NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

Division of Environmental Remediation, Region 8 6274 East Avon-Lima Road, Avon, NY 14414-9516 P: (585) 226-5353 I F: (585) 226-8139 www.dec.ny.gov

December 17, 2020

Mr. Joseph Lobozzo II Ridgecrest Associates, L.P. 135 Orchard Park Blvd. Rochester, NY 14609

Re: 820 Linden Ave Site (#C828200)

820 Linden Ave, Pittsford, NY 14625

IRM Work Plan #2, August 31, 2020

Dear Mr. Lobozzo II;

The New York State Departments of Environmental Conservation (NYSDEC) and Health (NYSDOH; collectively referred to as the Departments) have completed their review of the document entitled "Site Management Plan" (the Work Plan) dated August 31, 2020 and prepared by Stantec Consulting Services, Inc. for the 820 Linden Avenue Brownfield Cleanup Program (BCP) site located in the City of Pittsford, Monroe County. In accordance with 6 NYCRR Part 375-1.6, the Departments have determined that the Work Plan, with the following modifications, substantially addresses the requirements of the Brownfield Cleanup Program:

Section 3.3 and Section 4: Groundwater monitoring to assess the
performance and effectiveness of the remedy will be conducted until
remaining groundwater concentrations are found to be consistently below
ambient water quality standards, the site SCGs, or have become
asymptotic at an acceptable level over an extended period.

Unless otherwise approved by NYSDEC, groundwater monitoring will be conducted prior to the first PRR and every 5th year thereafter. Each groundwater monitoring event will include wells MW-1 and MW-4 which will be analyzed for TCL VOCs by EPA Method 8260. Wells are shown in Attachment 1. Results will be submitted in an electronic data deliverable acceptable to NYSDEC and included in the PRRs. Category B deliverables and DUSRs are not required for routine monitoring events.

If biofouling or silt accumulation occurs in the monitoring wells, the wells will be physically agitated/surged and redeveloped. Additionally, monitoring

wells will be properly decommissioned and replaced, if an event renders the wells unusable.

Repairs and/or replacement of wells in the monitoring well network will be performed based on assessments of structural integrity and overall performance.

The NYSDEC will be notified prior to any repair or decommissioning of any monitoring well for the purpose of replacement, and the repair or decommissioning and replacement process will be documented in the subsequent Periodic Review Report. Well decommissioning without replacement will be done only with the prior approval of the NYSDEC. Well abandonment will be performed in accordance with NYSDEC's guidance entitled "CP-43: Groundwater Monitoring Well Decommissioning Procedures." Monitoring wells that are decommissioned because they have been rendered unusable will be replaced in kind in the nearest available location, unless otherwise approved by the NYSDEC.

The sampling frequency may only be modified with the approval of the NYSDEC. This SMP will be modified to reflect changes in sampling plans approved by the NYSDEC.

In the event that monitoring data indicates that groundwater monitoring may no longer be required, a proposal to discontinue the system will be submitted by the remedial party. Final monitoring events will include Category B deliverables and DUSRs. Monitoring will continue until permission to discontinue is granted in writing by the NYSDEC. If groundwater contaminant levels increase to a level that is not acceptable to the NYSDEC, additional source removal, monitoring, treatment and/or control measures will be evaluated.

With the understanding that these modifications are agreed to, the Work Plan is hereby approved. If you choose not to accept these modifications, you are required to notify this office within 15 days after receipt of this letter and prior to the Certificate of Completion being issued. In this event, I suggest a meeting be scheduled to discuss your concerns prior to the end of this period.

Within 30 days of receipt of this letter, please attach a copy of this letter to the Work Plan and distribute the approved Work Plan as follows:

- Tasha Mumbrue (1 hard copy with an original signature);
- Kristen Kulow (NYSDOH, electronic file/CD)
- The document repository at the Pittsford Community Library, Pittsford, NY 14534 (1 bound hard copy).

If you have questions or concerns, please contact me at (585) 226-5459 or tasha.mumbrue@dec.ny.gov.

Sincerely,

Tasha Mumbrue Geologist Trainee

Attach:

Monitoring Well Locations

ec: Mike Storonsky, Stantec
Stephanie Reynolds Smith, Stantec
Dwight Harrienger, Stantec
Linda Shaw, Knauf Shaw LLP
Justin Deming, NYSDOH
Kristin Kulow, NYSDOH
Dusty Tinsley, NYSDEC
Mike Cruden, NYSDEC
Dave Pratt, NYSDEC
Frank Sowers, NYSDEC

Stantec

Legend
Monitoring Well Gauging Locations and Calculated
Acroundwater Elevation (note: October 2018 upper,
January 2019 lower)

Groundwater Elevation Contour (ff AMSL) - October 1, 2018 Groundwater Elevation Contour (ft AMSL) -January 23, 2019

Approximate Inferred Direction of Groundwater Flow

Roof Drain Outfall Locations

4 Jarl Extrusions Monitoring Well

Casile

Building Tenant Spaces

Signature Spaces

NYSDEC Monitoring Well Locations

820 Linden Ave Site BCP Site #C828200 Site Management Plan

3a Sa

RI Groundwater Elevation Contour Map (October 2018 and January 2019)

820 Linden Ave Site

MONROE COUNTY PITTSFORD, NEW YORK

DRAFT SITE MANAGEMENT PLAN

NYSDEC Site Number: C828200

Prepared for:

Ridgecrest Associates, L.P. 125 Orchard Park BV Rochester, NY 14609

Prepared by:

Stantec Consulting Services, Inc.
61 Commercial Street, Suite 100
Rochester, NY 14614

Revisions to Final Approved Site Management Plan:

Revision No.	Date Submitted	Summary of Revision	NYSDEC Approval Date

AUGUST 2020

CERTIFICATION STATEMENT

I, Kevin Ignaszak, certify that I am currently a NYS registered professional engineer and that this Site Management Plan was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

8/31/2020

Table of Contents

EXE	CUTIVE S	SUMMARY	IV
ABB	REVIATIO	ONS	VI
1.0	INTRO	DUCTION	1.1
1.1		AL	
1.2		ONS	
1.3		CATIONS	
2.0	SUMM	ARY OF PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIONS	2.5
2.1	SITE LO	DCATION AND DESCRIPTION	2.5
2.2	PHYSIC	CAL SETTING	2.5
	2.2.1	Land Use	2.5
	2.2.2	Geology	2.7
	2.2.3	Hydrogeology	2.8
2.3	INVEST	TIGATION AND REMEDIAL HISTORY	2.9
	2.3.1	Overview of Investigation History	2.9
	2.3.2	Overview of Interim Remedial Measures	2.22
2.4	REMED	VIAL ACTION OBJECTIVES	2.24
	2.4.1	Groundwater	2.24
	2.4.2	Soil	2.25
	2.4.3	Soil Vapor	2.25
2.5	REMAI	NING CONTAMINATION	2.25
	2.5.1	Groundwater	2.25
	2.5.2	Soil	2.26
	2.5.3	Soil Vapor	2.30
3.0	INSTIT	UTIONAL AND ENGINEERING CONTROL PLAN	3.31
3.1	GENER	AL	3.31
3.2	INSTIT	UTIONAL CONTROLS	3.31
3.3	ENGINI	EERING CONTROLS	3.33
	3.3.1	Cover System	3.33
	3.3.2	Sub-Slab Depressurization System (SSDS)	3.33
	3.3.3	Criteria for Completion of Remediation/Termination of Remedial Systems	3.35
4.0	MONIT	ORING AND SAMPLING PLAN	4.36
4.1	GENER		
4.2	SITE-W	IDE INSPECTION	4.36
4.3	TREAT	MENT SYSTEM MONITORING AND SAMPLING	4.38
	4.3.1	Remedial System Monitoring	4.38
	4.3.2	Remedial System Sampling	
5.0		TION AND MONITORING PLAN	
5.1	GENER	AL	5.39

i

5.2	SSI	OS PERFORMANCE CRITERIA	5.39
5.3	OP	ERATION AND MAINTENANCE OF THE SSDS	5.40
	5.3.	1 System Start-Up and Shut-Down	5.40
	5.3.	2 Routine System Operation and Maintenance	5.41
	5.3.	· ·	
6.0	PE	RIODIC ASSESSMENTS/EVALUATIONS	6.45
6.1	CL	IMATE CHANGE VULNERABILITY ASSESSMENT	6.45
		EEN REMEDIATION EVALUATION	6.46
	6.2.	1 Timing of Green Remediation Evaluations	6.46
	6.2.		
	6.2.	3 Building Operations	6.47
	6.2.	4 Frequency of System Checks, Sampling, and Other Periodic Activities	6.47
	6.2.	5 Metrics and Reporting	6.47
7.0	RE	PORTING REQUIREMENTS	7.48
7.1	SIT	E MANAGEMENT REPORTS	7.48
7.2	PEI	RIODIC REVIEW REPORT	7.50
	7.2.	1 Certification of Institutional and Engineering Controls	7.51
7.3	CO	RRECTIVE MEASURES WORK PLAN	
8.0	RE	FERENCES	8.54
LIST (OF T	CABLES	
Table	1	Notifications [in-text]	
Table	2	Water Level Summary	
Table	3a	Comparison of Sub-Slab Vapor and Indoor Air Results to NYSDOH Guidance Matrices (Newport)	
Table	3h	Comparison of Sub-Slab Vapor and Indoor Air Results to NYSDOH Guidance	
Table	50	Matrices (JML)	
Table	4	Summary of Analytical Results for RI Soil Samples	
Table	5	Summary of Groundwater Analytical Results	
Table	6	Summary of Analytical Results for Southeast Septic System (RAOC-1) Investig	ation
		Soil Samples	
Table	7	Summary of Analytical Results for Southwest Septic System (RAOC-2)	
		Confirmatory Soil Samples	
Table	R	Summary of Analytical Results for Northwest Septic System (RAOC-3) Investig	ration
1 4010	O	Soil Samples	5411011
Table	9	Summary of Analytical Results for Debris Pile (RAOC-4) Samples	
Table		Summary of Analytical Results for Eastern Surface Soil Impacts (RAOC-5)	
		• • •	
		Summary of Solid Sample Results for Septic System Waste Characterization	4 .
1 able	H	Summary of Liquid Sample Results for Characterization of Septic System Conte	ents

LIST OF FIGURES

Figure 1	Site Location Map		
Figure 2	Site Layout Map		
Figure 3a	RI Groundwater Elevation Contour Map (October 2018 and January 2019)		
Figure 3b	IRM2 Groundwater Elevation Contour Map (July 2020)		
Figure 4	Investigation and Sample Locations		
Figure 5a	Investigation and Confirmatory Sample Locations: Southeast Septic System		
	(RAOC-1, abandoned-in-place)		
Figure 5b	Investigation and Confirmatory Sample Locations: Southwest Septic System		
	(RAOC-2, removed)		
Figure 5c	Investigation and Confirmatory Sample Locations: Northwest Septic System		
	(RAOC-3, abandoned-in-place)		
Figure 6	Exceedances of Standards and Guidance Values in Groundwater Samples		
Figure 7a	Remaining Soil Sample Exceedances of Commercial/Industrial Use SCOs		
Figure 7b	Remaining Soil Sample Exceedances of POGW SCOs		
Figure 7c	Remaining Soil Sample Exceedances of Unrestricted Use SCOs		

LIST OF APPENDICES

Figure 8 Area of Soil Vapor Intrusion Concern Figure 9 Engineering Controls Layout Map

Appendix A	Environmental Easement
Appendix B	List of Site Contacts
Appendix C	Soil Boring and Monitoring Well Construction Logs
Appendix D	Excavation Work Plan
Appendix E	Health and Safety Plan
Appendix F	Community Air Monitoring Plan
Appendix G	SSDS OM&M Manual
Appendix H	Quality Assurance Project Plan
Appendix I	Site Management Forms

Executive Summary

The following provides a brief summary of the controls implemented for the Site, as well as the inspections, monitoring, maintenance and reporting activities required by this Site Management Plan:

Site Identification:	820 Linden Avenue Site #C828200, Pittsford, NY
Institutional Controls:	1. The property may be used for Commercial or Industrial use.
	2. All ECs must be operated and maintained as specified in this SMP.
	3. All ECs must be inspected at a frequency and in a manner defined in the SMP.
	4. The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Monroe County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department.
	5. Groundwater and other environmental or public health monitoring must be performed as defined in this SMP.
	6. Data and information pertinent to site management must be reported at the frequency and in a manner as defined in this SMP.
	7. All future activities that will disturb remaining contaminated material must be conducted in accordance with this SMP.
	8. Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in this SMP.
	9. Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in this SMP.
	10. Access to the Site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement.

Institutional Controls (cont'd):	11. The potential for vapor intrusion must be evaluated for any future buildings developed within the Site property boundary, and any potential impacts that are identified must be monitored or mitigated.	
	12. Vegetable gardens and farming on the Site are prohibited.	
Engineering Controls:	1. Cover System	
	2. Sub-Slab Depressurization System (SSDS)	
Inspections:		Frequency
1. Site/Cover System Inspection		Annually
Maintenance:		Frequency
1. SSDS operations, maintenance, and monitoring		Monthly
Reporting:		Frequency
1. Periodic Review Report		Annually

Further descriptions of the above requirements are provided in detail in the latter sections of this Site Management Plan.

Abbreviations

AAR Alternative Analysis Report

AOC Area of Concern

ASP **Analytical Services Protocol** Brownfield Cleanup Agreement BCA Brownfield Cleanup Program **BCP CAMP** Community Air Monitoring Plan **Construction Completion Report CCR** Code of Federal Regulation CFR

cis-1,2-DCE cis-1,2-dichloroethene cm/s centimeters per second COC Contaminant of Concern CP **Commissioner Policy**

Controlled Recognized Environmental Condition **CREC**

CVOC Chlorinated Volatile Organic Compound

1.1-dichloroethene 1.1-DCE

Division of Environmental Remediation DER

Data Usability Summary Report DUSR

DVS Data Validation Services EC **Engineering Control**

ECL **Environmental Conservation Law**

Environmental Laboratory Approval Program **ELAP**

ERM Environmental Resources Management

EWP Excavation Work Plan

FEMA Federal Emergency Management Agency

feet below ground surface ft bgs Ground Penetrating Radar GPR GZA GZA GeoEnvironmental, Inc.

Health and Safety Plan **HASP Institutional Control** IC **IRM**

Interim Remedial Measure

JML JML Optical

Leaking Underground Storage Tank LUST MS/MSD Matrix Spike/Matrix Spike Duplicates

New York State **NYS**

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health **NYCRR** New York Codes, Rules and Regulations

O'Brien and Gere **OBG**

OM&M Operation, Maintenance and Monitoring

PCE Tetrachloroethene

PMP Pressure Monitoring Points POGW Protection of Groundwater

ppb parts per billion

PRR Periodic Review Report

PSG passive soil gas

QA/QC Quality Assurance/Quality Control
QAPP Quality Assurance Project Plan
RAO Remedial Action Objective
RAOC Remedial Area of Concern
RI Remedial Investigation

RIR Remedial Investigation Report
RIWP Remedial Investigation Work Plan
SCG Standards, Criteria and Guidance

SCO Soil Cleanup Objective

SGV Standards and Guidance Values

SMP Site Management Plan

SPDES State Pollutant Discharge Elimination System

SRI Supplemental Remedial Investigation SSDS Sub-slab Depressurization System

SVI Soil Vapor Intrusion

SVOC Semi-Volatile Organic Compound

1,1,1-TCA1,1,1-trichloroethaneTALTarget Analyte ListTCETrichloroetheneTCLTarget Compound List

TestAmerica Eurofins TestAmerica Laboratories, Inc.
TOGS Technical and Operational Guidance Series

μg/ft² micrograms per square foot μg/kg micrograms per kilogram μg/L micrograms per liter

μg/m³ micrograms per cubic meter

USEPA United States Environmental Protection Agency

UU Unrestricted Use

VOC Volatile Organic Compound

WP Work Plan

Introduction

1.0 INTRODUCTION

1.1 General

This Site Management Plan (SMP) is a required element of the remedial program for the 820 Linden Ave Site located in Pittsford, New York (hereinafter referred to as the "Site"). See Figure 1. The Site is currently in the New York State (NYS) Brownfield Cleanup Program (BCP) Site No. C828200 which is administered by New York State Department of Environmental Conservation (NYSDEC).

Ridgecrest Associates, L.P. (Ridgecrest) entered into a Brownfield Cleanup Agreement (BCA) on April 24, 2018 with the NYSDEC to remediate the Site. A figure showing the Site location and boundaries of this Site is provided in Figure 2. The boundaries of the Site are more fully described in the metes and bounds site description that is part of the Environmental Easement provided in Appendix A.

After completion of the remedial work, some contamination was left at this Site, which is hereafter referred to as "remaining contamination". Institutional and Engineering Controls (ICs and ECs) have been incorporated into the Site remedy to control exposure to remaining contamination to ensure protection of public health and the environment. An Environmental Easement granted to the NYSDEC, and recorded with the Monroe County Clerk, requires compliance with this SMP and all ECs and ICs placed on the Site.

This SMP was prepared to manage remaining contamination at the Site until the Environmental Easement is extinguished in accordance with Environmental Conservation Law (ECL) Article 71, Title 36. This plan has been approved by the NYSDEC, and compliance with this plan is required by the grantor of the Environmental Easement and the grantor's successors and assigns. This SMP may only be revised with the approval of the NYSDEC.

It is important to note that:

Introduction

- This SMP details the Site-specific implementation procedures that are required by the Environmental Easement. Failure to properly implement the SMP is a violation of the Environmental Easement, which is grounds for revocation of the Certificate of Completion;
- Failure to comply with this SMP is also a violation of ECL, 6NYCRR Part 375 and the BCA (Site #C828200) for the Site, and thereby subject to applicable penalties.

All reports associated with the Site can be viewed by contacting the NYSDEC or its successor agency managing environmental issues in NYS. A list of contacts for persons involved with the Site is provided in Appendix B of this SMP.

This SMP was prepared by Stantec Consulting Services, Inc. (Stantec), on behalf of Ridgecrest, in accordance with the requirements of the NYSDEC's Division of Environmental Remediation (DER)-10 ("Technical Guidance for Site Investigation and Remediation"), dated May 3, 2010 (NYSDEC, 2010a), and the guidelines provided by the NYSDEC. This SMP addresses the means for implementing the ICs and/or ECs that are required by the Environmental Easement for the Site.

The current owner, and all future owners, are required to make arrangements with any existing tenants to implement this SMP and perform required operations and maintenance work.

1.2 Revisions

Revisions to this plan will be proposed in writing to the NYSDEC's project manager. Revisions will be necessary upon, but not limited to, the following occurring: a change in media monitoring requirements, upgrades to or shut-down of a remedial system, post-remedial removal of contaminated sediment or soil, or other significant change to the Site conditions. In accordance with the Environmental Easement for the Site, the NYSDEC will provide a notice of any approved changes to the SMP, and append these notices to the SMP that is retained in its files.

Introduction

1.3 Notifications

Notifications will be submitted by the property owner to the NYSDEC, as needed, in accordance with NYSDEC's DER -10 for the following reasons:

- 60-day advance notice of any proposed changes in Site use that are required under the terms of the BCA, 6NYCRR Part 375 and/or ECL.
- 7-day advance notice of any field activity associated with the remedial program.
- 15-day advance notice of any proposed ground-intrusive activity pursuant to the Excavation Work Plan (EWP).
- Notice within 48-hours of any damage or defect to the foundation, structures or EC that reduces or has the potential to reduce the effectiveness of an EC, and likewise, any action to be taken to mitigate the damage or defect.
- Verbal notice by noon of the following day of any emergency, such as a fire; flood; or earthquake that reduces or has the potential to reduce the effectiveness of ECs in place at the site, with written confirmation within 7 days that includes a summary of actions taken, or to be taken, and the potential impact to the environment and the public.
- Follow-up status reports on actions taken to respond to any emergency event requiring ongoing responsive action submitted to the NYSDEC within 45 days describing and documenting actions taken to restore the effectiveness of the ECs.

Any change in the ownership of the Site or the responsibility for implementing this SMP will include the following notifications:

- At least 60 days prior to the change, the NYSDEC will be notified in writing of the proposed change. This will include a certification that the prospective purchaser/Remedial Party has been provided with a copy of the BCA, and all approved work plans and reports, including this SMP.
- Within 15 days after the transfer of all or part of the site, the new owner's name, contact representative, and contact information will be confirmed in writing to the NYSDEC.

Introduction

Table 1 below includes contact information for the above notification(s). The information on this table will be updated as necessary to provide accurate contact information. A full listing of Site-related contact information is provided in Appendix B.

Table 1: Notifications*

Name	Contact Information
Tasha Mumbrue,	e-mail: tasha.mumbrue@dec.ny.gov
NYSDEC Project Manager	phone: (585) 226-5459
David Pratt,	e-mail: david.pratt@dec.ny.gov
NYSDEC Regional HW Engineer	phone: (585) 226-5315
NYSDEC Site Control	e-mail: derweb@gw.dec.state.ny.us

^{*} Note: Notifications are subject to change and will be updated as necessary.

Summary of Previous Investigations and Remedial Actions

2.0 SUMMARY OF PREVIOUS INVESTIGATIONS AND REMEDIAL ACTIONS

2.1 Site Location and Description

The Site is located in the Town of Pittsford, Monroe County, New York at the address 820 Linden Avenue, and is identified as Parcel Identification Number 138.15-1-9.11 (see Figure 2). The owner of the Site parcel at the time of issuance of this SMP is Ridgecrest Associates, L.P. (Ridgecrest).

The Site parcel is approximately 7.97 acres and is bounded as follows:

- To the north by undeveloped wooded land, and a cell tower facility near the northeast corner of the Site boundary;
- To the east by commercial businesses and a fitness and training facility;
- To the south by Linden Avenue, beyond which is undeveloped land and CSXT/Amtrak freight and passenger railroad lines; and
- To the west by a commercial business and undeveloped land.

The boundaries of the Site are more fully described in the Environmental Easement and attached easement survey map (Appendix A).

2.2 Physical Setting

2.2.1 Land Use

The Site consists of an approximate 7.97-acre, L-shaped property improved with an approximate 108,400 square foot, L-shaped, one-story slab-on-grade building (Figure 2). The southern tenant space in this building is approximately 70,200 square feet and is currently occupied by JML Optical (JML). The northern tenant space is approximately 38,200 square feet and is currently occupied by Newport Corporation (Newport). Note that throughout this document, the tenant spaces will be referred to on the basis of direction (southern vs. northern tenant space) and/or the occupant at the time this SMP was prepared (JML vs. Newport tenant space). Either way, for the clarity of this SMP and consistency with prior documents prepared for this Site, the southern

Summary of Previous Investigations and Remedial Actions

tenant space is synonymous with the JML tenant space, and the northern tenant space is synonymous with the Newport tenant space.

Based on building permit records, the building was reportedly constructed in six phases (see Figure 2). The first building permit was issued in 1954, with subsequent additions permitted for the rear or west side of the building in 1956, 1958, and 1959. A large addition immediately north of the original building was permitted in 1966. Each of the first five construction phases now comprise the current JML tenant space. The final construction phase, which now comprises the Newport tenant space, was permitted in 1967.

The remainder of the Site is a mixture of paved parking lots and open, mowed-lawn areas. Mature trees and underlying shrub/grass vegetation line portions of the property boundary on the north side. A drainage ditch that runs along the western property boundary collects stormwater drainage from two roof drain outfalls and pitches to the north.

Historical records indicate that the Site's manufacturing building has been occupied by optical industry-related businesses since the initial portion of the southern building was first constructed in 1954. A detailed list of the former and current owners and operators appears in the BCP Application. Some of these include: TKM Electric Corp, EJ Del Monte Corporation, Bausch + Lomb, Inc., Milton Roy Company, Spectronics Instruments, Inc., Thermo Spectronic, Inc., Spectra-Physics Rochester, Inc, Thermo Electron Corporation, Ridgecrest Associates, Newport Corporation, and JML Optical Industries. Pertinent historical records for properties adjacent to the Site are described in the 2017 Phase I Environmental Site Assessment (ESA; Stantec, 2017a).

Land use at the Site, and surrounding area, is predominantly industrial and commercial. The Site is currently occupied by two optical manufacturing facilities: JML (southern tenant space) manufactures precision optical components for commercial, industrial, and military applications. Newport (northern tenant space) manufactures diffraction gratings for spectroscopic, telecommunications, and laser applications. The intended future use of the property is not anticipated to change. The Site is anticipated to remain industrial; however, in order to keep the

Summary of Previous Investigations and Remedial Actions

use of the Site flexible, the remediation implemented also allows for future commercial uses in any on-site buildings.

Pertinent historical records for properties adjacent to the Site are described in the 2017 Phase I ESA (Stantec, 2017a).

Potable water is supplied to the Site and surrounding area by the Monroe County Water Authority. Groundwater is not used as a drinking water supply in the immediate vicinity of the Site.

2.2.2 Geology

The general subsurface profile observed across the Site consists of the following deposits, in order of increasing depth:

- **Surface cover** of topsoil/grass, asphalt, or bare non-impacted (except by iron, which is naturally occurring) soil/detritus in the vegetated areas.
- **Fill materials** (where present) generally consisting of sand and gravel, with variable silt and clay components, ranging from 0-9.5 feet below ground surface (ft bgs). Fill materials and re-worked native soils were generally encountered in assumed previous work areas including directly beneath the slab, beneath the parking lot, and where utility construction occurred (i.e. sewer and septic system installation areas).
- Native [outwash] sand deposited as part of a complex series of glaciolacustrine deposits that underlie this portion of Monroe County, along the Irondequoit Creek Valley and environs (NYS Geologic Survey, 1986; USGS, 1985). The native soils are primarily comprised of fine to coarse sand and silty fine sand, with occasional and minor percentages of clay and gravel. The sand aquifer is the primary water-bearing zone encountered on the Site. However, lenses of variably saturated clay and silt/clay ranging from 1 to 15 ft thick were encountered in shallow subsurface soil above the deep groundwater zone water table on the eastern and southern portions of the Site. While this is indicative of a perched groundwater zone, soil boring observations indicate that perched groundwater is not laterally contiguous across the Site.
- **Bedrock** was not encountered during Stantec's investigations (Limited Phase II ESA; Remedial Investigation; and Supplemental Remedial Investigation), and the maximum test boring depth extended to 72 ft bgs. Based on the Geologic Map of New York (NYS Geologic Survey, 1970; Finger Lakes Sheet), the Site is underlain by the Upper Silurian

Summary of Previous Investigations and Remedial Actions

Penfield Dolostone of the Lockport Group. It is estimated that the depth to bedrock is approximately 110-120 ft bgs based on findings from a nearby investigation at Sigismondi Landfill (Site #C828011) as posted on the NYSDEC Environmental Site Remediation Database

(https://www.dec.ny.gov/cfmx/extapps/derexternal/haz/details.cfm).

Soil boring logs are provided in Appendix C.

2.2.3 Hydrogeology

Groundwater levels in Site monitoring wells range from approximately 41 to 62 ft bgs. Gauging data collected during the Remedial Investigation (RI) and Interim Remedial Measure #2 (IRM2) indicate the water table typically ranges from approximately 355 to 380 ft AMSL. The inferred groundwater flow direction is to the north/northeast towards Irondequoit Creek.

During the RI/IRM2 gauging events, and when checked periodically during the RI, shallow monitoring well MW-104S was found to be dry. The shallow, perched groundwater zone, where present on-site, appears to be laterally discontinuous and is not expected to be a significant water-bearing unit based on Site observations.

Slug tests were performed during the RI at the following monitoring wells: B/MW-102, B/MW-103, B/MW-104, and B/MW-105. Hydraulic conductivities for the wells ranged from $1.1x10^{-2}$ centimeters per second (cm/s) to $3.4x10^{-2}$ cm/s. The RI wells are screened across the water table in fine to coarse sand with little fines. Estimated hydraulic conductivity for the RI wells agrees with the ranges generally observed for silty sand and clean sand (Freeze and Cherry, 1979), which is the primary native lithology observed during the subsurface investigations. The relatively homogeneous overburden observed during the RI is reflected in the agreement of hydraulic conductivity estimates Site-wide.

