ndosulfan I<br>ndosulfan II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | μg/kg<br>μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,400 <sub>j</sub> <sup>A</sup> 200,000 <sub>j</sub> <sup>B</sup> 920,000 <sub>j</sub> <sup>C</sup> 102,000 <sup>D</sup><br>2,400 <sub>j</sub> <sup>A</sup> 200,000 <sub>j</sub> <sup>B</sup> 920,000 <sub>j</sub> <sup>C</sup> 102,000 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n/v<br>n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18 U<br>18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.8 U<br>1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                    | 380 U<br>380 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.7 U<br>1.7 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.8 U<br>9.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ndosulfan Sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,400 <sub>j</sub> <sup>A</sup> 200,000 <sub>j</sub> <sup>B</sup> 920,000 <sub>j</sub> <sup>C</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                    | 380 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.7 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ndrin<br>ndrin Aldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | μg/kg<br>μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14 <sup>A</sup> 89,000 <sup>B</sup> 410,000 <sup>C</sup> 60 <sup>D</sup><br>100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n/v<br>n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18 U<br>59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.8 U<br>1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                    | 380 U<br>380 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.7 U<br>1.7 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.8 U<br>9.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ndrin Ketone<br>eptachlor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | μg/kg<br>μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>42 <sup>A</sup> 15,000 <sup>B</sup> 29,000 <sup>C</sup> 380 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n/v<br>n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18 U<br>18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.8 U<br>1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                    | 380 U<br>380 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.7 U<br>1.7 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.8 U<br>9.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| eptachlor Epoxide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 20 <sup>G</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                    | 380 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.7 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ndane (Hexachlorocyclohexane, gamma)<br>ethoxychlor (4,4'-Methoxychlor)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | μg/kg<br>μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100 <sup>AD</sup> 9,200 <sup>B</sup> 23,000 <sup>C</sup><br>100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n/v<br>500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F 900,000 <sup>G</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18 U<br>18 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.8 U<br>1.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                    | 380 U<br>380 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.7 U<br>1.7 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.8 U<br>9.8 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| emi-Volatile Organic Compounds cenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20,000 <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 98,000 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7,500 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                    | 39,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| cenaphthylene<br>cetophenone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | μg/kg<br>μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 107,000 <sup>D</sup><br>100,000 <sub>a</sub> <sup>A</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n/v<br>n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7,500 U<br>7,500 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                    | 39,000 U<br>39,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 180 U<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10,000 U<br>10,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| nthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7,500 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                    | 39,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| trazine<br>enzaldehyde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | μg/kg<br>μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100,000 <sub>a</sub> <sup>A</sup> 1,000,000 <sub>d</sub> <sup>D</sup><br>100,000 <sub>a</sub> <sup>A</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n/v<br>n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7,500 U<br>7,500 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      | 39,000 U<br>39,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 180 U<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10,000 U<br>10,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| enzo(a)anthracene<br>enzo(a)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | μg/kg<br>μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1,000 <sub>n</sub> <sup>A</sup> 5,600 <sup>B</sup> 11,000 <sup>C</sup> 1,000 <sub>g</sub> <sup>D</sup> 1,000 <sub>n</sub> <sup>A</sup> 1,000 <sub>n</sub> <sup>B</sup> 1,100 <sup>C</sup> 22,000 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n/v<br>n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7,500 U<br>7,500 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                    | 39,000 U<br>39,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 180 U<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10,000 U<br>10,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| enzo(b)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,000 <sub>n</sub> A 5,600 <sup>B</sup> 11,000 <sup>C</sup> 1,700 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7,500 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                    | 39,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| enzo(g,h,i)perylene<br>enzo(k)fluoranthene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | μg/kg<br>μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100,000 <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>800 <sub>n</sub> <sup>A</sup> 56,000 <sup>B</sup> 110,000 <sup>C</sup> 1,700 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/v<br>n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7,500 U<br>7,500 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                    | 39,000 U<br>39,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 180 U<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10,000 U<br>10,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| iphenyl<br>is(2-Chloroethoxy)methane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100,000 <sub>a</sub> <sup>A</sup> 1,000,000 <sub>d</sub> <sup>D</sup><br>100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7,500 U<br>7,500 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                    | 39,000 U<br>39,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 180 U<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10,000 U<br>10,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| is(2-Chloroethyl)ether                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | μg/kg<br>μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7,500 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                    | 39,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| is(2-Chloroisopropyl)ether (2,2-oxybis(1-Chloropropa<br>is(2-Ethylhexyl)phthalate (DEHP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | a μg/kg<br>μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n/v<br>500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F 435,000 <sup>G</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7,500 U<br>7,500 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                    | 39,000 U<br>39,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 180 U<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10,000 U<br>10,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| romophenyl Phenyl Ether, 4-<br>utyl Benzyl Phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | μg/kg<br>μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n/v<br>500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F 122,000 <sup>G</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7,500 U<br>7,500 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                    | 39,000 U<br>39,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 180 U<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10,000 U<br>10,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| aprolactam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100,000 <sub>a</sub> <sup>A</sup> 1,000,000 <sub>d</sub> <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7,500 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                    | 39,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| arbazole<br>hloro-3-methyl phenol, 4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n/v<br>n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7,500 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                    | 39,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7,500 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                    | 39,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 180 U<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10,000 U<br>10,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| hloroaniline, 4-<br>hloronaphthalene, 2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 220 <sup>G</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7,500 U<br>7,500 U<br>7,500 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 190 U<br>190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                    | 39,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10,000 U<br>10,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| hloronaphthalene, 2-<br>hlorophenol, 2- (ortho-Chlorophenol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | μg/kg<br>μg/kg<br>μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 220 <sup>G</sup> n/v 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7,500 U<br>7,500 U<br>7,500 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 190 U<br>190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                    | 39,000 U<br>39,000 U<br>39,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 180 U<br>180 U<br>180 U<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10,000 U<br>10,000 U<br>10,000 U<br>10,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| hloronaphthalene, 2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | μg/kg<br>μg/kg                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup><br>100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup><br>100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup><br>100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup><br>1,000 <sub>0</sub> <sup>A</sup> 56,000 <sup>B</sup> 110,000 <sup>C</sup> 1,000 <sub>0</sub> <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 220 <sup>G</sup><br>n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7,500 U<br>7,500 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -<br>-<br>-<br>-                     | 39,000 U<br>39,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 180 U<br>180 U<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10,000 U<br>10,000 U<br>10,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| hloronaphthalene, 2-<br>hlorophenol, 2- (ortho-Chlorophenol)<br>hlorophenyl Phenyl Ether, 4-<br>hrysene<br>resol, o- (Methylphenol, 2-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg                                                                                                                                                                                                                                                                                                                                                                                                                | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>c</sub> <sup>CD</sup><br>100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>1,000 <sub>a</sub> <sup>A</sup> 50,000 <sup>B</sup> 110,000 <sup>C</sup> 1,000 <sub>a</sub> <sup>D</sup><br>330 <sub>m</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 330 <sub>D</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 220 <sup>G</sup> n/v 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> n/v n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7,500 U<br>7,500 U<br>7,500 U<br>7,500 U<br>7,500 U<br>7,500 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 190 U<br>190 U<br>190 U<br>190 U<br>190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                    | 39,000 U<br>39,000 U<br>39,000 U<br>39,000 U<br>39,000 U<br>39,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 180 U<br>180 U<br>180 U<br>180 U<br>180 U<br>180 U<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10,000 U<br>10,000 U<br>10,000 U<br>10,000 U<br>10,000 U<br>10,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| hloronaphthalene, 2-<br>hlorophenol, 2- (ortho-Chlorophenol)<br>hlorophenyl Phenyl Ether, 4-<br>hrysene<br>resol, o- (Methylphenol, 2-)<br>resol, p- (Methylphenol, 4-)<br>ibenzo(a,h)anthracene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg                                                                                                                                                                                                                                                                                                                                                                                                       | 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup> 100,000 <sub>d</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup> 100,000 <sub>d</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup> 100,000 <sub>d</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup> 1,000 <sub>d</sub> <sup>A</sup> 560,00 <sup>B</sup> 110,000 <sup>C</sup> 1,000 <sub>d</sub> <sup>D</sup> 330 <sub>m</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 330 <sub>d</sub> <sup>D</sup> 330 <sub>m</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,100 <sup>C</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 330 <sub>d</sub> <sup>D</sup> 330 <sub>m</sub> <sup>A</sup> 500 <sup>A</sup> 1,100 <sup>C</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 500,000, E 1,000,000, F 220°<br>n/v<br>500,000, E 1,000,000, F<br>n/v<br>n/v<br>n/v<br>n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7,500 U<br>7,500 U<br>7,500 U<br>7,500 U<br>7,500 U<br>7,500 U<br>15,000 U<br>7,500 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 190 U<br>190 U<br>190 U<br>190 U<br>190 U<br>190 U<br>360 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                                              | -<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 39,000 U<br>39,000 U<br>39,000 U<br>39,000 U<br>39,000 U<br>75,000 U<br>39,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 180 U<br>180 U<br>180 U<br>180 U<br>180 U<br>180 U<br>180 U<br>350 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10,000 U<br>10,000 U<br>10,000 U<br>10,000 U<br>10,000 U<br>10,000 U<br>20,000 U<br>10,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| hloronaphthalene, 2-<br>hlorophenol, 2- (ortho-Chlorophenol)<br>hlorophenyl Phenyl Ether, 4-<br>hrysene<br>resol, o- (Methylphenol, 2-)<br>resol, p- (Methylphenol, 4-)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hg/kg<br>Hg/kg<br>Hg/kg<br>Hg/kg<br>Hg/kg<br>Hg/kg                                                                                                                                                                                                                                                                                                                                                                                                                | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>1,000 <sub>a</sub> <sup>A</sup> 56,000 <sup>B</sup> 1100,000 <sup>C</sup> 1,000 <sub>g</sub> <sup>D</sup><br>330 <sub>m</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 330 <sub>c</sub> <sup>D</sup><br>330 <sub>m</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 330 <sub>c</sub> <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 220 <sup>G</sup> n/v  500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> n/v n/v n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7,500 U<br>7,500 U<br>7,500 U<br>7,500 U<br>7,500 U<br>7,500 U<br>15,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 190 U<br>190 U<br>190 U<br>190 U<br>190 U<br>190 U<br>360 U                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                    | 39,000 U<br>39,000 U<br>39,000 U<br>39,000 U<br>39,000 U<br>39,000 U<br>75,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 180 U<br>180 U<br>180 U<br>180 U<br>180 U<br>180 U<br>180 U<br>350 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10,000 U<br>10,000 U<br>10,000 U<br>10,000 U<br>10,000 U<br>10,000 U<br>20,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| hloronaphthalene, 2- hlorophenol, 2- (ortho-Chlorophenol) hlorophenyl Phenyl Ether, 4- hrysene resol, o- (Methylphenol, 2-) resol, p- (Methylphenol, 4-) ibenzo(a,h)anthracene ibenzofuran ibutyl Phthalate (DBP) ichlorobenzidine, 3,3'-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg<br>µg/kg                                                                                                                                                                                                                                                                                                                                                                                     | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup> 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup> 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup> 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup> 1,000 <sub>a</sub> <sup>A</sup> 56,000 <sup>B</sup> 110,000 <sup>C</sup> 1,000 <sub>a</sub> <sup>D</sup> 330 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 330 <sub>c</sub> <sup>D</sup> 330 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 330 <sub>c</sub> <sup>D</sup> 330 <sub>a</sub> <sup>A</sup> 560 <sup>B</sup> 1,100 <sup>C</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 7,000 <sup>A</sup> 350,000 <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 210,000 <sup>D</sup> 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup> 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 220 <sup>G</sup> n/v 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> n/v n/v n/v n/v 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 6,200 <sup>G</sup> 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 8,100 <sup>G</sup> n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 190 U<br>190 U<br>190 U<br>190 U<br>190 U<br>190 U<br>360 U<br>190 U<br>190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                            |                                      | 39,000 U<br>39,000 U<br>39,000 U<br>39,000 U<br>39,000 U<br>75,000 U<br>39,000 U<br>39,000 U<br>39,000 U<br>39,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 180 U<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10,000 U<br>10,000 U<br>10,000 U<br>10,000 U<br>10,000 U<br>10,000 U<br>20,000 U<br>10,000 U<br>10,000 U<br>10,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| hloronaphthalene, 2- hlorophenol, 2- (ortho-Chlorophenol) hlorophenyl Phenyl Ether, 4- hrysene resol, o- (Methylphenol, 2-) resol, p- (Methylphenol, 4-) ibenzo(a,h)anthracene ibenzofuran ibutyl Phthalate (DBP) ichlorobenzidine, 3,3'- ichlorophenol, 2,4- iethyl Phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Halkg<br>Halkg<br>Halkg<br>Halkg<br>Halkg<br>Halkg<br>Halkg<br>Halkg<br>Halkg<br>Halkg<br>Halkg<br>Halkg<br>Halkg                                                                                                                                                                                                                                                                                                                                                 | 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 1,000 <sub>0</sub> <sup>A</sup> 560,000 <sup>B</sup> 110,000 <sup>CD</sup> 330 <sub>0</sub> <sup>D</sup> 330 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>C</sup> 330 <sub>0</sub> <sup>D</sup> 330 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>C</sup> 210,000 <sup>D</sup> 7,000 <sup>A</sup> 350,000 <sup>B</sup> 1,000,000 <sub>0</sub> <sup>C</sup> 210,000 <sup>D</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>C</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 220 <sup>G</sup> n/v 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> n/v n/v n/v n/v 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 6,200 <sup>G</sup> 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 8,100 <sup>G</sup> n/v 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 4,00 <sup>G</sup> 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 7,100 <sup>G</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      | 39,000 U<br>39,000 U<br>39,000 U<br>39,000 U<br>39,000 U<br>75,000 U<br>39,000 U<br>39,000 U<br>39,000 U<br>39,000 U<br>39,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 180 U<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10,000 U<br>10,000 U<br>10,000 U<br>10,000 U<br>10,000 U<br>10,000 U<br>20,000 U<br>10,000 U<br>10,000 U<br>10,000 U<br>10,000 U<br>10,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| hloronaphthalene, 2- hlorophenol, 2- (ortho-Chlorophenol) hlorophenyl Phenyl Ether, 4- hrysene resol, 0- (Methylphenol, 2-) resol, p- (Methylphenol, 4-) ibenzo(a,h)anthracene ibenzofuran ibutyl Phthalate (DBP) ichlorobenzidine, 3,3'- ichlorophenol, 2,4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Halkg<br>Halkg<br>Halkg<br>Halkg<br>Halkg<br>Halkg<br>Halkg<br>Halkg<br>Halkg<br>Halkg<br>Halkg<br>Halkg                                                                                                                                                                                                                                                                                                                                                          | 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 1,000 <sub>0</sub> <sup>A</sup> 56,000 <sup>B</sup> 11,000,000 <sub>0</sub> <sup>CD</sup> 330 <sub>0</sub> <sup>A</sup> 560,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 330 <sub>0</sub> <sup>D</sup> 330 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 330 <sub>0</sub> <sup>D</sup> 330 <sub>0</sub> <sup>A</sup> 560 <sup>B</sup> 1,100 <sup>C</sup> 1,000,000 <sub>0</sub> <sup>D</sup> 7,000 <sup>A</sup> 350,000 <sup>B</sup> 1,000,000 <sub>0</sub> <sup>D</sup> 210,000 <sup>D</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 500,000, E 1,000,000, F 220° n/V 500,000, E 1,000,000, F n/V n/V n/V 500,000, E 1,000,000, F 6,200° 500,000, E 1,000,000, F 8,100° n/V 500,000, E 1,000,000, F 400° 400° 500,000, E 1,000,000, F 400° 1/000,000, E 1,000,000, E 400° 1/000,000, E 1,000,000, E 400° 1/000,000, E 1,000,000, E 400° 1/000,000, E 400° 1/000, | 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 15,000 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 190 U<br>190 U<br>190 U<br>190 U<br>190 U<br>190 U<br>360 U<br>190 U<br>190 U<br>190 U<br>190 U                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      | 39,000 U<br>39,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 180 U<br>180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10,000 U<br>10,000 U<br>10,000 U<br>10,000 U<br>10,000 U<br>10,000 U<br>20,000 U<br>10,000 U<br>10,000 U<br>10,000 U<br>10,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| hloronaphthalene, 2- hlorophenol, 2- (ortho-Chlorophenol) hlorophenyl Phenyl Ether, 4- hrysene resol, o- (Methylphenol, 2-) resol, p- (Methylphenol, 4-) ibenzo(a,h)anthracene ibenzofuran ibutyl Phthalate (DBP) ichlorobenzidine, 3,3'- ichlorophenol, 2,4- iethyl Phthalate imethyl Phthalate imethyl Phthalate imethylphenol, 2,4- initro-o-cresol, 4,6-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg                                                                                                                                                                                                                                                                                                                                                                   | 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 1,000 <sub>0</sub> <sup>A</sup> 560,008 110,000 100 <sub>0</sub> <sup>CD</sup> 330 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>C</sup> 330 <sub>0</sub> <sup>D</sup> 330 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>C</sup> 330 <sub>0</sub> <sup>D</sup> 330 <sub>0</sub> <sup>A</sup> 560,000 <sup>B</sup> 1,000,000 <sub>0</sub> <sup>C</sup> 210,000 <sup>D</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>C</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500,000, E 1,000,000, F 220° n/V  500,000, E 1,000,000, F n/V n/V n/V n/V 500,000, E 1,000,000, F 6,200° 500,000, E 1,000,000, F 8,100° n/V 500,000, E 1,000,000, F 4,100° 500,000, E 1,000,000, F 27,100° 500,000, E 1,000,000, E 27,000° n/V n/V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 190 U 190 U 190 U 190 U 190 U 190 U 190 U 360 U 190 U                                                                                                                                                                                                                                                                                                                                                                               |                                      | 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 75,000 U 39,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 20,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| hloronaphthalene, 2- hlorophenol, 2- (ortho-Chlorophenol) hlorophenyl Phenyl Ether, 4- hrysene resol, o- (Methylphenol, 2-) resol, p- (Methylphenol, 4-) ibenzo(a,h)anthracene ibenzofuran ibutyl Phthalate (DBP) ichlorobenzidine, 3,3'- ichlorophenol, 2,4- iethyl Phthalate imethyl Phthalate imethyl Phthalate imethyl Phthalate imitto-o-cresol, 4,6- initrophenol, 2,4- initrotoluene, 2,4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg                                                                                                                                                                                                                                                                                                                                                             | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup> 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup> 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup> 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup> 1,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup> 330 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 330 <sub>b</sub> <sup>D</sup> 330 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 330 <sub>b</sub> <sup>D</sup> 330 <sub>a</sub> <sup>A</sup> 560 <sup>B</sup> 1,100 <sup>C</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 330 <sub>b</sub> <sup>D</sup> 7,000 <sup>A</sup> 350,000 <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 210,000 <sup>D</sup> 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup> 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup> 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup> 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup> 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup> 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup> 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup> 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup> 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup> 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 220 <sup>G</sup> n/v 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> n/v n/v n/v n/v 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 6,200 <sup>G</sup> 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 8,100 <sup>G</sup> n/v 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 4,100 <sup>G</sup> 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 7,100 <sup>G</sup> 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 7,700 <sup>G</sup> n/v 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 27,000 <sup>G</sup> n/v 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 27,000 <sup>G</sup> n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U                                                                                                                                                                                                                                                                                                                                                       |                                      | 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 75,000 U 39,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 20,000 U 20,000 U 10,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| hloronaphthalene, 2- hlorophenol, 2- (ortho-Chlorophenol) hlorophenyl Phenyl Ether, 4- hrysene resol, o- (Methylphenol, 2-) resol, p- (Methylphenol, 4-) ibenzo(a,h)anthracene ibenzofuran ibutyl Phthalate (DBP) ichlorobenzidine, 3,3- ichlorophenol, 2,4- iethyl Phthalate imethyl Phthalate imethyl Phthalate imethylphenol, 2,4- initro-o-cresol, 4,6- initrophenol, 2,4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg                                                                                                                                                                                                                                                                                                                                                                   | 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 1,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 330 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>C</sup> 330 <sub>0</sub> <sup>D</sup> 330 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>C</sup> 330 <sub>0</sub> <sup>D</sup> 330 <sub>0</sub> <sup>A</sup> 560,000 <sup>B</sup> 1,000,000 <sub>0</sub> <sup>C</sup> 210,000 <sup>D</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>C</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500,000, E 1,000,000, F 220° n/v  500,000, E 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 200°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 15,000 U 15,000 U 15,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U                                                                                                                                                                                                                                                                                                                                                             |                                      | 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 75,000 U 39,000 U 75,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 20,000 U 20,000 U 20,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| hloronaphthalene, 2- hlorophenol, 2- (ortho-Chlorophenol) hlorophenol, Phenyl Ether, 4- hrysene resol, o- (Methylphenol, 2-) resol, p- (Methylphenol, 4-) ibenzo(a,h)anthracene ibenzofuran ibutyl Phthalate (DBP) ichlorobenzidine, 3,3- ichlorophenol, 2,4- iethyl Phthalate imethyl Phthalate imethyl Phthalate imethylphenol, 2,4- initro-o-cresol, 4,6- initrophenol, 2,4- initrotoluene, 2,4- initrotoluene, 2,4- initrotoluene, 2,6- in-Octyl phthalate ioxane, 1,4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg                                                                                                                                                                                                                                                                                                                         | 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 1,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 330 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>C</sup> 330 <sub>0</sub> <sup>D</sup> 330 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>C</sup> 330 <sub>0</sub> <sup>D</sup> 330 <sub>0</sub> <sup>A</sup> 560,000 <sup>B</sup> 1,000,000 <sub>0</sub> <sup>C</sup> 210,000 <sup>D</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>C</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 500,000, E 1,000,000, F 220° n/V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 8,800 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U                                                                                                                                                                                                                                                                                                                               |                                      | 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 75,000 U 39,000 U 45,000 U 45,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U                                                                                                                                                                                                                                                                                                                                                                               | 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 20,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 20,000 U 10,000 U 12,000 U 12,000 U                                                                                                                                                                                                                                                                                                                                                                                                    |
| hloronaphthalene, 2- hlorophenol, 2- (ortho-Chlorophenol) hlorophenol, Phenyl Ether, 4- hrysene resol, o- (Methylphenol, 2-) resol, p- (Methylphenol, 4-) ibenzo(a,h)anthracene ibenzofuran ibutyl Phthalate (DBP) ichlorobenzidine, 3,3- ichlorophenol, 2,4- ieithyl Phthalate imethyl Phthalate imethyl Phthalate imittro-c-resol, 4,6- inittro-o-cresol, 4,6- inittrotoluene, 2,4- initrotoluene, 2,4- initrotoluene, 2,4- initrotoluene, 2,6- in-Octyl phthalate ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, 1,4- ioxane, | Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg                                                                                                                                                                                                                                                                                     | 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 1,000 <sub>0</sub> <sup>A</sup> 560,000 <sup>B</sup> 110,000,000 <sub>0</sub> <sup>CD</sup> 330 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 330 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 7,000 <sup>A</sup> 350,000 <sub>0</sub> <sup>B</sup> 1,100 <sup>C</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 30,000 <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500,000, E 1,000,000, F 220° n/V 500,000, E 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F  | 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 15,000 U 15,000 U 15,000 U 15,000 U 15,000 U 7,500 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U                                                                                                                                                                                                                                                                                                                         |                                      | 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 75,000 U 39,000 U 75,000 U 75,000 U 75,000 U 39,000 U 39,000 U 39,000 U 39,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U                                                                                                                                                                                                                                                                                                                                                                               | 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U                                                                                                                                                                                                                                                                                                                            |
| hloronaphthalene, 2- hlorophenol, 2- (ortho-Chlorophenol) hlorophenol, 2- (ortho-Chlorophenol) hlorophenyl Phenyl Ether, 4- hrysene resol, o- (Methylphenol, 2-) resol, p- (Methylphenol, 4-) ibienzo(a,h)anthracene ibenzofuran ibutyl Phthalate (DBP) iohlorophenol, 2,4- ieithyl Phthalate imethyl Phthalate imethyl Phthalate imethylphenol, 2,4- initro-o-cresol, 4,6- initrophenol, 2,4- initrotoluene, 2,4- initrotoluene, 2,6- i-n-Octyl phthalate ioxane, 1,4- uoranthene uorene exachlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg                                                                                                                                                                                                                                                                                           | 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 1,000 <sub>0</sub> <sup>A</sup> 560,000 <sup>B</sup> 110,000,000 <sub>0</sub> <sup>CD</sup> 330 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 330 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 330 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 30,000 <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 30,000 <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 500,000, E 1,000,000, F 220° n/V 500,000, E 1,000,000, F n/V n/V n/V 500,000, E 1,000,000, F 6,200° 500,000, E 1,000,000, F 4,100° 500,000, E 1,000,000, F 4,100° 500,000, E 1,000,000, F 27,000° 500,000, E 1,000,000, F 27,000° n/V 500,000, E 1,000,000, F 27,000° n/V 500,000, E 1,000,000, F 200° n/V 500,000, E 1,000,000, F 1,000,170, ar 6 500,000, E 1,000,000, F 1,000,170, ar 6 500,000, E 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000 | 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 15,000 U 15,000 U 7,500 U 15,000 U 15,000 U 15,000 U 7,500 U 11,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U                                                                                                                                                                                                                                                                                                                         |                                      | 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 75,000 U 39,000 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U                                                                                                                                                                                                                                                                                                                                                                                     | 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U                                                                                                                                                                                                                                                                                                                                                       |
| hloronaphthalene, 2- hlorophenol, 2- (ortho-Chlorophenol) hlorophenol, Phenyl Ether, 4- hrysene resol, o- (Methylphenol, 2-) resol, p- (Methylphenol, 4-) ibenzo(a,h)anthracene ibenzo(an,h)anthracene ibenzofuran ibutyl Phthalate (DBP) ichlorobenzidine, 3,3'- ichlorophenol, 2,4- iethyl Phthalate imethyl Phthalate imethyl Phthalate imethyl Phthalate imitro-o-cresol, 4,6- initro-ohenol, 2,4- initrotoluene, 2,4- initrotoluene, 2,4- initrotoluene, 2,6- i-n-Octyl phthalate ioxane, 1,4- uoranthene uorene exachlorobenzene exachlorobenzene exachlorobutadiene (Hexachloro-1,3-butadiene) exachlorocyclopentadiene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg                                                                                                                                                                         | 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 1,000 <sub>0</sub> <sup>A</sup> 560,000 <sup>B</sup> 110,000,000 <sub>0</sub> <sup>CD</sup> 330 <sub>0</sub> <sup>A</sup> 560,000 <sup>B</sup> 110,000,000 <sub>0</sub> <sup>CD</sup> 330 <sub>0</sub> <sup>A</sup> 560,000 <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 330 <sub>0</sub> <sup>A</sup> 560,000 <sup>B</sup> 1,000,000 <sub>0</sub> <sup>D</sup> 7,000 <sup>A</sup> 350,000 <sup>B</sup> 1,000,000 <sub>0</sub> <sup>D</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 500,000, E 1,000,000, F 220° n/V 500,000, E 1,000,000, F 220° n/V n/V n/V n/V 500,000, E 1,000,000, F 6,200° 500,000, E 1,000,000, F 8,100° n/V 500,000, E 1,000,000, F 4,100° 500,000, E 1,000,000, F 27,000° n/V 500,000, E 1,000,000, F 200° n/V 500,000, E 1,000,000, F 200° n/V 500,000, E 1,000,000, F 1,000,1700, s1° 500,000, E 1,000,000, F 1,000,000° n/V 500,000, E 1,000,000, F 1,000,1700, s1° 500,000, E 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1 | 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 15,000 U 7,500 U 15,000 U 7,500 U 15,000 U 7,500 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U                                                                                                                                                                                                                                                                                     |                                      | 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U                                                                                                                                                                                                                                                                                                                                                                                  | 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U                                                                                                                                                                                                                                                                                                                                                                               | 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U                                                                                                                                                                                                                                                                      |
| hloronaphthalene, 2- hlorophenol, 2- (ortho-Chlorophenol) hlorophenol, 2- (ortho-Chlorophenol) hlorophenyl Phenyl Ether, 4- hrysene resol, o- (Methylphenol, 2-) resol, p- (Methylphenol, 4-) ibienzo(a,h)anthracene ibenzofuran ibiutyl Phthalate (DBP) ichlorobenzidine, 3,3'- ichlorophenol, 2,4- ieityl Phthalate imethyl Phthalate imethyl Phthalate imethyl Phthalate imitro-o-cresol, 4,6- initro-o-cresol, 4,6- initrotoluene, 2,4- initrotoluene, 2,6- in-n-Octyl phthalate ioxane, 1,4- uoranthene uorene exachlorobutadiene (Hexachloro-1,3-butadiene) exachlorobutadiene exachlorocyclopentadiene exachlorocyclopentadiene exachlorocythane deno(1,2,3-cd)pyrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg                                                                                                                                                                                                                                           | 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 1,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 330 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>C</sup> 330 <sub>0</sub> <sup>D</sup> 330 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>C</sup> 330 <sub>0</sub> <sup>D</sup> 330 <sub>0</sub> <sup>A</sup> 550,000 <sup>B</sup> 1,000,000 <sub>0</sub> <sup>C</sup> 210,000 <sup>D</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                       | 500,000, E 1,000,000, F 220° n/V 500,000, E 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F  | 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 15,000 U 15,000 U 15,000 U 15,000 U 15,000 U 7,500 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U                                                                                                                                                                                                                                                                         |                                      | 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U                                                                                                                                                                                                                                                                                                                                                                | 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U                                                                                                                                                                                                                                                                                                             | 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U                                                                                                                                                                                                                                                                                        |
| hloronaphthalene, 2- hlorophenol, 2- (ortho-Chlorophenol) hlorophenol, 2- (ortho-Chlorophenol) hlorophenyl Phenyl Ether, 4- hrysene resol, o- (Methylphenol, 2-) resol, p- (Methylphenol, 4-) ibienzo(a,h)anthracene ibenzofuran ibutyl Phthalate (DBP) ichlorophenol, 2,4- ieithyl Phthalate imethyl Phthalate imethyl Phthalate imethylphenol, 2,4- initro-o-cresol, 4,6- initrophenol, 2,4- initrotoluene, 2,4- initrotoluene, 2,6- i-n-Octyl phthalate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg                                                                                                                                                                                                                                                                                                       | 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 330 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 330 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 7,000 <sup>A</sup> 350,000 <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                     | 500,000, E 1,000,000, F 220° n/V 500,000, E 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F  | 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 15,000 U 15,000 U 15,000 U 15,000 U 15,000 U 7,500 U                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U                                                                                                                                                                                                                                                                                     |                                      | 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U                                                                                                                                                                                                                                                                                                                                                                         | 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U                                                                                                                                                                                                                                                                                                                                                             | 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U                                                                                                                                                                                                                         |
| hloronaphthalene, 2- hlorophenol, 2- (ortho-Chlorophenol) hlorophenol, 2- (ortho-Chlorophenol) hlorophenyl Phenyl Ether, 4- hrysene resol, o- (Methylphenol, 2-) resol, p- (Methylphenol, 4-) ibienzo(a,h)anthracene ibenzofuran ibutyl Phthalate (DBP) ichlorophenol, 2,4- ichlorophenol, 2,4- ichlorophenol, 2,4- initro-o-cresol, 4,6- initrophenol, 2,4- initroblene, 2,4- initrotoluene, 2,6- i-n-Octyl phthalate ioxane, 1,4- uoranthene uorene exachlorobutadiene (Hexachloro-1,3-butadiene) exachlorocyclopentadiene exachlorocyclopentadiene exachlorocyclopentadiene deno(1,2,3-cd)pyrene ophorone ethylnaphthalene, 2- aphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg                                                                                                                                                                                                                                     | 100,000, \$500,000, \$1,000,000, CD 100,000, \$500,000, \$1,000,000, CD 100,000, \$500,000, \$1,000,000, CD 100,000, \$500,000, \$1,000,000, CD 100,000, \$500,000, \$1,000,000, CD 1,000, \$500,000, \$1,000,000, \$30, \$500,000, \$1,000,000, \$30, \$30, \$500,000, \$1,000,000, \$210,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 500,000, E 1,000,000, F 220° n/V 500,000, E 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F  | 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 15,000 U 15,000 U 15,000 U 15,000 U 7,500 U                                                                                                                                                                                                                                                                                                                                                     | 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U                                                                                                                                                                         |                                      | 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U                                                                                                                                                                                                                                                                                        | 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U                                                                                                                                                                                                                                     | 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U                                                                                                                                                 |
| hloronaphthalene, 2- hlorophenol, 2- (ortho-Chlorophenol) hlorophenol, Phenyl Ether, 4- hrysene resol, o- (Methylphenol, 2-) resol, p- (Methylphenol, 4-) ibenzo(a,h)anthracene ibenzo(an,h)anthracene ibenzofuran ibutyl Phthalate (DBP) ichlorobenzidine, 3,3'- ichlorophenol, 2,4- iethyl Phthalate imethyl Phthalate imethyl Phthalate imethyl Phthalate imitro-o-cresol, 4,6- initro-ohenol, 2,4- initrotoluene, 2,4- initrotoluene, 2,4- initrotoluene, 2,6- i-n-Octyl phthalate ioxane, 1,4- uoranthene uorene exachlorobenzene exachlorobutadiene (Hexachloro-1,3-butadiene) exachlorocyclopentadiene exachlorocyclopentadiene exachlorochane deno(1,2,3-cd)pyrene ophorone ethylnaphthalene, 2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg                                                                                                                                           | 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 1,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 330 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 330 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 330 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 7,000 <sup>A</sup> 350,000 <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup>                                                                                                         | 500,000, E 1,000,000, F 220° n/V  500,000, E 1,000,000, F 220° n/V  n/V n/V n/V 500,000, E 1,000,000, F 6,200° 500,000, E 1,000,000, F 8,100° n/V 500,000, E 1,000,000, F 20° 500,000, E 1,000,000, F 2,00° n/V 500,000, E 1,000,000, F 2,00° n/V 500,000, E 1,000,000, F 200° n/V 500,000, E 1,000,000, F 1,000,170,31° 500,000, E 1,000,000, F 1,000,000 n/V 500,000, E 1,000,000, F 1,000,170,31° n/V 500,000, E 1,000,000, F 1,000,170,31° n/V 500,000, E 1,000,000, F 1,000,170,31° n/V 500,000, E 1,000,000, F 1,400° n/V 500,000, E 1,000,000, F 1,400° n/V 500,000, E 1,000,000, F 1,400° 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E 1,000,000, E | 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U                                                                                                                                                                                                                                                                                                                                                                 | 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U                                                                                                                                                                                                                                                                         |                                      | 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 75,000 U 39,000 U                                                                                                                                                                                                                                                                                        | 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U                                                                                                                                                                                                                         | 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U                                                                                                                                                                                                       |
| hloronaphthalene, 2- hlorophenol, 2- (ortho-Chlorophenol) hlorophenol, Phenyl Ether, 4- hrysene resol, o- (Methylphenol, 2-) resol, p- (Methylphenol, 4-) ibenzo(a,h)anthracene ibenzo(an,h)anthracene ibenzofuran ibutyl Phthalate (DBP) ichlorobenzidine, 3,3'- ichlorophenol, 2,4- iethyl Phthalate imethyl Phthalate imethyl Phthalate imethyl Phthalate imittro-o-cresol, 4,6- initro-o-cresol, 4,6- initrotoluene, 2,4- initrotoluene, 2,4- initrotoluene, 2,6- i-n-Octyl phthalate ioxane, 1,4- uoranthene uorene exachlorobenzene exachlorobutadiene (Hexachloro-1,3-butadiene) exachlorocyclopentadiene exachlorobentane deno(1,2,3-cd)pyrene ophorone ethylnaphthalene, 2- aphthalene itroaniline, 2- itroaniline, 3- itroaniline, 4-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg                                                                                                                   | 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 330 <sub>0</sub> <sup>M</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 330 <sub>0</sub> <sup>M</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 7,000 <sup>A</sup> 350,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup>                                                                                                                                                                                               | 500,000, E 1,000,000, F 220° n/V  500,000, E 1,000,000, F 220° n/V  n/V  n/V  n/V  500,000, E 1,000,000, F 6,200° 500,000, E 1,000,000, F 1,00° 1,00° 500,000, F 1,000,000, F 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00° 1,00°  | 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U                                                                                                                                                 | 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U |                                      | 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 75,000 U 39,000 U 75,000 U 75,000 U                                                                                                                                                                                                                                                                                        | 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U                                                                                           | 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 20,000 U 20,000 U                                                                                                                                                 |
| hloronaphthalene, 2- hlorophenol, 2- (ortho-Chlorophenol) hlorophenol, 2- (ortho-Chlorophenol) hlorophenyl Phenyl Ether, 4- hrysene resol, o- (Methylphenol, 2-) resol, p- (Methylphenol, 4-) ibienzo(a,h)anthracene ibenzofuran ibutyl Phthalate (DBP) ichlorobenzidine, 3,3- ichlorophenol, 2,4- iethyl Phthalate imethyl Phthalate imethyl Phthalate imethyl Phthalate imitrolouene, 2,6- initrolouene, 2,6- initrolouene, 2,6- in-Octyl phthalate ioxane, 1,4- uoranthene uorene exachlorobutadiene (Hexachloro-1,3-butadiene) exachlorocyclopentadiene exachlorocyclopentadiene exachlorocyclopentadiene exachloroethane deno(1,2,3-cot)pyrene ophorone ethylnaphthalene, 2- aphthalene itroaniline, 2- itroaniline, 3- itroaniline, 4- itrobenzene itrophenol, 2-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg                                                                                                                               | 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 330 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 330 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1 | 500,000, E 1,000,000, F 220° n/v  500,000, E 1,000,000, F 1,000, n/v  n/v  n/v  n/v  500,000, E 1,000,000, F 6,200° 500,000, E 1,000,000, F 1,000,000, F 1,000, 000, F 1,000, 000,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U                                                                                                                                                                                                                                                                         | 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U                                                             |                                      | 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U                                                                                           | 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U                                                                                                       | 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U                                                                                                                               |
| hloronaphthalene, 2- hlorophenol, 2- (ortho-Chlorophenol) hlorophenol, 2- (ortho-Chlorophenol) hlorophenyl Phenyl Ether, 4- hrysene resol, o- (Methylphenol, 2-) resol, p- (Methylphenol, 4-) ibibenzo(a,h)anthracene ibenzofuran ibibutyl Phthalate (DBP) ichlorobenzidine, 3,3- ichlorophenol, 2,4- ieithyl Phthalate imethyl Phthalate imethyl Phthalate imitrolouene, 2,4- initro-o-cresol, 4,6- initroblenene, 2,4- initrotoluene, 2,6- i-n-Octyl phthalate ioxane, 1,4- uoranthene uorene exachlorobutadiene (Hexachloro-1,3-butadiene) exachlorobutadiene (Hexachloro-1,3-butadiene) exachlorocyclopentadiene exachlorocyclopentadiene exachlorocyclopentadiene exachlorochane deno(1,2,3-cd)pyrene ophorone ethylnaphthalene, 2- aphthalene itroaniline, 2- itroaniline, 3- itroaniline, 3- itroaniline, 4- itrobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg                                                                                                                                                       | 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 330 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>C</sup> 330 <sub>0</sub> <sup>D</sup> 330 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>C</sup> 330 <sub>0</sub> <sup>D</sup> 330 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>C</sup> 210,000 <sup>D</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup>                                                                                                      | 500,000, E 1,000,000, F 220° n/V  500,000, E 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F | 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U                                                                                                                                         | 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U                                                                   |                                      | 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U                                                                                                    | 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U                                                                                           | 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U                                                                                                                                        |
| hloronaphthalene, 2- hlorophenol, 2- (ortho-Chlorophenol) hlorophenol, 2- (ortho-Chlorophenol) hlorophenyl Phenyl Ether, 4- hrysene resol, o- (Methylphenol, 2-) resol, p- (Methylphenol, 4-) ibinenzo(a,h)anthracene ibenzofuran ibiutyl Phthalate (DBP) ichlorobenzidine, 3,3'- ichlorophenol, 2,4- ieityl Phthalate imethyl Phthalate imethyl Phthalate imethyl Phthalate imitrolouene, 2,6- initroblenol, 2,4- initro-o-cresol, 4,6- initrotoluene, 2,6- initrotoluene, 2,6- in-Octyl phthalate ioxane, 1,4- uoranthene uorene exachlorobutadiene (Hexachloro-1,3-butadiene) exachlorobutadiene (Hexachloro-1,3-butadiene) exachlorocyclopentadiene exachlorocyclopentadiene exachlorocyclopentadiene exachlorochane deno(1,2,3-cd)pyrene ophorone ethylnaphthalene, 2- aphthalene itroaniline, 2- itroaniline, 3- itroaniline, 4- itrobenzene itrophenol, 2- itrophenol, 4 Nitrosodin-Propylamine Nitrosodiphenylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg H9/kg                                                                                                                                                                                                                                     | 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 330 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 330 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 7,000 <sup>A</sup> 350,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,000 <sub>0</sub> <sup>CD</sup> 100,000 <sub>0</sub> <sup>A</sup> 500,000 <sub>0</sub> <sup>B</sup> 1,000,           | 500,000, E 1,000,000, F 220° n/V  500,000, E 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000,F 1,000 | 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U                                                                                                                 | 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U                         |                                      | 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U                            | 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U                                                                               | 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U                                                                                                                               |
| hloronaphthalene, 2- hlorophenol, 2- (ortho-Chlorophenol) hlorophenol, 2- (ortho-Chlorophenol) hlorophenol, 2- (ortho-Chlorophenol) hlorophenol, 4-) bibenzo(a, h) anthracene bibenzo(a, h) anthracene bibenzofuran bibutyl Phthalate (DBP) ichlorophenol, 2,4- ichlorophenol, 2,4- ichlorophenol, 2,4- initro-o-cresol, 4,6- initrophenol, 2,4- initrotoluene, 2,4- initrotoluene, 2,6- i-n-Octyl phthalate iowane, 1,4- uoranthene uorene exachlorobutadiene (Hexachloro-1,3-butadiene) exachlorobutadiene (Hexachloro-1,3-butadiene) exachlorobutadiene (Hexachloro-1,3-butadiene) exachlorobutadiene (Hexachloro-1,3-butadiene) exachlorobutadiene (Hexachloro-1,3-butadiene) exachlorobutadiene (Hexachloro-1,3-butadiene) exachlorobutadiene (Hexachloro-1,3-butadiene) exachlorochtane deno(1,2,3-cd)pyrene ophorone ethylnaphthalene, 2- aphthalene titroaniline, 2- ittroaniline, 3- ittroaniline, 3- ittroaniline, 4- ittrobenzene ittrophenol, 2- ittrophenol, 2- ittrophenol, 2- ittrophenol, 2- ittrosodinPropylamine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg                                                                         | 100,000, \$500,000, \$1,000,000, cD 100,000, \$500,000, \$1,000,000, cD 100,000, cD 100,000, \$500,000, \$1,000,000, cD 100,000, \$500,000, \$1,000,000, cD 100,000, \$500,000, \$1,000,000, cD 1,000, \$500,000, \$1,000,000, cD 1,000, \$500,000, \$1,000,000, \$30, \$500,000, \$1,000,000, \$30, \$500,000, \$1,000,000, \$230, \$7,000, \$500,000, \$1,000,000, \$230, \$7,000, \$500,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 500,000, E 1,000,000, F 220° n/V  500,000, E 1,000,000, F 220° n/V  n/V n/V n/V n/V 500,000, E 1,000,000, F 6,200° 500,000, E 1,000,000, F 1,000, 600, F 1,0 | 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U                                                                                         | 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U             |                                      | 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 75,000 U 75,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 75,000 U 39,000 U                                                                         | 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U                                                                                           | 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U                                                                                                    |
| hloronaphthalene, 2- hlorophenol, 2- (ortho-Chlorophenol) hlorophenol, 2- (ortho-Chlorophenol) hlorophenol, Phenyl Ether, 4- hhysene resol, o- (Methylphenol, 2-) resol, p- (Methylphenol, 4-) ibibenzo(a,h)anthracene blenzofuran ibutyl Phthalate (DBP) ichlorobenzidine, 3,3- ichlorophenol, 2,4- ieithyl Phthalate imethyl Phthalate imethyl Phthalate imitro-o-cresol, 4-6- initro-o-cresol, 4-6- initrobluene, 2,4- initrotoluene, 2,6- i-n-Octyl phthalate ioxane, 1,4- uoranthene uorene exachlorobutadiene (Hexachloro-1,3-butadiene) exachlorobutadiene (Hexachloro-1,3-butadiene) exachlorocyclopentadiene exachlorocyclopentadiene exachlorocyclopentadiene fitroaniline, 2- itroaniline, 2- itroaniline, 3- itroaniline, 4- itrobenzene itrophenol, 2- itrophenol, 2- itrophenol, 2- itrophenol, 4- Nitrosodi-n-Propylamine henanthrene henol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg | 100,000, \$500,000, \$1,000,000, CD 100,000, \$500,000, \$1,000,000, CD 100,000, CD 100,000, \$500,000, \$1,000,000, CD 100,000, \$500,000, \$1,000,000, CD 100,000, \$500,000, \$1,000,000, CD 1,000, \$500,000, \$1,000,000, \$30, \$30, \$500,000, \$1,000,000, \$230, \$330, \$500,000, \$1,000,000, \$230, \$330, \$500,000, \$1,000,000, \$230, \$7,000, \$500,000, \$1,000,000, \$210,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 500,000, E 1,000,000, F 220° n/V  500,000, E 1,000,000, F 220° n/V  n/V n/V n/V n/V 500,000, E 1,000,000, F 6,200° 500,000, E 1,000,000, F 1,000, 600, F 1,000, 600, F 20,000, F 1,000, 600, F 1,000,  | 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U                                 | 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U                         |                                      | 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U | 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U       | 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U                                                                                                             |
| hloronaphthalene, 2- hlorophenol, 2- (ortho-Chlorophenol) hlorophenol, 2- (ortho-Chlorophenol) hlorophenyl Phenyl Ether, 4- hrysene resol, o- (Methylphenol, 2-) resol, p- (Methylphenol, 4-) ibenzo(a,h)anthracene ibenzofuran ibutyl Phthalate (DBP) ichlorobenzidine, 3,3- ichlorophenol, 2,4- iethyl Phthalate imethyl Phthalate imethyl Phthalate imethyl Phthalate imethyl Phthalate imethyl Phthalate imitro-o-cresol, 4,6- initro-oluene, 2,4- initrotoluene, 2,4- initrotoluene, 2,4- initrotoluene, 2,6- i-in-Octyl phthalate ioxane, 1,4- uoranthene uorene exachlorobutadiene (Hexachloro-1,3-butadiene) exachlorobrothane deno(1,2,3-cd)pyrene ophorone ethylnaphthalene, 2- aphthalene ittroaniline, 2- itroaniline, 2- itroaniline, 3- itroaniline, 3- itrophenol, 2- itrophenol, 4Nitrosodi-n-Propylamine Nitrosodiphenylamine entachlorophenol henanthrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg Hg/kg                   | 100,000, \$500,000, \$1,000,000, cD 100,000, \$500,000, \$1,000,000, cD 100,000, cD 100,000, \$500,000, \$1,000,000, cD 100,000, \$500,000, \$1,000,000, cD 100,000, \$500,000, \$1,000,000, cD 1,000, \$500,000, \$1,000,000, cD 1,000, \$500,000, \$1,000,000, \$30, \$500,000, \$1,000,000, \$30, \$500,000, \$1,000,000, \$230, \$7,000, \$500,000, \$1,000,000, \$230, \$7,000, \$500,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,000, \$1,000,00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 500,000, E 1,000,000, F 220° n/V  500,000, E 1,000,000, F 200° n/V  n/V  n/V  500,000, E 1,000,000, F 6,200° 500,000, E 1,000,000, F 8,100° n/V  500,000, E 1,000,000, F 8,100° n/V  500,000, E 1,000,000, F 200° n/V  500,000, E 1,000,000, F 200° n/V  500,000, E 1,000,000, F 1,000/170,31° 500,000, E 1,000,000, F 1,000,000 n/V  500,000, E 1,000,000, F 1,000/170,31° 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000,000, F 1,000 | 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U 7,500 U | 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U 190 U |                                      | 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U 39,000 U | 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U 180 U | 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U 10,000 U |



IRM Work Plan #2

820 Linden Ave Site, BCP #C828200 820 Linden Avenue, Pittsford, NY

| Sample Location<br>Sample Date                                               |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 | DBOX-NW<br>25-Jul-19  | TANK1-NW<br>25-Jul-19 | TANK1-SE<br>24-Jul-19 | TANK1-SW<br>23-Jul-19   | TANK2-NW<br>25-Jul-19 | TANK4-SW<br>23-Jul-19 |
|------------------------------------------------------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-----------------------|-----------------------|-----------------------|-------------------------|-----------------------|-----------------------|
| Sample ID                                                                    |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 |                       | LIN-TANK1NW-WC-S      |                       | LIN-TANK1SW-WC-SED      | LIN-TANK2NW-WC-S      | LIN-TANK4SW-WC-S      |
| Sampling Company                                                             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 | STANTEC               | STANTEC               | STANTEC               | STANTEC                 | STANTEC               | STANTEC               |
| _aboratory<br>_aboratory Work Order                                          |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 | TALBU<br>480-156805-2 | TALBU<br>480-156805-2 | TALBU<br>480-156763-1 | TALBU<br>480-156763-1   | TALBU<br>480-156805-2 | TALBU<br>480-156763-1 |
| Laboratory Work Order  Laboratory Sample ID                                  |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 | 480-156805-13         | 480-156805-11         | 480-156764-2          | 480-156764-4            | 480-156805-12         | 480-156764-7          |
| Sample Type                                                                  | Units          | NYSDEC-Part 375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NYSDEC CP-51                                                                                    |                       |                       |                       |                         |                       |                       |
| Volatile Organic Compounds                                                   |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 |                       |                       |                       |                         |                       |                       |
| Acetone                                                                      | μg/kg          | 50 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n/v                                                                                             | 28 U                  | 27 U                  | -                     | 63,000 U                | 26 U                  | 29 U                  |
| Benzene                                                                      | μg/kg          | 60 <sup>AD</sup> 44,000 <sup>B</sup> 89,000 <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/v                                                                                             | 5.5 U                 | 5.5 U                 | -                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Bromodichloromethane                                                         | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/v                                                                                             | 5.5 U                 | 5.5 U                 | -                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Bromoform (Tribromomethane)                                                  | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/v                                                                                             | 5.5 U                 | 5.5 U                 | -                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Bromomethane (Methyl bromide)                                                | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/v                                                                                             | 5.5 U                 | 5.5 U                 | -                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Butylbenzene, n-                                                             | μg/kg          | 12,000 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n/v                                                                                             | 5.5 U                 | 5.5 U                 | -                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Butylbenzene, sec- (2-Phenylbutane)                                          | μg/kg          | 11,000 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n/v                                                                                             | 5.5 U                 | 5.5 U                 | -                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Butylbenzene, tert-                                                          | μg/kg          | 5,900 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/v                                                                                             | 5.5 U                 | 5.5 U                 | -                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Carbon Disulfide Carbon Tetrachloride (Tetrachloromethane)                   | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>760 <sup>AD</sup> 22,000 <sup>B</sup> 44,000 <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 2,700 <sup>G</sup><br>n/v | 5.5 U<br>5.5 U        | 5.5 U<br>5.5 U        | -                     | 13,000 U<br>13,000 U    | 5.2 U<br>5.2 U        | 5.9 U<br>5.9 U        |
| Carbon retractionde (retractionometrialie) Chlorobenzene (Monochlorobenzene) | μg/kg<br>μg/kg | 1,100 <sup>AD</sup> 500,000 <sub>6</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/v                                                                                             | 5.5 U                 | 5.5 U                 | _                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Chloroethane (Ethyl Chloride)                                                | μg/kg          | 100,000 <sub>a</sub> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 100,000 <sub>d</sub> | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 1,900 <sup>G</sup>        | 5.5 U                 | 5.5 U                 | _                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Chloroform (Trichloromethane)                                                | μg/kg          | 370 <sup>AD</sup> 350,000 <sup>B</sup> 700,000 <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n/v                                                                                             | 5.5 U                 | 5.5 U                 | -                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Chloromethane                                                                | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/v                                                                                             | 5.5 U                 | 5.5 U                 | -                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Cyclohexane                                                                  | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/v                                                                                             | 5.5 U                 | 5.5 U                 | -                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Dibromo-3-Chloropropane, 1,2- (DBCP)                                         | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/v                                                                                             | 5.5 U                 | 5.5 U                 | -                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Dibromochloromethane                                                         | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup>                           | 5.5 U                 | 5.5 U                 | -                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Dichlorobenzene, 1,2-                                                        | μg/kg          | 1,100 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/v                                                                                             | 5.5 U                 | 5.5 U                 | -                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Dichlorobenzene, 1,3-                                                        | μg/kg          | 2,400 <sup>AD</sup> 280,000 <sup>B</sup> 560,000 <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n/v                                                                                             | 5.5 U                 | 5.5 U                 | -                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Dichlorobenzene, 1,4-                                                        | μg/kg          | 1,800 <sup>AD</sup> 130,000 <sup>B</sup> 250,000 <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n/v                                                                                             | 5.5 U                 | 5.5 U                 | -                     | 18,000 <sup>AD</sup>    | 5.2 U                 | 5.9 U                 |
| Dichlorodifluoromethane (Freon 12)                                           | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/v                                                                                             | 5.5 U                 | 5.5 U                 | -                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Dichloroethane, 1,1-                                                         | μg/kg          | 270 <sup>AD</sup> 240,000 <sup>B</sup> 480,000 <sup>C</sup><br>20 <sub>m</sub> <sup>A</sup> 30,000 <sup>B</sup> 60,000 <sup>C</sup> 20 <sub>a</sub> <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n/v                                                                                             | 5.5 U                 | 5.5 U                 | -                     | 13,000 U                | 5.2 U<br>5.2 U        | 5.9 U<br>5.9 U        |
| Dichloroethane, 1,2-<br>Dichloroethene, 1,1-                                 | μg/kg<br>μg/kg | 330 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n/v<br>n/v                                                                                      | 5.5 U<br>5.5 U        | 5.5 U<br>5.5 U        | -                     | 13,000 U<br>13,000 U    | 5.2 U                 | 5.9 U                 |
| Dichloroethene, cis-1,2-                                                     | μg/kg          | 250 <sup>AD</sup> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n/v                                                                                             | 5.5 U                 | 5.5 U                 | _                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Dichloroethene, trans-1.2-                                                   | μg/kg          | 190 <sup>AD</sup> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub> C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n/v                                                                                             | 5.5 U                 | 5.5 U                 |                       | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Dichloropropane, 1,2-                                                        | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 500,000a <sup>E</sup> 1,000,000a <sup>F</sup>                                                   | 5.5 U                 | 5.5 U                 | -                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Dichloropropene, cis-1,3-                                                    | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/v                                                                                             | 5.5 U                 | 5.5 U                 | -                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Dichloropropene, trans-1,3-                                                  | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/v                                                                                             | 5.5 U                 | 5.5 U                 | -                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Ethylbenzene                                                                 | μg/kg          | 1,000 <sup>AD</sup> 390,000 <sup>B</sup> 780,000 <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n/v                                                                                             | 5.5 U                 | 5.5 U                 | -                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Ethylene Dibromide (Dibromoethane, 1,2-)                                     | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/v                                                                                             | 5.5 U                 | 5.5 U                 | -                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Hexanone, 2- (Methyl Butyl Ketone)                                           | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/v                                                                                             | 28 U                  | 27 U                  | -                     | 63,000 U                | 26 U                  | 29 U                  |
| Isopropylbenzene                                                             | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 2,300 <sup>G</sup>        | 5.5 U                 | 5.5 U                 | -                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Isopropyltoluene, p- (Cymene)                                                | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 10,000 <sup>G</sup>       | 5.5 U                 | 5.5 U                 | -                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Methyl Acetate                                                               | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/v                                                                                             | 28 U                  | 27 U                  | -                     | 63,000 U                | 26 U                  | 29 U                  |
| Methyl Ethyl Ketone (MEK) (2-Butanone)                                       | μg/kg          | 120 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 300 <sup>G</sup>          | 28 U<br>28 U          | 27 U<br>27 U          | -                     | 63,000 U                | 26 U<br>26 U          | 29 U<br>29 U          |
| Methyl test butyl ether (MTRE)                                               | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup><br>930 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500,000 <sub>a</sub> E 1,000,000 <sub>a</sub> F 1,000 <sup>G</sup><br>n/v                       | 28 U                  | 5.5 U                 | -                     | 63,000 U                | 5.2 U                 | 5.9 U                 |
| Methyl tert-butyl ether (MTBE) Methylcyclohexane                             | μg/kg<br>μg/kg | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/v                                                                                             | 5.5 U                 | 5.5 U                 | -                     | 13,000 U<br>13,000 U    | 5.2 U                 | 5.9 U                 |
| Methylene Chloride (Dichloromethane)                                         | μg/kg          | 50 <sup>AD</sup> 500,000 <sub>c</sub> 1,000,000 <sub>d</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n/v                                                                                             | 5.5 U                 | 5.5 U                 |                       | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Naphthalene                                                                  | μg/kg          | 12,000 <sup>AD</sup> 500,000 <sub>a</sub> <sup>B</sup> 1,000,000 <sub>a</sub> <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n/v                                                                                             | 5.5 U                 | 5.5 U                 | _                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Propylbenzene, n-                                                            | μg/kg          | 3,900 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/v                                                                                             | 5.5 U                 | 5.5 U                 | -                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Styrene                                                                      | μg/kg          | 100,000 <sub>a</sub> A 500,000 <sub>a</sub> B 1,000,000 <sub>d</sub> CD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 500,000° E 1,000,000° F                                                                         | 5.5 U                 | 5.5 U                 | -                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Tetrachloroethane, 1,1,2,2-                                                  | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 600 <sup>G</sup>          | 5.5 U                 | 5.5 U                 | -                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Tetrachloroethene (PCE)                                                      | μg/kg          | 1,300 <sup>AD</sup> 150,000 <sup>B</sup> 300,000 <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500,000a 1,000,000a F                                                                           | 5.5 U                 | 5.5 U                 | -                     | 80,000 <sup>AD</sup>    | 5.2 U                 | 22                    |
| Toluene                                                                      | μg/kg          | 700 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n/v                                                                                             | 5.5 U                 | 5.5 U                 | -                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Trichlorobenzene, 1,2,4-                                                     | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 3,400 <sup>G</sup>        | 5.5 U                 | 5.5 U                 | -                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Trichloroethane, 1,1,1-                                                      | μg/kg          | 680 <sup>AD</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n/v                                                                                             | 5.5 U                 | 5.5 U                 | -                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Trichloroethane, 1,1,2-                                                      | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/v                                                                                             | 5.5 U                 | 5.5 U                 | -                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Trichloroethene (TCE)                                                        | μg/kg          | 470 <sup>AD</sup> 200,000 <sup>B</sup> 400,000 <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n/v                                                                                             | 5.5 U                 | 5.5 U                 | -                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Trichlorofluoromethane (Freon 11)                                            | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n/v                                                                                             | 5.5 U                 | 5.5 U                 | -                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Trichlorotrifluoroethane (Freon 113)                                         | μg/kg          | 100,000 <sub>a</sub> <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>CD</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 500,000 <sub>a</sub> <sup>E</sup> 1,000,000 <sub>a</sub> <sup>F</sup> 6,000 <sup>G</sup>        | 5.5 U                 | 5.5 U                 | -                     | 970,000 <sup>ABEG</sup> | 5.2 U                 | 5.9 U                 |
| Trimethylbenzene, 1,2,4-                                                     | μg/kg          | 3,600 <sup>AD</sup> 190,000 <sup>B</sup> 380,000 <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n/v                                                                                             | 5.5 U                 | 5.5 U                 | -                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Trimethylbenzene, 1,3,5-<br>Vinyl Chloride                                   | μg/kg<br>μg/kg | 8,400 <sup>AD</sup> 190,000 <sup>B</sup> 380,000 <sup>C</sup><br>20 <sup>AD</sup> 13,000 <sup>B</sup> 27,000 <sup>C</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/v<br>n/v                                                                                      | 5.5 U<br>5.5 U        | 5.5 U<br>5.5 U        |                       | 13,000 U<br>13,000 U    | 5.2 U<br>5.2 U        | 5.9 U<br>5.9 U        |
| Xylene, m & p-                                                               | μg/kg<br>μg/kg | 260 <sub>p</sub> <sup>A</sup> 500,000 <sub>c,p</sub> <sup>B</sup> 1,000,000 <sub>d,p</sub> <sup>C</sup> 1,600 <sub>p</sub> <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n/v                                                                                             | 11 U                  | 11 U                  | _                     | 25,000 U                | 10 U                  | 12 U                  |
| Xylene, o-                                                                   | μg/kg          | 260 <sub>p</sub> 500,000 <sub>c,p</sub> 1,000,000 <sub>d,p</sub> 1,000 <sub>p</sub> 260 <sub>p</sub> 500,000 <sub>c,p</sub> 1,000,000 <sub>d,p</sub> 1,600 <sub>p</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n/v                                                                                             | 5.5 U                 | 5.5 U                 | -                     | 13,000 U                | 5.2 U                 | 5.9 U                 |
| Xylenes, Total                                                               | μg/kg          | 260 <sup>A</sup> 500,000 <sub>c</sub> <sup>B</sup> 1,000,000 <sub>d</sub> <sup>C</sup> 1,600 <sup>D</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n/v                                                                                             | 11 U                  | 11 U                  | -                     | 25,000 U                | 10 U                  | 12 U                  |
| Total VOC                                                                    | μg/kg          | n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n/v                                                                                             | ND                    | ND                    | -                     | 1,068,000               | ND                    | 22                    |
| VOC - Tentatively Identified Compour                                         |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                 |                       |                       |                       |                         |                       |                       |
| Total VOC TICs                                                               | μg/kg          | n/v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n/v                                                                                             | -                     | -                     | -                     | -                       | -                     | 500 TJ                |

- Notes:

  NYSDEC-Part 375

  NYSDEC 6 NYCRR Part 375 Soil Clean-up Objectives (SCOs)

  NYSDEC 6 NYCRR Part 375 Unrestricted Use Soil Cleanup Objectives

  NYSDEC 6 NYCRR Part 375 Restricted Use SCO Protection of Human Health Commercial
- NYSDEC 6 NYCRR Part 375 Restricted Use SCO Protection of Human Health Industrial NYSDEC 6 NYCRR Part 375 Restricted Use SCO Protection of Groundwater New York State Department of Environmental Conservation, DEC Policy CP-51, October 21, 2010 Table 1 Supplemental Soil Cleanup Objectives Commercial NYSDEC CP-51
  - Table 1 Supplemental Soil Cleanup Objectives Industrial
- Table 1 Supplemental Soil Cleanup Objectives Protection of Groundwater
- 6.5<sup>A</sup> Concentration exceeds the indicated standard.

- Concentration exceeds the indicated standard.

  Measured concentration did not exceed the indicated standard.

  Analyte was not detected at a concentration greater than the laboratory reporting limit.

  No standard/guideline value.

  Parameter not analyzed / not available.

  The SCOs for unrestricted use were capped at a maximum value of 100 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3
- SCOs for organic contaminants (volatile organic compounds, semivolatile organic compounds, and pesticides) are capped at 100 ppm for residential use, 500 ppm for commercial use, 1000 ppm for industrial use. SCOs for metals are capped at 10,000 ppm. Based on rural background study
- Based on rural background study. The value of 1.0 refers to SVOC analses while the 0.17b refers to VOC analyses. The SCOs for commercial use were capped at a maximum value of 500 mg/kg. See TSD Section 9.3.
- The SCOs for commercial use were capped at a maximum value of 500 mg/kg. See TSD Section 9.3. The criterion is applicable to total xylenes, and the individual isomers should be added for com-The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 mg/kg (Organics) and 10000 mg/kg (Inorganics). See 6 NYCRR Part 375 TSD Section 9.3.
- The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3. The criterion is applicable to total xylenes, and the individual isomers should be added for comparison. The SCOS for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3.
- The SCOS for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3. The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for the total species of this contaminant is below the specific SCO.
- For constituents where the calculated SCO was lower than the CRQL, the CRQL is used as the SCO value.
- For constituents where the calculated SCO was lower than the rural soil background concentration as determined by the DEC/DOH rural soil survey, the rural soil background concentration is used as the Track 2 SCO value for this use of the site. The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for the total species of this contaminant is below the specific SCO.
- This SCO is the sum of endosulfan I, endosulfan II, and endosulfan sulfate.
- This SCO is the lower of the values for mercury (elemental) or mercury (inorganic salts). See 6 NYCRR Part 375 TSD Table 5.6-1.
- For constituents where the calculated SCO was lower than the Contract Required Quantitation Limit (CRQL), the CRQL is used as the Track 1 SCO value.
- For constituents where the calculated SCO was lower than the rural soil background concentration as determined by the DEC/DOH rural soil background concentration is used as the Track 1 SCO value for this use of the site. For constituents where the calculated SCO was lower than the rural soil background concentration as determined by the DEC/DOH rural soil survey, the rural soil background concentration is used as the
- Track 1 SCO value for this use of the site. The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for the total species of this contaminant is below the specific SCO. No SCO has been established for this compound. No SCO has been established for total chromium; however, see standards for trivalent and hexavalent chromium
- Standard is applicable to total PCBs, and the individual Aroclors should be added for comparison. The criterion is applicable to total xylenes, and the individual isomers should be added for comparison

- Greater than. Indicates analyte was found in associated blank, as well as in the sample. Field parameter with a holding time of 15 minutes Not detected. Result is a tentatively identified compound (TIC) and an estimated value. Indicates an Estimated Value for TICs Presumptive evidence of material.



#### Table 4 Summary of Water Sample Results for Characterization of Septic System Contents

IRM Work Plan #2 820 Linden Ave Site BCP #C828200

| Sample Location Sample Date Sample ID Sampling Company Laboratory Laboratory Work Order Laboratory Sample ID | Units | TOGS                              | NYSDEC               | TANK1-SW<br>23-Jul-19<br>LIN-TANK1SW-WC-W<br>STANTEC<br>TALBU<br>480-156763-1<br>480-156764-3 | TANK2-SW 23-Jul-19 LIN-TANK2SW-WC-W STANTEC TALBU 480-156763-1 480-156764-5 | TANK3-SW<br>23-Jul-19<br>LIN-TANK3SW-WC-W<br>STANTEC<br>TALBU<br>480-156763-1<br>480-156764-6 |
|--------------------------------------------------------------------------------------------------------------|-------|-----------------------------------|----------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Volatile Organic Compounds                                                                                   | •     |                                   |                      |                                                                                               |                                                                             |                                                                                               |
| Acetone                                                                                                      | μg/L  | 50 <sup>A</sup>                   | n/v                  | 200 U                                                                                         | 40 U                                                                        | 20 U                                                                                          |
| Benzene                                                                                                      | μg/L  | 1 <sup>B</sup>                    | 500 <sup>C</sup>     | 20 U                                                                                          | 4.0 U                                                                       | 2.0 U                                                                                         |
| Bromodichloromethane                                                                                         | μg/L  | 50 <sup>A</sup>                   | n/v                  | 20 U                                                                                          | 4.0 U                                                                       | 2.0 U                                                                                         |
| Bromoform (Tribromomethane)                                                                                  | μg/L  | 50 <sup>A</sup>                   | n/v                  | 20 U                                                                                          | 4.0 U                                                                       | 2.0 U                                                                                         |
| Bromomethane (Methyl bromide)                                                                                | μg/L  | 5 <sup>B</sup>                    | n/v                  | 20 U                                                                                          | 4.0 U                                                                       | 2.0 U                                                                                         |
| Butylbenzene, n-                                                                                             | μg/L  | 5+- <sup>B</sup>                  | n/v                  | 20 U                                                                                          | 4.0 U                                                                       | 2.0 U                                                                                         |
| Butylbenzene, sec- (2-Phenylbutane)                                                                          | μg/L  | 5 <sup>B</sup>                    | n/v                  | 20 U                                                                                          | 4.0 U                                                                       | 2.0 U                                                                                         |
| Butylbenzene, tert-                                                                                          | μg/L  | 5B                                | n/v                  | 20 U                                                                                          | 4.0 U                                                                       | 2.0 U                                                                                         |
| Carbon Disulfide                                                                                             | μg/L  | 60 <sup>A</sup>                   | n/v                  | 20 U                                                                                          | 4.0 U                                                                       | 2.0 U                                                                                         |
| Carbon Tetrachloride (Tetrachloromethane)                                                                    | μg/L  | 5 <sup>B</sup>                    | 500 <sup>C</sup>     | 20 U                                                                                          | 4.0 U                                                                       | 2.0 U                                                                                         |
| Chlorobenzene (Monochlorobenzene)                                                                            | μg/L  | 5 <sup>B</sup>                    | 100,000 <sup>C</sup> | 20 U                                                                                          | 4.0 U                                                                       | 2.0 U                                                                                         |
| Chloroethane (Ethyl Chloride)                                                                                | μg/L  | 5 <sup>B</sup>                    | n/v                  | 20 U                                                                                          | 4.0 U                                                                       | 2.0 U                                                                                         |
| Chloroform (Trichloromethane)                                                                                | μg/L  | 7 <sup>B</sup>                    | 6,000 <sup>C</sup>   | 20 U                                                                                          | 4.0 U                                                                       | 2.0 U                                                                                         |
| Chloromethane                                                                                                | μg/L  | 5 <sup>B</sup>                    | n/v                  | 20 U                                                                                          | 4.0 U                                                                       | 2.0 U                                                                                         |
| Cyclohexane                                                                                                  | μg/L  | n/v                               | n/v                  | 20 U                                                                                          | 4.0 U                                                                       | 2.0 U                                                                                         |
| Dibromo-3-Chloropropane, 1,2- (DBCP)                                                                         | μg/L  | 0.04 <sup>B</sup>                 | n/v                  | 20 U                                                                                          | 4.0 U                                                                       | 2.0 U                                                                                         |
| Dibromochloromethane                                                                                         | μg/L  | 50 <sup>A</sup>                   | n/v                  | 20 U                                                                                          | 4.0 U                                                                       | 2.0 U                                                                                         |
| Dichlorobenzene, 1,2-                                                                                        | μg/L  | 3 <sup>B</sup>                    | n/v                  | 20 U                                                                                          | 4.0 U                                                                       | 2.0 U                                                                                         |
| Dichlorobenzene, 1,3-                                                                                        | μg/L  | 3 <sup>B</sup>                    | n/v                  | 20 U                                                                                          | 4.0 U                                                                       | 2.0 U                                                                                         |
| Dichlorobenzene, 1,4-                                                                                        | μg/L  | 3 <sup>B</sup>                    | 7,500 <sup>C</sup>   | 20 U                                                                                          | 4.0 U                                                                       | 2.0 U                                                                                         |
| Dichlorodifluoromethane (Freon 12)                                                                           | μg/L  | 5 <sup>B</sup>                    | n/v                  | 20 U                                                                                          | 4.0 U                                                                       | 2.0 U                                                                                         |
| Dichloroethane, 1,1-                                                                                         | μg/L  | 5 <sup>B</sup>                    | n/v                  | 20 U                                                                                          | 4.0 U                                                                       | 2.0 U                                                                                         |
| Dichloroethane, 1,2-                                                                                         | μg/L  | 0.6 <sup>B</sup>                  | 500 <sup>C</sup>     | 20 U                                                                                          | 4.0 U                                                                       | 2.0 U                                                                                         |
| Dichloroethene, 1,1-                                                                                         | μg/L  | 5 <sup>B</sup>                    | 700 <sup>C</sup>     | 20 U                                                                                          | 4.0 U                                                                       | 2.0 U                                                                                         |
| Dichloroethene, cis-1,2-                                                                                     | μg/L  | 5 <sup>B</sup>                    | n/v                  | 20 U                                                                                          | 4.0 U                                                                       | 2.0 U                                                                                         |
| Dichloroethene, trans-1,2-                                                                                   | μg/L  | 5B                                | n/v                  | 20 U                                                                                          | 4.0 U                                                                       | 2.0 U                                                                                         |
| Dichloropropane, 1,2-                                                                                        | μg/L  | 1 <sup>B</sup>                    | n/v                  | 20 U                                                                                          | 4.0 U                                                                       | 2.0 U                                                                                         |
| Dichloropropene, cis-1,3-                                                                                    | μg/L  | 0.4 <sub>p</sub> <sup>B</sup>     | n/v                  | 20 U                                                                                          | 4.0 U                                                                       | 2.0 U                                                                                         |
| Dichloropropene, trans-1,3-                                                                                  | μg/L  | 0.4 <sub>p</sub> <sup>B</sup>     | n/v                  | 20 U                                                                                          | 4.0 U                                                                       | 2.0 U                                                                                         |
| Ethylbenzene                                                                                                 | μg/L  | 5B                                | n/v                  | 20 U                                                                                          | 4.0 U                                                                       | 2.0 U                                                                                         |
| Ethylene Dibromide (Dibromoethane, 1,2-)                                                                     | μg/L  | 0.0006 <sup>B</sup>               | n/v                  | 20 U                                                                                          | 4.0 U                                                                       | 2.0 U                                                                                         |
| Hexanone, 2- (Methyl Butyl Ketone)                                                                           | μg/L  | 50 <sup>A</sup>                   | n/v                  | 100 U                                                                                         | 20 U                                                                        | 10 U                                                                                          |
| Isopropylbenzene                                                                                             | μg/L  | 5B                                | n/v                  | 20 U                                                                                          | 4.0 U                                                                       | 2.0 U                                                                                         |
| sopropyltoluene, p- (Cymene)                                                                                 | μg/L  | 5 <sup>B</sup>                    | n/v                  | 20 U                                                                                          | 4.0 U                                                                       | 5.4 <sup>B</sup>                                                                              |
| Methyl Acetate                                                                                               | μg/L  | n/v                               | n/v                  | 50 U                                                                                          | 10 U                                                                        | 5.0 U                                                                                         |
| Methyl Ethyl Ketone (MEK) (2-Butanone)                                                                       | μg/L  | 50 <sup>A</sup>                   | 200,000 <sup>C</sup> | 200 U                                                                                         | 40 U                                                                        | 20 U                                                                                          |
| Methyl Isobutyl Ketone (MIBK)                                                                                | μg/L  | n/v                               | n/v                  | 100 U                                                                                         | 20 U                                                                        | 10 U                                                                                          |
| Methyl tert-butyl ether (MTBE)                                                                               | μg/L  | 10 <sup>A</sup>                   | n/v                  | 20 U                                                                                          | 4.0 U                                                                       | 2.0 U                                                                                         |
| Methylcyclohexane<br>Methylene Chloride (Dichloromethane)                                                    | μg/L  | n/v<br>5 <sup>B</sup>             | n/v<br>n/v           | 20 U<br>20 U                                                                                  | 4.0 U<br>4.0 U                                                              | 2.0 U<br>2.0 U                                                                                |
| Metnylene Chloride (Dichloromethane)<br>Naphthalene                                                          | μg/L  | 10 <sup>B</sup>                   | n/v<br>n/v           | 20 U                                                                                          | 4.0 U<br>4.0 U                                                              | 2.0 U<br>2.0 U                                                                                |
| Napntnalene<br>Propylbenzene, n-                                                                             | μg/L  | 10 <sup>5</sup><br>5 <sup>B</sup> | n/v<br>n/v           | 20 U                                                                                          | 4.0 U<br>4.0 U                                                              | 2.0 U<br>2.0 U                                                                                |
| 11                                                                                                           | μg/L  | 5 <sup>B</sup>                    |                      |                                                                                               |                                                                             |                                                                                               |
| Styrene                                                                                                      | μg/L  | 5                                 | n/v                  | 20 U                                                                                          | 4.0 U                                                                       | 2.0 U                                                                                         |

| Xylenes, Total                               | μg/L | 5 <sup>B</sup> | n/v | 40 U | 8.0 U | 4.0 U   |
|----------------------------------------------|------|----------------|-----|------|-------|---------|
| Total VOC                                    | μg/L | n/v            | n/v | 764  | 145   | 114.4   |
| <b>VOC - Tentatively Identified Compound</b> | ls   |                |     |      |       |         |
| Total VOC TICs                               | μg/L | n/v            | n/v | -    | -     | 8.8 TJN |
|                                              |      |                |     |      |       |         |

#### Notes:

Tetrachloroethane, 1,1,2,2-

Tetrachloroethene (PCE)

Trichlorobenzene, 1,2,4-

Trichloroethane, 1,1,1-

Trichloroethane, 1,1,2-

Trichloroethene (TCE)

Trimethylbenzene, 1,2,4-

Trimethylbenzene, 1,3,5-

Vinyl Chloride

Xylene, m & p-

Xylene, o-

Trichlorofluoromethane (Freon 11)

Trichlorotrifluoroethane (Freon 113)

Toluene

TOGS NYSDEC TOGS 1.1.1 (Reissued June 1998 with errata in January 1999 and addenda in April 2000 and June 2004)

5..<sup>B</sup>

5..B

5..B

5..B

5..B

1<sup>B</sup> 5--<sup>B</sup>

5..B

5..B

5--<sup>B</sup>

5..B 2B 5..B

5..B

n/v

700<sup>C</sup>

n/v

n/v

n/v

n/v

500<sup>C</sup>

n/v

n/v

n/v

n/v

200<sup>C</sup>

n/v

n/v

μg/L

TOGS 1.1.1 - Table 1 - Ambient Water Quality Standards and Guidance Values, Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1); Guidance TOGS 1.1.1 - Table 1 - Ambient Water Quality Standards and Guidance Values, Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1); Standards New York State Department of Environmental Conservation, September 5, 2006 NYSDEC

20 U

680<sup>E</sup>

20 U

20 U

20 U

40 U

20 U

4.0 U

120<sup>E</sup>

4.0 U

4.0 U

4.0 U

8011

4.0 U

2.0 U

88<sup>B</sup>

2.0 U

2.0 U

2.0 U

4.0 U

2.0 U

Part 371.3: Characteristics of Hazardous Waste, Table 1 - Maximum Concentration of Contaminants for the Toxicity Characteristic

Concentration exceeds the indicated standard. 6.5<sup>A</sup>

Measured concentration did not exceed the indicated standard. 0.03 U Analyte was not detected at a concentration greater than the laboratory reporting limit.

No standard/guideline value.

Parameter not analyzed / not available.

The principal organic contaminant standard for groundwater of 5 ug/L (described elsewhere in the TOGS table) applies to this substance.

Applies to the sum of cis- and trans-1,3-dichloropropene.

Result is a tentatively identified compound (TIC) and an estimated value. / Indicates an Estimated Value for TICs. / Presumptive evidence of material.



#### Table 5

#### Summary of Septic Tank Field Observations and Capacity Calculations

IRM Work Plan #2

820 Linden Ave Site, BCP #828200 820 Linden Avenue, Pittsford, NY

|                                |                    |                         |                          |           | Field               | d Measurem          | ents                |                                     | Historical/        |                                                                        |                        |                             |                          |                                |                            |                                    |
|--------------------------------|--------------------|-------------------------|--------------------------|-----------|---------------------|---------------------|---------------------|-------------------------------------|--------------------|------------------------------------------------------------------------|------------------------|-----------------------------|--------------------------|--------------------------------|----------------------------|------------------------------------|
| Remedial<br>Area of<br>Concern | Geographic<br>Area | Tank ID                 | Depth to Lid<br>(ft bgs) | Shape     | L (ff) <sup>e</sup> | W (ff) <sup>e</sup> | Н (ff) <sup>f</sup> | Field<br>Measured<br>Capacity (gal) | Listed<br>Capacity | Tank Contents                                                          | Depth to Water<br>(ft) | Water Column<br>Height (ft) | Volume of Water<br>(gal) | Depth to<br>Soil/Sediment (ft) | Soil Column<br>Height (ft) | Volume of<br>Soil/Sediment<br>(CY) |
| RAOC-1                         | Southeast          | TANK1 - SE <sup>a</sup> | 1.75                     | Oval      | 6.3                 | 4.0                 | 3.25                | 483.7                               | 500                | Soil                                                                   | N/A                    | N/A                         | N/A                      | 0                              | 3.25                       | 3.0                                |
| RAOC-2                         | Southwest          | TANK1 - SW              | 1.5                      | Rectangle | 9.5                 | 5.0                 | 5.5                 | 1954.3                              | 1000               | Water, and de minimis<br>sediment/sludge layer <sup>d</sup>            | 3.5                    | 1.8                         | 639.6                    | 5.3                            | 0.2                        | 0.4                                |
| RAOC-2                         | Southwest          | TANK2 - SW              | 1.5                      | Rectangle | 9.5                 | 5.0                 | 5.1                 | 1812.2                              | 1000               | Water, and de minimis<br>sediment layer <sup>d</sup>                   | 3                      | 1.9                         | 675.1                    | 4.9                            | 0.2                        | 0.4                                |
| RAOC-2                         | Southwest          | tank3 - SW              | 1.5                      | Rectangle | 9.5                 | 5.0                 | 5.5                 | 1954.3                              | 1000               | Water, and de minimis<br>sediment layer <sup>d</sup>                   | 3.4                    | 1.9                         | 675.1                    | 5.3                            | 0.2                        | 0.4                                |
| RAOC-2                         | Southwest          | TANK4 - SW <sup>b</sup> | 1.5                      | Rectangle | 9.5                 | 5.0                 | 5.5                 | 1954.3                              | 1000               | Empty (thin layer of soil at base from test pit cuttings) <sup>d</sup> | N/A                    | N/A                         | N/A                      | 5.3                            | 0.2                        | 0.4                                |
| RAOC-3                         | Northwest          | TANK1 - NW <sup>b</sup> | 3                        | Rectangle | 9.2                 | 4.5                 | 6.0                 | 1858.2                              | 1000               | Soil                                                                   | N/A                    | N/A                         | N/A                      | 0                              | 6                          | 9.2                                |
| RAOC-3                         | Northwest          | TANK2 - NW              | 2.7                      | Rectangle | 9.3                 | 4.5                 | 6.0                 | 1878.4                              | 1000               | Empty (thin layer of soil at base from test pit cuttings) <sup>d</sup> | N/A                    | N/A                         | N/A                      | 5.8                            | 0.2                        | 0.3                                |
|                                |                    |                         |                          |           |                     |                     |                     |                                     |                    |                                                                        |                        | Total Liquids               | 1989.8                   | _                              | Total Solids               | 14.1                               |

#### Notes:

- 1. All measurements and calculated capacities are approximate.
- 2. Information presented is based on field observations collected on July 23 25, 2019.
  - Tank height minimum estimated from test pit excavations to 5 ft bgs (tank bottom not determined).
  - Tank height assumed based on confirmed height from other septic systems in the immediate vicinity with the same length and width.
  - c Based on historical sketches
  - Sediment layer thickness conservatively estimated based on SRI observations
  - External dimension
  - Dimension from the tank bottom (internal) to the top of the tank lid (external)

#### Abbreviations:

ft = feet

ft bgs = feet below ground surface

N/A = not applicable

CY = cubic yards

gal = gallons

| Area      | Number of<br>Tanks* | Number of<br>Distribution<br>Boxes* |
|-----------|---------------------|-------------------------------------|
| Southeast | 1                   | 0                                   |
| Southwest | 4                   | 1                                   |
| Northwest | 2                   | 1                                   |

<sup>\*</sup> encountered in SRI



#### Table 6 **Summary of Proposed Sampling Activities**

IRM Work Plan #2

820 Linden Ave BCP Site #C828200

820 Linden Avenue, Pittsford, NY

| RAOC-1 SE Septic System  Confirmatory RAOC-4 Debris Pile  TANK TANK TANK TANK TANK TANK TANK TAN                                                                                                                  | ANK1-SE  LF1-SE  LF2-SE  DBOX-SE  DP-CS1  IK1-SW-CS1             | Approximate Proposed Depth (ft bgs)  5-7  3-5  TBD  0.5-1  5.5-6.0 | Investigation outside and beneath Tank 1 Investigation in leach field (LF-1) Investigation in leach field (LF-2) Investigation inside distribution box  Bottom Confirmatory under debris pile | Additional Details  Sample depth is within 1-2 ft below estimated depth of tank bottom (5 ft bgs)  Sample depth is within 1-2 ft below estimated depth of drain tile bottom (3 ft bgs)  Sample depth is within 1-2 ft below estimated depth of drain tile bottom (3 ft bgs)  If box is located, sample materials inside distribution box, if any are present.  Approximately 1 sample/900 sq ft | 1 1 1 1 1 1 | 1 1 1 1 1   | 1 1 1 1          | 1 ICL Pesticides | Soil So   | amples  apping D  characteristics and apping the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se | PFAS     | 1,4-Dioxane                                      | Н        | Ignitability |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------------|------------------|------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------|----------|--------------|
| RAOC-1 SE Septic System  Confirmatory RAOC-4 Debris Pile  TANK TANK TANK TANK TANK TANK TANK TAN                                                                                                                  | ANK1-SE  LF1-SE  LF2-SE  DBOX-SE  DP-CS1  IK1-SW-CS1  IK1-SW-CS2 | Proposed Depth (ft bgs)  5-7  3-5  TBD  0.5-1  5.5-6.0             | Investigation outside<br>and beneath Tank 1<br>Investigation in leach<br>field (LF-1)<br>Investigation in leach<br>field (LF-2)<br>Investigation inside<br>distribution box                   | Sample depth is within 1-2 ft below estimated depth of tank bottom (5 ft bgs)  Sample depth is within 1-2 ft below estimated depth of drain tile bottom (3 ft bgs)  Sample depth is within 1-2 ft below estimated depth of drain tile bottom (3 ft bgs)  If box is located, sample materials inside distribution box, if any are present.                                                       | 1 1 1 1     | 1 1 1       | 1 1              | 1 1              | 1         | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PFAS     | 1,4-Dioxane                                      | Н        | Ignitability |
| RAOC-1 SE Septic System  Confirmatory RAOC-4 Debris Pile  TANK TANK TANK TANK TANK TANK TANK TAN                                                                                                                  | LF1-SE  LF2-SE  DBOX-SE  DP-CS1  IK1-SW-CS1  IK1-SW-CS2          | 3-5<br>TBD<br>0.5-1<br>5.5-6.0                                     | and beneath Tank 1 Investigation in leach field (LF-1) Investigation in leach field (LF-2) Investigation inside distribution box  Bottom Confirmatory                                         | estimated depth of tank bottom (5 ft bgs)  Sample depth is within 1-2 ft below estimated depth of drain tile bottom (3 ft bgs)  Sample depth is within 1-2 ft below estimated depth of drain tile bottom (3 ft bgs)  If box is located, sample materials inside distribution box, if any are present.                                                                                           | 1 1         | 1 1         | 1                | 1                | 1         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                                                  |          |              |
| RAOC-1 SE Septic System  Confirmatory RAOC-4 Debris Pile  TANK TANK TANK TANK TANK TANK TANK TAN                                                                                                                  | LF1-SE  LF2-SE  DBOX-SE  DP-CS1  IK1-SW-CS1  IK1-SW-CS2          | 3-5<br>TBD<br>0.5-1<br>5.5-6.0                                     | and beneath Tank 1 Investigation in leach field (LF-1) Investigation in leach field (LF-2) Investigation inside distribution box  Bottom Confirmatory                                         | estimated depth of tank bottom (5 ft bgs)  Sample depth is within 1-2 ft below estimated depth of drain tile bottom (3 ft bgs)  Sample depth is within 1-2 ft below estimated depth of drain tile bottom (3 ft bgs)  If box is located, sample materials inside distribution box, if any are present.                                                                                           | 1 1         | 1 1         | 1                | 1                | 1         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                                                  |          |              |
| SE Septic System  D  Confirmatory  RAOC-4 Debris Pile  TANK TANK TANK TANK TANK TANK TANK TAN                                                                                                                     | LF2-SE DBOX-SE DP-CS1 IK1-SW-CS1 IK1-SW-CS2                      | 3-5<br>TBD<br>0.5-1<br>5.5-6.0                                     | field (LF-1)  Investigation in leach field (LF-2)  Investigation inside distribution box  Bottom Confirmatory                                                                                 | estimated depth of drain tile bottom (3 ft bgs) Sample depth is within 1-2 ft below estimated depth of drain tile bottom (3 ft bgs) If box is located, sample materials inside distribution box, if any are present.                                                                                                                                                                            | 1           | 1           | 1                | 1                |           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                                                  |          |              |
| Confirmatory  RAOC-4 Debris Pile  TANK TANK TANK TANK TANK TANK TANK TAN                                                                                                                                          | DBOX-SE  DP-C\$1  IK1-SW-C\$1  IK1-SW-C\$2                       | 0.5-1<br>5.5-6.0                                                   | field (LF-2) Investigation inside distribution box Bottom Confirmatory                                                                                                                        | Sample depth is within 1-2 ft below estimated depth of drain tile bottom (3 ft bas)  If box is located, sample materials inside distribution box, if any are present.                                                                                                                                                                                                                           | 1           | 1           |                  |                  | 1         | '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                                                  |          |              |
| Confirmatory  RAOC-4 Debris Pile  TANK TANK TANK TANK TANK TANK TANK TAN                                                                                                                                          | DP-CS1  IK1-SW-CS1  IK1-SW-CS2                                   | 0.5-1<br>5.5-6.0                                                   | distribution box  Bottom Confirmatory                                                                                                                                                         | If box is located, sample materials inside distribution box, if any are present.                                                                                                                                                                                                                                                                                                                | '           | '           | 1                | 1                | 1         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                                                  |          |              |
| RAOC-4 Debris Pile  TANK  LF- | IK1-SW-CS1<br>IK1-SW-CS2                                         | 5.5-6.0                                                            | Bottom Confirmatory                                                                                                                                                                           | I                                                                                                                                                                                                                                                                                                                                                                                               | 1           | 1           |                  |                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                  |          |              |
| Debris Pile  TANK  LF-                                      | IK1-SW-CS1<br>IK1-SW-CS2                                         | 5.5-6.0                                                            |                                                                                                                                                                                               | Approximately 1 sample/900 sq ft                                                                                                                                                                                                                                                                                                                                                                | 1           | 1           |                  |                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                  |          |              |
| TANK TANK TANK TANK TANK SW Septic System TANK TANK TANK LF- LF-                                                                                                                                                  | IK1-SW-CS2                                                       |                                                                    |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                 | 1           |             |                  |                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | <u> </u>                                         |          |              |
| RAOC-2 TANK SW Septic TANK System TANK LF- LF-                                                                                                                                                                    |                                                                  | 5.5-6.0                                                            |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                 |             |             | 1                |                  | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                  |          |              |
| RAOC-2 TANK SW Septic TANK System TANK TANK LF- LF-                                                                                                                                                               | IVO CIAL OCT                                                     |                                                                    |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                 | 1           |             | 1                |                  | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                  |          |              |
| RAOC-2 SW Septic System TANK TANK LF- LF-                                                                                                                                                                         | IK2-SW-CS1                                                       | 5.1-5.6                                                            | Centerline bottom                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                 | 1           |             | 1                |                  | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                  |          |              |
| SW Septic TANK System TANK TANK LF- LF-                                                                                                                                                                           | IK2-SW-CS2                                                       | 5.1-5.6                                                            | confirmatory sample                                                                                                                                                                           | 1 sample /5 ft of tank length                                                                                                                                                                                                                                                                                                                                                                   | 1           |             | 1                |                  | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                  |          |              |
| System TANK TANK LF- LF-                                                                                                                                                                                          | IK3-SW-CS1                                                       | 5.5-6.0                                                            | under tank                                                                                                                                                                                    | 1 sample /3 II of falls length                                                                                                                                                                                                                                                                                                                                                                  | 1           |             | 1                |                  | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                  |          |              |
| TANK<br>LF-<br>LF-                                                                                                                                                                                                | IK3-SW-CS2                                                       | 5.5-6.0                                                            |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                 | 1           |             | 1                |                  | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                  |          |              |
| LF-                                                                                                                                                                                                               | IK4-SW-CS1                                                       | 5.5-6.0                                                            |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                 | 1           |             | 1                |                  | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                  |          |              |
| LF-                                                                                                                                                                                                               | IK4-SW-CS2                                                       | 5.5-6.0                                                            |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                 | 1           |             | 1                |                  | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | ļ                                                |          |              |
|                                                                                                                                                                                                                   | -SW-CS1                                                          | 3-3.5 ft                                                           | Bottom confirmatory                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                 | 1           |             | 1                |                  | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | <del>                                     </del> |          |              |
| 1                                                                                                                                                                                                                 | -SW-CS2                                                          | 3-3.5 ft                                                           | sample under drain                                                                                                                                                                            | Approximately 1 sample/900 sq ft                                                                                                                                                                                                                                                                                                                                                                | 1           |             | 1                |                  | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        |                                                  |          |              |
|                                                                                                                                                                                                                   | -SW-CS3<br>-SW-CS4                                               | 3-3.5 ft<br>3-3.5 ft                                               | tile and any<br>underlying gravel                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                 | 1           |             | 1                |                  | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        | <del> </del>                                     |          |              |
| Imported Fill                                                                                                                                                                                                     | -511-034                                                         | J-J.J II                                                           | ondenying graver                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>    | <u> </u>    | 1                | <u> </u>         | _ '       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                                                  | <u> </u> |              |
| IT.                                                                                                                                                                                                               | -COMP1                                                           | N/A                                                                |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                 | 1           | 1           | 1                | 1 1              | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        | 1                                                |          |              |
| Imported                                                                                                                                                                                                          | T-DISC1                                                          | N/A                                                                | Off-site topsoil to be                                                                                                                                                                        | Based on an assumed imported volume of                                                                                                                                                                                                                                                                                                                                                          | 1           | <b>-</b> '- | <del>- '</del> - | <u> </u>         | <u> </u>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u> | <del>_</del>                                     |          |              |
|                                                                                                                                                                                                                   | T-DISC2                                                          | N/A                                                                | imported                                                                                                                                                                                      | less than 100cubic yards                                                                                                                                                                                                                                                                                                                                                                        | 1           |             |                  |                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                  |          |              |
|                                                                                                                                                                                                                   | -COMP1                                                           | N/A                                                                |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                 |             | 1           | 1                | 1                | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        | 1                                                |          |              |
|                                                                                                                                                                                                                   | -COMP2                                                           | N/A                                                                |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                 |             | 1           | 1                | 1                | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1        | 1                                                |          |              |
| Imported Fill IF                                                                                                                                                                                                  | F-DISC1                                                          | N/A                                                                | Off-site soil to be                                                                                                                                                                           | Based on an assumed imported volume of                                                                                                                                                                                                                                                                                                                                                          | 1           |             |                  |                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                  |          |              |
|                                                                                                                                                                                                                   | F-DISC2                                                          | N/A                                                                | imported                                                                                                                                                                                      | 350 cubic yards                                                                                                                                                                                                                                                                                                                                                                                 | 1           |             |                  |                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                  |          |              |
|                                                                                                                                                                                                                   | F-DISC3                                                          | N/A                                                                |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                 | 1           |             |                  |                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                  |          |              |
|                                                                                                                                                                                                                   | F-DISC4                                                          | N/A                                                                |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                 | 1           |             |                  |                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                  |          |              |
| Waste Characteriza                                                                                                                                                                                                | ation                                                            |                                                                    |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                 |             |             |                  |                  |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                                  |          |              |
| WC                                                                                                                                                                                                                | TBD                                                              | N/A                                                                | Stockpile(s)                                                                                                                                                                                  | TBD based on disposal facility requirements                                                                                                                                                                                                                                                                                                                                                     |             |             | TBD b            | oased or         | n disposo | al facility                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | require  | ments                                            |          |              |
|                                                                                                                                                                                                                   | טטו                                                              |                                                                    |                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                 |             |             |                  |                  | 19        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 3                                                |          |              |

#### Key:

CS Confirmatory Sample

DP Debris pile ft feet

LF Leach field

N/A not applicable

PCBs Polychlorinated biphenyls PFAS **P**er- and Poly**f**luoro**a**lkyl **S**ubstances

RAOC Remedial Area of Concern

QA/QC Quality Assurance/Quality Control

SIM selective ion monitoring

sq ft square feet

SVOCs TCL Semivolatile organic compounds plus up to 20 TICs

TAL USEPA's Target Analyte List

TBD To be determined

TCL USEPA's Target Compound List

TICs Tentatively identified compounds VOCs

TCL Volatile organic compounds plus up to 10 TICs Waste Characterization WC

1. This table represents an estimate of the number of samples to be collected and analyses performed. Actual numbers will be determined on the basis of conditions encountered in the field; and in accordance with NYSDEC Division of Environmental Remediation's Technical Guidance for Site Remediation's Technical Guidance for Site Remediation and Remediation, May 2010 (DER-10); and in consultation with NYSDEC.



INTERIM REMEDIAL MEASURE WORK PLAN #2 820 LINDEN AVE BCP SITE #828200 820 LINDEN AVENUE PITTSFORD, MONROE COUNTY, NEW YORK

# APPENDIX A Quality Assurance Project Plan Addendum

The QAPP presented in Stantec's 2017 RIWP will be utilized with the addendum provided herein.



# Table 1 Required Sample Containers, Volumes, Sample Preservation, and Holding Times

Quality Assurance Project Plan 820 Linden Ave BCP Site #C828200 820 Linden Avenue, Pittsford, NY

| Media            | Type of Analysis          | Method                | Required Container          | Preferred Sample<br>Volume | Preservation             | Maximum Holding Time          |
|------------------|---------------------------|-----------------------|-----------------------------|----------------------------|--------------------------|-------------------------------|
|                  | TCL VOCs + TICs           | EPA 8260C             | 2 oz. cwm                   | 2 oz.                      | Cool 4°C                 | 14 days                       |
|                  | TCL SVOCs + TICs          | EPA 8270D             |                             |                            |                          |                               |
|                  | TCL Pesticides            | EPA 8081B             | 4 oz. cwm                   | 8 oz.                      | Cool 4°C                 | 7 days                        |
| Soil             | TCL PCBs                  | EPA 8082A             |                             |                            |                          |                               |
| 3011             | TAL Metals                | EPA 6010C/7000 Series | 4 oz. cwm                   | 4 oz.                      | Cool 4°C                 | 6 months; 28 days for mercury |
|                  | Cyanide                   | EPA 9012B             | 4 oz. cwm                   | 4 oz.                      | Cool 4°C                 | 14 days                       |
|                  | PFAS List <sup>A</sup>    | EPA 537 [modified]    | 4 oz. plastic jar           | 4 oz.                      | Cool 4°C                 | 14 day/40 day <sup>B</sup>    |
|                  | 1,4-dioxane               | EPA 8270              | 4 oz cwm                    | 4 oz.                      | Cool 4°C                 | 7 day/40 day <sup>B</sup>     |
|                  | TCL plus CP-51 VOCs +TICs | EPA 8260C             | (3) 40 ml glass vials       | 120 ml                     | pH < 2, HCl              | 14 days if acidified with HCI |
|                  | TCL SVOCs + TICs          | EPA 8270D             | (2) 250 ml amber glass jars | 500 ml                     | Cool 4°C                 | 7 day/40 day <sup>B</sup>     |
|                  | TCL Pesticides            | EPA 8081B             | (2) 250 ml amber glass jars | 500 ml                     | Cool 4°C                 | 7 day/40 day <sup>B</sup>     |
| Discrete Western | PCBs                      | EPA 8082A             | (2) 250 ml amber glass jars | 500 ml                     | Cool 4°C                 | 10 day/40 day <sup>B</sup>    |
| Rinsate Water    | TAL Metals                | EPA 6010C/7000 Series | (1) 250 ml plastic jar      | 500 ml                     | pH < 2, HNO <sub>3</sub> | 6 months; 28 days for mercury |
|                  | Cyanide                   | EPA 9012B             | (1) 250 ml plastic jar      | 250 ml                     | NaOH                     | 14 days                       |
|                  | PFAS List <sup>A</sup>    | EPA 537 [modified]    | (2) 1 L amber glass         | 1 L                        | Cool 4°C                 | 7 days to extract             |
|                  | 1,4-dioxane               | EPA 8270 SIM          | (2) 250 ml plastic jar      | 500 ml                     | Cool 4°C                 | 14 days to extract            |

Key:

CP-51 NYSDEC Commissioner Policy (CP)-51

cwm clear wide mouth jar

EPA U.S. Environmental Protection Agency

HCI hydrochloric acid

ml milliliter
HNO3 nitric acid
L liter

PCBs Polychlorinated biphenyls

PFAS per- and polyfluoroalkyl substances

SIM selective ion monitoring
SVOCs semivolatile organic compounds

TAL USEPA's Target Analyte List
TCL USEPA's Target Compound List
TIC tentatively identified compound

VOCs volatile organic compounds

oz ounces

#### Notes:



<sup>&</sup>lt;sup>A</sup> Refers to the 21 PFAS compounds included on NYSDEC's "Full PFAS Target Analyte List"

 $<sup>^{\</sup>rm B}$  Represents the holding time from collection to extraction/from extraction to analysis.

## Table 2 Summary of Field Quality Control Checks

Quality Assurance Project Plan Addendum 820 Linden Ave BCP Site #C828200 820 Linden Avenue, Pittsford, NY

|                     | Analysis Method             |                                     |                                  |                          | Total              |                     |                      |
|---------------------|-----------------------------|-------------------------------------|----------------------------------|--------------------------|--------------------|---------------------|----------------------|
| Analysis Parameters | (USEPA SW846 method number) | Estimated Number of<br>Site Samples | Field<br>Duplicates <sup>1</sup> | Trip Blanks <sup>2</sup> | Rinsate<br>Blanks³ | MS/MSD <sup>4</sup> | Number of<br>Samples |
| Soil Sampling       |                             |                                     |                                  |                          |                    |                     |                      |
| TCL VOCs            | 8260C                       | 22                                  | 2                                | 0                        | 3                  | 2/2                 | 31                   |
| TCL SVOCs           | 8270D                       | 8                                   | 1                                | 0                        | 3                  | 1/1                 | 14                   |
| TCL PCBs            | 8082A                       | 19                                  | 1                                | 0                        | 3                  | 1/1                 | 25                   |
| TCL Pesticides      | 8081B                       | 7                                   | 1                                | 0                        | 2                  | 1/1                 | 12                   |
| TAL Metals          | 6010C/7000 series           | 19                                  | 1                                | 0                        | 3                  | 1/1                 | 25                   |
| Cyanide             | 9012B                       | 4                                   | 1                                | 0                        | 2                  | 1/1                 | 9                    |
| PFAS <sup>5</sup>   | 537 [modified]              | 3                                   | 1                                | 0                        | 1                  | 1/1                 | 7                    |
| 1,4-dioxane         | 8270D                       | 3                                   | 1                                | 0                        | 1                  | 1/1                 | 7                    |

#### Key:

MS/MSD Matrix Spike/Matrix Spike Duplicate
PCBs polychlorinated biphenyls
PFAS Per- and Polyfluoroalkyl Substances

QA/QC Quality Assurance/Quality Control

SIM TCL semivolatile organic compounds plus up to 20 TICs SVOCs TCL semivolatile organic compounds plus up to 20 TICs

TAL USEPA's Target Analyte List
TCL USEPA's Target Compound List
TICs tentatively identified compounds

USEPA United States Environmental Protection Agency
VOCs TCL volatile organic compounds plus up to 10 TICs.

#### Notes:

<sup>1</sup> Field duplicates will be collected at a frequency of 1 per 20 samples for each sample medium.



 $<sup>^2</sup>$  Trip blanks will be collected at a frequency of 1 per cooler containing aqueous samples to be analyzed for VOCs.

<sup>&</sup>lt;sup>3</sup> Rinsate blanks will be collected at a frequency of 1 per mobilization for each sampling method using non-dedicated equipment. Certain paramters will not be collected with each method.

 $<sup>^{\</sup>rm 4}$  MS/MSDs will be collected at a frequency of 1 per 20 samples for each sample medium.

 $<sup>^{\</sup>rm 5}$  Refers to the 21 PFAS compounds included NYSDEC's "Full PFAS Target Analyte List"

INTERIM REMEDIAL MEASURE WORK PLAN #2 820 LINDEN AVE BCP SITE #828200 820 LINDEN AVENUE PITTSFORD, MONROE COUNTY, NEW YORK

# APPENDIX B Health and Safety Plan



#### Appendix B

Health and Safety Plan
Interim Remedial Measure Work
Plan #2
820 Linden Ave BCP Site #828200
820 Linden Avenue
Pittsford, Monroe County, New York

#### Prepared for:

New York State Department of Environmental Conservation 6274 Avon-Lima Road Avon, New York 14414 New York State Department of Environmental Conservation 6274 Avon-Lima Road Avon, New York 14414

#### Prepared on behalf of:

Ridgecrest Associates, L.P. 135 Orchard Park BV Rochester, New York 14609

#### Prepared by:

Stantec Consulting Services Inc. 61 Commercial Street, Suite 100 Rochester, New York 14614



November 2019

#### **APPENDIX C**

HEALTH AND SAFETY PLAN
INTERIM REMEDIAL MEASURE WORK PLAN #2
820 LINDEN AVE BCP SITE #828200
820 LINDEN AVENUE
PITTSFORD, MONROE COUNTY, NEW YORK

## **Table of Contents**

| 1.0               | INTRODUCTION                             |    |
|-------------------|------------------------------------------|----|
| 1.1               | BACKGROUND                               | 1  |
| 1.2               | HAZARD RECOGNITION                       |    |
|                   | 1.2.1 Health Hazards                     | 2  |
|                   | 1.2.2 Safety Hazards                     | 2  |
| 1.3               | HAZARD ASSESSMENT                        | 3  |
| 1.4               | SITE-SPECIFIC CHEMICALS OF CONCERN       |    |
|                   |                                          |    |
| 2.0               | STANTEC PERSONNEL ORGANIZATION           |    |
| 2.1               | PROJECT MANAGER                          |    |
| 2.2               | SITE SAFETY OFFICER/FIELD TEAM LEADER    | 7  |
| 2.3               | DAILY MEETINGS                           | 7  |
| 3.0               | MEDICAL SURVEILLANCE REQUIREMENTS        | 7  |
| <b>3.0</b><br>3.1 | INTRODUCTION                             |    |
|                   |                                          |    |
| 3.2               | MEDICAL EXAMINATIONS                     | /  |
| 4.0               | ONSITE HAZARDS                           | 8  |
| 4.1               | CHEMICAL HAZARDS                         | 8  |
| 4.2               | PHYSICAL HAZARDS                         | 9  |
|                   | 4.2.1 Drilling and Excavation Activities |    |
|                   | 4,2.2 Roadway Hazards                    |    |
|                   | 4.2.3 Noise                              |    |
|                   | 4.2.4 Heat and Cold Stress Exposure      |    |
|                   | 4.2.5 Weather-Related Hazards            | 11 |
|                   | 4.2.6 Poison Ivy                         | 12 |
|                   | 4.2.7 Ladders                            |    |
|                   | 4.2.8 Hand and Power Tools               |    |
|                   | 4.2.9 Manual Lifting                     |    |
|                   | 4.2.10 Lock-Out/Tag-Out                  |    |
|                   | 4.2.11 Electrical Work                   | 17 |
| 5.0               | SITE WORK ZONES                          | 17 |
| 5.1               | CONTROL ZONES                            | 18 |
| 5.2               | EXCLUSION ZONE                           | 18 |
| 5.3               | DECONTAMINATION ZONE                     | 18 |
| 6.0               | SITE MONITORING AND ACTION LEVELS        | 10 |
| <b>6.0</b><br>6.1 | SITE MONITORING AND ACTION LEVELS        |    |
| 6.1<br>6.2        | ACTION LEVELS                            |    |
| 0.∠               | ACTION LEVELS                            | 19 |



#### APPENDIX C

HEALTH AND SAFETY PLAN
INTERIM REMEDIAL MEASURE WORK PLAN #2
820 LINDEN AVE BCP SITE #828200
820 LINDEN AVENUE
PITTSFORD, MONROE COUNTY, NEW YORK

| 7.0 | PERSONAL PROTECTIVE EQUIPMENT              | 20 |
|-----|--------------------------------------------|----|
| 7.1 | PROTECTIVE CLOTHING/RESPIRATORY PROTECTION |    |
| 8.0 | DECONTAMINATION                            | 21 |
| 8.1 | PERSONAL DECONTAMINATION                   | 21 |
| 8.2 | EQUIPMENT DECONTAMINATION                  | 22 |
| 9.0 | EMERGENCY PROCEDURES                       | 22 |
| 9.1 | LIST OF EMERGENCY CONTACTS                 | 22 |
| 9.2 | DIRECTIONS TO HOSPITAL                     | 22 |
| 9.3 | ACCIDENT INVESTIGATION AND REPORTING       | 23 |

#### **List of Figures**

Figure 1 Site Location Map

Figure 2 Map and Driving Directions to Medical Facilities

#### **List of Tables**

Table 1 Health and Safety Data for COCs

Table 2 Exposure Pathways and First Aid Response for COCs
Table 3 Exposure Symptoms and First Aid for Heat Exposure

#### **List of Appendices**

Appendix A Safety Data Sheets

Appendix B Onsite Safety Meeting Forms

Appendix C Incident Reporting



#### **APPENDIX C**

HEALTH AND SAFETY PLAN
INTERIM REMEDIAL MEASURE WORK PLAN #2
820 LINDEN AVE BCP SITE #828200
820 LINDEN AVENUE
PITTSFORD, MONROE COUNTY, NEW YORK

#### **Abbreviations**

1,1-DCE 1,1-dichloroethene

CAMP Community Air Monitoring Plan
CFR Code of Federal Regulations

cis-1,2-DCE cis-1,2-dichloroethene
COC Contaminant of Concern

CVOC chlorinated volatile organic compound

dB decibel

DER [NYSDEC] Division of Environmental Remediation

FTL Field Team Leader

HASP Health and Safety Plan

JML Optical

NEC National Electrical Code

Newport Newport Corporation

NYSDEC New York State Department of Environmental Conservation

OSHA Occupational Safety and Health Administration

PCE tetrachloroethene

PEL Permissible Exposure Limit
PID photoionization detector

ppm parts per million

PPE Personal Protective Equipment

RI Remedial Investigation
SSO Site Safety Officer
SWP Safe Work Practice
TCE trichloroethene

TSP trisodium phosphate

TWA Time Weighted Average

VOC volatile organic compound



HEALTH AND SAFETY PLAN
INTERIM REMEDIAL MEASURE WORK PLAN #2
820 LINDEN AVE BCP SITE #828200
820 LINDEN AVENUE
PITTSFORD, MONROE COUNTY, NEW YORK

Introduction

#### 1.0 INTRODUCTION

The following Health and Safety Plan (HASP) describes personal safety protection standards and procedures to be followed by Stantec staff during the implementation of planned Interim Remedial Measure Work Plan #2 activities for the 820 Linden Ave Site located at 820 Linden Avenue in Pittsford, New York (Figure 1).

This HASP establishes mandatory safety procedures and personal protection standards pursuant to the Occupational Safety and Health Administration (OSHA) regulations 29 Code of Federal Regulations (CFR) 1910.120. The HASP applies to all Stantec personnel conducting any Site work, as defined in 29 CFR 1910.120(a). All personnel involved in the mentioned activities must familiarize themselves with this HASP, comply with its requirements and have completed the required health and safety training and medical surveillance program participation pursuant to 29 CFR 1910.120 prior to beginning any work onsite.

THIS HASP IS FOR THE EXPRESS USE OF STANTEC EMPLOYEES. ALL OTHER CONTRACTORS TO BE WORKING IN THE EXCLUSION AREAS ARE REQUIRED BY LAW TO DEVELOP THEIR OWN HASP, AS WELL TO MEET ALL PERTINENT ASPECTS OF OSHA REGULATIONS. STANTEC RESERVES THE RIGHT TO STOP ANY SITE WORK WHICH IS DEEMED TO POSE A HEALTH AND SAFETY THREAT TO ITS STAFF OR OTHERS.

#### 1.1 BACKGROUND

IRM Work Plan #2 (Work Plan) is being is being submitted to the New York State Department of Environmental Conservation (NYSDEC) for the 820 Linden Ave Site located at 820 Linden Avenue in the Town of Pittsford, Monroe County, New York. The objectives of IRM2 include addressing findings related to the debris pile and three historic septic systems.

The Site consists of an approximately 7.97-acre parcel located in the Town of Pittsford, Monroe County, New York. The Site is improved with an approximately 108,400 square foot slab-ongrade building. The southern tenant space in this building is approximately 70,200 square feet and is currently occupied by JML Optical (JML). The northern tenant space is approximately 38,200 square feet and is currently occupied by Newport Corporation (Newport). Both current tenants are optics manufacturing facilities.

#### 1.2 HAZARD RECOGNITION

Several health and safety hazards associated with this Site and the anticipated job tasks to be performed as part of the RI have been identified and are listed below.



HEALTH AND SAFETY PLAN
INTERIM REMEDIAL MEASURE WORK PLAN #2
820 LINDEN AVE BCP SITE #828200
820 LINDEN AVENUE
PITTSFORD, MONROE COUNTY, NEW YORK

Introduction

While in the field, new hazards may be identified as part of the field level risk assessment. This HASP should be updated to reflect new hazards as they are identified during the various investigation stages.

#### 1.2.1 Health Hazards

The following is a list of the potential health hazards identified for the Site.

Chemical hazards include:

- Halogenated organic compounds;
- Polycyclic aromatic hydrocarbons (PAHs);
- Polychlorinated biphenyls (PCBs);
- Mercury;
- Petroleum hydrocarbons; and
- Solvents/flammables.

Physical hazards include:

- Cold stress/frostbite;
- Heat stress/sunburn;
- Driver fatigue;
- Dust/dusty environment;
- Flora or fauna (ticks and poison ivy known to be present);
- Noise; and
- Rough terrain/heavy brush.

#### 1.2.2 Safety Hazards

The following is a list of the potential safety hazards identified for the Site.

Machine-related hazards include:

- Heavy equipment;
- Moving parts;
- Excavations (test pits);
- Pinch points; and
- Rotating parts.

Material handling hazards include:



HEALTH AND SAFETY PLAN
INTERIM REMEDIAL MEASURE WORK PLAN #2
820 LINDEN AVE BCP SITE #828200
820 LINDEN AVENUE
PITTSFORD, MONROE COUNTY, NEW YORK

Introduction

- Load < 50 lbs; and</li>
- Sharp/rough surface (drums).

#### 1.3 HAZARD ASSESSMENT

At the minimum, Stantec personnel will review the following Stantec Safe Work Practices (SWPs) identified as being relevant to the Site and project tasks prior to implementation of the IRM.

- SWP 104 Hazard Communication
- SWP 105 Personal Protective Equipment (PPE)
- SWP 107 First Aid
- SWP 111 Medical Surveillance
- SWP 113 Heat Stress
- SWP 114 Working in Cold Environments
- SWP 115 Material Handling and Safe Lifting
- SWP 124 Safe Driving
- SWP 201 Fall Protection/Working from Heights
- SWP 213 Ground Disturbance and Overhead Utility
- SWP 214 Entering Excavation and Trenches
- SWP 216 Working Near Mobile Equipment
- SWP 314 Working Around Hazardous Waste and Wastewater
- SWP 407 Traffic Control and Protection Planning
- SWP 409 Respiratory Protection
- SWP 416 Supervision of Contracted Drilling Activities
- SWP 511 Ticks and Tickborne Diseases

If new hazards are identified throughout the investigation, additional SWPs should be reviewed, if available. This process should occur prior to the commencement of field work and throughout the stages of the IRM.

#### 1.4 SITE-SPECIFIC CHEMICALS OF CONCERN

A detailed description of prior investigation results is provided in the 2017 RIWP. The Remedial Investigation Report (RIR) presented a detailed description of the RI and SRI investigations, results, and conclusions. An overview of the applicable findings is included below with an emphasis on the Site-specific chemicals of concern (COCs).

Three Areas of Concern (AOCs) have been identified at the Site based on findings from the RI, SRI, and the 2016-2017 Phase II ESA and are summarized below.



HEALTH AND SAFETY PLAN
INTERIM REMEDIAL MEASURE WORK PLAN #2
820 LINDEN AVE BCP SITE #828200
820 LINDEN AVENUE
PITTSFORD, MONROE COUNTY, NEW YORK

Introduction

- AOC-1: Chlorinated Volatile Organic Compounds (VOCs) have been identified in subslab soil vapor beneath the JML tenant space at concentrations requiring mitigation. Chlorinated VOC impacts to sub-slab vapor were first identified from historical PSG surveys. The potential for SVI was investigated by Stantec through combined sub-slab vapor and indoor air sampling in 2016-2017 as part of the Limited Phase II ESA (Stantec, 2017b). The following chlorinated VOCs were identified as COCs for this media: 1,1-DCE; cis-1,2-DCE; PCE; and TCE. No source has been identified despite extensive shallow and deep soil and groundwater investigations in the areas of impact. Potential exposure has been or is being addressed through implementation of IRM1 and IRM3 with the installation and operation of the SSDS, which will be subject to the long-term OM&M Plan as well as the site-wide SMP.
- AOC-2: The debris pile located in the northeast corner of the parking lot area was found to contain elevated levels of PAHs [benzo(a)anthracene; benzo(a)pyrene; benzo(b)fluoranthene; indeno(1,2,3-cd)pyrene] associated with significant crushed asphalt contents. Removal of this debris pile will be conducted in IRM2 with confirmatory sampling conducted.
- AOC-3: Three former septic systems were identified during the test pit program. The buried structures will be addressed through proposed system removal or in place closure through this Work Plan. Potential COCs associated with the septic systems include:
  - PAHs (fluoranthene and phenanthrene) detected in a black tar-like substance above the distribution box at the Northwest Septic System; and
  - PCE, Freon 113, PCBs and mercury detected in samples within the tanks in the Southwest Septic System.

As per the RIR, instances where there were exceedances of Commercial or POGW SCOs or Groundwater standards or guidance values, but the issue does not rise to the level of an AOC include:

- An isolated exceedance of the Commercial SCO for mercury in the sample adjacent to Northwest Septic System Tank 2. This sample was taken at 8-10 ft bgs and due to its isolated location and depth, and the proposed site use, it is not considered a concern.
- The PAH benzo(a)pyrene was the single semi-volatile organic compound (SVOC) reported to exceed Commercial SCOs in surface soil. It was detected at 0-2 inches at a concentration of 1,800 micrograms per kilogram (µg/kg) versus the respective Commercial and Industrial SCOs of 1,000 and 1,100 µg/kg in a composite sample SS-4. The SS-4 composite was derived from discrete sampling locations SS-4a, SS-4b, and SS-4c



HEALTH AND SAFETY PLAN
INTERIM REMEDIAL MEASURE WORK PLAN #2
820 LINDEN AVE BCP SITE #828200
820 LINDEN AVENUE
PITTSFORD, MONROE COUNTY, NEW YORK

Introduction

- along the vegetated berm near the eastern property line. This concentration is considered to be typical of a developed, urban setting.
- <u>TCE was identified in groundwater in the eastern parking lot area in B/MW-101, B/MW-104, and B/MW-105.</u> The inferred direction of groundwater flow suggests an off-Site source particularly given the non-detect results for all of the wells closer to the Site building. Potential exposure pathways are addressed through implementation of IRM1 and IRM3, and preparation of the SMP.
- Acetone impacts to groundwater beneath the building were identified during Stantec's
   Limited Phase II ESA (Stantec, 2017b). Delineation of these impacts was addressed
   during the RI, which confirmed that groundwater acetone impacts are limited to
   beneath the building. Levels of acetone reported in Site soil samples meet both
   Commercial and Industrial SCOs, but in some cases exceed the POGW SCO.

Table 1 summarizes health and safety data for the COCs, and the SDSs for the COCs is included in HASP Appendix A.



HEALTH AND SAFETY PLAN
INTERIM REMEDIAL MEASURE WORK PLAN #2
820 LINDEN AVE BCP SITE #828200
820 LINDEN AVENUE
PITTSFORD, MONROE COUNTY, NEW YORK

Stantec Personnel Organization

### 2.0 STANTEC PERSONNEL ORGANIZATION

Below is a list of **Project Contact** information:

| Title                                                     | Name                            | Company                  | Phone Number                        |
|-----------------------------------------------------------|---------------------------------|--------------------------|-------------------------------------|
| Stantec Office                                            | Rochester, NY                   | Stantec                  | (585) 475-1440                      |
| Project Manager                                           | Stephanie Reynolds-Smith,<br>PG | Stantec                  | (585) 413-5272<br>c. (585)298-2382  |
| Project Remedial Engineer                                 | Kevin Ignaszak, PE              | Stantec                  | (585) 413-5355                      |
| Site Safety Officer/Field Team Leader                     | Laura Best                      | Stantec                  | (585) 413-5327<br>c. (585) 301-0166 |
| Site Safety Officer/Field Team Leader                     | Amanda Kelly, EIT               | Stantec                  | (585) 413-5370<br>c. (585) 319-9499 |
| Site Safety Officer/Field Team Leader                     | Amanda Matkowsky                | Stantec                  | (585) 413-5208<br>c. (585) 285-3598 |
| Site Safety Officer/Field Team Leader                     | Kyle Stone, EIT                 | Stantec                  | (585) 413-5209<br>c. (585) 284-6433 |
| After-Hours Project Contact                               | Stephanie Reynolds-Smith,<br>PG | Stantec                  | c. (585) 298-2382                   |
| After-Hours Project Contact [alternate]                   | Mike Storonsky                  | Stantec                  | c. (585) 298-2386                   |
| Client (Ridgecrest Associates)                            | Joe Lobozzo                     | Ridgecrest<br>Associates | c. (585) 766-3949                   |
| Primary Facility Contact - JML                            | Steve Burton                    | JML                      | c. (585) 218-2906                   |
| Facility Contact - JML (Until 4:00 pm)                    | Mark Zaso                       | JML                      | c. (315) 289-3038                   |
| Facility Contact - JML<br>(4:00 pm – 2:00 am)             | Corbin Beck                     | JML                      | c. (585) 314-2663                   |
| Primary Facility Contact -Newport                         | Brian Grove                     | Newport                  | c. (585) 739-6046                   |
| Office Safety Environment<br>Coordinator                  | Michele D'Agostino              | Stantec                  | (585) 413-5206                      |
| Local HR Representative                                   | Keith Kiss                      | Stantec                  | (585) 413-5228<br>c. (585) 287-4502 |
| Stantec Corporate HSE<br>Representative<br>(US Northeast) | Fred Miller, CSP                | Stantec                  | (610) 235-7315                      |
| Stantec Public Relations Specialist, US<br>Northeast      | Trevor Eckart                   | Stantec                  | (215) 665-7187                      |

The following describes the Stantec personnel involved in health and safety operations at the 820 Linden Ave Site located at 820 Linden Avenue in Pittsford, NY.



HEALTH AND SAFETY PLAN
INTERIM REMEDIAL MEASURE WORK PLAN #2
820 LINDEN AVE BCP SITE #828200
820 LINDEN AVENUE
PITTSFORD, MONROE COUNTY, NEW YORK

Medical Surveillance Requirements

#### 2.1 PROJECT MANAGER

The Project Manager is responsible for ensuring that all Stantec procedures and methods are carried out, and that all Stantec personnel abide by the provisions of this HASP.

#### 2.2 SITE SAFETY OFFICER/FIELD TEAM LEADER

The Site Safety Officer (SSO) and Field team leader (FTL) will report directly to the Project Manager and will be responsible for the implementation of this HASP as well as daily calibration of Stantec's safety monitoring instruments. The FTL/SSO will keep a log book of all calibration data and instrument readings for the Site that will be utilized by the field team onsite during the various IRM activities.

#### 2.3 DAILY MEETINGS

All Stantec personnel and contractors working within the exclusion zone will be required to sign off on the daily safety meeting form presented in HASP Appendix B.

## 3.0 MEDICAL SURVEILLANCE REQUIREMENTS

#### 3.1 INTRODUCTION

Hazardous waste site workers can often experience high levels of physical and chemical stress. Their daily tasks may expose them to toxic chemicals, physical hazards, biologic hazards, or radiation. They may develop heat stress while wearing protective equipment or working under temperature extremes, or face life-threatening emergencies such as explosions and fires. Therefore, a medical program is essential to: assess and monitor worker's health and fitness both prior to employment and during the course of the work; provide emergency and other treatment as needed; and keep accurate records for future reference. In addition, OSHA requires a medical evaluation for employees that may be required to work on hazardous waste sites and/or wear a respirator (29 CFR Part 1910.120 and 1910.134), and certain OSHA standards include specific medical surveillance requirements (e.g., 29 CFR Part 1926.62, Part 1910.95 and Parts 1910.1001 through 1910.1045).

#### 3.2 MEDICAL EXAMINATIONS

All Stantec personnel working in areas of the Site where Site-related contaminants may be present shall have been examined by a licensed physician as prescribed in 29 CFR Part 1910.120,



HEALTH AND SAFETY PLAN
INTERIM REMEDIAL MEASURE WORK PLAN #2
820 LINDEN AVE BCP SITE #828200
820 LINDEN AVENUE
PITTSFORD, MONROE COUNTY, NEW YORK

Onsite Hazards

and determined to be medically fit to perform their duties for work conditions which require respirators. Employees will be provided with medical examinations as outlined below:

- Pre-job physical examination
- Annually thereafter if contract duration exceeds 1 year;
- Termination of employment;
- Upon reassignment in accordance with 29 CFR Part 1910.120(e)(3)(i)(C);
- If the employee develops signs or symptoms of illness related to workplace exposures;
- If the physician determines examinations need to be conducted more often than once a year; and
- When an employee develops a lost time injury or illness during the contract period.