Groundwater contour maps are shown in Figures 3a and 3b. Groundwater elevation data is provided in Table 2. Groundwater monitoring well construction logs are provided in Appendix C.

Summary of Previous Investigations and Remedial Actions

2.3 Investigation and Remedial History

The following narrative provides an investigation and remedial history timeline and a brief summary of the available project records to document key investigative and remedial milestones for the Site. Full titles for each of the reports referenced below are provided in Section 8.0 - References.

2.3.1 <u>Overview of Investigation History</u>

2.3.1.1 1995 Site Assessment and Operations Audit (GZA)

A Phase I Environmental Site Assessment (ESA) and Operations Audit was completed by GZA GeoEnvironmental, Inc. (GZA) for Life Sciences International, PLC c/o Sheehan, Phinney, Bass and Green, in 1995 (GZA, 1995). The following is a summary of findings from the 1995 Phase I ESA:

- The report identified Recognized Environmental Conditions (RECs) related to on-site usage of hazardous materials with waste discharge to on-site septic systems, a former outdoor storage drum area, and potential fill in the raised elevation area on the northeast portion of the property.
- The report also identified a REC related to a database listing for a potentially upgradient, off-site, leaking underground storage tank (LUST) site. (Note that the LUST site was not listed in the 2017 Phase I database report reviewed as part of Stantec's 2017 Phase I ESA summarized in Section 2.3.1.6.). According to the NYSDEC spill incident database, the spill involved an unknown quantity and the file was closed on 5/2/2005.
- The GZA report included documentation of 1972 correspondence from Bausch and Lomb to E. J. DelMonte Corp. that reported the various waste streams discharged to three onsite septic systems (see Figure 4). The Southeast Septic System was used for sanitary purposes, no chemicals were discharged through the system. The Southwest Septic System collected both sanitary and process discharge. Chemicals including acids, bases, poisons (arsenic, antimony, mercury, etc.), diPhospyridine, sodium pyruvate, and biological organics were discharged to the system either directly or through neutralization tanks. The Northwest Septic System collected cooling water, sanitary, and process water from the cafeteria, washrooms, and the chemistry laboratory. Discharge chemicals included organic solvents, acids, alkalis, ammonia residue, fixers and developers. In the

Summary of Previous Investigations and Remedial Actions

conclusion of their report, GZA referred to the discharged materials as hazardous materials and waste. Records of removal or final pumping of the septic systems were not found.

- The operations audit portion of this investigation focused on the facility's regulatory compliance with environmental, health, and safety regulations pertaining to Site operations.

2.3.1.2 2004 Phase II ESA (ERM)

A Phase II ESA was completed by Environmental Resources Management (ERM) for Thermo Electron Corporation in 2004 (ERM, 2004). This investigation included a passive soil gas (PSG) survey with 60 sampling locations across the northern portion of the Site; installation and sampling of a soil boring and monitoring well in a former drum storage area; a floor drain investigation; and lead wipe testing in several indoor areas where lead dust cleaning had been previously performed. The following is a summary of findings from the 2004 Phase II ESA:

- The 2004 PSG survey showed that chlorinated volatile organic compounds (CVOCs) such as tetrachloroethene (PCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1-TCA) were present in soil vapor beneath the building footprint and toluene (a petroleum-related VOC) was present in exterior soil vapor across the northern portion of the Site. The highest concentration of toluene was observed in the parking lot area to the south of the eastern half of the Newport [northern] tenant space, and to the east of the northeast corner of the JML [southern] tenant space. It is noted that acetone was not included on the analyte list for the PSG survey.
- Volatile organic compounds (VOCs) were not detected in the soil samples. VOCs were detected in the groundwater, but only at concentrations below NYSDEC standards, and were reportedly generally 50% lower than levels reported in an unnamed previous investigation (a report documenting this prior investigation was not provided to Stantec and is not in the possession of Ridgecrest). The groundwater table was reported to be at a depth of approximately 65 ft bgs. Soils encountered consisted of fine-grained sands and silty fine-grained sands.
- The investigation determined that a floor drain in the flammable materials storage area discharged to the sanitary sewer near Linden Avenue.

Summary of Previous Investigations and Remedial Actions

- Concentrations of lead reported in the lead wipe testing program performed after a cleaning program ranged from 6.2 to 345 micrograms per square foot (μg/ft²). The sampling program was conducted at five areas within the building approximately 20 ft above the floor along a truss, sprinkler or light fixture.

2.3.1.3 2005 Phase II ESA (LaBella)

A Phase II ESA was completed by LaBella Associates, P.C. for JML Optical and Thermo Electron Corp in 2005 (LaBella, 2005). This investigation included a PSG survey with 31 sampling locations, mostly across the southern portion of the Site, with four locations duplicating those sampled in the previous PSG survey (ERM, 2004). The following is a summary of findings from the 2005 Phase II ESA:

- The constituent detected at the highest concentration was PCE, with lesser amounts of TCE, 1,1,1-TCA, and 2- butanone reported. The highest CVOC concentrations were detected under the central portion of the building near a former hazardous waste storage area. Toluene was also detected in about two-thirds of the locations. It is noted that acetone was not included on the analyte list for the PSG survey.

2.3.1.4 2011 Phase I ESA (O'Brien and Gere)

A Phase I ESA was completed by O'Brien and Gere (OBG) for BB&T Capital Partners II, LLC in 2011 (OBG, 2011). The following is a summary of findings and recommendations from the 2011 Phase I ESA:

The 2011 Phase I ESA was limited to the southern portion of the building (JML tenant space). The report identified RECs related to septic and sanitary systems, historical use of the property for optical manufacturing, and findings of historical environmental reports (ERM, 2004; LaBella, 2005) indicating the presence of primarily CVOCs and toluene in soil vapor and/or groundwater.

2.3.1.5 2016-2017 Limited Phase II ESA (Stantec)

Stantec conducted a Limited Phase II ESA in April 2016 through January 2017 for Ridgecrest to further evaluate impacts to the Site (Stantec, 2017b). Stantec began its investigation of the Site in April 2016 by conducting an updated soil vapor intrusion (SVI) investigation in accordance

Summary of Previous Investigations and Remedial Actions

with the New York State Department of Health (NYSDOH) Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York (NYSDOH, 2006; hereinafter referred to as the NYSDOH Vapor Guidance). In addition, the purpose of Stantec's Phase II investigation was to attempt to identify a source for the SVI results through further soil and groundwater investigation. The rationale behind Stantec's 2016 Phase II scope included the following: (1) the results of the prior PSG survey results were 11 years old; (2) the prior PSG surveys did not include any indoor air samples since the investigations pre-dated the NYSDOH Vapor Guidance; and (3) no soil or groundwater source areas were identified during the previous investigations.

The Limited Phase II ESA work scope included two SVI investigation events. The first event was conducted in April 2016 and included twelve co-located indoor air/sub-slab soil vapor sampling locations in both tenant spaces in accordance with the NYSDOH Vapor Guidance. The second event was conducted in January 2017 and included three sampling locations in the Newport tenant space. The work scope also included an interior and exterior soil and groundwater investigation. Components included the drilling of 14 test borings, collection of subsurface soil samples, and installation and sampling of four permanent and three temporary groundwater monitoring wells. A synopsis of the analytical findings is presented below. Investigation locations are depicted on Figure 4.

- <u>SVI Results:</u> The indoor air and sub-slab vapor data were evaluated against the NYSDOH Matrices presented in the NYSDOH Vapor Guidance (NYSDOH, 2006; NYSDOH, 2017) to assign a recommended action for the co-located sample pairs. Additionally, indoor air data were compared to the NYSDOH Air Guideline Values (NYSDOH, 2006) for the three compounds with guideline values (methylene chloride, TCE, and PCE).

Based on the NYSDOH Vapor Guidance, results indicated the need for mitigation based on methylene chloride in five locations in the JML tenant space and one location in the Newport tenant space. At the time of the SVI sampling, products containing this compound were utilized in each tenant space.

Based on the NYSDOH Vapor Guidance for other compounds, results from four locations within the JML tenant space indicated the need for mitigation of potential SVI

Summary of Previous Investigations and Remedial Actions

impacts based on the presence of 1,1-dichloroethene (1,1-DCE), cis-1,2-dichloroethene (cis-1,2-DCE), TCE, or PCE. Within the Newport tenant space, one location indicated the need for monitoring or mitigation based on TCE results.

The concentration of TCE in indoor air within the Newport tenant space at one location (2.1 micrograms per cubic meter $[\mu g/m^3]$) slightly exceeded the indoor air guideline of 2 $\mu g/m^3$ during the first SVI sampling event, although it was not reported above the detection limit in the corresponding sub-slab vapor sample during either SVI sampling event. In addition, TCE was not detected above reporting limits in the indoor air samples collected during the second SVI sampling event.

Tables 3a and 3b present a summary of the analytical SVI results for matrix comparison.

Soil Results: The exceedances of NYSDEC Part 375 (NYSDEC, 2006) and Commissioner's Policy (CP)-51 (NYSDEC, 2010b) Soil Cleanup Objectives (SCOs) for Unrestricted Use (UU) and the Protection of Groundwater (POGW) SCOs in Site soil samples included common, naturally-occurring metals (aluminum, calcium, iron, and magnesium) and acetone. Acetone is considered a common laboratory contaminant. However, acetone was not detected in the corresponding Quality Assurance/Quality Control (QA/QC) samples, and is, therefore, considered to be related to Site conditions, particularly given: (1) the concentrations reported ranging from 53 micrograms per kilogram [μg/kg] to 120 μg/kg, which exceeds the UU and POGW SCOs but not the Commercial or Industrial Use SCOs; (2) historical use of acetone at the facility; and (3) its reported presence in groundwater as described below.

Table 4 presents a summary of the soil sample results. Note that this Table also includes Remedial Investigation (RI) soil data.

- Groundwater Results: The exceedances of NYSDEC's Technical and Operational Guidance Series (TOGS) 1.1.1 [Class GA] Standards and Guidance Values (SGVs; NYSDEC, 1998) for groundwater samples included commonly occurring metals (iron, magnesium, manganese, and sodium) and acetone. Acetone was detected at concentrations ranging from 100 micrograms per liter [μg/L] to 1,100 μg/L, versus the guidance value of 50 μg/L. While acetone is a common laboratory contaminant, and laboratory contamination can often be responsible for low-level concentrations of acetone detected in water, the relatively high concentrations detected in these Site samples were considered indicative of a Site-related issue, given (1) the absence of acetone in the QA/QC samples; (2) its use at the facility; and (3) its elevated presence in soil samples.

Summary of Previous Investigations and Remedial Actions

Table 5 presents a summary of the groundwater sample results. Note that this Table also includes groundwater data from later monitoring events.

Analytical Program: Although the Limited Phase II ESA was not implemented as part of a formal remedial program with NYSDEC's input/oversight, each aspect of the investigation was performed in general conformance with NYSDEC's DER-10 (NYSDEC, 2010a). QA/QC sampling and analyses were performed as would be required for a BCP project including trip blanks, rinsate blanks, matrix spike/matrix spike duplicates (MS/MSD), and field duplicates. Analyses were performed by a laboratory accredited pursuant to the NYSDOH Environmental Laboratory Accreditation Program (ELAP). Analytical Services Protocol (ASP) Category B data packages were obtained for the Limited Phase II data. The data packages were forwarded to Data Validation Services (DVS) for review of the usability of the laboratory analytical data. Results of the data usability review were reported by DVS in the Data Usability Summary Report (DUSR) presented as an appendix to the Remedial Investigation Work Plan (RIWP; Stantec, 2017c). In summary, the Limited Phase II investigation laboratory data were found to be usable as reported by the lab or usable with qualification, and no data were rejected. Given the DUSR findings, the data from the Limited Phase II investigation was incorporated into the RI dataset.

2.3.1.6 2017 Phase I ESA (Stantec)

Stantec completed a Phase I ESA for Ridgecrest in September 2017. The reader is referred to the original Phase I ESA report (Stantec, 2017a) for a detailed discussion of the ESA findings. The following is a condensed list of the RECs identified by the ESA:

- Discharge of hazardous materials and waste into three septic systems formerly utilized on the Property between 1968-1975 (during the period of ownership and operation by Bausch & Lomb). The exact locations of the septic systems were unknown; however, approximate locations were depicted in the 1995 GZA Phase I Report.
- A large, rectangular grass-covered area to the east of the Newport [northern] tenant space was noted to be generally elevated above the surrounding grade. This area may have been a pad for a building addition that was never constructed; however, this was not confirmed. The nature of the fill that comprised the pad was unknown.
- The results from three previous Phase II ESAs revealed evidence of CVOC impacts to soil vapor. However, a source area(s) for the CVOCs in soil and groundwater beneath

Summary of Previous Investigations and Remedial Actions

the building and on the Site was not identified. The highest concentrations of CVOCs were reported in the central portion of the building near a former hazardous waste storage area in soil gas, and toluene was detected in two-thirds of the sampled locations. Exceedances of SCOs and groundwater SGVs for commonly occurring metals and acetone were also identified.

- The building is presently serviced by municipal sanitary sewer lines. The age of the sewer connections and the locations of sewer connections and lines were unknown at the time. Based on drawings and observations, it was presumed there are two separate sewer lines servicing the building. Newport indicated they have been performing necessary maintenance on sewer lines utilized by their facility, and they recently installed a pump to a drain line to increase flow.
- The parcel adjacent to the east of the Site, 860 Linden Avenue, is the former location of Jarl Extrusions, a NYS Superfund site (Site ID #828005). The site had documented discharges to a lagoon of nitric, sulfuric, and hydrofluoric acids, sodium hydroxide, and chromium salts. The lagoon was covered by an asphalt cap, site clean-up activities were performed, and Engineering and Institutional Controls are in place. Groundwater sampling on the Jarl Extrusions site in 1990 revealed elevated concentrations of TCE (23 ppb) in monitoring well B-1D, located along the western property boundary, less than 50 ft from 820 Linden Avenue. This adjacent Superfund Site is considered to be a Controlled Recognized Environmental Condition (CREC) for the Site.

2.3.1.7 2018 Remedial Investigation (Stantec)

Stantec completed a Remedial Investigation (RI) for Ridgecrest during the period June 2018 through January 2019. The RI was performed in accordance with the RIWP, dated September 2017, which was approved by NYSDEC on May 21, 2018. The reader is referred to the Revised RI Report (RIR; Stantec, 2020e) for a detailed discussion of the RI program.

Data gaps:

Data gaps identified during preparation of the RIWP (Stantec, 2017c), and subsequently addressed through the RI (and Supplemental RIs [SRI], see Sections 2.3.1.7 through 2.3.1.9), included the following:

- Investigation of the historical building uses;

Summary of Previous Investigations and Remedial Actions

- Investigation of deep groundwater quality along the property boundary with the Jarl Extrusions Site;
- Investigation of the former septic systems identified as RECs in the 1995, 2011, and 2017 Phase I ESAs, and potential soil contamination resulting from the historical discharge of hazardous materials and waste as documented in the 1995 Phase I report (GZA);
- Investigation of the sewer connections and conditions;
- Investigation of the two large-diameter, east-west oriented roof drain outfall pipes that discharge to the drainage ditch located along the western property boundary, which drains to the north;
- Investigation of upgradient and Site-wide conditions to supplement the targeted Limited Phase II ESA (Stantec, 2017b); and
- Delineation of the acetone impacts, which were identified during the Limited Phase II ESA (Stantec, 2017b).

Investigation Activities:

The following investigation activities were performed in accordance with the approved Work Plan and DER-10: (1) floor drain and sewer video; (2) geophysical survey; (3) debris pile sampling; (4) surface soil sampling; (5) test pit program and subsurface soil sampling (6) test boring program and subsurface soil sampling; (7) monitoring well installation and development; (8) well gauging and groundwater sampling; and (9) slug testing. Figure 4 depicts the investigation and sample locations.

Laboratory Analysis and Results Tabulation:

Laboratory analysis of Site media samples was performed by the NYSDOH ELAP-certified Eurofins TestAmerica Laboratories, Inc. (TestAmerica). Third-party data usability reviews of the NYSDEC ASP Category B deliverable packages generated by TestAmerica were performed or are being performed by DVS.

Summary of Previous Investigations and Remedial Actions

Analytical tables compare the qualified lab results to NYS Standards, Objectives, and Guidance (see Tables 4 and 5). The following are included in the comparison: NYSDEC 6 NYCRR Part 375 (NYSDEC, 2006) UU SCOs; Commercial Use and Industrial Use SCOs ("Site use SCOs"), and POGW SCOs; NYSDEC CP-51 (NYSDEC, 2010b) Table 1 Supplemental SCOs for Commercial and Industrial Uses and POGW; and NYSDEC Class GA Water Quality SGVs for groundwater (TOGS 1.1.1; NYSDEC, 1998).

Findings and Recommendations:

Based on Stantec's review of the field and analytical datasets, the following Areas of Concern (AOCs) were identified:

- <u>AOC 1</u>: CVOCs (including 1,1-DCE; cis-1,2-DCE; PCE; and TCE) in sub-slab soil vapor beneath the JML [southern] tenant space at concentrations requiring mitigation. This AOC was addressed through IRM1, which is described in Section 2.3.2.
- <u>AOC 2</u>: The debris pile located in the northeast corner of the parking lot area, which was found to contain elevated levels of PAHs associated with significant crushed asphalt contents. This AOC was addressed through IRM2, which is described in Section 2.3.2.
- <u>AOC 3</u>: The three former septic systems identified in the 1995 GZA Phase I Report were located during the test pit program. Each of the septic systems was further investigated in SRI1 (see Section 2.3.1.8). This AOC was also addressed through IRM2, which is described in Section 2.3.2.
- <u>AOC 4</u>: Benzo(a)pyrene was the single SVOC reported to exceed Commercial SCOs in surface soil. It was detected at 0-2 inches at a concentration of 1,800 μg/kg versus the respective Commercial and Industrial SCOs of 1,000 and 1,100 μg/kg in a composite sample SS-4. The SS-4 composite was derived from discrete sampling locations SS-4a, SS-4b, and SS-4c along the vegetated berm near the eastern property line. This surface soil exceedance area was further investigated in SRI2 (see Section 2.3.1.9) and addressed through IRM4 (see Section 2.3.2).

Instances where there were exceedances of Commercial or POGW SCOs, or groundwater standards or guidance values, but the issue did not rise to the level of an AOC included:

Summary of Previous Investigations and Remedial Actions

- TCE was identified in groundwater in the eastern parking lot area in B/MW-101, B/MW-104, and B/MW-105.

A deep/water table well (B-1D) on the adjacent Jarl Extrusions site (New York State Superfund Site #828005, located at 860 Linden Avenue) was reported to have exhibited a maximum of 23 ppb TCE during a November 1990 sampling event as part of a focused RI (OBG, 1993). TCE levels observed in the three subsequent events were lower, with reported concentrations of 6 ppb (February 1991), 13 ppb (June 1992), and 9 ppb (August 1992). Based on Stantec's review of the Jarl Extrusions documents, this well was not sampled again, and it does not appear that the source was identified, nor the deep groundwater VOC impacts delineated. Monitoring well B-1D, located along the western property boundary, is less than 50 ft from 820 Linden Avenue. The site appears to be cross-gradient from the 820 Linden Ave Site.

In addition, adjacent upgradient properties located at 830 and 834 Linden Avenue have a history of manufacturing and light industry, based on the directory review findings of Site occupants at these properties as reported in Stantec's Phase I ESA (Stantec, 2017a).

TCE in groundwater on the eastern side of the Site does not appear to be related to the on-site soil vapor results based on the direction of groundwater flow, the horizontal distance to the building (approximately 185 ft), and vertical separation between the water table and the building sub-base (approximately 45 ft).

No remediation or further investigation was recommended due to the following observation:

- Groundwater is not used for drinking water purposes.
- The direction of groundwater flow indicates the likelihood of an up-gradient, offsite source.
- The presence of an off-site source is also supported by the absence of TCE groundwater impacts in wells beneath or downgradient of the 820 Linden Ave facility and the absence of any soil TCE impacts on-site.
- A deep/water table well (B-1D) on the adjacent Jarl Extrusions Site (see Figure 2) was reported to have exhibited a maximum concentration of 23 ppb TCE during a November 1990 sampling event as part of a focused Remedial Investigation (OBG, 1993). TCE levels observed in the three subsequent events were lower, with reported concentrations of 6 ppb (February 1991), 13 ppb (June 1992), and 9 ppb (August 1992). Based on Stantec's review of the Jarl Extrusions documents, this well was not sampled again, and it does not appear that the source was identified, nor the deep groundwater VOC impacts delineated.

Summary of Previous Investigations and Remedial Actions

- Potential for exposure is minimal given (1) the depth to groundwater; and (2) that the groundwater impacts can be managed through implementation of the ICs and ECs required by this SMP, including monitoring and maintenance of the Sitewide Cover System, further detailed in Section 3.3.
- Acetone impacts to groundwater beneath the building were identified during Stantec's Limited Phase II ESA (Stantec, 2017b). Delineation of these impacts was addressed during the RI, which confirmed that groundwater acetone impacts are limited to beneath the building. Levels of acetone reported in Site soil samples do not exceed Commercial or Industrial SCOs, but in some cases exceed the POGW SCO. No remediation or further investigation was recommended due to the following observations:
 - Groundwater is not used for drinking water purposes.
 - Downgradient wells indicate that acetone in groundwater had not migrated beyond the building footprint.
 - Potential for exposure is minimal given (1) the depth to groundwater; and (2) that the groundwater and associated soil impacts can be managed through implementation of the ICs and ECs required by this SMP, including operation of the sub-slab depressurization system (IRMs 1 and 3) and ongoing monitoring/maintenance of the Cover System (further described in Section 3.3).

2.3.1.8 2019 Limited Supplemental Remedial Investigation #1 (Stantec)

Stantec completed a Limited Supplemental Remedial Investigation (SRI1) for Ridgecrest during the period July 22 through 25, 2019. SRI1 was performed in accordance with the Revised Work Plan dated February 21, 2019 (Stantec, 2019a) and approved on May 9, 2019. The reader is referred to the RIR (Stantec, 2020e) for a detailed discussion of the SRI program and findings. A summary is presented below.

The purpose of SRI1 was to further investigate the three historical septic systems (AOC3) to better inform the proposed interim remedial measures for IRM2. The objectives were to:

- (1) Refine understanding of the utility configuration in the proposed excavation areas;
- (2) Investigate tank contents for anticipated off-site disposal; and
- (3) Evaluate subsurface soil conditions beneath the Northwest Septic System for potential in-place closure.

Summary of Previous Investigations and Remedial Actions

Components of SRI1 included: (1) ground penetrating radar (GPR) survey; (2) sanitary sewer investigation; (3) tank contents sampling; (4) leach field and tank adjacent soil investigation in the Northwest Septic System area to evaluate quality of soil with respect to Site Use; and (5) pipe video survey in the Southwest Septic System area to assess unknown pipe operational status and origin/discharge locations. Based on the findings, Stantec recommended the following be implemented under IRM2:

Southeast Septic System: in-place closure given favorable sample results for the tank contents and pending favorable leach field and tank adjacent soil sample results obtained during IRM2. This system was reportedly used for sanitary wastes only (GZA, 1995).

Southwest Septic System: removal of tanks, leach field and other associated piping with confirmatory sampling and off-site disposal of excavated system materials, contents, and adjacent soil as needed. The following summarizes the sampling results for this system:

- While not directly applicable for tank water destined for off-Site disposal, water samples collected from three of the four tanks were compared to NYSDEC SGVs. Freon 113 and PCE were reported at concentrations in each of the three tanks in exceedance of their 5 μg/L groundwater standard. Freon 113 ranged from 88 to 680 μg/L decreasing from Tank 1 (closest to the building) to Tank 3 (more westerly), as historical waste flow likely moved away from the building. Similarly, PCE ranged from 21 to 84 μg/L with concentrations decreasing from Tank 1 to Tank 3. The compound 4-isopropyltoluene was also detected in Tank 3 at a concentration only slightly exceeding the 5 μg/L groundwater standard (5.4 μg/L). No other compounds were detected.
- Solids samples were collected from two of the four tanks. Tank 1 contained water and sludge while Tank 4 contained soil that appeared to be infill from surrounding soils.
 While not directly applicable for soil destined for off-site disposal, results were compared to SCOs. Both solid samples had a few exceedances of UU and POGW SCOs for parameters not found to exceed standards in nearby groundwater. Otherwise, mercury,

Summary of Previous Investigations and Remedial Actions

Freon 113, and PCBs exceeded the Commercial, but not the Industrial SCOs in the Tank 1 sample (again, closest to the building). No Site use SCO exceedances were reported in the Tank 4 sample.

Northwest Septic System: in-place closure was implemented given the favorable leach field, uncontaminated tank contents, and the clean adjacent soil sample results next to the tank. An isolated exceedance of the Commercial SCO for mercury in the sample collected adjacent to Northwest Septic System Tank 2 at 8-10 ft bgs was not considered an AOC due to the sample depth and resultant minimal exposure risk as well as the absence of mercury impacts to groundwater on-site. In the test pit excavated to expose the distribution box, a discrete occurrence of solid, black, tar-like material was encountered. NYSDEC required that this material be sampled. Stantec collected a soil sample from the soil around the discrete occurrence that is representative of the remaining soil conditions in this area. Although the test pit spoils did not demonstrate impacts, there were elevated PAHs in the bulk sample requiring removal of the black tar-like material under IRM2.

2.3.1.9 2020 Limited Supplemental Remedial Investigation #2 (Stantec)

Stantec completed a second Limited Supplemental Remedial Investigation (SRI2) for Ridgecrest on April 7, 2020. SRI2 was performed in accordance with the Work Plan dated March 19, 2020 (Stantec, 2020a) and approved on March 31, 2020. The reader is referred to the RIR (Stantec, 2020e) for a detailed discussion of the SRI program, which is summarized below. The investigation and sample locations are depicted on Figure 4.

The RI results for benzo(a)pyrene exceeded Commercial and Industrial SCOs in the composite sample SS-4 comprised of three listed discrete surface soil sampling locations SS-4a, SS-4b, and SS-4c. The overall objective of SRI2 was to collect three discrete surface soil samples (0-2 inches bgs) at the approximate RI surface soil sampling locations listed above to potentially delineate the benzo(a)pyrene impacts to shallow surface soil. The sampling locations were in the vegetated berm area along the eastern property boundary. Analytical results for the discrete

Summary of Previous Investigations and Remedial Actions

sampling indicated benzo(a)pyrene impacts exceeding the respective Commercial and Industrial SCOs of 1,000 and 1,100 μ g/kg at each of the three locations, with concentrations ranging from 2,300 to 350,000 μ g/kg.

Based on these results, and in consultation with NYSDEC, Stantec designed a Cover System to mitigate potential future exposure to the benzo(a)pyrene-impacted shallow surface soil in the vegetated berm area along the eastern property boundary, which was installed as IRM4.

2.3.2 Overview of Interim Remedial Measures

The following is a summary of the Interim Remedial Measures (IRMs) implemented at the Site. Details regarding each IRM can be found in the documents referenced herein but each IRM is otherwise summarized below.

- 1. IRM1 SSDS: To address the NYSDOH SVI matrix recommendations for mitigation described in Section 2.3.1, the first Interim Remedial Measures Work Plan (IRM WP#1) for the Site was prepared in July 2018 to address soil vapor intrusion in a portion of the southern tenant space (JML) through design and installation of a sub-slab depressurization system (SSDS). IRM WP#1 was submitted to the Departments for review on July 31, 2018. Department comments and a conditional approval were received on September 19, 2018. The finalized IRM WP#1 was issued on October 2, 2018 (Stantec, 2018). Construction of the SSDS began on December 6, 2018 and was completed in March 2019. The system became operational on March 1, 2019. Two additional SVI monitoring points were installed in accordance with IRM WP#1 and per the request of NYSDEC: SS-13 in the northern tenant space (Newport) and SS-14 in the southern tenant space (JML). Post-SSDS installation SVI sampling was performed on March 31, 2019 in accordance with the approved IRM WP#1.
- 2. **IRM3 SSDS Extension**: Based on the March 2019 post-SSDS SVI sampling results, a Supplemental Interim Remedial Measures Work Plan (IRM WP#3) was submitted to NYSDEC and NYSDOH for review on August 12, 2019 to detail the SSDS extension

Summary of Previous Investigations and Remedial Actions

into the area of the southern tenant space that was constructed in 1954 (see Figure 2). Department approval of the August 2019 IRM WP#3 (Stantec, 2019b) was received on October 1, 2019. Construction of the extended SSDS began on December 11, 2019 and was completed in January 2020. The extended system became operational on January 16, 2020. Details of the SSDS design and installation for IRMs 1 and 3 are documented in the SSDS Construction Completion Report (CCR; Stantec, 2020b).

3. IRM2 Septic System Removal/Closures & Debris Pile Removal: To address findings from the RI test pit program and debris pile sampling results, IRM Work Plan #2 (IRM WP#2) was prepared following completion of SRI1 and was submitted to the Departments for review on November 20, 2019. IRM WP#2 detailed the excavation/inplace closure of three historical septic systems (identified as Remedial Area of Concern [RAOC]-1 through RAOC-3) as well as removal of the impacted debris pile (identified as RAOC-4). Department comments detailing disapproval of IRM WP#2 were received on March 10, 2020. A revised version of IRM WP #2 addressing Department comments was submitted on April 13, 2020 (Stantec, 2020c) and was subsequently approved on May 22, 2020. IRM2 implementation began on June 15, 2020 and was largely completed by July 28, 2020. Details of IRM2, including a refined understanding of the septic system layouts, an explanation as to why the Southwest Septic System was removed and the two others were closed in place, the results of investigation/confirmatory sampling, and data associated with the new septic area monitoring wells, are documented in the CCR (Stantec, 2020g). In addition, a debris pile containing PAH contaminated soil was removed during this IRM2.

Analytical results for RAOCs-1 through -5 are presented in Tables 6 through 10. Tables 11a and 11b summarize results of solid and liquid septic system characterization sampling for off-site disposal as non-hazardous waste.

Summary of Previous Investigations and Remedial Actions

Figures 5a through 5c depict the configuration of each of the three septic system areas (RAOCs-1 through 3) and sample locations for both investigation and confirmatory sampling purposes.

4. IRM4 Cover System for Surface Soil PAH Impacts: To address findings from the RI and SRI2 surface soil sampling programs, IRM Work Plan #4 (IRM WP#4) was prepared and submitted to the Departments for review on June 15, 2020. IRM WP#4 detailed the design and installation of an engineered Cover System for the vegetated portion of the eastern property line area (identified as RAOC-5); previous sampling indicated that shallow surface soil was impacted by benzo(a)pyrene above Site Use SCOs (see Section 2.3.1). Department approval of the June 2020 IRM WP#4 (Stantec, 2020d) was received on July 2, 2020. IRM4 implementation began on July 7, 2020 and was completed on July 23, 2020. Details of the implementation of IRMs 2 and 4 are documented in a combined CCR (Stantec, 2020g).

In accordance with the findings of the Alternatives Analysis Report (AAR; Stantec, 2020f), implementation of these four IRMs constitutes a satisfactory final remedy for the Site and no further remedial action is required beyond implementation of the ongoing Site Controls required by this SMP.

2.4 Remedial Action Objectives

The Remedial Action Objectives (RAOs) for the Site as listed in the Decision Document dated [month, day, year] are as follows:

2.4.1 Groundwater

RAOs for Public Health Protection

- Prevent ingestion of groundwater with contaminant levels exceeding drinking water standards.
- Prevent contact with, or inhalation of, volatiles from contaminated groundwater.

Summary of Previous Investigations and Remedial Actions

2.4.2 Soil

RAOs for Public Health Protection

- Prevent ingestion/direct contact with contaminated soil.
- Prevent inhalation of or exposure from contaminants volatilizing from contaminants in soil.

RAOs for Environmental Protection

- Prevent migration of contaminants that would result in groundwater or surface water contamination.
- Prevent impacts to biota from ingestion/direct contact with soil causing toxicity or impacts from bioaccumulation through the terrestrial food chain.

2.4.3 <u>Soil Vapor</u>

RAOs for Public Health Protection

• Mitigate impacts to public health resulting from existing, or the potential for, soil vapor intrusion into buildings at the Site.

2.5 Remaining Contamination

2.5.1 Groundwater

Based on the Limited Phase II ESA, RI, and IRM2 groundwater sampling events, only two compounds are identified in groundwater beneath the Site at concentrations exceeding SGVs:

1. Acetone was reported to exceed its standard of 50 μg/L in the three groundwater samples collected beneath the southern building footprint at investigation locations B-11D, B-12D, and B-13D, at concentrations ranging from 100 to 1,100 μg/L. Exterior groundwater sampling confirmed that acetone impacts to groundwater are limited to beneath the building based on two rounds of non-detect results for acetone in each of the 10 exterior wells. Additionally, the groundwater sampling results from IRM2 were non-detect for all three new [exterior] monitoring wells confirming the limits of acetone groundwater impacts to beneath the building.

Summary of Previous Investigations and Remedial Actions

2. TCE in groundwater beneath the Site is limited to the eastern parking lot area where it was detected in three RI monitoring wells (B/MW-101, B/MW-103, and B/MW-104) during both RI sampling events. The TCE concentrations in upgradient B/MW-103 and B/MW-104 exceeded the standard of 5 μg/L in both RI rounds of groundwater sampling (9.7 to 17 μg/L). Downgradient well B/MW-101 exhibited a low-level concentration of TCE below the SGV in both RI groundwater sampling rounds (1.3 to 1.9 μg/L). TCE was not reported to exceed SGVs in any of the three new [exterior] monitoring wells installed and sampled during IRM2, thus confirming the on-site limits of TCE groundwater impacts to the eastern parking lot area. Furthermore, the following lines of evidence indicate likelihood of an off-site source: (1) direction of groundwater flow; (2) absence of on-site soil TCE impacts; (3) absence of groundwater TCE impacts downgradient of 820 Linden Ave facility; and (4) historically documented TCE impacts to groundwater at adjacent Jarl Extrusions site.

Potential exposure is being addressed through implementation of the Site Controls required by this SMP. Table 5 summarizes the analytical results for groundwater samples and Figure 6 depicts the SGV exceedances. As depicted on Figure 6, on-site impacts for both acetone and TCE are delineated.

Note that exceedances for commonly occurring metals such as iron, magnesium, manganese, and sodium are not included on the figure although they are reported in the analytical summary table. The observed concentrations of these metals in groundwater are not considered to be related to an environmental release or historical Site use but appear representative of background-level concentrations of naturally occurring metals.

2.5.2 Soil

As discussed in Section 2.3, the following soil impacts were identified through the documented investigation activities and were addressed during IRM2:

Summary of Previous Investigations and Remedial Actions

- Benzo(a)pyrene impacts to shallow surface soil along the vegetated portion of the eastern property line were addressed through installation of an engineered Cover System during implementation of IRM4. A demarcation layer was installed to represent the base of the Cover System and underlying PAH impacts.
- The former debris pile previously located in the northeast corner of the parking lot area was found to contain elevated levels of PAHs associated with significant crushed asphalt contents. Removal of this debris pile along with required confirmatory sampling was performed as part of IRM2. Based on confirmatory sampling results, the PAH-impacted debris pile fill material extended to the northern property line; the material was removed up to the property line and a subsequent sidewall confirmatory sample was collected. The final property line sample demonstrated extensive removal of the most impacted fill material; however, lower concentration PAH-impacted fill remains at the edge of the Site. No bottom confirmatory samples were collected due to the asphalt not soil base.
- Three historical septic systems were located during the RI. The buried structures were addressed through system removal (Southwest) or in-place closure (Southeast and Northwest) during IRM2. Details related to the septic system investigation, findings, and remedial measures are summarized in Section 2.3 and in the CCR (Stantec, 2020g). Except for the isolated mercury exceedance described below, no soil contamination above Site Use SCOs associated with the historical septic systems remains on-site following the implementation of IRM2, which included the removal of the Southwest Septic System (RAOC-2) and the residual black tar-like material in the Northwest Septic System (RAOC-3).

There are four areas of remaining soil contamination on the Site:

1. **Benzo(a)pyrene** impacts to shallow surface soil along the eastern property line berm area are beneath an engineered Cover System. A demarcation layer was installed to represent the base of the Cover System and underlying PAH impacts. Analytical results for the

Summary of Previous Investigations and Remedial Actions

discrete SRI2 sampling indicated benzo(a)pyrene impacts exceeding the respective Commercial and Industrial SCOs of 1,000 and 1,100 μ g/kg at each of the three locations, with concentrations ranging from 2,300 to 350,000 μ g/kg; these samples were collected at a depth of 0-2 inches below the original grade but which is now covered with one foot of gabion stone.

- 2. **PAH-impacted fill** associated with the residual contaminants from the removed debris pile, previously located in the northeast corner of the parking lot area, remains at the limits of excavation at the northern property line. Benzo(a) pyrene was detected at 4,200 μg/kg (versus respective Commercial and Industrial SCOs of 1,000 and 1,100 μg/kg) and benzo(b)fluoranthene was detected at 6,100 μg/kg (versus the Commercial SCO of 5,600 μg/kg), at an approximate depth of 1.2 ft. below ground surface (note: this sidewall is above the parking lot grade).
- 3. **Mercury** was detected in the sample adjacent to Northwest Septic System Tank 2. The reported mercury concentration of 3.2 mg/kg exceeds the UU SCO (0.18 mg/kg), Commercial Use SCO (2.8 mg/kg), and POGW SCO (0.73 mg/kg), but meets the Industrial Use SCO (5.7 mg/kg). The sample was collected at 8-10 ft bgs and, due to the depth and isolated occurrence, is not considered a concern.
- 4. **Acetone** levels reported in Site soil samples do not exceed Commercial or Industrial SCOs, but in some cases exceed the POGW (and UU) SCO of 50 μg/kg. However, the only co-located groundwater acetone impacts are beneath the building footprint. Acetone concentrations in soil samples collected from exterior borings B/MW-101, B/MW-103, and B/MW-104 at depths directly above the water table ranged in concentration from 59 to 63 μg/kg, only slightly exceeding the SCO. Acetone concentrations in soil samples collected from interior borings B-10, B-11D, B-12D, B-13, and B-13D ranged in concentration from 53 to 120 μg/kg; the interior soil sample depths ranged from 3 to 60.5 ft bgs.

Summary of Previous Investigations and Remedial Actions

Tables 6 through 10 summarize the analytical results for soil samples collected for RAOCs-1 through -5. Analytical results from the Phase II ESA and RI are presented in Table 4.

Figure 7a summarizes the results of all soil samples collected that exceed the Commercial/Industrial Use SCOs at the Site after completion of remedial action. Following remediation, the only parameters to exceed Commercial/Industrial Use SCOs are mercury, benzo(a)pyrene, and benzo(b)fluoranthene.

Figure 7b summarizes the results of all soil samples collected that exceed the POGW SCOs at the Site after completion of remedial action. The only parameter to exceed POGW SCOs with co-located groundwater impacts is **acetone** (note that the POGW and UU SCO for acetone are the same). The following parameters were identified in remaining soils as exceeding their respective POGW SCO, but were not reported in groundwater above SGVs: mercury, silver, dieldrin, benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, and chrysene.

Figure 7c summarizes the results of all soil samples collected that exceed the UU SCOs, but do not exceed Site Use SCOs, after completion of remedial action; this includes select **metals**, **pesticides**, **and PAHs**. Acetone is not shown on Figure 7c as the extent of acetone impacts are clearly depicted on Figures 6 and 7b.

Exceedances for commonly occurring metals such as aluminum, calcium, iron, magnesium, manganese, and sodium are not included on the figures although they are reported in the analytical summary tables. The observed concentrations of these metals in soil are not considered to be related to an environmental release or historical Site use but appear representative of background-level concentrations of naturally occurring metals.

As discussed later in Section 3.3.1, the Site-wide Cover System serves as an EC to mitigate exposure to remaining soil contamination. Ground-intrusive work that will breach the Cover System must be performed in compliance with this SMP and monitoring is required in accordance with the EWP (Appendix D).

Summary of Previous Investigations and Remedial Actions

2.5.3 <u>Soil Vapor</u>

CVOCs have been identified in sub-slab soil vapor beneath the JML (southern) tenant space at concentrations requiring mitigation. CVOC impacts to sub-slab vapor were first identified from historical PSG surveys (ERM, 2004; Labella, 2005). The potential for SVI was investigated by Stantec through combined sub-slab vapor and indoor air sampling in 2016-2017 as part of the Limited Phase II ESA (Stantec, 2017b). The following CVOCs were identified as contaminants of concern (COCs) for this media: 1,1-DCE; cis-1,2-DCE; PCE; and TCE. Although methylene chloride results also indicated a need for mitigation, products containing this compound were utilized in both tenant spaces at the time of SVI sampling; therefore, methylene chloride is not considered a Site COC from historical use. No source of the CVOC sub-slab soil vapor impacts was identified despite shallow and deep soil and groundwater investigations in the areas of impact. Potential soil vapor intrusion is being addressed through implementation of IRM1 and IRM3 (see Section 2.3.2), which requires the operation of the SSDS in perpetuity pursuant to this SMP, the environmental easement, and the Operations, Maintenance, and Monitoring Plan (OM&M Plan) appended to this SMP.

Tables 3a and 3b summarize the SVI sampling results compared to NYSDOH Guidance Matrices for Newport (northern tenant space) and JML (southern tenant space), respectively. Figure 8 depicts the sampling results for the area of SVI concern that required mitigation: JML (southern) tenant space. The general area of the building footprint in the southern tenant space which requires an EC for mitigating SVI, and which is serviced by the SSDS, are also depicted on Figure 8.

Institutional and Engineering Control Plan

3.0 INSTITUTIONAL AND ENGINEERING CONTROL PLAN

3.1 General

Since remaining contamination exists at the Site, Institutional Controls (ICs) and Engineering Controls (ECs) are required to protect human health and the environment. This IC/EC Plan describes the procedures for the implementation and management of all IC/ECs at the Site. The IC/EC Plan is one component of the SMP and is subject to revision by the NYSDEC.

This plan provides:

- A description of all IC/ECs on the Site;
- The basic implementation and intended role of each IC/EC;
- A description of the key components of the ICs set forth in the Environmental Easement;
- A description of the controls to be evaluated during each required inspection and periodic review;
- A description of plans and procedures to be followed for implementation of IC/ECs, such as the implementation of the EWP (as provided in Appendix D) for the proper handling of remaining contamination that may be disturbed during maintenance or redevelopment work on the Site; and
- Any other provisions necessary to identify or establish methods for implementing the IC/ECs required by the site remedy, as determined by the NYSDEC.

The current owner, and all future owners, are required to make arrangements with any existing tenants to implement this SMP and perform required operations and maintenance work.

3.2 Institutional Controls

A series of ICs is required by the Decision Document to: (1) implement, maintain and monitor EC systems; (2) prevent future exposure to remaining contamination; and, (3) limit the use and development of the Site to Commercial/Industrial Uses only. Adherence to these ICs on the Site is required by the Environmental Easement and will be implemented under this SMP. ICs

Institutional and Engineering Control Plan

identified in the Environmental Easement may not be discontinued without an amendment to or extinguishment of the Environmental Easement. The IC boundaries are depicted on the Environmental Easement (Appendix A). These ICs are:

- 1. The property may be used for Commercial or Industrial use;
- 2. All ECs must be operated and maintained as specified in this SMP;
- 3. All ECs must be inspected at a frequency and in a manner defined in the SMP;
- 4. The use of groundwater underlying the property is prohibited without necessary water quality treatment as determined by the NYSDOH or the Monroe County Department of Health to render it safe for use as drinking water or for industrial purposes, and the user must first notify and obtain written approval to do so from the Department;
- 5. Groundwater and other environmental or public health monitoring must be performed as defined in this SMP;
- 6. Data and information pertinent to site management must be reported at the frequency and in a manner as defined in this SMP;
- 7. All future activities that will disturb remaining contaminated material must be conducted in accordance with this SMP;
- 8. Monitoring to assess the performance and effectiveness of the remedy must be performed as defined in this SMP;
- 9. Operation, maintenance, monitoring, inspection, and reporting of any mechanical or physical component of the remedy shall be performed as defined in this SMP;
- 10. Access to the Site must be provided to agents, employees or other representatives of the State of New York with reasonable prior notice to the property owner to assure compliance with the restrictions identified by the Environmental Easement;
- 11. The potential for vapor intrusion must be evaluated for any future buildings developed within the Site property boundary, and any potential impacts that are identified must be monitored or mitigated; and
- 12. Vegetable gardens and farming on the Site are prohibited.

Institutional and Engineering Control Plan

3.3 Engineering Controls

3.3.1 Cover System

Exposure to remaining contamination at the Site is prevented by a Cover System which was previously existing or which was placed over the areas of the Site with residual impacts. This Cover System is comprised of the following existing and newly-installed components:

- Existing concrete building floor slab;
- Existing landscaped, vegetated, or lawn areas with at least one foot of non-impacted (except by iron, which is considered to be naturally occurring)soil overlying remaining soil with SCO exceedances;
- Existing paved parking lot areas; and
- A newly-installed engineered cover consisting of a one-foot thick cap of gabion stone over a demarcation layer for the eastern [formerly vegetated] property line area (RAOC-5) remediated during IRM4.

Figure 9 presents the location of the Cover System and applicable demarcation layers. The Excavation Work Plan (EWP) provided in Appendix D outlines the procedures required to be implemented in the event the Cover System is breached, penetrated or temporarily removed, and any underlying remaining contamination is disturbed. Procedures for the inspection of this cover are provided in the Monitoring and Sampling Plan included in Section 4.0 of this SMP. Any work conducted pursuant to the EWP must also be conducted in accordance with the procedures defined in a Health and Safety Plan (HASP, Appendix E) and associated Community Air Monitoring Plan (CAMP, Appendix F) prepared for the Site.

3.3.2 <u>Sub-Slab Depressurization System (SSDS)</u>

Soil vapor intrusion (SVI) is the migration of VOCs or semi-volatile organic compounds (SVOCs) from contaminated groundwater and soil into overlying buildings. SSDSs are designed

Institutional and Engineering Control Plan

to mitigate the migration of subsurface vapors into the interior of a structure by collecting and extracting vapors from beneath an interior, occupied space, safely routing the vapors around or through the interior, occupied space and discharging them above the roof line in a manner that does not lead to their recirculation in the building's HVAC operations.

In order to mitigate potential migration of CVOC-impacted soil vapor into the southern tenant space, an SSDS was designed and constructed in two phases:

- 1. From December 2018 through February 2019, the first phase of the SSDS was installed throughout the majority of the southern tenant space in the existing on-site building. The SSDS installation was performed concurrently with the RI as IRM1 in accordance with the Department-approved IRM Work Plan #1 (IRM WP#1) dated July 2018 (Stantec, 2018). The system became operational on March 1, 2019.
- 2. To address the March 2019 SVI sampling results, a second phase of the SSDS was designed for installation in the portion of the building permitted in 1954 in the southern tenant space. From December 2019 through January 2020 construction was completed in accordance with the Department-approved IRM Work Plan #3 (IRM WP#3) dated August 2019 (Stantec, 2019b). The expanded system became operational on January 16, 2020.

Figure 9 shows the location of the general area of the building footprint that is serviced by the SSDS. The goal of the SSDS is to maintain a minimum pressure differential vacuum of 0.002-inches of water column between the applicable sub-slab areas and the building interior space in portions of the building's footprint where the SSDS is installed. Details of the SSDS design, construction, and operation are provided in the SSDS CCR (Stantec, 2020b).

Procedures for operating and maintaining the SSDS are documented in the Operation and Maintenance Plan (Section 5.0 of this SMP). The SSDS has a built-in warning device to indicate that the system is not operating properly. If an alarm is activated, the tenant is required to notify the Site Owner and Engineer immediately to initiate necessary corrective measures. In the event

Institutional and Engineering Control Plan

that a warning device is activated, applicable maintenance and repairs will be conducted, as specified in the OM&M Manual, and the SSDS will be restarted. Operational problems will be noted in the PRR to be prepared for that reporting period.

As built drawings, signed and sealed by a professional engineer, are included in Appendix G.

3.3.3 <u>Criteria for Completion of Remediation/Termination of Remedial Systems</u> Generally, remedial processes are considered completed when monitoring indicates that the remedy has achieved the RAOs identified by the Decision Document. The framework for determining when remedial processes are complete is provided in Section 6.4 of NYSDEC DER-10.

3.3.3.1 Cover System

The composite Cover System is a permanent control and the quality and integrity of this system will be inspected at defined, regular intervals in accordance with this SMP in perpetuity.

3.3.3.2 Sub-Slab Depressurization System (SSDS)

The active SSDS will not be discontinued unless prior written approval is granted by the NYSDEC and the NYSDOH. In the event that monitoring data indicates that the SSDS may no longer be required, a proposal to discontinue the SSDS will be submitted by the remedial party to the NYSDEC and NYSDOH.

Monitoring and Sampling Plan

4.0 MONITORING AND SAMPLING PLAN

4.1 General

This Monitoring and Sampling Plan describes the measures for evaluating the overall performance and effectiveness of the remedy. This Monitoring and Sampling Plan may only be revised with the approval of the NYSDEC. Details regarding the sampling procedures, data quality usability objectives, analytical methods, etc. for all samples collected as part of site management for the Site are included in the Quality Assurance Project Plan (QAPP) provided in Appendix H.

This Monitoring and Sampling Plan describes the methods to be used for:

- Sampling and analysis of all appropriate media (e.g., indoor air, soil vapor, soils);
- Assessing compliance with applicable NYSDEC standards, criteria and guidance (SCGs), particularly Part 375 SCOs for soil; and
- Evaluating site information periodically to confirm that the remedy continues to be effective in protecting public health and the environment.

To adequately address these issues, this Monitoring and Sampling Plan provides information on:

- Sampling locations, protocol and frequency;
- Information on all designed monitoring systems;
- Analytical sampling program requirements; and
- Annual inspection and periodic certification.

Reporting requirements are provided in Section 7.0 of this SMP.

4.2 Site-wide Inspection

Site-wide inspections will be performed annually. Modification to the frequency or duration of the inspections will require approval from the NYSDEC. Site-wide inspections will also be

Monitoring and Sampling Plan

performed after all severe weather conditions that may affect ECs or monitoring devices. During these inspections, an inspection form will be completed as provided in Appendix I – Site Management Forms. The form will compile sufficient information to assess the following:

- Compliance with all ICs, including Site usage;
- An evaluation of the condition and continued effectiveness of ECs;
- General Site conditions at the time of the inspection;
- The site management activities being conducted including, where appropriate, confirmation sampling and a health and safety inspection; and
- Confirm that Site records are up to date.

Inspections of all remedial components installed at the Site will be conducted. A comprehensive Site-wide inspection will be conducted and documented according to the SMP schedule, regardless of the frequency of the Periodic Review Report (PRR). The inspections will determine and document the following:

- Whether ECs continue to perform as designed;
- If these controls continue to be protective of human health and the environment;
- Compliance with requirements of this SMP and the Environmental Easement;
- Achievement of remedial performance criteria; and
- If site records are complete and up to date; and

Reporting requirements are outlined in Section 7.0 of this plan.

Inspections will also be performed in the event of an emergency. If an emergency, such as a natural disaster or an unforeseen failure of any of the ECs occurs that reduces or has the potential to reduce the effectiveness of ECs in place at the site, verbal notice to the NYSDEC must be given by noon of the following day. In addition, an inspection of the site will be conducted within 5 days of the event to verify the effectiveness of the IC/ECs implemented at the site by a qualified environmental professional, as determined by the NYSDEC. Written confirmation

Monitoring and Sampling Plan

must be provided to the NYSDEC within 7 days of the event that includes a summary of actions taken, or to be taken, and the potential impact to the environment and the public.

4.3 Treatment System Monitoring and Sampling

4.3.1 <u>Remedial System Monitoring</u>

Monitoring of the SSDS will be performed on a routine basis, as described in Section 5.0. Modification to the frequency or monitoring requirements will require approval from the NYSDEC. A visual inspection of the complete system will be conducted during each monitoring event. Unscheduled inspections and/or sampling may take place when a suspected failure of the SSDS has been reported or an emergency occurs that is deemed likely to affect the operation of the system.

4.3.2 Remedial System Sampling

Routine SSDS sampling is not required.

Operation and Monitoring Plan

5.0 OPERATION AND MONITORING PLAN

5.1 General

This Operation and Monitoring Plan provides a brief description of the measures necessary to operate and maintain the mechanical components of the remedy selected for the Site. This Operation and Monitoring Plan:

- Includes the procedures necessary to allow individuals unfamiliar with the Site to operate and maintain the SSDS; and
- Will be updated periodically to reflect changes in Site conditions or the manner in which the SSDS is operated and maintained.

Further detail regarding the Operation and Monitoring Plan is provided in the OM&M Manual, which is presented in Appendix G. A copy of the OM&M Manual, along with the complete SMP, is to be maintained at the Site. This Operation and Maintenance Plan is not to be used as a stand-alone document, but as a component document of this SMP.

5.2 SSDS Performance Criteria

Stantec designed an active SSDS in a series of two phases:

- 1. Phase One (IRM1) consisted of a network 19 suction cavities which penetrated the existing floor slab; the area coverage for Phase One is referred to as Zones 1-7.
- 2. Phase Two (IRM3) consisted of a network of 4 suction cavities, which also penetrated the existing floor slab; the area coverage for Phase Two is referred to as Zone 8.

The locations of these 23 suction cavities were based on radii of influence observed during subslab communication testing performed in August and September 2017, as well as the spatial restrictions of the existing tenant in the southern portion of the building.

Operation and Monitoring Plan

For **Zones 1-7**, the system is designed to exhaust sub-slab vapor at a total rate of no more than 300 cfm per fan. Each fan is sized to operate at approximately 2 inches of water column (+/- 0.5 inches of water column; note that SSDS Zone 7 will be slightly higher than this range since there are only 2 suction cavities on this system).

For **Zone 8**, the system is designed to exhaust sub-slab vapor at a total rate of approximately 80 cfm. Both fans in series are sized to operate at approximately 5 inches of water column (+/- 0.5 inches of water column).

If vacuum is not detected greater than or equal to 0.002 inches of water column at all permanent sub-slab pressure monitoring points depicted on Drawing ENV-101 (see Appendix A of the OMM Manual, which is appended to this SMP as Appendix G), the SSDS may need to be adjusted or optimized due to changing subsurface conditions or other factors. System optimization can be completed by the following:

- Collect vacuum readings at all pressure monitoring points (PMPs) to determine which area(s) within zones may have excess vacuum. Identify risers associated with the excess vacuum and throttle the ball valves for identified risers down accordingly. Re-check all PMPs to determine if sufficient vacuum is present at each location.
- If Option 1 does not yield acceptable vacuum throughout the system, system optimization may be accomplished by selecting new fans for one or several of the eight SSDS piping networks.

Should the need for system optimization arise, contact the Owner and the Engineer immediately.

Additional details related to the system components and overall design are described in the OMM Manual (Appendix G of this SMP).

5.3 Operation and Maintenance of the SSDS

5.3.1 <u>System Start-Up and Shut-Down</u>

To turn the system on:

Operation and Monitoring Plan

- 1. Ensure that the appropriate breakers in the electrical panel boxes are ON with the help of a person qualified to open the electrical panels on-site.
- 2. Ensure the motor starter switches are in the ON position. These are located on the roof near each fan.
- 3. Confirm proper SSDS operation by applying the appropriate monitoring tasks outlined in Sections 5.3.2.1 and 5.3.2.2.

To turn the system off:

- 1. Put the motor starter switches in the OFF position. These are located on the roof and are mounted on the metal support structure for each of the exhaust fans;
- 2. Place the appropriate circuit breakers in the OFF position with the assistance of a person qualified to open the electrical panels on-site.

5.3.2 Routine System Operation and Maintenance

Under normal operating conditions, regular maintenance of the system is not required unless monitoring results indicate a significant change from normal operating conditions.

5.3.2.1 Monthly Monitoring

The following monitoring tasks will be completed by the Owner or building operator on a monthly basis:

- 1. Collect vacuum readings from the eight (8) manometer gauges located in the monitoring panels (see OMM Manual Appendix A, presented in Appendix G of this SMP). Record the measurements on the 820 Linden Avenue SSDS Monthly Monitoring Log provided in Appendix I.
 - a. For fans in Zones 1-7 (Fans #1-7), if the manometer needle rests all the way to the left on the zero bar and/or the low-pressure switch audible warning alarm is activated/the pilot light is red, confirm operation (either visually or audibly) of the corresponding fan at the roof level and notify the Owner and Engineer immediately in order to initiate necessary corrective measures.