Examinations will be performed by, or under the supervision of a licensed physician, preferably one knowledgeable in occupational medicine, and will be provided without cost to the employee, without loss of pay and at a reasonable time and place. Medical surveillance protocols and examination and test results shall be reviewed by an Occupational Physician.

#### 4.0 ONSITE HAZARDS

#### 4.1 CHEMICAL HAZARDS

The primary chemical hazards onsite are detailed in Table 1. SDSs for the anticipated compounds presenting potential chemical exposure hazards are provided in Appendix A.

Any activity at the Site which causes physical disturbance of the soil can potentially allow the release of contaminants into the air. For volatiles, this can include release of organic vapors into the air. Such an occurrence may be recognized by noticeable chemical odors. Field personnel should be aware of the odor threshold for these chemicals and their relation to the action levels and PELs (see Table 1).

Symptoms of overexposure to primary compounds of concern are detailed in Table 1. To prevent exposure to these chemicals, dermal contact will be minimized by using disposable surgical gloves with work gloves (as appropriate) when handling soil, groundwater equipment or samples. Real time, breathing zone levels of total VOCs will be monitored using a portable photoionization detector (PID). If ambient levels exceed action levels, all Site activities will be performed using Level C PPE until ambient concentrations dissipate. Where levels exceed 50 parts per million (ppm), work will cease and the project manager will be notified immediately.



HEALTH AND SAFETY PLAN
INTERIM REMEDIAL MEASURE WORK PLAN #2
820 LINDEN AVE BCP SITE #828200
820 LINDEN AVENUE
PITTSFORD, MONROE COUNTY, NEW YORK

Onsite Hazards

Intrusive work may also be halted where required by action levels detailed in the Community Air Monitoring Plan (CAMP), Appendix C of the IRM Work Plan.

Depending on seasonal conditions, disturbance of the Site soils may cause the particulate contaminants to become airborne as dust. Therefore, particulates will be monitored as discussed in Section 6.1 and dust-suppression methods used where appropriate as discussed in Section 6.2, or in the CAMP. Additionally, aeration of the groundwater may cause volatilization of chemicals into the air, particularly VOCs.

Table 2 summarizes first aid instructions for exposure pathways for the Site COCs.

#### 4.2 PHYSICAL HAZARDS

The following sub-sections describe the physical hazards anticipated to be encountered at this Site. Field team members will wear the basic safety apparel such as steel-toed shoes, hard hat, safety vest, and safety glasses during all appropriate activities. See Section 7 Personal Protective Equipment for additional information.

#### 4.2.1 Drilling and Excavation Activities

Hazards typically encountered at construction sites with drilling and excavation activities will be a concern at this Site. These hazards include slippery ground surfaces, holes, exposure to chemical vapors, and operation of heavy and mobile machinery and equipment.

#### **Excavation**

The potential exists for falling into the excavation due to a slip or trip and also due to potential caving of the test pit sidewalls. During the excavation, field personnel will generally perform observation from the end of the excavation opposite the excavation equipment and will avoid standing along the long sidewalls of the pit. If it is necessary to make observations from a point along the long side of the excavation, they will maintain adequate distance between themselves and the excavation walls, and be mindful of signs that caving may be likely. These could include raveling of sidewall material into the pit, or the development of cracks in the ground surface.

Field personnel will not enter excavations deeper than four feet. Field personnel will not approach within six feet of any excavation that is ten feet or greater in depth without the presence of a fall prevention of fall arrest system in place and functioning.



HEALTH AND SAFETY PLAN
INTERIM REMEDIAL MEASURE WORK PLAN #2
820 LINDEN AVE BCP SITE #828200
820 LINDEN AVENUE
PITTSFORD, MONROE COUNTY, NEW YORK

Onsite Hazards

The test pit contractor shall make all necessary contacts with utilities and/or underground utility locater hotlines prior to digging.

#### **Drilling**

Under no circumstances will Stantec personnel approach the borehole during active drilling operation. All field personnel working around the rig will be shown the location and operation of kill switches, which are to be tested daily.

The driller shall make all necessary contacts with utilities and/or underground utility locater hotlines prior to drilling, and shall meet OSHA requirements for distances between the drilling rig and overhead utilities. No drilling work will be carried out where the drill rig chassis has not been stabilized and the rig is not to be moved between locations with its boom in a vertical position.

As with any soil disturbance, monitoring for VOCs with a PID will be performed continuously during drilling, test pit excavation, and logging/sampling activities. Work will be stopped and the area vacated if sustained PID readings are observed at concentrations in excess of the Action Levels specified in Section 6.

Multi-purpose fire extinguishers, functional and within the annual inspection period, will be staged and readily accessible for use.

The use of electrical equipment in any established exclusion zones will be limited to areas verified as containing non-explosive atmospheres (<10% LEL) prior to operation, unless the equipment has been previously demonstrated or designed to be FM or UL rated as intrinsically safe. Care will be taken to avoid an ignition source while working in the presence of vapors.

#### 4.2.2 Roadway Hazards

Field activities may take place near active roadways and/or parking lots with vehicle traffic. Where such work zones are established, personnel shall assure that protective measures including signage, cones, and shielding through use of vehicles parked at workmen perimeter, are in place. All contractors shall be responsible for meeting signage requirements of DOT. Fluorescent safety vests shall be worn by all personnel during activities in or adjacent to roadways and driveways.



HEALTH AND SAFETY PLAN
INTERIM REMEDIAL MEASURE WORK PLAN #2
820 LINDEN AVE BCP SITE #828200
820 LINDEN AVENUE
PITTSFORD, MONROE COUNTY, NEW YORK

Onsite Hazards

#### 4.2.3 Noise

Operation of heavy machinery and equipment may result in noise exposures, which require hearing protection. Exposure to noise can result in temporary hearing losses, interference with speech communication, interference with complicated tasks, or permanent hearing loss due to repeated exposure to noise.

During the investigative activities, all Stantec field team members will use hearing protection when sound levels are in excess of 90 decibels (dB) time weighted average (TWA). In the absence of noise dosimetry data, field personnel will wear hearing protection during the test boring and monitoring well installation program, and where mandatory per JML/Newport standards when working indoors. Other instances requiring hearing protection may include use of hand power tools.

#### 4.2.4 Heat and Cold Stress Exposure

Heat is a potential threat to the health and safety of Site personnel. The SSO under the direction of the Project Manager will determine the schedule of work and rest. These schedules will be employed as necessary so that personnel do not suffer adverse effects from heat. Table 3 summarizes exposure symptoms and first aid instructions for heat stress. Non-caffeinated, thirst replenishment liquids will be available onsite.

Cold stress is also a potential threat to the health and safety of Site personnel. Symptoms of cold stress include, shivering, blanching of the extremities, numbness or burning sensations, blue, purple or gray discoloration of hands and feet, frostbite, hypothermia, and loss of consciousness. Cold stress can be prevented by acclimatizing one's self to the cold, increasing fluid intake, avoiding caffeine and alcohol, maintaining proper salt and electrolyte intake, eating a well-balanced diet, wearing proper clothing, building heated enclosures to work in, and taking regular breaks to warm up. If any of the above symptoms are encountered the person should be removed from the cold area. Depending on the severity of the cold stress, 911 should be contacted and first aid administered. No fluids should be given to an unconscious person.

#### 4.2.5 Weather-Related Hazards

Weather-related hazards include the potential for heat or cold stress (described in Section 4.2.4), electrical storms, treacherous weather-related working and/or driving conditions, or limited visibility. These hazards correlate with the season in which Site activities occur. Outside work will be suspended during electrical storms. Site work will not be resumed until 30 minutes have passed without thunder and lightning. In the event of other adverse weather conditions, the



HEALTH AND SAFETY PLAN
INTERIM REMEDIAL MEASURE WORK PLAN #2
820 LINDEN AVE BCP SITE #828200
820 LINDEN AVENUE
PITTSFORD, MONROE COUNTY, NEW YORK

Onsite Hazards

SSO, in consultation with the project manager, if needed, will determine if work can continue without endangering the health and safety of Site personnel.

#### 4.2.6 Poison Ivy

Poison ivy has been identified along the western side of the northern Site boundary, near the Northwest Septic System. It is a plant that is found throughout much of North America. Poison ivy can be a shrub, vine or groundcover. It has sets of three glossy leaves with the stalk of the middle leaf longer than the outside leaves. It can cause an allergic reaction after contact with its active oil (urushiol). Reactions develop over a period of time, often taking hours or days. Reactions consist of itching and burning that develops into a reddish colored inflammation or non-colored bumps, followed by blistering. Treatment includes removal of all contaminated clothing and footwear without further skin contact and washing with a product such as Tecnu®. Antihistamine creams are often helpful, but severe cases may require prescription medication.

#### 4.2.7 Ladders

Over one-third of worker deaths in construction result from falls (https://www.osha.gov/oshstats/commonstats.html). Many falls occur because ladders are not placed or used safely. Ladder use will comply with OSHA 1926.1053 through 1926.1060, including the following safety requirements.

| STEP | PROPER LADDER USE PROCEDURE                                                                                                                                                                                                                                                                |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Choose the right ladder for the task including the proper type and size, with a sufficient rating for the task.                                                                                                                                                                            |
| 2    | <ul> <li>Check the condition of the ladder before climbing.</li> <li>Do not use a ladder with broken, loose, or cracked rails or rungs.</li> <li>Do not use a ladder with oil, grease, or dirt on its rungs.</li> <li>The ladder should have safety feet.</li> </ul>                       |
| 3    | Place the ladder on firm footing, with a four-to-one pitch.                                                                                                                                                                                                                                |
| 4    | Support the ladder by:  Tying it off;  Using ladder outrigger stabilizers; or  Have another worker hold the ladder at the bottom.  If another worker holds the ladder, they must:  Wear a hard hat;  Hold the ladder with both hands;  Brace the ladder with their feet; and  Not look up. |
| 5    | Keep the areas around the top and bottom of the ladder clear.                                                                                                                                                                                                                              |



HEALTH AND SAFETY PLAN
INTERIM REMEDIAL MEASURE WORK PLAN #2
820 LINDEN AVE BCP SITE #828200
820 LINDEN AVENUE
PITTSFORD, MONROE COUNTY, NEW YORK

Onsite Hazards

| STEP | PROPER LADDER USE PROCEDURE                                                                                                                                                                    |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6    | Extend the top of the ladder at least 36 inches (3 feet) above the landing.                                                                                                                    |
| 7    | Climb the ladder carefully - facing it - and use both hands.  Use a tool belt and hand-line to carry material to the top or bottom of the ladder.  Wear shoes in good repair with clean soles. |
| 8    | Inspect the ladder every day, prior to use, for the following problems:  Rail or rung damage  Broken feet  Rope or pulley damage  Rung lock defects or damage  Excessive dirt, oil, or grease  |
|      | If the ladder fails inspection, it must be removed from service and tagged with a "Do Not Use" sign.                                                                                           |

#### 4.2.8 Hand and Power Tools

All hand and power tools will be maintained in a safe condition and in good repair. Hand and power tools will be used in accordance with 29 CFR 1926, Subpart I (1926.300 through 1926.307). Neither Stantec nor its subcontractors will issue unsafe tools, and workers are not permitted to bring unsafe tools onsite. All tools will be used, inspected, and maintained in accordance with the manufacturer's instructions. Throwing tools or dropping tools to lower levels is prohibited. Hand and power tools will be inspected, tested, and determined to be in safe operating condition prior to each use. Periodic safety inspections of all tools will be conducted to assure that the tools are in good condition, all guards are in place, and the tools are being properly maintained. Any tool that fails an inspection will be immediately removed from service and tagged with a "Do Not Use" sign.

Workers using hand and power tools, who are exposed to falling, flying, abrasive, or splashing hazards will be required to wear personal protective equipment (PPE). Eye protection must always be worn when working onsite. Additional eye and face protection, such as safety goggles or face shields, may also be required when working with specific hand and power tools. Workers, when onsite, will wear hard hats. Additional hearing protection may be required when working with certain power tools. Workers using tools, which may subject their hands to an injury, such as cuts, abrasions, punctures, or burns, will wear protective gloves. Loose or frayed clothing, dangling jewelry, or loose long hair will not be worn when working with power tools, or near others operating machinery or equipment with moving or rotating parts.



HEALTH AND SAFETY PLAN
INTERIM REMEDIAL MEASURE WORK PLAN #2
820 LINDEN AVE BCP SITE #828200
820 LINDEN AVENUE
PITTSFORD, MONROE COUNTY, NEW YORK

Onsite Hazards

Electric power-operated tools will be double insulated or grounded, and equipped with an on/off switch. Guards must be provided to protect the operator and other nearby workers from hazards such as in-going nip points, rotating parts, flying chips, and sparks. All reciprocating, rotating and moving parts of tools will be guarded if contact is possible. Removing machine guards is prohibited.

Abrasive wheels will only be used on equipment provided with safety guards. Safety guards must be strong enough to withstand the effect of a bursting wheel. Abrasive wheels will not be operated in excess of their rated speed. Work or tool rests will not be adjusted while the wheel is in motion. All abrasive wheels will be closely inspected and ring tested before each use, and any cracked or damaged wheels will be removed immediately and destroyed.

Circular saws must be equipped with guards that completely enclose the cutting edges and have anti-kickback devices. All planer and joiner blades must be fully guarded. The use of cracked, bent, or otherwise defective parts is prohibited. Chain saws must have an automatic chain brake or kickback device. The worker operating the chain saw will hold it with both hands during cutting operations. A chain saw must never be used to cut above the operator's shoulder height. Chain saws will not be re-fueled while running or hot. Power saws will not be left unattended.

Only qualified workers will operate pneumatic tools, powder-actuated tools, and abrasive blasting tools.

#### 4.2.9 Manual Lifting

Back injuries are among the leading occupational injuries reported by industrial workers. Back injuries such as pulls and disc impairments can be reduced by using proper manual lifting techniques. Leg muscles are stronger than back muscles, so workers should lift with their legs and not with their back. Proper manual lifting techniques include the following steps:

| STEP | PROPER MANUAL LIFTING PROCEDURE                                                                                 |
|------|-----------------------------------------------------------------------------------------------------------------|
| 1    | Plan the lift before lifting the load. Take into consideration the weight, size, and shape of the load.         |
| 2    | Preview the intended path of travel and the destination to ensure there are no tripping hazards along the path. |



HEALTH AND SAFETY PLAN
INTERIM REMEDIAL MEASURE WORK PLAN #2
820 LINDEN AVE BCP SITE #828200
820 LINDEN AVENUE
PITTSFORD, MONROE COUNTY, NEW YORK

Onsite Hazards

| STEP | PROPER MANUAL LIFTING PROCEDURE                                                                                                                                                                   |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 3    | Wear heavy-duty work gloves to protect hands and fingers from rough edges, sharp corners, and metal straps. Also, keep hands away from potential pinch points between the load and other objects. |  |
| 4    | Get the load close to your ankles, and spread your feet apart. Keep your back straight and do not bend your back too far; instead bend at your knees.                                             |  |
| 5    | Feel the weight; test it.                                                                                                                                                                         |  |
| 6    | Lift the load smoothly, and let your legs do the lifting. If you must pivot, do not swing just the load; instead, move your feet and body with the load.                                          |  |

If the load is too heavy, then do not lift it alone. Lifting is always easier when performed with another person. Assistance should always be used when it is available, particularly when walking on uneven terrain, up/down stairs and near moving vehicles (or in other situations where sightlines are necessary).

#### 4.2.10 Lock-Out/Tag-Out

Before a worker sets up, services, or repairs a system where unexpected energizing (or release of stored energy) could occur and cause injury or electrocution, the circuits energizing the parts must be locked-out and tagged. Only authorized personnel will perform lock-out/tag-out procedures. All workers affected by the lock-out/tag-out will be notified prior to, and upon completion of, the lock-out/tag-out procedure.

Lock-out/tag-out devices must be capable of withstanding the environment to which they are exposed. Locks will be attached in such a way as to prevent other personnel from operating the equipment, circuit, or control, or from removing the lock unless they resort to excessive force. Tags will identify the worker who attached the device, and contain information, which warns against the hazardous condition that will result from the system's unauthorized start-up. Tags must be legible and understood by all affected workers and incidental personnel. The procedures for attaching and removing lock-out/tag-out devices include the steps outlined in the following table.

If maintenance work is required, the electrical supply to the equipment must be disconnected. Turning off the MAIN breaker using the disconnect switch will disconnect all power to the system.



HEALTH AND SAFETY PLAN
INTERIM REMEDIAL MEASURE WORK PLAN #2
820 LINDEN AVE BCP SITE #828200
820 LINDEN AVENUE
PITTSFORD, MONROE COUNTY, NEW YORK

Onsite Hazards

Once the disconnect switch has been turned off, the switch will be locked-out using the steps outlined below.

| STEP | LOCK-OUT/TAG-OUT PROCEDURES                                                                                                                                                                                                                                 |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | Disconnect the circuits and/or equipment to be worked on from all electrical energy sources.                                                                                                                                                                |
| 2    | Ensure that the system is completely isolated so that it cannot be operated at that shut-off point or at any other location.                                                                                                                                |
| 3    | Release stored electrical energy.                                                                                                                                                                                                                           |
| 4    | Block or relieve stored non-electrical energy.                                                                                                                                                                                                              |
| 5    | Place a lock on each shut-off or disconnect point necessary to isolate all potential energy sources. Place the lock in such a manner that it will maintain the shut-off/disconnect in the off position.                                                     |
| 6    | Place a tag on each shut-off or disconnect point. The tag must contain a statement prohibiting the unauthorized re-start or re-connect of the energy source and the removal of the tag, and the identity of the individual performing the tag and lock-out. |
| 7    | Workers who will be working on the system must place their own lock and tag on <u>each</u> lock-out point.                                                                                                                                                  |
| 8    | A qualified person must verify the system cannot be re-started or re-<br>connected, and de-energization of the system has been accomplished.                                                                                                                |
|      | Once the service or repairs have been made on the system:                                                                                                                                                                                                   |
| 9    | A qualified person will conduct an inspection of the work area, to verify that all tools, jumpers, shorts, grounds, etc., have been removed so that the system can then be safely re-energized.                                                             |
| 10   | All workers stand clear of the system.                                                                                                                                                                                                                      |
| 11   | Each lock and tag will be removed by the worker who attached it. If the worker has left the Site, then the lock and tag may be removed by a qualified person under the following circumstances:                                                             |
|      | <ul> <li>a. The qualified person ensures the worker who placed the lock and tag<br/>has left the Site; and</li> </ul>                                                                                                                                       |
|      | b. The qualified person ensures the worker is aware the lock and tag has been removed before the worker resumes work on-site.                                                                                                                               |

No Stantec personnel are permitted to perform lock-out/tag-out work without prior approval of the Project Manager and completion of required specialized training.



HEALTH AND SAFETY PLAN
INTERIM REMEDIAL MEASURE WORK PLAN #2
820 LINDEN AVE BCP SITE #828200
820 LINDEN AVENUE
PITTSFORD, MONROE COUNTY, NEW YORK

Site Work Zones

#### 4.2.11 Electrical Work

Site work involving electrical installation or energized equipment must be performed by a qualified electrician. All electrical work will be performed in accordance with the OSHA electrical safety requirements found in 29 CFR 1926.400 through 1926.449. Workers are not permitted to work near electrical power circuits unless the worker is protected against electric shock by de-energizing and grounding the circuit or by guarding or barricading the circuit and providing proper PPE. All electrical installations must comply with National Electric Code (NEC) regulations. All electrical wiring and equipment used must be listed by a nationally recognized testing laboratory.

All electrical circuits and equipment must be grounded in accordance with the NEC regulations. The path to ground from circuits, equipment, and enclosures will be permanent and continuous. Ground Fault Circuit Interrupters (GFCIs) are required on all 120-volt, single phase, 15- and 20-amp outlets in work areas that are not part of the permanent wiring of the building or structure. A GFCI is required when using an extension cord. GFCIs must be tested regularly with a GFCI tester.

Heavy-duty extension cords will be used; flat-type extension cords are not allowed. All extension cords must be the three-wire type, and designed for hard/extra hard usage. Electrical wire or cords passing through work areas must be protected from water and damage. Worn, frayed, or damaged cords and cables will not be used. Walkways and work spaces will be kept clear of cords and cables to prevent a tripping hazard. Extension cords and cables may not be secured with staples, hung from nails, or otherwise temporarily secured. Cords or cables passing through holes in covers, outlet boxes, etc., will be protected by bushings or fittings.

All lamps used in temporary lighting will be protected from accidental contact and breakage. Metal shell and paper-lined lamp holders are not permitted. Fixtures, lamp holders, lamps, receptacles, etc. are not permitted to have live parts. Workers must not have wet hands while plugging/unplugging energized equipment. Plugs and receptacles will be kept out of water (unless they are approved for submersion).

#### 5.0 SITE WORK ZONES

The following work zones will be delineated by Stantec during the investigation activities.



HEALTH AND SAFETY PLAN
INTERIM REMEDIAL MEASURE WORK PLAN #2
820 LINDEN AVE BCP SITE #828200
820 LINDEN AVENUE
PITTSFORD, MONROE COUNTY, NEW YORK

Site Monitoring and Action Levels

#### 5.1 CONTROL ZONES

Control boundaries will be established within the areas of Site activities. Examples of boundary zones include the exclusion and decontamination zone. All boundaries will be dynamic, and will be determined by the planned activities for the day. The FTL will record the names of any visitors to the Site.

#### 5.2 EXCLUSION ZONE

The controlled portion of the Site will be delineated to identify the exclusion zone, wherein a higher level of PPE may be required for entry during intrusive activities. The limits of the exclusion zone will be designated at each work location appropriately. A decontamination zone will be located immediately outside the entrance to the exclusion zone. All personnel leaving the exclusion zone will be required to adhere to proper decontamination procedures.

A "super exclusion" zone will be established around the borehole which will not be entered by Stantec personnel at any time during any active drilling, slambar, cathead, silica sand dumping, or other related activities. The drilling contractor will be directed to stop such activity when Stantec Site team members have a need to enter this zone.

#### 5.3 DECONTAMINATION ZONE

The decontamination zone will be located immediately outside the entrance to the exclusion zone on its apparent upwind side, if feasible, and will be delineated with caution tape and traffic cones as needed. This zone will contain the necessary decontamination materials for personnel decontamination. Decontamination procedures are outlined in Section 8.0 of this plan.

### 6.0 SITE MONITORING AND ACTION LEVELS

#### 6.1 SITE MONITORING

Field activities associated with drilling, excavation, and sampling may create potentially hazardous conditions due to the migration of contaminants into the breathing zone. These substances may be in the form of mists, vapors, dusts, or fumes that can enter the body through ingestion, inhalation, absorption, and direct dermal contact. Monitoring for VOCs and particulates will be performed as needed to ensure appropriate personal protective measures are employed during Site activities.



HEALTH AND SAFETY PLAN
INTERIM REMEDIAL MEASURE WORK PLAN #2
820 LINDEN AVE BCP SITE #828200
820 LINDEN AVENUE
PITTSFORD, MONROE COUNTY, NEW YORK

Site Monitoring and Action Levels

A separate CAMP has also been developed (Appendix C of the IRM Work Plan) to protect the surrounding neighborhood. It is assumed that continuous downwind particulate and VOC monitoring will be required during the test pit and drilling programs.

The following describes the conditions that will be monitored for during the investigation activities. All background and Site readings will be logged, and all instrument calibrations, etc., will be logged.

Organic Vapor Concentrations – During drilling, organic vapors will be monitored continuously in the breathing zone in the work area with a portable PID, such as a miniRAE Model 3000 with a 10.2 eV lamp. The instrument will be calibrated daily or as per the manufacturer's recommendations. PID readings will be used as the criteria for upgrading or downgrading protective equipment and for implementing additional precautions or procedures.

Split spoons or other soil sampling devices will be monitored using the PID at the time they are opened, with appropriate PPE to be used where soils exhibit measurable VOC levels.

Particulates - Stantec will perform particulate monitoring with an aerosol monitor (such as the TSI 8530 DustTrak II) within the outdoor work area to monitor personal exposures to particulates and to compare work area readings with downwind and upwind readings. The first readings of the day will be obtained prior to the commencement of work to obtain a daily background reading, and the instrument will be zeroed daily and calibrated to manufacturer's specifications. Readings will be manually recorded approximately every 30 minutes thereafter. If the work area particulate levels exceed the background levels by more than 0.15 mg/m³, the Contractor will be instructed to implement dust suppression measures.

#### 6.2 ACTION LEVELS

During the course of any activity, as long as sustained PID readings in the breathing zone are less than 5 ppm above background, Level D protection will be considered adequate. Level C protection will be required when VOC concentrations in ambient air in the work zone are sustained at levels exceeding 5 ppm total VOCs above background but remain below 50 ppm total VOCs. Onsite use of VOCs (including acetone, toluene, and methylene chloride) within one or both tenant spaces may contribute to background VOCs, particularly given assumed operation of ventilation/exhaust systems.

If concentrations in the work zone exceed 50 ppm for a period of 5 minutes or longer, work will immediately be terminated by the SSO. Options to allow continued drilling would then be discussed amongst all parties. Supplied-air respiratory protection is generally required for drilling



HEALTH AND SAFETY PLAN
INTERIM REMEDIAL MEASURE WORK PLAN #2
820 LINDEN AVE BCP SITE #828200
820 LINDEN AVENUE
PITTSFORD, MONROE COUNTY, NEW YORK

Personal Protective Equipment

to resume under these conditions. If Level B protection is not used, work may resume in Level C once monitoring concentrations have decreased below 50 ppm and conditions outlined in the CAMP are met.

If the monitoring of fugitive particulate levels within the work area exceeds 0.15 mg/m<sup>3</sup> above background, then the drilling Contractor will be directed to implement fugitive dust control measures which may include use of engineering controls such as water spray at the borehole.

#### 7.0 PERSONAL PROTECTIVE EQUIPMENT

Based on an evaluation of the hazards at the Site, PPE will be required for all personnel and visitors entering the drilling exclusion zone(s). It is anticipated that all Stantec oversight work will be performed in Level D. All contractors will be responsible for selection and implementation of PPE for their personnel.

#### 7.1 PROTECTIVE CLOTHING/RESPIRATORY PROTECTION

Protective equipment for each level of protection is as follows:

If PID readings are above 50 ppm, requiring an upgrade to Level B, Site work will be halted pending review of conditions and options by Stantec and other involved parties.

When PID readings range between 5 and 50 ppm, upgrade to Level C:

#### Level C

- Full face, air purifying respirator with organic/HEPA cartridge;
- Disposable chemical resistant one-piece suit (Tyvek or Saranex, as appropriate);
- Inner and outer chemical resistant gloves;
- Hard hat;
- Steel-toed boots; and
- Disposable booties.

When PID readings range between background and 5 ppm use Level D:

#### Level D

- Safety glasses;
- Steel-toed boots;



HEALTH AND SAFETY PLAN
INTERIM REMEDIAL MEASURE WORK PLAN #2
820 LINDEN AVE BCP SITE #828200
820 LINDEN AVENUE
PITTSFORD, MONROE COUNTY, NEW YORK

Decontamination

- Protective cotton, latex or leather gloves depending on Site duties;
- Hard hat; and
- Tyvek coverall (optional).

Stantec employees are expected to wear long sleeves when doing so would not pose an additional hazard (i.e. heat stress). Steel-toed boots should be approximately 6" to provide sufficient ankle protection. Safety vests should be worn for visibility; alternatively, bright colored shirts (safety yellow, for example) can be utilized when reflective properties of the safety vests are not necessary.

Caution will be taken to avoid direct skin contact with poison ivy, leaf litter, root systems, and the soil in contact with roots. Individuals known to be sensitive to poison ivy should not work in this area of the site. If sensitive individuals cannot avoid working in this area, after approval from their business center managing leader (BCML), a Tyvek like clothing with hood will be worn and a full-face respirator will be used to provide complete body coverage, regardless of PID readings. In the warmer months, KleenGuard, which is lighter than Tyvek, should be considered.

# 8.0 DECONTAMINATION

# 8.1 PERSONAL DECONTAMINATION

For complete decontamination, all personnel will observe the following procedures upon leaving the exclusion zone:

- 1. If worn, remove disposable outer boots and outer gloves and place in disposal drum.
- 2. If using a respirator, remove respirator, dispose of cartridges if necessary, and set aside for later cleaning.
- 3. If worn, remove disposable chemical resistant suits and dispose of articles in drum.
- 4. Remove and dispose of inner gloves.

Decontamination solutions shall be supplied at the decontamination zone. The wash solution will consist of water and detergent such as Alconox or trisodium phosphate (TSP), and the rinse solution will consist of clean water.

Contaminated wash solutions shall be collected in drums for disposal. All other disposable health and safety equipment will be decontaminated and disposed of as non-hazardous waste.



HEALTH AND SAFETY PLAN
INTERIM REMEDIAL MEASURE WORK PLAN #2
820 LINDEN AVE BCP SITE #828200
820 LINDEN AVENUE
PITTSFORD, MONROE COUNTY, NEW YORK

**Emergency Procedures** 

When working in the vicinity of poison ivy, washing with Tecnu® or a similar product subsequent to site work will be required.

# 8.2 EQUIPMENT DECONTAMINATION

If equipment is used during field activities, it will be properly washed or steam-cleaned prior to exiting the decontamination zone. Any needed pre- or post-use rinsing using solvents will be done wearing appropriate PPE.

When feasible, monitoring instruments will be either wrapped in plastic or carried by personnel not involved in handling contaminated materials, to reduce the need for decontamination. All instruments will be wet-wiped prior to removal from the work zone.

# 9.0 EMERGENCY PROCEDURES

The SSO will coordinate emergency procedures and will be responsible for initiating emergency response activities. Emergency communications at the Site will be conducted verbally and by means of an air or vehicle horn. All personnel will be informed of the location of the cellular telephone and horn. Three blasts on the air or vehicle horn will be used to signal distress.

# 9.1 LIST OF EMERGENCY CONTACTS

Ambulance: 911

Hospital: Highland Hospital: (585) 473-2200

Fire Department: 911

Police: 911

Poison Control Center: 1-800-222-1222

Utility Emergency: 911

#### 9.2 DIRECTIONS TO HOSPITAL

Maps presenting directions to the nearest hospital (Highland Hospital) and urgent care centers (UR Medicine Urgent Care centers on Monroe Avenue and Penfield Road) are provided in



HEALTH AND SAFETY PLAN
INTERIM REMEDIAL MEASURE WORK PLAN #2
820 LINDEN AVE BCP SITE #828200
820 LINDEN AVENUE
PITTSFORD, MONROE COUNTY, NEW YORK

**Emergency Procedures** 

Figure 2. The routes shall be reviewed at the initial Site safety meeting onsite and as needed for Site orientation if new personnel are added to the field team.

# 9.3 ACCIDENT INVESTIGATION AND REPORTING

The incident reporting form and protocol is included in Appendix C.

In the event that an accident or some other incident such as an explosion or exposure to toxic chemicals occurs during the course of the project, the Project Manager will be telephoned as soon as possible and receive a written notification within 24 hours (see Appendix C).

Where reportable injuries, hospitalizations or fatalities occur amongst Stantec personnel, the necessary document required by OSHA will be submitted within timeframes allowed by law.



HEALTH AND SAFETY PLAN
INTERIM REMEDIAL MEASURE WORK PLAN #2
820 LINDEN AVE BCP SITE #828200
820 LINDEN AVENUE
PITTSFORD, MONROE COUNTY, NEW YORK

# **TABLES**



# Table 1 Health and Safety Data for COCs

Interim Remedial Measure #2 Health and Safety Plan 820 Linden Ave Site 820 Linden Avenue, Pittsford, NY

| Compound                                                      | OSHA PEL <sup>1</sup>                 | NIOSH REL <sup>2</sup>      | ACGIH TLV <sup>3</sup>  | Physical Description                                                                                                    | Odor Threshold in<br>Air | Route of Exposure                                                                                                                                                     | Symptoms                                                                                                                                                                                                                                                                            | Target Organs                                                                    |
|---------------------------------------------------------------|---------------------------------------|-----------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| Acetone                                                       | 1000 ppm                              | 250 ppm                     | 250 ppm<br>500 ppm STEL | Colorless liquid with a fragrant, mint-like odor                                                                        | 20 ppm                   | Inhalation, ingestion,<br>skin and/or eye<br>contact                                                                                                                  | Irritation eyes, nose, throat; headache,<br>dizziness, central nervous system depression;<br>dermatitis                                                                                                                                                                             | Eyes, skin, respiratory system, central nervous system                           |
| Aroclor 1254/PCBs                                             | 0.5 mg/m³                             | 0.001 mg/m³                 | 0.05 mg/m³              | Colorless to pale-yellow,<br>viscous liquid or solid<br>(below 50°F) with a mild,<br>hydrocarbon odor                   | N/A                      | A Inhalation, skin absorption, ingestion, skin and/or eye contact Irritation eyes, chloracne; liver damage; reproductive effects; [potential occupational carcinogen] |                                                                                                                                                                                                                                                                                     | Skin, eyes, liver, reproductive system                                           |
| Coal tar pitch volatiles (Benzo(a)pyrene, Phenanthrene, etc.) | 0.2 mg/m <sup>3</sup>                 | 0.1 mg/m <sup>3</sup>       | 0.2 mg/m³               | Black or dark-brown amorphous residue.                                                                                  | N/A                      | Inhalation, skin and/or eye contact                                                                                                                                   | Dermatitis, bronchitis, [potential occupational carcinogen]                                                                                                                                                                                                                         | Respiratory system, skin, bladder, kidneys                                       |
| 1,1-dichloroethene<br>(1,1-DCE)                               | NE                                    | NE                          | 5 ppm                   | Colorless liquid or gas<br>(above 89°F) with a mild,<br>sweet, chloroform-like<br>odor                                  | 190 ppm                  | Inhalation, skin<br>absorption, ingestion,<br>skin and/or eye<br>contact                                                                                              | Irritation eyes, skin, throat; dizziness, headache,<br>nausea, dyspnea (breathing difficulty); liver,<br>kidney disturbance; pneumonitis; [potential<br>occupational carcinogen]                                                                                                    | Eyes, skin, respiratory system, central nervous system, liver, kidneys           |
| cis-1,2- dichloroethene<br>(cis-1,2-DCE)                      | 200 ppm                               | 200 ppm                     | 200 ppm                 | Colorless liquid (usually a<br>mixture of the cis & trans<br>isomers) with a slightly<br>acrid, chloroform-like<br>odor | 17 ppm                   | Inhalation, ingestion,<br>skin and/or eye<br>contact                                                                                                                  | Irritation eyes, respiratory system; central nervous system depression                                                                                                                                                                                                              | Eyes, respiratory system, central nervous system                                 |
| Freon 113                                                     | 1,000 ppm                             | 1,000 ppm                   | 1,000 ppm               | Colorless to water-white liquid with an odor like carbon tetrachloride at high concentrations.                          | N/A                      | Inhalation, ingestion,<br>skin and/or eye<br>contact                                                                                                                  | Irritation skin, throat, drowsiness, dermatitis;<br>central nervous system depression; In Animals:<br>cardiac arrhythmias, narcosis                                                                                                                                                 | Skin, heart, central nervous system,<br>cardiovascular system                    |
| Mercury                                                       | 0.1 mg/m <sup>3</sup>                 | 0.05 mg/m <sup>3</sup>      | 0.025 mg/m³             | Metal: Silver-white,<br>heavy, odorless liquid                                                                          | N/A                      | Inhalation, skin<br>absorption, ingestion,<br>skin and/or eye<br>contact                                                                                              | Irritation eyes, skin; cough, chest pain, dyspnea (breathing difficulty), bronchitis, pneumonitis; tremor, insomnia, irritability, indecision, headache, lassitude (weakness, exhaustion); stomatitis, salivation; gastrointestinal disturbance, anorexia, weight loss; proteinuria | Eyes, skin, respiratory system, central nervous<br>system, kidneys               |
| Methylene chloride                                            | 25 ppm<br>125 ppm STEL<br>12.5 ppm AL | NE                          | 50 ppm                  | Colorless liquid with a chloroform-like odor                                                                            | 250 ppm                  | Inhalation, skin<br>absorption, ingestion,<br>skin and/or eye<br>contact                                                                                              | Irritation eyes, skin; lassitude, drowsiness,<br>dizziness; numb, tingle limbs; nausea                                                                                                                                                                                              | Eyes, skin, cardiovascular system, central nervous system                        |
| Tetrachloroethene<br>(aka Perchloroethene [PCE])              | 100 ppm<br>200 ppm C                  | NE                          | 25 ppm<br>100 ppm STEL  | Colorless liquid with a mild chloroform-like odor                                                                       | 1 ppm                    | Inhalation, skin<br>absorption, ingestion,<br>skin and/or eye<br>contact                                                                                              | Irritation eyes, skin, nose, throat, respiratory system; nausea; flush face, neck; dizziness, incoordination; headache, drowsiness; skin erythema (skin redness); liver damage; [potential occupational carcinogen]                                                                 | Eyes, skin, respiratory system, liver, kidneys, central nervous system           |
| Toluene                                                       | 200 ppm TWA<br>300 ppm C              | 100 ppm TWA<br>150 ppm STEL | 20 ppm                  | Colorless liquid with a sweet, pungent, benzene-like odor                                                               | 7 4 nnm                  | Inhalation, skin<br>absorption, ingestion,<br>skin and/or eye<br>contact                                                                                              | Irritation eyes, nose; lassitude (weakness, exhaustion), confusion, euphoria, dizziness, headache; dilated pupils, lacrimation (discharge of tears); anxiety, muscle fatigue, insomnia; paresthesia; dermatitis; liver, kidney damage                                               | Eyes, skin, respiratory system, central nervous system, liver, kidneys           |
| 1,1,1-Trichloroethane<br>(1,1,1-TCA)                          | 350 ppm                               | 350 ppm                     | 350 ppm<br>450 ppm STEL | Colorless liquid with a mild, chloroform-like odor                                                                      | 120 ppm                  | Inhalation, ingestion,<br>skin and/or eye<br>contact                                                                                                                  | Irritation eyes, skin; headache, lassitude<br>(weakness, exhaustion), central nervous<br>system depression, poor equilibrium; dermatitis;<br>cardiac arrhythmias; liver damage                                                                                                      | Eyes, skin, central nervous system, cardiovascular system, liver                 |
| Trichloroethene<br>(TCE)                                      | 100 ppm<br>200 ppm C                  | 25 ppm                      | 10 ppm<br>25 ppm STEL   | Colorless liquid with a chloroform-like odor                                                                            | 28 ppm                   | Inhalation, skin<br>absorption, ingestion,<br>skin and/or eye<br>contact                                                                                              | Irritation eyes, skin; headache, visual disturbance, lassitude (weakness, exhaustion), dizziness, tremor, drowsiness, nausea, vomiting; dermatitis; cardiac arrhythmias, paresthesia; liver injury; [potential occupational carcinogen]                                             | Eyes, skin, respiratory system, heart, liver, kidneys,<br>central nervous system |



U:\190500898\05\_report\_deliv\deliverables\work\_plan\\IRMWP.2\3\_Appendices\HASP\Tables\parts\tbl1\_COC.xlsx

# Table 1 Health and Safety Data for COCs

Interim Remedial Measure #2 Health and Safety Plan 820 Linden Ave Site 820 Linden Avenue, Pittsford, NY

#### Abbreviations:

AL Action Level

C Ceiling limits are not to be exceeded during any part of the workday

mg/m3 milligrams per cubic meter

NE Not established N/A Not available ppm parts per million

STEL Short-Term Exposure Limit is a 15-min TWA

TWA Time-weighted average

#### Notes:

- 1. Occupational Safety and Health Administration (OSHA) Permissible Exposure Limit (PEL) for general industry. The OSHA PELs are 8-hour TWAs, unless otherwise noted.
- 2. National Institute for Occupational Safety and Health (NIOSH) Recommended Exposure Limit (REL) are based on 10-hour workdays during a 40-hour workweek.
- 3. American Conference for Governmental Industrial Hygenists (ACGIH) Threshold Limit Value (TLV). The ACGIH TLVs are 8-hr TWAs, unless otherwise noted.



190500898
U:\190500898\05\_report\_deliv\deliverables\work\_plan\\RMWP.2\3\_Appendices\HASP\Tables\parts\tbl1\_COC.xlsx

# Table 2 Exposure Pathways and First Aid Response for COCs

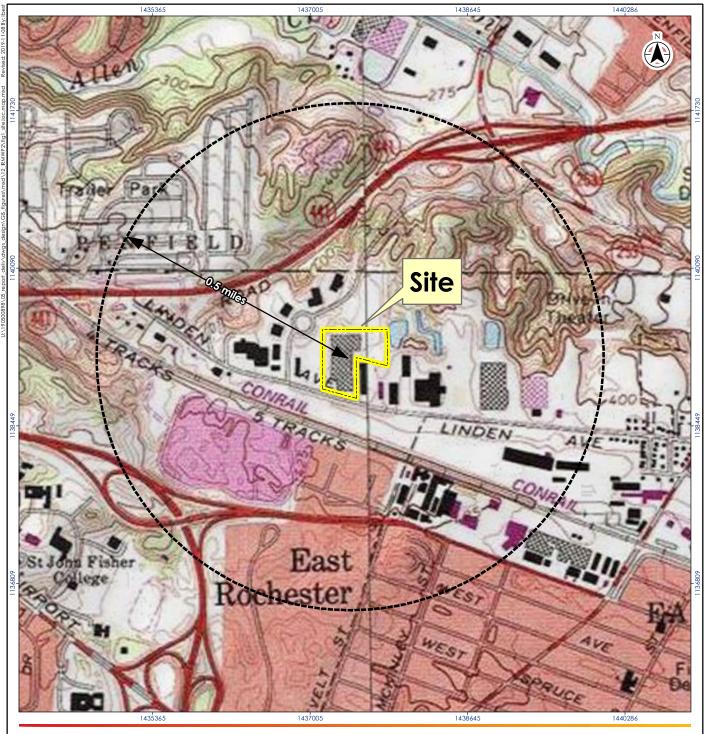
Interim Remedial Measure #2 Health and Safety Plan 820 Linden Ave Site 820 Linden Avenue, Pittsford, NY

| Substsance                     | Exposure Pathways | First Aid Instructions                                                                                                            |  |
|--------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|
|                                | Eye               | Irrigate immediately                                                                                                              |  |
| VOCs and SVOCs listed in Table | Dermal            | Soap wash promptly; or<br>Soap wash immediately (acetone and coal tar pitcl<br>volatiles); or<br>Soap flush immediately (1,1-DCE) |  |
|                                | Inhalation        | Respiratory support                                                                                                               |  |
|                                | Ingestion         | Medical attention immediately                                                                                                     |  |
|                                | Eye               | Irrigate immediately                                                                                                              |  |
| DCDs and AAs as an             | Dermal            | Soap wash promptly                                                                                                                |  |
| PCBs and Mercury               | Inhalation        | Respiratory support                                                                                                               |  |
|                                | Ingestion         | Medical attention immediately                                                                                                     |  |



# Table 3 Exposure Symptoms and First Aid for Heat Exposure

Interim Remedial Measure #2 Health and Safety Plan 820 Linden Ave 820 Linden Avenue, Pittsford, NY


| Heat Disorder   | Symptoms                                                                                                                                                   | First Aid Instructions                                                                                                                                                                                                                                                                        |  |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Heat Rash       | Red skin                                                                                                                                                   | Remove victim from sun; allow skin to dry; washing skin may further cool the victim.                                                                                                                                                                                                          |  |
| Heat Cramps     | Muscle cramps                                                                                                                                              | Move victim to cooler environment and lay down if possible; remove or lighten tight clothing; cool victim by sponging and fanning (do not cool worker too much); administer fluids (juice, non-caffeinated soft drinks or sports drinks are preferable) if victim is alert and not nauseated. |  |
| Heat Exhaustion | Heavy sweating; weakness;<br>cool to cold skin; pale and<br>clammy; thready pulse;<br>possible confusion; fainting;<br>vomiting.                           | Stop work immediately; remove victim from sun to cooler environment; lie down and loosen clothing; apply cool, wet cloths; fan or move to location with AC; sips of water; if nausea occurs, discontinue fluids; if vomiting continues, seek immediate medical attention.                     |  |
| Heat Stroke     | High body temperature; hot, dry skin (red mottled or bluish); rapid and strong pulse; confusion/disorientation; dizziness; possible loss of consciousness. | Stop work immediately; call 911; move victim to cooler place and remove heavy clothing; cool the victim by available means (ice packs, wet towels) with extreme caution; do not administer fluids or medication.                                                                              |  |



HEALTH AND SAFETY PLAN
INTERIM REMEDIAL MEASURE WORK PLAN #2
820 LINDEN AVE BCP SITE #828200
820 LINDEN AVENUE
PITTSFORD, MONROE COUNTY, NEW YORK

# **FIGURES**







# Legend



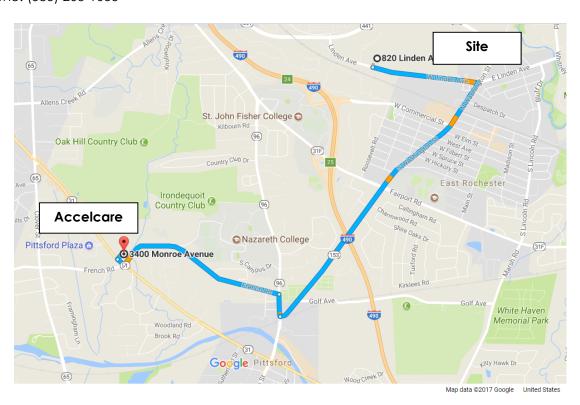
- Notes

  1. Coordinate System: NAD 1983 StatePlane New York
  West FIPS 3103 Feet
  2. ArcGIS Bosemaps: USA Topo Maps (main frame) and
  World Street Map (key map).

Disclaimer: Stantec assumes no responsibility for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and completeness of the data. The recipient releases Stantee, its officers, employees, consultants and agents, from any and all claims arising in any way from the content or provision of the data.






| Project Location          | 190500898                              |
|---------------------------|----------------------------------------|
| 820 Linden Avenue         | Prepared by LB on 2018-11-09           |
| Pittsford, Monroe Co., NY | Technical Review by KI on 2019-10-31   |
| Indep                     | pendent Review by MS/SRS on 2019-11-08 |
| Client/Project            |                                        |
| 820 Linden Ave Site       |                                        |
| BCP Site #C828200         |                                        |
| IRM Work Plan #2          |                                        |
| Figure No.                |                                        |
| 1                         |                                        |
| Title                     |                                        |
| illo                      |                                        |

**Site Location Map** 

# Figure 2 Map and Driving Directions to Medical Facilities

# <u>Urgent Care Option 1:</u> UR Medicine Urgent Care

Pittsford Colony Plaza 3400 Monroe Ave Rochester, NY, 14618 Phone: (585) 203-1055



#### 820 Linden Ave

Rochester, NY 14625

the adeast on Linden Ave toward Apple St

Turn right onto NY-153 S/N Washington St

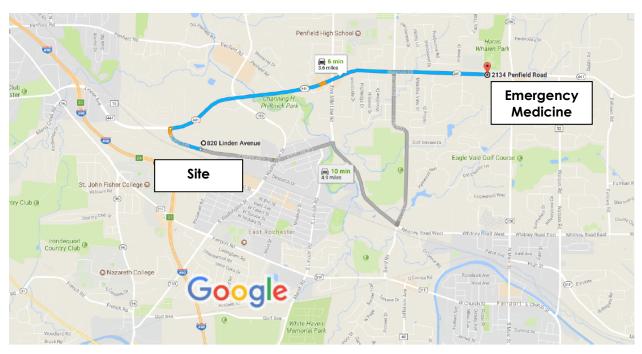
Turn right onto NY-96 N/N Main St
Continue to follow NY-96 N

Turn left onto French Rd

Turn right onto NY-31 W

Turn right onto NY-31 W

Turn right
Destination will be on the right


#### 3400 Monroe Ave

Rochester, NY 14618

# Figure 2 Map and Driving Directions to Medical Facilities

# <u>Urgent Care Option 2:</u> UR Medicine Urgent Care

2134 Penfield Rd Penfield, NY 14526 Phone: (585) 276-8280

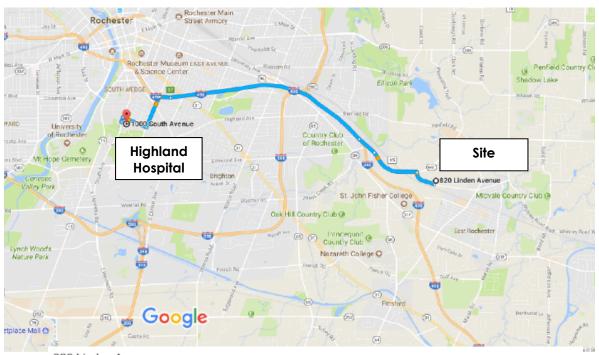


Map data ©2017 Google United States 2000 ft

# 820 Linden Ave

Rochester, NY 14625

# 2134 Penfield Rd


Penfield, NY 14526

# Figure 2 Map and Driving Directions to Medical Facilities

# **Hospital**:

# **Highland Hospital**

1000 South Ave Rochester, NY 14620 Phone: (585) 473-2200



820 Linden Ave Rochester, NY 14625

| Get o | on I- | 490 W in Brighton                                             |               |
|-------|-------|---------------------------------------------------------------|---------------|
| ţ     | 1.    | Head west on Linden Ave toward Linden Park                    | 3 min (1.6 m  |
| 4     | 2.    | Use any lane to turn left onto NY-441 W                       | 0.4m          |
| ٨     | 3.    | Use the right lane to take the Interstate 490 W ramp          | 0.9 m         |
|       |       |                                                               | 0.4m          |
| follo | w I-  | 490 W to S Goodman St in Rochester. Take exit 17 from I-490 W | 4 min (3.7 mi |
| ٨     | 4.    | Merge onto I-490 W                                            |               |
| r     | 5.    | Take exit 17 for Goodman St                                   | 3.5 m         |
|       |       |                                                               | 0.2 m         |
| ollo  | w S   | Goodman St and Rockingham St to South Ave                     | 5 min (1,1 mi |
| ٩     | 6.    | Turn left onto S Goodman St                                   |               |
| r÷    | 7.    | Turn right onto Rockingham St                                 | 0.6 п         |
| 4     | 8.    | Turn left onto South Ave                                      | 0.4 n         |
| -     |       |                                                               | 4461          |

# Appendix A

Safety Data Sheets



# SAFETY DATA SHEET

Creation Date 28-Apr-2009 Revision Date 24-May-2017 **Revision Number** 3

1. Identification

**Product Name Acetone** 

Cat No.: AC177170000; AC177170010; AC177170025; AC177170050;

AC177170100; AC177170250

**Synonyms** 2-Propanone

**Recommended Use** Laboratory chemicals.

Uses advised against Not for food, drug, pesticide or biocidal product use

Details of the supplier of the safety data sheet

Company

Fisher Scientific **Acros Organics** One Reagent Lane One Reagent Lane Fair Lawn, NJ 07410 Fair Lawn, NJ 07410

Tel: (201) 796-7100

**Emergency Telephone Number** 

For information **US** call: 001-800-ACROS-01 / Europe call: +32 14 57 52 11 Emergency Number US:001-201-796-7100 / Europe: +32 14 57 52 99 CHEMTREC Tel. No. US: 001-800-424-9300 / Europe: 001-703-527-3887

# 2. Hazard(s) identification

#### Classification

This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200)

Flammable liquids Category 2 Serious Eye Damage/Eye Irritation Category 2 Specific target organ toxicity (single exposure) Category 3

Target Organs - Central nervous system (CNS).

Specific target organ toxicity - (repeated exposure) Category 2

Target Organs - Kidney, Liver, spleen, Blood.

### **Label Elements**

# Signal Word

Danger

#### **Hazard Statements**

Highly flammable liquid and vapor Causes serious eye irritation May cause drowsiness or dizziness

May cause damage to organs through prolonged or repeated exposure



### **Precautionary Statements**

#### Prevention

Wash face, hands and any exposed skin thoroughly after handling

Do not breathe dust/fume/gas/mist/vapors/spray Use only outdoors or in a well-ventilated area

Keep away from heat/sparks/open flames/hot surfaces. - No smoking

Keep container tightly closed

Ground/bond container and receiving equipment

Use explosion-proof electrical/ventilating/lighting/equipment

Use only non-sparking tools

Take precautionary measures against static discharge

Wear protective gloves/protective clothing/eye protection/face protection

Keep cool

#### Response

Get medical attention/advice if you feel unwell

#### Inhalation

IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing

Call a POISON CENTER or doctor/physician if you feel unwell

#### Skir

IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower

#### **Eyes**

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing If eye irritation persists: Get medical advice/attention

#### Fire

In case of fire: Use CO2, dry chemical, or foam for extinction

# Storage

Store in a well-ventilated place. Keep container tightly closed

Store locked up

# Disposal

Dispose of contents/container to an approved waste disposal plant

#### Hazards not otherwise classified (HNOC)

Repeated exposure may cause skin dryness or cracking

# 3. Composition / information on ingredients

| Component | CAS-No  | Weight % |
|-----------|---------|----------|
| Acetone   | 67-64-1 | >95      |

# 4. First-aid measures

Eye Contact Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes.

Obtain medical attention.

**Skin Contact** Wash off immediately with plenty of water for at least 15 minutes. Obtain medical attention.

**Inhalation** Move to fresh air. If breathing is difficult, give oxygen. Get medical attention immediately if

symptoms occur.

**Ingestion** Do not induce vomiting. Obtain medical attention.

Most important symptoms/effects

Breathing difficulties. Symptoms of overexposure may be headache, dizziness, tiredness,

nausea and vomiting: May cause pulmonary edema

**Notes to Physician** Treat symptomatically

# 5. Fire-fighting measures

CO<sub>2</sub>, dry chemical, dry sand, alcohol-resistant foam. Water spray. Cool closed containers **Suitable Extinguishing Media** 

exposed to fire with water spray.

**Unsuitable Extinguishing Media** Water may be ineffective

-20 °C / -4 °F **Flash Point** 

Method -Closed cup

**Autoignition Temperature** 465 °C / 869 °F

**Explosion Limits** 

12.8 vol % Upper Lower 2.5 vol % **Oxidizing Properties** Not oxidising

Sensitivity to Mechanical Impact No information available Sensitivity to Static Discharge No information available

#### **Specific Hazards Arising from the Chemical**

Flammable. Risk of ignition. Containers may explode when heated. Vapors may form explosive mixtures with air. Vapors may travel to source of ignition and flash back.

#### **Hazardous Combustion Products**

Carbon monoxide (CO) Carbon dioxide (CO2) Formaldehyde Methanol

# **Protective Equipment and Precautions for Firefighters**

As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear. Thermal decomposition can lead to release of irritating gases and vapors.

| NFPA |
|------|
|------|

| Health | Flammability | Instability | Physical hazards |
|--------|--------------|-------------|------------------|
| 1      | 3            | 0           | N/A              |

#### Accidental release measures

**Personal Precautions** 

Use personal protective equipment. Ensure adequate ventilation. Remove all sources of ignition. Take precautionary measures against static discharges. Keep people away from and upwind of spill/leak. Avoid contact with skin, eyes and inhalation of vapors.

**Environmental Precautions** Should not be released into the environment.

Up

Methods for Containment and Clean Remove all sources of ignition. Take precautionary measures against static discharges. Soak up with inert absorbent material. Keep in suitable, closed containers for disposal. Use spark-proof tools and explosion-proof equipment.

# 7. Handling and storage

Handling

Do not breathe vapors or spray mist. Do not get in eyes, on skin, or on clothing. Wear personal protective equipment. Ensure adequate ventilation. Keep away from open flames, hot surfaces and sources of ignition. Take precautionary measures against static discharges. Use only non-sparking tools. Use explosion-proof equipment. To avoid ignition of vapors by static electricity discharge, all metal parts of the equipment must be grounded.

**Storage** Flammables area. Keep containers tightly closed in a dry, cool and well-ventilated place.

Keep away from heat and sources of ignition.

Revision Date 24-May-2017

Acetone

# 8. Exposure controls / personal protection

#### **Exposure Guidelines**

| Component | ACGIH TLV     | OSHA PEL                              | NIOSH IDLH                 | Mexico OEL (TWA)             |
|-----------|---------------|---------------------------------------|----------------------------|------------------------------|
| Acetone   | TWA: 250 ppm  | (Vacated) TWA: 750 ppm                | IDLH: 2500 ppm             | TWA: 1000 ppm                |
|           | STEL: 500 ppm | (Vacated) TWA: 1800 mg/m <sup>3</sup> | TWA: 250 ppm               | TWA: 2400 mg/m <sup>3</sup>  |
|           |               | (Vacated) STEL: 2400                  | TWA: 590 mg/m <sup>3</sup> | STEL: 1260 ppm               |
|           |               | mg/m³                                 |                            | STEL: 3000 mg/m <sup>3</sup> |
|           |               | (Vacated) STEL: 1000 ppm              |                            |                              |
|           |               | TWA: 1000 ppm                         |                            |                              |
|           |               | TWA: 2400 mg/m <sup>3</sup>           |                            |                              |

#### Legend

ACGIH - American Conference of Governmental Industrial Hygienists

OSHA - Occupational Safety and Health Administration

NIOSH IDLH: The National Institute for Occupational Safety and Health Immediately Dangerous to Life or Health

Engineering Measures Ensure adequate ventilation, especially in confined areas. Ensure that eyewash stations

and safety showers are close to the workstation location. Use explosion-proof

electrical/ventilating/lighting/equipment.

**Personal Protective Equipment** 

**Eye/face Protection** Wear appropriate protective eyeglasses or chemical safety goggles as described by

OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard

EN166.

**Skin and body protection**Wear appropriate protective gloves and clothing to prevent skin exposure.

Respiratory Protection Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European Standard

EN 149. Use a NIOSH/MSHA or European Standard EN 149 approved respirator if exposure limits are exceeded or if irritation or other symptoms are experienced.

**Hygiene Measures**Handle in accordance with good industrial hygiene and safety practice.

### 9. Physical and chemical properties

Physical State Liquid
Appearance Colorless
Odor sweet
Odor Threshold 19.8 ppm
PH 7

 Melting Point/Range
 -95 °C / -139 °F

 Boiling Point/Range
 56 °C / 132.8 °F

 Flash Point
 -20 °C / -4 °F

 Method Closed cup

**Evaporation Rate** 5.6 (Butyl Acetate = 1.0)

Flammability (solid,gas) Not applicable

Flammability or explosive limits

 Upper
 12.8 vol %

 Lower
 2.5 vol %

Vapor Pressure 247 mbar @ 20 °C

Vapor Density 2.0 Specific Gravity 0.790

Solubility Soluble in water
Partition coefficient; n-octanol/water No data available
Autoignition Temperature 465 °C / 869 °F

**Decomposition Temperature** > 4°C

Viscosity 0.32 mPa.s @ 20 °C

\_\_\_\_\_\_

Acetone

Molecular Formula C3 H6 O **Molecular Weight** 58.08 Refractive index 1.358 - 1.359

# 10. Stability and reactivity

**Reactive Hazard** None known, based on information available

Stability Stable under normal conditions.

Heat, flames and sparks. Incompatible products. Keep away from open flames, hot **Conditions to Avoid** 

surfaces and sources of ignition.

Strong oxidizing agents, Strong reducing agents, Strong bases, Peroxides, Halogenated **Incompatible Materials** 

compounds, Alkali metals, Amines

Hazardous Decomposition Products Carbon monoxide (CO<sub>2</sub>), Formaldehyde, Methanol

**Hazardous Polymerization** Hazardous polymerization does not occur.

**Hazardous Reactions** None under normal processing.

# 11. Toxicological information

#### **Acute Toxicity**

#### **Product Information**

**Component Information** 

|   | Component | LD50 Oral        | LD50 Dermal            | LC50 Inhalation     |
|---|-----------|------------------|------------------------|---------------------|
| Г | Acetone   | 5800 mg/kg (Rat) | > 15800 mg/kg (rabbit) | 76 mg/l, 4 h, (rat) |
|   |           |                  | > 7400 mg/kg (rat)     |                     |

**Toxicologically Synergistic** 

Carbon tetrachloride; Chloroform; Trichloroethylene; Bromodichloromethane; **Products** Dibromochloromethane; N-nitrosodimethylamine; 1,1,2-Trichloroethane; Styrene;

Acetonitrile, 2,5-Hexanedione; Ethanol; 1,2-Dichlorobenzene

Delayed and immediate effects as well as chronic effects from short and long-term exposure

Irritation Irritating to eyes and skin

Sensitization No information available

The table below indicates whether each agency has listed any ingredient as a carcinogen. Carcinogenicity

| Component | CAS-No  | IARC       | NTP        | ACGIH      | OSHA       | Mexico     |
|-----------|---------|------------|------------|------------|------------|------------|
| Acetone   | 67-64-1 | Not listed | Not listed | Not listed | Not listed | Not listed |

**Mutagenic Effects** No information available

No information available. **Reproductive Effects** No information available. **Developmental Effects** 

**Teratogenicity** No information available.

STOT - single exposure Central nervous system (CNS) Kidney Liver spleen Blood STOT - repeated exposure

**Aspiration hazard** No information available

Symptoms / effects, both acute and Symptoms of overexposure may be headache, dizziness, tiredness, nausea and vomiting:

delayed May cause pulmonary edema

No information available **Endocrine Disruptor Information** 

Revision Date 24-May-2017

Acetone

#### Other Adverse Effects

The toxicological properties have not been fully investigated.

# 12. Ecological information

#### **Ecotoxicity**

.

| Component | Freshwater Algae           | Freshwater Fish           | Microtox                 | Water Flea            |
|-----------|----------------------------|---------------------------|--------------------------|-----------------------|
| Acetone   | NOEC = 430 mg/l (algae; 96 | Oncorhynchus mykiss: LC50 | EC50 = 14500 mg/L/15 min | EC50 = 8800 mg/L/48h  |
|           | h)                         | = 5540 mg/l 96h           |                          | EC50 = 12700 mg/L/48h |
|           |                            | Alburnus alburnus: LC50 = |                          | EC50 = 12600 mg/L/48h |
|           |                            | 11000 mg/l 96h            |                          |                       |
|           |                            | Leuciscus idus: LC50 =    |                          |                       |
|           |                            | 11300 mg/L/48h            |                          |                       |
|           |                            | Salmo gairdneri: LC50 =   |                          |                       |
|           |                            | 6100 mg/L/24h             |                          |                       |

**Persistence and Degradability** 

Persistence is unlikely based on information available.

**Bioaccumulation/ Accumulation** 

No information available.

**Mobility** 

Will likely be mobile in the environment due to its volatility.

| Component | log Pow |  |  |
|-----------|---------|--|--|
| Acetone   | -0.24   |  |  |

# 13. Disposal considerations

**Waste Disposal Methods** 

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. Chemical waste generators must also consult local, regional, and national hazardous waste regulations to ensure complete and accurate classification.

|   | Component         | RCRA - U Series Wastes | RCRA - P Series Wastes |
|---|-------------------|------------------------|------------------------|
| Ī | Acetone - 67-64-1 | U002                   | -                      |

# 14. Transport information

DOT

UN-No UN1090
Proper Shipping Name ACETONE

Hazard Class 3
Packing Group

**TDG** 

UN-No UN1090
Proper Shipping Name ACETONE

Hazard Class 3
Packing Group ||

<u>IATA</u>

UN-No UN1090
Proper Shipping Name ACETONE

Hazard Class 3
Packing Group

IMDG/IMO

UN-No UN1090
Proper Shipping Name ACETONE

Hazard Class 3
Packing Group

# 15. Regulatory information

#### International Inventories

| Component TSCA DSL | NDSL EINECS ELINCS NLP | PICCS ENCS AICS IEC | SC KECL |
|--------------------|------------------------|---------------------|---------|
|--------------------|------------------------|---------------------|---------|

| Acetone | Х | Х | - | 200-662-2 | - | Χ | Χ | Χ | Х | Х |
|---------|---|---|---|-----------|---|---|---|---|---|---|

#### Legend:

- X Listed
- E Indicates a substance that is the subject of a Section 5(e) Consent order under TSCA.
- F Indicates a substance that is the subject of a Section 5(f) Rule under TSCA.
- N Indicates a polymeric substance containing no free-radical initiator in its inventory name but is considered to cover the designated polymer made with any free-radical initiator regardless of the amount used.
- P Indicates a commenced PMN substance
- R Indicates a substance that is the subject of a Section 6 risk management rule under TSCA.
- S Indicates a substance that is identified in a proposed or final Significant New Use Rule
- T Indicates a substance that is the subject of a Section 4 test rule under TSCA.
- XU Indicates a substance exempt from reporting under the Inventory Update Rule, i.e. Partial Updating of the TSCA Inventory Data Base Production and Site Reports (40 CFR 710(B).
- Y1 Indicates an exempt polymer that has a number-average molecular weight of 1,000 or greater.
- Y2 Indicates an exempt polymer that is a polyester and is made only from reactants included in a specified list of low concern reactants that comprises one of the eligibility criteria for the exemption rule.

## U.S. Federal Regulations

TSCA 12(b) Not applicable

SARA 313 Not applicable

#### SARA 311/312 Hazard Categories

Acute Health HazardYesChronic Health HazardYesFire HazardYesSudden Release of Pressure HazardNoReactive HazardNo

CWA (Clean Water Act) Not applicable

Clean Air Act Not applicable

**OSHA** Occupational Safety and Health Administration

Not applicable

#### **CERCLA**

This material, as supplied, contains one or more substances regulated as a hazardous substance under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302)

| Component | Hazardous Substances RQs | CERCLA EHS RQs |  |
|-----------|--------------------------|----------------|--|
| Acetone   | 5000 lb                  | -              |  |

**California Proposition 65** 

This product does not contain any Proposition 65 chemicals

#### U.S. State Right-to-Know

Regulations

|   | Component | Massachusetts | New Jersey | Pennsylvania | Illinois | Rhode Island |
|---|-----------|---------------|------------|--------------|----------|--------------|
| I | Acetone   | X             | X          | X            | -        | X            |

#### **U.S. Department of Transportation**

Reportable Quantity (RQ): Y
DOT Marine Pollutant N
DOT Severe Marine Pollutant N

#### **U.S.** Department of Homeland Security

This product contains the following DHS chemicals:

| Component | DHS Chemical Facility Anti-Terrorism Standard |  |  |  |
|-----------|-----------------------------------------------|--|--|--|
| Acetone   | 2000 lb STQ                                   |  |  |  |

Other International Regulations

Revision Date 24-May-2017

Mexico - Grade Serious risk, Grade 3

16. Other information

Prepared By Regulatory Affairs

Thermo Fisher Scientific

Email: EMSDS.RA@thermofisher.com

 Creation Date
 28-Apr-2009

 Revision Date
 24-May-2017

 Print Date
 24-May-2017

**Revision Summary** This document has been updated to comply with the US OSHA HazCom 2012 Standard

replacing the current legislation under 29 CFR 1910.1200 to align with the Globally

Harmonized System of Classification and Labeling of Chemicals (GHS).

#### **Disclaimer**

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text

**End of SDS** 



# Safety Data Sheet Revision Date: 03/05/18

www.restek.com

2 Letter ISO country code/language code: US/EN

#### 1. IDENTIFICATION

Catalog Number / Product Name: 32011 / Aroclor® 1254 Standard

Company:

Address:

110 Benner Circle
Bellefonte, Pa. 16823

Phone#:

814-353-1300

Fax#: 814-353-1300 Fax#: 814-353-1300

Emergency#: 800-424-9300 (CHEMTREC) 703-527-3887 (Outside the US)

**Email:** www.restek.com

Revision Number: 12

**Intended use:** For Laboratory use only

#### 2. HAZARD(S)IDENTIFICATION

#### **Emergency Overview:**









GHS Hazard Symbols:

GHS Flammable Liquid Category 2
Classification: Skin Corrosion/Irritation Category 2

Specific Target Organ Systemic Toxicity (STOT) - Repeated Exposure Category 2

Hazardous to the aquatic environment - Chronic Category 2

Specific Target Organ Systemic Toxicity (STOT) - Single Exposure Category 3

GHS Signal Danger

Word:

GHS Hazard: Highly flammable liquid and vapour.

Causes skin irritation.

May cause drowsiness or dizziness.

May cause damage to organs through prolonged or repeated exposure.

Toxic to aquatic life with long lasting effects.

**GHS** 

**Precautions:** 

Safety Keep away from heat/sparks/open flames/hot surfaces. – No smoking.

**Precautions:** Ground/bond container and receiving equipment.

Use explosion-proof electrical/ventilation and lighting equipment.

Use only non-sparking tools.

Take precautionary measures against static discharge. Do not breathe dust/fume/gas/mist/vapours/spray. Wash hands and skin thoroughly after handling. Use only outdoors or in a well-ventilated area.

Avoid release to the environment.

Wear protective gloves/protective clothing/eye protection/face protection.

First Aid IF ON SKIN: Wash with plenty of soap and water.

Measures: IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower.

IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.

Call a POISON CENTER or doctor/physician if you feel unwell.

Specific treatment see section 4.

If skin irritation occurs: Get medical advice/attention.

Take off contaminated clothing and wash it before reuse.

In case of fire: Use extinguishing media in section 5 for extinction.

32011 / Aroclor 1254 Mix

Page 1 of 6

Collect spillage.

**Storage:** Store in a well-ventilated place. Keep container tightly closed.

Store in a well-ventilated place. Keep cool.

Store locked up.

**Disposal:** Dispose of contents/container according to section 13 of the SDS.

Single Exposure Specific target organ toxicity - Single exposure - STOT SE 3: H336 May cause drowsiness or dizziness.

Target Organs:

**Repeated** Specific target organ toxicity - Repeated exposure - STOT RE 2: H373 May cause damage to organs through prolonged or repeated exposure. (C >= 5 %; Minimum classification, No information to prove exclusion of certain

**Target Organs:** routes of exposure)

#### 3. COMPOSITION / INFORMATION ON INGREDIENT

| Chemical Name | CAS#       | EINEC #   | % Composition |  |
|---------------|------------|-----------|---------------|--|
| hexane        | 110-54-3   | 203-777-6 | 99.9          |  |
| aroclor® 1254 | 11097-69-1 |           | 0.1           |  |

#### 4. FIRST-AID MEASURES

**Inhalation:** Remove to fresh air. If breathing is difficult, have a trained individual administer oxygen.

Eyes: Flush eyes with plenty of water for at least 20 minutes retracting eyelids often. Tilt the head to

prevent chemical from transferring to the uncontaminated eye. Get immediate medical

attention.

Skin Contact: Wash with soap and water. Remove contaminated clothing and launder. Get medical

attention if irritation develops or persists.

**Ingestion:** Do not induce vomiting and seek medical attention immediately. Drink two glasses of water

or milk to dilute. Provide medical care provider with this SDS.

#### 5. FIRE- FIGHTING MEASURES

Extinguishing Media: Use alcohol resistant foam, carbon dioxide, or dry chemical extinguishing

agents. Water spray or fog may also be effective for extinguishing if swept across the base of the fire. Water can also be used to absorb heat

and keep exposed material from being damaged by fire.

Fire and/or Explosion Hazards: Vapors may be ignited by heat, sparks, flames or other sources of

ignition at or above the low flash point giving rise to a Class B fire. Vapors are heavier than air and may travel to a source of ignition and

flash back

Fire Fighting Methods and Protection: Do not enter fire area without proper protection including self-contained

toxic breathing apparatus and full protective equipment. Fight fire from a safe distance and a protected location due to the potential of hazardous vapors and decomposition products. Flammable component(s) of this material may be lighter than water and burn while floating on the surface. Use water spray/fog for cooling. Flammable component(s) of this

material may be lighter than water and burn while floating on the surface.

Hazardous Combustion Products: Carbon dioxide, Carbon monoxide

#### 6. ACCIDENTAL RELEASE MEASURES

**Personal Precautions and Equipment:** Exposure to the spilled material may be irritating or harmful. Follow

personal protective equipment recommendations found in Section 8 of this SDS. Additional precautions may be necessary based on special circumstances created by the spill including; the material spilled, the quantity of the spill, the area in which the spill occurred. Also consider the

expertise of employees in the area responding to the spill.

Methods for Clean-up: Prevent the spread of any spill to minimize harm to human health and the

environment if safe to do so. Wear complete and proper personal protective equipment following the recommendation of Section 8 at a minimum. Dike with suitable absorbent material like granulated clay. Gather and store in a sealed container pending a waste disposal

evaluation.

#### 7. HANDLING AND STORAGE

**Handling Technical Measures and Precautions:** Harmful or irritating material. Avoid contacting and avoid

breathing the material. Use only in a well ventilated area. Use

spark-proof tools and explosion-proof equipment

**Storage Technical Measures and Conditions:** Store in a cool dry ventilated location. Isolate from

incompatible materials and conditions. Keep container(s)

closed. Keep away from sources of ignition

#### 8. EXPOSURE CONTROLS / PERSONAL PROTECTION

**United States:** CAS No. **Chemical Name IDLH ACGIH STEL ACGIH TLV-TWA OSHA Exposure** Limit hexane 110-54-3 1100 ppm 1000 ppm 50 ppm TWA 500 ppm TWA; IDLH (10% 1800 mg/m3 TWA LEL) aroclor® 1254 11097-69-1 5 mg/m3 None Known 0.5 mg/m3 TWA 0.5 mg/m3 TWA **IDLH** 

Personal Protection:

**Engineering Measures:** Local exhaust ventilation is recommended when generating excessive levels of

vapours from handling or thermal processing.

**Respiratory Protection:** Respiratory protection may be required to avoid overexposure when handling this

product. General or local exhaust ventilation is the preferred means of protection.

Use a respirator if general room ventilation is not available or sufficient to

eliminate symptoms.

**Eve Protection:** Wear chemically resistant safety glasses with side shields when handling this

product. Do not wear contact lenses.

Wear protective gloves. Inspect gloves for chemical break-through and replace at Skin Protection:

> regular intervals. Clean protective equipment regularly. Wash hands and other exposed areas with mild soap and water before eating, drinking, and when

leaving work

#### 9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance, color: No data available

Odor: Mild **Physical State:** Liquid

Not applicable pH: Vapor Pressure: No data available Vapor Density: 2.97 (air = 1)**Boiling Point (°C):** 68.73 °C (HSDB) Melting Point (°C): -95 °C Melting Point

Flash Point (°F): -8

Flammability: Highly Flammable Extremely Flammable

Upper Flammable/Explosive Limit, % in air: No data available Lower Flammable/Explosive Limit, % in air: No data available Autoignition Temperature (°C): No data available deg C **Decomposition Temperature (°C):** No data available Specific Gravity: 0.672 g/cm3 at 15 °C **Evaporation Rate:** No data available **Odor Threshold:** No data available Solubility: Negligible: 0-1%

Partition Coefficient: n-octanol in water: No data available

VOC % by weight:

Molecular Weight: No data available

# 10. STABILITY AND REACTIVITY

Stability: Stable under normal conditions.

**Conditions to Avoid:** None known.

Materials to Avoid / Chemical Incompatiability: Strong oxidizing agents **Hazardous Decomposition Products:** No data available

#### 11. TOXICOLOGICAL INFORMATION

Routes of Entry: Inhalation Contact Absorption Ingestion Target Organs Potentially Affected By Exposure: Eyes, Central nervous system stimulation,

32011 / Aroclor 1254 Mix Page 3 of 6 Respiratory Tract, Skin, Peripheral Nervous System

Chemical Interactions That Change Toxicity: None Known

Immediate (Acute) Health Effects by Route of Exposure:

Inhalation Irritation: Can cause severe respiratory irritation, dizziness, weakness, fatigue, nausea,

headache and possible unconsciousness.

Skin Contact: Can cause moderate skin irritation, defatting, and dermatitis. Not likely to cause

permanent damage.

Skin Absorption: May cause irritation and minor systemic damage. Harmful if absorbed through

the skin.

Eye Contact: Can cause moderate irritation, tearing and reddening, but not likely to

permanently injure eye tissue.

**Ingestion Irritation:** Irritating to mouth, throat, and stomach. Can cause abdominal discomfort,

nausea, vomiting and diarrhea. Harmful if swallowed.

Ingestion Toxicity: Toxic if swallowed. May cause target organ failure and/or death.

**Long-Term (Chronic) Health Effects:** 

Carcinogenicity: No data.

Reproductive and Developmental Toxicity: No data available to indicate product or any components

present at greater than 0.1% may cause birth defects.

Inhalation:

Upon prolonged and/or repeated exposure, can cause

severe respiratory irritation, dizziness, weakness, fatigue, nausea, headache and possible unconsciousness.

Upon prolonged or repeated contact, can cause

moderate skin irritation, defatting, and dermatitis. Not

likely to cause permanent damage.

**Skin Absorption:** Upon prolonged or repeated exposure, harmful if

absorbed through the skin. May cause minor systemic

damage.

**Component Toxicological Data:** 

NIOSH:

**Skin Contact:** 

Chemical Name CAS No. LD50/LC50

Aroclor 1254 11097-69-1 Oral LD50 Rat 1010 mg/kg

n-Hexane 110-54-3 Dermal LD50 Rabbit 3000 mg/kg; Inhalation

LC50 Rat 48000 ppm 4 h; Oral LD50 Rat 25

g/kg

**Component Carcinogenic Data:** 

OSHA:

Chemical Name CAS No.

Aroclor 1254 11097-69-1 Present

ACGIH:

Chemical Name CAS No.

Chlorodiphenyl (54% chlorine) 11097-69-1 A3 - Confirmed Animal Carcinogen with

Unknown Relevance to Humans

Page 4 of 6

NIOSH:

Chemical Name CAS No.

Chlorodiphenyl (54% chlorine) 11097-69-1 potential occupational carcinogen

NTP:

Chemical Name CAS No.

No data available

IARC:

Chemical Name CAS No. Group No.

12. ECOLOGICAL INFORMATION

Overview: Moderate ecological hazard. This product may be dangerous

to plants and/or wildlife.

Mobility:No dataPersistence:No dataBioaccumulation:No dataDegradability:No data

Ecological Toxicity Data: No data available

32011 / Aroclor 1254 Mix

#### 13. DISPOSAL CONSIDERATIONS

Waste Description of Spent Product: Spent or discarded material is a hazardous waste. Mixing

spent or discarded material with other materials may render the mixture hazardous. Perform a hazardous

waste determination on mixtures.

Disposal Methods: Dispose of by incineration following Federal, State, Local,

or Provincial regulations.

Waste Disposal of Packaging: Comply with all Local, State, Federal, and Provincial

Environmental Regulations.

#### 14. TRANSPORTATION INFORMATION

**United States:** 

DOT Proper Shipping Name:
UN Number:
UN1208
Hazard Class:
Packing Group:
Hexanes
UN1208
II

International:

IATA Proper Shipping Name:HexanesUN Number:UN1208Hazard Class:3Packing Group:II

Marine Pollutant: Yes

| Chemical Name | CAS#     | Marine Pollutant | Severe Marine<br>Pollutant |
|---------------|----------|------------------|----------------------------|
| hexane        | 110-54-3 | Υ                | N                          |

#### 15. REGULATORY INFORMATION

| United States:<br>Chemical Name | CAS#       | CERCLA | SARA 313 | SARA EHS<br>313 | TSCA |
|---------------------------------|------------|--------|----------|-----------------|------|
| hexane                          | 110-54-3   | Χ      | Χ        | -               | Χ    |
| aroclor® 1254                   | 11097-69-1 | Χ      | -        | -               | -    |

The following chemicals are listed on CA Prop 65:

State Right To Know Listing:

| Chemical Name | CAS#       | New Jersey | Massachusetts | Pennsylvania | California |
|---------------|------------|------------|---------------|--------------|------------|
| hexane        | 110-54-3   | Χ          | Χ             | Χ            | -          |
| aroclor® 1254 | 11097-69-1 | -          | X             | Χ            | Χ          |

#### 16. OTHER INFORMATION

Prior Version Date: 09/20/16

Other Information: Any changes to the SDS compared to previous versions are marked by a vertical

line in front of the concerned paragraph.

References: No data available

**Disclaimer:** Restek Corporation provides the descriptions, data and information contained

herein in good faith but makes no representation as to its comprehensiveness or accuracy. It is provided for your guidance only. Because many factors may affect processing or application/use, Restek Corporation recommends you perform an assessment to determine the suitability of a product for your particular purpose prior to use. No warranties of any kind, either expressed or implied, including fitness for a particular purpose, are made regarding products described, data or information set forth. In no case shall the descriptions, information, or data provided be considered a part of our terms and conditions of sale. Further, the descriptions, data and information furnished hereunder are given gratis. No obligation or liability for the description, data and information given are assumed. All such being given

and accepted at your risk.



# Safety Data Sheet Revision Date: 08/01/19

www.restek.com

2 Letter ISO country code/language code: US/EN

#### 1. IDENTIFICATION

Catalog Number / Product Name: 31270 / Benzo(a)anthracene Standard

Company:

Address:

Restek Corporation

110 Benner Circle
Bellefonte, Pa. 16823

Phone#:

814-353-1300

 Phone#:
 814-353-1300

 Fax#:
 814-353-1309

Emergency#: 800-424-9300 (CHEMTREC) 703-527-3887 (Outside the US)

**Email:** www.restek.com

Revision Number: 12

**Intended use:** For Laboratory use only

#### 2. HAZARD(S)IDENTIFICATION

#### **Emergency Overview:**









GHS Hazard Symbols:

Carcinogenicity Category 1B

Classification: Specific Target Organ Systemic Toxicity (STOT) - Single Exposure Category 1

Flammable Liquid Category 2

Hazardous to the aquatic environment - Acute Category 2 Hazardous to the aquatic environment - Chronic Category 2

Acute Toxicity - Dermal Category 3 Acute Toxicity - Oral Category 3

**GHS Signal** 

Word:

**GHS** 

Danger

GHS Hazard: Highly flammable liquid and vapour.

Toxic if swallowed or in contact with skin.

May cause cancer.

Causes damage to organs. Toxic to aquatic life..

Toxic to aquatic life with long lasting effects.

**GHS** 

**Precautions:** 

**Safety** Obtain special instructions before use.

**Precautions:** Do not handle until all safety precautions have been read and understood.

Keep away from heat/sparks/open flames/hot surfaces. – No smoking.

Keep container tightly closed.

Ground/bond container and receiving equipment.

Use explosion-proof electrical/ventilation and lighting equipment.

Use only non-sparking tools.

Take precautionary measures against static discharge. Do not breathe dust/fume/gas/mist/vapours/spray. Wash hands and skin thoroughly after handling. Do not eat, drink or smoke when using this product.

Avoid release to the environment.

Wear protective gloves/protective clothing/eye protection/face protection.

First Aid IF SWALLOWED: Immediately call a POISON CENTER/doctor/....

**Measures:** IF ON SKIN: Wash with plenty of soap and water.

IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower.

IF exposed: Call a POISON CENTER or doctor/physician. IF exposed or concerned: Get medical advice/attention.

Call a POISON CENTER or doctor/physician if you feel unwell.

Specific treatment see section 4.

Rinse mouth.

Take off immediately all contaminated clothing and wash it before reuse.

In case of fire: Use extinguishing media in section 5 for extinction.

Collect spillage.

**Storage:** Keep container tightly closed.

Store in a well-ventilated place. Keep cool.

Store locked up.

**Disposal:** Dispose of contents/container according to section 13 of the SDS.

Single Exposure Target Organs: Specific target organ toxicity - Single exposure - STOT SE 1: H370 Causes damage to organs. (C >= 10 %; No information to prove exclusion of certain routes of exposure); Specific target organ toxicity - Single exposure - STOT SE 2: H371 May cause damage to organs. (3 % <= C <10 %; Concentration limits for acute toxicity cannot

be translated into GHS from the DSD especially when minimum classifications are given)

**Repeated** No data available

Exposure Target Organs:

#### 3. COMPOSITION / INFORMATION ON INGREDIENT

| Chemical Name       | CAS#    | EINEC #   | % Composition |
|---------------------|---------|-----------|---------------|
| methanol            | 67-56-1 | 200-659-6 | 99.9          |
| benz (a) anthracene | 56-55-3 | 200-280-6 | 0.1           |

#### 4. FIRST-AID MEASURES

Inhalation: Remove to fresh air. If breathing is difficult, have a trained individual administer oxygen. If not

breathing, give artificial respiration and have a trained individual administer oxygen. Get

medical attention immediately

Eyes: Flush eyes with plenty of water for at least 20 minutes retracting eyelids often. Tilt the head to

prevent chemical from transferring to the uncontaminated eye. Get immediate medical

attention.

Skin Contact: Wash with soap and water. Remove contaminated clothing and launder. Get medical

attention if irritation develops or persists.

**Ingestion:** Do not induce vomiting and seek medical attention immediately. Drink two glasses of water

or milk to dilute. Provide medical care provider with this SDS.

#### 5. FIRE- FIGHTING MEASURES

**Extinguishing Media:** Use alcohol resistant foam, carbon dioxide, or dry chemical extinguishing

agents. Water may be ineffective but water spray can be used extinguish a fire if swept across the base of the flames. Water can absorb heat and

keep exposed material from being damaged by fire.

Fire and/or Explosion Hazards: Vapors may be ignited by sparks, flames or other sources of ignition if

material is above the flash point giving rise to a fire (Class B). Vapors are heavier than air and may travel to a source of ignition and flash back.

Fire Fighting Methods and Protection: Do not enter fire area without proper protection including self-contained

breathing apparatus and full protective equipment. Fight fire from a safe distance and a protected location due to the potential of hazardous vapors and decomposition products. Flammable component(s) of this material may be lighter than water and burn while floating on the surface.

Hazardous Combustion Products: Carbon dioxide, Carbon monoxide

#### 6. ACCIDENTAL RELEASE MEASURES

**Personal Precautions and Equipment:** 

Exposure to the spilled material may be severely irritating or toxic. Follow personal protective equipment recommendations found in Section 8 of this SDS. Personal protective equipment needs must be evaluated based on information provided on this sheet and the special circumstances created by the spill including; the material spilled, the quantity of the spill, the area in which the spill occurred, and the expertise of employees in the

area responding to the spill. Never exceed any occupational exposure

limits.

Methods for Clean-up: Prevent the spread of any spill to minimize harm to human health and the

environment if safe to do so. Wear complete and proper personal protective equipment following the recommendation of Section 8 at a minimum. Dike with suitable absorbent material like granulated clay. Gather and store in a sealed container pending a waste disposal

evaluation.

#### 7. HANDLING AND STORAGE

**Handling Technical Measures and Precautions:** Toxic or severely irritating material. Avoid contacting and avoid

breathing the material. Use only in a well ventilated area. Use

spark-proof tools and explosion-proof equipment

**Storage Technical Measures and Conditions:** Store in a cool dry ventilated location. Isolate from

incompatible materials and conditions. Keep container(s)

closed. Keep away from sources of ignition

#### 8. EXPOSURE CONTROLS / PERSONAL PROTECTION

| United States:<br>Chemical Name | CAS No. | IDLH               | ACGIH STEL      | ACGIH TLV-TWA   | OSHA Exposure<br>Limit        |
|---------------------------------|---------|--------------------|-----------------|-----------------|-------------------------------|
| methanol                        | 67-56-1 | 6000 ppm<br>IDLH   | 250 ppm<br>STEL | 200 ppm TWA     | 200 ppm TWA; 260<br>mg/m3 TWA |
| benz (a) anthracene             | 56-55-3 | Not<br>established | None Known      | Not established | No data available             |

Personal Protection:

**Engineering Measures:** Local exhaust ventilation is recommended when generating excessive levels of

vapours from handling or thermal processing.

**Respiratory Protection:** Respiratory protection may be required to avoid overexposure when handling this

product. General or local exhaust ventilation is the preferred means of protection. Use a respirator if general room ventilation is not available or sufficient to eliminate symptoms. If an exposure limit is exceeded or if an operator is experiencing symptoms of inhalation overexposure as explained in Section 3,

provide respiratory protection.

**Eve Protection:** Wear chemically resistant safety glasses with side shields when handling this

product. Do not wear contact lenses.

**Skin Protection:** Wear protective gloves. Inspect gloves for chemical break-through and replace at

regular intervals. Clean protective equipment regularly. Wash hands and other exposed areas with mild soap and water before eating, drinking, and when

leaving work

#### 9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance, color: No data available

Odor: Mild

**Physical State:** No data available pH: Not applicable Vapor Pressure: No data available Vapor Density: 1.1 (air = 1)

438 °C Boiling Point (at 1013.25 hPa) 64.7 °C at 760 **Boiling Point (°C):** 

mmHg (HSDB)

-98 °C Melting Point (°C): Flash Point (°F): 52

Flammability: Highly Flammable

Upper Flammable/Explosive Limit, % in air: 36 Lower Flammable/Explosive Limit, % in air: 6

Autoignition Temperature (°C): 464 deg C **Decomposition Temperature (°C):** No data available

Specific Gravity: 0.791 - 0.792 g/cm3 at 20 °C

**Evaporation Rate:** No data available Odor Threshold: No data available Solubility: Moderate: 50-99%

Partition Coefficient: n-octanol in water: No data available

VOC % by weight: 99.9 **Molecular Weight:** 32.04

#### 10. STABILITY AND REACTIVITY

Stability: Stable under normal conditions.

Conditions to Avoid: None known.

Materials to Avoid / Chemical Incompatiability: Strong oxidizing agents

Hazardous Decomposition Products: Carbon dioxide Carbon monoxide

11. TOXICOLOGICAL INFORMATION

Routes of Entry: Inhalation, Skin Contact, Eye Contact, Ingestion

Target Organs Potentially Affected By Exposure: Eyes, Central nervous system stimulation, Skin, GI

Tract, Respiratory Tract

Chemical Interactions That Change Toxicity: None Known

Immediate (Acute) Health Effects by Route of Exposure:

Inhalation Irritation: Can cause moderate respiratory irritation, dizziness, weakness, fatigue, nausea

and headache.

Inhalation Toxicity: Harmful! Can cause systemic damage (see "Target Organs)Methanol can cause

central nervous system depression and overexposure can cause damage to the

optic nerve resulting in visual impairment or blindness.

**Skin Contact:** Can cause moderate skin irritation, defatting, and dermatitis. Not likely to cause

permanent damage.

**Eye Contact:** Can cause moderate irritation, tearing and reddening, but not likely to

permanently injure eye tissue.

Ingestion Irritation: Irritating to mouth, throat, and stomach. Can cause abdominal discomfort,

nausea, vomiting and diarrhea. Highly toxic and may be fatal if swallowed.

Ingestion Toxicity: Toxic if swallowed. May cause target organ failure and/or death. May be fatal if

swallowed.

Long-Term (Chronic) Health Effects:

**Carcinogenicity:** Contains a probable or known human carcinogen.

**Reproductive and Developmental Toxicity:** No data available to indicate product or any components present at greater than 0.1% may cause birth defects.

Upon prolonged and/or repeated exposure, can cause moderate respiratory irritation, dizziness, weakness, fatigue, pauses and headache Harmfull Can cause systemic

nausea and headache.Harmful! Can cause systemic damage upon prolonged and/or repeated exposure (see

"Target Organs)

**Skin Contact:** Upon prolonged or repeated contact, can cause

moderate skin irritation, defatting, and dermatitis. Not

likely to cause permanent damage.

Ingestion: Toxic if swallowed. May cause target organ failure

and/or death.

**Component Toxicological Data:** 

NIOSH:

Inhalation:

Chemical Name CAS No. LD50/LC50

Methanol 67-56-1 Inhalation LC50 Rat 22500 ppm 8 h

**Component Carcinogenic Data:** 

OSHA:

Chemical Name CAS No.

Benz[a]anthracene 56-55-3 Present

ACGIH:

Chemical Name CAS No.

Benz[a]anthracene 56-55-3 A2 - Suspected Human Carcinogen

NIOSH:

Chemical Name CAS No.

No data available

NTP:

Chemical Name CAS No.

No data available

IARC:

Chemical Name CAS No. Group No.

Monograph 92 [2010]; 56-55-3

Supplement 7 [1987]; Monograph

32 [1983]

Group 2B

#### 12. ECOLOGICAL INFORMATION

Overview: Moderate ecological hazard. This product may be dangerous

to plants and/or wildlife.

Mobility:No dataPersistence:No dataBioaccumulation:No data

Degradability:Biodegrades slowly.Ecological Toxicity Data:No data available

#### 13. DISPOSAL CONSIDERATIONS

Waste Description of Spent Product: Spent or discarded material is a hazardous waste. Mixing

spent or discarded material with other materials may render the mixture hazardous. Perform a hazardous

waste determination on mixtures.

Dispose of by incineration following Federal, State, Local,

or Provincial regulations.

Waste Disposal of Packaging: Comply with all Local, State, Federal, and Provincial

Environmental Regulations.

#### 14. TRANSPORTATION INFORMATION

**United States:** 

**Disposal Methods:** 

DOT Proper Shipping Name:
UN Number:
Hazard Class:
Packing Group:

Methanol
UN1230
3
II

International:

IATA Proper Shipping Name:MethanolUN Number:UN1230Hazard Class:3(6.1)Packing Group:II

Marine Pollutant: No

| Chemical Name     | CAS# | Marine Pollutant | Severe Marine<br>Pollutant |
|-------------------|------|------------------|----------------------------|
| No data available |      |                  |                            |

#### 15. REGULATORY INFORMATION

| United States:<br>Chemical Name | CAS#    | CERCLA | SARA 313 | SARA EHS<br>313 | TSCA |
|---------------------------------|---------|--------|----------|-----------------|------|
| methanol                        | 67-56-1 | Χ      | Χ        | -               | Χ    |
| benz (a) anthracene             | 56-55-3 | Χ      | Χ        | -               | Χ    |

The following chemicals are listed on CA Prop 65:

| Chemical Name     | CAS#    | Regulation          |
|-------------------|---------|---------------------|
| Benz[a]anthracene | 56-55-3 | Prop 65 Cancer      |
| Methanol          | 67-56-1 | Prop 65 Devolop Tox |

State Right To Know Listing:

| Chemical Name       | CAS#    | New Jersey | Massachusetts | Pennsylvania | California |
|---------------------|---------|------------|---------------|--------------|------------|
| methanol            | 67-56-1 | Χ          | Х             | Х            | Χ          |
| benz (a) anthracene | 56-55-3 | X          | Х             | Χ            | Χ          |

#### 16. OTHER INFORMATION

**Prior Version Date:** 08/13/18

Other Information: Any changes to the SDS compared to previous versions are marked by a vertical

line in front of the concerned paragraph.

No data available

References: Disclaimer:

Restek Corporation provides the descriptions, data and information contained herein in good faith but makes no representation as to its comprehensiveness or accuracy. It is provided for your guidance only. Because many factors may affect processing or application/use, Restek Corporation recommends you perform an assessment to determine the suitability of a product for your particular purpose prior to use. No warranties of any kind, either expressed or implied, including fitness for a particular purpose, are made regarding products described, data or information set forth. In no case shall the descriptions, information, or data provided be considered a part of our terms and conditions of sale. Further, the descriptions, data and information furnished hereunder are given gratis. No obligation or liability for the description, data and information given are assumed. All such being given and accepted at your risk.

Revision date: 06/11/2017 Revision: 1



# SAFETY DATA SHEET

# Benzo[a]pyrene

According to Regulation (EC) No 1907/2006, Annex II, as amended. Commission Regulation (EU) No 2015/830 of 28 May 2015.

# SECTION 1: Identification of the substance/mixture and of the company/undertaking

## 1.1. Product identifier

Product name Benzo[a]pyrene

Product number FB18224

**Synonyms; trade names** Benzo[a]pyrene, 3,4-Benz[a]pyrene, 3,4-Benzopyrene

CAS number 50-32-8

**EU index number** 601-032-00-3 **EC number** 200-028-5

#### 1.2. Relevant identified uses of the substance or mixture and uses advised against

**Identified uses**Laboratory reagent. Manufacture of substances. Research and development.

# 1.3. Details of the supplier of the safety data sheet

Supplier Carbosynth Ltd

8&9 Old Station Business Park

Compton Berkshire RG20 6NE

UK

+44 1635 578444 +44 1635 579444 info@carbosynth.com

# 1.4. Emergency telephone number

Emergency telephone +44 7887 998634

#### SECTION 2: Hazards identification

# 2.1. Classification of the substance or mixture

#### Classification (EC 1272/2008)

Physical hazards Not Classified

**Health hazards** Skin Sens. 1 - H317 Muta. 1B - H340 Carc. 1B - H350 Repr. 1B - H360

**Environmental hazards** Aquatic Acute 1 - H400 Aquatic Chronic 1 - H410

2.2. Label elements

**EC number** 200-028-5

### **Pictogram**







Revision date: 06/11/2017 Revision: 1

# Benzo[a]pyrene

Signal word Danger

**Hazard statements** H317 May cause an allergic skin reaction.

H340 May cause genetic defects.

H350 May cause cancer.

H360 May damage fertility or the unborn child.

H410 Very toxic to aquatic life with long lasting effects.

**Precautionary statements** P201 Obtain special instructions before use.

P261 Avoid breathing dust.

P273 Avoid release to the environment.

P280 Wear protective gloves/ protective clothing/ eye protection/ face protection.

P302+P352 IF ON SKIN: Wash with plenty of water.

P308+P313 IF exposed or concerned: Get medical advice/ attention.
P333+P313 If skin irritation or rash occurs: Get medical advice/ attention.

#### 2.3. Other hazards

No data available.

# SECTION 3: Composition/information on ingredients

#### 3.1. Substances

Product name Benzo[a]pyrene

**EU index number** 601-032-00-3

**CAS number** 50-32-8 **EC number** 200-028-5

Chemical formula C<sub>20</sub>H<sub>12</sub>

#### SECTION 4: First aid measures

# 4.1. Description of first aid measures

**General information** Get medical advice/attention if you feel unwell.

**Inhalation** Remove person to fresh air and keep comfortable for breathing. If breathing stops, provide

artificial respiration. When breathing is difficult, properly trained personnel may assist affected person by administering oxygen. Get medical attention if symptoms are severe or persist.

**Ingestion** Never give anything by mouth to an unconscious person. Rinse mouth thoroughly with water.

Give plenty of water to drink. Get medical attention if symptoms are severe or persist.

**Skin contact** Remove contaminated clothing. Rinse with water. Continue to rinse for at least 15 minutes.

Wash contaminated clothing before reuse. Get medical attention if symptoms are severe or

persist.

Eye contact Rinse immediately with plenty of water. Continue to rinse for at least 15 minutes. Get medical

attention if symptoms are severe or persist.

# 4.2. Most important symptoms and effects, both acute and delayed

**General information** See Section 11 for additional information on health hazards.

#### 4.3. Indication of any immediate medical attention and special treatment needed

# SECTION 5: Firefighting measures

# 5.1. Extinguishing media

# Benzo[a]pyrene

Suitable extinguishing media Extinguish with alcohol-resistant foam, carbon dioxide, dry powder or water fog. Use fire-

extinguishing media suitable for the surrounding fire.

### 5.2. Special hazards arising from the substance or mixture

Specific hazards None known.

Hazardous combustion

products

Thermal decomposition or combustion products may include the following substances: Oxides

of carbon.

### 5.3. Advice for firefighters

Special protective equipment

for firefighters

Wear positive-pressure self-contained breathing apparatus (SCBA) and appropriate protective clothing. Firefighter's clothing conforming to European standard EN469 (including helmets, protective boots and gloves) will provide a basic level of protection for chemical incidents. Use protective equipment appropriate for surrounding materials.

### SECTION 6: Accidental release measures

# 6.1. Personal precautions, protective equipment and emergency procedures

Personal precautions Wear protective clothing as described in Section 8 of this safety data sheet. No action shall be

> taken without appropriate training or involving any personal risk. Do not touch or walk into spilled material. Avoid inhalation of dust and vapours. Provide adequate ventilation. Keep

unnecessary and unprotected personnel away from the spillage.

### 6.2. Environmental precautions

**Environmental precautions** Avoid discharge into drains or watercourses or onto the ground.

### 6.3. Methods and material for containment and cleaning up

Methods for cleaning up Wear protective clothing as described in Section 8 of this safety data sheet. Collect powder

> using special dust vacuum cleaner with particle filter or carefully sweep into suitable waste disposal containers and seal securely. Clear up spills immediately and dispose of waste safely. Flush contaminated area with plenty of water. Wash thoroughly after dealing with a

spillage. For waste disposal, see Section 13.

### 6.4. Reference to other sections

Reference to other sections For personal protection, see Section 8. See Section 11 for additional information on health

hazards. See Section 12 for additional information on ecological hazards. For waste disposal,

see Section 13.

### SECTION 7: Handling and storage

### 7.1. Precautions for safe handling

Usage precautions Wear protective clothing as described in Section 8 of this safety data sheet. Avoid exposure -

> obtain special instructions before use. Wash hands thoroughly after handling. Provide adequate ventilation. Avoid generation and spreading of dust. Avoid contact with skin and

eyes. Avoid inhalation of dust and vapours.

#### 7.2. Conditions for safe storage, including any incompatibilities

Storage precautions Keep container tightly closed. Store in a cool and well-ventilated place. Store away from

incompatible materials (see Section 10). Protect from light. Store at room temperature.

7.3. Specific end use(s)

Specific end use(s) The identified uses for this product are detailed in Section 1.2.

### SECTION 8: Exposure Controls/personal protection

### 8.1. Control parameters

### Occupational exposure limits

# Benzo[a]pyrene

Long-term exposure limit (8-hour TWA): OSHA 0.2 mg/m3 OSHA = Occupational Safety and Health Administration.

8.2. Exposure controls

Appropriate engineering

controls

Provide adequate ventilation. Observe any occupational exposure limits for the product or

ingredients.

**Eye/face protection** Unless the assessment indicates a higher degree of protection is required, the following

protection should be worn: Tight-fitting safety glasses. Personal protective equipment for eye

and face protection should comply with European Standard EN166.

Hand protection Wear protective gloves. To protect hands from chemicals, gloves should comply with

European Standard EN374.

Other skin and body

protection

Wear appropriate clothing to prevent repeated or prolonged skin contact.

Respiratory protection Respiratory protection complying with an approved standard should be worn if a risk

assessment indicates inhalation of contaminants is possible. Ensure all respiratory protective equipment is suitable for its intended use and is 'CE'-marked. Particulate filters should comply with European Standard EN143. Full face mask respirators with replaceable filter cartridges should comply with European Standard EN136. Half mask and quarter mask respirators with

replaceable filter cartridges should comply with European Standard EN140.

Environmental exposure

controls

Keep container tightly sealed when not in use.

### SECTION 9: Physical and Chemical Properties

### 9.1. Information on basic physical and chemical properties

Appearance Solid.

Colour Light (or pale). Yellow. to Green-yellow.

Odour No data available.

Odour threshold No data available.

**pH** No data available.

**Melting point** No data available.

**Initial boiling point and range** No data available.

Flash point No data available.

**Evaporation rate** No data available.

Flammability (solid, gas) No data available.

Upper/lower flammability or

explosive limits

No data available.

Vapour pressure >133 Pa @ 20°C

Vapour density 8.7

Relative density 1.35 g/cm<sup>3</sup>

Solubility(ies) Insoluble in water. Soluble in the following materials: Ether. Benzene. Toluene Xylene. Almost

insoluble in the following materials: Alcohols.

Partition coefficient log Pow: 5.97

# Benzo[a]pyrene

Auto-ignition temperatureNo data available.Decomposition TemperatureNo data available.ViscosityNo data available.Explosive propertiesNo data available.

9.2. Other information

Oxidising properties

Molecular weight 252.31

### SECTION 10: Stability and reactivity

### 10.1. Reactivity

**Reactivity** No data available.

10.2. Chemical stability

Stability Stable under the prescribed storage conditions.

No data available.

### 10.3. Possibility of hazardous reactions

Possibility of hazardous

reactions

No data available.

10.4. Conditions to avoid

Conditions to avoid No data available.

10.5. Incompatible materials

Materials to avoid Oxidising agents.

### 10.6. Hazardous decomposition products

Hazardous decomposition

Oxides of carbon.

products

# SECTION 11: Toxicological information

### 11.1. Information on toxicological effects

Acute toxicity - oral

Notes (oral LD<sub>50</sub>) Based on available data the classification criteria are not met.

Acute toxicity - dermal

Notes (dermal LD<sub>50</sub>) Based on available data the classification criteria are not met.

Acute toxicity - inhalation

Notes (inhalation LC<sub>50</sub>) Based on available data the classification criteria are not met.

Skin corrosion/irritation

Animal data Based on available data the classification criteria are not met.

Serious eye damage/irritation

Serious eye damage/irritation Based on available data the classification criteria are not met.

Respiratory sensitisation

**Respiratory sensitisation** Based on available data the classification criteria are not met.

Skin sensitisation

Skin sensitisation May cause skin sensitisation or allergic reactions in sensitive individuals.

# Benzo[a]pyrene

Germ cell mutagenicity

Genotoxicity - in vitro May cause genetic defects.

Carcinogenicity

Carcinogenicity May cause cancer.

IARC carcinogenicity IARC Group 1 Carcinogenic to humans.

Reproductive toxicity

Reproductive toxicity - fertility May damage fertility.

Reproductive toxicity -

development

May damage the unborn child.

Specific target organ toxicity - single exposure

**STOT - single exposure**Not classified as a specific target organ toxicant after a single exposure.

Specific target organ toxicity - repeated exposure

**STOT - repeated exposure** Not classified as a specific target organ toxicant after repeated exposure.

Aspiration hazard

Aspiration hazard Not relevant. Solid.

General information Avoid contact during pregnancy/while nursing. May damage fertility. May cause cancer after

repeated exposure. Risk of cancer depends on duration and level of exposure. May cause genetic defects. Dust may irritate the eyes and the respiratory system. The severity of the symptoms described will vary dependent on the concentration and the length of exposure.

**Inhalation** Dust may irritate the respiratory system. Frequent inhalation of dust over a long period of time

increases the risk of developing lung diseases.

**Ingestion** May cause sensitisation or allergic reactions in sensitive individuals.

Skin contact May cause skin sensitisation or allergic reactions in sensitive individuals. Prolonged contact

may cause dryness of the skin.

Eye contact Dust may cause slight irritation.

Route of exposure Ingestion Inhalation Skin and/or eye contact

**Target organs** No specific target organs known.

Medical considerations Skin disorders and allergies.

**RTECS #** DJ3675000

SECTION 12: Ecological Information

**Ecotoxicity** Very toxic to aquatic life with long lasting effects.

12.1. Toxicity

Acute aquatic toxicity

**LE(C)**<sub>50</sub>  $0.1 < L(E)C50 \le 1$ 

Acute toxicity - aquatic

invertebrates

EC<sub>50</sub>, 48 hour: 0.25 mg/l, Daphnia magna

Acute toxicity - aquatic plants EC<sub>50</sub>, 72 hour: 0.02 mg/l, Pseudokirchneriella subcapitata

EC<sub>50</sub>, 72 hour: 0.015 mg/l, Selenastrum capricornutum

Chronic aquatic toxicity

# Benzo[a]pyrene

**NOEC** 0.01 < NOEC ≤ 0.1

**Degradability** Non-rapidly degradable

### 12.2. Persistence and degradability

Persistence and degradability The degradability of the product is not known.

### 12.3. Bioaccumulative potential

Bioaccumulative potential No data available on bioaccumulation.

Partition coefficient log Pow: 5.97

12.4. Mobility in soil

Mobility No data available.

#### 12.5. Results of PBT and vPvB assessment

Results of PBT and vPvB

assessment

This product contains substances classified as PBT. This product contains substances

classified as vPvB.

12.6. Other adverse effects

Other adverse effects Very toxic to aquatic life with long lasting effects.

# SECTION 13: Disposal considerations

### 13.1. Waste treatment methods

General information Dispose of waste to licensed waste disposal site in accordance with the requirements of the

local Waste Disposal Authority. This material and its container must be disposed of in a safe way. When handling waste, the safety precautions applying to handling of the product should

be considered.

# **SECTION 14: Transport information**

### 14.1. UN number

UN No. (ADR/RID) 3077

**UN No. (IMDG)** 3077

**UN No. (ICAO)** 3077

**UN No. (ADN)** 3077

### 14.2. UN proper shipping name

Proper shipping name

ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (Benzo[a]pyrene)

(ADR/RID)

Proper shipping name (IMDG) ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (Benzo[a]pyrene)

Proper shipping name (ICAO) ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (Benzo[a]pyrene)

Proper shipping name (ADN) ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (Benzo[a]pyrene)

### 14.3. Transport hazard class(es)

ADR/RID class 9

ADR/RID classification code M7

ADR/RID label 9

IMDG class 9

# Benzo[a]pyrene

ICAO class/division 9

ADN class 9

Transport labels



### 14.4. Packing group

ADR/RID packing group III

IMDG packing group III

ADN packing group III

ICAO packing group III

### 14.5. Environmental hazards

Environmentally hazardous substance/marine pollutant



# 14.6. Special precautions for user

**EmS** F-A, S-F

ADR transport category 3

Emergency Action Code 2Z

Hazard Identification Number 90

(ADR/RID)

# 14.7. Transport in bulk according to Annex II of MARPOL and the IBC Code

### SECTION 15: Regulatory information

### 15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

National regulations Health and Safety at Work etc. Act 1974 (as amended).

The Carriage of Dangerous Goods and Use of Transportable Pressure Equipment

Regulations 2009 (SI 2009 No. 1348) (as amended) ["CDG 2009"].

EH40/2005 Workplace exposure limits.

**EU legislation** Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18

December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of

Chemicals (REACH) (as amended).

Commission Regulation (EU) No 2015/830 of 28 May 2015.

Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures (as

amended).

### 15.2. Chemical safety assessment

No chemical safety assessment has been carried out.

# Inventories

US - TSCA

Present.

# Benzo[a]pyrene

### SECTION 16: Other information

Abbreviations and acronyms used in the safety data sheet

ADR: European Agreement concerning the International Carriage of Dangerous Goods by

Road.

ADN: European Agreement concerning the International Carriage of Dangerous Goods by

Inland Waterways.

RID: European Agreement concerning the International Carriage of Dangerous Goods by

Rail.

IATA: International Air Transport Association.

ICAO: Technical Instructions for the Safe Transport of Dangerous Goods by Air.

IMDG: International Maritime Dangerous Goods.

CAS: Chemical Abstracts Service.

ATE: Acute Toxicity Estimate.

LC₅₀: Lethal Concentration to 50 % of a test population.

LD₅o: Lethal Dose to 50% of a test population (Median Lethal Dose).

EC₅: 50% of maximal Effective Concentration.

PBT: Persistent, Bioaccumulative and Toxic substance.

vPvB: Very Persistent and Very Bioaccumulative.

**Training advice** Only trained personnel should use this material.

Revision date 06/11/2017

Revision 1

SDS number 144926

Hazard statements in full H317 May cause an allergic skin reaction.

H340 May cause genetic defects.

H350 May cause cancer.

H360 May damage fertility or the unborn child.

H400 Very toxic to aquatic life.

H410 Very toxic to aquatic life with long lasting effects.

This information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process. Such information is, to the best of the company's knowledge and belief, accurate and reliable as of the date indicated. However, no warranty, guarantee or representation is made to its accuracy, reliability or completeness. It is the user's responsibility to satisfy himself as to the suitability of such information for his own particular use.



# Safety Data Sheet Revision Date: 07/31/19

www.restek.com

2 Letter ISO country code/language code: US/EN

#### 1. IDENTIFICATION

Catalog Number / Product Name: 31272 / Benzo(b)fluoranthene Standard

Company:

Address:

110 Benner Circle
Bellefonte, Pa. 16823

Phone#:

814-353-1300

 Phone#:
 814-353-1300

 Fax#:
 814-353-1309

Emergency#: 800-424-9300 (CHEMTREC) 703-527-3887 (Outside the US)

**Email:** www.restek.com

Revision Number: 11

**Intended use:** For Laboratory use only

### 2. HAZARD(S)IDENTIFICATION

#### **Emergency Overview:**







GHS Hazard Symbols:

GHS Carcinogenicity Category 1B Classification: Flammable Liquid Category 2

Serious Eye Damage/Eye Irritation Category 2

Specific Target Organ Systemic Toxicity (STOT) - Single Exposure Category 3

GHS Signal

Word:

GHS Hazard: Highly flammable liquid and vapour.

Danger

Causes serious eye irritation. May cause drowsiness or dizziness.

May cause cancer.

**GHS** 

**Precautions:** 

**Safety** Obtain special instructions before use.

**Precautions:** Do not handle until all safety precautions have been read and understood.

Keep away from heat/sparks/open flames/hot surfaces. - No smoking.

Ground/bond container and receiving equipment.

Use explosion-proof electrical/ventilation and lighting equipment.

Use only non-sparking tools.

Take precautionary measures against static discharge. Avoid breathing dust/fume/gas/mist/vapours/spray. Wash hands and skin thoroughly after handling. Use only outdoors or in a well-ventilated area.

Wear protective gloves/protective clothing/eye protection/face protection.

First Aid Measures:

IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower.

IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do.

Continue rinsing.

IF exposed or concerned: Get medical advice/attention.

Call a POISON CENTER or doctor/physician if you feel unwell.

If eye irritation persists: Get medical advice/attention.

In case of fire: Use extinguishing media in section 5 for extinction.

**Storage:** Store in a well-ventilated place. Keep container tightly closed.

Store in a well-ventilated place. Keep cool.

Store locked up.

**Disposal:** Dispose of contents/container according to section 13 of the SDS.

Single Exposure Specific target organ toxicity - Single exposure - STOT SE 3: H336 May cause drowsiness or dizziness.

Exposure
Target Organs:

opening target organ toxicity - dirigite exposure - 0101 GE of 11000 May budge drows in ess or dizziness.

Repeated

No data available

Exposure Target Organs:

### 3. COMPOSITION / INFORMATION ON INGREDIENT

| Chemical Name          | CAS#     | EINEC #   | % Composition |
|------------------------|----------|-----------|---------------|
| Acetone                | 67-64-1  | 200-662-2 | 99.9          |
| benzo (b) fluoranthene | 205-99-2 | 205-911-9 | 0.1           |

#### 4. FIRST-AID MEASURES

**Inhalation:** Remove to fresh air. If breathing is difficult, have a trained individual administer oxygen. If not

breathing, give artificial respiration and have a trained individual administer oxygen. Get

medical attention immediately

Eyes: Flush eyes with plenty of water for at least 20 minutes retracting eyelids often. Tilt the head to

prevent chemical from transferring to the uncontaminated eye. Get immediate medical

attention.

**Skin Contact:** Wash with soap and water. Remove contaminated clothing and launder. Get medical

attention if irritation develops or persists.

**Ingestion:** Do not induce vomiting and seek medical attention immediately. Drink two glasses of water

or milk to dilute. Provide medical care provider with this SDS.

### 5. FIRE- FIGHTING MEASURES

**Extinguishing Media:** Use alcohol resistant foam, carbon dioxide, or dry chemical extinguishing

agents. Water spray or fog may also be effective for extinguishing if swept across the base of the fire. Water can also be used to absorb heat and keep exposed material from being damaged by fire. Flammable component(s) of this material may be lighter than water and burn while

floating on the surface.

Fire and/or Explosion Hazards: Vapors may be ignited by heat, sparks, flames or other sources of

ignition at or above the low flash point giving rise to a Class B fire. Vapors are heavier than air and may travel to a source of ignition and

flash back

Fire Fighting Methods and Protection: Do not enter fire area without proper protection including self-contained

toxic breathing apparatus and full protective equipment. Fight fire from a safe distance and a protected location due to the potential of hazardous vapors and decomposition products. Flammable component(s) of this material may be lighter than water and burn while floating on the surface. Use water spray/fog for cooling. Flammable component(s) of this

material may be lighter than water and burn while floating on the surface.

Hazardous Combustion Products: Carbon dioxide, Carbon monoxide

#### 6. ACCIDENTAL RELEASE MEASURES

Personal Precautions and Equipment: Exposure to the spilled material may be irritating or harmful. Follow

personal protective equipment recommendations found in Section 8 of this SDS. Additional precautions may be necessary based on special circumstances created by the spill including; the material spilled, the quantity of the spill, the area in which the spill occurred. Also consider the

expertise of employees in the area responding to the spill.

Methods for Clean-up: Prevent the spread of any spill to minimize harm to human health and the

environment if safe to do so. Wear complete and proper personal protective equipment following the recommendation of Section 8 at a minimum. Dike with suitable absorbent material like granulated clay. Gather and store in a sealed container pending a waste disposal

### 7. HANDLING AND STORAGE

Handling Technical Measures and Precautions: Harmful or irritating material. Avoid contacting and avoid

breathing the material. Use only in a well ventilated area. Use

spark-proof tools and explosion-proof equipment

Storage Technical Measures and Conditions: Store in a cool dry ventilated location. Isolate from

incompatible materials and conditions. Keep container(s)

closed. Keep away from sources of ignition

#### 8. EXPOSURE CONTROLS / PERSONAL PROTECTION

| United States:<br>Chemical Name | CAS No.  | IDLH                          | ACGIH STEL                          | ACGIH TLV-TWA                  | OSHA Exposure<br>Limit          |
|---------------------------------|----------|-------------------------------|-------------------------------------|--------------------------------|---------------------------------|
| Acetone                         | 67-64-1  | 2500 ppm<br>IDLH (10%<br>LEL) | 750 ppm<br>STEL; 1782<br>mg/m3 STEL | 500 ppm TWA; 1188<br>mg/m3 TWA | 1000 ppm TWA;<br>2400 mg/m3 TWA |
| benzo (b)<br>fluoranthene       | 205-99-2 | Not<br>established            | None Known                          | Not established                | No data available               |

**Personal Protection:** 

Engineering Measures: Local exhaust ventilation is recommended when generating excessive levels of

vapours from handling or thermal processing.

Respiratory Protection: No respiratory protection required under normal conditions of use. Provide

general room exhaust ventilation if symptoms of overexposure occur as explained

Section 3. A respirator is not normally required.

Eye Protection: Wear chemically resistant safety glasses with side shields when handling this

product. Do not wear contact lenses.

Skin Protection: Wear protective gloves. Inspect gloves for chemical break-through and replace at

regular intervals. Clean protective equipment regularly. Wash hands and other exposed areas with mild soap and water before eating, drinking, and when

leaving work

Medical Conditions Aggravated By Exposure: Respiratory disease including asthma and bronchitis

### 9. PHYSICAL AND CHEMICAL PROPERTIES

**Appearance, color:** Depends upon product selection

Odor: Strong

Physical State:
 No data available
 Not applicable
 Vapor Pressure:
 No data available
 No data available
 Vapor Density:
 2.0 (air = 1)

**Boiling Point (°C):** 56.05 °C at 1013.25 hPa **Melting Point (°C):** -95.4 °C Melting Point

Flash Point (°F):

Flammability: Highly Flammable
Upper Flammable/Explosive Limit, % in air: No data available
Lower Flammable/Explosive Limit, % in air: No data available
Autoignition Temperature (°C): 465 deg C
Decomposition Temperature (°C): No data available
Specific Gravity: 0.7845 g/cm3 at 25 °C
Evaporation Rate: No data available

Odor Threshold: ND

Solubility: Complete; 100% Partition Coefficient: n-octanol in water: No data available

VOC % by weight: 99.9 Molecular Weight: 58.08

### 10. STABILITY AND REACTIVITY

Stability: Stable under normal conditions.

Conditions to Avoid: None known.

Materials to Avoid / Chemical Incompatiability:Strong oxidizing agents Strong acidsHazardous Decomposition Products:Carbon dioxide Carbon monoxide

# 11. TOXICOLOGICAL INFORMATION

Routes of Entry: Inhalation, Skin Contact, Eye Contact, Ingestion

Target Organs Potentially Affected By Exposure: Eyes, Central nervous system stimulation,

Respiratory Tract, Skin

Chemical Interactions That Change Toxicity: None Known

Immediate (Acute) Health Effects by Route of Exposure:

Inhalation Irritation: Can cause minor respiratory irritation, dizziness, weakness, fatigue, nausea,

and headache.

**Skin Contact:** Can cause minor skin irritation, defatting, and dermatitis. **Eye Contact:** Can cause minor irritation, tearing and reddening.

**Ingestion Irritation:** May be harmful if swallowed.

Ingestion Toxicity: Harmful if swallowed. May cause systemic poisoning.

Long-Term (Chronic) Health Effects:

Carcinogenicity: Contains a probable or known human carcinogen.

**Reproductive and Developmental Toxicity:**No data available to indicate product or any components present at greater than 0.1% may cause birth defects.

**Inhalation:**Upon prolonged and/or repeated exposure, can cause minor respiratory irritation, dizziness, weakness, fatigue,

nausea, and headache.

Skin Contact: Upon prolonged or repeated contact, can cause minor

skin irritation, defatting, and dermatitis.

**Component Toxicological Data:** 

NIOSH:

Chemical Name CAS No. LD50/LC50

Acetone 67-64-1 Dermal LD50 Rabbit >15700 mg/kg; Inhalation

LC50 Rat 50100 mg/m3 8 h; Oral LD50 Rat

5800 mg/kg

**Component Carcinogenic Data:** 

OSHA:

Chemical Name CAS No.

Benzo(b)fluoranthene 205-99-2 Present

ACGIH:

Chemical Name CAS No.

Benzo[b]fluoranthene 205-99-2 A2 - Suspected Human Carcinogen

Acetone 67-64-1 A4 - Not Classifiable as a Human Carcinogen

NIOSH:

Chemical Name CAS No.

No data available

NTP:

Chemical Name CAS No.

No data available

IARC:

 Chemical Name
 CAS No.
 Group No.

 Monograph 92 [2010]:
 205-99-2
 Group 2B

Supplement 7 [1987]; Monograph

32 [1983]

12. ECOLOGICAL INFORMATION

Overview: This material is not expected to be harmful to the ecology.

Mobility:No dataPersistence:No dataBioaccumulation:No dataDegradability:No data

Ecological Toxicity Data: No data available

13. DISPOSAL CONSIDERATIONS

Waste Description of Spent Product: Spent or discarded material is a hazardous waste. Mixing

spent or discarded material with other materials may render the mixture hazardous. Perform a hazardous

waste determination on mixtures.

Disposal Methods: Dispose of by incineration following Federal, State, Local,

or Provincial regulations.

Waste Disposal of Packaging: Comply with all Local, State, Federal, and Provincial

Environmental Regulations.

### 14. TRANSPORTATION INFORMATION

**United States:** 

DOT Proper Shipping Name:
UN Number:
UN1090
Hazard Class:
Packing Group:

Acetone
UN1090
II

International:

IATA Proper Shipping Name:AcetoneUN Number:UN1090Hazard Class:3Packing Group:II

Marine Pollutant: No

| Chemical Name     | CAS# | Marine Pollutant | Severe Marine<br>Pollutant |
|-------------------|------|------------------|----------------------------|
| No data available |      |                  |                            |

### 15. REGULATORY INFORMATION

| United States:<br>Chemical Name | CAS#     | CERCLA | SARA 313 | SARA EHS<br>313 | TSCA |
|---------------------------------|----------|--------|----------|-----------------|------|
| Acetone                         | 67-64-1  | Χ      | -        | -               | X    |
| benzo (b) fluoranthene          | 205-99-2 | Χ      | Χ        | -               | -    |

The following chemicals are listed on CA Prop 65:

| Chemical Name        | CAS#     | Regulation     |
|----------------------|----------|----------------|
| Benzo[b]fluoranthene | 205-99-2 | Prop 65 Cancer |

State Right To Know Listing:

| <u> </u>               | - J      |            |               |              |            |
|------------------------|----------|------------|---------------|--------------|------------|
| Chemical Name          | CAS#     | New Jersey | Massachusetts | Pennsylvania | California |
| Acetone                | 67-64-1  | X          | Х             | X            | Χ          |
| benzo (b) fluoranthene | 205-99-2 | X          | X             | X            | Χ          |

### 16. OTHER INFORMATION

**Prior Version Date:** 08/13/18

Other Information: Any changes to the SDS compared to previous versions are marked by a vertical

line in front of the concerned paragraph.

References: No data available

**Disclaimer:** Restek Corporation provides the descriptions, data and information contained

herein in good faith but makes no representation as to its comprehensiveness or accuracy. It is provided for your guidance only. Because many factors may affect processing or application/use, Restek Corporation recommends you perform an assessment to determine the suitability of a product for your particular purpose prior to use. No warranties of any kind, either expressed or implied, including fitness for a particular purpose, are made regarding products described, data or information set forth. In no case shall the descriptions, information, or data provided be considered a part of our terms and conditions of sale. Further, the descriptions, data and information furnished hereunder are given gratis. No obligation or liability for the description, data and information given are assumed. All such being given

and accepted at your risk.