Operation and Monitoring Plan

- b. For fans in Zone 8 (Fans #8 and #9), if the manometer needle sits below 4.8 in H₂O and/or the low-pressure switch audible warning alarm is activated/the pilot light is red, confirm operation (either visually or audibly) of the corresponding fan at the roof level and notify the Owner and Engineer immediately in order to initiate necessary corrective measures.
- 2. Indicate on the log sheet if the instrument panel pilot lights are green or red to verify that fans are operating correctly. If any of the pilot lights are off, notify the Owner and Engineer immediately in order to initiate necessary corrective measures.
- 3. Maintain panelboard schedules in the electrical panels that contain circuit breakers for SSDS roof-mounted fans.
- 4. With the assistance of a trained electrician, shut off the corresponding circuit breakers for the SSDS roof-mounted fans to confirm that the low-pressure switches provide both (1) an audible warning and (2) a visual warning via the pilot light changing from green to red. If any low-pressure switches do not work correctly, notify the Owner and Engineer immediately to initiate corrective measures. Once the test has been completed, ensure that corresponding circuit breakers have been turned back on.
- 5. Note any observed abnormalities, visual or auditory, with respect to normal system operating conditions on the log sheet.

5.3.2.2 Annual Monitoring

A complete system evaluation will be performed on an annual basis by the Engineer retained by the Owner/building operator. The following tasks will be completed as part of this evaluation:

- 1. Complete that month's monthly monitoring tasks outlined in Section 5.3.2.1 above, recording on the 820 Linden Avenue SSDS Annual Monitoring Log provided in Appendix I. Results of the other monthly events performed by the Owner or building operator will also be reviewed.
- 2. Using a micromanometer, obtain vacuum readings from the 23 sub-slab pressure monitoring points (see OMM Manual Appendix A, presented in Appendix G of this SMP). Ensure that the micromanometer has been calibrated by the manufacturer within one year of its use. If any of the sub-slab pressure monitoring points or well boxes are damaged, take measures for corrective action.

Operation and Monitoring Plan

- 3. Inspect the entire finished floor slab for cracks, new penetrations, or other potential leaks. Perform smoke testing as necessary to assess the leakage potential of suspect locations.
- 4. Inspect the fans and low-pressure switches (audible warning/visual pilot light alarms) and note any abnormal conditions such as hot fan housings, vibrations or unusual noise.
- 5. If the roof is accessible and safe to be on (e.g. not covered with snow or ice), make note of any condensation occurring on the SSDS exhaust piping. Visually inspect the ½" by ½" hot dipped galvanized mesh on the exhaust stacks to verify there are no obstructions to exhaust flow.

5.3.3 System Monitoring Devices and Alarms

The SSDS has a built-in warning device to indicate that the system is not operating properly. In the event that a warning device is activated, applicable maintenance and repairs will be conducted, as specified in the Operation and Maintenance Plan, and the SSDS will be restarted. Operational problems will be noted in the PRR to be prepared for that reporting period.

The system is monitored by several Radonaway Checkpoint IIa low-pressure switches, which each have two pilot lights. If the system is operating correctly, a green light should be illuminated. The low-pressure switches also have an audible warning alarm. The goal of the low-pressure switches is to monitor the vacuum being produced by the roof-mounted fans. The location of the low-pressure switches and other design components of the SSDS are detailed in the OMM Plan (Appendix G).

For **Zones 1-7**, when the fans are creating greater than 0.25 inches of water column pressure differential, the audible/visual alarm will not be activated, and the green pilot light will be illuminated. If the pressure differential in the SSDS piping drops below 0.25 inches of water column pressure differential, the audible alarm will be activated, and the red pilot light will become illuminated.

For **Zone 8**, when the fans are creating greater than 4.8 inches of water column pressure differential, the audible/visual alarm will not be activated, and the green pilot light will be illuminated. If the pressure differential in the SSDS piping drops below 4.8 inches of water

Operation and Monitoring Plan

column pressure differential, the audible alarm will be activated, and the red pilot light will become illuminated.

Periodic Assessments/Evaluations

6.0 PERIODIC ASSESSMENTS/EVALUATIONS

6.1 Climate Change Vulnerability Assessment

Increases in both the severity and frequency of storms/weather events, an increase in sea level elevations along with accompanying flooding impacts, shifting precipitation patterns and wide temperature fluctuation, resulting from global climactic change and instability, have the potential to significantly impact the performance, effectiveness and protectiveness of a given site and associated remedial systems. Vulnerability assessments provide information so that the Site and associated remedial systems are prepared for the impacts of the increasing frequency and intensity of severe storms/weather events and associated flooding.

A formal vulnerability assessment of the Site and remedial systems has not been performed. The Site is not considered to be highly vulnerable to future severe storms/weather events associated with climate change, based on the following:

- The Site is not located along a coastline or within a flood hazard area as determined by the Federal Emergency Management Agency (FEMA, 2008). The nearest flood zones are located approximately 2,800 ft to the northeast (Irondequoit Creek) and northwest (Allen Creek).
- Should significant rain events occur, it is anticipated that the existing Site drainage would mitigate potential building flooding given the parking lot storm drain, roof outfall system, and sandy soils promoting infiltration. No indications of significant erosion at the Site have been observed.
- The one-story building is constructed with a concrete slab and generally either concrete masonry unit or sheet rock walls. Based on the construction date and indicated materials, the building is not likely to be highly susceptible to significant wind or storm damage. Additionally, the roof fans have weather resistant housings and are designed to be fully exposed to the weather.
- The SSDS is powered by the building's electric system. If there was a power outage, the SSDS would function on a reduced efficiency in a passive mode. When the power

Periodic Assessments/Evaluations

returns, the fans will automatically restart as there is no required restart procedure. In such cases of temporary power outage and passive SSDS operations, it is assumed that the exposure risk to workers would be lower as the facility would not be operating normally under a power outage situation.

- No spill or potential contaminant releases resulting from severe weather events are an issue for this Site as the remedial system addresses soil vapor intrusion and does not manage solids or liquids.

Should Site conditions change such that any of the above reasons are no longer applicable, a formal vulnerability assessment may be considered, but none is proposed at this time.

6.2 Green Remediation Evaluation

NYSDEC's DER-31 Green Remediation requires that green remediation concepts and techniques be considered during all stages of the remedial program including site management, with the goal of improving the sustainability of the cleanup and summarizing the net environmental benefit of any implemented green technology. This section of the SMP provides a summary of any green remediation evaluations to be completed for the Site during site management, and as reported in the PRR.

6.2.1 Timing of Green Remediation Evaluations

For major remedial system components, green remediation evaluations and corresponding modifications will be undertaken at any time that the Project Manager feels appropriate, e.g. during significant maintenance events or in conjunction with storm recovery activities.

Modifications resulting from green remediation evaluations will be routinely implemented and scheduled to occur during planned/routine operation and maintenance activities. Reporting of these modifications will be presented in the PRR.

Periodic Assessments/Evaluations

6.2.2 Remedial Systems

Remedial systems will be operated properly considering the current Site conditions to conserve materials and resources to the greatest extent possible. Consideration will be given to operating rates and use of consumables. Spent materials will be sent for recycling, as appropriate.

6.2.3 <u>Building Operations</u>

Structures including buildings and sheds will be operated and maintained to provide for the most efficient operation of the remedy, while minimizing energy, waste generation and water consumption.

6.2.4 Frequency of System Checks, Sampling, and Other Periodic Activities

Transportation to and from the Site and use of consumables in relation to visiting the Site in order to conduct system checks and or collect samples and shipping samples to a laboratory for analyses have direct and/or inherent energy costs. The schedule and/or means of these periodic activities have been prepared so that these tasks can be accomplished in a manner that does not impact remedy protectiveness but reduces expenditure of energy or resources.

6.2.5 Metrics and Reporting

As discussed in Section 7.0 and as shown in Appendix I – Site Management Forms, information on energy usage, solid waste generation, transportation and shipping, water usage and land use and ecosystems will be recorded to facilitate and document consistent implementation of green remediation during site management and to identify corresponding benefits; a set of metrics has been developed.

Reporting Requirements

7.0 REPORTING REQUIREMENTS

7.1 Site Management Reports

All site management inspection, maintenance and monitoring events will be recorded on the appropriate site management forms provided in Appendix I. These forms are subject to NYSDEC revision.

All applicable inspection forms and other records, including media sampling data and system maintenance reports, generated for the Site during the reporting period will be provided in electronic format to the NYSDEC in the PRR, described in Section 7.2.All interim monitoring/inspections reports will include, at a minimum:

- Date of event or reporting period;
- Name, company, and position of person(s) conducting monitoring/inspection activities;
- Description of the activities performed;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents noted (included either on the checklist/form or on an attached sheet);
- Type of samples collected (e.g., sub-slab vapor, indoor air, outdoor air, etc);
- Copies of all field forms completed (e.g., well sampling logs, chain-of-custody documentation, etc.);
- Sampling results in comparison to appropriate standards/criteria;
- A figure illustrating sample type and sampling locations;
- Copies of all laboratory data sheets and the required laboratory data deliverables required for all points sampled (to be submitted electronically in the NYSDECidentified format);
- Any observations, conclusions, or recommendations; and

Reporting Requirements

• A determination as to whether contaminant conditions have changed since the last reporting event.

Routine maintenance event reporting forms will include, at a minimum:

- Date of event;
- Name, company, and position of person(s) conducting maintenance activities;
- Description of maintenance activities performed;
- Any modifications to the system;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents noted (included either on the checklist/form or on an attached sheet); and,
- Other documentation such as copies of invoices for maintenance work, receipts for replacement equipment, etc., (attached to the checklist/form).

Non-routine maintenance event reporting forms will include, at a minimum:

- Date of event;
- Name, company, and position of person(s) conducting non-routine maintenance/repair activities;
- Description of non-routine activities performed;
- Where appropriate, color photographs or sketches showing the approximate location of any problems or incidents (included either on the form or on an attached sheet); and
- Other documentation such as copies of invoices for repair work, receipts for replacement equipment, etc. (attached to the checklist/form).

Data will be reported in digital format as determined by the NYSDEC. Currently, data is to be supplied electronically and submitted to the NYSDEC EQuISTM database in accordance with the requirements found at this link http://www.dec.ny.gov/chemical/62440.html.

Reporting Requirements

7.2 Periodic Review Report

A Periodic Review Report (PRR) will be submitted to the Department beginning eighteen (18) months after the Certificate of Completion is issued. After submittal of the initial PRR, the next PRR shall be submitted annually to the Department or at another frequency as may be required by the Department. In the event that the Site is subdivided into separate parcels with different ownership, a single PRR will be prepared that addresses the Site described in the Environmental Easement (Appendix A). The report will be prepared in accordance with NYSDEC's DER-10 and submitted within 30 days of the end of each certification period. If needed, media sampling results will also be incorporated into the PRR. The report will include:

- Identification, assessment and certification of all ECs/ICs required by the remedy for the Site.
- Results of the required annual Site inspections and severe condition inspections, if applicable.
- All applicable site management forms and other records generated for the Site during the reporting period in the NYSDEC-approved electronic format, if not previously submitted.
- A summary of any discharge monitoring data and/or information generated during the reporting period, with comments and conclusions.
- As needed, data summary tables and graphical representations of COCs by media (groundwater, soil vapor, etc.), which include a listing of all compounds analyzed, along with the applicable standards, with all exceedances highlighted. These will include a presentation of past data as part of an evaluation of contaminant concentration trends.
- Results of all analyses, copies of all laboratory data sheets, and the required laboratory data deliverables for all samples collected during the reporting period will be submitted in digital format as determined by the NYSDEC. Currently, data is supplied electronically and submitted to the NYSDEC EQuISTM database in accordance with the requirements found at this link: http://www.dec.ny.gov/chemical/62440.html.
- A Site evaluation, which includes the following:

Reporting Requirements

- The compliance of the remedy with the requirements of the Site-specific Decision Document;
- The operation and the effectiveness of all treatment units, etc., including identification of any needed repairs or modifications;
- Any new conclusions or observations regarding Site contamination based on inspections or data generated by the Monitoring and Sampling Plan for the media being monitored;
- Recommendations regarding any necessary changes to the remedy and/or Monitoring and Sampling Plan; and
- The overall performance and effectiveness of the remedy.
- A performance summary for all treatment systems at the Site during the calendar year, including information such as:
 - The number of days the system operated for the reporting period;
 - A description of breakdowns and/or repairs along with an explanation for any significant downtime;
 - A description of the resolution of performance problems;
 - Alarm conditions;
 - Trends in equipment failure;
 - A summary of the performance, effluent and/or effectiveness monitoring; and
 - Comments, conclusions, and recommendations based on data evaluation.

7.2.1 Certification of Institutional and Engineering Controls

Following the last inspection of the reporting period, a Professional Engineer licensed to practice in NYS will prepare, and include in the PRR, the following certification as per the requirements of NYSDEC DER-10:

"For each institutional or engineering control identified for the Site, I certify that all of the following statements are true:

Reporting Requirements

- The inspection of the Site to confirm the effectiveness of the institutional and engineering controls required by the remedial program was performed under my direction:
- The institutional control and/or engineering control employed at this Site is unchanged from the date the control was put in place, or last approved by the Department;
- Nothing has occurred that would impair the ability of the control to protect the public health and environment;
- Nothing has occurred that would constitute a violation or failure to comply with any site management plan for this control;
- Access to the Site will continue to be provided to the Department to evaluate the remedy, including access to evaluate the continued maintenance of this control;
- If a financial assurance mechanism is required under the oversight document for the site, the mechanism remains valid and sufficient for the intended purpose under the document;
- *Use of the Site is compliant with the Environmental Easement;*
- The engineering control systems are performing as designed and are effective;
- No new information has come to my attention, including groundwater monitoring data from wells located at the Site boundary, if any, to indicate that the assumptions made in the qualitative exposure assessment of off-site contamination are no longer valid;
- To the best of my knowledge and belief, the work and conclusions described in this certification are in accordance with the requirements of the site remedial program and generally accepted engineering practices; and
- *The information presented in this report is accurate and complete.*

I certify that all information and statements in this certification form are true. I understand that a false statement made herein is punishable as a Class "A" misdemeanor, pursuant to Section 210.45 of the Penal Law. I, [name], of [business address], am certifying as [Owner/Remedial Party or Owner's/Remedial Party's Designated Site Representative]."

Reporting Requirements

Every five years the following certification will be added:

• The assumptions made in the qualitative exposure assessment remain valid.

The signed certification will be included in the PRR.

The PRR will be submitted, in electronic format, to the NYSDEC Central Office, Regional Office in which the site is located and the NYSDOH Bureau of Environmental Exposure Investigation. The PRR may need to be submitted in hard-copy format, as requested by the NYSDEC project manager.

7.3 Corrective Measures Work Plan

If any component of the remedy is found to have failed, or if the periodic certification cannot be provided due to the failure of an IC or EC, a Corrective Measures Work Plan will be submitted to the NYSDEC for approval. This plan will explain the failure and provide the details and schedule for performing work necessary to correct the failure. Unless an emergency condition exists, no work will be performed pursuant to the Corrective Measures Work Plan until it has been approved by the NYSDEC.

References

8.0 REFERENCES

ERM, 2004	Results of Phase II Site Assessment Activities, Spectronic Facility, 820 Linden Avenue, Pittsford, New York. January 13, 2004.
FEMA, 2008	National Flood Insurance Program (NFIP), Flood Insurance Rate Map for Monroe County, New York, Map Numbers: 36055C0357G and 36055C0376G. August 28, 2008.
Freeze and Cherry, 1979	Groundwater. Prentice Hall, Englewood Cliffs, NJ. 1979.
GZA, 1995	Site Assessment and Operations Audit, Milton Roy Analytical Products Division, 820 Linden Avenue, Rochester, New York. June 1995.
LaBella, 2005	Phase II Environmental Site Assessment: Supplemental Passive Soil Gas Survey. June 2005.
NYSDEC, 1998	Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1. June 1998 (April 2000 and June 2004 addenda).
NYSDEC, 2006	6NYCRR Part 375 Environmental Remediation Programs. December 14, 2006.
NYSDEC, 2010a	Technical Guidance for Site Investigation and Remediation (DER-10), May 3, 2010.
NYSDEC, 2010b	Soil Cleanup Guidance, Commissioner's Policy CP-51. October 21, 2010.
NYS Geologic Survey, 1970	Geologic Map of New York, Finger Lakes Sheet, Map and Chart Series #15, March 1970.
NYS Geologic Survey, 1986	Surficial Geologic Map of New York, Finger Lakes Sheet, Map and Chart Series #40, 1986.
NYSDOH, 2006	Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York. October 2006.
NYSDOH, 2017	Soil Vapor Intrusion Updates, May 2017: Updates to Soil Vapor/Indoor Air Decision Matrices. Website:

References

https://health.ny.gov/environmental/indoors/vapor_intrusion/update.htm, accessed 7/26/2017.
Phase I Environmental Site Assessment, 820 Linden Avenue, Town of Pittsford, Monroe County, New York. September 2017.
Limited Phase II Environmental Site Assessment for 820 Linden Avenue, Pittsford, New York. September 2017.
Remedial Investigation Work Plan, B + L Site, 820 Linden Avenue, Pittsford, Monroe County, New York. September 2017.
IRM Work Plan, 820 Linden Ave Site, Pittsford, New York, Site # C828200. July 31, 2018.
Revised Limited Supplemental Remedial Investigation Work Plan, Brownfield Cleanup Program Site #C828200, 820 Linden Avenue, Pittsford, Monroe County, New York. February 21, 2019.
IRM Work Plan #3 – Sub-Slab Depressurization System Extension in the 1954 Construction Area, 820 Linden Ave Site, Pittsford, New York, Site # C828200. August 12, 2019.
Revised Limited Supplemental Remedial Investigation Work Plan #2, Brownfield Cleanup Program Site #C828200, 820 Linden Avenue, Pittsford, Monroe County, New York. March 19, 2020.
Revised Interim Remedial Measures #1 and #3 Construction Completion Report, 820 Linden Ave Site, Pittsford, New York, BCP Site # C828200. August 26, 2020.
Revised Interim Remedial Measure Work Plan #2, 820 Linden Ave BCP Site #828200, 820 Linden Avenue, Pittsford, Monroe County, New York. April 13, 2020.
Revised Interim Remedial Measure Work Plan #4 – Surface Soil Cap, 820 Linden Ave BCP Site #828200, 820 Linden Avenue, Pittsford, Monroe County, New York. June 15, 2020.
REVISED Remedial Investigation Report, 820 Linden Ave Brownfield Cleanup Program Site #C828200, 820 Linden Avenue, Pittsford, Monroe County, New York. August 18, 2020.

References

Stantec, 2020f	Alternatives Analysis Report, 820 Linden Ave Brownfield Cleanup Program Site #C828200, 820 Linden Avenue, Pittsford, Monroe County, New York. August 19, 2020.
Stantec, 2020g	Interim Remedial Measures #2 and #4 Construction Completion Report, 820 Linden Ave Site, Pittsford, New York, BCP Site # C828200. August 20, 2020.
USGS, 1985	Geohydrology of the Irondequoit Creek Basin Near Rochester, New York, Water Resources Investigation Report 84-4259, Yager, et al, 1985.

TABLES

Table 2 Water Level Summary

Site Management Plan 820 Linden Ave Site, BCP #C828200 820 Linden Avenue, Pittsford, NY

			10/1/2018 1/23/2019			7/17/2020			
Well ID	Ground Elevation (ft AMSL)	TOC Elevation (ft AMSL)	Water Level (ft BTOC)	Water Elevation (ft AMSL)	Water Level (ft BTOC)	Water Elevation (ft AMSL)	Water Level (ft BTOC)	Water Elevation (ft AMSL)	
MW-1	418.02	417.59	53.73	363.86	53.85	363.74	55.74	361.85	
MW-2	422.41	422.05	59.01	363.04	59.09	362.96	60.02	362.03	
MW-3 ¹	421.76	421.52	72.37		72.78		73.49		
MW-4	421.51	421.22	60.78	360.44	60.62	360.60	61.73	359.49	
MW-5	422.46	422.21	61.60	360.61	61.65	360.56	62.59	359.62	
B/MW-101	415.59	415.23	60.53	354.70	60.45	354.78	ng		
B/MW-102	422.02	421.50	54.59	366.91	54.72	366.78	55.53	365.97	
B/MW-103	416.49	416.17	50.82	365.35	51.02	365.15	51.82	364.35	
B/MW-104	414.77	414.42	49.01	365.41	49.15	365.27	49.90	364.52	
MW-104S	414.85	414.45	dry	-	dry	-	dry		
B/MW-105	421.42	420.77	40.73	380.04	41.08	379.69	41.58	379.19	
MW-110	422.16	421.75					49.90	371.85	
MW-111	422.52	421.99	² 46.15 375.84						
MW-112	422.41	421.97					46.42	375.55	

Notes:

Abbreviations:

B/MW = soil boring/monitoring well

ft AMSL = feet above mean sea level (NAVD 88)

ft BTOC = feet below top of [inner] casing

IRM2 = Interim Remedial Measures #2 (Stantec, 2020)

ng = not gauged; well inaccessible due to overlying soil stockpile

MW = monitoring well

NAVD 88 = North American Vertical Datum of 1988

RI = Remedial Investigation (Stantec, 2018)

¹ MW-3 is an angled well. As such, measuring an accurate depth to water and calculating a valid groundwater elevation is not feasible.

² Monitoring wells installed as part of IRM2 in July 2020, after the 2018-2019 RI gauging events.

Table 3a

Comparison of Sub-Slab Vapor and Indoor Air Results to NYSDOH Guidance Matrices (Newport)

Site Management Plan 820 Linden Ave Site, BCP #C828200 820 Linden Avenue, Pittsford, NY

Sample Location Sample Date Sample ID Sample Description Sampling Company Laboratory Laboratory Work Order Laboratory Sample ID Sample Type	Units	IA-1 14-Apr-16 IA-1 Indoor Air STANTEC TALBUR 200-33091-1 200-33091-13	SS-1 14-Apr-16 SS-1 Sub-Slab Soil Vapor STANTEC TALBUR 200-33091-1 200-33091-1	Matrix and Recommended Action ¹	IA-2 14-Apr-16 IA-2 Indoor Air STANTEC TALBUR 200-33091-14	SS-2 14-Apr-16 SS-2 Sub-Slab Soil Vapor STANTEC TALBUR 200-33091-1 200-33091-2	Matrix and Recommended Action ¹	IA-3 14-Apr-16 IA-3 Indoor Air STANTEC TALBUR 200-33091-15	SS-3 14-Apr-16 SS-3 Sub-Slab Soil Vapor STANTEC TALBUR 200-33091-1 200-33091-3	Matrix and Recommended Action ¹	IA-4 14-Apr-16 IA-4 Indoor Air STANTEC TALBUR 200-33091-16	SS-4 14-Apr-16 SS-4 Sub-Slab Soil Vapor STANTEC TALBUR 200-33091-1 200-33091-4	Matrix and Recommended Action ¹	IA-4 18-Jan-17 IA-4 Indoor Air STANTEC TALBUR 200-37082-1 200-37082-7	SS-4 18-Jan-17 SS-4 Sub-Slab Soil Vapor STANTEC TALBUR 200-37082-1 200-37082-1	Matrix and Recommended Action ¹	IA-4 31-Mar-19 IA-4 Indoor Air STANTEC TALBUR 200-48131-1 200-48131-1	SS-4 31-Mar-19 SS-4 Sub-Slab Soil Vapor STANTEC TALBUR 200-48131-1 200-48131-2	Matrix and Recommended Action ¹
Volatile Organic Compounds																			
Carbon Tetrachloride (Tetrachloromethane) ²	μg/m3	0.44	0.46	No further action	0.50 U	0.26	No further action	0.53	0.48	No further action	0.56	0.34	No further action	0.39 J	0.36	No further action	0.28	0.31	No further action
Dichloroethene, 1,1- ²	μg/m3	0.79 U	0.79 U	No further action	1.6 U	0.79 U	R&P action	0.79 U	0.32 J	No further action	0.79 U	0.79 U	No further action	1.3 U	0.79 U	R&P action	0.14 U	0.14 U	No further action
Dichloroethene, cis-1,2-2	μg/m3	0.79 U	0.79 U	No further action	1.6 U	0.79 U	R&P action	0.79 U	0.79 U	No further action	0.79 U	0.79 U	No further action	1.3 U	0.79 U	R&P action	0.20 U	0.20 U	No further action
Methylene Chloride (Dichloromethane) ³	μg/m3	2.6	2.4	No further action	1.3 J	0.62 J	No further action	1.2 J	1.7 U	No further action	1.6 J	14	No further action	46	570 D	Mitigate	1.7 U	1.7 U	No further action
Tetrachloroethene (PCE) ³	μg/m3	1.4 U	1.8	No further action	2.7 U	0.25 J	No further action	1.4 U	1.9	No further action	1.4 U	2.0	No further action	0.29 J	25	No further action	1.4 U	0.54 J	No further action
Trichloroethane, 1,1,1-3	μg/m3	1.1 U	1.5	No further action	2.2 U	0.75 J	No further action	1.1 U	1.6	No further action	1.1 U	1.1	No further action	1.8 U	14	No further action	1.1 U	1.1 U	No further action
Trichloroethene (TCE) ²	μg/m3	0.21 U	0.21 U	No further action	0.43 U	0.21 U	No further action	0.21 U	0.60	No further action	0.21 U	12	Monitor	0.36 U	140	Mitigate	0.19 U	1.3	No further action
Vinyl Chloride ⁴	μg/m3	0.10 U	0.10 U	No further action	0.20 U	0.10 U	No further action	0.10 U	0.10 U	No further action	0.10 U	0.13	No further action	0.13 J	0.10 U	No further action	0.20 U	0.20 U	No further action

N	nt.	00	

Soil Vapor/Indoor Air Matrices A, B and C, Evaluating Soil Vapor Intrusion in the State of New York, May 2017, New York State Department of Health Center for Environmental Health Bureau of Environmental

Exposure Investigation
The following parameters are categorized as Matrix A: Trichloroethene (TCE),
cis-1,2-Dichloroethene (c12-DCE), 1,1-Dichloroethene (11-DCE), Carbon Tetrachloride

cis-1,2-Dichloroetmene (c12-DCE), 1,1-Dichloroetmene (11-DCE), Carbon Tetrachi
The following parameters are categorized as Matrix B: Tetrachloroethene (PCE),
1,1,1-Trichloroethane (111-TCA), Methylene Chloride
The following parameters are categorized as Matrix C: Vinyl Chloride
Measured concentration did not exceed the indicated standard.

Analyte was not detected at a concentration greater than the laboratory reporting limit. The laboratory reporting limit is utilized for comparison to NYSDOH matrices 0.03 U

for non-detect results.

D Sample results are obtained from a dilution; the surrogate or matrix spike recoveries

reported are calculated from diluted samples.
The reported result is an estimated value.

Indicates estimated non-detect.

Test America, South Burlington, VT TALBUR

No further action No additional actions are recommended to address human exposures.

R&P action

Mitigate

Mitigate

Mitigate

Mitigation is recommended to minimize current or potential exposures.

About the associated with soil vapor intrusion.

Monitor

Monitoring is recommended to determine if concentrations have changed and/or to evaluate temporary influences.