# SAFETY DATA SHEET

Version 4.12 Revision Date 03/23/2017 Print Date 05/16/2017

### 1. PRODUCT AND COMPANY IDENTIFICATION

1.1 Product identifiers

Product name : 1,1-Dichloroethene

Product Number : 48526 Brand : Supelco Index-No. : 602-025-00-8

CAS-No. : 75-35-4

1.2 Relevant identified uses of the substance or mixture and uses advised against

Identified uses : Laboratory chemicals, Synthesis of substances

1.3 Details of the supplier of the safety data sheet

Company : Sigma-Aldrich

3050 Spruce Street

SAINT LOUIS MO 63103

USA

Telephone : +1 800-325-5832 Fax : +1 800-325-5052

1.4 Emergency telephone number

Emergency Phone # : +1-703-527-3887 (CHEMTREC)

### 2. HAZARDS IDENTIFICATION

### 2.1 Classification of the substance or mixture

### GHS Classification in accordance with 29 CFR 1910 (OSHA HCS)

Flammable liquids (Category 1), H224 Acute toxicity, Oral (Category 3), H301 Skin irritation (Category 2), H315 Eye irritation (Category 2A), H319 Carcinogenicity (Category 2), H351

For the full text of the H-Statements mentioned in this Section, see Section 16.

### 2.2 GHS Label elements, including precautionary statements

Pictogram



Signal word Danger

Hazard statement(s)

H224 Extremely flammable liquid and vapour.

H301 Toxic if swallowed. H315 Causes skin irritation.

H319 Causes serious eye irritation. H351 Suspected of causing cancer.

Precautionary statement(s)

P201 Obtain special instructions before use.

P202 Do not handle until all safety precautions have been read and

understood.

| P210               | Keep away from heat/sparks/open flames/hot surfaces. No smoking.                                                                 |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------|
| P233               | Keep container tightly closed.                                                                                                   |
| P240               | Ground/bond container and receiving equipment.                                                                                   |
| P241               | Use explosion-proof electrical/ ventilating/ lighting/ equipment.                                                                |
| P242               | Use only non-sparking tools.                                                                                                     |
| P243               | Take precautionary measures against static discharge.                                                                            |
| P264               | Wash skin thoroughly after handling.                                                                                             |
| P270               | Do not eat, drink or smoke when using this product.                                                                              |
| P280               | Wear protective gloves/ protective clothing/ eye protection/ face protection.                                                    |
| P301 + P310 + P330 | IF SWALLOWED: Immediately call a POISON CENTER/doctor. Rinse mouth.                                                              |
| P303 + P361 + P353 | IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower.                              |
| P305 + P351 + P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. |
| P308 + P313        | IF exposed or concerned: Get medical advice/ attention.                                                                          |
| P332 + P313        | If skin irritation occurs: Get medical advice/ attention.                                                                        |
| P337 + P313        | If eye irritation persists: Get medical advice/ attention.                                                                       |
| P362               | Take off contaminated clothing and wash before reuse.                                                                            |
| P370 + P378        | In case of fire: Use dry sand, dry chemical or alcohol-resistant foam to extinguish.                                             |
| P403 + P235        | Store in a well-ventilated place. Keep cool.                                                                                     |
| P405               | Store locked up.                                                                                                                 |
| P501               | Dispose of contents/ container to an approved waste disposal plant.                                                              |

# 2.3 Hazards not otherwise classified (HNOC) or not covered by GHS

May form explosive peroxides.

### 3. COMPOSITION/INFORMATION ON INGREDIENTS

### 3.1 Substances

Synonyms : 1,1-Dichloroethylene

Vinylidene chloride

Formula : C<sub>2</sub>H<sub>2</sub>Cl<sub>2</sub>

Molecular weight : 96.94 g/mol
CAS-No. : 75-35-4
EC-No. : 200-864-0
Index-No. : 602-025-00-8

**Hazardous components** 

| Component           | Classification                                                                                           | Concentration |
|---------------------|----------------------------------------------------------------------------------------------------------|---------------|
| Vinylidene chloride |                                                                                                          |               |
|                     | Flam. Liq. 1; Acute Tox. 3;<br>Skin Irrit. 2; Eye Irrit. 2A; Carc.<br>2; H224, H301, H315, H319,<br>H351 | 90 - 100 %    |

For the full text of the H-Statements mentioned in this Section, see Section 16.

# 4. FIRST AID MEASURES

### 4.1 Description of first aid measures

### **General advice**

Consult a physician. Show this safety data sheet to the doctor in attendance. Move out of dangerous area.

#### If inhaled

If breathed in, move person into fresh air. If not breathing, give artificial respiration. Consult a physician.

Supelco - 48526 Page 2 of 9

#### In case of skin contact

Wash off with soap and plenty of water. Take victim immediately to hospital. Consult a physician.

### In case of eye contact

Rinse thoroughly with plenty of water for at least 15 minutes and consult a physician.

#### If swallowed

Do NOT induce vomiting. Never give anything by mouth to an unconscious person. Rinse mouth with water. Consult a physician.

### 4.2 Most important symptoms and effects, both acute and delayed

The most important known symptoms and effects are described in the labelling (see section 2.2) and/or in section 11

### 4.3 Indication of any immediate medical attention and special treatment needed

No data available

#### 5. FIREFIGHTING MEASURES

### 5.1 Extinguishing media

### Suitable extinguishing media

Dry powder Dry sand

### Unsuitable extinguishing media

Do NOT use water jet.

### 5.2 Special hazards arising from the substance or mixture

No data available

### 5.3 Advice for firefighters

Wear self-contained breathing apparatus for firefighting if necessary.

### 5.4 Further information

Use water spray to cool unopened containers.

### 6. ACCIDENTAL RELEASE MEASURES

### 6.1 Personal precautions, protective equipment and emergency procedures

Wear respiratory protection. Avoid breathing vapours, mist or gas. Ensure adequate ventilation. Remove all sources of ignition. Evacuate personnel to safe areas. Beware of vapours accumulating to form explosive concentrations. Vapours can accumulate in low areas.

For personal protection see section 8.

### 6.2 Environmental precautions

Prevent further leakage or spillage if safe to do so. Do not let product enter drains.

# 6.3 Methods and materials for containment and cleaning up

Contain spillage, and then collect with non-combustible absorbent material, (e.g. sand, earth, diatomaceous earth, vermiculite) and place in container for disposal according to local / national regulations (see section 13).

### 6.4 Reference to other sections

For disposal see section 13.

### 7. HANDLING AND STORAGE

## 7.1 Precautions for safe handling

Avoid contact with skin and eyes. Avoid inhalation of vapour or mist.

Use explosion-proof equipment. Keep away from sources of ignition - No smoking. Take measures to prevent the build up of electrostatic charge.

For precautions see section 2.2.

### 7.2 Conditions for safe storage, including any incompatibilities

Keep container tightly closed in a dry and well-ventilated place. Containers which are opened must be carefully resealed and kept upright to prevent leakage.

Air and moisture sensitive. Store under inert gas.

#### 7.3 Specific end use(s)

Apart from the uses mentioned in section 1.2 no other specific uses are stipulated

### 8. EXPOSURE CONTROLS/PERSONAL PROTECTION

### 8.1 Control parameters

Components with workplace control parameters

| Component              | CAS-No. | Value         | Control            | Basis                             |
|------------------------|---------|---------------|--------------------|-----------------------------------|
|                        |         |               | parameters         |                                   |
| Vinylidene chloride    | 75-35-4 | TWA           | 5.000000 ppm       | USA. ACGIH Threshold Limit Values |
| Viiryinaerie eriieriae | 1.000   |               | олососо рр         |                                   |
|                        |         |               |                    | (TLV)                             |
|                        | Remarks | Liver damag   | е                  |                                   |
|                        |         | Kidney dama   | age                |                                   |
|                        |         | Not classifia | ble as a human ca  | rcinogen                          |
|                        |         | Potential Oc  | cupational Carcino | ogen                              |
|                        |         | See Append    | ix A               |                                   |
|                        |         | PEL           | 1 ppm              | California permissible exposure   |
|                        |         |               | 4 mg/m3            | limits for chemical contaminants  |
|                        |         |               | Jg.                | (Title 8, Article 107)            |

### 8.2 Exposure controls

### Appropriate engineering controls

Avoid contact with skin, eyes and clothing. Wash hands before breaks and immediately after handling the product.

### Personal protective equipment

# Eye/face protection

Face shield and safety glasses Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

### Skin protection

Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.

Full contact

Material: Fluorinated rubber Minimum layer thickness: 0.7 mm Break through time: 480 min

Material tested: Vitoject® (KCL 890 / Aldrich Z677698, Size M)

Splash contact Material: butyl-rubber

Minimum layer thickness: 0.3 mm Break through time: 30 min

Material tested:Butoject® (KCL 897 / Aldrich Z677647, Size M)

data source: KCL GmbH, D-36124 Eichenzell, phone +49 (0)6659 87300, e-mail sales@kcl.de, test method:

EN374

If used in solution, or mixed with other substances, and under conditions which differ from EN 374, contact the supplier of the CE approved gloves. This recommendation is advisory only and must be evaluated by an industrial hygienist and safety officer familiar with the specific situation of anticipated use by our customers. It should not be construed as offering an approval for any specific use scenario.

### **Body Protection**

Complete suit protecting against chemicals, Flame retardant antistatic protective clothing., The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.

### Respiratory protection

Where risk assessment shows air-purifying respirators are appropriate use a full-face respirator with multipurpose combination (US) or type AXBEK (EN 14387) respirator cartridges as a backup to engineering controls. If the respirator is the sole means of protection, use a full-face supplied air respirator. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).

Supelco - 48526 Page 4 of 9

### Control of environmental exposure

Prevent further leakage or spillage if safe to do so. Do not let product enter drains.

### 9. PHYSICAL AND CHEMICAL PROPERTIES

### 9.1 Information on basic physical and chemical properties

a) Appearance Form: liquid, clear

Colour: colourless

b) Odourc) Odour Thresholdd) pHNo data availableNo data available

e) Melting point/freezing

point

Melting point/range: -122 °C (-188 °F) - lit.

f) Initial boiling point and

boiling range

30 - 32 °C (86 - 90 °F) - lit.

g) Flash point -19 °C (-2 °F) - closed cup

h) Evaporation rate No data availablei) Flammability (solid, gas) No data available

j) Upper/lower Upper explosion limit: 15.5 %(V) flammability or Lower explosion limit: 6.5 %(V)

explosive limits

k) Vapour pressure 658.6 hPa (494.0 mmHg)

667.3 hPa (500.5 mmHg) at 20.0 °C (68.0 °F) 2,137.4 hPa (1,603.2 mmHg) at 55.0 °C (131.0 °F)

I) Vapour density No data available

m) Relative density 1.213 g/cm3 at 20 °C (68 °F)

n) Water solubility 0.2 g/l at 20 °C (68 °F)

o) Partition coefficient: n-

octanol/water

No data available

p) Auto-ignition 520.0 °C (968.0 °F) temperature 580.0 °C (1,076.0 °F)

q) Decomposition temperature No data available

r) Viscosity No data available
 s) Explosive properties No data available
 t) Oxidizing properties No data available

### 9.2 Other safety information

No data available

### 10. STABILITY AND REACTIVITY

# 10.1 Reactivity

No data available

### 10.2 Chemical stability

Stable under recommended storage conditions.

### 10.3 Possibility of hazardous reactions

Vapours may form explosive mixture with air.

### 10.4 Conditions to avoid

Heat, flames and sparks.

Supelco - 48526 Page 5 of 9

### 10.5 Incompatible materials

Oxidizing agents, Copper, Aluminum, and its alloys, Peroxides, Strong bases, Oxygen

### 10.6 Hazardous decomposition products

Hazardous decomposition products formed under fire conditions. - Carbon oxides, Hydrogen chloride gas Other decomposition products - No data available

In the event of fire: see section 5

#### 11. TOXICOLOGICAL INFORMATION

## 11.1 Information on toxicological effects

#### **Acute toxicity**

LD50 Oral - Rat - 200.0 mg/kg

Inhalation: Lung irritation

Dermal: No data available

No data available

### Skin corrosion/irritation

No data available

### Serious eye damage/eye irritation

No data available

# Respiratory or skin sensitisation

No data available

### Germ cell mutagenicity

Laboratory experiments have shown mutagenic effects.

# Carcinogenicity

This product is or contains a component that has been reported to be possibly carcinogenic based on its IARC, ACGIH, NTP, or EPA classification.

Limited evidence of carcinogenicity in animal studies

IARC: No component of this product present at levels greater than or equal to 0.1% is identified as

probable, possible or confirmed human carcinogen by IARC.

NTP: No component of this product present at levels greater than or equal to 0.1% is identified as a

known or anticipated carcinogen by NTP.

OSHA: No component of this product present at levels greater than or equal to 0.1% is identified as a

carcinogen or potential carcinogen by OSHA.

#### Reproductive toxicity

No data available

No data available

### Specific target organ toxicity - single exposure

No data available

### Specific target organ toxicity - repeated exposure

No data available

### **Aspiration hazard**

No data available

### **Additional Information**

RTECS: KV9275000

Nausea, Headache, Vomiting, Dizziness, Drowsiness, Confusion., Incoordination., Central nervous system depression, To the best of our knowledge, the chemical, physical, and toxicological properties have not been thoroughly investigated.

Stomach - Irregularities - Based on Human Evidence

Supelco - 48526 Page 6 of 9

### 12. ECOLOGICAL INFORMATION

### 12.1 Toxicity

Toxicity to fish LC50 - Daphnia magna (Water flea) - 11.60 - 11.79 mg/l

LC50 - Pimephales promelas (fathead minnow) - 108.00 - 169.00 mg/l

LC50 - Lepomis macrochirus (Bluegill) - 74.00 - 220.00 mg/l

LC50 - Cyprinodon variegatus (sheepshead minnow) - 249.00 mg/l

LC50 - other fish - 250.00 mg/l LC50 - other fish - 224.00 mg/l

LC50 - Pimephales promelas (fathead minnow) - 108 mg/l - 96 h

NOEC - Cyprinodon variegatus (sheepshead minnow) - 80 mg/l - 96 h

Toxicity to daphnia and

LC50 - Daphnia magna (Water flea) - 11.6 mg/l - 48 h

other aquatic invertebrates

### 12.2 Persistence and degradability

No data available

### 12.3 Bioaccumulative potential

No data available

### 12.4 Mobility in soil

No data available

#### 12.5 Results of PBT and vPvB assessment

PBT/vPvB assessment not available as chemical safety assessment not required/not conducted

### 12.6 Other adverse effects

No data available

### 13. DISPOSAL CONSIDERATIONS

### 13.1 Waste treatment methods

#### **Product**

Offer surplus and non-recyclable solutions to a licensed disposal company. Burn in a chemical incinerator equipped with an afterburner and scrubber but exert extra care in igniting as this material is highly flammable. Contact a licensed professional waste disposal service to dispose of this material.

#### Contaminated packaging

Dispose of as unused product.

# 14. TRANSPORT INFORMATION

DOT (US)

UN number: 1303 Class: 3 Packing group: I

Proper shipping name: Vinylidene chloride, stabilized

Reportable Quantity (RQ): 100 lbsReportable Quantity (RQ): 100 lbsMarine pollutant:yes

Poison Inhalation Hazard: No

**IMDG** 

UN number: 1303 Class: 3 Packing group: I EMS-No: F-E, S-D

Proper shipping name: VINYLIDENE CHLORIDE, STABILIZED Marine pollutant: yes Marine pollutant: yes

**IATA** 

UN number: 1303 Class: 3 Packing group: I

Proper shipping name: Vinylidene chloride, stabilized

Supelco - 48526 Page 7 of 9

### 15. REGULATORY INFORMATION

# **SARA 302 Components**

No chemicals in this material are subject to the reporting requirements of SARA Title III, Section 302.

### **SARA 313 Components**

The following components are subject to reporting levels established by SARA Title III, Section 313:

CAS-No. Revision Date Vinylidene chloride 75-35-4 2007-07-01

### SARA 311/312 Hazards

Fire Hazard, Acute Health Hazard, Chronic Health Hazard

Reportable Quantity D029 lbs

### **Massachusetts Right To Know Components**

Vinylidene chloride CAS-No. Revision Date 2007-07-01

### Pennsylvania Right To Know Components

Vinylidene chloride CAS-No. Revision Date 2007-07-01

Vinylidene chloride CAS-No. Revision Date 2007-07-01

**New Jersey Right To Know Components** 

Vinylidene chloride CAS-No. Revision Date 2007-07-01

### California Prop. 65 Components

This product does not contain any chemicals known to State of California to cause cancer, birth defects, or any other reproductive harm.

# **16. OTHER INFORMATION**

# Full text of H-Statements referred to under sections 2 and 3.

Acute Tox. Acute toxicity
Carc. Carcinogenicity
Eye Irrit. Eye irritation
Flam. Lig. Flammable liquids

H224 Extremely flammable liquid and vapour.

H301 Toxic if swallowed. H315 Causes skin irritation.

H319 Causes serious eye irritation. H351 Suspected of causing cancer.

Skin Irrit. Skin irritation

# **HMIS Rating**

Health hazard: 2
Chronic Health Hazard: \*
Flammability: 4
Physical Hazard 2

### **NFPA Rating**

Health hazard: 2
Fire Hazard: 4
Reactivity Hazard: 2

Supelco - 48526 Page 8 of 9

### **Further information**

Copyright 2017 Sigma-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use only. The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. Sigma-Aldrich Corporation and its Affiliates shall not be held liable for any damage resulting from handling or from contact with the above product. See www.sigma-aldrich.com and/or the reverse side of invoice or packing slip for additional terms and conditions of sale.

### **Preparation Information**

Sigma-Aldrich Corporation Product Safety – Americas Region 1-800-521-8956

Version: 4.12 Revision Date: 03/23/2017 Print Date: 05/16/2017

Supelco - 48526 Page 9 of 9

# **SAFETY DATA SHEET**

Version 4.4 Revision Date 12/01/2015 Print Date 07/13/2017

### 1. PRODUCT AND COMPANY IDENTIFICATION

1.1 Product identifiers

Product name : cis-Dichloroethylene

Product Number : 48597
Brand : Supelco
Index-No. : 602-026-00-3

CAS-No. : 156-59-2

1.2 Relevant identified uses of the substance or mixture and uses advised against

Identified uses : Laboratory chemicals, Synthesis of substances

1.3 Details of the supplier of the safety data sheet

Company : Sigma-Aldrich

3050 Spruce Street SAINT LOUIS MO 63103

USA

Telephone : +1 800-325-5832 Fax : +1 800-325-5052

1.4 Emergency telephone number

Emergency Phone # : +1-703-527-3887 (CHEMTREC)

### 2. HAZARDS IDENTIFICATION

#### 2.1 Classification of the substance or mixture

### GHS Classification in accordance with 29 CFR 1910 (OSHA HCS)

Flammable liquids (Category 2), H225 Acute toxicity, Inhalation (Category 4), H332 Acute aquatic toxicity (Category 3), H402 Chronic aquatic toxicity (Category 3), H412

For the full text of the H-Statements mentioned in this Section, see Section 16.

#### 2.2 GHS Label elements, including precautionary statements

Pictogram



Signal word Danger

Hazard statement(s)

H225 Highly flammable liquid and vapour.

H332 Harmful if inhaled.

H412 Harmful to aquatic life with long lasting effects.

Precautionary statement(s)

P210 Keep away from heat/sparks/open flames/hot surfaces. No smoking.

P233 Keep container tightly closed.

P240 Ground/bond container and receiving equipment.

P241 Use explosion-proof electrical/ ventilating/ lighting/ equipment.

P242 Use only non-sparking tools.

P243 Take precautionary measures against static discharge.
P261 Avoid breathing dust/ fume/ gas/ mist/ vapours/ spray.

P271 Use only outdoors or in a well-ventilated area.

P273 Avoid release to the environment.

P280 Wear protective gloves/ protective clothing/ eye protection/ face

protection.

P303 + P361 + P353 IF ON SKIN (or hair): Remove/ Take off immediately all contaminated

clothing. Rinse skin with water/ shower.

P304 + P340 IF INHALED: Remove victim to fresh air and keep at rest in a position

comfortable for breathing.

P312 Call a POISON CENTER or doctor/ physician if you feel unwell.

P370 + P378 In case of fire: Use dry sand, dry chemical or alcohol-resistant foam for

extinction.

P403 + P235 Store in a well-ventilated place. Keep cool.

P501 Dispose of contents/ container to an approved waste disposal plant.

# 2.3 Hazards not otherwise classified (HNOC) or not covered by GHS - none

### 3. COMPOSITION/INFORMATION ON INGREDIENTS

#### 3.1 Substances

Formula : C2H2Cl2

Molecular weight : 96.94 g/mol

CAS-No. : 156-59-2

EC-No. : 205-859-7

Index-No. : 602-026-00-3

Hazardous components

| Component            | Classification                                          | Concentration |
|----------------------|---------------------------------------------------------|---------------|
| cis-Dichloroethylene |                                                         |               |
|                      | Flam. Liq. 2; Acute Tox. 4;<br>Aquatic Acute 3; Aquatic | <= 100 %      |
|                      | Chronic 3; H225, H332, H412                             |               |

For the full text of the H-Statements mentioned in this Section, see Section 16.

### 4. FIRST AID MEASURES

### 4.1 Description of first aid measures

### **General advice**

Consult a physician. Show this safety data sheet to the doctor in attendance. Move out of dangerous area.

### If inhaled

If breathed in, move person into fresh air. If not breathing, give artificial respiration. Consult a physician.

#### In case of skin contact

Wash off with soap and plenty of water. Consult a physician.

### In case of eye contact

Flush eyes with water as a precaution.

### If swallowed

Do NOT induce vomiting. Never give anything by mouth to an unconscious person. Rinse mouth with water. Consult a physician.

### 4.2 Most important symptoms and effects, both acute and delayed

The most important known symptoms and effects are described in the labelling (see section 2.2) and/or in section 11

# 4.3 Indication of any immediate medical attention and special treatment needed

No data available

Supelco - 48597 Page 2 of 8

### 5. FIREFIGHTING MEASURES

### 5.1 Extinguishing media

### Suitable extinguishing media

Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.

### 5.2 Special hazards arising from the substance or mixture

Carbon oxides, Hydrogen chloride gas

### 5.3 Advice for firefighters

Wear self-contained breathing apparatus for firefighting if necessary.

#### 5.4 Further information

Use water spray to cool unopened containers.

### 6. ACCIDENTAL RELEASE MEASURES

### 6.1 Personal precautions, protective equipment and emergency procedures

Use personal protective equipment. Avoid breathing vapours, mist or gas. Ensure adequate ventilation. Remove all sources of ignition. Evacuate personnel to safe areas. Beware of vapours accumulating to form explosive concentrations. Vapours can accumulate in low areas.

For personal protection see section 8.

### 6.2 Environmental precautions

Prevent further leakage or spillage if safe to do so. Do not let product enter drains. Discharge into the environment must be avoided.

### 6.3 Methods and materials for containment and cleaning up

Contain spillage, and then collect with an electrically protected vacuum cleaner or by wet-brushing and place in container for disposal according to local regulations (see section 13).

### 6.4 Reference to other sections

For disposal see section 13.

# 7. HANDLING AND STORAGE

### 7.1 Precautions for safe handling

Avoid contact with skin and eyes. Avoid inhalation of vapour or mist.

Use explosion-proof equipment. Keep away from sources of ignition - No smoking. Take measures to prevent the build up of electrostatic charge.

For precautions see section 2.2.

### 7.2 Conditions for safe storage, including any incompatibilities

Keep container tightly closed in a dry and well-ventilated place. Containers which are opened must be carefully resealed and kept upright to prevent leakage.

Recommended storage temperature 2 - 8 °C

Handle and store under inert gas. Air and moisture sensitive. Light sensitive.

### 7.3 Specific end use(s)

Apart from the uses mentioned in section 1.2 no other specific uses are stipulated

# 8. EXPOSURE CONTROLS/PERSONAL PROTECTION

# 8.1 Control parameters

### Components with workplace control parameters

| Component            | CAS-No.  | Value                                            | Control    | Basis                                   |
|----------------------|----------|--------------------------------------------------|------------|-----------------------------------------|
|                      |          |                                                  | parameters |                                         |
| cis-Dichloroethylene | 156-59-2 | TWA                                              | 200 ppm    | USA. ACGIH Threshold Limit Values (TLV) |
|                      | Remarks  | Central Nervous System impairment Eye irritation |            |                                         |

Supelco - 48597 Page 3 of 8

#### 8.2 **Exposure controls**

### Appropriate engineering controls

Handle in accordance with good industrial hygiene and safety practice. Wash hands before breaks and at the end of workday.

### Personal protective equipment

### Eve/face protection

Face shield and safety glasses Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

### Skin protection

Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.

# **Body Protection**

Complete suit protecting against chemicals. Flame retardant antistatic protective clothing. The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.

### Respiratory protection

Where risk assessment shows air-purifying respirators are appropriate use a full-face respirator with multipurpose combination (US) or type AXBEK (EN 14387) respirator cartridges as a backup to engineering controls. If the respirator is the sole means of protection, use a full-face supplied air respirator. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).

### Control of environmental exposure

Prevent further leakage or spillage if safe to do so. Do not let product enter drains. Discharge into the environment must be avoided

#### 9. PHYSICAL AND CHEMICAL PROPERTIES

#### 9.1 Information on basic physical and chemical properties

|    | _          |              |
|----|------------|--------------|
| a) | Appearance | Form: liquid |

Colour: light yellow

Odour No data available Odour Threshold No data available d) No data available e) Melting point/freezing

point

-80.0 °C (-112.0 °F)

Initial boiling point and boiling range

60.0 - 61.0 °C (140.0 - 141.8 °F)

g) Flash point

6.0 °C (42.8 °F) - closed cup

No data available h) Evaporation rate Flammability (solid, gas) No data available Upper/lower

flammability or explosive limits No data available

No data available k) Vapour pressure No data available Vapour density

m) Relative density 1.28 g/cm3

n) Water solubility No data available Partition coefficient: n-No data available octanol/water

Supelco - 48597 Page 4 of 8  Auto-ignition No data available temperature

. "\ Danamanitia

q) Decomposition No data available temperature

r) Viscosity No data available
 s) Explosive properties No data available
 t) Oxidizing properties No data available

### 9.2 Other safety information

No data available

#### 10. STABILITY AND REACTIVITY

# 10.1 Reactivity

No data available

### 10.2 Chemical stability

Stable under recommended storage conditions.

### 10.3 Possibility of hazardous reactions

Vapours may form explosive mixture with air.

### 10.4 Conditions to avoid

Heat, flames and sparks. Extremes of temperature and direct sunlight.

### 10.5 Incompatible materials

Oxidizing agents

### 10.6 Hazardous decomposition products

Other decomposition products - No data available

In the event of fire: see section 5

### 11. TOXICOLOGICAL INFORMATION

### 11.1 Information on toxicological effects

# **Acute toxicity**

LC50 Inhalation - Rat - 13700 ppm

Remarks: Behavioral:Somnolence (general depressed activity). Liver:Fatty liver degeneration.

Dermal: No data available

No data available

### Skin corrosion/irritation

No data available

### Serious eye damage/eye irritation

No data available

### Respiratory or skin sensitisation

No data available

### Germ cell mutagenicity

No data available

### Carcinogenicity

IARC: No component of this product present at levels greater than or equal to 0.1% is identified as

probable, possible or confirmed human carcinogen by IARC.

NTP: No component of this product present at levels greater than or equal to 0.1% is identified as a

known or anticipated carcinogen by NTP.

OSHA: No component of this product present at levels greater than or equal to 0.1% is identified as a

carcinogen or potential carcinogen by OSHA.

Supelco - 48597 Page 5 of 8

# Reproductive toxicity

No data available

No data available

### Specific target organ toxicity - single exposure

No data available

### Specific target organ toxicity - repeated exposure

No data available

# **Aspiration hazard**

No data available

#### **Additional Information**

RTECS: KV9420000

narcosis, To the best of our knowledge, the chemical, physical, and toxicological properties have not been thoroughly investigated.

### 12. ECOLOGICAL INFORMATION

### 12.1 Toxicity

No data available

### 12.2 Persistence and degradability

No data available

### 12.3 Bioaccumulative potential

No data available

### 12.4 Mobility in soil

No data available

# 12.5 Results of PBT and vPvB assessment

PBT/vPvB assessment not available as chemical safety assessment not required/not conducted

### 12.6 Other adverse effects

An environmental hazard cannot be excluded in the event of unprofessional handling or disposal. Harmful to aquatic life.

### 13. DISPOSAL CONSIDERATIONS

#### 13.1 Waste treatment methods

### **Product**

Burn in a chemical incinerator equipped with an afterburner and scrubber but exert extra care in igniting as this material is highly flammable. Offer surplus and non-recyclable solutions to a licensed disposal company. Contact a licensed professional waste disposal service to dispose of this material.

### Contaminated packaging

Dispose of as unused product.

# 14. TRANSPORT INFORMATION

DOT (US)

UN number: 1150 Class: 3 Packing group: II

Proper shipping name: 1,2-Dichloroethylene

Poison Inhalation Hazard: No

**IMDG** 

UN number: 1150 Class: 3 Packing group: II EMS-No: F-E, S-D

Proper shipping name: 1,2-DICHLOROETHYLENE

IATA

UN number: 1150 Class: 3 Packing group: II

Proper shipping name: 1,2-Dichloroethylene

Supelco - 48597 Page 6 of 8

### 15. REGULATORY INFORMATION

### **SARA 302 Components**

No chemicals in this material are subject to the reporting requirements of SARA Title III, Section 302.

### **SARA 313 Components**

This material does not contain any chemical components with known CAS numbers that exceed the threshold (De Minimis) reporting levels established by SARA Title III, Section 313.

### SARA 311/312 Hazards

Fire Hazard

### **Massachusetts Right To Know Components**

|                      | CAS-No.  | Revision Date |
|----------------------|----------|---------------|
| cis-Dichloroethylene | 156-59-2 | 1993-04-24    |

### Pennsylvania Right To Know Components

CAS-No. Revision Date cis-Dichloroethylene 156-59-2 1993-04-24

**New Jersey Right To Know Components** 

CAS-No. Revision Date cis-Dichloroethylene 156-59-2 1993-04-24

### California Prop. 65 Components

This product does not contain any chemicals known to State of California to cause cancer, birth defects, or any other reproductive harm.

### 16. OTHER INFORMATION

#### Full text of H-Statements referred to under sections 2 and 3.

Acute Tox. Acute toxicity

Aquatic Acute Acute aquatic toxicity
Aquatic Chronic Chronic aquatic toxicity
Flam. Lig. Flammable liquids

H225 Highly flammable liquid and vapour.

H332 Harmful if inhaled. H402 Harmful to aquatic life.

# **HMIS Rating**

Health hazard: 1
Chronic Health Hazard: \*
Flammability: 3
Physical Hazard 1

# **NFPA** Rating

Health hazard: 2
Fire Hazard: 3
Reactivity Hazard: 0

### **Further information**

Copyright 2015 Sigma-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use only. The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. Sigma-Aldrich Corporation and its Affiliates shall not be held liable for any damage resulting from handling or from contact with the above product. See www.sigma-aldrich.com and/or the reverse side of invoice or packing slip for additional terms and conditions of sale.

Supelco - 48597 Page 7 of 8

Preparation Information Sigma-Aldrich Corporation Product Safety – Americas Region 1-800-521-8956

Version: 4.4 Revision Date: 12/01/2015 Print Date: 07/13/2017

Supelco - 48597 Page 8 of 8



# **SAFETY DATA SHEET**

Creation Date 08-Nov-2010 Revision Date 16-Jan-2019 Revision Number 6

1. Identification

Product Name Fluoranthene

Cat No.: AC119170000; AC119170250; AC119171000; AC119175000

**CAS-No** 206-44-0

Synonyms Benzo[j,k]fluorene

Recommended Use Laboratory chemicals.

Uses advised against Food, drug, pesticide or biocidal product use

Details of the supplier of the safety data sheet

Company

Fisher Scientific Acros Organics
One Reagent Lane One Reagent Lane
Fair Lawn, NJ 07410 Fair Lawn, NJ 07410

Tel: (201) 796-7100

**Emergency Telephone Number** 

For information **US** call: 001-800-ACROS-01 / **Europe** call: +32 14 57 52 11 Emergency Number **US**:001-201-796-7100 / **Europe**: +32 14 57 52 99 **CHEMTREC** Tel. No.**US**:001-800-424-9300 / **Europe**:001-703-527-3887

# 2. Hazard(s) identification

Classification

This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200)

Acute oral toxicity Category 4

Label Elements

Signal Word

Warning

**Hazard Statements** 

Harmful if swallowed



### **Precautionary Statements**

Prevention

Wash face, hands and any exposed skin thoroughly after handling

Do not eat, drink or smoke when using this product

Ingestion

IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell

Rinse mouth **Disposal** 

Dispose of contents/container to an approved waste disposal plant

Hazards not otherwise classified (HNOC)

Very toxic to aquatic life with long lasting effects

# 3. Composition/Information on Ingredients

| Component    | CAS-No   | Weight % |
|--------------|----------|----------|
| Fluoranthene | 206-44-0 | >95      |

### 4. First-aid measures

General Advice If symptoms persist, call a physician.

Eye Contact Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes. Get

medical attention.

**Skin Contact** Wash off immediately with plenty of water for at least 15 minutes. If skin irritation persists,

call a physician.

**Inhalation** Move to fresh air. If not breathing, give artificial respiration. Get medical attention if

symptoms occur.

**Ingestion** Clean mouth with water and drink afterwards plenty of water. Get medical attention if

symptoms occur.

Most important symptoms and

effects

None reasonably foreseeable.

Notes to Physician Treat symptomatically

### 5. Fire-fighting measures

Suitable Extinguishing Media Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.

Unsuitable Extinguishing Media No information available

Flash Point Not applicable

Method - No information available

**Autoignition Temperature** 

**Explosion Limits** 

No information available

Upper No data available
Lower No data available
Sensitivity to Mechanical Impact No information available
Sensitivity to Static Discharge No information available

**Specific Hazards Arising from the Chemical** 

Keep product and empty container away from heat and sources of ignition.

**Hazardous Combustion Products** 

Revision Date 16-Jan-2019 **Fluoranthene** 

Carbon monoxide (CO) Carbon dioxide (CO2)

### Protective Equipment and Precautions for Firefighters

As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear.

NFPA

Health **Flammability** Instability Physical hazards N/A 2 0

6. Accidental release measures

**Personal Precautions Environmental Precautions**  Ensure adequate ventilation. Use personal protective equipment. Avoid dust formation.

Should not be released into the environment.

Methods for Containment and Clean Sweep up or vacuum up spillage and collect in suitable container for disposal. Keep in

suitable, closed containers for disposal.

7. Handling and storage

Ensure adequate ventilation. Wear personal protective equipment. Avoid dust formation. Do Handling

not get in eyes, on skin, or on clothing. Avoid ingestion and inhalation.

Storage Keep in a dry, cool and well-ventilated place. Keep container tightly closed.

8. Exposure controls / personal protection

**Exposure Guidelines** 

This product does not contain any hazardous materials with occupational exposure

limitsestablished by the region specific regulatory bodies.

**Engineering Measures** Ensure adequate ventilation, especially in confined areas. Ensure that eyewash stations

and safety showers are close to the workstation location.

Personal Protective Equipment

**Eye/face Protection** Wear appropriate protective eveglasses or chemical safety goggles as described by

OSHA's eve and face protection regulations in 29 CFR 1910.133 or European Standard

FN166.

Long sleeved clothing. Skin and body protection

**Respiratory Protection** Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European Standard

> EN 149. Use a NIOSH/MSHA or European Standard EN 149 approved respirator if exposure limits are exceeded or if irritation or other symptoms are experienced.

**Hygiene Measures** Handle in accordance with good industrial hygiene and safety practice.

9. Physical and chemical properties

**Physical State** Powder Solid **Appearance** Light green Odorless Odor

**Odor Threshold** No information available

Not applicable pН

Melting Point/Range 109 - 111 °C / 228.2 - 231.8 °F

**Boiling Point/Range** 384 °C / 723.2 °F Flash Point Not applicable

**Evaporation Rate** No information available Flammability (solid, gas) No information available

Flammability or explosive limits

UpperNo data availableLowerNo data availableVapor PressureNo information availableVapor DensityNo information availableSpecific GravityNo information available

**Solubility** insoluble

Partition coefficient; n-octanol/water No data available

Autoignition TemperatureNo information availableDecomposition TemperatureNo information availableViscosityNo information available

Molecular FormulaC16 H10Molecular Weight202.25

# 10. Stability and reactivity

Reactive Hazard None known, based on information available

**Stability** Stable under normal conditions.

Conditions to Avoid Incompatible products.

Incompatible Materials Strong oxidizing agents

Hazardous Decomposition Products Carbon monoxide (CO), Carbon dioxide (CO2)

Hazardous Polymerization Hazardous polymerization does not occur.

Hazardous Reactions None under normal processing.

# 11. Toxicological information

**Acute Toxicity** 

Product Information No acute toxicity information is available for this product

**Component Information** 

| Component    | LD50 Oral          | LD50 Dermal               | LC50 Inhalation |
|--------------|--------------------|---------------------------|-----------------|
| Fluoranthene | LD50 = 2 g/kg(Rat) | LD50 = 3180 mg/kg(Rabbit) | Not listed      |

Toxicologically Synergistic No information available

**Products** 

Delayed and immediate effects as well as chronic effects from short and long-term exposure

**Irritation** No information available

Sensitization No information available

**Carcinogenicity** The table below indicates whether each agency has listed any ingredient as a carcinogen.

| Component    | CAS-No   | IARC       | NTP        | ACGIH      | OSHA       | Mexico     |
|--------------|----------|------------|------------|------------|------------|------------|
| Fluoranthene | 206-44-0 | Not listed | Not listed | Not listed | Not listed | Not listed |

Mutagenic Effects No information available

Reproductive Effects

No information available.

Developmental Effects

No information available.

**Teratogenicity** No information available.

STOT - single exposure None known STOT - repeated exposure None known

\_\_\_\_\_\_

**Aspiration hazard** No information available

Symptoms / effects,both acute and No information available

delayed

**Endocrine Disruptor Information** No information available

Other Adverse Effects The toxicological properties have not been fully investigated. See actual entry in RTECS for

complete information.

# 12. Ecological information

**Ecotoxicity** 

Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

| Component    | Freshwater Algae | Freshwater Fish      | Microtox   | Water Flea          |
|--------------|------------------|----------------------|------------|---------------------|
| Fluoranthene | Not listed       | Oncorhynchus mykiss: | Not listed | EC50: 0.78 mg/L 20h |
|              |                  | LC50=0.0077 mg/L 96h |            |                     |

Persistence and Degradability No information available

**Bioaccumulation/ Accumulation** No information available.

Mobility .

| Component    | log Pow |
|--------------|---------|
| Fluoranthene | 5.1     |

# 13. Disposal considerations

**Waste Disposal Methods** 

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. Chemical waste generators must also consult local, regional, and national hazardous waste regulations to ensure complete and accurate classification.

| Component               | RCRA - U Series Wastes | RCRA - P Series Wastes |
|-------------------------|------------------------|------------------------|
| Fluoranthene - 206-44-0 | U120                   | -                      |

# 14. Transport information

DOT

UN-No UN3077

**Proper Shipping Name** ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.

Proper technical name Fluoranthene

Hazard Class 9
Packing Group III

TDG

UN-No UN3077

Proper Shipping Name ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.

Hazard Class 9
Packing Group III

<u>IATA</u>

**UN-No** UN3077

Proper Shipping Name ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.

Hazard Class 9
Packing Group III

IMDG/IMO

UN-No UN3077

Proper Shipping Name ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.

Hazard Class 9
Packing Group III

# 15. Regulatory information

\_\_\_\_\_\_

All of the components in the product are on the following Inventory lists: The product is classified and labeled according to EC directives or corresponding national laws The product is classified and labeled in accordance with Directive 1999/45/EC Europe China Canada TSCA Japan X = listed Australia U.S.A. (TSCA) Canada (DSL/NDSL) Europe (EINECS/ELINCS/NLP) Australia (AICS) Korea (ECL) China (IECSC) Japan (ENCS) Philippines (PICCS) Complete Regulatory Information contained in following SDS's

#### International Inventories

| Component    | TSCA | DSL | NDSL | EINECS    | ELINCS | NLP | PICCS | ENCS | AICS | IECSC | KECL |
|--------------|------|-----|------|-----------|--------|-----|-------|------|------|-------|------|
| Fluoranthene | Χ    | -   | Χ    | 205-912-4 | -      |     | -     | Χ    | Χ    | Х     | -    |

#### Legend:

- X Listed
- E Indicates a substance that is the subject of a Section 5(e) Consent order under TSCA.
- F Indicates a substance that is the subject of a Section 5(f) Rule under TSCA.
- N Indicates a polymeric substance containing no free-radical initiator in its inventory name but is considered to cover the designated polymer made with any free-radical initiator regardless of the amount used.
- P Indicates a commenced PMN substance
- R Indicates a substance that is the subject of a Section 6 risk management rule under TSCA.
- S Indicates a substance that is identified in a proposed or final Significant New Use Rule
- T Indicates a substance that is the subject of a Section 4 test rule under TSCA.
- XU Indicates a substance exempt from reporting under the Inventory Update Rule, i.e. Partial Updating of the TSCA Inventory Data Base Production and Site Reports (40 CFR 710(B).
- Y1 Indicates an exempt polymer that has a number-average molecular weight of 1,000 or greater.
- Y2 Indicates an exempt polymer that is a polyester and is made only from reactants included in a specified list of low concern reactants that comprises one of the eligibility criteria for the exemption rule.

#### U.S. Federal Regulations

**TSCA 12(b)** 

Not applicable

#### **SARA 313**

| Component    | CAS-No   | Weight % | SARA 313 - Threshold<br>Values % |
|--------------|----------|----------|----------------------------------|
| Fluoranthene | 206-44-0 | >95      | 1.0 0.1                          |

### SARA 311/312 Hazard Categories

See section 2 for more information

### **CWA (Clean Water Act)**

| <u> </u>     |                               |                                |                        |                           |
|--------------|-------------------------------|--------------------------------|------------------------|---------------------------|
| Component    | CWA - Hazardous<br>Substances | CWA - Reportable<br>Quantities | CWA - Toxic Pollutants | CWA - Priority Pollutants |
| Fluoranthene | -                             | -                              | X                      | X                         |

### Clean Air Act

Not applicable

**OSHA** Occupational Safety and Health Administration

Not applicable

#### **CERCLA**

This material, as supplied, contains one or more substances regulated as a hazardous substance under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302)

| Component    | Hazardous Substances RQs | CERCLA EHS RQs |
|--------------|--------------------------|----------------|
| Fluoranthene | 100 lb                   | -              |

### **California Proposition 65**

This product does not contain any Proposition 65 chemicals

### U.S. State Right-to-Know

Regulations

| Component    | Massachusetts | New Jersey | Pennsylvania | Illinois | Rhode Island |
|--------------|---------------|------------|--------------|----------|--------------|
| Fluoranthene | X             | Х          | Χ            | -        | -            |

#### **U.S. Department of Transportation**

Reportable Quantity (RQ): N
DOT Marine Pollutant N
DOT Severe Marine Pollutant N

### **U.S. Department of Homeland Security**

This product does not contain any DHS chemicals.

### Other International Regulations

Mexico - Grade No information available

| 16. Other information |
|-----------------------|
|-----------------------|

Prepared By Regulatory Affairs

Thermo Fisher Scientific

Email: EMSDS.RA@thermofisher.com

 Creation Date
 08-Nov-2010

 Revision Date
 16-Jan-2019

 Print Date
 16-Jan-2019

Revision Summary This document has been updated to comply with the US OSHA HazCom 2012 Standard

replacing the current legislation under 29 CFR 1910.1200 to align with the Globally

Harmonized System of Classification and Labeling of Chemicals (GHS).

#### **Disclaimer**

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text

**End of SDS** 

\_\_\_\_\_



# **SAFETY DATA SHEET**

Revision Date 17-Jan-2018 Revision Number 3

## 1. Identification

Product Name 1,1,2-Trichloro-1,2,2-trifluoroethane

Cat No.: T178-1; T178-4

Synonyms Fluorocarbon 113; Freon 113; 1,1,2-Trichlorotrifluoroethane

Recommended Use Laboratory chemicals.

Uses advised against Not for food, drug, pesticide or biocidal product use

Details of the supplier of the safety data sheet

Company

Fisher Scientific One Reagent Lane Fair Lawn, NJ 07410 Tel: (201) 796-7100

## **Emergency Telephone Number**

CHEMTREC®, Inside the USA: 800-424-9300 CHEMTREC®, Outside the USA: 001-703-527-3887

# 2. Hazard(s) identification

### Classification

Classification under 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200)

Based on available data, the classification criteria are not met

## Label Elements

None required

### Hazards not otherwise classified (HNOC)

None identified

## 3. Composition/Information on Ingredients

| Component                             | CAS-No  | Weight % |  |
|---------------------------------------|---------|----------|--|
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 76-13-1 | 99       |  |

## 4. First-aid measures

Eye Contact Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes.

**Skin Contact** Wash off immediately with plenty of water for at least 15 minutes.

### 1,1,2-Trichloro-1,2,2-trifluoroethane

**Inhalation** Move to fresh air.

**Ingestion** Do not induce vomiting.

Most important symptoms and

effects

No information available.

Notes to Physician Treat symptomatically

## 5. Fire-fighting measures

Unsuitable Extinguishing Media No information available

Flash Point No information available Method - No information available

**Autoignition Temperature** 

**Explosion Limits** 

770 °C

Upper No data available
Lower No data available
Sensitivity to Mechanical Impact No information available
Sensitivity to Static Discharge No information available

## **Specific Hazards Arising from the Chemical**

Keep product and empty container away from heat and sources of ignition.

### **Hazardous Combustion Products**

No information available

### **Protective Equipment and Precautions for Firefighters**

As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear.

**NFPA** 

| Health | Flammability | Instability | Physical hazards |
|--------|--------------|-------------|------------------|
| 1      | 0            | 0           | N/A              |

## 6. Accidental release measures

Personal Precautions Ensure adequate ventilation. Use personal protective equipment.

**Environmental Precautions** See Section 12 for additional ecological information.

Methods for Containment and Clean No information available.

Up

## 7. Handling and storage

Handling Ensure adequate ventilation.

**Storage** Keep containers tightly closed in a dry, cool and well-ventilated place.

## 8. Exposure controls / personal protection

Exposure Guidelines This product does not contain any hazardous materials with occupational exposure

limitsestablished by the region specific regulatory bodies.

| Component                       | ACGIH TLV      | OSHA PEL                              | NIOSH IDLH                   | Mexico OEL (TWA)             |
|---------------------------------|----------------|---------------------------------------|------------------------------|------------------------------|
| 1,1,2-Trichloro-1,2,2-trifluoro | TWA: 1000 ppm  | (Vacated) TWA: 1000 ppm               | IDLH: 2000 ppm               | TWA: 1000 ppm                |
| ethane                          | STEL: 1250 ppm | (Vacated) TWA: 7600 mg/m <sup>3</sup> | TWA: 1000 ppm                | TWA: 1600 mg/m <sup>3</sup>  |
|                                 |                | (Vacated) STEL: 1250 ppm              | TWA: 7600 mg/m <sup>3</sup>  | STEL: 1250 ppm               |
|                                 |                | (Vacated) STEL: 9500                  | STEL: 1250 ppm               | STEL: 9500 mg/m <sup>3</sup> |
|                                 |                | mg/m³                                 | STEL: 9500 mg/m <sup>3</sup> |                              |
|                                 |                | TWA: 1000 ppm                         |                              |                              |
|                                 |                | TWA: 7600 mg/m <sup>3</sup>           |                              |                              |

#### Legend

ACGIH - American Conference of Governmental Industrial Hygienists

OSHA - Occupational Safety and Health Administration

NIOSH IDLH: The National Institute for Occupational Safety and Health Immediately Dangerous to Life or Health

Ensure adequate ventilation, especially in confined areas. **Engineering Measures** 

**Personal Protective Equipment** 

**Eye/face Protection** Wear appropriate protective eyeglasses or chemical safety goggles as described by

OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard

EN166.

Wear appropriate protective gloves and clothing to prevent skin exposure. Skin and body protection

Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European Standard **Respiratory Protection** 

EN 149. Use a NIOSH/MSHA or European Standard EN 149 approved respirator if exposure limits are exceeded or if irritation or other symptoms are experienced.

**Hygiene Measures** Handle in accordance with good industrial hygiene and safety practice.

## 9. Physical and chemical properties

Liquid **Physical State** Clear **Appearance** Odor aromatic

**Odor Threshold** No information available No information available Hq

-36 °C **Melting Point/Range** 

48 °C **Boiling Point/Range** 

Flash Point No information available > 1.0 (Ether = 1.0) **Evaporation Rate** Flammability (solid, gas) No information available

Flammability or explosive limits

No data available Upper Lower No data available **Vapor Pressure** 363 hPa @ 20 °C 6.5 (Air = 1.0)**Vapor Density** 1.47 @ 21°C **Specific Gravity** Solubility Insoluble in water

Partition coefficient; n-octanol/water No data available

770 °C **Autoignition Temperature** 

**Decomposition Temperature** No information available **Viscosity** No information available

**Molecular Formula** C2CI3F3 **Molecular Weight** 187.38

## 10. Stability and reactivity

**Reactive Hazard** None known, based on information available

### 1,1,2-Trichloro-1,2,2-trifluoroethane

**Stability** Stable under normal conditions.

Conditions to Avoid Incompatible products.

Incompatible Materials Strong acids, Powdered metals

Hazardous Decomposition Products No information available

Hazardous Polymerization Hazardous polymerization does not occur.

Hazardous Reactions None under normal processing.

## 11. Toxicological information

## **Acute Toxicity**

**Component Information** 

| Component                             | LD50 Oral            | LD50 Dermal | LC50 Inhalation                                          |
|---------------------------------------|----------------------|-------------|----------------------------------------------------------|
| 1,1,2-Trichloro-1,2,2-trifluoroethane | LD50 = 43 g/kg (Rat) | Not listed  | LC50 = 38000 ppm (Rat)4 h<br>LC50 = 38500 mg/kg (Rat)4 h |
|                                       |                      |             |                                                          |

**Toxicologically Synergistic** 

**Products** 

No information available

Delayed and immediate effects as well as chronic effects from short and long-term exposure

Irritation No information available

Sensitization No information available

Carcinogenicity The table below indicates whether each agency has listed any ingredient as a carcinogen.

| Component                 | CAS-No  | IARC       | NTP        | ACGIH      | OSHA       | Mexico     |
|---------------------------|---------|------------|------------|------------|------------|------------|
| 1,1,2-Trichloro-1,2,2-tri | 76-13-1 | Not listed | Not listed | Not listed | Not listed | Not listed |
| fluoroethane              |         |            |            |            |            |            |

Mutagenic Effects No information available

Reproductive Effects No information available.

**Developmental Effects** No information available.

**Teratogenicity** No information available.

STOT - single exposure None known None known

Aspiration hazard No information available

Symptoms / effects,both acute and No information available

delayed

**Endocrine Disruptor Information** No information available

Other Adverse Effects The toxicological properties have not been fully investigated.

## 12. Ecological information

## **Ecotoxicity**

Do not empty into drains. Chlorotrifluoromethane (CFC-13) is a Class I ozone-depleting chlorofluorocarbon. It is stable in the atmosphere. The half-life for degradation by reaction with photochemically-produced hydroxyl radicals is about 62 years. Following gradual diffusion into the stratosphere above the ozone layer, it slowly degrades (est. half-life of 180-450 years) due to direct photolysis and contributes to the catalytic removal of atmosphere ozone.

| Component                                 | Freshwater Algae | Freshwater Fish                                                                                                                                        | Microtox   | Water Flea                              |
|-------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------|
| 1,1,2-Trichloro-1,2,2-trifluoro<br>ethane | Not listed       | LC50: 7 - 14 mg/L, 96h<br>static (Brachydanio rerio)<br>LC50: = 1250 mg/L, 96h<br>(Pimephales promelas)<br>LC50: = 6240 mg/L, 96h<br>(Oryzias latipes) | Not listed | EC50: = 71 mg/L, 48h<br>(Daphnia magna) |

Persistence and Degradability No information available

**Bioaccumulation/ Accumulation** No information available.

**Mobility** No information available.

## 13. Disposal considerations

Waste Disposal Methods C

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. Chemical waste generators must also consult local, regional, and national hazardous waste regulations to ensure complete and accurate classification.

|                            | 14. Transport information |  |  |
|----------------------------|---------------------------|--|--|
| DOT                        | Not regulated             |  |  |
| DOT<br>TDG                 | Not regulated             |  |  |
| IATA                       | Not regulated             |  |  |
| IMDG/IMO                   | Not regulated             |  |  |
| 15. Regulatory information |                           |  |  |

#### International Inventories

| Component                       | TSCA | DSL | NDSL | EINECS    | ELINCS | NLP | PICCS | ENCS | AICS | IECSC | KECL |
|---------------------------------|------|-----|------|-----------|--------|-----|-------|------|------|-------|------|
| 1,1,2-Trichloro-1,2,2-trifluoro | Х    | Х   | -    | 200-936-1 | -      |     | Х     | Χ    | Χ    | Х     | Χ    |
| ethane                          |      |     |      |           |        |     |       |      |      |       |      |

### Legend:

- X Listed
- E Indicates a substance that is the subject of a Section 5(e) Consent order under TSCA.
- F Indicates a substance that is the subject of a Section 5(f) Rule under TSCA.
- N Indicates a polymeric substance containing no free-radical initiator in its inventory name but is considered to cover the designated polymer made with any free-radical initiator regardless of the amount used.
- P Indicates a commenced PMN substance
- R Indicates a substance that is the subject of a Section 6 risk management rule under TSCA.
- S Indicates a substance that is identified in a proposed or final Significant New Use Rule
- T Indicates a substance that is the subject of a Section 4 test rule under TSCA.
- XU Indicates a substance exempt from reporting under the Inventory Update Rule, i.e. Partial Updating of the TSCA Inventory Data Base Production and Site Reports (40 CFR 710(B).
- Y1 Indicates an exempt polymer that has a number-average molecular weight of 1,000 or greater.
- Y2 Indicates an exempt polymer that is a polyester and is made only from reactants included in a specified list of low concern reactants that comprises one of the eligibility criteria for the exemption rule.

## U.S. Federal Regulations

TSCA 12(b) Not applicable

SARA 313 Not applicable

| 0, 11 1, 1 | 110t applicat                         | 710     |          |                      |
|------------|---------------------------------------|---------|----------|----------------------|
|            | Component                             | CAS-No  | Weight % | SARA 313 - Threshold |
|            | •                                     |         |          | Values %             |
|            | 1.1.2-Trichloro-1.2.2-trifluoroethane | 76-13-1 | 99       | 1.0                  |

SARA 311/312 Hazard Categories See section 2 for more information

CWA (Clean Water Act) Not applicable

### 1,1,2-Trichloro-1,2,2-trifluoroethane

\_\_\_\_\_\_

Clean Air Act Not applicable

| 0.04.1.7.1.1.7.01                     | 1101 applicable |                         |                         |
|---------------------------------------|-----------------|-------------------------|-------------------------|
| Component                             | HAPS Data       | Class 1 Ozone Depletors | Class 2 Ozone Depletors |
| 1.1.2-Trichloro-1.2.2-trifluoroethane | -               | X                       | -                       |

## **OSHA** Occupational Safety and Health Administration

Not applicable

CERCLA Not applicable

| Component                             | Hazardous Substances RQs | CERCLA EHS RQs |  |
|---------------------------------------|--------------------------|----------------|--|
| 1,1,2-Trichloro-1,2,2-trifluoroethane | 5000 lb                  | -              |  |

**California Proposition 65** 

This product does not contain any Proposition 65 chemicals

U.S. State Right-to-Know

Regulations

Not applicable

| Component                    | Massachusetts | New Jersey | Pennsylvania | Illinois | Rhode Island |
|------------------------------|---------------|------------|--------------|----------|--------------|
| 1,1,2-Trichloro-1,2,2-triflu | Χ             | X          | X            | -        | X            |
| oroethane                    |               |            |              |          |              |

### **U.S. Department of Transportation**

Reportable Quantity (RQ): N
DOT Marine Pollutant N
DOT Severe Marine Pollutant N

### **U.S. Department of Homeland Security**

This product does not contain any DHS chemicals.

## Other International Regulations

Mexico - Grade No information available

| 16. Other information |
|-----------------------|
|                       |

Prepared By Regulatory Affairs

Thermo Fisher Scientific

Email: EMSDS.RA@thermofisher.com

Revision Date 17-Jan-2018 Print Date 17-Jan-2018

**Revision Summary** This document has been updated to comply with the US OSHA HazCom 2012 Standard

replacing the current legislation under 29 CFR 1910.1200 to align with the Globally

Harmonized System of Classification and Labeling of Chemicals (GHS).

## Disclaimer

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text

## **End of SDS**



## Safety Data Sheet Revision Date: 06/04/19

www.restek.com

2 Letter ISO country code/language code: US/EN

#### 1. IDENTIFICATION

Catalog Number / Product Name: 31279 / Indeno(1,2,3-c,d)pyrene Standard

Company: **Restek Corporation** Address: 110 Benner Circle Bellefonte, Pa. 16823 Phone#: 814-353-1300 Fax#: 814-353-1309

Emergency#: 800-424-9300 (CHEMTREC) 703-527-3887 (Outside the ÚS)

Email: www.restek.com

**Revision Number:** 11

Intended use: For Laboratory use only

## 2. HAZARD(S)IDENTIFICATION

### **Emergency Overview:**



**GHS Hazard** Symbols:

**GHS** Carcinogenicity Category 2

Classification:

**GHS Signal** Warning

Word:

**GHS Hazard:** Suspected of causing cancer.

**GHS** 

Precautions:

Safety Obtain special instructions before use.

Precautions: Do not handle until all safety precautions have been read and understood. Wear protective gloves/protective clothing/eye protection/face protection.

First Aid IF exposed or concerned: Get medical advice/attention.

Measures:

Storage: Store locked up.

Disposal: Dispose of contents/container according to section 13 of the SDS.

No data available Single

Exposure **Target Organs:** 

Repeated No data available

**Exposure Target Organs:** 

# 3. COMPOSITION / INFORMATION ON INGREDIENT

| Chemical Name             | CAS#     | EINEC #   | % Composition |  |
|---------------------------|----------|-----------|---------------|--|
| Dichloromethane           | 75-09-2  | 200-838-9 | 99.9          |  |
| indeno (1,2,3-c,d) pyrene | 193-39-5 | 205-893-2 | 0.1           |  |

## 4. FIRST-AID MEASURES

**Inhalation:** Remove to fresh air. If breathing is difficult, have a trained individual administer oxygen. If not

breathing, give artificial respiration and have a trained individual administer oxygen. Get

medical attention immediately

**Eyes:** Immediately flush eyes with plenty of water for at least 20 minutes retracting eyelids often.

Tilt the head to prevent chemical from transferring to the uncontaminated eye. Get immediate medical attention and monitor the eye daily as advised by your physician. Serious harm (damage) may result if treatment is delayed. Continue to flush eyes while awaiting medical

attention

Skin Contact: Wash with soap and water. Remove contaminated clothing, launder immediately, and discard

contaminated leather goods. Get medical attention immediately.

**Ingestion:** Do not induce vomiting and seek medical attention immediately. Drink two glasses of water

or milk to dilute. Provide medical care provider with this SDS. Never give anything by mouth

to an unconscious person

### 5. FIRE- FIGHTING MEASURES

Extinguishing Media: Use alcohol resistant foam, carbon dioxide, or dry chemical when fighting

fires. Water or foam may cause frothing if liquid is burning but it still may be a useful extinguishing agent if carefully applied to the surface of the fire. Do Not direct a stream of water into the hot burning liquid. Use

methods suitable to fight surrounding fire.

Fire and/or Explosion Hazards: No data.

**Fire Fighting Methods and Protection:** Use methods for the surrounding fire. **Hazardous Combustion Products:** Carbon dioxide, Carbon monoxide

#### 6. ACCIDENTAL RELEASE MEASURES

Personal Precautions and Equipment: Exposure to the spilled material may be severely irritating or toxic. Follow

personal protective equipment recommendations found in Section 8 of this SDS. Personal protective equipment needs must be evaluated based on information provided on this sheet and the special circumstances created by the spill including; the material spilled, the quantity of the spill, the area in which the spill occurred, and the expertise of employees in the area responding to the spill. Never exceed any occupational exposure

limits.

Methods for Clean-up: Prevent the spread of any spill to minimize harm to human health and the

environment if safe to do so. Wear complete and proper personal protective equipment following the recommendation of Section 8 at a minimum. Dike with suitable absorbent material like granulated clay. Gather and store in a sealed container pending a waste disposal

evaluation.

## 7. HANDLING AND STORAGE

Handling Technical Measures and Precautions: Toxic or severely irritating material. Avoid contacting and avoid

breathing the material. Use only in a well ventilated area. As with all chemicals, good industrial hygiene practices should be

followed when handling this material.

Storage Technical Measures and Conditions: Store in a cool dry place. Isolate from incompatible materials.

Keep container closed when not in use

## 8. EXPOSURE CONTROLS / PERSONAL PROTECTION

| United States:<br>Chemical Name | CAS No.  | IDLH               | ACGIH STEL | ACGIH TLV-TWA   | OSHA Exposure<br>Limit                       |
|---------------------------------|----------|--------------------|------------|-----------------|----------------------------------------------|
| Dichloromethane                 | 75-09-2  | 2300 ppm<br>IDLH   | None Known | 50 ppm TWA      | 25 ppm TWA; 125<br>ppm STEL (15 min.<br>TWA) |
| indeno (1,2,3-c,d)<br>pyrene    | 193-39-5 | Not<br>established | None Known | Not established | No data available                            |

**Personal Protection:** 

Engineering Measures: Local exhaust ventilation or other engineering controls are normally required

when handling or using this product to avoid overexposure.

Respiratory Protection: Respiratory protection may be required to avoid overexposure when handling this

product. General or local exhaust ventilation is the preferred means of protection.

Use a respirator if general room ventilation is not available or sufficient to

eliminate symptoms.

Eye Protection: Wear chemically resistant safety glasses with side shields when handling this

product. Wear additional eye protection such as chemical splash goggles and/or face shield when the possibility exists for eye contact with splashing or spraying liquid, or airborne material. Do not wear contact lenses. Have an eye wash

station available.

Skin Protection: Avoid skin contact by wearing chemically resistant gloves, an apron and other

protective equipment depending upon conditions of use. Inspect gloves for chemical break-through and replace at regular intervals. Clean protective equipment regularly. Wash hands and other exposed areas with mild soap and

water before eating, drinking, and when leaving work.