190500898 Page 1 of 2

Table 3a

Comparison of Sub-Slab Vapor and Indoor Air Results to NYSDOH Guidance Matrices (Newport)

Site Management Plan 820 Linden Ave Site, BCP #C828200 820 Linden Avenue, Pittsford, NY

	IA-5 14-Apr-16	SS-5 14-Apr-16		IA-5 18-Jan-17	SS-5 18-Jan-17		IA-5 31-Mar-19	SS-5 31-Mar-19		IA-6 14-Apr-16	SS-6 14-Apr-16		IA-6 18-Jan-17	SS-6 18-Jan-17		IA-13 31-Mar-19	SS-13 31-Mar-19	
	IA-5 Indoor Air			IA-5 Indoor Air			Indoor Air	Sub-Slab Soil Vapor		IA-6 Indoor Air			IA-6 Indoor Air	Sub-Slab Soil Vapor		IA-13 Indoor Air	Sub-Slab Soil Vapor	
Units	STANTEC TALBUR 200-33091-1 200-33091-17	STANTEC TALBUR 200-33091-1 200-33091-5	Matrix and Recommended Action ¹	STANTEC TALBUR 200-37082-1 200-37082-2	STANTEC TALBUR 200-37082-1 200-37082-3	Matrix and Recommended Action ¹	STANTEC TALBUR 200-48131-1 200-48131-3	STANTEC TALBUR 200-48131-1 200-48131-4	Matrix and Recommended Action ¹	STANTEC TALBUR 200-33091-1 200-33091-18	STANTEC TALBUR 200-33091-1 200-33091-6	Matrix and Recommended Action ¹	STANTEC TALBUR 200-37082-1 200-37082-4	STANTEC TALBUR 200-37082-1 200-37082-5	Matrix and Recommended Action ¹	STANTEC TALBUR 200-48131-1 200-48131-6	STANTEC TALBUR 200-48131-1 200-48131-5	Matrix and Recommended Action ¹
	-			ı			-									ı		
µg/m3 µg/m3 µg/m3 µg/m3 µg/m3 µg/m3 µg/m3	0.44 0.79 U 0.32 J 1.0 J 1.4 U 1.1 U 2.1	0.30 0.79 U 0.79 U 0.70 J 2.5 1.3 0.21 U	No further action No further action No further action No further action No further action No further action R&P action	0.37 0.79 U 0.79 U 6.4 0.19 J 1.1 U 0.21 U	0.30 0.79 U 0.79 U 0.83 J 2.5 2.0 0.21 U	No further action No further action No further action No further action No further action No further action No further action	0.29 0.14 U 0.20 U 1.9 1.4 U 1.1 U 0.19 U	0.21 J 0.14 U 0.20 U 0.73 J 1.1 J 1.3 0.19 U	No further action No further action No further action No further action No further action No further action	0.25 0.79 U 0.16 J 0.89 J 1.4 U 1.1 U 0.21	0.39 0.79 U 0.79 U 2.3 0.56 J 0.61 J 0.51	No further action No further action No further action No further action No further action No further action No further action	0.25 U 0.79 U 0.79 U 2.6 1.4 U 1.1 U 0.21 U	0.39 0.79 U 0.79 U 18 4.0 8.1 4.1	No further action No further action No further action No further action No further action No further action No further action	0.31 0.14 U 0.20 U 1.7 U 1.4 U 1.1 U 0.19 U	0.28 0.14 U 0.20 U 1.7 U 18 2.8 20	No further action No further action No further action No further action No further action No further action
	µg/m3 µg/m3 µg/m3 µg/m3 µg/m3 µg/m3	14-Apr-16 IA-5 Indoor Air STANTEC TALBUR 200-33091-17	Units 14-Apr-16 SS-5 Sub-Slab Soil Yapor STANTEC TALBUR 200-33091-17 200-33091-17 200-33091-5 200-5 20	14-Apr-16 14-Āpr-16 SS-5 Indoor Air Sub-Slab Soil Vapor STANTEC TALBUR 200-33091-1 200-33091-1 200-33091-5	14-Apr-16 14-Apr-16 SS-5 Indoor Air STANTEC TALBUR 200-33091-17 200-33091-5 200-33091-5	14-Apr-16 14-Apr-16 SS-5 Indoor Air SS-5 Sub-Slab Soil Vapor STANTEC TALBUR 200-33091-17 200-33091-5 Matrix Action 1	14-Apr-16 14-Apr-16 SS-5 Sub-Slab Soil Vapor STANTEC TALBUR 200-33091-1 200-33091-1 200-33091-1 200-33091-1 200-33091-1 200-33091-1 200-33091-1 200-33091-1 200-33091-1 200-33091-1 200-3	14-Apr-16 14-Apr-16 SS-5 Indoor Air SS-5 Sub-Slab Soil Vapor STANTEC TALBUR 200-33091-1 200-33091-1 200-33091-5 Matrix Action¹ 200-37082-1 200-37082-2 200-37082-2 200-37082-3 Matrix Action¹ 200-37082-1 200-37082-3 Matrix STANTEC TALBUR 200-37082-1 200-37082-1 200-37082-3 Action¹ 200-48131-3	14-Apr-16 14-Apr-16 SS-5 Indoor Air SS-5 Indoor Air Vapor STANTEC TALBUR 200-33091-1 200-33091-5 200-33091-5 Vapor STANTEC TALBUR 200-37082-1 200-37082-2 200-37082-2 200-37082-3 200-3708	14-Apr-16 14-Apr-16 14-Apr-16 SS-5 Indoor Air SS-5 Indoor Air STANTEC TALBUR 200-33091-17 200-33091-5 200-37082-1 200-37082-2 200-37082-3 20	14-Apr-16 14-Apr-16 14-Apr-16 18-Jan-17 18-J	14-Apr-16	14-Apr-16 14-A	14-Apr-16 14-A	14-Apr-16 14-Apr-16 15-5 14-Apr-16 1	14-Apr-16	14-Apr-16 14-A	14-Apr-16 14-A

Soil Vapor/Indoor Air Matrices A, B and C, Evaluating Soil Vapor Intrusion in the State of New York, May 2017, New York State Department of Health

Center for Environmental Health Bureau of Environmental

Exposure Investigation
The following parameters are categorized as Matrix A: Trichloroethene (TCE), cis-1,2-Dichloroethene (c12-DCE), 1,1-Dichloroethene (11-DCE), Carbon Tetrachloride

cis-1,2-Dichloroetmene (c12-DCE), 1,1-Dichloroetmene (11-DCE), Carbon Tetrachi
The following parameters are categorized as Matrix B: Tetrachloroethene (PCE),
1,1,1-Trichloroethane (111-TCA), Methylene Chloride
The following parameters are categorized as Matrix C: Vinyl Chloride
Measured concentration did not exceed the indicated standard.

15.2

Analyte was not detected at a concentration greater than the laboratory reporting limit. The laboratory reporting limit is utilized for comparison to NYSDOH matrices 0.03 U

for non-detect results.

Sample results are obtained from a dilution; the surrogate or matrix spike recoveries D

reported are calculated from diluted samples.
The reported result is an estimated value.

Indicates estimated non-detect. Test America, South Burlington, VT TALBUR

No further action No additional actions are recommended to address human exposures.

190500898 Page 2 of 2

Table 3b

Comparison of Sub-Slab Vapor and Indoor Air Results to NYSDOH Guidance Matrices (JML Optical)

Site Management Plan 820 Linden Ave Site, BCP #C828200 820 Linden Avenue, Pittsford, NY

Sample Location Sample Date Sample ID Sample Description Sampling Company Laboratory Laboratory Work Order Laboratory Sample ID Sample Type	Units	IA-7 14-Apr-16 IA-7 Indoor Air STANTEC TALBUR 200-33091-1 200-33091-19	SS-7 14-Apr-16 SS-7 Sub-Slab Soil Vapor STANTEC TALBUR 200-33091-1 200-33091-7	Matrix and Recommended Action ¹	IA-7 14-Apr-16 IA-DUP-1 Indoor Air STANTEC TALBUR 200-33091-1 200-33091-26 Field Duplicate	SS-7 14-Apr-16 SS-DUP-1 Sub-Slab Soil Vapor STANTEC TALBUR 200-33091-1 200-33091-25 Field Duplicate	Matrix and Recommended Action ¹	IA-7 31-Mar-19 IA-7 Sub-Slab Soil Vapor STANTEC TALBUR 200-48131-1 200-48131-9	SS-7 31-Mar-19 SS-7 Sub-Slab Soil Vapor STANTEC TALBUR 200-48131-1 200-48131-10	Matrix and Recommended Action ¹	IA-8 14-Apr-16 IA-8 Indoor Air STANTEC TALBUR 200-33091-1 200-33091-20	SS-8 14-Apr-16 SS-8 Sub-Slab Soil Vapor STANTEC TALBUR 200-33091-1 200-33091-8	Matrix and Recommended Action ¹	IA-9 14-Apr-16 IA-9 Indoor Air STANTEC TALBUR 200-33091-1 200-33091-21	SS-9 14-Apr-16 SS-9 Sub-Slab Soil Vapor STANTEC TALBUR 200-33091-1 200-33091-9	Matrix and Recommended Action ¹	IA-10 14-Apr-16 IA-10 Indoor Air STANTEC TALBUR 200-33091-1 200-33091-22	SS-10 14-Apr-16 SS-10 Sub-Slab Soil Vapor STANTEC TALBUR 200-33091-10	Matrix and Recommended Action ¹
Volatile Organic Compounds			•								•			•			•	•	
Carbon Tetrachloride (Tetrachloromethane) ²	μg/m3	0.50 U	0.40	No further action	0.47 J	0.40	No further action	0.29	0.35	No further action	3.0 U	2.5 U	R&P action	1.5 U	0.38	R&P action	2.8 U	0.41 J	R&P action
Dichloroethene, 1,1-2	μg/m3	1.6 U	0.79 U	R&P action	1.6 U	0.79 U	R&P action	0.14 U	0.14 U	No further action	9.6 U	7.9 U	Mitigate	4.8 U	0.79 U	R&P action	8.9 U	1.6 U	R&P action
Dichloroethene, cis-1,2-2	μg/m3	1.6 U	0.79 U	R&P action	1.6 U	0.79 U	R&P action	0.20 U	9.9	No further action	9.6 U	7.9 U	Mitigate	4.8 U	0.79 U	R&P action	8.9 U	1.6 U	R&P action
Methylene Chloride (Dichloromethane) ³	μg/m3	76	12	R&P action	99	12	R&P action	1.1 J	1.7 U	No further action		380	Mitigate	530	120	Mitigate	890	220	Mitigate
Tetrachloroethene (PCE) ³	μg/m3	2.7 U	1.9	No further action	2.7 U	1.8	No further action	1.4 U	3.7	No further action	16 U	71	R&P action	8.2 U	16	No further action	15 U	64	R&P action
Trichloroethane, 1,1,1-3	μg/m3	2.2 U	0.91 J	No further action	2.2 U	0.91 J	No further action	1.1 U	0.79 J	No further action	13 U	4.4 J	R&P action	6.6 U	5.7	No further action	12 U	9.3	R&P action
Trichloroethene (TCE) ²	μg/m3	0.43 U	0.21 U	No further action	0.43 U	0.21 U	No further action	0.19 U	80	Mitigate	2.6 U	59	Mitigate	1.3 U	3.1	R&P action	2.4 U	71	Mitigate
Vinyl Chloride ⁴	μg/m3	0.20 U	0.10 U	No further action	0.20 U	0.10 U	No further action	0.20 U	2.6 J+	No further action	1.2 U	1.0 U	R&P action	0.62 U	0.10 U	R&P action	1.1 U	0.20 U	R&P action

Notes:	

Soil Vapor/Indoor Air Matrices A, B and C, Evaluating Soil Vapor Intrusion in the State of New York, May 2017, New York State Department of Health

Center for Environmental Health Bureau of Environmental

Center for Environmental Health Bureau of Environmental
Exposure Investigation
The following parameters are categorized as Matrix A: Trichloroethene (TCE),
cis-1,2-Dichloroethene (c12-DCE), 1,1-Dichloroethene (11-DCE), Carbon Tetrachloride
The following parameters are categorized as Matrix B: Tetrachloroethene (PCE),
1,1,1-Trichloroethane (111-TCA), Methylene Chloride
The following parameters are categorized as Matrix C: Vinyl Chloride
Measured concentration did not exceed the indicated standard.

Analyte was not detected at a concentration greater than the laboratory reporting limit. The laboratory reporting limit is utilized for comparison to NYSDOH matrices 0.03 U

for non-detect results.

The reported result is an estimated value.

The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased high.

Indicates estimated non-detect.

Test America, South Burlington, VT TALBUR

No further action No additional actions are recommended to address human exposures.

R&P action

Mitigate Mitigation is recommended to address numan exposures.

Mitigate Mitigation is recommended to minimize current or potential exposures.

associated with soil vapor intrusion.

Monitor Monitoring is recommended to determine if concentrations have changed and/or to evaluate temporary influences.

190500898 Page 1 of 2

Table 3b

Comparison of Sub-Slab Vapor and Indoor Air Results to NYSDOH Guidance Matrices (JML Optical)

Site Management Plan 820 Linden Ave Site, BCP #C828200 820 Linden Avenue, Pittsford, NY

Sample Location	1	IA-11	SS-11		IA-12	SS-12		IA-14	SS-14		IA-14	SS-14	
Sample Date		14-Apr-16	14-Apr-16		14-Apr-16	14-Apr-16		31-Mar-19	31-Mar-19		31-Mar-19	31-Mar-19	
Sample ID		IA-11	SS-11		IA-12	SS-12		IA-14	SS-14		IA-DUP	SS-DUP	
Sample Description		Indoor Air	Sub-Slab Soil Vapor		Indoor Air	Sub-Slab Soil Vapor		Indoor Air	Sub-Slab Soil Vapor		Indoor Air	Sub-Slab Soil Vapor	
Sampling Company		STANTEC	STANTEC	Matrix	STANTEC	STANTEC	Matrix	STANTEC	STANTEC	Matrix	STANTEC	STANTEC	Matrix
Laboratory		TALBUR	TALBUR	and	TALBUR	TALBUR	and	TALBUR	TALBUR	and	TALBUR	TALBUR	and
Laboratory Work Order		200-33091-1	200-33091-1	Recommended	200-33091-1	200-33091-1	Recommended	200-48131-1	200-48131-1	Recommended	200-48131-1	200-48131-1	Recommended
Laboratory Sample ID		200-33091-23	200-33091-11	Action ¹	200-33091-24	200-33091-12	Action ¹	200-48131-7	200-48131-8	Action ¹	200-48131-11	200-48131-12	Action ¹
Sample Type	Units										Field Duplicate	Field Duplicate	
Volatile Organic Compounds		_											
Carbon Tetrachloride (Tetrachloromethane) ²	μg/m3	2.5 U	1.5 U	R&P action	2.5 U	0.66 J	R&P action	0.29	0.22 U	No further action	0.29	0.88 U	No further action
Dichloroethene, 1,1-2	μg/m3	7.9 U	4.8 U	R&P action	7.9 U	2.4 U	R&P action	0.14 U	0.14 U	No further action	0.14 U	0.56 U	No further action
Dichloroethene, cis-1,2-2	μg/m3	7.9 U	4.8 U	R&P action	7.9 U	2.4 U	R&P action	0.20 U	0.20 U	No further action	0.20 U	3.1	No further action
Methylene Chloride (Dichloromethane) ³	μg/m3	710	720	Mitigate	530	320	Mitigate	5.5	1.3 J	No further action	5.7	6.9 U	No further action
Tetrachloroethene (PCE) ³	μg/m3	14 U	89	R&P action	14 U	100	Mitigate	1.4 U	12	No further action	1.4 U	13	No further action
Trichloroethane, 1,1,1-3	μg/m3	11 U	5.9 J	R&P action	11 U	3.3 U	R&P action	1.1 U	0.81 J	No further action	1.1 U	4.4 U	No further action
Trichloroethene (TCE) ²	μg/m3	2.1 U	79	Mitigate	2.1 U	160	Mitigate	0.19 U	0.45 J	No further action	0.19 U	22 J	No further action
Vinyl Chloride ⁴	ua/m3	1.0 U	0.62 U	R&P action	1.0 U	0.31 U	R&P action	0.20 U	0.20 U	No further action	0.20 U	1.1 J	No further action

ot	

Soil Vapor/Indoor Air Matrices A, B and C, Evaluating Soil Vapor Intrusion in the State of New York, May 2017, New York State Department of Health

Center for Environmental Health Bureau of Environmental

Center for Environmental Health Bureau of Environmental
Exposure Investigation
The following parameters are categorized as Matrix A: Trichloroethene (TCE),
cis-1,2-Dichloroethene (c12-DCE), 1,1-Dichloroethene (11-DCE), Carbon Tetrachloride
The following parameters are categorized as Matrix B: Tetrachloroethene (PCE),
1,1,1-Trichloroethane (111-TCA), Methylene Chloride
The following parameters are categorized as Matrix C: Vinyl Chloride
Measured concentration did not exceed the indicated standard.

Analyte was not detected at a concentration greater than the laboratory reporting limit. The laboratory reporting limit is utilized for comparison to NYSDOH matrices 0.03 U

for non-detect results.

The reported result is an estimated value.

The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased high.

Indicates estimated non-detect.

Test America, South Burlington, VT TALBUR

No further action No additional actions are recommended to address human exposures.

R&P action

Mitigate Mitigation is recommended to address numan exposures.

Mitigate Mitigation is recommended to minimize current or potential exposures.

associated with soil vapor intrusion.

Monitor Monitoring is recommended to determine if concentrations have changed and/or to evaluate temporary influences.

190500898 Page 2 of 2

			<u> </u>														
Sample Location				B-1	6	B-2	B-3	B-4	B-5	B-6	B-7	В	3-8	6	3-9	B-10	B-11
Sample Date				20-Jun-16	20-Jun-16	20-Jun-16	20-Jun-16	20-Jun-16	20-Jun-16	21-Jun-16	21-Jun-16	24-Jun-16	24-Jun-16	28-Jun-16	29-Jun-16	5-Jul-16	5-Jul-16
Sample ID				B-1	B-2	DUP-01	B-3	B-4	B-5	B-6	B-7	B-8 (3.5-4.5)	B-8 (60-61)	B-9 (23-24)	B-9 (85-86)	B-10 (3-4)	B-11 (8-9)
Sample Depth				4 - 5 ft	4 - 5 ft	4 - 5 ft	4 - 5 ft	4 - 5 ft	4 - 5 ft	4 - 5 ft	4 - 5 ft	3.5 - 4.5 ft	60 - 61 ft	23 - 24 ft	85 - 86 ft	3 - 4 ft	8 - 9 ft
Sampling Company				STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory				TAL 480-102053-1	TAL 480-102053-1	TAL 480-102053-1	TAL 480-102053-1	TAL 480-102053-1	TAL 480-102053-1	TAL 480-102053-1	TAL 480-102053-1	TAL 480-102302-1	TAL 480-102302-1	TAL 480-102302-1	TAL 480-102302-1	TAL 480-102705-1	TAL 480-102705-1
Laboratory Work Order Laboratory Sample ID				480-102053-1	480-102053-1	480-102053-7	480-102053-1	480-102053-1	480-102053-1	480-102053-1	480-102053-1	480-102302-1	480-102302-1	480-102302-1	480-102302-1	480-102705-1	480-102705-1
Sample Type	Units	NYSDEC-Part 375	NYSDEC CP-51	400-102000-1	400-102000-2	Field Duplicate	400-102000-0	400-102000-4	400-102000-0	400-102000-0	400-102000-0	400-102002-1	400-102002-2	400-102002-1	400-102010-1	400-102700-1	400-102700-2
						-											
General Chemistry Cyanide	mg/kg	27,AB 10,000,C 40,D	n/v	1.1 U	1.1 U	1.0 U	1.0 U	1.0 U	1.0 U	1.1 U	1.2 U	1.1 U	1.1 U	1.0 U	1.2 U	0.99 U	0.92 U
Metals	mg/kg	21; 10,000 _{e,1} 40;	100	1.10	1.10	1.0 0	1.00	1.00	1.00	1.10	1.20	1.10	1.10	1.0 0	1.2 0	0.55 0	0.52 0
Aluminum	malka	40 000 ABCD	40.000 EFG	40 000ABCDEFG	0.050	7.000	0.400	7.000	F 000	0.240.1	0.000	0.700	0.050	0.070 1	2.070	4.000	F 000
	mg/kg	10,000 _e ABCD	10,000 _a EFG	12,800 ^{ABCDEFG}	6,250	7,000	8,420	7,620	5,600	8,340 J	2,600	8,730	2,350	2,970 J	3,670	4,600	5,080
Antimony	mg/kg	10,000 _e ^{ABCD}	10,000 _a ^{EFG}	16.1 U	15.3 U	15.9 U	17.0 U	16.6 U	16.1 U	18.5 UJ	17.5 U	17.6 U	18.7 U	18.1 U	18.9 U	16.6 U	15.0 U
Arsenic	mg/kg	13 _n A 16 _g BCD	n/v	3.6	2.0 U	2.1 U	2.3 U	2.2 U	2.2 U	2.5 U	2.3 U	3.3	2.5 U	2.4 U	2.5 U	2.2 U	2.0
Barium	mg/kg	350 _n A 400 ^B 10,000 _e C 820 ^D	n/v	35.9	12.9	13.8	22.6	17.7	13.4	29.7	12.7	85.7	12.1	12.1	30.3	12.6	14.6
Beryllium	mg/kg	7.2 ^A 590 ^B 2,700 ^C 47 ^D	n/v	0.51	0.20 U	0.23	0.23 U	0.22 U	0.22 U	0.26	0.23 U	0.31	0.25 U	0.24 U	0.25 U	0.22 U	0.20
Cadmium	mg/kg	2.5 _n ^A 9.3 ^B 60 ^C 7.5 ^D	n/v	0.21 U	0.20 U	0.21 U	0.23 U	0.22 U	0.22 U	0.36	0.23 U	0.23 U	0.25 U	0.24 U	0.25 U	0.22 U	0.20 U
Calcium	mg/kg	10,000 _e ^{ABCD}	10,000 _a EFG	1,550	9,060 J	1,740 J	4,900	3,870	4,940	3,720 J	24,400 ^{ABCDEFG}	22,900 ^{ABCDEFG}	21,500 ^{ABCDEFG}	26,300 ^{ABCDEFG}	27,800 ^{ABCDEFG}	1,550	3,020
Chromium	mg/kg	30 _{n.l} A 1,500 _i B 6,800 _i C _{NS.a} D	n/v	14.7	7.8	8.5	9.5	9.3	10.6	11.0	5.4	11.6	5.9	4.7	7.1	8.3	7.9
Cobalt	mg/kg	10,000 _e ^{ABCD}	10,000 _a EFG	6.8	2.5 J	3.8 J	2.6	2.6	2.5	4.2	1.9	6.0	1.6	2.0	2.7	3.1	3.6
Copper	mg/kg	50 ^A 270 ^B 10,000 _B C 1,720 ^D	n/v	17.5	4.5 J	9.1 J	3.9	4.6	5.5	18.0	4.3	25.7	3.6	4.1	5.4	4.2	6.8
Iron	mg/kg	10,000 _e ABCD	10,000 _a EFG	19,400 ^{ABCDEFG}	7,380	10.900 ^{ABCDEFG}	8,710	8,650	6,950	12,200 ^{ABCDEFG}	6,270	15.100 ^{ABCDEFG}	5,420	5,880 J	7,600	12.300 ^{ABCDEFG}	10,200 ^{ABCDEFG}
					1	-,					•		1	l .		,	
Lead	mg/kg	63 _n ^A 1,000 ^B 3,900 ^C 450 ^D	n/v	5.9	3.1	2.6	4.3	3.0	2.5	15.5	1.5	9.0	1.5	1.3	2.0	1.8	2.3
Magnesium	mg/kg	10,000 _e ^{ABCD}	n/v	2,320	5,560 J	1,890 J	3,040	2,530	2,360	2,080 J	4,980	9,780	3,830	5,550	7,420	1,240	1,810
Manganese	mg/kg	1,600 _n ^A 10,000 _e ^{BC} 2,000 _g ^D	n/v	382	125 J	298 J	172	121	115	313	146	646	126	177 J	199	232	268
Mercury	mg/kg	0.18 _n A 2.8 _k B 5.7 _k C 0.73 ^D	n/v	0.022 U	0.020 U	0.021 U	0.044	0.022 U	0.021 U	0.022 U	0.023 U	0.065	0.023 U	0.024 U	0.022 U	0.021 U	0.021 U
Nickel	mg/kg	30 ^A 310 ^B 10,000 _e ^C 130 ^D	n/v	15.4	5.6	8.0	6.0	6.1	6.1	9.0	5.8 U	12.9	6.2 U	6.0 U	6.3 U	5.9	6.5
Potassium	mg/kg	10,000 _e ABCD	n/v	1,890	754	1,040	755	705	740	981	570	1,400	551	650 J	1,000	764	1,030
Selenium	mg/kg	3.9 ₀ ^A 1,500 ^B 6,800 ^C 4 ₀ ^D	n/v	4.3 U	4.1 U	4.2 U	4.5 U	4.4 U	4.3 U	4.9 U	4.7 U	4.7 U	5.0 U	4.8 U	5.0 U	4.4 U	4.0 U
Silver	mg/kg	2 ^A 1,500 ^B 6,800 ^C 8.3 ^D	n/v	0.54 U	0.51 U	0.53 U	0.57 U	0.55 U	0.54 U	0.62 U	0.58 U	0.59 U	0.62 U	0.60 U	0.63 U	0.55 U	0.50 U
Sodium	mg/kg	10,000 _e ABCD	n/v	419	601	922	266	220	151 U	300	173	164 U	175 U	169 U	251	155 U	140 U
Thallium	mg/kg	10,000 _e ^{ABCD}	10,000 _a EFG	6.4 U	6.1 U	6.3 U	6.8 U	6.6 U	6.5 U	7.4 U	7.0 U	7.0 U	7.5 U	7.3 U	7.6 U	6.6 U	6.0 U
Vanadium	mg/kg	10,000 _e ABCD	10,000a 10,000 EFG	27.0	13.7	17.8	15.7	15.6	12.2	19.1	10.7	19.6	9.1	9.5	12.2	23.3	16.4
		10,000 _e 109 _o ^A 10,000 _e ^{BC} 2,480 ^D	-	31.7	16.9	18.1	22.4	1	14.3	35.1	10.3	34.3		11.3	13.6	12.8	19.8
Zinc	mg/kg	109 _n 10,000 _e 2,480	n/v	31.7	10.9	16.1	22.4	18.2	14.3	35.1	10.3	34.3	9.6	11.3	13.0	12.8	19.8
Polychlorinated Biphenyls		ABCD															
Aroclor 1016	μg/kg	ABCD	n/v	240 U	210 U	250 U	260 U	240 U	210 U	250 U	230 U	240 U	210 U	260 U	240 U	260 U	200 U
Aroclor 1221	μg/kg	0	n/v	240 U	210 U	250 U	260 U	240 U	210 U	250 U	230 U	240 U	210 U	260 U	240 U	260 U	200 U
Aroclor 1232	μg/kg	ABCD	n/v	240 U	210 U	250 U	260 U	240 U	210 U	250 U	230 U	240 U	210 U	260 U	240 U	260 U	200 U
Aroclor 1242	μg/kg	ABCD	n/v	240 U	210 U	250 U	260 U	240 U	210 U	250 U	230 U	240 U	210 U	260 U	240 U	260 U	200 U
Aroclor 1248	μg/kg	ABCD	n/v	240 U	210 U	250 U	260 U	240 U	210 U	250 U	230 U	240 U	210 U	260 U	240 U	260 U	200 U
Aroclor 1254	μg/kg	ABCD	n/v	240 U	210 U	250 U	260 U	240 U	210 U	250 U	230 U	240 U	210 U	260 U	240 U	260 U	200 U
Aroclor 1260	μg/kg	ABCD	n/v	240 U	210 U	250 U	260 U	240 U	210 U	250 U	230 U	240 U	210 U	260 U	240 U	260 U	200 U
Aroclor 1262	μg/kg	ABCD	n/v	240 U	210 U	250 U	260 U	240 U	210 U	250 U	230 U	240 U	210 U	260 U	240 U	260 U	200 U
Aroclor 1268	μg/kg	ABCD	n/v	240 U	210 U	250 U	260 U	240 U	210 U	250 U	230 U	240 U	210 U	260 U	240 U	260 U	200 U
Polychlorinated Biphenyls (PCBs)	μg/kg	100 ^A 1,000 ^B 25,000 ^C 3,200 ^D	n/v	ND.	ND ND	ND	ND	ND	ND ND	ND.	ND	ND	ND	ND ND	ND ND	ND.	ND
Pesticides	Parna	100 1,000 23,000 3,200		ND	I ND	ND	I ND	I NO	I ND	I ND	I ND	I ND	ND	IND	IND	IND.	N
Aldrin	ua/ka	5 _n ^A 680 ^B 1,400 ^C 190 ^D	n/v	1.8 U	35 U	35 U	36 U	17 U	35 U	39 U	2.0 U	2.0 U	2.0 U	2.0 U	1.9 U	1.8 U	1.7 U
BHC, alpha-	μg/kg μg/kg	5 _n 680 1,400 190 20 ^{AD} 3,400 ^B 6,800 ^C	n/v	1.8 U	35 U	35 U	36 U	17 U	35 U	39 U	2.0 U	2.0 U	2.0 U	2.0 U	1.9 U	1.8 U	1.7 U
BHC, alpha- BHC, beta-	μg/kg μg/kg		n/v	1.8 U				17 U	1	39 U	1	1				I	1.7 U
BHC, delta-		36 ^A 3,000 ^B 14,000 ^C 90 ^D	n/v	1	35 U	35 U 35 U	36 U	17 U	35 U	1	2.0 U	2.0 U	2.0 U	2.0 U 2.0 U	1.9 U	1.8 U	
	μg/kg	40 _n ^A 500,000 _c ^B 1,000,000 _d ^C 250 ^D		1.8 U	35 U		36 U	1	35 U	39 U	2.0 U	2.0 U	2.0 U	1	1.9 U	1.8 U	1.7 U
Camphechlor (Toxaphene)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	18 U	350 U	350 U	360 U	170 U	350 U	390 U	20 U	20 U	20 U	20 U	19 U	18 U	17 U
Chlordane, alpha-	μg/kg	94 ^A 24,000 ^B 47,000 ^C 2,900 ^D	n/v	1.8 U	35 U	35 U	36 U	17 U	35 U	39 U	2.0 U	2.0 U	2.0 U	2.0 U	1.9 U	1.8 U	1.7 U
Chlordane, trans- (gamma-Chlordane)	μg/kg	100,000 _a ^A 1,000,000 _d ^D	n/v	1.8 U	35 U	35 U	36 U	17 U	35 U	39 U	2.0 U	2.0 U	2.0 U	2.0 U	1.9 U	1.8 U	1.7 U
DDD (p,p'-DDD)	μg/kg	3.3 _m ^A 92,000 ^B 180,000 ^C 14,000 ^D	n/v	1.8 U	35 U	35 U	36 U	17 U	35 U	39 U	2.0 U	2.0 U	2.0 U	2.0 U	1.9 U	1.8 U	1.7 U
DDE (p,p'-DDE)	μg/kg	3.3 _m A 62,000 ^B 120,000 ^C 17,000 ^D	n/v	1.8 U	35 U	35 U	36 U	17 U	35 U	39 U	2.0 U	2.0 U	2.0 U	2.0 U	1.9 U	1.8 U	1.7 U
DDT (p,p'-DDT)	μg/kg	3.3 _m ^A 47,000 ^B 94,000 ^C 136,000 ^D	n/v	1.8 U	35 U	35 U	36 U	17 U	35 U	39 U	2.0 U	2.0 U	2.0 U	2.0 U	1.9 U	1.8 U	1.7 U
Dieldrin	μg/kg	5 _n A 1,400 ^B 2,800 ^C 100 ^D	n/v	1.8 U	35 U	35 U	36 U	17 U	35 U	39 U	2.0 U	2.0 U	2.0 U	2.0 U	1.9 U	1.8 U	1.7 U
Endosulfan I	μg/kg	2,400 ^A 200,000 ^B 920,000 ^C 102,000 ^D	n/v	1.8 U	35 U	35 U	36 U	17 U	35 U	39 U	2.0 U	2.0 U	2.0 U	2.0 U	1.9 U	1.8 U	1.7 U
Endosulfan II		2,400 ^A 200,000 ^B 920,000 ^C 102,000 ^D	n/v	1.8 U	35 U	35 U	36 U	17 U	35 U	39 U	2.0 U	2.0 U	2.0 U	2.0 U	1.9 U	1.8 U	1.7 U
	μg/kg			1				1	1	1	1	1		1		I	1.7 U
	μg/kg	2,400 _i ^A 200,000 _i ^B 920,000 _i ^C 1,000,000 _d ^D	n/v	1.8 U	35 U	35 U	36 U	17 U	35 U	39 U	2.0 U	2.0 U	2.0 U	2.0 U	1.9 U	1.8 U	
Endosulfan Sulfate	μg/kg	14 ^A 89,000 ^B 410,000 ^C 60 ^D	n/v	1.8 U	35 U	35 U	36 U	17 U	35 U	39 U	2.0 U	2.0 U	2.0 U	2.0 U	1.9 U	1.8 U	1.7 U
Endrin		100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	1.8 U	35 U	35 U	36 U	17 U	35 U	39 U	2.0 U	2.0 U	2.0 U	2.0 U	1.9 U	1.8 U	1.7 U
Endrin Endrin Aldehyde	μg/kg			1.8 U	35 U	35 U	36 U	17 U	35 U	39 U	2.0 U	2.0 U	2.0 U	2.0 U	1.9 U	1.8 U	1.7 U
Endrin Endrin Aldehyde Endrin Ketone	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v														4 7 1 1
Endrin Endrin Aldehyde Endrin Ketone Heptachlor	μg/kg μg/kg	42 ^A 15,000 ^B 29,000 ^C 380 ^D	n/v	1.8 U	35 U	35 U	36 U	17 U	35 U	39 U	2.0 U	2.0 U	2.0 U	2.0 U	1.9 U	1.8 U	1.7 U
Endrin Endrin Aldehyde Endrin Ketone Heptachlor Heptachlor Epoxide	μg/kg μg/kg μg/kg	42 ^A 15,000 ^B 29,000 ^C 380 ^D 100,000 _a 500,000 _c 1,000,000 _d D	n/v 500,000 _a E 1,000,000 _a F 20 ^G	1.8 U 1.8 U	35 U	35 U	36 U	17 U	35 U	39 U	2.0 U	2.0 U	2.0 U	2.0 U	1.9 U	1.8 U	1.7 U
Endrin Endrin Aldehyde Endrin Ketone Heptachlor	μg/kg μg/kg	42 ^A 15,000 ^B 29,000 ^C 380 ^D	n/v	1.8 U			1	1	1							1	

Stantec

19050
U\\190500898\05_report_deliv\deliverables\reports\SMP\2_Tables\analytical_CL\tbl4_Rl.soi_CLLB_20191014.xlsx

Sample Location	1	l		B-1	В	3-2	B-3	B-4	B-5	B-6	B-7	В	-8	6	i-9	B-10	B-11
Sample Date				20-Jun-16	20-Jun-16	20-Jun-16	20-Jun-16	20-Jun-16	20-Jun-16	21-Jun-16	21-Jun-16	24-Jun-16	24-Jun-16	28-Jun-16	29-Jun-16	5-Jul-16	5-Jul-16
Sample ID				B-1	B-2	DUP-01	B-3	B-4	B-5	B-6	B-7	B-8 (3.5-4.5)	B-8 (60-61)	B-9 (23-24)	B-9 (85-86)	B-10 (3-4)	B-11 (8-9)
Sample Depth Sampling Company				4 - 5 ft STANTEC	3.5 - 4.5 ft STANTEC	60 - 61 ft STANTEC	23 - 24 ft STANTEC	85 - 86 ft STANTEC	3 - 4 ft STANTEC	8 - 9 ft STANTEC							
Laboratory				TAL													
Laboratory Work Order Laboratory Sample ID				480-102053-1 480-102053-1	480-102053-1 480-102053-2	480-102053-1 480-102053-7	480-102053-1 480-102053-3	480-102053-1 480-102053-4	480-102053-1 480-102053-5	480-102053-1 480-102053-6	480-102053-1 480-102053-8	480-102302-1 480-102302-1	480-102302-1 480-102302-2	480-102302-1 480-102382-1	480-102302-1 480-102510-1	480-102705-1 480-102705-1	480-102705-1 480-102705-2
Sample Type	Units	NYSDEC-Part 375	NYSDEC CP-51	100 102000 1	100 102000 2	Field Duplicate	100 102000 0	100 102000 4	100 102000	100 102000 0	100 102000	100 102002 1	100 102002 2	100 102002 1	100 102010 1	100 102.00 .	1
Semi-Volatile Organic Compounds Acenaphthene	μg/kg	20,000 ^A 500,000 _c ^B 1,000,000 _d ^C 98,000 ^D	n/v	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Acenaphthylene	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^C 107,000 ^D	n/v	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Acetophenone	μg/kg	100,000 _a ^A 1,000,000 _d ^D	n/v	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Anthracene	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Atrazine	μg/kg	100,000 _a ^A 1,000,000 _d ^D	n/v	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Benzaldehyde	μg/kg	100,000 _a ^A 1,000,000 _d ^D	n/v	180 UJ	900 UJ	1,800 UJ	900 UJ	890 UJ	870 UJ	2,000 UJ	200 UJ	210 U	200 U	200 U	200 U	180 U	170 U
Benzo(a)anthracene	μg/kg	1,000 _n ^A 5,600 ^B 11,000 ^C 1,000 _g ^D	n/v	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Benzo(a)pyrene	μg/kg	1,000 _n ^A 1,000 _g ^B 1,100 ^C 22,000 ^D	n/v	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Benzo(b)fluoranthene	μg/kg	1,000 _n A 5,600 ^B 11,000 ^C 1,700 ^D	n/v	180 U 180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Benzo(g,h,i)perylene Benzo(k)fluoranthene	μg/kg μg/kg	100,000 ^A 500,000 _c ^B 1,000,000 _d ^{CD} 800 _n ^A 56,000 ^B 110,000 ^C 1,700 ^D	n/v n/v	180 U	900 U 900 U	1,800 U 1,800 U	900 U 900 U	890 U 890 U	870 U 870 U	2,000 U 2,000 U	200 U 200 U	210 U 210 U	200 U 200 U	200 U 200 U	200 U 200 U	180 U 180 U	170 U 170 U
Biphenyl, 1,1'- (Biphenyl)	μg/kg	100,000 _a 1,000,000 _d D	500,000°E 1,000,000°E	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Bis(2-Chloroethoxy)methane	μg/kg μg/kg	100,000 _a 1,000,000 _d 100,000 _a 500,000 _c 1,000,000 _d CD	n/v	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Bis(2-Chloroethyl)ether	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Bis(2-Chloroisopropyl)ether (2,2-oxybis(1-Chloropropane))	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Bis(2-Ethylhexyl)phthalate (DEHP)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 435,000 ^G	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Bromophenyl Phenyl Ether, 4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Butyl Benzyl Phthalate Caprolactam	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 1,000,000 _d ^D	500,000 _a ^E 1,000,000 _a ^F 122,000 ^G	180 U	900 U	1,800 U 1,800 U	900 U	890 U	870 U 870 U	2,000 U	200 U 200 U	210 U	200 U 200 U	200 U	200 U 200 U	180 U	170 U 170 U
Carbazole	μg/kg μg/kg	100,000 _a 1,000,000 _d 100,000 _a 500,000 _c 1,000,000 _d CD	n/v n/v	180 U 180 U	900 U 900 U	1,800 U	900 U 900 U	890 U 890 U	870 U	2,000 U 2,000 U	200 U	210 U 210 U	200 U	200 U 200 U	200 U	180 U 180 U	170 U
Chloro-3-methyl phenol, 4-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _d 500,000 _d 1,000,000 _d 500,000	n/v	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Chloroaniline, 4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 220 ^G	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Chloronaphthalene, 2-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Chlorophenol, 2- (ortho-Chlorophenol)	µg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Chlorophenyl Phenyl Ether, 4-	µg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Chrysene	μg/kg	1,000 _n 56,000 ^B 110,000 ^C 1,000 _g D	n/v	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Cresol, p. (Methylphenol, 2-)	μg/kg	330 _m ^A 500,000 _c ^B 1,000,000 _d ^C 330 _f ^D 330 _m ^A 500,000 _c ^B 1,000,000 _d ^C 330 _f ^D	n/v	180 U 360 U	900 U 1.700 U	1,800 U 3,500 U	900 U 1,800 U	890 U 1,700 U	870 U 1,700 U	2,000 U 3,900 U	200 U 390 U	210 U 400 U	200 U 390 U	200 U 400 U	200 U 380 U	180 U 360 U	170 U 330 U
Cresol, p- (Methylphenol, 4-) Dibenzo(a,h)anthracene	μg/kg μg/kg	330 _m 500,000 _c 1,000,000 _d 330 _f 330 _m 560 ^B 1,100 ^C 1,000,000 _d D	n/v n/v	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Dibenzofuran	μg/kg	7,000 ^A 350,000 ^B 1,000,000 _d C 210,000 ^D	500,000° 1,000,000° 6,200°	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Dibutyl Phthalate (DBP)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 8,100 ^G	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Dichlorobenzidine, 3,3'-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Dichlorophenol, 2,4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 400 ^G	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Diethyl Phthalate	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 7,100 ^G	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Dimethyl Phthalate Dimethylphenol, 2,4-	μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 27,000 ^G n/v	180 U 180 U	900 U 900 U	1,800 U 1,800 U	900 U 900 U	890 U 890 U	870 U 870 U	2,000 U 2,000 U	200 U 200 U	210 U 210 U	200 U 200 U	200 U 200 U	200 U 200 U	180 U 180 U	170 U 170 U
Dinitro-o-cresol, 4,6-	μg/kg μg/kg	100,000 _a 300,000 _c 1,000,000 _d 100,000 _a 500,000 _c B 1,000,000 _d CD	n/v	360 U	1,700 U	3,500 U	1,800 U	1,700 U	1,700 U	3,900 U	390 U	400 U	390 U	400 U	380 U	360 U	330 U
Dinitrophenol, 2,4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a 1,000,000 _a 200 ^G	360 U	1,700 U	3,500 U	1,800 U	1,700 U	1,700 U	3,900 U	390 U	400 U	390 U	400 U	380 U	360 U	330 U
Dinitrotoluene, 2,4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Dinitrotoluene, 2,6-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 1,000/170 _{b,s1} ^G	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Di-n-Octyl phthalate	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 120,000 ^G	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Fluoranthene	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Fluorene Hexachlorobenzene	μg/kg μg/kg	30,000 ^A 500,000 _c ^B 1,000,000 _d ^C 386,000 ^D 330 _m ^A 6,000 ^B 12,000 ^C 3,200 ^D	n/v 500,000 _a E 1,000,000 _a F 1,400 ^G	180 U 180 U	900 U 900 U	1,800 U 1,800 U	900 U 900 U	890 U 890 U	870 U 870 U	2,000 U 2,000 U	200 U 200 U	210 U 210 U	200 U 200 U	200 U 200 U	200 U 200 U	180 U 180 U	170 U 170 U
Hexachlorobutadiene (Hexachloro-1,3-butadiene)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Hexachlorocyclopentadiene	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Hexachloroethane	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Indeno(1,2,3-cd)pyrene	μg/kg	500 _n A 5,600 ^B 11,000 ^C 8,200 ^D	n/v	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Isophorone	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 4,400 ^G	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Methylnaphthalene, 2- Naphthalene	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 12,000 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	500,000 _a ^E 1,000,000 _a ^F 36,400 ^G	180 U 180 U	900 U 900 U	1,800 U 1,800 U	900 U 900 U	890 U 890 U	870 U 870 U	2,000 U 2,000 U	200 U 200 U	210 U 210 U	200 U 200 U	200 U 200 U	200 U 200 U	180 U 180 U	170 U 170 U
Nitroaniline, 2-	μg/kg μg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _d 100,000 _d 1,000,000 _d 100,000	500,000 _a ^E 1,000,000 _a ^F 400 ^G	360 U	1,700 U	3,500 U	1,800 U	1,700 U	1,700 U	3,900 U	390 U	400 U	390 U	400 U	380 U	360 U	330 U
Nitroaniline, 3-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000a 1,000,000a 400 500,000a 1,000,000a 500G	360 U	1,700 U	3,500 U	1,800 U	1,700 U	1,700 U	3,900 U	390 U	400 U	390 U	400 U	380 U	360 U	330 U
Nitroaniline, 4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	360 U	1,700 U	3,500 U	1,800 U	1,700 U	1,700 U	3,900 U	390 U	400 U	390 U	400 U	380 U	360 U	330 U
Nitrobenzene	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	69,000 ^E 140,000 ^F 170 _b ^G	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Nitrophenol, 2-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 300 ^G	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Nitrophenol, 4-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F 100 ^G	360 U	1,700 U	3,500 U	1,800 U	1,700 U	1,700 U	3,900 U	390 U	400 U	390 U	400 U	380 U	360 U	330 U
N-Nitrosodi-n-Propylamine	μg/kg	100,000a ^A 500,000c ^B 1,000,000d ^{CD}	n/v 500 000 E 1 000 000 F	180 U 180 U	900 U 900 U	1,800 U 1,800 U	900 U 900 U	890 U 890 U	870 U 870 U	2,000 U 2,000 U	200 U 200 U	210 U 210 U	200 U 200 U	200 U 200 U	200 U 200 U	180 U 180 U	170 U 170 U
n-Nitrosodiphenylamine Pentachlorophenol	μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 800 _m ^A 6,700 ^B 55,000 ^C 800 _f ^D	500,000 _a E 1,000,000 _a F n/v	360 U	1,700 U	3,500 U	1,800 U	1,700 U	1,700 U	2,000 U	390 U	400 U	390 U	400 U	380 U	360 U	330 U
Phenanthrene	μg/kg	100,000 ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Phenol	μg/kg	330 _m ^A 500,000 _c ^B 1,000,000 _d ^C 330 _f ^D	n/v	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Pyrene	μg/kg	100,000 ^A 500,000 _c 1,000,000 _d CD	n/v	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Trichlorophenol, 2,4,5-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 100 ^G	180 U	900 U	1,800 U	900 U	890 U	870 U	2,000 U	200 U	210 U	200 U	200 U	200 U	180 U	170 U
Trichlorophenol, 2,4,6- Total SVOC	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F n/v	180 U ND	900 U ND	1,800 U ND	900 U ND	890 U ND	870 U ND	2,000 U ND	200 U ND	210 U ND	200 U ND	200 U ND	200 U ND	180 U ND	170 U ND
SVOC - Tentatively Identified Compounds	μg/kg	187	11/7	NU	ND	IND	ND	ND	ND	טא	IND	NU	I ND	I ND	IND	ND	IND
Total SVOC TICs	μg/kg	n/v	n/v	-	-	-	-	-	-	-	-	ND	260	ND	ND	ND	ND
See notes on last page.																	

Stantec

 $\label{lem:continuous} U:\ 190500898\ 105_report_deliv\ deliverables\ reports\ SMP\ 2_Tables\ analytical_CL\ tbl4_Rl.soil_CL.LB_20191014.xlsx$

Comple Location	ı		I	l 54			l no	l 54	l 55	l no	l 57					J 840	
Sample Location Sample Date				B-1 20-Jun-16	20-Jun-16	3-2 20-Jun-16	B-3 20-Jun-16	B-4 20-Jun-16	B-5 20-Jun-16	B-6 21-Jun-16	B-7 21-Jun-16	24-Jun-16	3-8 24-Jun-16	28-Jun-16	3-9 29-Jun-16	B-10 5-Jul-16	B-11 5-Jul-16
Sample ID				B-1	B-2	DUP-01	B-3	B-4	B-5	B-6	B-7	B-8 (3.5-4.5)	B-8 (60-61)	B-9 (23-24)	B-9 (85-86)	B-10 (3-4)	B-11 (8-9)
Sample Depth				4 - 5 ft	3.5 - 4.5 ft	60 - 61 ft	23 - 24 ft	85 - 86 ft	3 - 4 ft	8 - 9 ft							
Sampling Company				STANTEC													
Laboratory				TAL	TAL	TAL	TAL	TAL	TAL 480-102053-1	TAL	TAL	TAL	TAL 480-102302-1	TAL	TAL	TAL	TAL
Laboratory Work Order Laboratory Sample ID				480-102053-1 480-102053-1	480-102053-1 480-102053-2	480-102053-1 480-102053-7	480-102053-1 480-102053-3	480-102053-1 480-102053-4	480-102053-1 480-102053-5	480-102053-1 480-102053-6	480-102053-1 480-102053-8	480-102302-1 480-102302-1	480-102302-1 480-102302-2	480-102302-1 480-102382-1	480-102302-1 480-102510-1	480-102705-1 480-102705-1	480-102705-1 480-102705-2
Sample Type	Units	NYSDEC-Part 375	NYSDEC CP-51	400-102000-1	400-102000-2	Field Duplicate	400-102000-0	400-102000-4	400-102000-0	400-102000-0	400-102000-0	400-102002-1	400-102002-2	400-102002-1	400-102010-1	400-102700-1	400-102700-2
Volatile Organic Compounds				ļ.	1		l .	1	l .	l .	1	ļ.		l .			
Acetone	μg/kg	50 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	27 U	26 U	29 U	30 U	30 U	30 U	30 U	28 U	98 ^{AD}	25 U				
Benzene	μg/kg	60 ^{AD} 44,000 ^B 89,000 ^C	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Bromodichloromethane	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Bromoform (Tribromomethane)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Bromomethane (Methyl bromide)	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Butylbenzene, n-	μg/kg	12,000 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Butylbenzene, sec- (2-Phenylbutane)	μg/kg	11,000 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Butylbenzene, tert-	μg/kg	5,900 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Carbon Disulfide	μg/kg	100,000 _a A 500,000 _c B 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F 2,700 ^G	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Carbon Tetrachloride (Tetrachloromethane)	μg/kg	760 ^{AD} 22,000 ^B 44,000 ^C	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Chlorobenzene (Monochlorobenzene)	μg/kg	1,100 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Chloroethane (Ethyl Chloride)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 1,900 ^G	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Chloroform (Trichloromethane)	μg/kg	370 ^{AD} 350,000 ^B 700,000 ^C	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Chloromethane	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Cyclohexane	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Dibromo-3-Chloropropane, 1,2- (DBCP)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Dibromochloromethane	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Dichlorobenzene, 1,2-	μg/kg	1,100 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U 6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Dichlorobenzene, 1,3- Dichlorobenzene, 1,4-	μg/kg μg/kg	2,400 ^{AD} 280,000 ^B 560,000 ^C 1,800 ^{AD} 130,000 ^B 250,000 ^C	n/v n/v	5.4 U 5.4 U	5.3 U 5.3 U	5.3 U 5.3 U	5.3 U 5.3 U	5.2 U 5.2 U	5.2 U 5.2 U	5.7 U 5.7 U	6.0 U	5.9 U 5.9 U	5.9 U 5.9 U	6.0 U 6.0 U	5.5 U 5.5 U	5.4 U 5.4 U	5.0 U 5.0 U
Dichlorodifluoromethane (Freon 12)	μg/kg	100,000 A 500,000 B 1,000,000 CD	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Dichloroethane, 1,1-	μg/kg	270 ^{AD} 240.000 ^B 480.000 ^C	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Dichloroethane, 1,2-	μg/kg	20 _m A 30,000 B 60,000 C 20 _a D	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Dichloroethene, 1,1-	μg/kg	330 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Dichloroethene, cis-1,2-	μg/kg	250 ^{AD} 500,000 ₆ ^B 1,000,000 _d ^C	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Dichloroethene, trans-1,2-	μg/kg	190 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Dichloropropane, 1,2-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000 _a 1,000,000 _a F	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Dichloropropene, cis-1,3-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Dichloropropene, trans-1,3-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Ethylbenzene	μg/kg	1,000 ^{AD} 390,000 ^B 780,000 ^C	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Ethylene Dibromide (Dibromoethane, 1,2-)	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Hexanone, 2- (Methyl Butyl Ketone)	μg/kg	100,000 _a A 500,000 _c B 1,000,000 _d CD	n/v	27 U	26 U	29 UJ	30 U	30 U	30 U	30 U	28 U	27 U	25 U				
Isopropylbenzene	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F 2,300 ^G	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Isopropyltoluene, p- (Cymene)	μg/kg	100,000 _a A 500,000 _c B 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F 10,000 ^G	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Methyl Acetate	μg/kg	100,000 _a A 500,000 _c B 1,000,000 _d CD	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Methyl Ethyl Ketone (MEK) (2-Butanone)	μg/kg	120 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	500,000 _a ^E 1,000,000 _a ^F 300 ^G	27 U	26 U	29 UJ	30 U	30 U	30 U	30 U	28 U	27 U	25 U				
Methyl Isobutyl Ketone (MIBK)	μg/kg	100,000 _a A 500,000 _c B 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F 1,000 ^G	27 U	26 U	29 UJ	30 U	30 U	30 U	30 U	28 U	27 U	25 U				
Methyl tert-butyl ether (MTBE)	μg/kg	930 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Methylcyclohexane	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Methylene Chloride (Dichloromethane)	μg/kg	50 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Naphthalene	μg/kg	12,000 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Propylbenzene, n-	μg/kg	3,900 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Styrene	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a E 1,000,000 _a F	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Tetrachloroethane, 1,1,2,2-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 600 ^G	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 UJ	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Tetrachloroethene (PCE)	μg/kg	1,300 ^{AD} 150,000 ^B 300,000 ^C	500,000 _a ^E 1,000,000 _a ^F	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Toluene	μg/kg	700 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Trichlorobenzene, 1,2,4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 3,400 ^G	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Trichloroethane, 1,1,1- Trichloroethane, 1,1,2-	μg/kg	680 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Trichloroethane, 1,1,2- Trichloroethene (TCE)	μg/kg	100,000 _a A 500,000 _c B 1,000,000 _d CD	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 UJ	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Trichlorofluoromethane (Freon 11)	μg/kg μg/kg	470 ^{AD} 200,000 ^B 400,000 ^C 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v n/v	5.4 U 5.4 U	5.3 U 5.3 U	5.3 U 5.3 U	5.3 U 5.3 U	5.2 U 5.2 U	5.2 U 5.2 U	5.7 U 5.7 U	6.0 U 6.0 U	5.9 U 5.9 U	5.9 U 5.9 U	6.0 U 6.0 U	5.5 U 5.5 U	5.4 U 5.4 U	5.0 U 5.0 U
Trichlorotrifluoroethane (Freon 113)	μg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _a 500,000 _c B 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F 6,000 ^G	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Trimethylbenzene, 1,2,4-	μg/kg	3,600 ^{AD} 190,000 ^B 380,000 ^C	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Trimethylbenzene, 1,3,5-	μg/kg	8,400 ^{AD} 190,000 ^B 380,000 ^C	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Vinyl Chloride	μg/kg	20 ^{AD} 13,000 ^B 27,000 ^C	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 UJ	5.0 UJ
Xylene, m & p-	μg/kg	260 _p ^A 500,000 _{c,D} ^B 1,000,000 _{d,D} ^C 1,600 _p ^D	n/v	11 U	11 U	11 U	11 U	10 U	10 U	11 U	12 U	12 U	12 U	12 U	11 U	11 U	10 U
Xylene, o-	μg/kg	260 ₀ ^A 500,000 _{c.0} ^B 1,000,000 _{d.0} ^C 1,600 ₀ ^D	n/v	5.4 U	5.3 U	5.3 U	5.3 U	5.2 U	5.2 U	5.7 U	6.0 U	5.9 U	5.9 U	6.0 U	5.5 U	5.4 U	5.0 U
Xylenes, Total	μg/kg	260 ^A 500,000 _c ^B 1,000,000 _d ^C 1,600 ^D	n/v	11 U	11 U	11 U	11 U	10 U	10 U	11 U	12 U	12 U	12 U	12 U	11 U	11 U	10 U
Total VOC	μg/kg	n/v	n/v	ND	98	ND											
VOC - Tentatively Identified Compounds																	
Total VOC TICs	μg/kg	n/v	n/v	-	-	-	-	-		-		62.2	36	-	-	-	
See notes on last page.																	