Medical Conditions Aggravated By Exposure: Eye disease Skin disease including eczema and sensitization Respiratory

disease including asthma and bronchitis

#### 9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance, color: Colorless Odor: Strong

Physical State:

pH:

Vapor Pressure:

Vapor Density:

Boiling Point (°C):

Melting Point (°C):

No data available

No data available

2.93 (air = 1)

530 °C

-96.7 °C

Flash Point (°F):

Upper Flammable/Explosive Limit, % in air:

Lower Flammable/Explosive Limit, % in air:

Autoignition Temperature (°C):

Decomposition Temperature (°C):

No data available

556 deg C

No data available

**Specific Gravity:** 1.3254 - 1.3258 g/cm3 at 20 °C

**Evaporation Rate:**No data available

Odor Threshold: ND

Solubility: Moderate; 50-99% Partition Coefficient: n-octanol in water: No data available

VOC % by weight: 99.9

Molecular Weight: No data available

### 10. STABILITY AND REACTIVITY

Stability: Stable under normal conditions.

Conditions to Avoid:

Materials to Avoid / Chemical Incompatiability:

Hazardous Decomposition Products:

None known.Contamination High temperatures
Strong oxidizing agents Caustics (bases)
Carbon dioxide Carbon monoxide

## 11. TOXICOLOGICAL INFORMATION

Routes of Entry: Inhalation Absorption Ingestion Skin contact Eye

contact

Target Organs Potentially Affected By Exposure: Skin, Cardiovascular System, Eyes, Liver

Chemical Interactions That Change Toxicity: None Known

### Immediate (Acute) Health Effects by Route of Exposure:

Inhalation Irritation: Can cause moderate respiratory irritation, dizziness, weakness, fatigue, nausea

and headache.

Inhalation Toxicity: Harmful! Can cause systemic damage (see "Target Organs)Inhalation may

cause severe central nervous system depression (including unconsciousness).

**Skin Contact:** Contact causes severe skin irritation and possible burns.

Skin Absorption: Harmful if absorbed through the skin. May cause severe irritation and systemic

damage.

Eye Contact: Contact with the eyes may cause moderate to severe eye injury. Eye contact

may result in tearing and reddening, but not likely to permanently injure eye tissue. Temporary vision impairment (cloudy or blurred vision) is possible.

Ingestion Irritation: Irritating to mouth, throat, and stomach. Can cause abdominal discomfort,

nausea, vomiting and diarrhea.

**Ingestion Toxicity:** Harmful if swallowed. May cause systemic poisoning.

## Long-Term (Chronic) Health Effects:

**Carcinogenicity:** Contains a probable or known human carcinogen.

Reproductive and Developmental Toxicity: No data available to indicate product or any components

present at greater than 0.1% may cause birth defects.

Inhalation:

Upon prolonged and/or repeated exposure, can cause

Upon prolonged and/or repeated exposure, can cause moderate respiratory irritation, dizziness, weakness, fatigue,

nausea and headache.Harmful! Can cause systemic damage upon prolonged and/or repeated exposure (see

"Target Organs)

Skin Absorption: Upon prolonged or repeated exposure, harmful if

absorbed through the skin. May cause severe irritation

and systemic damage

**Component Toxicological Data:** 

NIOSH:

Chemical Name CAS No. LD50/LC50

Methane, dichloro- 75-09-2 Inhalation LC50 Rat 53 mg/L 6 h

**Component Carcinogenic Data:** 

OSHA:

Chemical Name CAS No. Indeno[1,2,3-cd]pyrene 193-39-5

Indeno[1,2,3-cd]pyrene 193-39-5 Present
Methylene chloride 75-09-2 25 ppm TWA (8 hr.); 125 ppm STEL (15 min.);

12.5 ppm Action Level (see 29 CFR 1910.1051); effective date for respiratory protection for certain employers to acheive the 8-hour TWA PEL is August 31, 1998; the start up date to install engineering controls is December 10, 1998.; {OSHA - 29 CFR 1910

Specifically Regulate

ACGIH:

Chemical Name CAS No.

Dichloromethane 75-09-2 A3 - Confirmed Animal Carcinogen with

Unknown Relevance to Humans

NIOSH:

Chemical Name CAS No.

Methylene chloride 75-09-2 potential occupational carcinogen

NTP:

Chemical Name CAS No.

No data available

IARC:

Chemical NameCAS No.Group No.Monograph 110 [in preparation];75-09-2Group 2A

Monograph 71 [1999]

Monograph 92 [2010]; 193-39-5 Group 2B

Supplement 7 [1987]; Monograph

32 [1983]

12. ECOLOGICAL INFORMATION

Overview: Moderate ecological hazard. This product may be dangerous

to plants and/or wildlife. Keep out of waterways.

Mobility: No data
Persistence: No data
Bioaccumulation: No data
Degradability: No data

Ecological Toxicity Data: No data available

13. DISPOSAL CONSIDERATIONS

Waste Description of Spent Product: Spent or discarded material is a hazardous waste. Mixing

spent or discarded material with other materials may render the mixture hazardous. Perform a hazardous

waste determination on mixtures.

Disposal Methods: Incinerate spent or discarded material a permitted

hazardous waste facility.

Waste Disposal of Packaging: Comply with all Local, State, Federal, and Provincial

## 14. TRANSPORTATION INFORMATION

**United States:** 

**DOT Proper Shipping Name:** Dichloromethane

UN Number: UN1593
Hazard Class: 6.1
Packing Group: III

International:

IATA Proper Shipping Name: Dichloromethane

UN Number: UN1593
Hazard Class: 6.1
Packing Group: III

Marine Pollutant: No

| Chemical Name     | CAS# | Marine Pollutant | Severe Marine<br>Pollutant |
|-------------------|------|------------------|----------------------------|
| No data available |      |                  |                            |

#### 15. REGULATORY INFORMATION

| United States:<br>Chemical Name | CAS#     | CERCLA | SARA 313 | SARA EHS<br>313 | TSCA |
|---------------------------------|----------|--------|----------|-----------------|------|
| Dichloromethane                 | 75-09-2  | Χ      | Χ        | -               | X    |
| indeno (1,2,3-c,d)<br>pyrene    | 193-39-5 | X      | X        | -               | X    |

The following chemicals are listed on CA Prop 65:

| Chemical Name                        | CAS#     | Regulation     |
|--------------------------------------|----------|----------------|
| Indeno[1,2,3-cd]pyrene               | 193-39-5 | Prop 65 Cancer |
| Dichloromethane                      | 75-09-2  | Prop 65 Cancer |
| Dichloromethane (Methylene chloride) |          |                |

State Right To Know Listing:

| Chemical Name      | CAS#     | New Jersey | Massachusetts | Pennsylvania | California |  |  |
|--------------------|----------|------------|---------------|--------------|------------|--|--|
| Dichloromethane    | 75-09-2  | X          | Х             | X            | X          |  |  |
| indeno (1,2,3-c,d) | 193-39-5 | X          | Х             | X            | Х          |  |  |
| pvrene             |          |            |               |              |            |  |  |

### 16. OTHER INFORMATION

Prior Version Date: 03/22/18

Other Information: Any changes to the SDS compared to previous versions are marked by a vertical

line in front of the concerned paragraph.

References: No data available

**Disclaimer:** Restek Corporation provides the descriptions, data and information contained

herein in good faith but makes no representation as to its comprehensiveness or accuracy. It is provided for your guidance only. Because many factors may affect processing or application/use, Restek Corporation recommends you perform an assessment to determine the suitability of a product for your particular purpose prior to use. No warranties of any kind, either expressed or implied, including fitness for a particular purpose, are made regarding products described, data or information set forth. In no case shall the descriptions, information, or data provided be considered a part of our terms and conditions of sale. Further, the descriptions, data and information furnished hereunder are given gratis. No obligation or liability for the description, data and information given are assumed. All such being given

and accepted at your risk.



# **SAFETY DATA SHEET**

Creation Date 20-Aug-2014 Revision Date 17-Jan-2018 Revision Number 3

1. Identification

Product Name Mercury (Certified ACS)

Cat No.: M141-1LB; M141-6LB

Synonyms Colloidal mercury; Hydrargyrum; Metallic mercury

Recommended Use Laboratory chemicals.

Uses advised against Not for food, drug, pesticide or biocidal product use

Details of the supplier of the safety data sheet

Company

Fisher Scientific One Reagent Lane Fair Lawn, NJ 07410 Tel: (201) 796-7100

## **Emergency Telephone Number**

CHEMTREC®, Inside the USA: 800-424-9300 CHEMTREC®, Outside the USA: 001-703-527-3887

# 2. Hazard(s) identification

### Classification

This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200)

Corrosive to metals

Acute Inhalation Toxicity - Vapors

Reproductive Toxicity

Specific target organ toxicity - (repeated exposure)

Category 1

Category 1

Category 1

Target Organs - Central nervous system (CNS), Kidney.

Label Elements

## Signal Word

Danger

## **Hazard Statements**

May be corrosive to metals

Fatal if inhaled

May damage the unborn child

Causes damage to organs through prolonged or repeated exposure



## **Precautionary Statements**

### Prevention

Obtain special instructions before use

Do not handle until all safety precautions have been read and understood

Use personal protective equipment as required

Do not get in eyes, on skin, or on clothing

Wash face, hands and any exposed skin thoroughly after handling

Do not eat, drink or smoke when using this product

Do not breathe dust/fume/gas/mist/vapors/spray

Use only outdoors or in a well-ventilated area

Wear respiratory protection

### Response

IF exposed or concerned: Get medical attention/advice

#### Inhalation

IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing

Immediately call a POISON CENTER or doctor/physician

#### Skir

Immediately call a POISON CENTER or doctor/physician

IF ON SKIN: Gently wash with plenty of soap and water

Remove/Take off immediately all contaminated clothing

Wash contaminated clothing before reuse

#### Storage

Store locked up

Store in a well-ventilated place. Keep container tightly closed

## Disposal

Dispose of contents/container to an approved waste disposal plant

## Hazards not otherwise classified (HNOC)

Very toxic to aquatic life with long lasting effects

WARNING. Reproductive Harm - https://www.p65warnings.ca.gov/.

# 3. Composition/Information on Ingredients

| Component | CAS-No    | Weight % |  |
|-----------|-----------|----------|--|
| Mercury   | 7439-97-6 | 100      |  |

## 4. First-aid measures

Eye Contact Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes.

Immediate medical attention is required.

Skin Contact Wash off immediately with soap and plenty of water while removing all contaminated

clothes and shoes. Immediate medical attention is required.

**Inhalation** Move to fresh air. If breathing is difficult, give oxygen. Do not use mouth-to-mouth method if

victim ingested or inhaled the substance; give artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device. Immediate

medical attention is required.

**Ingestion** Do not induce vomiting. Call a physician or Poison Control Center immediately.

Most important symptoms and

effects

No information available.

**Notes to Physician** Treat symptomatically

## Fire-fighting measures

Substance is nonflammable; use agent most appropriate to extinguish surrounding fire. **Suitable Extinguishing Media** 

**Unsuitable Extinguishing Media** No information available

**Flash Point** No information available Method -No information available

**Autoignition Temperature** 

**Explosion Limits** 

No information available

No data available Upper No data available Lower Sensitivity to Mechanical Impact No information available Sensitivity to Static Discharge No information available

## Specific Hazards Arising from the Chemical

Very toxic. Non-combustible, substance itself does not burn but may decompose upon heating to produce corrosive and/or toxic fumes. Keep product and empty container away from heat and sources of ignition.

## **Hazardous Combustion Products**

Mercury oxide Highly toxic fumes

## **Protective Equipment and Precautions for Firefighters**

As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear.

NFPA

| Health | Flammability | Instability | Physical hazards |
|--------|--------------|-------------|------------------|
| 4      | 0            | 0           | N/A              |

## 6. Accidental release measures

**Personal Precautions** 

Wear self-contained breathing apparatus and protective suit. Evacuate personnel to safe areas. Ensure adequate ventilation. Do not get in eyes, on skin, or on clothing. Should not be released into the environment. See Section 12 for additional ecological information.

**Environmental Precautions** 

Methods for Containment and Clean Wear self-contained breathing apparatus and protective suit. Soak up with inert absorbent material. Keep in suitable, closed containers for disposal.

## 7. Handling and storage

Handling

Up

Use only under a chemical fume hood. Wear personal protective equipment. Do not get in eyes, on skin, or on clothing. Do not breathe vapors or spray mist. Do not ingest.

Storage

Keep containers tightly closed in a dry, cool and well-ventilated place. Corrosives area.

## 8. Exposure controls / personal protection

## **Exposure Guidelines**

| Component | ACGIH TLV                    | OSHA PEL                                 | NIOSH IDLH                     | Mexico OEL (TWA)            |
|-----------|------------------------------|------------------------------------------|--------------------------------|-----------------------------|
| Mercury   | TWA: 0.025 mg/m <sup>3</sup> | (Vacated) TWA: 0.05 mg/m <sup>3</sup>    | IDLH: 10 mg/m <sup>3</sup>     | TWA: 0.05 mg/m <sup>3</sup> |
|           | Skin                         | Ceiling: 0.1 mg/m <sup>3</sup>           | TWA: 0.05 mg/m <sup>3</sup>    | _                           |
|           |                              | (Vacated) STEL: 0.03 mg/m <sup>3</sup>   | Ceiling: 0.1 mg/m <sup>3</sup> |                             |
|           |                              | Skin                                     |                                |                             |
|           |                              | (Vacated) Ceiling: 0.1 mg/m <sup>3</sup> |                                |                             |

## Mercury (Certified ACS)

#### Legend

ACGIH - American Conference of Governmental Industrial Hygienists

OSHA - Occupational Safety and Health Administration

NIOSH IDLH: The National Institute for Occupational Safety and Health Immediately Dangerous to Life or Health

Engineering Measures Use only under a chemical fume hood. Ensure adequate ventilation, especially in confined

areas. Ensure that eyewash stations and safety showers are close to the workstation

location.

## Personal Protective Equipment

**Eye/face Protection**Wear appropriate protective eyeglasses or chemical safety goggles as described by

OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard

EN166.

**Skin and body protection** Wear appropriate protective gloves and clothing to prevent skin exposure.

Respiratory Protection Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European Standard

EN 149. Use a NIOSH/MSHA or European Standard EN 149 approved respirator if exposure limits are exceeded or if irritation or other symptoms are experienced.

No information available

**Hygiene Measures** Handle in accordance with good industrial hygiene and safety practice.

## 9. Physical and chemical properties

Physical StateLiquidAppearanceSilverOdorOdorless

Odor Threshold<br/>pHNo information available<br/>No information availableMelting Point/Range-38.87 °C / -38 °FBoiling Point/Range356.72 °C / 674.1 °FFlash PointNo information availableEvaporation RateNo information available

Flammability (solid,gas)
Flammability or explosive limits

Upper No data available
Lower No data available
Vapor Pressure 0.002 mmHg @ 25 °C

Vapor Density 7.0

Specific Gravity

Solubility

13.59 (H2O=1)
Insoluble in water
Partition coefficient: n-octanol/water

No data available

Autoignition TemperatureNo information availableDecomposition TemperatureNo information availableViscosityNo information available

Molecular Formula Hg
Molecular Weight 200.59

## 10. Stability and reactivity

Reactive Hazard None known, based on information available

**Stability** Stable under normal conditions.

Conditions to Avoid Incompatible products. Excess heat.

Incompatible Materials Strong oxidizing agents, Ammonia, Metals, Halogens

Hazardous Decomposition Products Mercury oxide, Highly toxic fumes

**Hazardous Polymerization** Hazardous polymerization does not occur.

**Hazardous Reactions** None under normal processing.

## Toxicological information

**Acute Toxicity** 

**Product Information** 

No acute toxicity information is available for this product

**Component Information** 

**Toxicologically Synergistic** 

No information available

**Products** 

Delayed and immediate effects as well as chronic effects from short and long-term exposure

Irritation No information available

Sensitization No information available

Carcinogenicity The table below indicates whether each agency has listed any ingredient as a carcinogen.

| Component | CAS-No    | IARC       | NTP        | ACGIH      | OSHA       | Mexico     |
|-----------|-----------|------------|------------|------------|------------|------------|
| Mercury   | 7439-97-6 | Not listed | Not listed | Not listed | Not listed | Not listed |

**Mutagenic Effects** No information available

**Reproductive Effects** No information available.

**Developmental Effects** May cause harm to the unborn child.

**Teratogenicity** No information available.

STOT - single exposure

STOT - repeated exposure

Central nervous system (CNS) Kidney

None known

**Aspiration hazard** No information available

Symptoms / effects, both acute and No information available

delayed

**Endocrine Disruptor Information** No information available

The toxicological properties have not been fully investigated. Other Adverse Effects

## 12. Ecological information

#### **Ecotoxicity**

This product contains the following substance(s) which are hazardous for the environment.

| Component | Freshwater Algae | Freshwater Fish    | Microtox   | Water Flea            |
|-----------|------------------|--------------------|------------|-----------------------|
| Mercury   | Not listed       | 0.9 mg/L LC50 96h  | Not listed | EC50: = 5.0 μg/L, 96h |
| •         |                  | 0.18 mg/L LC50 96h |            | (water flea)          |
|           |                  | 0.16 mg/L LC50 96h |            | , ,                   |
|           |                  | 0.5 mg/L LC50 96h  |            |                       |

Persistence and Degradability No information available

**Bioaccumulation/ Accumulation** No information available.

No information available. Mobility

## 13. Disposal considerations

### **Waste Disposal Methods**

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. Chemical waste generators must also consult local, regional, and national hazardous waste regulations to ensure complete and accurate classification.

| Component           | RCRA - U Series Wastes | RCRA - P Series Wastes |
|---------------------|------------------------|------------------------|
| Mercury - 7439-97-6 | U151                   | -                      |

## 14. Transport information

DOT

UN-No UN2809 Proper Shipping Name MERCURY

Hazard Class 8
Subsidiary Hazard Class 6.1
Packing Group III

<u>TDG</u>

UN-No UN2809
Proper Shipping Name MERCURY

Hazard Class 8
Subsidiary Hazard Class 6.1
Packing Group III

IATA

UN-No UN2809
Proper Shipping Name MERCURY

Hazard Class 8
Subsidiary Hazard Class 6.1
Packing Group III

IMDG/IMO

UN-No UN2809
Proper Shipping Name MERCURY

Hazard Class 8
Subsidiary Hazard Class 6.1
Packing Group III

## 15. Regulatory information

## **International Inventories**

| Component | TSCA | DSL | NDSL | EINECS    | ELINCS | NLP | PICCS | ENCS | AICS | IECSC | KECL |
|-----------|------|-----|------|-----------|--------|-----|-------|------|------|-------|------|
| Mercury   | Х    | Χ   | -    | 231-106-7 | -      |     | Χ     | -    | Х    | Х     | Χ    |

## Legend:

- X Listed
- E Indicates a substance that is the subject of a Section 5(e) Consent order under TSCA.
- F Indicates a substance that is the subject of a Section 5(f) Rule under TSCA.
- N Indicates a polymeric substance containing no free-radical initiator in its inventory name but is considered to cover the designated polymer made with any free-radical initiator regardless of the amount used.
- P Indicates a commenced PMN substance
- R Indicates a substance that is the subject of a Section 6 risk management rule under TSCA.
- S Indicates a substance that is identified in a proposed or final Significant New Use Rule
- T Indicates a substance that is the subject of a Section 4 test rule under TSCA.
- XU Indicates a substance exempt from reporting under the Inventory Update Rule, i.e. Partial Updating of the TSCA Inventory Data Base Production and Site Reports (40 CFR 710(B).
- Y1 Indicates an exempt polymer that has a number-average molecular weight of 1,000 or greater.
- Y2 Indicates an exempt polymer that is a polyester and is made only from reactants included in a specified list of low concern reactants that comprises one of the eligibility criteria for the exemption rule.

## U.S. Federal Regulations

## **TSCA 12(b)**

| Component | TSCA 12(b) |
|-----------|------------|
| Mercury   | Section 5  |

#### **SARA 313**

| Component | CAS-No    | Weight % | SARA 313 - Threshold<br>Values % |
|-----------|-----------|----------|----------------------------------|
| Mercury   | 7439-97-6 | 100      | 1.0                              |

SARA 311/312 Hazard Categories See section 2 for more information

**CWA (Clean Water Act)** 

| Component | CWA - Hazardous<br>Substances | CWA - Reportable<br>Quantities | CWA - Toxic Pollutants | CWA - Priority Pollutants |
|-----------|-------------------------------|--------------------------------|------------------------|---------------------------|
| Mercury   | -                             | -                              | X                      | X                         |

### Clean Air Act

| Component | HAPS Data | Class 1 Ozone Depletors | Class 2 Ozone Depletors |
|-----------|-----------|-------------------------|-------------------------|
| Mercury   | X         |                         | -                       |

**OSHA** Occupational Safety and Health Administration Not applicable

**CERCLA** 

This material, as supplied, contains one or more substances regulated as a hazardous substance under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302)

| Component | Hazardous Substances RQs | CERCLA EHS RQs |
|-----------|--------------------------|----------------|
| Mercury   | 1 lb                     | -              |

**California Proposition 65** 

This product contains the following proposition 65 chemicals

| Component | CAS-No    | California Prop. 65 | Prop 65 NSRL | Category      |
|-----------|-----------|---------------------|--------------|---------------|
| Mercury   | 7439-97-6 | Developmental       | -            | Developmental |

## U.S. State Right-to-Know

Regulations

|   | Component | Massachusetts | New Jersey | Pennsylvania | Illinois | Rhode Island |
|---|-----------|---------------|------------|--------------|----------|--------------|
| Ī | Mercury   | X             | Х          | Χ            | X        | X            |

## **U.S. Department of Transportation**

Reportable Quantity (RQ): N
DOT Marine Pollutant N
DOT Severe Marine Pollutant N

## **U.S. Department of Homeland Security**

This product does not contain any DHS chemicals.

## Other International Regulations

Mexico - Grade No information available

| 16. Other information |
|-----------------------|
|                       |

Prepared By Regulatory Affairs

Thermo Fisher Scientific

Email: EMSDS.RA@thermofisher.com

 Creation Date
 20-Aug-2014

 Revision Date
 17-Jan-2018

 Print Date
 17-Jan-2018

Revision Summary

This document has been updated to comply with the US OSHA HazCom 2012 Standard

replacing the current legislation under 29 CFR 1910.1200 to align with the Globally

Harmonized System of Classification and Labeling of Chemicals (GHS).

#### **Disclaimer**

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text

**End of SDS** 



# SAFETY DATA SHEET

Creation Date 27-Jan-2010 Revision Date 24-May-2017 Revision Number 5

1. Identification

Product Name Methylene chloride

Cat No.: D37-1; D37-4; D37-20; D37-200; D37-200LC; D37-500; D37FB-19;

D37FB-50; D37FB-115; D37FB-200; D37POP-19; D37POPB-50; D37POPB-200; D37RB-19; D37RB-50; D37RB-115; D37RB-200; D37RS-19; D37RS-28; D37RS-50; D37RS-115; D37RS-200; D37SK-4;

D37SK-4LC; D37SS-28; D37SS-50; D37SS-115; D37SS-200;

D37SS-1350

Synonyms Dichloromethane; DCM

Recommended Use Laboratory chemicals.

Uses advised against Not for food, drug, pesticide or biocidal product use

## Details of the supplier of the safety data sheet

## **Company**

Fisher Scientific One Reagent Lane Fair Lawn, NJ 07410 Tel: (201) 796-7100

## **Emergency Telephone Number**

CHEMTREC®, Inside the USA: 800-424-9300 CHEMTREC®, Outside the USA: 001-703-527-3887

## 2. Hazard(s) identification

### Classification

This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200)

Skin Corrosion/irritation

Serious Eye Damage/Eye Irritation

Category 2

Carcinogenicity

Category 1B

Specific target organ toxicity (single exposure)

Target Organs - Central nervous system (CNS).

## **Label Elements**

## Signal Word

Danger

## **Hazard Statements**

Causes skin irritation
Causes serious eye irritation
May cause drowsiness or dizziness
May cause cancer



## **Precautionary Statements**

### Prevention

Obtain special instructions before use

Do not handle until all safety precautions have been read and understood

Use personal protective equipment as required

Wash face, hands and any exposed skin thoroughly after handling

Wear eye/face protection

Do not breathe dust/fume/gas/mist/vapors/spray Use only outdoors or in a well-ventilated area

### Response

IF exposed or concerned: Get medical attention/advice

### Inhalation

IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing

#### Skin

IF ON SKIN: Wash with plenty of soap and water If skin irritation occurs: Get medical advice/attention Take off contaminated clothing and wash before reuse

#### Eyes

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing If eye irritation persists: Get medical advice/attention

### Storage

Store locked up

Store in a well-ventilated place. Keep container tightly closed

## **Disposal**

Dispose of contents/container to an approved waste disposal plant

## Hazards not otherwise classified (HNOC)

WARNING! This product contains a chemical known in the State of California to cause cancer.

# 3. Composition / information on ingredients

| Component          | CAS-No  | Weight % |
|--------------------|---------|----------|
| Methylene chloride | 75-09-2 | >99.5    |

## 4. First-aid measures

**General Advice** If symptoms persist, call a physician.

**Eye Contact** Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes.

Obtain medical attention.

**Skin Contact** Wash off immediately with plenty of water for at least 15 minutes. Obtain medical attention.

**Inhalation** Move to fresh air. If breathing is difficult, give oxygen. Obtain medical attention.

**Ingestion** Do not induce vomiting. Call a physician or Poison Control Center immediately.

Most important symptoms/effects Breathing difficulties. Inhalation of high vapor concentrations may cause symptoms like

headache, dizziness, tiredness, nausea and vomiting

Notes to Physician Treat symptomatically

Methylene chloride

## 5. Fire-fighting measures

Suitable Extinguishing Media Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.

Unsuitable Extinguishing Media No information available

Flash Point No information available Method - No information available

Autoignition Temperature 556 °C / 1032.8 °F

**Explosion Limits** 

**Upper** 23 vol % **Lower** 13 vol %

Sensitivity to Mechanical Impact No information available Sensitivity to Static Discharge No information available

### Specific Hazards Arising from the Chemical

Thermal decomposition can lead to release of irritating gases and vapors. Keep product and empty container away from heat and sources of ignition.

### **Hazardous Combustion Products**

Carbon monoxide (CO) Carbon dioxide (CO2) Hydrogen chloride gas Phosgene

## **Protective Equipment and Precautions for Firefighters**

As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear.

NFPA

| Health | Flammability | Instability | Physical hazards |
|--------|--------------|-------------|------------------|
| 2      | 1            | 0           | N/A              |

## Accidental release measures

Personal Precautions Use personal protective equipment. Ensure adequate ventilation. Avoid contact with skin,

eyes and clothing. Keep people away from and upwind of spill/leak.

**Environmental Precautions** Should not be released into the environment. See Section 12 for additional ecological

information.

**Methods for Containment and Clean** Soak up with inert absorbent material. Keep in suitable, closed containers for disposal. **Up** 

## 7. Handling and storage

Handling Wear personal protective equipment. Do not get in eyes, on skin, or on clothing. Avoid

ingestion and inhalation. Use only under a chemical fume hood.

**Storage** Keep containers tightly closed in a dry, cool and well-ventilated place.

## 8. Exposure controls / personal protection

## **Exposure Guidelines**

| Component          | ACGIH TLV   | OSHA PEL                    | NIOSH IDLH     | Mexico OEL (TWA)             |
|--------------------|-------------|-----------------------------|----------------|------------------------------|
| Methylene chloride | TWA: 50 ppm | (Vacated) TWA: 500 ppm      | IDLH: 2300 ppm | TWA: 100 ppm                 |
|                    |             | (Vacated) STEL: 2000 ppm    |                | TWA: 330 mg/m <sup>3</sup>   |
|                    |             | (Vacated) Ceiling: 1000 ppm |                | STEL: 500 ppm                |
|                    |             | TWA: 25 ppm                 |                | STEL: 1740 mg/m <sup>3</sup> |
|                    |             | STEL: 125 ppm               |                |                              |

Legend

### Methylene chloride

ACGIH - American Conference of Governmental Industrial Hygienists

OSHA - Occupational Safety and Health Administration

NIOSH IDLH: The National Institute for Occupational Safety and Health Immediately Dangerous to Life or Health

Engineering Measures Use only under a chemical fume hood. Ensure that eyewash stations and safety showers

are close to the workstation location.

Personal Protective Equipment

**Eye/face Protection**Wear appropriate protective eyeglasses or chemical safety goggles as described by

OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard

EN166.

**Skin and body protection**Wear appropriate protective gloves and clothing to prevent skin exposure.

Respiratory Protection Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European Standard

EN 149. Use a NIOSH/MSHA or European Standard EN 149 approved respirator if exposure limits are exceeded or if irritation or other symptoms are experienced.

Hygiene Measures Handle in accordance with good industrial hygiene and safety practice.

## 9. Physical and chemical properties

Physical StateLiquidAppearanceColorlessOdorsweet

Odor Threshold No information available

**pH** Not applicable

Melting Point/Range-97 °C / -142.6 °FBoiling Point/Range39 °C / 102.2 °FFlash PointNo information availableEvaporation RateNo information available

Flammability (solid,gas) Not applicable

Flammability or explosive limits

 Upper
 23 vol %

 Lower
 13 vol %

 Vapor Pressure
 350 mbar @ 20°C

 Vapor Density
 2.93 (Air = 1.0)

Specific Gravity 1.33

SolubilityNo information availablePartition coefficient; n-octanol/waterNo data availableAutoignition Temperature556 °C / 1032.8 °FDecomposition TemperatureNo information availableViscosityNo information available

Molecular Formula C H2 Cl2
Molecular Weight 84.93

## 10. Stability and reactivity

Reactive Hazard None known, based on information available

**Stability** Stable under normal conditions.

Conditions to Avoid Incompatible products. Excess heat.

Incompatible Materials Strong oxidizing agents, Strong acids, Amines

Hazardous Decomposition Products Carbon monoxide (CO), Carbon dioxide (CO2), Hydrogen chloride gas, Phosgene

**Hazardous Polymerization** Hazardous polymerization does not occur.

Methylene chloride

**Hazardous Reactions** 

None under normal processing.

## 11. Toxicological information

**Acute Toxicity** 

## **Product Information**

**Component Information** 

| Component          | LD50 Oral          | LD50 Dermal          | LC50 Inhalation         |
|--------------------|--------------------|----------------------|-------------------------|
| Methylene chloride | > 2000 mg/kg (Rat) | > 2000 mg/kg ( Rat ) | 53 mg/L(Rat)6 h         |
|                    |                    |                      | 76000 mg/m³ ( Rat ) 4 h |

**Toxicologically Synergistic** 

**Products** 

No information available

Delayed and immediate effects as well as chronic effects from short and long-term exposure

Irritation Irritating to eyes and skin

Sensitization No information available

Carcinogenicity The table below indicates whether each agency has listed any ingredient as a carcinogen.

| Component          | CAS-No  | IARC     | NTP         | ACGIH | OSHA | Mexico |
|--------------------|---------|----------|-------------|-------|------|--------|
| Methylene chloride | 75-09-2 | Group 2A | Reasonably  | A3    | X    | A3     |
|                    |         | · ·      | Anticipated |       |      |        |

IARC: (International Agency for Research on Cancer)

NTP: (National Toxicity Program)

IARC: (International Agency for Research on Cancer)

Group 1 - Carcinogenic to Humans

Group 2A - Probably Carcinogenic to Humans Group 2B - Possibly Carcinogenic to Humans

NTP: (National Toxicity Program) Known - Known Carcinogen

Reasonably Anticipated - Reasonably Anticipated to be a Human

Carcinogen

ACGIH: (American Conference of Governmental Industrial

Hygienists)

A1 - Known Human Carcinogen

A2 - Suspected Human Carcinogen

A3 - Animal Carcinogen

ACGIH: (American Conference of Governmental Industrial Hygienists) Mexico - Occupational Exposure Limits - Carcinogens

Mexico - Occupational Exposure Limits - Carcinogens

A1 - Confirmed Human Carcinogen A2 - Suspected Human Carcinogen A3 - Confirmed Animal Carcinogen

A4 - Not Classifiable as a Human Carcinogen A5 - Not Suspected as a Human Carcinogen

**Mutagenic Effects** Mutagenic effects have occured in microorganisms.

Experiments have shown reproductive toxicity effects on laboratory animals. **Reproductive Effects** 

**Developmental Effects** Developmental effects have occurred in experimental animals.

No information available. **Teratogenicity** 

STOT - single exposure Central nervous system (CNS)

STOT - repeated exposure None known

No information available **Aspiration hazard** 

delayed

Symptoms / effects,both acute and Inhalation of high vapor concentrations may cause symptoms like headache, dizziness,

tiredness, nausea and vomiting

**Endocrine Disruptor Information** No information available

Other Adverse Effects Tumorigenic effects have been reported in experimental animals. See actual entry in

RTECS for complete information.

Revision Date 24-May-2017 Methylene chloride

## 12. Ecological information

## **Ecotoxicity**

| Component          | Freshwater Algae   | Freshwater Fish      | Microtox               | Water Flea         |
|--------------------|--------------------|----------------------|------------------------|--------------------|
| Methylene chloride | EC50:>660 mg/L/96h | Pimephales promelas: | EC50: 1 mg/L/24 h      | EC50: 140 mg/L/48h |
|                    | _                  | LC50:193 mg/L/96h    | EC50: 2.88 mg/L/15 min | _                  |

**Persistence and Degradability** Persistence is unlikely based on information available.

**Bioaccumulation/ Accumulation** No information available.

Mobility Will likely be mobile in the environment due to its volatility.

| Component          | log Pow |  |
|--------------------|---------|--|
| Methylene chloride | 1.25    |  |

## 13. Disposal considerations

**Waste Disposal Methods** 

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. Chemical waste generators must also consult local, regional, and national hazardous waste regulations to ensure complete and accurate classification.

| Component                    | RCRA - U Series Wastes | RCRA - P Series Wastes |  |
|------------------------------|------------------------|------------------------|--|
| Methylene chloride - 75-09-2 | U080                   | -                      |  |

## 14. Transport information

DOT

**UN-No** UN1593

**Proper Shipping Name DICHLOROMETHANE** 

**Hazard Class** 6.1 **Packing Group** Ш

**TDG** 

**UN-No** UN1593

**Proper Shipping Name DICHLOROMETHANE** 

**Hazard Class** 6.1 **Packing Group** Ш

UN-No UN1593

**Proper Shipping Name** Dichloromethane

**Hazard Class** 6.1 **Packing Group** Ш IMDG/IMO

UN1593 **UN-No** 

Dichloromethane **Proper Shipping Name** 

**Hazard Class** 6.1 **Packing Group** Ш

## Regulatory information

All of the components in the product are on the following Inventory lists: X = listed

## International Inventories

| Component          | TSCA | DSL | NDSL | <b>EINECS</b> | ELINCS | NLP | PICCS | <b>ENCS</b> | AICS | IECSC | KECL |
|--------------------|------|-----|------|---------------|--------|-----|-------|-------------|------|-------|------|
| Methylene chloride | Х    | Χ   | -    | 200-838-9     | 1      |     | Χ     | Χ           | Χ    | Χ     | Χ    |

## Legend:

X - Listed

- E Indicates a substance that is the subject of a Section 5(e) Consent order under TSCA.
- F Indicates a substance that is the subject of a Section 5(f) Rule under TSCA.
- N Indicates a polymeric substance containing no free-radical initiator in its inventory name but is considered to cover the designated

polymer made with any free-radical initiator regardless of the amount used.

- P Indicates a commenced PMN substance
- R Indicates a substance that is the subject of a Section 6 risk management rule under TSCA.
- S Indicates a substance that is identified in a proposed or final Significant New Use Rule
- T Indicates a substance that is the subject of a Section 4 test rule under TSCA.
- XU Indicates a substance exempt from reporting under the Inventory Update Rule, i.e. Partial Updating of the TSCA Inventory Data Base Production and Site Reports (40 CFR 710(B).
- Y1 Indicates an exempt polymer that has a number-average molecular weight of 1,000 or greater.
- Y2 Indicates an exempt polymer that is a polyester and is made only from reactants included in a specified list of low concern reactants that comprises one of the eligibility criteria for the exemption rule.

## U.S. Federal Regulations

## **TSCA 12(b)**

## **SARA 313**

| Component          | CAS-No  | Weight % | SARA 313 - Threshold<br>Values % |
|--------------------|---------|----------|----------------------------------|
| Methylene chloride | 75-09-2 | >99.5    | 0.1                              |

### SARA 311/312 Hazard Categories

| Acute Health Hazard               | Yes |
|-----------------------------------|-----|
| Chronic Health Hazard             | Yes |
| Fire Hazard                       | No  |
| Sudden Release of Pressure Hazard | No  |
| Reactive Hazard                   | No  |

## **CWA (Clean Water Act)**

| Component          | CWA - Hazardous<br>Substances | CWA - Reportable<br>Quantities | CWA - Toxic Pollutants | CWA - Priority Pollutants |
|--------------------|-------------------------------|--------------------------------|------------------------|---------------------------|
| Methylene chloride | -                             | -                              | X                      | X                         |

### Clean Air Act

| Component          | HAPS Data | Class 1 Ozone Depletors | Class 2 Ozone Depletors |
|--------------------|-----------|-------------------------|-------------------------|
| Methylene chloride | X         |                         | -                       |

## **OSHA** Occupational Safety and Health Administration

| Component          | Specifically Regulated Chemicals | Highly Hazardous Chemicals |
|--------------------|----------------------------------|----------------------------|
| Methylene chloride | 125 ppm STEL                     | -                          |
|                    | 12.5 ppm Action Level            |                            |
|                    | 25 ppm TWA                       |                            |

### **CERCLA**

This material, as supplied, contains one or more substances regulated as a hazardous substance under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302)

| Component          | Hazardous Substances RQs CERCLA EHS RQ |   |
|--------------------|----------------------------------------|---|
| Methylene chloride | 1000 lb 1 lb                           | - |

### **California Proposition 65**

This product contains the following proposition 65 chemicals

| Component          | CAS-No  | California Prop. 65 | Prop 65 NSRL            | Category   |
|--------------------|---------|---------------------|-------------------------|------------|
| Methylene chloride | 75-09-2 | Carcinogen          | 200 μg/day<br>50 μg/day | Carcinogen |

## U.S. State Right-to-Know

## Regulations

|   | Component          | Massachusetts | New Jersey | Pennsylvania | Illinois | Rhode Island |
|---|--------------------|---------------|------------|--------------|----------|--------------|
| I | Methylene chloride | X             | X          | Х            | X        | X            |

### **U.S.** Department of Transportation

Reportable Quantity (RQ): Y
DOT Marine Pollutant N
DOT Severe Marine Pollutant N

## **U.S. Department of Homeland Security**

This product does not contain any DHS chemicals.

## Other International Regulations

Mexico - Grade No information available

| 16. Other information |
|-----------------------|
|-----------------------|

Prepared By Regulatory Affairs

Thermo Fisher Scientific

Email: EMSDS.RA@thermofisher.com

 Creation Date
 27-Jan-2010

 Revision Date
 24-May-2017

 Print Date
 24-May-2017

Revision Summary This document has been updated to comply with the US OSHA HazCom 2012 Standard

replacing the current legislation under 29 CFR 1910.1200 to align with the Globally

Harmonized System of Classification and Labeling of Chemicals (GHS).

### **Disclaimer**

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text

**End of SDS** 



# SAFETY DATA SHEET

Creation Date 10-Dec-2009 Revision Date 26-May-2017 Revision Number 4

1. Identification

Product Name Tetrachloroethylene

Cat No.: AC445690000; ACR445690010; AC445690025; AC445691000

Synonyms Perchloroethylene

Recommended Use Laboratory chemicals.

Uses advised against Not for food, drug, pesticide or biocidal product use

Details of the supplier of the safety data sheet

Company

Fisher Scientific Acros Organics
One Reagent Lane One Reagent Lane
Fair Lawn, NJ 07410 Fair Lawn, NJ 07410

Tel: (201) 796-7100

**Emergency Telephone Number** 

For information **US** call: 001-800-ACROS-01 / **Europe** call: +32 14 57 52 11 Emergency Number **US**:001-201-796-7100 / **Europe**: +32 14 57 52 99 **CHEMTREC** Tel. No.**US**:001-800-424-9300 / **Europe**:001-703-527-3887

## 2. Hazard(s) identification

### Classification

This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200)

Skin Corrosion/irritation

Serious Eye Damage/Eye Irritation

Skin Sensitization

Category 2

Skin Sensitization

Carcinogenicity

Category 1

Category 1

Category 1

Category 1

Category 3

Target Organs - Central nervous system (CNS).

Specific target organ toxicity - (repeated exposure) Category 2

Target Organs - Kidney, Liver, Blood.

## **Label Elements**

## Signal Word

Danger

### **Hazard Statements**

Causes skin irritation

Causes serious eye irritation

May cause an allergic skin reaction

May cause drowsiness or dizziness

May cause cancer

May cause damage to organs through prolonged or repeated exposure



## **Precautionary Statements**

### Prevention

Obtain special instructions before use

Do not handle until all safety precautions have been read and understood

Use personal protective equipment as required

Wash face, hands and any exposed skin thoroughly after handling

Contaminated work clothing should not be allowed out of the workplace

Do not breathe dust/fume/gas/mist/vapors/spray Use only outdoors or in a well-ventilated area

Wear protective gloves/protective clothing/eye protection/face protection

### Response

IF exposed or concerned: Get medical attention/advice

#### Inhalation

IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing

### Skin

IF ON SKIN: Wash with plenty of soap and water

Take off contaminated clothing and wash before reuse

If skin irritation or rash occurs: Get medical advice/attention

## **Eyes**

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing If eye irritation persists: Get medical advice/attention

## Storage

Store locked up

Store in a well-ventilated place. Keep container tightly closed

## Disposal

Dispose of contents/container to an approved waste disposal plant

## Hazards not otherwise classified (HNOC)

Toxic to aquatic life with long lasting effects

WARNING! This product contains a chemical known in the State of California to cause cancer.

# 3. Composition / information on ingredients

| Component           | CAS-No   | Weight % |
|---------------------|----------|----------|
| Tetrachloroethylene | 127-18-4 | >95      |

## 4. First-aid measures

General Advice If symptoms persist, call a physician.

Eye Contact Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes.

Obtain medical attention.

**Skin Contact** Wash off immediately with plenty of water for at least 15 minutes. If skin irritation persists,

call a physician.

**Inhalation** Move to fresh air. If not breathing, give artificial respiration. Get medical attention if

symptoms occur.

**Ingestion** Clean mouth with water and drink afterwards plenty of water.

**Tetrachloroethylene** 

Most important symptoms/effects

None reasonably foreseeable. May cause allergic skin reaction. Inhalation of high vapor concentrations may cause symptoms like headache, dizziness, tiredness, nausea and vomiting: Symptoms of allergic reaction may include rash, itching, swelling, trouble breathing, tingling of the hands and feet, dizziness, lightheadedness, chest pain, muscle

pain or flushing

Notes to Physician Treat symptomatically

## 5. Fire-fighting measures

Suitable Extinguishing Media Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.

Unsuitable Extinguishing Media No information available

Flash Point No information available

Method - No information available

**Autoignition Temperature** 

**Explosion Limits** 

No information available

Upper No data available
Lower No data available
Sensitivity to Mechanical Impact No information available
Sensitivity to Static Discharge No information available

## Specific Hazards Arising from the Chemical

Thermal decomposition can lead to release of irritating gases and vapors. Containers may explode when heated.

## **Hazardous Combustion Products**

Chlorine Hydrogen chloride gas Phosgene

## **Protective Equipment and Precautions for Firefighters**

As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear.

**NFPA** 

| Health | Flammability | Instability | Physical hazards |
|--------|--------------|-------------|------------------|
| 2      | 0            | 0           | N/A              |

## 6. Accidental release measures

Personal Precautions Use personal protective equipment. Ensure adequate ventilation.

**Environmental Precautions** Do not flush into surface water or sanitary sewer system.

**Methods for Containment and Clean** Soak up with inert absorbent material. Keep in suitable, closed containers for disposal. **Up** 

## 7. Handling and storage

Handling Wear personal protective equipment. Do not get in eyes, on skin, or on clothing. Ensure

adequate ventilation. Avoid ingestion and inhalation.

Storage Keep containers tightly closed in a dry, cool and well-ventilated place. Protect from sunlight.

## 8. Exposure controls / personal protection

## **Exposure Guidelines**

| Component           | ACGIH TLV                    | OSHA PEL                                                                              | NIOSH IDLH    | Mexico OEL (TWA)                                                       |
|---------------------|------------------------------|---------------------------------------------------------------------------------------|---------------|------------------------------------------------------------------------|
| Tetrachloroethylene | TWA: 25 ppm<br>STEL: 100 ppm | (Vacated) TWA: 25 ppm<br>(Vacated) TWA: 170 mg/m³<br>Ceiling: 200 ppm<br>TWA: 100 ppm | IDLH: 150 ppm | TWA: 100 ppm TWA: 670 mg/m³ TWA: 200 ppm TWA: 1250 mg/m³ STEL: 200 ppm |
|                     |                              |                                                                                       |               | STEL: 1340 mg/m <sup>3</sup>                                           |

## **Tetrachloroethylene**

#### Legend

ACGIH - American Conference of Governmental Industrial Hygienists

OSHA - Occupational Safety and Health Administration

NIOSH IDLH: The National Institute for Occupational Safety and Health Immediately Dangerous to Life or Health

Engineering Measures Use only under a chemical fume hood. Ensure adequate ventilation, especially in confined

areas. Ensure that eyewash stations and safety showers are close to the workstation

location.

**Personal Protective Equipment** 

**Eye/face Protection**Wear appropriate protective eyeglasses or chemical safety goggles as described by

OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard

EN166.

Skin and body protection Long sleeved clothing.

Respiratory Protection Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European Standard

EN 149. Use a NIOSH/MSHA or European Standard EN 149 approved respirator if exposure limits are exceeded or if irritation or other symptoms are experienced.

**Hygiene Measures** Handle in accordance with good industrial hygiene and safety practice.

## 9. Physical and chemical properties

Physical State Liquid

Appearance Colorless

OdorCharacteristic, sweetOdor ThresholdNo information available

pH No information available Melting Point/Range No information available -22 °C / -7.6 °F

**Boiling Point/Range** 120 - 122 °C / 248 - 251.6 °F @ 760 mmHg

Flash Point No information available

Evaporation Rate 6.0 (Ether = 1.0)
Flammability (solid,gas) Not applicable

Flammability or explosive limits

UpperNo data availableLowerNo data availableVapor Pressure18 mbar @ 20 °CVapor DensityNo information available

Density 1.619
Specific Gravity 1.625

Solubility 0.15 g/L water (20°C)
Partition coefficient; n-octanol/water No data available

Autoignition Temperature No information available

**Decomposition Temperature** > 150°C

Viscosity 0.89 mPa s at 20 °C

Molecular FormulaC2 Cl4Molecular Weight165.83

## 10. Stability and reactivity

Reactive Hazard None known, based on information available

**Stability** Stable under normal conditions.

Conditions to Avoid Incompatible products. Excess heat. Exposure to moist air or water.

**Incompatible Materials** 

Strong acids, Strong oxidizing agents, Strong bases, Metals, Zinc, Amines, Aluminium

Hazardous Decomposition Products Chlorine, Hydrogen chloride gas, Phosgene

**Hazardous Polymerization** Hazardous polymerization does not occur.

**Hazardous Reactions** None under normal processing.

## 11. Toxicological information

### **Acute Toxicity**

## **Product Information Component Information**

LD50 Dermal LD50 Oral LC50 Inhalation Component Tetrachloroethylene LD50 > 10000 mg/kg (Rat) LD50 = 2629 mg/kg (Rat) LC50 = 27.8 mg/L (Rat) 4 h

**Toxicologically Synergistic** 

No information available

**Products** 

Delayed and immediate effects as well as chronic effects from short and long-term exposure

Irritation Irritating to eyes and skin

Sensitization No information available

Carcinogenicity

The table below indicates whether each agency has listed any ingredient as a carcinogen.

| Component           | CAS-No   | IARC     | NTP         | ACGIH | OSHA | Mexico |
|---------------------|----------|----------|-------------|-------|------|--------|
| Tetrachloroethylene | 127-18-4 | Group 2A | Reasonably  | A3    | X    | A3     |
|                     |          | ·        | Anticipated |       |      |        |

IARC: (International Agency for Research on Cancer)

NTP: (National Toxicity Program)

IARC: (International Agency for Research on Cancer)

Group 1 - Carcinogenic to Humans

Group 2A - Probably Carcinogenic to Humans Group 2B - Possibly Carcinogenic to Humans

NTP: (National Toxicity Program)

Known - Known Carcinogen

Reasonably Anticipated - Reasonably Anticipated to be a Human

Carcinogen

ACGIH: (American Conference of Governmental Industrial

Mexico - Occupational Exposure Limits - Carcinogens

Hygienists)

A1 - Known Human Carcinogen A2 - Suspected Human Carcinogen

A3 - Animal Carcinogen

ACGIH: (American Conference of Governmental Industrial Hygienists)

Mexico - Occupational Exposure Limits - Carcinogens

A1 - Confirmed Human Carcinogen

A2 - Suspected Human Carcinogen

A3 - Confirmed Animal Carcinogen

A4 - Not Classifiable as a Human Carcinogen

A5 - Not Suspected as a Human Carcinogen

**Mutagenic Effects** No information available

**Reproductive Effects** No information available.

**Developmental Effects** No information available.

**Teratogenicity** No information available.

STOT - single exposure Central nervous system (CNS)

Kidney Liver Blood STOT - repeated exposure

No information available **Aspiration hazard** 

delayed

Symptoms / effects,both acute and Inhalation of high vapor concentrations may cause symptoms like headache, dizziness, tiredness, nausea and vomiting: Symptoms of allergic reaction may include rash, itching, swelling, trouble breathing, tingling of the hands and feet, dizziness, lightheadedness, chest

**Tetrachloroethylene** 

pain, muscle pain or flushing

### **Endocrine Disruptor Information**

| Component           | EU - Endocrine Disrupters | EU - Endocrine Disruptors - | Japan - Endocrine Disruptor |
|---------------------|---------------------------|-----------------------------|-----------------------------|
|                     | Candidate List            | Evaluated Substances        | Information                 |
| Tetrachloroethylene | Group II Chemical         | Not applicable              | Not applicable              |

Other Adverse Effects

Tumorigenic effects have been reported in experimental animals.

## 12. Ecological information

### **Ecotoxicity**

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. The product contains following substances which are hazardous for the environment.

| Component           | Freshwater Algae      | Freshwater Fish              | Microtox                 | Water Flea                |
|---------------------|-----------------------|------------------------------|--------------------------|---------------------------|
| Tetrachloroethylene | EC50: > 500 mg/L, 96h | LC50: 4.73 - 5.27 mg/L, 96h  | EC50 = 100 mg/L 24 h     | EC50: 6.1 - 9.0 mg/L, 48h |
|                     | (Pseudokirchneriella  | flow-through (Oncorhynchus   | EC50 = 112 mg/L 24 h     | Static (Daphnia magna)    |
|                     | subcapitata)          | mykiss)                      | EC50 = 120.0 mg/L 30 min |                           |
|                     |                       | LC50: 11.0 - 15.0 mg/L, 96h  | _                        |                           |
|                     |                       | static (Lepomis macrochirus) |                          |                           |
|                     |                       | LC50: 8.6 - 13.5 mg/L, 96h   |                          |                           |
|                     |                       | static (Pimephales           |                          |                           |
|                     |                       | promelas)                    |                          |                           |
|                     |                       | LC50: 12.4 - 14.4 mg/L, 96h  |                          |                           |
|                     |                       | flow-through (Pimephales     |                          |                           |
|                     |                       | promelas)                    |                          |                           |
|                     |                       |                              |                          |                           |

**Persistence and Degradability** 

Insoluble in water Persistence is unlikely based on information available.

**Bioaccumulation/ Accumulation** 

No information available.

**Mobility** 

. Is not likely mobile in the environment due its low water solubility. Will likely be mobile in the environment due to its volatility.

| Component           | log Pow |
|---------------------|---------|
| Tetrachloroethylene | 2.88    |

# 13. Disposal considerations

**Waste Disposal Methods** 

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. Chemical waste generators must also consult local, regional, and national hazardous waste regulations to ensure complete and accurate classification.

| Component                      | RCRA - U Series Wastes | RCRA - P Series Wastes |
|--------------------------------|------------------------|------------------------|
| Tetrachloroethylene - 127-18-4 | U210                   | -                      |

## 14. Transport information

DOT

UN-No UN1897

Proper Shipping Name TETRACHLOROETHYLENE

Hazard Class 6.1 Packing Group

**TDG** 

**UN-No** UN1897

Proper Shipping Name TETRACHLOROETHYLENE

Hazard Class 6.1 Packing Group III

<u>IATA</u>

**UN-No** UN1897

Proper Shipping Name TETRACHLOROETHYLENE

Hazard Class 6.1

## **Tetrachloroethylene**

Packing Group III

IMDG/IMO

**UN-No** UN1897

Proper Shipping Name TETRACHLOROETHYLENE

Hazard Class 6.
Subsidiary Hazard Class P
Packing Group III

## 15. Regulatory information

All of the components in the product are on the following Inventory lists: X = listed

#### International Inventories

| Component           | TSCA | DSL | NDSL | EINECS    | ELINCS | NLP | PICCS | ENCS | AICS | IECSC | KECL |
|---------------------|------|-----|------|-----------|--------|-----|-------|------|------|-------|------|
| Tetrachloroethylene | Х    | Χ   | -    | 204-825-9 | -      |     | Χ     | Χ    | Χ    | Х     | Χ    |

### Legend:

- X Listed
- E Indicates a substance that is the subject of a Section 5(e) Consent order under TSCA.
- F Indicates a substance that is the subject of a Section 5(f) Rule under TSCA.
- N Indicates a polymeric substance containing no free-radical initiator in its inventory name but is considered to cover the designated polymer made with any free-radical initiator regardless of the amount used.
- P Indicates a commenced PMN substance
- R Indicates a substance that is the subject of a Section 6 risk management rule under TSCA.
- S Indicates a substance that is identified in a proposed or final Significant New Use Rule
- T Indicates a substance that is the subject of a Section 4 test rule under TSCA.
- XU Indicates a substance exempt from reporting under the Inventory Update Rule, i.e. Partial Updating of the TSCA Inventory Data Base Production and Site Reports (40 CFR 710(B).
- Y1 Indicates an exempt polymer that has a number-average molecular weight of 1,000 or greater.
- Y2 Indicates an exempt polymer that is a polyester and is made only from reactants included in a specified list of low concern reactants that comprises one of the eligibility criteria for the exemption rule.

## U.S. Federal Regulations

TSCA 12(b) Not applicable

### **SARA 313**

| Component           | CAS-No   | Weight % | SARA 313 - Threshold<br>Values % |
|---------------------|----------|----------|----------------------------------|
| Tetrachloroethylene | 127-18-4 | >95      | 0.1                              |

## SARA 311/312 Hazard Categories

Acute Health Hazard Yes
Chronic Health Hazard Yes
Fire Hazard No
Sudden Release of Pressure Hazard No
Reactive Hazard No

**CWA (Clean Water Act)** 

| orrit (oroair trator trot) |                               |                                |                        |                           |
|----------------------------|-------------------------------|--------------------------------|------------------------|---------------------------|
| Component                  | CWA - Hazardous<br>Substances | CWA - Reportable<br>Quantities | CWA - Toxic Pollutants | CWA - Priority Pollutants |
| Tetrachloroethylene        | -                             | -                              | X                      | X                         |

## Clean Air Act

| Component           | HAPS Data | Class 1 Ozone Depletors | Class 2 Ozone Depletors |
|---------------------|-----------|-------------------------|-------------------------|
| Tetrachloroethylene | X         |                         | -                       |

**OSHA** Occupational Safety and Health Administration Not applicable

### **CERCLA**

This material, as supplied, contains one or more substances regulated as a hazardous substance under the Comprehensive

## **Tetrachloroethylene**

Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302)

| Component           | Hazardous Substances RQs | CERCLA EHS RQs |  |
|---------------------|--------------------------|----------------|--|
| Tetrachloroethylene | 100 lb 1 lb              | -              |  |

## **California Proposition 65**

This product contains the following proposition 65 chemicals

| Component           | CAS-No   | California Prop. 65 | Prop 65 NSRL | Category   |
|---------------------|----------|---------------------|--------------|------------|
| Tetrachloroethylene | 127-18-4 | Carcinogen          | 14 μg/day    | Carcinogen |

## U.S. State Right-to-Know

Regulations

| Component           | Massachusetts | New Jersey | Pennsylvania | Illinois | Rhode Island |
|---------------------|---------------|------------|--------------|----------|--------------|
| Tetrachloroethylene | X             | X          | X            | X        | X            |

## **U.S. Department of Transportation**

Reportable Quantity (RQ): Y
DOT Marine Pollutant Y
DOT Severe Marine Pollutant N

### **U.S. Department of Homeland Security**

This product does not contain any DHS chemicals.

## Other International Regulations

Mexico - Grade No information available

| 16. Other information |
|-----------------------|
|-----------------------|

Prepared By Regulatory Affairs

Thermo Fisher Scientific

Email: EMSDS.RA@thermofisher.com

 Creation Date
 10-Dec-2009

 Revision Date
 26-May-2017

 Print Date
 26-May-2017

Revision Summary

This document has been updated to comply with the US OSHA HazCom 2012 Standard

replacing the current legislation under 29 CFR 1910.1200 to align with the Globally

Harmonized System of Classification and Labeling of Chemicals (GHS).

### Disclaimer

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text

**End of SDS** 



# **SAFETY DATA SHEET**

Creation Date 01-May-2012 Revision Date 16-Jan-2019 Revision Number 2

1. Identification

Product Name Phenanthrene

Cat No. : A19646

**CAS-No** 85-01-8

Synonyms No information available

Recommended Use Laboratory chemicals.

Uses advised against Food, drug, pesticide or biocidal product use

Details of the supplier of the safety data sheet

**Company** 

Alfa Aesar

Thermo Fisher Scientific Chemicals, Inc.

30 Bond Street

Ward Hill, MA 01835-8099 Tel: 800-343-0660

Fax: 800-322-4757 Email: tech@alfa.com

www.alfa.com

**Emergency Telephone Number** 

During normal business hours (Monday-Friday, 8am-7pm EST), call (800) 343-0660.

After normal business hours, call Carechem 24 at (866) 928-0789.

2. Hazard(s) identification

Classification

This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200)

Acute oral toxicity Category 4

Label Elements

Signal Word

Warning

**Hazard Statements** 

Harmful if swallowed

Phenanthrene Revision Date 16-Jan-2019



#### **Precautionary Statements**

#### Prevention

Wash face, hands and any exposed skin thoroughly after handling

Do not eat, drink or smoke when using this product

#### Ingestion

IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell

Rinse mouth

# Disposal

Dispose of contents/container to an approved waste disposal plant

#### Hazards not otherwise classified (HNOC)

Very toxic to aquatic life with long lasting effects

# 3. Composition/Information on Ingredients

| Component    | CAS-No  | Weight % |
|--------------|---------|----------|
| Phenanthrene | 85-01-8 | >95      |

# 4. First-aid measures

**General Advice** If symptoms persist, call a physician.

**Eye Contact** Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes. Get

medical attention.

**Skin Contact**Obtain medical attention. Wash off immediately with plenty of water for at least 15 minutes.

**Inhalation** Move to fresh air. Obtain medical attention. If not breathing, give artificial respiration.

Ingestion Clean mouth with water and drink afterwards plenty of water. Get medical attention if

symptoms occur.

Most important symptoms and

effects

None reasonably foreseeable.

Notes to Physician Treat symptomatically

# 5. Fire-fighting measures

Suitable Extinguishing Media Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.

Unsuitable Extinguishing Media No information available

Flash Point No information available Method - No information available

**Autoignition Temperature** 

**Explosion Limits** 

Upper No data available
Lower No data available
Sensitivity to Mechanical Impact No information available

Phenanthrene Revision Date 16-Jan-2019

Sensitivity to Static Discharge No information available

#### Specific Hazards Arising from the Chemical

Do not allow run-off from fire fighting to enter drains or water courses.

#### **Hazardous Combustion Products**

Carbon monoxide (CO) Carbon dioxide (CO2)

#### **Protective Equipment and Precautions for Firefighters**

As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear.

NFPA

HealthFlammabilityInstabilityPhysical hazards110N/A

## 6. Accidental release measures

Personal Precautions
Environmental Precautions

Ensure adequate ventilation. Use personal protective equipment. Avoid dust formation. Do not flush into surface water or sanitary sewer system. Do not allow material to contaminate ground water system. Prevent product from entering drains. Local authorities should be advised if significant spillages cannot be contained.

**Methods for Containment and Clean** Sweep up or vacuum up spillage and collect in suitable container for disposal. Keep in suitable, closed containers for disposal.

7. Handling and storage

Handling Wear personal protective equipment. Ensure adequate ventilation. Do not get in eyes, on

skin, or on clothing. Avoid ingestion and inhalation. Avoid dust formation.

**Storage** Keep containers tightly closed in a dry, cool and well-ventilated place.

# 8. Exposure controls / personal protection

**Exposure Guidelines** 

This product does not contain any hazardous materials with occupational exposure limits established by the region specific regulatory bodies.

| Component    | ACGIH TLV | OSHA PEL                   | NIOSH IDLH | Mexico OEL (TWA) |
|--------------|-----------|----------------------------|------------|------------------|
| Phenanthrene |           | TWA: 0.2 mg/m <sup>3</sup> |            |                  |

**Engineering Measures** Ensure adequate ventilation, especially in confined areas.

**Personal Protective Equipment** 

**Eye/face Protection** Wear appropriate protective eyeglasses or chemical safety goggles as described by

OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard

EN166.

Skin and body protection Long sleeved clothing.

Respiratory Protection Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European Standard

EN 149. Use a NIOSH/MSHA or European Standard EN 149 approved respirator if exposure limits are exceeded or if irritation or other symptoms are experienced.

Hygiene Measures Handle in accordance with good industrial hygiene and safety practice.

# 9. Physical and chemical properties

Physical State Solid Appearance Beige

Revision Date 16-Jan-2019 **Phenanthrene** 

Odor Odorless

**Odor Threshold** No information available рΗ No information available

95 - 101 °C / 203 - 213.8 °F Melting Point/Range

336 °C / 636.8 °F **Boiling Point/Range** No information available Flash Point

**Evaporation Rate** Not applicable Flammability (solid,gas) No information available

Flammability or explosive limits

No data available Upper Lower No data available **Vapor Pressure** 1 mmHg @ 116 °C Vapor Density Not applicable 1.063

**Specific Gravity** 

Solubility Insoluble in water Partition coefficient; n-octanol/water No data available

**Autoignition Temperature** 

**Decomposition Temperature** No information available Not applicable **Viscosity** 

C14 H10 Molecular Formula **Molecular Weight** 178.23

# 10. Stability and reactivity

**Reactive Hazard** None known, based on information available

Stability Stable under normal conditions.