Stantec

190500898 Page 3 of 19 $\label{lem:u:loss} U: \label{lem:u:loss} U$

Sample Location	1 1		Ī	B-	11D	B-12	1	B-	12D		l в.	-13	В-	13D	1	B-14 (MW-5)	
Sample Date				12-Jan-17	12-Jan-17	5-Jul-16	11-Jan-17	11-Jan-17	11-Jan-17	11-Jan-17	5-Jul-16	5-Jul-16	12-Jan-17	12-Jan-17	13-Sep-16	13-Sep-16	14-Sep-16
Sample ID				LIN-B11D-S1	LIN-B11D-S2	B-12 (8-9)	LIN-B12D-S1	LIN-B12D-S2	LIN-B12D-S3	LIN-DUP-S	B-13 (2-3)	B-13 (7-8)	LIN-B13D-S1	LIN-B13D-S2	B-10 (3-4)	DUP0916	B-10 (62-63)
Sample Depth				28 - 29 ft	60 - 60.5 ft	8 - 9 ft	28 - 28.5 ft	40.5 - 41.5 ft	58 - 58.5 ft	58 - 58.5 ft	2 - 3 ft	7 - 8 ft	48 - 48.5 ft	54.5 - 55.5 ft	3 - 4 ft	3 - 4 ft	62 - 63 ft
Sampling Company				STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory				TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL
Laboratory Work Order				480-112267-1	480-112267-1	480-102705-1	480-112267-1	480-112267-1	480-112267-1	480-112267-1	480-102705-1	480-102705-1	480-112267-1	480-112267-1	480-106008-1	480-106008-1	480-106008-1
Laboratory Sample ID				480-112267-6	480-112267-7	480-102705-3	480-112267-8	480-112267-9	480-112267-10	480-112267-11	480-102705-4	480-102705-5	480-112267-12	480-112267-13	480-106008-1	480-106008-3	480-106008-2
Sample Type	Units	NYSDEC-Part 375	NYSDEC CP-51							Field Duplicate						Field Duplicate	
General Chemistry			'	•													
Cyanide	mg/kg	27,AB 10,000,C 40,D	n/v	-	-	0.93 U	-	-	-	-	0.99 U	0.98 U	-	-	-	-	-
Metals			•	•		•				•	•		•		•		
Aluminum	mg/kg	10,000 ABCD	10,000 _a EFG	_	-	3,610	-			-	5,320	4,720	-	l -	_	_	-
Antimony	mg/kg	10,000 _e ABCD	10,000 _a EFG			1					16.8 U						
-			1			15.1 U					1	16.5 U			_		
Arsenic	mg/kg	13 _n ^A 16 _g ^{BCD}	n/v	-	-	2.0 U	-	-	-	-	2.2 U	2.2 U	-	-	-	-	
Barium	mg/kg	350 _n A 400 ^B 10,000 _e C 820 ^D	n/v	-	-	11.2	-	-	-	-	37.9	34.1	-	-	-	-	
Beryllium	mg/kg	7.2 ^A 590 ^B 2,700 ^C 47 ^D	n/v	-	-	0.20 U	-	-	-	-	0.24	0.22	-	-	-	-	
Cadmium	mg/kg	2.5 _n ^A 9.3 ^B 60 ^C 7.5 ^D	n/v	-	-	0.20 U	-	-	-	-	0.22 U	0.22 U	-	-	-	-	-
Calcium	mg/kg	10,000 _e ABCD	10,000 _a ^{EFG}	-	-	1,910	-	-	-	-	84,300 ^{ABCDEFG}	101,000 ^{ABCDEFG}	-	-	-	-	-
Chromium	mg/kg	30 _{n,I} A 1,500 _i B 6,800 _i C _{NS,q} D	n/v	-	-	6.9	-	-	-	-	6.9	6.8	-	-	-	-	-
Cobalt	mg/kg	10,000 _e ABCD	10,000 _a EFG	-	-	2.1	-	-	-	-	2.3	2.2	-	-	-	-	-
Copper	mg/kg	50 ^A 270 ^B 10,000 _e C 1,720 ^D	n/v	_	_	3.6	-	_		_	7.2	10.5	_	-	-		
Iron	mg/kg	10,000 _e ABCD	10,000 _a EFG		_	7,350		_		_	7,020	6,670		.			1 -
					_	1					1						
Lead	mg/kg	63 _n ^A 1,000 ^B 3,900 ^C 450 ^D	n/v	-	-	1.4	-	-		-	10.7	13.1	-	-	_	- 1	
Magnesium	mg/kg	10,000 _e ABCD	n/v	-	-	1,140	-	-	-	-	28,600 ^{ABCD}	39,200 ^{ABCD}	-	-	-	-	
Manganese	mg/kg	1,600 _n A 10,000 _e BC 2,000 _g D	n/v	-	-	169	-	-	-	-	271	302	-	-	-	-	-
Mercury	mg/kg	0.18 _n A 2.8 _k B 5.7 _k C 0.73 ^D	n/v	-	-	0.018 U	-	-	-	-	0.021 U	0.020 U	-	-	-	-	-
Nickel	mg/kg	30 ^A 310 ^B 10,000 _e ^C 130 ^D	n/v	-	_	5.0 U	_	_	_	_	5.6 U	5.7	-		-	_	
Potassium	mg/kg	10,000 _e ABCD	n/v	_	_	694	_	_		_	1,230	1,100			_		
Selenium	mg/kg	3.9 ₀ ^A 1,500 ^B 6,800 ^C 4 ₀ ^D	n/v	_	_	4.0 U	_				4.5 U	4.4 U	l _	_	_	_	
Silver	mg/kg	2 ^A 1,500 ^B 6,800 ^C 8.3 ^D	n/v			0.50 U					0.56 U	0.55 U					
Sodium		2 1,500 6,800 8.3 10,000 _e ABCD	n/v	-	-	1									_	_	
	mg/kg			-	-	141 U	_	-	-	-	270	238	-	-	-	-	
Thallium	mg/kg	10,000 _e ABCD	10,000 _a EFG	-	-	6.0 U	-	-	-	-	6.7 U	6.6 U	-	-	-	-	
Vanadium	mg/kg	10,000 _e ABCD	10,000 _a ^{EFG}	-	-	13.0	-	-	-	-	10.4	8.6	-	-	-	-	-
Zinc	mg/kg	109 _n A 10,000 _e BC 2,480 ^D	n/v	-	-	10.7	-	-	-	-	37.7	37.2	-	-	-	-	-
Polychlorinated Biphenyls																	
Aroclor 1016	μg/kg	ABCD	n/v	-	-	220 U	-	-	-	-	230 U	260 U	-	-	-	-	-
Aroclor 1221	μg/kg	ABCD	n/v	_	_	220 U		_		_	230 U	260 U			_		
Aroclor 1232	μg/kg	ABCD	n/v			220 U					230 U	260 U					
Aroclor 1242	μg/kg	o ABCD	n/v	_	_	220 U	_				230 U	260 U	_		_	_	
Aroclor 1248		o ABCD	n/v	_	_	220 U	_	_	_	_	230 U			_	_	_	
	μg/kg	o ABCD		-	-	1	_	-	-	-	1	260 U	· ·	-	-	-	
Aroclor 1254	μg/kg	ABCD	n/v	-	-	220 U	-	-	-	-	230 U	260 U	-	-	-	-	
Aroclor 1260	μg/kg	0	n/v	-	-	220 U	-	-	-	-	230 U	260 U	-	-	-	-	-
Aroclor 1262	μg/kg	ABCD o	n/v	-	-	220 U	-	-	-	-	230 U	260 U	-	-	-	-	-
Aroclor 1268	μg/kg	ABCD	n/v	-	-	220 U	-	-	-	-	230 U	260 U	-	-	-	-	-
Polychlorinated Biphenyls (PCBs)	μg/kg	100 ^A 1,000 ^B 25,000 ^C 3,200 ^D	n/v	-	-	ND	-	-	-	-	ND	ND	-	-	-	-	-
Pesticides																	
Aldrin	μg/kg	5 _n ^A 680 ^B 1,400 ^C 190 ^D	n/v	-	-	1.7 U	-	-	-	-	3.6 U	1.7 U	-	-	-	-	-
BHC, alpha-	μg/kg	20 ^{AD} 3,400 ^B 6,800 ^C	n/v	_	_	1.7 U	_	_	_	_	3.6 U	1.7 U	_		_	_	
BHC, beta-	μg/kg	36 ^A 3,000 ^B 14,000 ^C 90 ^D	n/v	_	_	1.7 U	_	_	_	_	3.6 U	1.7 U	_		_	_	
BHC, delta-	μg/kg	40 _n ^A 500,000 _c ^B 1,000,000 _d ^C 250 ^D	n/v	_	_	1.7 U	_	_	_	_	3.6 U	1.7 U			_	_	
Camphechlor (Toxaphene)	μg/kg	100,000 _a 500,000 _c 1,000,000 _d 230	n/v	_	_	17 U	_			_	36 U	17 U	_		_	_	
				_	_	1.7 U	_	_	_		3.6 U	1.7 U		_	_	_	
Chlordane, alpha-	μg/kg	94 ^A 24,000 ^B 47,000 ^C 2,900 ^D	n/v	-	-	1.7 U	_	-	-	-	3.6 U	1.7 U	· ·	-	-	-	
Chlordane, trans- (gamma-Chlordane)	μg/kg	100,000 _a ^A 1,000,000 _d ^D	n/v	-	-	1	-	-	-	-	1		-	-	-	-	
DDD (p,p'-DDD)	μg/kg	3.3 _m ^A 92,000 ^B 180,000 ^C 14,000 ^D	n/v	-	-	1.7 U	-	-	-	-	3.6 U	1.7 U	-	-	-	-	
DDE (p,p'-DDE)	μg/kg	3.3 _m ^A 62,000 ^B 120,000 ^C 17,000 ^D	n/v	-	-	1.7 U	-	-	-	-	3.6 U	1.7 U	-	-	-	-	
DDT (p,p'-DDT)	μg/kg	3.3 _m ^A 47,000 ^B 94,000 ^C 136,000 ^D	n/v	-	-	1.7 U	-	-	-	-	3.6 U	1.7 U	-	-	-	-	-
Dieldrin	μg/kg	5 ₀ A 1,400 ^B 2,800 ^C 100 ^D	n/v	-	-	1.7 U	-	-	-	-	4.0	1.7 U	-	-	-	_	
Endosulfan I	μg/kg	2,400 _i ^A 200,000 _i ^B 920,000 _i ^C 102,000 ^D	n/v	_	_	1.7 U	_	_		_	3.6 U	1.7 U	_		_		
Endosulfan II	μg/kg	2,400 _i 200,000 _i 920,000 _i 102,000 ^D	n/v	_	_	1.7 U	_	_	_		3.6 U	1.7 U	_	_	_	_	
				1		1	1				1		_		1		
Endosulfan Sulfate	μg/kg	2,400 _i ^A 200,000 _i ^B 920,000 _i ^C 1,000,000 _d ^D	n/v	-	-	1.7 U	_	-	-	-	3.6 U	1.7 U	-	_	_		
Endrin	μg/kg	14 ^A 89,000 ^B 410,000 ^C 60 ^D	n/v	-	-	1.7 U	· ·	-	-	-	3.6 U	1.7 U	-	-	· ·	-	
Endrin Aldehyde	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	1.7 U	· ·	-	-	-	3.6 U	1.7 U	-	-	· ·	-	
Endrin Ketone	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	1.7 U	-	-	-	-	3.6 U	1.7 U	-	-	-	- 1	-
Heptachlor	μg/kg	42 ^A 15,000 ^B 29,000 ^C 380 ^D	n/v	-	-	1.7 U	-	-	-	-	3.6 U	1.7 U	-	-	-	-	
Heptachlor Epoxide	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 20 ^G	-	-	1.7 U	-	-	-	-	3.6 U	1.7 U	-	-	-	-	-
Lindane (Hexachlorocyclohexane, gamma)	μg/kg	100 ^{AD} 9,200 ^B 23,000 ^C	n/v	-	-	1.7 U	-	-	-	-	3.6 U	1.7 U	-	-	-	-	-
Methoxychlor (4,4'-Methoxychlor)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 900,000 ^G	-	-	1.7 U	-	-	-	-	3.6 U	1.7 U	-	-	-	-	-
See notes on last page.		-	·	-		-								-			

Stantec

 $\label{lem:u:loss} U: \label{lem:u:loss} U$

Sample Location	1	I	1	l 54	110	D 42	I		120		۰ ا	42 I	l -	12D	i	D 14 (\$554) E)	
• • • • • • • • • • • • • • • • • • • •					11D	B-12	44 1 47		12D	44 1 47	B.		l	13D	42.0 40	B-14 (MW-5)	44.040
Sample Date Sample ID				12-Jan-17 LIN-B11D-S1	12-Jan-17 LIN-B11D-S2	5-Jul-16 B-12 (8-9)	11-Jan-17 LIN-B12D-S1	11-Jan-17 LIN-B12D-S2	11-Jan-17 LIN-B12D-S3	11-Jan-17 LIN-DUP-S	5-Jul-16 B-13 (2-3)	5-Jul-16 B-13 (7-8)	12-Jan-17 LIN-B13D-S1	12-Jan-17 LIN-B13D-S2	13-Sep-16 B-10 (3-4)	13-Sep-16 DUP0916	14-Sep-16 B-10 (62-63)
Sample Depth				28 - 29 ft	60 - 60.5 ft	8 - 9 ft	28 - 28.5 ft	40.5 - 41.5 ft	58 - 58.5 ft	58 - 58.5 ft	2 - 3 ft	7 - 8 ft	48 - 48.5 ft	54.5 - 55.5 ft	3 - 4 ft	3 - 4 ft	62 - 63 ft
Sampling Company				STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory				TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL
Laboratory Work Order				480-112267-1	480-112267-1	480-102705-1	480-112267-1	480-112267-1	480-112267-1	480-112267-1	480-102705-1	480-102705-1	480-112267-1	480-112267-1	480-106008-1	480-106008-1	480-106008-1
Laboratory Sample ID				480-112267-6	480-112267-7	480-102705-3	480-112267-8	480-112267-9	480-112267-10	480-112267-11	480-102705-4	480-102705-5	480-112267-12	480-112267-13	480-106008-1	480-106008-3	480-106008-2
Sample Type	Units	NYSDEC-Part 375	NYSDEC CP-51							Field Duplicate						Field Duplicate	
Semi-Volatile Organic Compounds		AB	-6.		I	470.11		I			400.11	40011		1			
Acenaphthene Acenaphthylene	μg/kg μg/kg	20,000 ^A 500,000 _c ^B 1,000,000 _d ^C 98,000 ^D 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^C 107,000 ^D	n/v n/v	-	-	170 U 170 U	-	-	-	-	180 U 180 U	180 U 180 U	-	-	-	-	-
		l		_		170 U	· ·				180 U	180 U		· ·	· ·	-	1
Acetophenone	μg/kg	100,000 _a A 1,000,000 _d D	n/v	-	-	l	· ·	-	-	-	l		-	-	_	-	-
Anthracene	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	170 U	· ·	-	-	-	180 U	180 U	-	-	-	-	-
Atrazine	μg/kg	100,000 _a ^A 1,000,000 _d ^D	n/v	-	-	170 U	-	-	-	-	180 U	180 U	-	-	-	-	-
Benzaldehyde	μg/kg	100,000 _a ^A 1,000,000 _d ^D	n/v	-	-	170 U	-	-	-	-	180 U	180 U	-	-	-	-	-
Benzo(a)anthracene	μg/kg	1,000 _n A 5,600 ^B 11,000 ^C 1,000 _g D	n/v	-	-	170 U	-	-	-	-	180 U	180 U	-	-	-	-	-
Benzo(a)pyrene	μg/kg	1,000 _n A 1,000 _a B 1,100 ^C 22,000 ^D	n/v	-	-	170 U	-	-	-	-	180 U	180 U	-	-	-	-	-
Benzo(b)fluoranthene	μg/kg	1,000 ₀ A 5,600 ^B 11,000 ^C 1,700 ^D	n/v	_		170 U			_	_	180 U	180 U	_		_	_	
Benzo(g,h,i)perylene	μg/kg	100,000 ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	_	_	170 U	_				180 U	180 U	_		_	_	
		l		_		l	· ·				180 U			· ·	· ·	-	1
Benzo(k)fluoranthene	μg/kg	800 _n 56,000 ^B 110,000 ^C 1,700 ^D	n/v	-	-	170 U	· ·	-	-	-	l	180 U	-	-	· ·	-	-
Biphenyl, 1,1'- (Biphenyl)	μg/kg	100,000 _a ^A 1,000,000 _d ^D	500,000 _a ^E 1,000,000 _a ^F	-	-	170 U	-	-	-	-	180 U	180 U	-	-	-	-	-
Bis(2-Chloroethoxy)methane	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	-	-	170 U	-	-	-	-	180 U	180 U	-	-	-	-	-
Bis(2-Chloroethyl)ether	μg/kg		n/v	-	-	170 U	-	-	-	-	180 U	180 U	-	-	-	-	-
Bis(2-Chloroisopropyl)ether (2,2-oxybis(1-Chloropropane))	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	-	-	170 U	-	-	-	-	180 U	180 U	-	-	-	-	-
Bis(2-Ethylhexyl)phthalate (DEHP)	μg/kg	100,000 _a 500,000 _c 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 435,000 ^G	-	-	170 U	-	-	-	-	180 U	180 U	-	-	-	-	-
Bromophenyl Phenyl Ether, 4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	170 U	-	-	-	-	180 U	180 U	-	-	-	-	-
Butyl Benzyl Phthalate	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a E 1,000,000 _a F 122,000 ^G	-	-	170 U	-	-	-	-	180 U	180 U	-	-	-	-	-
Caprolactam	μg/kg	100,000 _a ^A 1,000,000 _d ^D	n/v	-		170 U			_		180 U	180 U	-	_	_	_	
Carbazole	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	_	-	170 U	-	-	_	_	180 U	180 U	-	_	-	_	_
Chloro-3-methyl phenol, 4-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v			170 U					180 U	180 U				_	
Chloroaniline, 4-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _d 500,000 _d 1,000,000 _d 500,000 _d 1,000,000 _d 500,000 _d 500,0	500,000 _a ^E 1,000,000 _a ^F 220 ^G			170 U					180 U	180 U					
			1	-	-	l	· ·	-	-	-	l		-	-	_	-	-
Chloronaphthalene, 2-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	-	-	170 U	· ·	-	-	-	180 U	180 U	· ·	-	· ·	-	-
Chlorophenol, 2- (ortho-Chlorophenol)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a E 1,000,000 _a F	-	-	170 U	· ·	-	-	-	180 U	180 U	-	-	-	-	-
Chlorophenyl Phenyl Ether, 4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	170 U	· ·	-	-	-	180 U	180 U	-	-	-	-	-
Chrysene	μg/kg	1,000 _n ^A 56,000 ^B 110,000 ^C 1,000 _g ^D	n/v	-	-	170 U	-	-	-	-	180 U	180 U	-	-	-	-	-
Cresol, o- (Methylphenol, 2-)	μg/kg	330 _m ^A 500,000 _c ^B 1,000,000 _d ^C 330 _f ^D	n/v	-	-	170 U	-	-	-	-	180 U	180 U	-	-	-	-	-
Cresol, p- (Methylphenol, 4-)	μg/kg	330 _m ^A 500,000 _c ^B 1,000,000 _d ^C 330 _f ^D	n/v	-	-	330 U	-	-	-	-	350 U	350 U	-	-	-	-	-
Dibenzo(a,h)anthracene	μg/kg	330 _m A 560 ^B 1,100 ^C 1,000,000 _d D	n/v	-	-	170 U	-	-	-	-	180 U	180 U	-	-	-	-	-
Dibenzofuran	μg/kg	7,000 ^A 350,000 ^B 1,000,000 _d ^C 210,000 ^D	500,000 _a E 1,000,000 _a F 6,200 ^G	-	-	170 U	-	-	-	-	180 U	180 U	-	-	-	-	-
Dibutyl Phthalate (DBP)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 E 1,000,000 F 8,100 G	-	-	170 U	-	-	-	-	180 U	180 U	-	-	-	-	-
Dichlorobenzidine, 3,3'-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-		170 U			_		180 U	180 U	-	_	_	_	
Dichlorophenol, 2,4-	μg/kg		500,000 _a ^E 1,000,000 _a ^F 400 ^G	_	_	170 U		_	_	_	180 U	180 U	_	_	_	_	
Diethyl Phthalate	μg/kg	100,000a 500,000c 1,000,000d CD	500,000a F 1,000,000a F 7,100G	_	_	170 U	_				180 U	180 U	_		_	_	
Dimethyl Phthalate	μg/kg	100,000a 500,000c 1,000,000d 100,000a 500,000d 1,000,000d CD	500,000a 1,000,000a 7,100 500,000a 1,000,000a 7,100	_		170 U			_	_	180 U	180 U	_	_	_		
-		100,000 _a 500,000 _c 1,000,000 _d 100,000 _d 500,000 _c 1,000,000 _d CD	n/v	_		l	· ·				180 U			· ·	· ·	-	1
Dimethylphenol, 2,4-	μg/kg		n/v	-	-	170 U	· ·	-	-	-	l	180 U	-	-	_	-	-
Dinitro-o-cresol, 4,6-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD		-	-	330 U	· ·	-	-	-	350 U	350 U	-	-	_	-	-
Dinitrophenol, 2,4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 200 ^G	-	-	330 U	· ·	-	-	-	350 U	350 U	-	-	-	-	-
Dinitrotoluene, 2,4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	170 U	-	-	-	-	180 U	180 U	-	-	-	-	-
Dinitrotoluene, 2,6-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 1,000/170 _{b,s1} ^G	-	-	170 U	-	-	-	-	180 U	180 U	-	-	-	-	-
Di-n-Octyl phthalate	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 120,000 ^G	-	-	170 U	-	-	-	-	180 U	180 U	-	-	-	-	-
Fluoranthene	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	-	-	170 U	-	-	-	-	180 U	180 U	-	-	-	-	-
Fluorene	μg/kg	30,000 ^A 500,000 _c ^B 1,000,000 _d ^C 386,000 ^D	n/v	-	-	170 U	-	-	-	-	180 U	180 U	-	-	-	-	-
Hexachlorobenzene	μg/kg	330 _m ^A 6,000 ^B 12,000 ^C 3,200 ^D	500,000 _a ^E 1,000,000 _a ^F 1,400 ^G	-	-	170 U	-	-	-	-	180 U	180 U	-	-	-	-	-
Hexachlorobutadiene (Hexachloro-1,3-butadiene)	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	-	-	170 U	-	-	-	-	180 U	180 U	-	-	-	-	-
Hexachlorocyclopentadiene	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000a ^E 1,000,000a ^F	-	-	170 U	-	-	-	-	180 U	180 U	-	-	-	-	-
Hexachloroethane	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	-	-	170 U	-	-	-	-	180 U	180 U	-	-	-	-	-
Indeno(1,2,3-cd)pyrene	μg/kg		n/v	_	-	170 U	-	-	_	_	180 LJ	180 U	-	_	-	_	_
Isophorone	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000 _a E 1,000,000 _a F 4,400 ^G		.	170 U			_	_	180 U	180 U					
Methylnaphthalene, 2-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _d 500,000 _c 1,000,000 _d CD	500,000 _a 1,000,000 _a 4,400 500,000 _a 1,000,000 _a 36,400 ^G		-	170 U		-	-		180 U	180 U	-		-		
Naphthalene	μg/kg	I	n/v		-	170 U		-	-		180 U	180 U	-		-		
			500 000 E 1 000 000 F 400G		•	l		-		_	l		l -			-	
Nitroaniline, 2-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d 1	500,000 _a ^E 1,000,000 _a ^F 400 ^G	_	_	330 U	· ·	_	-	-	350 U	350 U	· ·	-	· ·	-	-
Nitroaniline, 3-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000 _a E 1,000,000 _a F 500 ^G	· ·		330 U	· ·		-	-	350 U	350 U	· ·	-	l -	-	-
Nitroaniline, 4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	· ·	-	330 U	· ·	-	-	-	350 U	350 U	· ·	-	I -	-	-
Nitrobenzene	μg/kg		69,000 ^E 140,000 ^F 170 _b ^G	· -	-	170 U	-	-	-	-	180 U	180 U	l -	-	· ·	-	-
Nitrophenol, 2-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F 300 ^G	-	-	170 U	-	-	-	-	180 U	180 U	-	-	-	-	-
Nitrophenol, 4-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F 100 ^G	-	-	330 U	-	-	-	-	350 U	350 U	-	-	-	-	-
N-Nitrosodi-n-Propylamine	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	-	-	170 U	-	-	-	-	180 U	180 U	-	-	-	-	-
n-Nitrosodiphenylamine	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F	-	-	170 U	-	-	-	-	180 U	180 U	-	-	-	-	-
Pentachlorophenol	μg/kg	800 _m ^A 6,700 ^B 55,000 ^C 800 _f ^D	n/v	-	-	330 U	-	-	-	-	350 U	350 U	-	-	-	-	-
Phenanthrene	μg/kg		n/v	-	-	170 U	-	-	-	-	180 U	180 U	-	-	-	-	-
Phenol	μg/kg	330 _m ^A 500,000 _c ^B 1,000,000 _d ^C 330 _f ^D	n/v	_		170 U			_	_	180 U	180 U	-	_	-	_	
Pyrene	μg/kg		n/v	_	-	170 U	-	-	_	_	180 U	180 U	-	_	-	_	_
	μg/kg	100,000 300,000 _c 1,000,000 _d 100,000 _d 500,000 _c 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F 100 ^G	_	_	170 U	_	_	_	_	180 U	180 U	_	_	_	_	_
			000,000a 1,000,000a 100	1 -		l				1	1 100 0		1 -	1	I -		1
Trichlorophenol, 2,4,5-				_	_	170		_	_	_	180	18011	_	_	_	_	
Trichlorophenol, 2,4,5- Trichlorophenol, 2,4,6-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F	-	-	170 U	-	-		-	180 U	180 U	-	-	-	-	
Trichlorophenol, 2,4,5- Trichlorophenol, 2,4,6- Total SVOC		100,000 _a 500,000 _c 1,000,000 _d CD		-	-	170 U ND	-	-	-	-	180 U ND	180 U ND	-	-	-	-	
Trichlorophenol, 2,4,5- Trichlorophenol, 2,4,6-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} n/v	500,000 _a ^E 1,000,000 _a ^F					-	-		l		-	-	-	-	-

 $\label{lem:continuous} U:\ 190500898\ 05_report_deliv\ deliverables\ reports\ SMP\ 2_Tables\ analytical_CL\ tbl4_Rl.soil_CL.LB_20191014.xlsx$