**Conditions to Avoid** Incompatible products. Excess heat. Avoid dust formation.

Strong oxidizing agents **Incompatible Materials** 

Hazardous Decomposition Products Carbon monoxide (CO), Carbon dioxide (CO2)

Hazardous polymerization does not occur. **Hazardous Polymerization** 

**Hazardous Reactions** None under normal processing.

# 11. Toxicological information

**Acute Toxicity** 

**Product Information** 

**Component Information** 

| Component    | LD50 Oral        | LD50 Dermal | LC50 Inhalation |
|--------------|------------------|-------------|-----------------|
| Phenanthrene | 1.8 g/kg ( Rat ) | Not listed  | Not listed      |

No information available **Toxicologically Synergistic** 

**Products** 

Delayed and immediate effects as well as chronic effects from short and long-term exposure

Irritation No information available Sensitization No information available

Carcinogenicity The table below indicates whether each agency has listed any ingredient as a carcinogen.

| Component    | CAS-No  | IARC       | NTP        | ACGIH      | OSHA       | Mexico     |
|--------------|---------|------------|------------|------------|------------|------------|
| Phenanthrene | 85-01-8 | Not listed | Not listed | Not listed | Not listed | Not listed |

No information available **Mutagenic Effects** 

**Reproductive Effects** No information available.

Revision Date 16-Jan-2019 **Phenanthrene** 

**Developmental Effects** No information available.

**Teratogenicity** No information available.

STOT - single exposure None known STOT - repeated exposure None known

No information available **Aspiration hazard** 

Symptoms / effects, both acute and No information available

delayed

**Endocrine Disruptor Information** No information available

The toxicological properties have not been fully investigated. Other Adverse Effects

# 12. Ecological information

#### **Ecotoxicity**

Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. The product contains following substances which are hazardous for the environment.

| Component    | Freshwater Algae | Freshwater Fish       | Microtox   | Water Flea           |
|--------------|------------------|-----------------------|------------|----------------------|
| Phenanthrene | Not listed       | LC50 = 3.2  mg/L  96h | Not listed | LC50 = 0.35 mg/L 48h |

Persistence and Degradability May persist

No information available. **Bioaccumulation/ Accumulation** 

**Mobility** . Is not likely mobile in the environment due its low water solubility.

| Component    | log Pow |
|--------------|---------|
| Phenanthrene | 4.5     |

# 13. Disposal considerations

**Waste Disposal Methods** 

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. Chemical waste generators must also consult local, regional, and national hazardous waste regulations to ensure complete and accurate classification.

#### Transport information

DOT

**UN-No** UN3077

ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. **Proper Shipping Name** 

**Hazard Class** 9 Ш **Packing Group** 

TDG

UN3077 **UN-No** 

**Proper Shipping Name** ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.

**Hazard Class Packing Group** Ш

IATA

UN3077 **UN-No** 

**Proper Shipping Name** ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.\*

**Hazard Class Packing Group** Ш

IMDG/IMO

UN3077 **UN-No** 

**Proper Shipping Name** ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.

**Hazard Class Packing Group** Ш

Phenanthrene Revision Date 16-Jan-2019

# 15. Regulatory information

All of the components in the product are on the following Inventory lists: X = listed

#### International Inventories

| Component    | TSCA | DSL | NDSL | EINECS    | ELINCS | NLP | PICCS | ENCS | AICS | IECSC | KECL    |
|--------------|------|-----|------|-----------|--------|-----|-------|------|------|-------|---------|
| Phenanthrene | Χ    | Χ   | -    | 201-581-5 | -      |     | Х     | Χ    | Χ    | Х     | KE-2820 |
|              |      |     |      |           |        |     |       |      |      |       | 2       |

#### Legend:

- X Listed
- E Indicates a substance that is the subject of a Section 5(e) Consent order under TSCA.
- F Indicates a substance that is the subject of a Section 5(f) Rule under TSCA.
- N Indicates a polymeric substance containing no free-radical initiator in its inventory name but is considered to cover the designated polymer made with any free-radical initiator regardless of the amount used.
- P Indicates a commenced PMN substance
- R Indicates a substance that is the subject of a Section 6 risk management rule under TSCA.
- S Indicates a substance that is identified in a proposed or final Significant New Use Rule
- T Indicates a substance that is the subject of a Section 4 test rule under TSCA.
- XU Indicates a substance exempt from reporting under the Inventory Update Rule, i.e. Partial Updating of the TSCA Inventory Data Base Production and Site Reports (40 CFR 710(B).
- Y1 Indicates an exempt polymer that has a number-average molecular weight of 1,000 or greater.
- Y2 Indicates an exempt polymer that is a polyester and is made only from reactants included in a specified list of low concern reactants that comprises one of the eligibility criteria for the exemption rule.

#### U.S. Federal Regulations

**TSCA 12(b)** 

Not applicable

#### **SARA 313**

| Component    | CAS-No  | Weight % | SARA 313 - Threshold<br>Values % |
|--------------|---------|----------|----------------------------------|
| Phenanthrene | 85-01-8 | >95      | 1.0                              |

#### SARA 311/312 Hazard Categories

See section 2 for more information

**CWA (Clean Water Act)** 

| Component    | CWA - Hazardous<br>Substances | CWA - Reportable<br>Quantities | CWA - Toxic Pollutants | CWA - Priority Pollutants |
|--------------|-------------------------------|--------------------------------|------------------------|---------------------------|
| Phenanthrene | -                             | -                              | -                      | X                         |

## Clean Air Act

Not applicable

# **OSHA** Occupational Safety and Health Administration

Not applicable

#### **CERCLA**

This material, as supplied, contains one or more substances regulated as a hazardous substance under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302)

| Component    | Hazardous Substances RQs | CERCLA EHS RQs |
|--------------|--------------------------|----------------|
| Phenanthrene | 5000 lb                  | -              |

#### California Proposition 65

This product does not contain any Proposition 65 chemicals

#### U.S. State Right-to-Know

Regulations

|   | Component    | Massachusetts | New Jersey | Pennsylvania | Illinois | Rhode Island |
|---|--------------|---------------|------------|--------------|----------|--------------|
| Γ | Phenanthrene | X             | X          | X            | -        | -            |

#### **U.S. Department of Transportation**

Phenanthrene Revision Date 16-Jan-2019

Reportable Quantity (RQ): N
DOT Marine Pollutant N
DOT Severe Marine Pollutant N

#### **U.S. Department of Homeland Security**

This product does not contain any DHS chemicals.

#### Other International Regulations

Mexico - Grade No information available

| 16. Other information |
|-----------------------|
|                       |

Prepared By Health, Safety and Environmental Department

Email: tech@alfa.com

www.alfa.com

 Creation Date
 01-May-2012

 Revision Date
 16-Jan-2019

 Print Date
 16-Jan-2019

**Revision Summary** SDS authoring systems update, replaces ChemGes SDS No. 85-01-8/3.

#### Disclaimer

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text

End of SDS

# **SAFETY DATA SHEET**

Version 4.10 Revision Date 09/23/2016 Print Date 07/13/2017

## 1. PRODUCT AND COMPANY IDENTIFICATION

1.1 Product identifiers

Product name : 1.1.1-Trichloroethane

Product Number : 402877
Brand : Sigma-Aldrich
Index-No. : 602-013-00-2

CAS-No. : 71-55-6

1.2 Relevant identified uses of the substance or mixture and uses advised against

Identified uses : Laboratory chemicals, Synthesis of substances

1.3 Details of the supplier of the safety data sheet

Company : Sigma-Aldrich

3050 Spruce Street SAINT LOUIS MO 63103

USA

Telephone : +1 800-325-5832 Fax : +1 800-325-5052

1.4 Emergency telephone number

Emergency Phone # : +1-703-527-3887 (CHEMTREC)

#### 2. HAZARDS IDENTIFICATION

#### 2.1 Classification of the substance or mixture

## GHS Classification in accordance with 29 CFR 1910 (OSHA HCS)

Acute toxicity, Inhalation (Category 4), H332

Skin irritation (Category 2), H315

For the full text of the H-Statements mentioned in this Section, see Section 16.

### 2.2 GHS Label elements, including precautionary statements

Pictogram

**(!)** 

Signal word Warning

Hazard statement(s)

H315 Causes skin irritation. H332 Harmful if inhaled.

Precautionary statement(s)

P261 Avoid breathing dust/ fume/ gas/ mist/ vapours/ spray.

P264 Wash skin thoroughly after handling.

P271 Use only outdoors or in a well-ventilated area.

P280 Wear protective gloves.

P302 + P352 IF ON SKIN: Wash with plenty of soap and water.

P304 + P340 IF INHALED: Remove victim to fresh air and keep at rest in a position

comfortable for breathing.

P312 Call a POISON CENTER/doctor if you feel unwell.

Sigma-Aldrich - 402877 Page 1 of 9

P321 Specific treatment (see supplemental first aid instructions on this label).

P332 + P313 If skin irritation occurs: Get medical advice/ attention.

P362 Take off contaminated clothing and wash before reuse.

# 2.3 Hazards not otherwise classified (HNOC) or not covered by GHS - none

#### 3. COMPOSITION/INFORMATION ON INGREDIENTS

#### 3.1 Substances

Synonyms : 'Chlorothene'

Methylchloroform

Formula : C<sub>2</sub>H<sub>3</sub>Cl<sub>3</sub>

Molecular weight : 133.40 g/mol
CAS-No. : 71-55-6

EC-No. : 200-756-3
Index-No. : 602-013-00-2

## **Hazardous components**

| Component             | Classification                                                        | Concentration |
|-----------------------|-----------------------------------------------------------------------|---------------|
| 1,1,1-Trichloroethane |                                                                       |               |
|                       | Acute Tox. 4; Skin Irrit. 2; Eye Irrit. 2A; Ozone 1; H315, H319, H332 | <= 100 %      |

For the full text of the H-Statements mentioned in this Section, see Section 16.

#### 4. FIRST AID MEASURES

# 4.1 Description of first aid measures

#### General advice

Consult a physician. Show this safety data sheet to the doctor in attendance. Move out of dangerous area.

#### If inhaled

If breathed in, move person into fresh air. If not breathing, give artificial respiration. Consult a physician.

## In case of skin contact

Wash off with soap and plenty of water. Consult a physician.

#### In case of eve contact

Rinse thoroughly with plenty of water for at least 15 minutes and consult a physician.

# If swallowed

Never give anything by mouth to an unconscious person. Rinse mouth with water. Consult a physician.

#### 4.2 Most important symptoms and effects, both acute and delayed

The most important known symptoms and effects are described in the labelling (see section 2.2) and/or in section 11

## 4.3 Indication of any immediate medical attention and special treatment needed

No data available

#### 5. FIREFIGHTING MEASURES

#### 5.1 Extinguishing media

## Suitable extinguishing media

Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.

## 5.2 Special hazards arising from the substance or mixture

No data available

# 5.3 Advice for firefighters

Wear self-contained breathing apparatus for firefighting if necessary.

## 5.4 Further information

No data available

Sigma-Aldrich - 402877 Page 2 of 9

## 6. ACCIDENTAL RELEASE MEASURES

## 6.1 Personal precautions, protective equipment and emergency procedures

Use personal protective equipment. Avoid breathing vapours, mist or gas. Ensure adequate ventilation. For personal protection see section 8.

#### 6.2 Environmental precautions

Do not let product enter drains.

# 6.3 Methods and materials for containment and cleaning up

Soak up with inert absorbent material and dispose of as hazardous waste. Keep in suitable, closed containers for disposal.

#### 6.4 Reference to other sections

For disposal see section 13.

#### 7. HANDLING AND STORAGE

# 7.1 Precautions for safe handling

Avoid contact with skin and eyes. Avoid inhalation of vapour or mist. For precautions see section 2.2.

# 7.2 Conditions for safe storage, including any incompatibilities

Keep container tightly closed in a dry and well-ventilated place. Containers which are opened must be carefully resealed and kept upright to prevent leakage.

## 7.3 Specific end use(s)

Apart from the uses mentioned in section 1.2 no other specific uses are stipulated

## 8. EXPOSURE CONTROLS/PERSONAL PROTECTION

# 8.1 Control parameters

Components with workplace control parameters

| Component       | CAS-No. | Value                                                                | Control                         | Basis                                  |  |
|-----------------|---------|----------------------------------------------------------------------|---------------------------------|----------------------------------------|--|
|                 |         |                                                                      | parameters                      |                                        |  |
| 1,1,1-          | 71-55-6 | TWA                                                                  | 350.000000                      | USA. ACGIH Threshold Limit Values      |  |
| Trichloroethane |         |                                                                      | ppm                             | (TLV)                                  |  |
|                 |         |                                                                      |                                 |                                        |  |
|                 | Remarks | Central Ner                                                          | vous System impa                | irment                                 |  |
|                 |         | Liver damag                                                          | ge                              |                                        |  |
|                 |         |                                                                      |                                 | a Biological Exposure Index or Indices |  |
|                 |         | (see BEI® s                                                          |                                 |                                        |  |
|                 |         |                                                                      | able as <sup>´</sup> a human ca | arcinogen                              |  |
|                 |         | STEL                                                                 | 450.000000                      | USA. ACGIH Threshold Limit Values      |  |
|                 |         |                                                                      | ppm                             | (TLV)                                  |  |
|                 |         |                                                                      |                                 |                                        |  |
|                 |         | Central Nervous System impairment                                    |                                 |                                        |  |
|                 |         | Liver damag                                                          |                                 |                                        |  |
|                 |         | Substances for which there is a Biological Exposure Index or Indices |                                 |                                        |  |
|                 |         | (see BEI® section)                                                   |                                 |                                        |  |
|                 |         | Not classifiable as a human carcinogen                               |                                 |                                        |  |
|                 |         | С                                                                    | 350.000000                      | USA. NIOSH Recommended                 |  |
|                 |         |                                                                      | ppm                             | Exposure Limits                        |  |
|                 |         |                                                                      | 1,900.000000                    | · ·                                    |  |
|                 |         |                                                                      | mg/m3                           |                                        |  |
|                 |         | See Append                                                           |                                 | •                                      |  |
|                 |         | 15 minute ceiling value                                              |                                 |                                        |  |
|                 |         | TWA                                                                  | 350.000000                      | USA. Occupational Exposure Limits      |  |
|                 |         |                                                                      | ppm                             | (OSHA) - Table Z-1 Limits for Air      |  |
|                 |         |                                                                      | 1,900.000000                    | Contaminants                           |  |
|                 |         |                                                                      | mg/m3                           |                                        |  |
|                 |         | The value in                                                         | n mg/m3 is approxi              | mate.                                  |  |
| L               |         |                                                                      | J                               |                                        |  |

Sigma-Aldrich - 402877 Page 3 of 9

| PEL  | 350 ppm<br>1,900 mg/m3 | California permissible exposure limits for chemical contaminants (Title 8, Article 107) |
|------|------------------------|-----------------------------------------------------------------------------------------|
| STEL | 450 ppm<br>2,450 mg/m3 | California permissible exposure limits for chemical contaminants (Title 8, Article 107) |
| С    | 800 ppm                | California permissible exposure limits for chemical contaminants (Title 8, Article 107) |

Biological occupational exposure limits

| biological occupa         |         |                                 |                                                                                 |                     |                                                 |
|---------------------------|---------|---------------------------------|---------------------------------------------------------------------------------|---------------------|-------------------------------------------------|
| Component                 | CAS-No. | Parameters                      | Value                                                                           | Biological specimen | Basis                                           |
| 1,1,1-<br>Trichloroethane | 71-55-6 | Methyl<br>chloroform            | 40ppm                                                                           | In end-exhaled air  | ACGIH - Biological<br>Exposure Indices<br>(BEI) |
|                           | Remarks | Prior to last sh                | ift of workwe                                                                   | ek                  |                                                 |
|                           |         | Trichloroaceti<br>c acid        | 10.0000<br>mg/l                                                                 | Urine               | ACGIH - Biological<br>Exposure Indices<br>(BEI) |
|                           |         |                                 | End of the workweek (After four or five consecutive working days with exposure) |                     |                                                 |
|                           |         | Total<br>trichloroethan<br>ol   | 30.0000<br>mg/l                                                                 | Urine               | ACGIH - Biological<br>Exposure Indices<br>(BEI) |
|                           |         | End of shift at end of workweek |                                                                                 |                     |                                                 |
|                           |         | Total<br>trichloroethan<br>ol   | 1.0000<br>mg/l                                                                  | In blood            | ACGIH - Biological<br>Exposure Indices<br>(BEI) |
|                           |         | End of shift at                 | End of shift at end of workweek                                                 |                     |                                                 |

#### 8.2 Exposure controls

## **Appropriate engineering controls**

Handle in accordance with good industrial hygiene and safety practice. Wash hands before breaks and at the end of workday.

#### Personal protective equipment

#### Eye/face protection

Face shield and safety glasses Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

# Skin protection

Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.

Full contact

Material: Fluorinated rubber Minimum layer thickness: 0.7 mm Break through time: 480 min

Material tested: Vitoject® (KCL 890 / Aldrich Z677698, Size M)

Splash contact

Material: Nitrile rubber

Minimum layer thickness: 0.4 mm Break through time: 60 min

Material tested:Camatril® (KCL 730 / Aldrich Z677442, Size M)

data source: KCL GmbH, D-36124 Eichenzell, phone +49 (0)6659 87300, e-mail sales@kcl.de, test method:

=N3/4

If used in solution, or mixed with other substances, and under conditions which differ from EN 374, contact the supplier of the CE approved gloves. This recommendation is advisory only and must be evaluated by an

Sigma-Aldrich - 402877 Page 4 of 9

industrial hygienist and safety officer familiar with the specific situation of anticipated use by our customers. It should not be construed as offering an approval for any specific use scenario.

### **Body Protection**

Complete suit protecting against chemicals, The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.

# **Respiratory protection**

Where risk assessment shows air-purifying respirators are appropriate use a full-face respirator with multipurpose combination (US) or type ABEK (EN 14387) respirator cartridges as a backup to engineering controls. If the respirator is the sole means of protection, use a full-face supplied air respirator. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).

## Control of environmental exposure

Do not let product enter drains.

#### 9. PHYSICAL AND CHEMICAL PROPERTIES

## 9.1 Information on basic physical and chemical properties

a) Appearance Form: liquid, clear

Colour: colourless

b) Odour No data available

c) Odour Threshold No data available

d) pH No data available

e) Melting point/freezing

point

-35.0 °C (-31.0 °F)

f) Initial boiling point and

boiling range

72.0 - 75.0 °C (161.6 - 167.0 °F)

g) Flash point No data availableh) Evaporation rate No data available

i) Flammability (solid, gas) No data available

j) Upper/lower flammability or Upper explosion limit: 15 %(V) Lower explosion limit: 7.5 %(V)

explosive limits
k) Vapour pressure

133.3 hPa (100.0 mmHg) at 20.0 °C (68.0 °F)

I) Vapour density No data available

m) Relative density 1.34 g/cm3

n) Water solubility 1.25 g/l at 23 °C (73 °F)

o) Partition coefficient: n-

octanol/water

log Pow: 2.49

p) Auto-ignition temperature

537.0 °C (998.6 °F)

q) Decomposition temperature

No data available

No data available

r) Viscosity No data availables) Explosive properties No data available

Other safety information

Oxidizing properties

No data available

9.2

Sigma-Aldrich - 402877 Page 5 of 9

## 10. STABILITY AND REACTIVITY

#### 10.1 Reactivity

No data available

#### 10.2 Chemical stability

Stable under recommended storage conditions.

Contains the following stabiliser(s):

Low alkyl epoxide (<=0.05 %)

# 10.3 Possibility of hazardous reactions

No data available

#### 10.4 Conditions to avoid

No data available

#### 10.5 Incompatible materials

Strong oxidizing agents, Potassium, Magnesium, Sodium/sodium oxides, Zinc, Strong bases

## 10.6 Hazardous decomposition products

Hazardous decomposition products formed under fire conditions. - Carbon oxides, Hydrogen chloride gas

Other decomposition products - No data available

In the event of fire: see section 5

## 11. TOXICOLOGICAL INFORMATION

#### 11.1 Information on toxicological effects

#### **Acute toxicity**

LD50 Oral - Rat - 9,600 mg/kg

Remarks: Cardiac:Pulse rate. Nutritional and Gross Metabolic:Weight loss or decreased weight gain.

LD50 Oral - Mouse - 6,000 mg/kg

Remarks: Cardiac:Pulse rate. Nutritional and Gross Metabolic:Weight loss or decreased weight gain.

LC50 Inhalation - Mouse - 2 h - 3911 ppm

Remarks: Behavioral: Excitement.

Dermal: No data available

LD50 Intraperitoneal - Rat - 3,593 mg/kg

LD50 Intraperitoneal - Mouse - 2,568 mg/kg

LD50 Subcutaneous - Mouse - 16.0 mg/kg Remarks: Drowsiness Behavioral:Ataxia.

LD50 Intraperitoneal - Dog - 3,100 mg/kg Remarks: Liver:Liver function tests impaired.

## Skin corrosion/irritation

Skin - Rabbit

Result: Skin irritation - 24 h

#### Serious eve damage/eve irritation

No data available

#### Respiratory or skin sensitisation

No data available

#### Germ cell mutagenicity

No data available

# Carcinogenicity

IARC: 3 - Group 3: Not classifiable as to its carcinogenicity to humans (1,1,1-Trichloroethane)

NTP: No component of this product present at levels greater than or equal to 0.1% is identified as a

known or anticipated carcinogen by NTP.

OSHA: No component of this product present at levels greater than or equal to 0.1% is identified as a

Sigma-Aldrich - 402877 Page 6 of 9

carcinogen or potential carcinogen by OSHA.

## Reproductive toxicity

No data available

No data available

## Specific target organ toxicity - single exposure

No data available

# Specific target organ toxicity - repeated exposure

No data available

# **Aspiration hazard**

No data available

#### **Additional Information**

RTECS: Not available

burning sensation, Cough, wheezing, laryngitis, Shortness of breath, Headache, Nausea, Vomiting, Exposure to and/or consumption of alcohol may increase toxic effects., prolonged or repeated exposure can cause:, narcosis, Liver injury may occur., Kidney injury may occur.

#### 12. ECOLOGICAL INFORMATION

## 12.1 Toxicity

Toxicity to fish LC50 - Pimephales promelas (fathead minnow) - 42.3 mg/l - 96 h

# 12.2 Persistence and degradability

No data available

# 12.3 Bioaccumulative potential

Bioaccumulation Lepomis macrochirus (Bluegill) - 28 d

- 0.0734 mg/l

Bioconcentration factor (BCF): 9

## 12.4 Mobility in soil

No data available

#### 12.5 Results of PBT and vPvB assessment

PBT/vPvB assessment not available as chemical safety assessment not required/not conducted

#### 12.6 Other adverse effects

No data available

#### 13. DISPOSAL CONSIDERATIONS

# 13.1 Waste treatment methods

#### **Product**

Offer surplus and non-recyclable solutions to a licensed disposal company. Contact a licensed professional waste disposal service to dispose of this material.

#### Contaminated packaging

Dispose of as unused product.

## 14. TRANSPORT INFORMATION

DOT (US)

UN number: 2831 Class: 6.1 Packing group: III

Proper shipping name: 1,1,1-Trichloroethane

Reportable Quantity (RQ): 1000 lbs

Poison Inhalation Hazard: No

#### **IMDG**

Sigma-Aldrich - 402877 Page 7 of 9

UN number: 2831 Class: 6.1 Packing group: III EMS-No: F-A, S-A

Proper shipping name: 1,1,1-TRICHLOROETHANE

**IATA** 

UN number: 2831 Class: 6.1 Packing group: III

Proper shipping name: 1,1,1-Trichloroethane

#### 15. REGULATORY INFORMATION

#### **SARA 302 Components**

No chemicals in this material are subject to the reporting requirements of SARA Title III, Section 302.

## **SARA 313 Components**

The following components are subject to reporting levels established by SARA Title III, Section 313:

CAS-No. Revision Date 71-55-6 2007-07-01

1,1,1-Trichloroethane

SARA 311/312 Hazards

Acute Health Hazard

**Massachusetts Right To Know Components** 

CAS-No. Revision Date 1.1.1-Trichloroethane 71-55-6 2007-07-01

Pennsylvania Right To Know Components

CAS-No. Revision Date 1.1.1-Trichloroethane 71-55-6 2007-07-01

**New Jersey Right To Know Components** 

CAS-No. Revision Date 1.1.1-Trichloroethane 71-55-6 2007-07-01

#### California Prop. 65 Components

This product does not contain any chemicals known to State of California to cause cancer, birth defects, or any other reproductive harm.

# **16. OTHER INFORMATION**

## Full text of H-Statements referred to under sections 2 and 3.

Acute Tox. Acute toxicity Eye Irrit. Eye irritation

H315 Causes skin irritation.

H319 Causes serious eye irritation.

H332 Harmful if inhaled.

Ozone Hazardous to the ozone layer

Skin Irrit. Skin irritation

**HMIS Rating** 

Health hazard: 2
Chronic Health Hazard:
Flammability: 0
Physical Hazard 0

**NFPA Rating** 

Health hazard: 2
Fire Hazard: 0
Reactivity Hazard: 0

#### **Further information**

Copyright 2016 Sigma-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use only. The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the

Sigma-Aldrich - 402877 Page 8 of 9

product. Sigma-Aldrich Corporation and its Affiliates shall not be held liable for any damage resulting from handling or from contact with the above product. See www.sigma-aldrich.com and/or the reverse side of invoice or packing slip for additional terms and conditions of sale.

# **Preparation Information**

Sigma-Aldrich Corporation Product Safety – Americas Region 1-800-521-8956

Version: 4.10 Revision Date: 09/23/2016 Print Date: 07/13/2017

Sigma-Aldrich - 402877 Page 9 of 9



# SAFETY DATA SHEET

Creation Date 03-Feb-2010 Revision Date 14-Jul-2016 Revision Number 2

1. Identification

Product Name Trichloroethylene

Cat No.: T340-4; T341-4; T341-20; T341-500; T403-4

Synonyms Trichloroethene (Stabilized/Technical/Electronic/Certified ACS)

Recommended Use Laboratory chemicals.

Uses advised against

# Details of the supplier of the safety data sheet

#### **Company**

Fisher Scientific One Reagent Lane Fair Lawn, NJ 07410 Tel: (201) 796-7100

#### **Emergency Telephone Number**

CHEMTREC®, Inside the USA: 800-424-9300 CHEMTREC®, Outside the USA: 001-703-527-3887

# 2. Hazard(s) identification

#### Classification

This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200)

Skin Corrosion/irritation

Serious Eye Damage/Eye Irritation

Skin Sensitization

Germ Cell Mutagenicity

Category 2

Carcinogenicity

Category 2

Category 1

Category 2

Category 2

Category 2

Category 1

Category 2

Category 3

Target Organs - Central nervous system (CNS).

Specific target organ toxicity - (repeated exposure) Category 2

Target Organs - Kidney, Liver, Heart, spleen, Blood.

#### **Label Elements**

## Signal Word

Danger

#### **Hazard Statements**

Causes skin irritation
Causes serious eye irritation
May cause an allergic skin reaction
May cause drowsiness or dizziness
Suspected of causing genetic defects

May cause cancer

May cause damage to organs through prolonged or repeated exposure

Trichloroethylene Revision Date 14-Jul-2016



## **Precautionary Statements**

#### Prevention

Obtain special instructions before use

Do not handle until all safety precautions have been read and understood

Use personal protective equipment as required

Wash face, hands and any exposed skin thoroughly after handling

Contaminated work clothing should not be allowed out of the workplace

Do not breathe dust/fume/gas/mist/vapors/spray

Use only outdoors or in a well-ventilated area

Wear protective gloves/protective clothing/eye protection/face protection

#### Response

IF exposed or concerned: Get medical attention/advice

#### Inhalation

IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing

#### Skin

IF ON SKIN: Wash with plenty of soap and water

Take off contaminated clothing and wash before reuse

If skin irritation or rash occurs: Get medical advice/attention

#### **Eyes**

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing If eye irritation persists: Get medical advice/attention

#### Storage

Store locked up

Store in a well-ventilated place. Keep container tightly closed

## Disposal

Dispose of contents/container to an approved waste disposal plant

# Hazards not otherwise classified (HNOC)

Harmful to aquatic life with long lasting effects

WARNING! This product contains a chemical known in the State of California to cause cancer, birth defects or other reproductive harm.

# 3. Composition / information on ingredients

| Component         | CAS-No  | Weight % |
|-------------------|---------|----------|
| Trichloroethylene | 79-01-6 | 100      |

# 4. First-aid measures

General Advice Show this safety data sheet to the doctor in attendance. Immediate medical attention is

required.

**Eye Contact** Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes. In

the case of contact with eyes, rinse immediately with plenty of water and seek medical

advice.

**Skin Contact** Wash off immediately with plenty of water for at least 15 minutes. Immediate medical

attention is required.

**Inhalation** Move to fresh air. If not breathing, give artificial respiration. Do not use mouth-to-mouth

method if victim ingested or inhaled the substance; give artificial respiration with the aid of a

Trichloroethylene Revision Date 14-Jul-2016

pocket mask equipped with a one-way valve or other proper respiratory medical device.

Immediate medical attention is required.

**Ingestion** Do not induce vomiting. Call a physician or Poison Control Center immediately.

Most important symptoms/effects None reasonably foreseeable. May cause allergic skin reaction. Inhalation of high vapor

concentrations may cause symptoms like headache, dizziness, tiredness, nausea and vomiting: Symptoms of allergic reaction may include rash, itching, swelling, trouble breathing, tingling of the hands and feet, dizziness, lightheadedness, chest pain, muscle

pain or flushing

Notes to Physician Treat symptomatically

# 5. Fire-fighting measures

Suitable Extinguishing Media Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.

Unsuitable Extinguishing Media No information available

Flash Point No information available Method - No information available

Autoignition Temperature 410 °C / 770 °F

**Explosion Limits** 

Upper 10.5 vol % Lower 8 vol %
Oxidizing Properties Not oxidising

Sensitivity to Mechanical Impact No information available Sensitivity to Static Discharge No information available

#### **Specific Hazards Arising from the Chemical**

Thermal decomposition can lead to release of irritating gases and vapors. Containers may explode when heated. Keep product and empty container away from heat and sources of ignition.

#### **Hazardous Combustion Products**

Hydrogen chloride gas Chlorine Phosgene Carbon monoxide (CO) Carbon dioxide (CO2)

#### **Protective Equipment and Precautions for Firefighters**

As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear. Thermal decomposition can lead to release of irritating gases and vapors.

NFPA

| Health | Flammability | Instability | Physical hazards |
|--------|--------------|-------------|------------------|
| 2      | 1            | 0           | N/A              |

## 6. Accidental release measures

Personal Precautions Ensure adequate ventilation. Use personal protective equipment. Keep people away from

and upwind of spill/leak. Evacuate personnel to safe areas.

**Environmental Precautions** Should not be released into the environment. Do not flush into surface water or sanitary

sewer system.

**Methods for Containment and Clean** Soak up with inert absorbent material. Keep in suitable, closed containers for disposal. **Up** 

|          | 7. Handling and storage                                                                                                                                                   |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Handling | Wear personal protective equipment. Do not get in eyes, on skin, or on clothing. Use only under a chemical fume hood. Do not breathe vapors or spray mist. Do not ingest. |
| Storage  | Keep containers tightly closed in a dry, cool and well-ventilated place. Protect from light. Do not store in aluminum containers.                                         |

Revision Date 14-Jul-2016 **Trichloroethylene** 

# 8. Exposure controls / personal protection

#### **Exposure Guidelines**

| Component         | ACGIH TLV    | OSHA PEL                             | NIOSH IDLH     | Mexico OEL (TWA)             |
|-------------------|--------------|--------------------------------------|----------------|------------------------------|
| Trichloroethylene | TWA: 10 ppm  | (Vacated) TWA: 50 ppm                | IDLH: 1000 ppm | TWA: 100 ppm                 |
|                   | STEL: 25 ppm | (Vacated) TWA: 270 mg/m <sup>3</sup> |                | TWA: 535 mg/m <sup>3</sup>   |
|                   |              | Ceiling: 200 ppm                     |                | STEL: 200 ppm                |
|                   |              | (Vacated) STEL: 200 ppm              |                | STEL: 1080 mg/m <sup>3</sup> |
|                   |              | (Vacated) STEL: 1080                 |                | _                            |
|                   |              | mg/m³                                |                |                              |
|                   |              | TWA: 100 ppm                         |                |                              |

#### Legend

ACGIH - American Conference of Governmental Industrial Hygienists

OSHA - Occupational Safety and Health Administration

NIOSH IDLH: The National Institute for Occupational Safety and Health Immediately Dangerous to Life or Health

Use only under a chemical fume hood. Ensure adequate ventilation, especially in confined **Engineering Measures** 

areas. Ensure that eyewash stations and safety showers are close to the workstation

location.

Personal Protective Equipment

**Eye/face Protection** Wear appropriate protective eyeglasses or chemical safety goggles as described by

OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard

EN166.

Skin and body protection Long sleeved clothing.

Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European Standard **Respiratory Protection** 

EN 149. Use a NIOSH/MSHA or European Standard EN 149 approved respirator if

exposure limits are exceeded or if irritation or other symptoms are experienced.

Handle in accordance with good industrial hygiene and safety practice. **Hygiene Measures** 

# 9. Physical and chemical properties

**Physical State** Liquid **Appearance** Colorless Characteristic Odor

**Odor Threshold** No information available

No information available

-85 °C / -121 °F Melting Point/Range **Boiling Point/Range** 87 °C / 188.6 °F Flash Point No information available

**Evaporation Rate** 0.69 (Carbon Tetrachloride = 1.0)

Flammability (solid,gas) Not applicable

Flammability or explosive limits

Upper 10.5 vol % 8 vol % Lower

**Vapor Pressure** 77.3 mbar @ 20 °C 4.5 (Air = 1.0)**Vapor Density** 

1.460 **Specific Gravity** 

Solubility Slightly soluble in water Partition coefficient; n-octanol/water No data available

410 °C / 770 °F **Autoignition Temperature Decomposition Temperature** > 120°C

0.55 mPa.s (25°C) **Viscosity** 

Trichloroethylene Revision Date 14-Jul-2016

Molecular FormulaC2 H Cl3Molecular Weight131.39

# 10. Stability and reactivity

Reactive Hazard None known, based on information available

Stability Light sensitive.

Conditions to Avoid Incompatible products. Excess heat. Exposure to light. Exposure to moist air or water.

Incompatible Materials Strong oxidizing agents, Strong bases, Amines, Alkali metals, Metals,

Hazardous Decomposition Products Hydrogen chloride gas, Chlorine, Phosgene, Carbon monoxide (CO), Carbon dioxide (CO2)

Hazardous Polymerization Hazardous polymerization does not occur.

Hazardous Reactions None under normal processing.

# 11. Toxicological information

**Acute Toxicity** 

**Product Information** 

**Component Information** 

|   | Component         | LD50 Oral                                        | LD50 Dermal                                            | LC50 Inhalation         |
|---|-------------------|--------------------------------------------------|--------------------------------------------------------|-------------------------|
| - | Trichloroethylene | LD50 = 4290 mg/kg(Rat)<br>LD50 = 4920 mg/kg(Rat) | LD50 > 20 g/kg (Rabbit)<br>LD50 = 29000 mg/kg (Rabbit) | LC50 = 26 mg/L (Rat)4 h |

Toxicologically Synergistic

**Products** 

Delayed and immediate effects as well as chronic effects from short and long-term exposure

No information available

 Irritation
 Irritating to eyes and skin

 Sensitization
 No information available

**Carcinogenicity** The table below indicates whether each agency has listed any ingredient as a carcinogen.

| Component         | CAS-No  | IARC    | NTP         | ACGIH | OSHA | Mexico     |
|-------------------|---------|---------|-------------|-------|------|------------|
| Trichloroethylene | 79-01-6 | Group 1 | Reasonably  | A2    | Х    | Not listed |
|                   |         | · ·     | Anticipated |       |      |            |

IARC: (International Agency for Research on Cancer)

IARC: (International Agency for Research on Cancer)

IARC: (International Agency for Research on Cancer)

Group 1 - Carcinogenic to Humans

Group 2A - Probably Carcinogenic to Humans Group 2B - Possibly Carcinogenic to Humans

NTP: (National Toxicity Program)

NTP: (National Toxicity Program)

Known - Known Carcinogen

Reasonably Anticipated - Reasonably Anticipated to be a Human

Carcinogen

ACGIH: (American Conference of Governmental Industrial

Hygienists)

A1 - Known Human Carcinogen
A2 - Suspected Human Carcinogen

A3 - Animal Carcinogen

ACGIH: (American Conference of Governmental Industrial Hygienists)

Mutagenic Effects Mutagenic effects have occurred in humans.

Reproductive Effects

No information available.

Developmental Effects

No information available.

Teratogenicity

No information available.

Revision Date 14-Jul-2016 **Trichloroethylene** 

STOT - single exposure Central nervous system (CNS) STOT - repeated exposure Kidney Liver Heart spleen Blood

No information available **Aspiration hazard** 

delayed

Symptoms / effects,both acute and Inhalation of high vapor concentrations may cause symptoms like headache, dizziness, tiredness, nausea and vomiting: Symptoms of allergic reaction may include rash, itching, swelling, trouble breathing, tingling of the hands and feet, dizziness, lightheadedness, chest

pain, muscle pain or flushing

No information available **Endocrine Disruptor Information** 

Other Adverse Effects The toxicological properties have not been fully investigated.

# 12. Ecological information

#### **Ecotoxicity**

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Do not empty into drains. The product contains following substances which are hazardous for the environment. Contains a substance which is:. Harmful to aquatic organisms. Toxic to aquatic organisms.

| Component         | Freshwater Algae      | Freshwater Fish              | Microtox                | Water Flea            |
|-------------------|-----------------------|------------------------------|-------------------------|-----------------------|
| Trichloroethylene | EC50: = 175 mg/L, 96h | LC50: 39 - 54 mg/L, 96h      | EC50 = 0.81 mg/L 24 h   | EC50: = 2.2 mg/L, 48h |
|                   | (Pseudokirchneriella  | static (Lepomis macrochirus) | EC50 = 115 mg/L 10 min  | (Daphnia magna)       |
|                   | subcapitata)          | LC50: 31.4 - 71.8 mg/L, 96h  | EC50 = 190 mg/L 15 min  |                       |
|                   | EC50: = 450 mg/L, 96h | flow-through (Pimephales     | EC50 = 235 mg/L 24 h    |                       |
|                   | (Desmodesmus          | promelas)                    | EC50 = 410  mg/L  24  h |                       |
|                   | subspicatus)          |                              | EC50 = 975 mg/L 5 min   |                       |
|                   |                       |                              | _                       |                       |

**Persistence and Degradability** Persistence is unlikely based on information available.

**Bioaccumulation/ Accumulation** No information available.

**Mobility** Will likely be mobile in the environment due to its volatility.

| Component         | log Pow |  |
|-------------------|---------|--|
| Trichloroethylene | 2.4     |  |

## 13. Disposal considerations

**Waste Disposal Methods** 

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. Chemical waste generators must also consult local, regional, and national hazardous waste regulations to ensure complete and accurate classification.

| Component                   | RCRA - U Series Wastes | RCRA - P Series Wastes |
|-----------------------------|------------------------|------------------------|
| Trichloroethylene - 79-01-6 | U228                   | -                      |

# 14. Transport information

DOT

UN1710 **UN-No** 

**Proper Shipping Name TRICHLOROETHYLENE** 

**Hazard Class** 6.1 **Packing Group** Ш

**TDG** 

**UN-No** UN1710

**Proper Shipping Name** TRICHLOROETHYLENE

**Hazard Class** 6.1 **Packing Group** Ш

IATA

**UN-No** UN1710

**Proper Shipping Name** TRICHLOROETHYLENE

Trichloroethylene Revision Date 14-Jul-2016

Hazard Class 6.1 Packing Group III

IMDG/IMO

**UN-No** UN1710

Proper Shipping Name TRICHLOROETHYLENE

Hazard Class 6.1 Packing Group III

# 15. Regulatory information

All of the components in the product are on the following Inventory lists: X = listed

#### International Inventories

| Component         | TSCA | DSL | NDSL | EINECS    | ELINCS | NLP | PICCS | ENCS | AICS | IECSC | KECL |
|-------------------|------|-----|------|-----------|--------|-----|-------|------|------|-------|------|
| Trichloroethylene | Х    | Χ   | •    | 201-167-4 | -      |     | Χ     | Χ    | Χ    | Х     | Χ    |

#### Legend:

- X Listed
- E Indicates a substance that is the subject of a Section 5(e) Consent order under TSCA.
- F Indicates a substance that is the subject of a Section 5(f) Rule under TSCA.
- N Indicates a polymeric substance containing no free-radical initiator in its inventory name but is considered to cover the designated polymer made with any free-radical initiator regardless of the amount used.
- P Indicates a commenced PMN substance
- R Indicates a substance that is the subject of a Section 6 risk management rule under TSCA.
- S Indicates a substance that is identified in a proposed or final Significant New Use Rule
- T Indicates a substance that is the subject of a Section 4 test rule under TSCA.
- XU Indicates a substance exempt from reporting under the Inventory Update Rule, i.e. Partial Updating of the TSCA Inventory Data Base Production and Site Reports (40 CFR 710(B).
- Y1 Indicates an exempt polymer that has a number-average molecular weight of 1,000 or greater.
- Y2 Indicates an exempt polymer that is a polyester and is made only from reactants included in a specified list of low concern reactants that comprises one of the eligibility criteria for the exemption rule.

#### U.S. Federal Regulations

TSCA 12(b) Not applicable

| Component         | TSCA 12(b) |
|-------------------|------------|
| Trichloroethylene | Section 5  |

**SARA 313** 

| OAKA 313          |         |          |                                  |
|-------------------|---------|----------|----------------------------------|
| Component         | CAS-No  | Weight % | SARA 313 - Threshold<br>Values % |
|                   |         |          | Values /0                        |
| Trichloroethylene | 79-01-6 | 100      | 0.1                              |

#### SARA 311/312 Hazard Categories

Acute Health Hazard Yes
Chronic Health Hazard Yes
Fire Hazard No
Sudden Release of Pressure Hazard No
Reactive Hazard No

**CWA (Clean Water Act)** 

| Component         | CWA - Hazardous<br>Substances | CWA - Reportable<br>Quantities | CWA - Toxic Pollutants | CWA - Priority Pollutants |
|-------------------|-------------------------------|--------------------------------|------------------------|---------------------------|
| Trichloroethylene | X                             | 100 lb                         | X                      | X                         |

#### Clean Air Act

| Component         | HAPS Data | Class 1 Ozone Depletors | Class 2 Ozone Depletors |
|-------------------|-----------|-------------------------|-------------------------|
| Trichloroethylene | X         |                         | -                       |

**OSHA** Occupational Safety and Health Administration Not applicable

Trichloroethylene Revision Date 14-Jul-2016

#### **CERCLA**

This material, as supplied, contains one or more substances regulated as a hazardous substance under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302)

| Component         | Hazardous Substances RQs | CERCLA EHS RQs |
|-------------------|--------------------------|----------------|
| Trichloroethylene | 100 lb 1 lb              | -              |

### **California Proposition 65**

This product contains the following proposition 65 chemicals

| Component         | CAS-No  | California Prop. 65 | Prop 65 NSRL | Category      |
|-------------------|---------|---------------------|--------------|---------------|
| Trichloroethylene | 79-01-6 | Carcinogen          | 14 μg/day    | Developmental |
| 1                 |         | Developmental       | 50 μg/day    | Carcinogen    |
|                   |         | Male Reproductive   |              |               |

## U.S. State Right-to-Know

Regulations

| Component         | Massachusetts | New Jersey | Pennsylvania | Illinois | Rhode Island |
|-------------------|---------------|------------|--------------|----------|--------------|
| Trichloroethylene | Χ             | X          | Χ            | X        | X            |

#### **U.S. Department of Transportation**

Reportable Quantity (RQ): Y
DOT Marine Pollutant N
DOT Severe Marine Pollutant N

# **U.S. Department of Homeland Security**

This product does not contain any DHS chemicals.

#### **Other International Regulations**

Mexico - Grade No information available

|--|

Prepared By Regulatory Affairs

Thermo Fisher Scientific

Email: EMSDS.RA@thermofisher.com

 Creation Date
 03-Feb-2010

 Revision Date
 14-Jul-2016

 Print Date
 14-Jul-2016

Revision Summary

This document has been updated to comply with the US OSHA HazCom 2012 Standard

replacing the current legislation under 29 CFR 1910.1200 to align with the Globally

Harmonized System of Classification and Labeling of Chemicals (GHS).

#### **Disclaimer**

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text

# **End of SDS**



# SAFETY DATA SHEET

Creation Date 11-Jun-2009 Revision Date 24-May-2017 Revision Number 3

#### 1. Identification

Product Name Toluene

Cat No.: T326F-1GAL; T326P-4; T326S-20; T326S-20LC

Synonyms Tol; Methylbenzene

Recommended Use Laboratory chemicals.

Uses advised against Not for food, drug, pesticide or biocidal product use

#### Details of the supplier of the safety data sheet

#### Company

Fisher Scientific One Reagent Lane Fair Lawn, NJ 07410 Tel: (201) 796-7100

#### **Emergency Telephone Number**

CHEMTREC®, Inside the USA: 800-424-9300 CHEMTREC®, Outside the USA: 001-703-527-3887

# 2. Hazard(s) identification

#### Classification

This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200)

Flammable liquids Category 2 Skin Corrosion/irritation Category 2 Serious Eye Damage/Eye Irritation Category 2 Reproductive Toxicity Category 2 Specific target organ toxicity (single exposure) Category 3 Target Organs - Respiratory system, Central nervous system (CNS). Specific target organ toxicity - (repeated exposure) Category 2 Target Organs - Kidney, Liver, spleen, Blood. Aspiration Toxicity Category 1

## Label Elements

#### Signal Word

Danger

#### **Hazard Statements**

Highly flammable liquid and vapor May be fatal if swallowed and enters airways Causes skin irritation Causes serious eye irritation May cause respiratory irritation

May cause drowsiness or dizziness

Suspected of damaging the unborn child

Causes damage to organs through prolonged or repeated exposure



#### **Precautionary Statements**

#### Prevention

Obtain special instructions before use

Do not handle until all safety precautions have been read and understood

Use personal protective equipment as required

Wash face, hands and any exposed skin thoroughly after handling

Wear eye/face protection

Do not breathe dust/fume/gas/mist/vapors/spray

Do not eat, drink or smoke when using this product

Use only outdoors or in a well-ventilated area

Keep away from heat/sparks/open flames/hot surfaces. - No smoking

Keep container tightly closed

Ground/bond container and receiving equipment

Use explosion-proof electrical/ventilating/lighting/equipment

Use only non-sparking tools

Take precautionary measures against static discharge

Keep cool

## Response

IF exposed or concerned: Get medical attention/advice

#### Inhalation

IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing

#### Skin

If skin irritation occurs: Get medical advice/attention

IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower

Wash contaminated clothing before reuse

#### Eyes

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing If eye irritation persists: Get medical advice/attention

## Ingestion

IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician

Do NOT induce vomiting

#### Fire

In case of fire: Use CO2, dry chemical, or foam for extinction

#### Storage

Store locked up

Store in a well-ventilated place. Keep container tightly closed

# Disposal

Dispose of contents/container to an approved waste disposal plant

#### Hazards not otherwise classified (HNOC)

WARNING! This product contains a chemical known in the State of California to cause birth defects or other reproductive harm.

# 3. Composition / information on ingredients

| Component | CAS-No   | Weight % |
|-----------|----------|----------|
| Toluene   | 108-88-3 | >95      |

# 4. First-aid measures

**Toluene** 

General Advice If symptoms persist, call a physician.

Eye Contact Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes.

Obtain medical attention.

**Skin Contact** Wash off immediately with plenty of water for at least 15 minutes. If skin irritation persists,

call a physician.

**Inhalation** Move to fresh air. If not breathing, give artificial respiration. Get medical attention if

symptoms occur. Risk of serious damage to the lungs.

**Ingestion** Clean mouth with water and drink afterwards plenty of water. Do not induce vomiting. Call a

physician or Poison Control Center immediately. If vomiting occurs naturally, have victim

lean forward.

concentrations may cause symptoms like headache, dizziness, tiredness, nausea and

vomiting

Notes to Physician Treat symptomatically

# 5. Fire-fighting measures

Suitable Extinguishing Media Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide. Cool closed

containers exposed to fire with water spray.

Unsuitable Extinguishing Media No information available

Flash Point 4 °C / 39.2 °F

Method - No information available

Autoignition Temperature 535 °C / 995 °F

**Explosion Limits** 

Upper 7.1 vol %
Lower 1.1 vol %
Oxidizing Properties Not oxidising

Sensitivity to Mechanical Impact No information available Sensitivity to Static Discharge No information available

#### **Specific Hazards Arising from the Chemical**

Flammable. Containers may explode when heated. Vapors may form explosive mixtures with air. Vapors may travel to source of ignition and flash back.

#### **Hazardous Combustion Products**

Carbon monoxide (CO) Carbon dioxide (CO2)

#### **Protective Equipment and Precautions for Firefighters**

As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear.

NFPA

HealthFlammabilityInstabilityPhysical hazards330N/A

# 6. Accidental release measures

Personal Precautions Use personal protective equipment. Ensure adequate ventilation. Remove all sources of

ignition. Take precautionary measures against static discharges.

**Environmental Precautions** Should not be released into the environment. Do not flush into surface water or sanitary

sewer system.

**Toluene** 

**Methods for Containment and Clean** Soak up with inert absorbent material. Keep in suitable, closed containers for disposal. **Up** Remove all sources of ignition. Use spark-proof tools and explosion-proof equipment.

7. Handling and storage

Handling

Wear personal protective equipment. Do not get in eyes, on skin, or on clothing. Avoid ingestion and inhalation. Ensure adequate ventilation. Keep away from open flames, hot surfaces and sources of ignition. Use only non-sparking tools. To avoid ignition of vapors by static electricity discharge, all metal parts of the equipment must be grounded. Take

precautionary measures against static discharges.

Storage

Keep containers tightly closed in a dry, cool and well-ventilated place. Flammables area.

Keep away from heat and sources of ignition.

# 8. Exposure controls / personal protection

#### **Exposure Guidelines**

| Component | ACGIH TLV   | OSHA PEL                              | NIOSH IDLH                  | Mexico OEL (TWA)           |
|-----------|-------------|---------------------------------------|-----------------------------|----------------------------|
| Toluene   | TWA: 20 ppm | (Vacated) TWA: 100 ppm                | IDLH: 500 ppm               | TWA: 50 ppm                |
|           |             | (Vacated) TWA: 375 mg/m <sup>3</sup>  | TWA: 100 ppm                | TWA: 188 mg/m <sup>3</sup> |
|           |             | Ceiling: 300 ppm                      | TWA: 375 mg/m <sup>3</sup>  | _                          |
|           |             | (Vacated) STEL: 150 ppm               | STEL: 150 ppm               |                            |
|           |             | (Vacated) STEL: 560 mg/m <sup>3</sup> | STEL: 560 mg/m <sup>3</sup> |                            |
|           |             | TWA: 200 ppm                          | _                           |                            |

#### Legend

ACGIH - American Conference of Governmental Industrial Hygienists

OSHA - Occupational Safety and Health Administration

NIOSH IDLH: The National Institute for Occupational Safety and Health Immediately Dangerous to Life or Health

**Engineering Measures** Ensure that eyewash stations and safety showers are close to the workstation location. Use

explosion-proof electrical/ventilating/lighting/equipment. Ensure adequate ventilation,

especially in confined areas.

**Personal Protective Equipment** 

**Eye/face Protection** Wear appropriate protective eyeglasses or chemical safety goggles as described by

OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard

EN166.

**Skin and body protection** Long sleeved clothing.

Respiratory Protection Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European Standard

EN 149. Use a NIOSH/MSHA or European Standard EN 149 approved respirator if exposure limits are exceeded or if irritation or other symptoms are experienced.

**Hygiene Measures** Handle in accordance with good industrial hygiene and safety practice.

# 9. Physical and chemical properties

Physical State
Appearance
Odor
Odor Threshold
pH
Liquid
Colorless
aromatic
1.74 ppm
Not applicable

pH Not applicable
Melting Point/Range -95 °C / -139 °F

Boiling Point/Range 111 °C / 231.8 °F @ 760 mmHg

Flash Point 4 °C / 39.2 °F

#### **Toluene**

Not applicable

Evaporation Rate 2.4 (Butyl acetate = 1.0)

Flammability (solid,gas)

Flammability or explosive limits

 Upper
 7.1 vol %

 Lower
 1.1 vol %

Vapor Pressure 29 mbar @ 20 °C

Vapor Density3.1Specific Gravity0.866

SolubilityInsoluble in waterPartition coefficient; n-octanol/waterNo data availableAutoignition Temperature535 °C / 995 °FDecomposition TemperatureNo information availableViscosity0.6 mPa.s @ 20 °C

Molecular FormulaC7 H8Molecular Weight92.14

# 10. Stability and reactivity

Reactive Hazard None known, based on information available

**Stability** Stable under normal conditions.

Conditions to Avoid Incompatible products. Excess heat. Keep away from open flames, hot surfaces and

sources of ignition.

Incompatible Materials Strong oxidizing agents, Strong acids, Strong bases, Halogenated compounds

Hazardous Decomposition Products Carbon monoxide (CO), Carbon dioxide (CO2)

Hazardous Polymerization Hazardous polymerization does not occur.

**Hazardous Reactions** None under normal processing.

# 11. Toxicological information

#### **Acute Toxicity**

# Product Information Component Information

| Component | LD50 Oral          | LD50 Dermal                   | LC50 Inhalation    |
|-----------|--------------------|-------------------------------|--------------------|
| Toluene   | > 5000 mg/kg (Rat) | LD50 = 12000 mg/kg ( Rabbit ) | 26700 ppm (Rat)1 h |

Toxicologically Synergistic No information available

**Products** 

Delayed and immediate effects as well as chronic effects from short and long-term exposure

Irritation Irritating to eyes, respiratory system and skin

Sensitization No information available

Carcinogenicity The table below indicates whether each agency has listed any ingredient as a carcinogen.

| Component | CAS-No   | IARC       | NTP        | ACGIH      | OSHA       | Mexico     |
|-----------|----------|------------|------------|------------|------------|------------|
| Toluene   | 108-88-3 | Not listed | Not listed | Not listed | Not listed | Not listed |

Mutagenic Effects Not mutagenic in AMES Test

Reproductive Effects Experiments have shown reproductive toxicity effects on laboratory animals.

**Developmental Effects**Developmental effects have occurred in experimental animals.

**Teratogenicity** Possible risk of harm to the unborn child.

STOT - single exposure Respiratory system Central nervous system (CNS)

STOT - repeated exposure Kidney Liver spleen Blood

**Aspiration hazard** No information available

delayed

Symptoms / effects,both acute and Causes central nervous system depression: Inhalation of high vapor concentrations may

cause symptoms like headache, dizziness, tiredness, nausea and vomiting

**Endocrine Disruptor Information** No information available

Other Adverse Effects The toxicological properties have not been fully investigated.

# 12. Ecological information

#### **Ecotoxicity**

Contains a substance which is:. The product contains following substances which are hazardous for the environment.

| Component | Freshwater Algae            | Freshwater Fish      | Microtox                | Water Flea                              |
|-----------|-----------------------------|----------------------|-------------------------|-----------------------------------------|
| Toluene   | EC50: = 12.5 mg/L, 72h      | 50-70 mg/L LC50 96 h | EC50 = 19.7 mg/L 30 min | EC50: = 11.5 mg/L, 48h                  |
|           | static (Pseudokirchneriella | 5-7 mg/L LC50 96 h   | _                       | (Daphnia magna)                         |
|           | subcapitata)                | 15-19 mg/L LC50 96 h |                         | EC50: 5.46 - 9.83 mg/L, 48h             |
|           | EC50: > 433 mg/L, 96h       | 28 mg/L LC50 96 h    |                         | Static (Daphnia magna)                  |
|           | (Pseudokirchneriella        | 12 mg/L LC50 96 h    |                         | , , , , , , , , , , , , , , , , , , , , |
|           | subcapitata)                | -                    |                         |                                         |
|           | . ,                         |                      |                         |                                         |

**Persistence and Degradability** 

Soluble in water Persistence is unlikely based on information available.

**Bioaccumulation/ Accumulation** 

No information available.

**Mobility** 

. Will likely be mobile in the environment due to its water solubility.

| Component | log Pow |
|-----------|---------|
| Toluene   | 2.7     |

# 13. Disposal considerations

**Waste Disposal Methods** 

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. Chemical waste generators must also consult local, regional, and national hazardous waste regulations to ensure complete and accurate classification.

| Component          | RCRA - U Series Wastes | RCRA - P Series Wastes |
|--------------------|------------------------|------------------------|
| Toluene - 108-88-3 | U220                   | -                      |

# 14. Transport information

DOT

**UN-No** UN1294 **TOLUENE Proper Shipping Name Hazard Class** 3

Ш

Ш

**Packing Group TDG** 

UN-No

UN1294 **Proper Shipping Name TOLUENE Hazard Class** 3

**Packing Group IATA** 

**UN-No** UN1294

**Proper Shipping Name TOLUENE Hazard Class** 3 **Packing Group** Ш

IMDG/IMO

·

UN-No UN1294
Proper Shipping Name TOLUENE
Hazard Class 3

Packing Group

# 15. Regulatory information

All of the components in the product are on the following Inventory lists: X = listed

#### International Inventories

| Component | TSCA | DSL | NDSL | EINECS    | ELINCS | NLP | PICCS | ENCS | AICS | IECSC | KECL |
|-----------|------|-----|------|-----------|--------|-----|-------|------|------|-------|------|
| Toluene   | Х    | Χ   | -    | 203-625-9 | -      |     | Χ     | Χ    | Χ    | Χ     | Х    |

#### Legend:

X - Listed

- E Indicates a substance that is the subject of a Section 5(e) Consent order under TSCA.
- F Indicates a substance that is the subject of a Section 5(f) Rule under TSCA.
- N Indicates a polymeric substance containing no free-radical initiator in its inventory name but is considered to cover the designated polymer made with any free-radical initiator regardless of the amount used.
- P Indicates a commenced PMN substance
- R Indicates a substance that is the subject of a Section 6 risk management rule under TSCA.
- S Indicates a substance that is identified in a proposed or final Significant New Use Rule
- T Indicates a substance that is the subject of a Section 4 test rule under TSCA.
- XU Indicates a substance exempt from reporting under the Inventory Update Rule, i.e. Partial Updating of the TSCA Inventory Data Base Production and Site Reports (40 CFR 710(B).
- Y1 Indicates an exempt polymer that has a number-average molecular weight of 1,000 or greater.
- Y2 Indicates an exempt polymer that is a polyester and is made only from reactants included in a specified list of low concern reactants that comprises one of the eligibility criteria for the exemption rule.

#### **U.S. Federal Regulations**

TSCA 12(b) Not applicable

#### **SARA 313**

| Component | CAS-No   | Weight % | SARA 313 - Threshold<br>Values % |
|-----------|----------|----------|----------------------------------|
| Toluene   | 108-88-3 | >95      | 1.0                              |

# SARA 311/312 Hazard Categories

Acute Health Hazard
Yes
Chronic Health Hazard
Yes
Fire Hazard
Yes
Sudden Release of Pressure Hazard
No
Reactive Hazard
No

**CWA (Clean Water Act)** 

| Component | CWA - Hazardous<br>Substances | CWA - Reportable<br>Quantities | CWA - Toxic Pollutants | CWA - Priority Pollutants |
|-----------|-------------------------------|--------------------------------|------------------------|---------------------------|
| Toluene   | X                             | 1000 lb                        | X                      | X                         |

#### Clean Air Act

| Component | HAPS Data | Class 1 Ozone Depletors | Class 2 Ozone Depletors |
|-----------|-----------|-------------------------|-------------------------|
| Toluene   | Х         |                         | -                       |

**OSHA** Occupational Safety and Health Administration Not applicable

## **CERCLA**

This material, as supplied, contains one or more substances regulated as a hazardous substance under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302)

| Component | Hazardous Substances RQs | CERCLA EHS RQs |
|-----------|--------------------------|----------------|
|           |                          | <u> </u>       |

| Toluene | 1000 lb 1 lb | - |
|---------|--------------|---|
|         |              |   |

#### California Proposition 65

This product contains the following proposition 65 chemicals

| Component | CAS-No   | California Prop. 65 | Prop 65 NSRL | Category      |
|-----------|----------|---------------------|--------------|---------------|
| Toluene   | 108-88-3 | Developmental       | 1            | Developmental |

#### U.S. State Right-to-Know

Regulations

| Component | Massachusetts | New Jersey | Pennsylvania | Illinois | Rhode Island |
|-----------|---------------|------------|--------------|----------|--------------|
| Toluene   | X             | X          | X            | X        | X            |

#### **U.S. Department of Transportation**

Reportable Quantity (RQ): Y
DOT Marine Pollutant N
DOT Severe Marine Pollutant N

#### **U.S. Department of Homeland Security**

This product does not contain any DHS chemicals.

# Other International Regulations

Mexico - Grade Serious risk, Grade 3

| 16. Other information |
|-----------------------|
| <br>                  |

Prepared By Regulatory Affairs

Thermo Fisher Scientific

Email: EMSDS.RA@thermofisher.com

 Creation Date
 11-Jun-2009

 Revision Date
 24-May-2017

 Print Date
 24-May-2017

**Revision Summary** This document has been updated to comply with the US OSHA HazCom 2012 Standard

replacing the current legislation under 29 CFR 1910.1200 to align with the Globally

Harmonized System of Classification and Labeling of Chemicals (GHS).

#### Disclaimer

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text

# **End of SDS**

# Appendix B

Onsite Safety Meeting Forms



# FIELD LEVEL RISK ASSESSMENT - RMS2

| Pro                                                                                                                         | pject:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Project No:                                |                                   |                                   |  |  |
|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------|-----------------------------------|--|--|
| Cli                                                                                                                         | ent:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                            |                                   |                                   |  |  |
| Lo                                                                                                                          | cation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            |                                   |                                   |  |  |
| Ty                                                                                                                          | pe of Work:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                   |                                   |  |  |
| Sta                                                                                                                         | art Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                            |                                   |                                   |  |  |
| Do                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                   |                                   |  |  |
| 1.                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                   |                                   |  |  |
| 2.                                                                                                                          | Site Specific Health and Safety Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (HASP) and/or Emergency Response Pl        | an Reviewed?                      | ☐ Yes ☐ <b>No*</b> ☐ N/A          |  |  |
| 3.                                                                                                                          | Tested two-way communications (ce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ll phone, satellite phone), and security m |                                   |                                   |  |  |
| 4.                                                                                                                          | Attended Prime Contractor or Constr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | uctor Health and Safety meeting on site?   | ?                                 | ☐ Yes ☐ <b>No*</b> ☐ N/A          |  |  |
| 5.                                                                                                                          | Conducted site safety meeting with S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Subcontractors?                            |                                   | ☐ Yes ☐ <b>No*</b> ☐ N/A          |  |  |
| 6.                                                                                                                          | Are there any new or unexpected had If yes, include in the Job Safety Anal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            | ☐ Yes ☐ No                        |                                   |  |  |
| 7.                                                                                                                          | Working alone or remote work?  If yes, Working Alone – Field/Safe W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ork Form must be completed.                |                                   |                                   |  |  |
| Not                                                                                                                         | tifications and Permits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                            |                                   |                                   |  |  |
| 8.                                                                                                                          | Are work permits required for this site<br>If yes, have they been completed and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | ☐ Yes ☐ No<br>☐ Yes ☐ <b>No</b> * |                                   |  |  |
| 9.                                                                                                                          | Are utility locates required for this situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the situation of the si |                                            |                                   | □ Yes □ No<br>□ Yes □ <b>No</b> * |  |  |
| 10. Does the Client require any notification prior to starting the work? <i>If yes, has the notification been provided?</i> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            | □ Yes □ No □ Yes □ <b>No</b> *    |                                   |  |  |
|                                                                                                                             | *0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ontact your Project Manager ir             | nmediately.                       |                                   |  |  |
| Per                                                                                                                         | sonal Protective Equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | List specific equipment as needed.         | Verify type and inspe             | ct condition.                     |  |  |
|                                                                                                                             | Head Protection Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ☐ Hearing Protection:                      | ☐ Gloves ¯                        |                                   |  |  |
|                                                                                                                             | Foot Protection Type:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Respiratory Protection (type):             | □ Water Sa                        | afety Gear:                       |  |  |
| ☐ Eye Protection Type:                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ☐ Fire Retardant Coveralls:                |                                   |                                   |  |  |
|                                                                                                                             | High Visibility Vest:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ☐ Fall Protection (type):                  |                                   |                                   |  |  |
| Tod                                                                                                                         | ols and Equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            | <del></del>                       |                                   |  |  |
|                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                   |                                   |  |  |
|                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                   | _                                 |  |  |
|                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                   |                                   |  |  |

Last Updated: April 2017 Printed copy uncontrolled—current version on StanNet

Page 1 of 3



# FIELD LEVEL RISK ASSESSMENT - RMS2

# Job Safety Analysis (JSA)

| Basic Job Steps | Potential Hazards | Controls to Reduce or Eliminate Hazard |  |  |  |
|-----------------|-------------------|----------------------------------------|--|--|--|
|                 |                   |                                        |  |  |  |
|                 |                   |                                        |  |  |  |
|                 |                   |                                        |  |  |  |
|                 |                   |                                        |  |  |  |
|                 |                   |                                        |  |  |  |
|                 |                   |                                        |  |  |  |

# **Additional Discussion Items/Subcontractor Input**

| Date:                                    | Subcontractor<br>Signature: |  |
|------------------------------------------|-----------------------------|--|
| Team Lead/Field<br>Supervisor Signature: | Subcontractor<br>Signature: |  |
| Signature:                               | Subcontractor<br>Signature: |  |
| Signature:                               |                             |  |



Are you ready to work safely?

Last Updated: April 2017

Printed copy uncontrolled—current version on StanNet

Document Owner: Corporate HSSE Page 2 of 3



| DAILY RENEWAL - RMS2/FIELD-LEVEL RISK ASSESSMENT  Job Number:                                                          |                                                                                                                                        |                                                          |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--|--|--|--|
| Date:                                                                                                                  | Weather:                                                                                                                               |                                                          |  |  |  |  |
| Identified changes to risk and additional controls (e.g.: new crew member, impact on others, inclement weather, etc.): |                                                                                                                                        |                                                          |  |  |  |  |
|                                                                                                                        |                                                                                                                                        |                                                          |  |  |  |  |
| Field Supervisor                                                                                                       | r/Field Crew Leader (Print & Sign):                                                                                                    |                                                          |  |  |  |  |
| Field Crew Signed:                                                                                                     |                                                                                                                                        |                                                          |  |  |  |  |
| Sub-Contractor:                                                                                                        |                                                                                                                                        |                                                          |  |  |  |  |
| Date:                                                                                                                  | Weather:                                                                                                                               |                                                          |  |  |  |  |
|                                                                                                                        |                                                                                                                                        | rew member, impact on others, inclement weather, etc.):  |  |  |  |  |
|                                                                                                                        | . 0                                                                                                                                    |                                                          |  |  |  |  |
| Field Supervisor                                                                                                       | r/Field Crew Leader (Print & Sign):                                                                                                    |                                                          |  |  |  |  |
| Field Crew Signed:                                                                                                     |                                                                                                                                        |                                                          |  |  |  |  |
|                                                                                                                        |                                                                                                                                        |                                                          |  |  |  |  |
| Sub-Contractor:                                                                                                        |                                                                                                                                        |                                                          |  |  |  |  |
| Date:                                                                                                                  | Weather:                                                                                                                               |                                                          |  |  |  |  |
| Identified changes to                                                                                                  | orisk and additional controls (e.g.: new c                                                                                             | crew member, impact on others, inclement weather, etc.): |  |  |  |  |
|                                                                                                                        |                                                                                                                                        |                                                          |  |  |  |  |
| Field Supervisor                                                                                                       | r/Field Crew Leader (Print & Sign):                                                                                                    |                                                          |  |  |  |  |
| Field Crew Signed:                                                                                                     |                                                                                                                                        |                                                          |  |  |  |  |
| Sub-Contractor:                                                                                                        |                                                                                                                                        |                                                          |  |  |  |  |
|                                                                                                                        | NA/ o zálo o m                                                                                                                         |                                                          |  |  |  |  |
|                                                                                                                        | Date: Weather:  Identified changes to risk and additional controls (e.g.: new crew member, impact on others, inclement weather, etc.): |                                                          |  |  |  |  |
| identified changes to                                                                                                  | risk and additional controls (e.g.: new c                                                                                              | rew member, impact on others, inciement weather, etc.):  |  |  |  |  |
| Field Supervisor/Field Crew Leader (Print & Sign):                                                                     |                                                                                                                                        |                                                          |  |  |  |  |
| Field Crew Signed:                                                                                                     |                                                                                                                                        |                                                          |  |  |  |  |
|                                                                                                                        |                                                                                                                                        |                                                          |  |  |  |  |
| Sub-Contractor:                                                                                                        |                                                                                                                                        |                                                          |  |  |  |  |



# Field Level Risk Assessment (RMS2) Seven (7) Day

This form is intended for projects of up to 7 consecutive days on one site. If work will last longer than the days provided on this form, please start a new RMS2 to refresh hazard awareness.

|                                                                                                                                                         | Project Number: |                |                | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |                                                                                                                                                                            |                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| Project Name:                                                                                                                                           |                 |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | ·                                                                                                                                                                          |                |
| Project Location:                                                                                                                                       |                 |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                            |                |
| Description of Work:                                                                                                                                    |                 |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                                                                                                                                                                            |                |
|                                                                                                                                                         | Day 1           | Day 2          | Day 3          | Day 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Day 5          | Day 6                                                                                                                                                                      | Day 7          |
| HASP/RMS1 reviewed with staff on site                                                                                                                   | Yes □           | Yes □          | Yes □          | Yes □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes □          | Yes □                                                                                                                                                                      | Yes □          |
| Review of STOP Work Authority with staff & subs                                                                                                         | Yes □           | Yes □          | Yes □          | Yes □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes □          | Yes □                                                                                                                                                                      | Yes □          |
| Emergency plan adequate and communicated                                                                                                                | Yes □           | Yes □          | Yes □          | Yes □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes □          | Yes □                                                                                                                                                                      | Yes □          |
| Tools and appropriate PPE inspected before use                                                                                                          | Yes □           | Yes □          | Yes □          | Yes □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes □          | Yes □                                                                                                                                                                      | Yes □          |
| Last Minute Risk Assessment<br>process reviewed                                                                                                         | Yes □           | Yes □          | Yes □          | Yes □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes □          | Yes □                                                                                                                                                                      | Yes □          |
| If the answer to any of the                                                                                                                             | he question     | s above is n   | ot "Yes" St    | op work and co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ontact you     | r supervisor.                                                                                                                                                              |                |
|                                                                                                                                                         | Day 1           | Day 2          | Day 3          | Day 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Day 5          | Day 6                                                                                                                                                                      | Day 7          |
| Field crews have certifications on site                                                                                                                 | Yes □<br>N/A □  | Yes □<br>N/A □ | Yes □<br>N/A □ | Yes □<br>N/A □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes □<br>N/A □ | Yes □<br>N/A □                                                                                                                                                             | Yes □<br>N/A □ |
| Utility locates on site and<br>understood                                                                                                               | Yes □<br>N/A □  | Yes □<br>N/A □ | Yes □<br>N/A □ | Yes □<br>N/A □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes □<br>N/A □ | Yes □<br>N/A □                                                                                                                                                             | Yes □<br>N/A □ |
| Working alone plan in place                                                                                                                             | Yes □<br>N/A □  | Yes □<br>N/A □ | Yes □<br>N/A □ | Yes □<br>N/A □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes □<br>N/A □ | Yes □<br>N/A □                                                                                                                                                             | Yes □<br>N/A □ |
| Work permits completed                                                                                                                                  | Yes □<br>N/A □  | Yes □<br>N/A □ | Yes □<br>N/A □ | Yes □<br>N/A □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes □<br>N/A □ | Yes □<br>N/A □                                                                                                                                                             | Yes □<br>N/A □ |
| Client site safety meeting<br>conducted/attended                                                                                                        | Yes □<br>N/A □  | Yes □<br>N/A □ | Yes □<br>N/A □ | Yes □<br>N/A □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes □<br>N/A □ | Yes □<br>N/A □                                                                                                                                                             | Yes □<br>N/A □ |
| Are there additional critical risks,<br>JSA tasks or energy hazards? If<br>yes, update the JSA and<br>communicate to the team                           |                 | Yes □<br>N/A □ | Yes □<br>N/A □ | Yes □<br>N/A □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes □<br>N/A □ | Yes □<br>N/A □                                                                                                                                                             | Yes □<br>N/A □ |
| For work-related symptoms or i medical professional for guidance                                                                                        | ce and trea     |                |                | LAST-MINUTE RISK ASSESSMENT (LMRA)  (1) STOP AND THINK (2) LOOK AROUND Is the work area safe?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                                                                                                                                                                            |                |
| Contact  WorkCare (24-hour service)  1-888-449-7787                                                                                                     |                 |                |                | Will my work endanger others? Will other people/tasks create hazards?  3 ASSESS RISK  Do I clearly understand the task? Will lifting or manual handling be required? Potential for aligo, trigo, or fallial regions of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of t |                | equired?<br>ns?<br>services?                                                                                                                                               |                |
| Workers' Compensation Claims Coordinator (Canada) Ph. 905-944-6854; cell 416-951-5663  Workers' Compensation Claims Coordinator (US) cell: 513-720-3706 |                 |                |                | Are you ready to work safely?  Although the right is the SWP (Safe W. Do I have the right).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | CONTROL RISK  What can I do to control hazards? Do I have the right tools? Is the SWP (Safe Work Practice) ap Do I have the appropriate PPE? Are emergency plans in place? | opropriate?    |
|                                                                                                                                                         |                 |                |                | <b>♦</b> Stantec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                | BEGIN/RESUME WORK  If you're unsure, talk to your supervisor, hsse@stantec.com                                                                                             |                |



|   | JOB SAFETY ANALYSIS (JSA) |                        |          |                    |  |  |  |
|---|---------------------------|------------------------|----------|--------------------|--|--|--|
|   | Basic Job Steps           | Describe Energy Hazard | Controls | Person Responsible |  |  |  |
| 1 |                           |                        |          |                    |  |  |  |
| 2 |                           |                        |          |                    |  |  |  |
| 3 |                           |                        |          |                    |  |  |  |
| 4 |                           |                        |          |                    |  |  |  |
| 5 |                           |                        |          |                    |  |  |  |
| 6 |                           |                        |          |                    |  |  |  |
| 7 |                           |                        |          |                    |  |  |  |
| 8 |                           |                        |          |                    |  |  |  |



| SKS                    | Driving       |                          | Working at Heights                                                                                                  | Traffic Control                    | Wildlife, Insect<br>and Vegetation | Mobile and Heavy                                                                                                                                                                                                                                                      | Environments with water or ice |  |  |  |
|------------------------|---------------|--------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--|--|--|
| AL RIS                 |               | Yes                      | □ Yes                                                                                                               | □ Yes                              | □ Yes                              | □ Yes                                                                                                                                                                                                                                                                 | □ Yes                          |  |  |  |
| CRITICAL RISKS         | Ground Di     | sturbance                | Ergonomic Hazards<br>and Manual<br>Handling                                                                         | Hazardous Materia and Environments | 00.11.01.01                        | rgy Hot Work                                                                                                                                                                                                                                                          | Confined Spaces                |  |  |  |
|                        |               | Yes                      | □ Yes                                                                                                               | □ Yes                              | □ Yes                              | □ Yes                                                                                                                                                                                                                                                                 | ☐ Yes                          |  |  |  |
|                        | A             | (including surfaces,     | Open flame, electric igr<br>phones and friction), ho<br>liquids or gasses, weath<br>humidity levels and snov        | ot or cold<br>ner conditions       | Gravity: Falling                   | ling objects, collapsing obje                                                                                                                                                                                                                                         | ects, slipping, tripping or    |  |  |  |
| ARD                    | Д             | carcinoge<br>corrosives  | : Flammable vapors, re-<br>ns or other toxic compo-<br>s, pyrophorics, combusti<br>atmospheres, fumes, du-<br>gases | unds,<br>bles, oxygen              | bicycles, tra<br>people (liftin    | <b>Motion</b> : Vehicles (car, truck, ATV, ARGO, boat, snowmobile, bicycles, transit, mobile equipment, trailer), workers and other people (lifting, pushing, pulling, carrying, use of hand and power tools, body position, walking), flowing water, sprung branches |                                |  |  |  |
| ENERGY HAZARD          | <b>%</b>      | blood borr<br>noxious pl | II: Animals, bacteria, viruse pathogens (needles), lants, contaminated wat (protesters, concerned)                  | , poisonous and er, human          |                                    | <b>Mechanical</b> : Rotating equipment (augers, pulleys, drive shafts), compressed springs, drive belts, conveyors and motors                                                                                                                                         |                                |  |  |  |
|                        | \{\langle 0\} | Occurring<br>Densomet    | n: Welding, NORMs (Nat<br>Radioactive Material), X<br>ters, Lasers, Microwave<br>we waste and sources               | K rays, Nuclear                    | buried), stat<br>batteries, G      | <b>Electrical</b> : Power and communication lines (overhead and buried), static charge, lightning, energized equipment, wiring, batteries, GFCI cords/plugs, lighting levels, double insulated tools, wet environment                                                 |                                |  |  |  |
|                        | 口"))          |                          | ationary or mobile equip<br>h pressure release, imp<br>cation                                                       |                                    | (ഗ) extinguisher                   | ressure piping, compressed, calibration gas, propane), s, pneumatic and hydraulic                                                                                                                                                                                     | control lines, vessels,        |  |  |  |
|                        |               |                          |                                                                                                                     | Meeting                            | details                            |                                                                                                                                                                                                                                                                       |                                |  |  |  |
| Day 1                  |               |                          |                                                                                                                     |                                    |                                    |                                                                                                                                                                                                                                                                       |                                |  |  |  |
| Date:                  |               | Weat                     | ther:                                                                                                               |                                    |                                    |                                                                                                                                                                                                                                                                       |                                |  |  |  |
| Pre-start time: Notes: |               |                          |                                                                                                                     |                                    |                                    |                                                                                                                                                                                                                                                                       |                                |  |  |  |
| Mid-d                  | lay time:     |                          |                                                                                                                     |                                    |                                    |                                                                                                                                                                                                                                                                       |                                |  |  |  |
| Notes                  |               |                          |                                                                                                                     |                                    |                                    |                                                                                                                                                                                                                                                                       |                                |  |  |  |
| End o                  | of day time:  | :<br>:                   |                                                                                                                     |                                    |                                    |                                                                                                                                                                                                                                                                       |                                |  |  |  |
| Notes                  | Notes:        |                          |                                                                                                                     |                                    |                                    |                                                                                                                                                                                                                                                                       |                                |  |  |  |

Toolbox Leader Signature:

Toolbox Discussion Leader Name:



| Day 2                     |          |                           |  |  |  |  |
|---------------------------|----------|---------------------------|--|--|--|--|
| Date:                     | Weather: |                           |  |  |  |  |
| Pre-start time:           |          |                           |  |  |  |  |
| Notes:                    |          |                           |  |  |  |  |
| Mid-day time:             |          |                           |  |  |  |  |
| Notes:                    |          |                           |  |  |  |  |
| End of day time:          |          |                           |  |  |  |  |
| Notes:                    |          |                           |  |  |  |  |
| Toolbox Discussion Leader | Name:    | Toolbox Leader Signature: |  |  |  |  |
| Day 3                     |          |                           |  |  |  |  |
| Date:                     | Weather: |                           |  |  |  |  |
| Pre-start time:           |          |                           |  |  |  |  |
| Notes:                    |          |                           |  |  |  |  |
| Mid-day time:             |          |                           |  |  |  |  |
| Notes:                    |          |                           |  |  |  |  |
| End of day time:          |          |                           |  |  |  |  |
| Notes:                    |          |                           |  |  |  |  |
| Toolbox Discussion Leader | Name:    | Toolbox Leader Signature: |  |  |  |  |
| Day 4                     |          |                           |  |  |  |  |
| Date: Weath               | ner:     |                           |  |  |  |  |
| Pre-start time:           |          |                           |  |  |  |  |
| Notes:                    |          |                           |  |  |  |  |
| Mid-day time:             |          |                           |  |  |  |  |
| Notes:                    |          |                           |  |  |  |  |
| End of day time:          |          |                           |  |  |  |  |
| Notes:                    |          |                           |  |  |  |  |
| Toolbox Discussion Leader | Name:    | Toolbox Leader Signature: |  |  |  |  |
|                           |          |                           |  |  |  |  |
|                           |          |                           |  |  |  |  |

Document Owner: HSSE June 2019

4 of 7



#### Day 5

| Date:                     | Weather:       |                           |  |  |  |  |
|---------------------------|----------------|---------------------------|--|--|--|--|
| Pre-start time:           | re-start time: |                           |  |  |  |  |
| Notes:                    |                |                           |  |  |  |  |
| Mid-day time:             |                |                           |  |  |  |  |
| Notes:                    |                |                           |  |  |  |  |
| End of day time:          |                |                           |  |  |  |  |
| Notes:                    |                |                           |  |  |  |  |
| Toolbox Discussion Leader | Name:          | Toolbox Leader Signature: |  |  |  |  |
| Day 6                     |                |                           |  |  |  |  |
| Date:                     | Weather:       |                           |  |  |  |  |
| Pre-start time:           |                |                           |  |  |  |  |
| Notes:                    |                |                           |  |  |  |  |
| Mid-day time:             |                |                           |  |  |  |  |
| Notes:                    |                |                           |  |  |  |  |
| End of day time:          |                |                           |  |  |  |  |
| Notes:                    |                |                           |  |  |  |  |
| Toolbox Discussion Leader | Name:          | Toolbox Leader Signature: |  |  |  |  |
| Day 7                     |                |                           |  |  |  |  |
| Date: Weath               | ner:           |                           |  |  |  |  |
| Pre-start time:           |                |                           |  |  |  |  |
| Notes:                    |                |                           |  |  |  |  |
| Mid-day time:             |                |                           |  |  |  |  |
| Notes:                    |                |                           |  |  |  |  |
| End of day time:          |                |                           |  |  |  |  |
| Notes:                    |                |                           |  |  |  |  |
| Toolbox Discussion Leader | Name:          | Toolbox Leader Signature: |  |  |  |  |

Document Owner: HSSE June 2019



#### Review/Sign-off

Print the company that you work for, your name and indicate which fitness level you are under the corresponding time column:

Fit for Duty = F Alternate Plan = AP

|              |                 | Date: |       |       | Date: |       |       | Date: |       |       | Date: |       |       |
|--------------|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Company name | Print your name | Time: | Time: | Time: | Time: | Time: | Time: | Time: | Time: | Time: | Time: | Time: | Time: |
|              |                 | F:    |
|              |                 | AP:   |
|              |                 | F:    |
|              |                 | AP:   |
|              |                 | F:    |
|              |                 | AP:   |
|              |                 | F:    |
|              |                 | AP:   |
|              |                 | F:    |
|              |                 | AP:   |
|              |                 | F:    |
|              |                 | AP:   |
|              |                 | F:    |
|              |                 | AP:   |
|              |                 | F:    |
|              |                 | AP:   |
|              |                 | F:    |
|              |                 | AP:   |
|              |                 | F:    |
|              |                 | AP:   |



#### Review / Sign-off

Print the company that you work for, your name and indicate which fitness level you are under the corresponding time column:

Fit for Duty = F Alternate Plan = AP

|              |                 |       |       |       | Date: | Date: |       |       | Date: |       |  |
|--------------|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--|
| Company name | Print your name | Time: | Time: | Time: | Time: | Time: | Time: | Time: | Time: | Time: |  |
|              |                 | F:    |  |
|              |                 | AP:   |  |
|              |                 | F:    |  |
|              |                 | AP:   |  |
|              |                 | F:    |  |
|              |                 | AP:   |  |
|              |                 | F:    |  |
|              |                 | AP:   |  |
|              |                 | F:    |  |
|              |                 | AP:   |  |
|              |                 | F:    |  |
|              |                 | AP:   |  |
|              |                 | F:    |  |
|              |                 | AP:   |  |
|              |                 | F:    |  |
|              |                 | AP:   |  |
|              |                 | F:    |  |
|              |                 | AP:   |  |
|              |                 | F:    |  |
|              |                 | AP:   |  |

## **Appendix C**

Incident Reporting

## **Incident Reporting Protocol - US**

Health, Safety, Security, & Environment

### IMMEDIATE ACTIONS FOR ALL INJURIES, and SERIOUS or SIGNIFICANT INCIDENTS (see HSSE Program Manual s.14 for definitions)

- 1. Keeping safety in mind, care for injured people (if applicable) and stabilize the scene.
- 2. For life threatening injuries, **immediately contact 911.** Accompany the injured employee to the medical facility whenever possible.
- 3. Call **WorkCare (24-hour service): 1-888-449-7787** for work-related symptoms or injuries, and speak to a medical professional for guidance and treatment options.
- 4. Make voice contact with your supervisor within 1 hour or less of the incident occurring. Leaving a voicemail does not count. If you cannot contact your supervisor, contact the HSSE Manager or HSSE Advisor for your region.
- 5. Supervisors must immediately contact their HSSE Manager or HSSE Advisor by phone to discuss incident severity and determine if further notifications (internal or external) are required.
- 6. When an employee is guided by WorkCare to obtain medical assistance, or the employee requests medical attention for a non-life threatening injury, and after alerting the supervisor; the employee must immediately call Melissa Helton, Stantec's US WC Claims Coordinator at 513-720-3706 for assistance.
- In most cases, WorkCare will provide guidance about which clinic is available and provide directions. Some job sites already have prescribed clinics such as US HealthWorks. Here is a link accessing additional clinic locations: Clinic Search <u>link</u>.
- 8. Additional notifications may be required based on the client requirements.

| Contacts                                                     |                | Landline     | Cell         |
|--------------------------------------------------------------|----------------|--------------|--------------|
| HSSE Manager – US Central                                    | Wes Cline      | 615-885-1144 | 916-281-7459 |
| HSSE Manager – US South                                      | Randy Jones    | 615-499-7161 | 907-707-9305 |
| HSSE Manager – US Northeast                                  | Fred Miller    | 610-235-7315 | 610-235-7315 |
| HSSE Manager – US West                                       | Tony Wong      | 805-250-2860 | 805-234-6227 |
| HSSE Manager - International                                 | Kev Metcalfe   | 780-917-7023 | 780-231-2185 |
| Director HSSE Operations - US                                | Keith Kuhlmann | 740-816-6170 | 740-816-6170 |
| HSSE Senior Vice President                                   | Jon Lessard    | 713-548-5700 | 281-513-5538 |
| Your OSEC or HSSE Advisor Master HSSE Representative Listing |                |              |              |

| Region           | WC Claims Coordinator | Landline     | Cell         |
|------------------|-----------------------|--------------|--------------|
| US (All Regions) | Melissa Helton        | 513-720-3706 | 513-720-3706 |

#### **REPORTING**

- Within 24 hours of the incident, an HSSE Event Report (RMS3) must be completed with as much information as possible and emailed to <a href="https://example.com">hsse@stantec.com</a>.
- Do not delay submitting the report to wait for signatures. Follow-up with signatures when possible.
- Complete the balance of the RMS3 within 5 business days, including signatures. Include information
  and corrective actions determined during the investigation/ Incident Causation Analysis (ICA), as
  coordinated by HSSE Advisor and/or HSSE Manager.
- Other protocols dictated by a client or project agreement, or internal practice may also need to be completed. See HSSE Program Manual s.14 for Incident Notification.





#### **HSSE EVENT REPORT – RMS3**

Incidents involving injury, potential injury, or report of pain, soreness, or discomfort must be reported immediately (within one hour) to a supervisor. Supervisors will then immediately contact their HSSE manager/advisor to discuss incident severity and determine further notification. This form must be completed and submitted within 24 hours of any incident. Do not delay submission waiting for signatures. Email to <a href="https://example.com">hsse@stantec.com</a> or fax unsigned report to (780) 969-2030 and file locally in compliance with the corporate records retention policy and practices once all signatures have been obtained.

This document contains privileged and confidential information prepared at the request of Stantec's Legal Counsel. The contents of this report are restricted to HSSE, HR personnel, Risk Management Representatives, Project Manager and BC Leader, and Stantec's Insurer, Adjuster and Legal Counsel. Information collected will be used solely for the purpose of meeting the requirements of Stantec's HSSE and insurance programs, complying with applicable legislation, and will be used in accordance with any governing privacy legislation. The information collected will be maintained electronically and may be included in required reports.

| SECTION 1: GENERAL INFORMA                                                                                                                   | ATION                                                                                                                                       |                                                                                                                                                                          |                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Office location:                                                                                                                             |                                                                                                                                             | BC number:                                                                                                                                                               |                                                                                                                                 |
| Location of incident:                                                                                                                        |                                                                                                                                             | •                                                                                                                                                                        | ,                                                                                                                               |
| Incident date:                                                                                                                               |                                                                                                                                             | Incident time:                                                                                                                                                           |                                                                                                                                 |
| Incident reported-date:                                                                                                                      |                                                                                                                                             | Incident report                                                                                                                                                          | ed-time:                                                                                                                        |
| Project name:                                                                                                                                |                                                                                                                                             | Project numbe                                                                                                                                                            | r:                                                                                                                              |
| Client name:                                                                                                                                 |                                                                                                                                             |                                                                                                                                                                          | •                                                                                                                               |
| Person in charge:                                                                                                                            |                                                                                                                                             | Person in charg                                                                                                                                                          | ge phone:                                                                                                                       |
|                                                                                                                                              |                                                                                                                                             |                                                                                                                                                                          |                                                                                                                                 |
| SECTION 2: INVOLVED STANTE                                                                                                                   | C EMPLOYEE INFORMATION (if more                                                                                                             | than one identify extras in incident deta                                                                                                                                | ils below)                                                                                                                      |
| Name:                                                                                                                                        |                                                                                                                                             | Phone:                                                                                                                                                                   |                                                                                                                                 |
| Job position:                                                                                                                                |                                                                                                                                             | Group name:                                                                                                                                                              |                                                                                                                                 |
| Time employee began work:                                                                                                                    |                                                                                                                                             | Job experience (in years)                                                                                                                                                |                                                                                                                                 |
| Type of employment:                                                                                                                          | Full Time [ ; Visitor [ ] ; Contro                                                                                                          | act 🗌 ; Volunteer 🔲 ; Seasonal 🗌                                                                                                                                         |                                                                                                                                 |
| Supervisor:                                                                                                                                  |                                                                                                                                             | Supervisor phone:                                                                                                                                                        |                                                                                                                                 |
|                                                                                                                                              |                                                                                                                                             |                                                                                                                                                                          |                                                                                                                                 |
| SECTION 3: INCIDENT DETAILS                                                                                                                  |                                                                                                                                             |                                                                                                                                                                          |                                                                                                                                 |
| Type of Incident:                                                                                                                            | *incident types marked<br>StanNet for a list of <u>Incid</u>                                                                                | with an asterisk, please complete section                                                                                                                                | ns 1, 2 and 3 and sign below. <b>See</b>                                                                                        |
|                                                                                                                                              |                                                                                                                                             |                                                                                                                                                                          |                                                                                                                                 |
|                                                                                                                                              |                                                                                                                                             |                                                                                                                                                                          |                                                                                                                                 |
|                                                                                                                                              |                                                                                                                                             |                                                                                                                                                                          |                                                                                                                                 |
|                                                                                                                                              |                                                                                                                                             |                                                                                                                                                                          |                                                                                                                                 |
| Incident Severity (0.4 Serious)                                                                                                              |                                                                                                                                             | Incident Likelihood: (1.4 Very Likely)                                                                                                                                   |                                                                                                                                 |
| Incident Severity (0-4 Serious)                                                                                                              | :                                                                                                                                           | Incident Likelihood: (1-4 Very Likely)                                                                                                                                   |                                                                                                                                 |
| Incident Severity (0-4 Serious)  *Report Only                                                                                                | ):  ☐ First Aid                                                                                                                             | Incident Likelihood: (1-4 Very Likely)  Motor Vehicle Incident                                                                                                           | 3 <sup>rd</sup> Party Incident (i.e., Public)                                                                                   |
|                                                                                                                                              |                                                                                                                                             |                                                                                                                                                                          | ☐ 3 <sup>rd</sup> Party Incident (i.e., Public)☐ Spill or Release                                                               |
| *Report Only                                                                                                                                 | First Aid                                                                                                                                   | <ul><li>☐ Motor Vehicle Incident</li><li>☐ Property Damage - Vehicle</li></ul>                                                                                           | <u> </u>                                                                                                                        |
| <ul><li>□ *Report Only</li><li>□ *Hazard Identification</li><li>□ *Near Miss</li></ul>                                                       | First Aid Medical Aid – No Lost Time                                                                                                        | <ul><li>☐ Motor Vehicle Incident</li><li>☐ Property Damage - Vehicle</li><li>☐ Property Damage - Other</li></ul>                                                         | ☐ Spill or Release ☐ Utility Strike                                                                                             |
| *Report Only *Hazard Identification *Near Miss *Safety Opportunity                                                                           | ☐ First Aid ☐ Medical Aid – No Lost Time ☐ Restricted Work ☐ Lost Time                                                                      | <ul> <li>Motor Vehicle Incident</li> <li>□ Property Damage - Vehicle</li> <li>□ Property Damage - Other</li> <li>□ Security</li> </ul>                                   | <ul><li>☐ Spill or Release</li><li>☐ Utility Strike</li><li>☐ Fire/Explosion/Flood</li></ul>                                    |
| *Report Only  *Hazard Identification  *Near Miss  *Safety Opportunity  Critical Risk?                                                        | First Aid  Medical Aid – No Lost Time Restricted Work Lost Time Fatality                                                                    | <ul> <li>Motor Vehicle Incident</li> <li>Property Damage - Vehicle</li> <li>Property Damage - Other</li> <li>Security</li> <li>Contractor Recordable Incident</li> </ul> | <ul> <li>□ Spill or Release</li> <li>□ Utility Strike</li> <li>□ Fire/Explosion/Flood</li> <li>□ Stop Work Authority</li> </ul> |
| *Report Only  *Hazard Identification  *Near Miss  *Safety Opportunity  Critical Risk?  High Potential Incident?                              | First Aid Medical Aid – No Lost Time Restricted Work Lost Time Fatality Violence or Harassment                                              | Motor Vehicle Incident Property Damage - Vehicle Property Damage - Other Security Contractor Recordable Incident Non-compliance                                          | ☐ Spill or Release ☐ Utility Strike ☐ Fire/Explosion/Flood ☐ Stop Work Authority ☐ Work Refusal                                 |
| *Report Only  *Hazard Identification  *Near Miss  *Safety Opportunity  Critical Risk?  High Potential Incident?                              | First Aid Medical Aid – No Lost Time Restricted Work Lost Time Fatality Violence or Harassment                                              | <ul> <li>Motor Vehicle Incident</li> <li>Property Damage - Vehicle</li> <li>Property Damage - Other</li> <li>Security</li> <li>Contractor Recordable Incident</li> </ul> | ☐ Spill or Release ☐ Utility Strike ☐ Fire/Explosion/Flood ☐ Stop Work Authority ☐ Work Refusal                                 |
| *Report Only  *Hazard Identification  *Near Miss  *Safety Opportunity  Critical Risk?  High Potential Incident?                              | First Aid Medical Aid – No Lost Time Restricted Work Lost Time Fatality Violence or Harassment                                              | Motor Vehicle Incident Property Damage - Vehicle Property Damage - Other Security Contractor Recordable Incident Non-compliance                                          | ☐ Spill or Release ☐ Utility Strike ☐ Fire/Explosion/Flood ☐ Stop Work Authority ☐ Work Refusal                                 |
| *Report Only  *Hazard Identification  *Near Miss  *Safety Opportunity  Critical Risk?  High Potential Incident?                              | First Aid Medical Aid – No Lost Time Restricted Work Lost Time Fatality Violence or Harassment                                              | Motor Vehicle Incident Property Damage - Vehicle Property Damage - Other Security Contractor Recordable Incident Non-compliance                                          | ☐ Spill or Release ☐ Utility Strike ☐ Fire/Explosion/Flood ☐ Stop Work Authority ☐ Work Refusal                                 |
| *Report Only  *Hazard Identification  *Near Miss  *Safety Opportunity  Critical Risk?  High Potential Incident?  Describe incident in detail | First Aid  Medical Aid – No Lost Time Restricted Work Lost Time Fatality Violence or Harassment  (include any issues related to p           | Motor Vehicle Incident Property Damage - Vehicle Property Damage - Other Security Contractor Recordable Incident Non-compliance                                          | ☐ Spill or Release ☐ Utility Strike ☐ Fire/Explosion/Flood ☐ Stop Work Authority ☐ Work Refusal                                 |
| *Report Only  *Hazard Identification  *Near Miss  *Safety Opportunity  Critical Risk?  High Potential Incident?                              | First Aid  Medical Aid – No Lost Time Restricted Work Lost Time Fatality Violence or Harassment  (include any issues related to p           | Motor Vehicle Incident Property Damage - Vehicle Property Damage - Other Security Contractor Recordable Incident Non-compliance                                          | ☐ Spill or Release ☐ Utility Strike ☐ Fire/Explosion/Flood ☐ Stop Work Authority ☐ Work Refusal                                 |
| *Report Only  *Hazard Identification  *Near Miss  *Safety Opportunity  Critical Risk?  High Potential Incident?  Describe incident in detail | First Aid  Medical Aid – No Lost Time Restricted Work Lost Time Fatality Violence or Harassment  (include any issues related to p           | Motor Vehicle Incident Property Damage - Vehicle Property Damage - Other Security Contractor Recordable Incident Non-compliance                                          | ☐ Spill or Release ☐ Utility Strike ☐ Fire/Explosion/Flood ☐ Stop Work Authority ☐ Work Refusal                                 |
| Report Only Hazard Identification Near Miss Safety Opportunity Critical Risk? High Potential Incident?  Describe incident in detail          | First Aid Medical Aid – No Lost Time Restricted Work Lost Time Fatality Violence or Harassment (include any issues related to points taken: | Motor Vehicle Incident Property Damage - Vehicle Property Damage - Other Security Contractor Recordable Incident Non-compliance                                          | ☐ Spill or Release ☐ Utility Strike ☐ Fire/Explosion/Flood ☐ Stop Work Authority ☐ Work Refusal                                 |
| *Report Only  *Hazard Identification  *Near Miss  *Safety Opportunity  Critical Risk?  High Potential Incident?  Describe incident in detail | First Aid Medical Aid – No Lost Time Restricted Work Lost Time Fatality Violence or Harassment (include any issues related to points taken: | Motor Vehicle Incident Property Damage - Vehicle Property Damage - Other Security Contractor Recordable Incident Non-compliance                                          | ☐ Spill or Release ☐ Utility Strike ☐ Fire/Explosion/Flood ☐ Stop Work Authority ☐ Work Refusal                                 |
| Report Only Hazard Identification Near Miss Safety Opportunity Critical Risk? High Potential Incident?  Describe incident in detail          | First Aid Medical Aid – No Lost Time Restricted Work Lost Time Fatality Violence or Harassment (include any issues related to points taken: | Motor Vehicle Incident Property Damage - Vehicle Property Damage - Other Security Contractor Recordable Incident Non-compliance                                          | ☐ Spill or Release ☐ Utility Strike ☐ Fire/Explosion/Flood ☐ Stop Work Authority ☐ Work Refusal                                 |

Canada East (Atlantic) – Kyle Ferguson (902-240-3847); Canada East (ON) – Jared Memory (647-969-3709);
Canada East (Quebec) – Claudine Tremblay (514-668-4820); Canada Mountain – Shawna Robichaud (587-894-2635);
Canada Prairies – Yvonne Beattie (780-616-8909); International – Kev Metcalfe (780-231-2185); US Northeast – Fred Miller (610-235-7315);
US Central – Wes Cline (916 281-7459); US South – Randy Jones (615 499-7161); US West – Tony Wong (805-234-6227);
Australia & New Zealand – Martin Holliday (+61 409 869 449)

Last Updated: July 2018 Document Owner: HSSE



#### **HSSE EVENT REPORT - RMS3**

| SECTION 4: MEDICAL INFORMATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Name of first aid attendant:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Injury recorded in first aid log?  Yes No N/A                                 |
| Description of first aid or medical treatment administered:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 2 2 2 2                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                               |
| Clinic/hospital sent to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                               |
| Attending physician/paramedic (if known):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                               |
| Area of Injury - Please check all that apply:  Head Teeth Dupper back Left Right Shoulder Dependent Shoulder Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Dependent Depende |                                                                               |
| SECTION 5: PROPERTY OR VEHICLE DAMAGE: STANTEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                               |
| Ownership Details (choose one):  Year, Make, and Model of Vehicle:  Nature of damage:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Personal (employee vehicle)  Vehicle ID # (VIN)  Estimated cost of damage: \$ |
| Description of damaged property:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Destar #                                                                      |
| Attending police officer (if known):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Badge #:                                                                      |
| Copy of police report received Yes No If yes, file num                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nber: (attach copy of police report)                                          |
| Name of owner and contact number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |
| Year, Make, and Model of Vehicle:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | License Plate Number:                                                         |
| Insurer and Policy Number:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                               |
| Injured parties? Yes No I If yes, describe Injuries:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                               |
| Diagram or photographs attached? Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                               |
| WITNESS INFORMATION - #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                               |
| Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Phone Number:                                                                 |
| Witness statement provided? Yes (attached) ☐ No ☐                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |
| WITNESS INFORMATION - #2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                               |
| Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Phone Number:                                                                 |
| Witness statement provided? Yes (attached) ☐ No ☐                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |
| SECTION 6: SPILL OR RELEASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                               |
| Substance:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                               |
| Quantity: Employee(s) expose                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ed via:                                                                       |
| Off-site impacts observed or anticipated? Yes No If                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | yes, describe:                                                                |
| Name of regulatory agencies contacted:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                               |
| Contact name, number, date and time of call:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                               |

Canada East (Atlantic) - Kyle Ferguson (902-240-3847); Canada East (ON) - Jared Memory (647-969-3709); Canada East (Quebec) – Claudine Tremblay (514-668-4820); Canada Mountain – Shawna Robichaud (587-894-2635); Canada Prairies - Yvonne Beattie (780-616-8909); International - Kev Metcalfe (780-231-2185); US Northeast - Fred Miller (610-235-7315); US Central - Wes Cline (916 281-7459); US South - Randy Jones (615 499-7161); US West - Tony Wong (805-234-6227); Australia & New Zealand – Martin Holliday (+61 409 869 449)



#### **HSSE EVENT REPORT - RMS3**

| SEC | SECTION 7: ANALYSIS                                                                                                                                                                                 |                                                                                                                                                                                    |                                  |                                                                                                                                                                                                     |  |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|     |                                                                                                                                                                                                     | DIRECT CAL                                                                                                                                                                         | USES                             |                                                                                                                                                                                                     |  |  |  |
| A.  | ACTIONS TO IMPROVE (check off a                                                                                                                                                                     | ny as necessary)                                                                                                                                                                   |                                  |                                                                                                                                                                                                     |  |  |  |
|     | Operating equipment without authority Lack of warning Did not secure Operating at improper speed Disabling/removing safety devices Using defective/improper equipment Using equipment improperly    | Did not use personal equipment (PPE) Improper loading Improper placement Improper lifting or ha Improper position for Servicing equipment Horseplay Procedure, policy, or followed | t andling a task t in operation  | Hazard or risk not identified Inattention Communication/coordination needs improvement Influence of alcohol or drugs suspected Did not check/monitor Did not react or correct                       |  |  |  |
| В.  | CONDITIONS TO IMPROVE (check of                                                                                                                                                                     | many as necessar                                                                                                                                                                   | ry)                              |                                                                                                                                                                                                     |  |  |  |
|     | Inadequate guards/barriers Improper/inadequate PPE Defective tools or equipment Congested work area Inadequate warning system Fire and explosion hazards Poor housekeeping; disorder Noise exposure | Radiation exposure Temperature extreme Inadequate or exces Inadequate ventilation Presence of harmful environment Instructions/procedu improvement                                 | ss illumination ion materials or | Inadequate information/data Preparation/planning needs improvement Opportunity to improve support/assistance Road conditions Weather conditions Communications need improvement (hardware/software) |  |  |  |
|     |                                                                                                                                                                                                     | ROOT CAU                                                                                                                                                                           | JSES                             |                                                                                                                                                                                                     |  |  |  |
| C.  | PERSONAL FACTORS (check off as r                                                                                                                                                                    | / as necessary)                                                                                                                                                                    |                                  |                                                                                                                                                                                                     |  |  |  |
|     | Physical Capability Physical Stress Mental Stress                                                                                                                                                   | Lack of Skill<br>Lack of Knowledge<br>Improper Motivation                                                                                                                          |                                  | Abuse or Misuse<br>Mental/Psychological Capability                                                                                                                                                  |  |  |  |
| D.  | JOB FACTORS (check off as many o                                                                                                                                                                    | cessary)                                                                                                                                                                           |                                  |                                                                                                                                                                                                     |  |  |  |
|     | Leadership or supervision Engineering Purchasing                                                                                                                                                    | Maintenance (sched<br>preventative)<br>Tools or equipment<br>Work standards                                                                                                        |                                  | Excessive wear and tear Communications Other: Specify                                                                                                                                               |  |  |  |
| SEC | CTION 8: FOLLOW-UP                                                                                                                                                                                  |                                                                                                                                                                                    |                                  |                                                                                                                                                                                                     |  |  |  |
|     | ort-term: Corrective Action                                                                                                                                                                         | Ass                                                                                                                                                                                | signed To Target I               | Date Completion Date                                                                                                                                                                                |  |  |  |
| Lor | ng-term: Corrective Action                                                                                                                                                                          | Ass                                                                                                                                                                                | signed To Target I               | Date Completion Date                                                                                                                                                                                |  |  |  |

Canada East (Atlantic) – Kyle Ferguson (902-240-3847); Canada East (ON) – Jared Memory (647-969-3709);
Canada East (Quebec) – Claudine Tremblay (514-668-4820); Canada Mountain – Shawna Robichaud (587-894-2635);
Canada Prairies – Yvonne Beattie (780-616-8909); International – Kev Metcalfe (780-231-2185); US Northeast – Fred Miller (610-235-7315);
US Central – Wes Cline (916 281-7459); US South - Randy Jones (615 499-7161); US West – Tony Wong (805-234-6227);
Australia & New Zealand – Martin Holliday (+61 409 869 449)



#### **HSSE EVENT REPORT - RMS3**

| REVIEW COMMENTS             |                                    |          |  |  |  |  |
|-----------------------------|------------------------------------|----------|--|--|--|--|
| Involved Employee Commer    | nts:                               |          |  |  |  |  |
|                             |                                    |          |  |  |  |  |
| Signature:                  | Print Name:                        | Date:    |  |  |  |  |
| Job Title:                  | Tim Name.                          | 2010.    |  |  |  |  |
| Supervisor/Project Manager: |                                    |          |  |  |  |  |
|                             |                                    |          |  |  |  |  |
|                             |                                    |          |  |  |  |  |
| Signature:                  | Print Name:                        | Date:    |  |  |  |  |
| Job Title:                  | Tim Name.                          | 2410.    |  |  |  |  |
| HSSE Representative (OSEC/J | H&S Committee/HSSE Manager/HSSE Ad | dvisor): |  |  |  |  |
|                             |                                    |          |  |  |  |  |
|                             |                                    |          |  |  |  |  |
| Signature:                  | Print Name:                        | Date:    |  |  |  |  |
| Job Title:                  |                                    |          |  |  |  |  |
| Management Review: (        | not applicable)                    |          |  |  |  |  |
|                             |                                    |          |  |  |  |  |
| Signature:                  | Print Name:                        | Date:    |  |  |  |  |
| Job Title:                  |                                    |          |  |  |  |  |
| Additional Comments:        |                                    |          |  |  |  |  |
|                             |                                    |          |  |  |  |  |
|                             |                                    |          |  |  |  |  |
|                             |                                    |          |  |  |  |  |
|                             |                                    |          |  |  |  |  |
|                             |                                    |          |  |  |  |  |

Canada East (Atlantic) – Kyle Ferguson (902-240-3847); Canada East (ON) – Jared Memory (647-969-3709);
Canada East (Quebec) – Claudine Tremblay (514-668-4820); Canada Mountain – Shawna Robichaud (587-894-2635);
Canada Prairies – Yvonne Beattie (780-616-8909); International – Kev Metcalfe (780-231-2185); US Northeast – Fred Miller (610-235-7315);
US Central – Wes Cline (916 281-7459); US South - Randy Jones (615 499-7161); US West – Tony Wong (805-234-6227);
Australia & New Zealand – Martin Holliday (+61 409 869 449)

INTERIM REMEDIAL MEASURE WORK PLAN #2 820 LINDEN AVE BCP SITE #828200 820 LINDEN AVENUE PITTSFORD, MONROE COUNTY, NEW YORK

# APPENDIX C Community Air Monitoring Plan



## Appendix D New York State Department of Health Generic Community Air Monitoring Plan

#### Overview

A Community Air Monitoring Plan (CAMP) requires real-time monitoring for volatile organic compounds (VOCs) and particulates (i.e., dust) at the downwind perimeter of each designated work area when certain activities are in progress at contaminated sites. The CAMP is not intended for use in establishing action levels for worker respiratory protection. Rather, its intent is to provide a measure of protection for the downwind community (i.e., off-site receptors including residences and businesses and on-site workers not directly involved with the subject work activities) from potential airborne contaminant releases as a direct result of investigative and remedial work activities. The action levels specified herein require increased monitoring, corrective actions to abate emissions, and/or work shutdown. Additionally, the CAMP helps to confirm that work activities did not spread contamination off-site through the air.

The generic CAMP presented below will be sufficient to cover many, if not most, sites. Specific requirements should be reviewed for each situation in consultation with NYSDOH to ensure proper applicability. In some cases, a separate site-specific CAMP or supplement may be required. Depending upon the nature of contamination, chemical- specific monitoring with appropriately-sensitive methods may be required. Depending upon the proximity of potentially exposed individuals, more stringent monitoring or response levels than those presented below may be required. Special requirements will be necessary for work within 20 feet of potentially exposed individuals or structures and for indoor work with co-located residences or facilities. These requirements should be determined in consultation with NYSDOH.

Reliance on the CAMP should not preclude simple, common-sense measures to keep VOCs, dust, and odors at a minimum around the work areas.

#### Community Air Monitoring Plan

Depending upon the nature of known or potential contaminants at each site, real-time air monitoring for VOCs and/or particulate levels at the perimeter of the exclusion zone or work area will be necessary. Most sites will involve VOC and particulate monitoring; sites known to be contaminated with heavy metals alone may only require particulate monitoring. If radiological contamination is a concern, additional monitoring requirements may be necessary per consultation with appropriate DEC/NYSDOH staff.

**Continuous monitoring** will be required for all <u>ground intrusive</u> activities and during the demolition of contaminated or potentially contaminated structures. Ground intrusive activities include, but are not limited to, soil/waste excavation and handling, test pitting or trenching, and the installation of soil borings or monitoring wells.

**Periodic monitoring** for VOCs will be required during <u>non-intrusive</u> activities such as the collection of soil and sediment samples or the collection of groundwater samples from existing monitoring wells. "Periodic" monitoring during sample collection might reasonably consist of taking a reading upon arrival at a sample location, monitoring while opening a well cap or

Final DER-10 Page 204 of 226

overturning soil, monitoring during well baling/purging, and taking a reading prior to leaving a sample location. In some instances, depending upon the proximity of potentially exposed individuals, continuous monitoring may be required during sampling activities. Examples of such situations include groundwater sampling at wells on the curb of a busy urban street, in the midst of a public park, or adjacent to a school or residence.

#### VOC Monitoring, Response Levels, and Actions

Volatile organic compounds (VOCs) must be monitored at the downwind perimeter of the immediate work area (i.e., the exclusion zone) on a continuous basis or as otherwise specified. Upwind concentrations should be measured at the start of each workday and periodically thereafter to establish background conditions, particularly if wind direction changes. The monitoring work should be performed using equipment appropriate to measure the types of contaminants known or suspected to be present. The equipment should be calibrated at least daily for the contaminant(s) of concern or for an appropriate surrogate. The equipment should be capable of calculating 15-minute running average concentrations, which will be compared to the levels specified below.

- 1. If the ambient air concentration of total organic vapors at the downwind perimeter of the work area or exclusion zone exceeds 5 parts per million (ppm) above background for the 15-minute average, work activities must be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities can resume with continued monitoring.
- 2. If total organic vapor levels at the downwind perimeter of the work area or exclusion zone persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities must be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities can resume provided that the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less but in no case less than 20 feet, is below 5 ppm over background for the 15-minute average.
- 3. If the organic vapor level is above 25 ppm at the perimeter of the work area, activities must be shutdown.
- 4. All 15-minute readings must be recorded and be available for State (DEC and NYSDOH) personnel to review. Instantaneous readings, if any, used for decision purposes should also be recorded.

#### Particulate Monitoring, Response Levels, and Actions

Particulate concentrations should be monitored continuously at the upwind and downwind perimeters of the exclusion zone at temporary particulate monitoring stations. The particulate monitoring should be performed using real-time monitoring equipment capable of measuring particulate matter less than 10 micrometers in size (PM-10) and capable of integrating over a period of 15 minutes (or less) for comparison to the airborne particulate action level. The equipment must be equipped with an audible alarm to indicate exceedance of the action level. In addition, fugitive dust migration should be visually assessed during all work activities.

Final DER-10 Page 205 of 226

- 1. If the downwind PM-10 particulate level is 100 micrograms per cubic meter (mcg/m³) greater than background (upwind perimeter) for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques must be employed. Work may continue with dust suppression techniques provided that downwind PM-10 particulate levels do not exceed 150 mcg/m³ above the upwind level and provided that no visible dust is migrating from the work area.
- 2. If, after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than 150 mcg/m³ above the upwind level, work must be stopped and a re-evaluation of activities initiated. Work can resume provided that dust suppression measures and other controls are successful in reducing the downwind PM-10 particulate concentration to within 150 mcg/m³ of the upwind level and in preventing visible dust migration.
- 3. All readings must be recorded and be available for State (DEC and NYSDOH) and County Health personnel to review.

December 2009

Final DER-10 Page 206 of 226

#### Appendix 1B **Fugitive Dust and Particulate Monitoring**

A program for suppressing fugitive dust and particulate matter monitoring at hazardous waste sites is a responsibility on the remedial party performing the work. These procedures must be incorporated into appropriate intrusive work plans. The following fugitive dust suppression and particulate monitoring program should be employed at sites during construction and other intrusive activities which warrant its use:

- Reasonable fugitive dust suppression techniques must be employed during all site activities which may generate fugitive dust.
- Particulate monitoring must be employed during the handling of waste or contaminated soil or when activities on site may generate fugitive dust from exposed waste or contaminated soil. Remedial activities may also include the excavation, grading, or placement of clean fill. These control measures should not be considered necessary for these activities.
- Particulate monitoring must be performed using real-time particulate monitors and shall monitor particulate matter less than ten microns (PM10) with the following minimum performance standards:
  - (a) Objects to be measured: Dust, mists or aerosols;
  - (b) Measurement Ranges: 0.001 to 400 mg/m3 (1 to 400,000 :ug/m3);
- (c) Precision (2-sigma) at constant temperature: +/- 10 :g/m3 for one second averaging; and +/- 1.5 g/m3 for sixty second averaging;
  - (d) Accuracy: +/- 5% of reading +/- precision (Referred to gravimetric calibration with SAE fine test dust (mmd= 2 to 3:m, g= 2.5, as aerosolized);
    - (e) Resolution: 0.1% of reading or 1g/m3, whichever is larger;
    - (f) Particle Size Range of Maximum Response: 0.1-10;
    - (g) Total Number of Data Points in Memory: 10,000;
- (h) Logged Data: Each data point with average concentration, time/date and data point number
- (i) Run Summary: overall average, maximum concentrations, time/date of maximum, total number of logged points, start time/date, total elapsed time (run duration), STEL concentration and time/date occurrence, averaging (logging) period, calibration factor, and tag number;
- Alarm Averaging Time (user selectable): real-time (1-60 seconds) or STEL (15 minutes), alarms required;
  - (k) Operating Time: 48 hours (fully charged NiCd battery); continuously with charger;
  - (1) Operating Temperature: -10 to 50° C (14 to 122° F);
- (m) Particulate levels will be monitored upwind and immediately downwind at the working site and integrated over a period not to exceed 15 minutes.
- In order to ensure the validity of the fugitive dust measurements performed, there must be appropriate Quality Assurance/Quality Control (QA/QC). It is the responsibility of the remedial party to adequately supplement QA/QC Plans to include the following critical features: periodic instrument calibration, operator training, daily instrument performance (span) checks, and a record keeping plan.
  - The action level will be established at 150 ug/m3 (15 minutes average). While conservative, 5.

this short-term interval will provide a real-time assessment of on-site air quality to assure both health and safety. If particulate levels are detected in excess of 150 ug/m3, the upwind background level must be confirmed immediately. If the working site particulate measurement is greater than 100 ug/m3 above the background level, additional dust suppression techniques must be implemented to reduce the generation of fugitive dust and corrective action taken to protect site personnel and reduce the potential for contaminant migration. Corrective measures may include increasing the level of personal protection for on-site personnel and implementing additional dust suppression techniques (see paragraph 7). Should the action level of 150 ug/m3 continue to be exceeded work must stop and DER must be notified as provided in the site design or remedial work plan. The notification shall include a description of the control measures implemented to prevent further exceedances.

- 6. It must be recognized that the generation of dust from waste or contaminated soil that migrates off-site, has the potential for transporting contaminants off-site. There may be situations when dust is being generated and leaving the site and the monitoring equipment does not measure PM10 at or above the action level. Since this situation has the potential to allow for the migration of contaminants off-site, it is unacceptable. While it is not practical to quantify total suspended particulates on a real-time basis, it is appropriate to rely on visual observation. If dust is observed leaving the working site, additional dust suppression techniques must be employed. Activities that have a high dusting potentialsuch as solidification and treatment involving materials like kiln dust and lime--will require the need for special measures to be considered.
- The following techniques have been shown to be effective for the controlling of the generation and migration of dust during construction activities:
  - (a) Applying water on haul roads:
  - (b) Wetting equipment and excavation faces;
  - (c) Spraying water on buckets during excavation and dumping;
  - (d) Hauling materials in properly tarped or watertight containers;
  - (e) Restricting vehicle speeds to 10 mph;
  - (f) Covering excavated areas and material after excavation activity ceases; and
  - (g) Reducing the excavation size and/or number of excavations.

Experience has shown that the chance of exceeding the 150 ug/m3 action level is remote when the above-mentioned techniques are used. When techniques involving water application are used, care must be taken not to use excess water, which can result in unacceptably wet conditions. Using atomizing sprays will prevent overly wet conditions, conserve water, and provide an effective means of suppressing the fugitive dust.

The evaluation of weather conditions is necessary for proper fugitive dust control. When extreme wind conditions make dust control ineffective, as a last resort remedial actions may need to be suspended. There may be situations that require fugitive dust suppression and particulate monitoring requirements with action levels more stringent than those provided above. Under some circumstances, the contaminant concentration and/or toxicity may require additional monitoring to protect site personnel and the public. Additional integrated sampling and chemical analysis of the dust may also be in order. This must be evaluated when a health and safety plan is developed and when appropriate suppression and monitoring requirements are established for protection of health and the environment.

Final DER-10 Page 208 of 226 May 2010

#### NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 8 6274 East Avon-Lima Road, Avon, NY 14414-9516 P: (585) 226-5353 | F: (585) 226-8139 www.dec.ny.gov

May 21, 2018

Mr. Joseph Lobozzo II Ridgecrest Associates, L.P. 135 Orchard Park Blvd Rochester, NY 14609

Subject: 820 Linden Ave Site (#C828200)

820 Linden Ave, Pittsford, NY 14625

Remedial Investigation Work Plan, October 2017

Dear Mr. Lobozzo II:

The New York State Departments of Environmental Conservation (NYSDEC) and Health (NYSDOH; collectively referred to as the "Departments") have completed the review of the document entitled "Remedial Investigation Work Plan" dated September 2017, certified on October 11, 2017, and prepared by Stantec for the 820 Linden Ave Brownfield Cleanup Program (BCP) site. In accordance with 6 NYCRR Part 375-1.6, the Departments have determined that the Work Plan, with the following modifications, substantially addresses the requirements of the Brownfield Cleanup Program:

- 1. A conceptual site model, as defined in DER-10 Section 3.2.2 will be provided in the RI report in accordance with DER-10.
- Additional subsurface soil samples within the Newport Corporation space (northern building) will be collected to further assess potential impacts to the soil in areas that were not yet investigated. If locations acceptable to the Departments cannot be accessed, the reasons will be documented in the RI report.
- 3. Any revised investigation locations will be approved by the NYSDEC prior to commencing work.
- 4. Section 6.2: Stantec personnel will be onsite during any field activities associated with the RIWP including but not limited to the sewer video survey, geophysical survey, etc. to supervise the activities undertaken in accordance with Part 375-1.6(a)(3).
- 5. The units on Figures 7a and 7b are μg/m<sup>3</sup>.
- 6. Emerging contaminants (1,4-dioxane and PFAS) in groundwater will be sampled where full TAL/TCL sampling is proposed (see attached guidance for additional information).
- 7. If/when completing field work inside the building or tight to the building, the following Community Air Monitoring Plan (CAMP) requirements must be followed:

Special Requirements for Work Within 20 Feet of Potentially Exposed Individuals or Structures



When work areas are within 20 feet of potentially exposed populations or occupied structures, the continuous monitoring locations for VOCs and particulates must reflect the nearest potentially exposed individuals and the location of ventilation system intakes for nearby structures. The use of engineering controls such as vapor/dust barriers, temporary negative-pressure enclosures, or special ventilation devices should be considered to prevent exposures related to the work activities and to control dust and odors. Consideration should be given to implementing the planned activities when potentially exposed populations are at a minimum, such as during weekends or evening hours in non-residential settings.

- If total VOC concentrations opposite the walls of occupied structures or next to intake vents exceed 1 ppm, monitoring should occur within the occupied structure(s). Background readings in the occupied spaces must be taken prior to commencement of the planned work. Any unusual background readings should be discussed with NYSDOH prior to commencement of the work.
- If total particulate concentrations opposite the walls of occupied structures or next to intake vents exceed 150 mcg/m3, work activities should be suspended until controls are implemented and are successful in reducing the total particulate concentration to 150 mcg/m3 or less at the monitoring point.
- Depending upon the nature of contamination and remedial activities, other parameters (e.g., explosivity, oxygen, hydrogen sulfide, carbon monoxide) may also need to be monitored. Response levels and actions should be pre-determined, as necessary, for each site.

Special Requirements for Indoor Work with Co-Located Residences or Facilities Unless a self-contained, negative-pressure enclosure with proper emission controls will encompass the work area, all individuals not directly involved with the planned work must be absent from the room in which the work will occur. Monitoring requirements shall be as stated above under "Special Requirements for Work Within 20 Feet of Potentially Exposed Individuals or Structures" except that in this instance "nearby/occupied structures" would be adjacent occupied rooms. Additionally, the location of all exhaust vents in the room and their discharge points, as well as potential vapor pathways (openings, conduits, etc.) relative to adjoining rooms, should be understood and the monitoring locations established accordingly. In these situations, it is strongly recommended that exhaust fans or other engineering controls be used to create negative air pressure within the work area during remedial activities. Additionally, it is strongly recommended that the planned work be implemented during hours (e.g. weekends or evenings) when building occupancy is at a minimum.

8. An Interim Remedial Measure Work Plan to mitigate known and potential on-site indoor air exceedances associated with soil vapor intrusion will be submitted to the Departments by **June 20, 2018**.

With the understanding that the modified Work Plan is agreed to, the Remedial Investigation Work Plan is hereby approved. By **June 5, 2018** and before field work begins, please attach a copy of this letter to the RIWP and provide copies of the RIWP as follows:

- Danielle Miles (NYSDEC Avon, 1 bound hard copy);
- The document repository at the Pittsford Community Library located at 24 State St. Pittsford, NY 14534 (1 bound hard copy); and,
- Kristin Kulow (NYSDOH Oneonta, electronic file/CD).

We look forward to working with you. Please notify the NYSDEC at least 7 days prior to any field work. If you have questions or concerns on this matter, please contact me at (585) 226-5349 or danielle.miles@dec.ny.gov.

Sincerely,

Danielle Miles, EIT Environmental Engineer

#### Attach:

 Collection of Groundwater Samples for Perfluorooctanoic Acid (PFOA) and Perfluorinated Compounds (PFCs) from Monitoring Wells Sample Protocol, June 2016

Groundwater Sampling for Emerging Contaminants, April 2018

ec w attach: Mike Storonsky, Stantec

Stephanie Reynolds Smith, Stantec Linda Shaw, Knauf Shaw LLP Frank Sowers, NYSDEC Bernette Schilling, NYSDEC Justin Deming, NYSDOH Kristin Kulow, NYSDOH Dusty Tinsley, NYSDEC