Sample Location	ĺ	I	I	l в-	11D	B-12	I	B-	12D		I в	-13	I в.	13D	I	B-14 (MW-5)	
Sample Date				12-Jan-17	12-Jan-17	5-Jul-16	11-Jan-17	11-Jan-17	11-Jan-17	11-Jan-17	5-Jul-16	5-Jul-16	12-Jan-17	12-Jan-17	13-Sep-16	13-Sep-16	14-Sep-16
Sample ID				LIN-B11D-S1	LIN-B11D-S2	B-12 (8-9)	LIN-B12D-S1	LIN-B12D-S2	LIN-B12D-S3	LIN-DUP-S	B-13 (2-3)	B-13 (7-8)	LIN-B13D-S1	LIN-B13D-S2	B-10 (3-4)	DUP0916	B-10 (62-63)
Sample Depth				28 - 29 ft	60 - 60.5 ft	8 - 9 ft	28 - 28.5 ft	40.5 - 41.5 ft	58 - 58.5 ft	58 - 58.5 ft	2 - 3 ft	7 - 8 ft	48 - 48.5 ft	54.5 - 55.5 ft	3 - 4 ft	3 - 4 ft	62 - 63 ft
Sampling Company Laboratory				STANTEC TAL	STANTEC TAL	STANTEC TAL	STANTEC TAL	STANTEC TAL	STANTEC TAL	STANTEC TAL	STANTEC TAL	STANTEC TAL	STANTEC TAL	STANTEC TAL	STANTEC TAL	STANTEC TAL	STANTEC TAL
Laboratory Work Order				480-112267-1	480-112267-1	480-102705-1	480-112267-1	480-112267-1	480-112267-1	480-112267-1	480-102705-1	480-102705-1	480-112267-1	480-112267-1	480-106008-1	480-106008-1	480-106008-1
Laboratory Sample ID				480-112267-6	480-112267-7	480-102705-3	480-112267-8	480-112267-9	480-112267-10	480-112267-11	480-102705-4	480-102705-5	480-112267-12	480-112267-13	480-106008-1	480-106008-3	480-106008-2
Sample Type	Units	NYSDEC-Part 375	NYSDEC CP-51							Field Duplicate						Field Duplicate	
Volatile Organic Compounds	·			1													-
Acetone	μg/kg	50 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	26 U	53 ^{AD}	25 U	42	35	95 ^{AD}	92 ^{AD}	28	70 J ^{AD}	120 ^{AD}	550 U	31 U	25 U	30 U
Benzene	μg/kg	60 ^{AD} 44,000 ^B 89,000 ^C	n/v	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Bromodichloromethane	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Bromoform (Tribromomethane)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Bromomethane (Methyl bromide)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Butylbenzene, n-	μg/kg	12,000 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Butylbenzene, sec- (2-Phenylbutane)	μg/kg	11,000 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Butylbenzene, tert-	μg/kg	5,900 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Carbon Disulfide	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 2,700 ^G	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Carbon Tetrachloride (Tetrachloromethane)	μg/kg	760 ^{AD} 22,000 ^B 44,000 ^C	n/v	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Chlorobenzene (Monochlorobenzene)	μg/kg	1,100 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Chloroethane (Ethyl Chloride)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 1,900 ^G	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Chloroform (Trichloromethane)	μg/kg	370 ^{AD} 350,000 ^B 700,000 ^C	n/v	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Chloromethane	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Cyclohexane	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Dibromo-3-Chloropropane, 1,2- (DBCP)	μg/kg	100,000 _a A 500,000 _c B 1,000,000 _d CD	n/v	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Dibromochloromethane	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000a ^E 1,000,000a ^F	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Dichlorobenzene, 1,2-	μg/kg	1,100 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Dichlorobenzene, 1,3- Dichlorobenzene, 1,4-	μg/kg μg/kg	2,400 ^{AD} 280,000 ^B 560,000 ^C	n/v n/v	5.2 U	5.6 U	5.0 U	5.1 U 5.1 U	5.1 U 5.1 U	5.2 U 5.2 U	5.3 U 5.3 U	5.5 U 5.5 U	5.2 U 5.2 U	5.1 U 5.1 U	110 U 110 U	6.2 U 6.2 U	5.1 U 5.1 U	6.0 U 6.0 U
Dichlorodifluoromethane (Freon 12)	μg/kg μg/kg	1,800 ^{AD} 130,000 ^B 250,000 ^C 100,000 _a 500,000 _a 1,000,000 _a CD	n/v	5.2 U 5.2 U	5.6 U 5.6 U	5.0 U 5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Dichloroethane, 1,1-	μg/kg	270 ^{AD} 240,000 ^B 480,000 ^C	n/v	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Dichloroethane, 1,2-	μg/kg	20 _m ^A 30,000 ^B 60,000 ^C 20 _q ^D	n/v	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Dichloroethene, 1,1-	μg/kg	330 ^{AD} 500,000 ^B 1,000,000 ^C	n/v	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Dichloroethene, cis-1.2-	μg/kg	250 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Dichloroethene, trans-1,2-	μg/kg	190 ^{AD} 500,000 _c B 1,000,000 _d C	n/v	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Dichloropropane, 1,2-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000° 1,000,000° F	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Dichloropropene, cis-1,3-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Dichloropropene, trans-1,3-	μg/kg	100,000a 500,000c 1,000,000d	n/v	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Ethylbenzene	μg/kg	1.000 ^{AD} 390.000 ^B 780.000 ^C	n/v	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Ethylene Dibromide (Dibromoethane, 1,2-)	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Hexanone, 2- (Methyl Butyl Ketone)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	26 U	28 U	25 U	25 U	26 U	26 U	27 U	27 U	26 U	26 U	550 U	31 U	25 U	30 U
Isopropylbenzene	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 2,300 ^G	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Isopropyltoluene, p- (Cymene)	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F 10,000 ^G	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Methyl Acetate	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	26 U	28 U	5.0 U	25 U	26 U	26 U	27 U	5.5 U	5.2 U	26 U	550 U	31 U	25 U	30 U
Methyl Ethyl Ketone (MEK) (2-Butanone)	μg/kg	120 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	500,000° E 1,000,000° F 300°	26 U	28 U	25 U	25 U	26 U	26 U	27 U	27 U	26 UJ	26 U	550 U	31 U	25 U	30 UJ
Methyl Isobutyl Ketone (MIBK)	μg/kg	100,000 _a 500,000 _b 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F 1,000 ^G	26 U	28 U	25 U	25 U	26 U	26 U	27 U	27 U	26 UJ	26 U	550 U	31 U	25 U	30 U
Methyl tert-butyl ether (MTBE)	μg/kg	930 ^{AD} 500,000, ^B 1,000,000, ^C	n/v	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Methylcyclohexane	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Methylene Chloride (Dichloromethane)	μg/kg	50 ^{AD} 500,000 _c 1,000,000 _d C	n/v	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Naphthalene	μg/kg	12,000 ^{AD} 500,000 _c B 1,000,000 _d C	n/v	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Propylbenzene, n-	μg/kg	3,900 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Styrene	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000° 1,000,000° F	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Tetrachloroethane, 1,1,2,2-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 600 ^G	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 UJ	5.1 U	110 U	6.2 U	5.1 U	6.0 UJ
Tetrachloroethene (PCE)	μg/kg	1,300 ^{AD} 150,000 ^B 300,000 ^C	500,000 _a ^E 1,000,000 _a ^F	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Toluene	μg/kg	700 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Trichlorobenzene, 1,2,4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 3,400 ^G	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Trichloroethane, 1,1,1-	μg/kg	680 ^{AD} 500.000, B 1.000.000, C	n/v	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Trichloroethane, 1,1,2-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Trichloroethene (TCE)	μg/kg	470 ^{AD} 200,000 ^B 400,000 ^C	n/v	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Trichlorofluoromethane (Freon 11)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Trichlorotrifluoroethane (Freon 113)	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500.000° 1.000.000° 6.000°	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Trimethylbenzene, 1,2,4-	μg/kg	3,600 ^{AD} 190,000 ^B 380,000 ^C	n/v	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Trimethylbenzene, 1,3,5-	μg/kg	8,400 ^{AD} 190,000 ^B 380,000 ^C	n/v	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Vinyl Chloride	μg/kg	20 ^{AD} 13,000 ^B 27,000 ^C	n/v	5.2 U	5.6 U	5.0 UJ	5.1 U	5.1 U	5.2 U	5.3 U	5.5 UJ	5.2 UJ	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Xylene, m & p-	μg/kg	260 _p ^A 500,000 _{c,p} ^B 1,000,000 _{d,p} ^C 1,600 _p ^D	n/v	10 U	11 U	10 U	10 U	10 U	10 U	11 U	11 U	10 U	10 U	220 U	12 U	10 U	12 U
Xylene, o-	μg/kg	260 _p ^A 500,000 _{c,p} ^B 1,000,000 _{d,p} ^C 1,600 _p ^D	n/v	5.2 U	5.6 U	5.0 U	5.1 U	5.1 U	5.2 U	5.3 U	5.5 U	5.2 U	5.1 U	110 U	6.2 U	5.1 U	6.0 U
Xylenes, Total	μg/kg	260 ^A 500,000 _c ^B 1,000,000 _d ^C 1,600 ^D	n/v	10 U	11 U	10 U	10 U	10 U	10 U	11 U	11 U	10 U	10 U	220 U	12 U	10 U	12 U
Total VOC	μg/kg	n/v	n/v	ND	53	ND	42	35	95	92	28	70	120	110	ND	ND	ND
VOC - Tentatively Identified Compounds																	
Total VOC TICs	μg/kg	n/v	n/v				5.4						8.7	20,880			

Stantec

 $\label{lem:u:loss} U: \label{lem:u:loss} U$

Control Cont																	
Section Part	Sample Location				1	B/MW-101		B/M	W-102	B-102a		B/MW-103			B/MV	V-104	
Second Content	Sample Date				25-Jul-18	25-Jul-18	25-Jul-18	23-Jul-18		24-Jul-18	24-Jul-18	24-Jul-18		26-Jul-18		26-Jul-18	26-Jul-18
State Control Contro																	
Change C																	
Company Comp																	
Martin M																	
Part																	
Company Comp	Sample Type	Units	NYSDEC-Part 375	NYSDEC CP-51		Field Duplicate									Field Duplicate		
The color				•													
Second Part State Stat		mg/kg	27 _i ^{AB} 10,000 _{e,i} C 40 _i ^D	n/v	-	-	-	-	-	-	1.1 U	-	1.2 U	0.27 U	0.28 U	-	0.25 U
Anthony			4000											*POPETO			
March Marc					1			1		-	1	-			-	-	
March Marc	-		10,000 _e ABCD	1	1			1		-	1	-		1	-	-	
Second S					1			1		-	1	-		1	-	-	
Common with the common of the					1			1		-	1	-		1	-	-	
Caren	The state of the s			1	1			1		-		-		1	-	-	
Company				1		0.39 U	0.50 U	-		-	1	-			-	-	0.40 U
Column				-	,			-		-	1	-			-	-	
Control Page Series Page Series Page			30 _{n,1} 1,500, 6,800, NS,q	1	1			1		-	1	-			-	-	
INTERPRETATION OF THE PROPERTY					1			1		-	1	-		1	-	-	
ined mph 60, "1009 1000 607 1000 1000 1000 1000 1000 1000					1					-	1				-	-	
Mayorism myle		1 1			1				•	-	1	-			-	-	
Mayone Mayon May	Lead			n/v	2.5		2.5 U	2.5	2.4	-	2.4	-		8.2	-	-	
Memory More	Magnesium		=	n/v	6,100	6,460	6,290	1,410	8,260	-	1,210	-	5,480	3,800	-	-	
Made	Manganese	mg/kg		n/v	267	310	171	305	221	-	234	-	162	551	-	-	157
Prisone Pris	Mercury	mg/kg	0.18 _n A 2.8 _k B 5.7 _k C 0.73 ^D	n/v	0.018 U	0.018 U	0.021 U	0.019 U	0.020 U	-	0.017 U	-	0.021 U	0.020 U	-	-	0.017 U
Sement	Nickel	mg/kg		n/v	10.7 U	9.7 U	12.6 U	7.1 J	5.1 J	-	5.7 J	-	4.5 J	21.2	-	-	10.0 U
Sheef	Potassium	mg/kg	10,000 _e ABCD	n/v	533	595	356	452	445	-	379	-	340	1,310	-	-	284
Section Part 1905		mg/kg	3.9 _n A 1,500 ^B 6,800 ^C 4 _g D	n/v	8.5 U	7.8 U	10.1 U	8.9 U	9.6 U	-	8.1 U	-	9.9 U	9.1 U	-	-	8.0 U
Testure Part Transport				1	1			1		-	1	-	1.2 U	1	-	-	
Variable May 1,0000, M	Sodium		10,000 _e ^{ABCD}					1		-	1	-		1	-	-	
The control of the	Thallium		10,000 _e ^{ABCD}	10,000 _a ^{EFG}	1			1		-		-			-	-	
Polychintared Eliphonyis	Vanadium	mg/kg		10,000 _a ^{EFG}	10.0			1	11.6	-	9.8	-		23.1	-	-	
Moder 1016	Zinc	mg/kg	109 _n ^A 10,000 _e ^{BC} 2,480 ^D	n/v	14.2	16.6	8.7	16.7	12.0	-	14.2	-	8.4	41.4	-	-	12.9
According Acco																	
Accide 1722 1996		μg/kg	0	n/v	-	-	-	-	-	-	1	-	41 U	44 U		-	35 U
Accord 1362	Aroclor 1221	μg/kg	0	n/v	-	-	-	-	-	-	1	-	41 U	1		-	35 U
Accide 1984			0		-	-	-	-	-	-	1	-				-	
Accide 1294 1948 1949 1940 19			0		-	-	-	-	-	-	1	-		1	42 U	-	35 U
Account 1700 Map M			0		-	-	-	-	-	-	1	-		1		-	
Accorded 1986 1987			0		-	-	-	-	-	-	1	-		1		-	
Account 158			0		-	-	-	-	-	-	1	-		1		-	
Position			0		-	-	-	-	-	-	1	-		1		-	
Posticides Pos			0		-	-	-	-	-	-	1	-		1		-	
Addre		μg/kg	100 ^A 1,000 ^B 25,000 ^B 3,200 ^B	n/v	-	-	-	-	-	-	ND	-	ND	ND	ND	-	ND
BHC plans upfn 20° 340° 800° nV - - - - - 38U - 41U 44U 42U - 35U BHC plans upfn upfn de 3° 300° 1400° 9° nV - - - - - 38U - 41U 44U 42U - 35U BHC plans upfn upfn			A B C D														
BHC, belta- BHC, b				1	_	-		-	-	· ·						-	
BHC. offiles μg/kg 4Ω, "500 000, "1,000 000, "500 000, "1,000 000, "500 000, "1,000 0					_	-		-	-		1	-		1			
Campbechor (Toxaphene)				1	1 :	[[[1 :				1			
Chlordane, alphe-														1			
Chiodrae, trans- (gamma-Chiordane)					l .									1		_	
DDD (p,p'-DDD)				1	_	_			_		1			1		_	
DDE (p.p^-DDE)					_	_			_		1	_				_	
DDT (p.p^-DDT)					l .						1					_	
Dieldrin Pights				1	_	_	_	_		_	1					_	
Endosulfan I					1	_					1						
Endosulfan II		1 1			1						1						
Endosulfan Sulfate					1		-		_		1	_		1		-	
Endrin Hg/kg					1 -	_	_	_	_	· ·	1	_		1		-	
Endrin Aldehyde				1	1 -	_	_	_	_	· ·	1	_		1			
Endrin Ketone				1	1 :	[[[_	
Heptachlor Heptachlor Epoxide					1 .	[[1 .	1			1			
Heptachlor Epoxide µg/kg $100,000_a^A 500,000_c^B 1,000,000_d^C$ $500,000_a^E 1,000,000_a^F 20^G$ - - - 3.6 U - 4.1 UJ 4.4 U 4.2 U - 3.5 U Lindane (Hexachlorocyclohexane, gamma) µg/kg $100^{AD} 9,200^B 23,000^C$ n/v - - - - - 3.6 U - 4.1 UJ 4.4 U 4.2 U - 3.5 U Methoxychlor (4,4'-Methoxychlor) µg/kg $100,000_a^A 500,000_c^B 1,000,000_a^C$ $500,000_a^E 1,000,000_a^F 900,000^G$ - - - - - - - 4.1 UJ 4.4 U 4.2 U - 3.5 U					1 .	[[_	
Lindane (Hexachlorocyclohexane, gamma) $\mu g/kg$ $100^{AD} 9,200^B 23,000^C$ n/v 3.6 U - 4.1 UJ 4.4 U 4.2 U - 3.5 U Methoxychlor (4,4'-Methoxychlor) $\mu g/kg$ $100,000_a^A 500,000_c^B 1,000,000_a^C$ $500,000_a^E 1,000,000_a^C$ $$	·				1 :	[[.	.	:		.		1			
Methoxychlor (4.4'-Methoxychlor) $\mu g/kg = 100,000_a^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $					1 -	-	-		-	-	1	-		1		_	
					-	_	_	_	_		1	_		1		_	
	See notes on last page.	10.9		,					1			1					

Stantec

1905
U:\190500898\05_report_deliv/deliverables\reports\SMP\2_Tables\analytical_CL\tb4_Rl.soil_CLLB_20191014.xlsx

Semi-Volatile Organic Compounds		l		B/MW-101		B/MV	V-102	B-102a	I	B/MW-103		1	B/MV	<i>I</i> -104	
Sampling Company Laboratory Work Order Laboratory Sample ID Sample Type Semi-Volatile Organic Compounds Acenaphthene Acenaphthylene Benzo(a) pyrkg 100,000, *1,000 100,000, *1,000 100,000, *1,000 100,000, *1,000 100,000, *1,000 100,000, *1,000 100,000, *1,000, *1,000 100,000, *1,000 100,000, *1,000 110,000, *1,000, *1,000, *1,000 110,000, *1,000, *1,000 110,000, *1,000, *1,000 110,00			25-Jul-18	25-Jul-18	25-Jul-18	23-Jul-18	23-Jul-18	24-Jul-18	24-Jul-18	24-Jul-18	24-Jul-18	26-Jul-18	26-Jul-18	26-Jul-18	26-Jul-18
Sampling Company Laboratory Work Order Laboratory Sample ID Sample Type			LIN-B101-S1	LIN-FD1-S	LIN-B101-S2	LIN-B102-S1	LIN-B102-S2	LIN-B102a-S	LIN-B103-S1	LIN-B103-S3	LIN-B103-S2	LIN-B104-S2	LIN-FD2-S	LIN-B104-S1	LIN-B104-S3
Laboratory Work Order Laboratory Sample (1)			15 - 17 ft	15 - 17 ft	57 - 60 ft	2 - 3.5 ft	50.5 - 52 ft	7 - 8 ft	8 - 10 ft	19 - 19.5 ft	49 - 51 ft	4 - 8 ft	4 - 8 ft	10.5 - 11 ft	45 - 49 ft
Laboratory Work Order Laboratory Sample ID Sample Type			STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory Sample (TAL 460-161448-1	TAL 460-161448-1	TAL	TAL 460-161196-1	TAL	TAL 460-161196-1	TAL	TAL	TAL	TAL	TAL 460-161448-1	TAL 460-161448-1	TAL
Sample Type			460-161448-1	460-161448-3	460-161448-1 460-161448-2	460-161196-1	460-161196-1 460-161196-2	460-161196-3	460-161196-1 460-161196-4	460-161448-1 460-161448-4	460-161196-1 460-161196-5	460-161448-1 460-161448-8	460-161448-6	460-161448-7	460-161448-1 460-161448-9
Semi-Volatile Organic Compounds	NYSDEC-Part 375	NYSDEC CP-51	100 101110 1	Field Duplicate	100 101110 2	100 101 100 1	100 101100 2	100 101 100 0	100 101100 1	100 101110 1	100 101100 0	100 101110 0	Field Duplicate	100 101110 1	100 101110
Acenaphthylene															
Acetophenone	B	, ,													
Acetophenone Arthracene Arthracene Arthracene Arthracene Arthracene Arthracene Arthracene Arthracene Arthracene Benzo(a)pryrene Benzo(a)pryrene Benzo(b)fluoranthene Biphenyl, 1,1"- (Biphenyl) Big(2-Chloroethoxy)methane Biphenyl, 1,1"- (Biphenyl) Big(2-Chloroethoxy)methane Big(2-Chloroethoxy)metha		n/v n/v	-				_		370 U 370 U	-	420 U 420 U	450 U 450 U	420 U 420 U	-	360 U 360 U
Anthracene Artazine Artazine Artazine Benzadelyde Benzadelymere Benzadelymer		n/v							370 U	_	420 U	450 U	420 U		360 U
Artzeine μg/kg 100.000_^ 1.000		n/v							370 U		420 U	450 U	420 U		360 U
Benzaldehyde		n/v							370 UJ	_	420 UJ	450 U	420 U		360 U
Benzo(a)anthracene		n/v							370 U	_	420 U	450 U	420 U		360 U
Benzo(a)pyrene		n/v	_		-		_	_	370 U	_	420 U	450 U	420 U		360 U
Benzo(b)fluoranthene		n/v			-			_	370 U		420 U	450 U	420 U		360 U
Benzo(g,h,l)perylene			-	-	-	-	-	-	1	-		I		-	
Benzo(k)fluoranthene		n/v	-	-	-	-	-	-	370 U	-	420 U	450 U	420 U	-	360 U
Biphenyl, 1,1'- (Biphenyl)		n/v	-	-	-	-	-	-	370 U	-	420 U	450 U	420 U	-	360 U
Bis(2-Chloroethoxy)methane mg/kg 100,000_a^5 500,000_b^8 mg/kg		n/v	-	-	-	-	-	-	370 U	-	420 U	450 U	420 U	-	360 U
Bis(2-Chlorosproy)lether (2,2-oxybis(1-Chloropropane)) gy/kg 100,000_a^5 500,000_b^8 100	100,000 _a ^A 1,000,000 _d ^D	500,000 _a E 1,000,000 _a F	-	-	-	-	-	-	370 U	-	420 U	450 U	420 U	-	360 U
Bis(2-Chloroisopropylether (2,2-oxybis(1-Chloropropane)) µg/kg 100,000,^6 500,000,^8 Bis(2-Ethylphexylphthalate (DEHP) µg/kg 100,000,^6 500,000,^8 Butyl Benzyl Phthalate µg/kg 100,000,^6 500,000,^8 Carbazole µg/kg 100,000,^6 500,000,^8 Chloro-3-methyl phenol, 4- µg/kg 100,000,^6 500,000,^8 Chlorophenol, 2- (ortho-Chlorophenol) µg/kg 100,000,^6 500,000,^8 Chlorophenol, 2- (ortho-Chlorophenol) µg/kg 100,000,^6 500,000,^8 Chlorophenyl Phenyl Ether, 4- µg/kg 100,000,^6 500,000,^8 Chrysene µg/kg 100,000,^6 500,000,^8 Cresol, D. (Methylphenol, 2-) µg/kg 330,^6 500,000,^8 Cresol, D. (Methylphenol, 4-) µg/kg 330,^6 500,000,^8 Dibenzofuran µg/kg 100,000,^6 500,000,^8 Diberlorobenzidine, 3,3'- µg/kg 100,000,^6 500,000,^8 Dichlorophenol, 2,4- µg/kg 100,000,^6 500,000,^8 Dimitroblene, 2,4- µg/kg 100,000,^6 500,000,^8 Dimitroblene, 2,4- µg/kg 100,000,^6 500,000,^8 Dinitroblene, 2,4- µg/	0 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	-	-	-	-	370 U	-	420 U	450 U	420 U	-	360 U
Bis(2-Ethylhexyl)phthalate (DEHP) µg/kg 100,000_a^5 500,000_b^8 Bromophenyl Phenyl Ether, 4- µg/kg 100,000_a^5 500,000_b^8 Buyl Benzyl Phthalate µg/kg 100,000_a^5 500,000_b^8 Caprolactam µg/kg 100,000_a^5 500,000_b^8 Chloro-3-methyl phenol, 4- µg/kg 100,000_a^5 500,000_b^8 Chloronaphthalene, 2- µg/kg 100,000_a^5 500,000_b^8 Chlorophenol, 2- (ortho-Chlorophenol) µg/kg 100,000_a^5 500,000_b^8 Chlorophenyl Phenyl Ether, 4- µg/kg 100,000_a^5 500,000_b^8 Chrysene µg/kg 1,000_a^5 50,000_b^8 Cresol, o- (Methylphenol, 2-) µg/kg Dibenzo(a, h)-athracene µg/kg Dibenzo(a, h)-athracene µg/kg Dibenzo(a, h)-athracene µg/kg Dichlorophenol, 2-4 µg/kg Dichlorophenol, 2,4- µg/kg Dimettyl Phthalate µg/kg Dimittyl Phthalate µg/kg Dimittrobenco, 2,4- µg/kg Dimittrobenol, 2,4- µg/kg Dinitrobenol, 2,4- µg/kg Dinitrobenol,	0 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	-	· ·	-	· ·	370 U	-	420 U	450 U	420 U	-	360 U
Bromophenyl Phenyl Ether, 4- μg/kg 100,000a ¹ 500,000c ¹ 10	0 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	-	· ·	-	· ·	370 U	-	420 U	450 U	420 U	-	360 U
Butyl Benzyl Phthalate µg/kg 100,000a^h 500,000c ^B Caprolactam µg/kg 100,000a^h 500,000c ^B Chloro-3-methyl phenol, 4- µg/kg 100,000a^h 500,000c ^B Chloroaniline, 4- µg/kg 100,000a^h 500,000c ^B Chloropaphthalene, 2- µg/kg 100,000a^h 500,000c ^B Chlorophenol, 2- (ortho-Chlorophenol) µg/kg 100,000a^h 500,000c ^B Chlorophenyl Phenyl Ether, 4- µg/kg 100,000a^h 500,000c ^B Chrysene µg/kg 100,000a^h 500,000c ^B 100,000a^h 500,000c ^B Cresol, o- (Methylphenol, 4-) µg/kg 330a ^h 500,000c ^B 1,000 Dibenzo(a,h)anthracene µg/kg 7,000c ^h 56,000B ^B 1,000 Dibetyl Phthalate (DBP) µg/kg 7,000c ^h 500,000c ^B 1,000 Dichloroberzdiine, 3,3'- µg/kg 100,000a ^h 500,000c ^B 1,000 Dimethyl Phthalate µg/kg 100,000a ^h 500,000c ^B 1,000 Dimethyl Phthalate µg/kg 100,000a ^h 500,000c ^B 1,000 Dimethyl Phthalate µg/kg 100,000a ^h 500,000c ^B 1,000	0 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 435,000 ^G	-	-	-	-	-	-	370 U	-	420 U	450 U	420 U	-	360 U
Carbazole μg/kg 100,000a, *10,000c, *10 Carbazole μg/kg 100,000a, *500,000c, *1 Chloro-3-methyl phenol, 4- μg/kg 100,000a, *500,000c, *1 Chloronalhine, 4- μg/kg 100,000a, *500,000c, *1 Chlorophenol, 2- (ortho-Chlorophenol) μg/kg 100,000a, *500,000c, *1 Chlorophenyl Phenyl Ether, 4- μg/kg 100,000a, *500,000c, *1 Chrysene μg/kg 1,000a, *500,000c, *1 Cresol, o- (Methylphenol, 2-) μg/kg 330a, *500,000c, *1 Cresol, p- (Methylphenol, 4-) μg/kg 330a, *500,000c, *1 Dibenzo(a,h)anthracene μg/kg 330a, *500,000c, *1 Dibenzofuran μg/kg 100,000a, *500,000c, *1 Dibityl Phthalate (DBP) μg/kg 100,000a, *500,000c, *1 Dichlorophenol, 2,4- μg/kg 100,000a, *500,000c, *1 Dimethyl Phthalate μg/kg 100,000a, *500,000c, *1 Dimethyl Phthalate μg/kg 100,000a, *500,000c, *1 Dimethyl Phthalate μg/kg 100,000a, *500,000c, *1 Dimitrotoluene, 2,4- μg/kg 100,000a, *500,000c, *1 </td <td>0_a^A 500,000_c^B 1,000,000_d^{CD}</td> <td>n/v</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>370 U</td> <td>-</td> <td>420 U</td> <td>450 U</td> <td>420 U</td> <td>-</td> <td>360 U</td>	0 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	-	-	-	-	370 U	-	420 U	450 U	420 U	-	360 U
Carbazole µg/kg 100,000,a ¹ 500,000,b ² Chloro-3-methyl phenol, 4- µg/kg 100,000,a ¹ 500,000,b ² Chloroaphthalene, 2- µg/kg 100,000,a ¹ 500,000,b ² Chlorophenyl Phenyl Ether, 4- µg/kg 100,000,a ¹ 500,000,b ² Chrysene µg/kg 100,000,a ¹ 500,000,b ² Cresol, o- (Methylphenol, 2-) µg/kg 330,a ¹ 500,000,b ² Cresol, p- (Methylphenol, 4-) µg/kg 330,a ¹ 500,000,b ² Dibenzofuran µg/kg 330,a ¹ 500,000,b ² Dibenzofuran µg/kg 100,000,a ³ 500,000,b ² Dichlorobenzidine, 3,3'- µg/kg 100,000,a ³ 500,000,b ² Dichlorophenol, 2,4- µg/kg 100,000,a ³ 500,000,b ² Dimethyl Phthalate µg/kg 100,000,a ³ 500,000,b ² Dimethylphenol, 2,4- µg/kg 100,000,a ³ 500,000,b ² Dimitro-o-cresol, 4,6- µg/kg 100,000,a ³ 500,000,b ² Dinitrotoluene, 2,6- µg/kg 100,000,a ³ 500,000,b ² Dinitrotoluene, 2,6- µg/kg 100,000,a ³ 500,000,b ² Dinitrotoluene, 2,6- µg/kg 100,000	0 _a 500,000 _c 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F 122,000 ^G	-	-	-	-	-	-	370 U	-	420 U	450 U	420 U	-	360 U
Chloro-3-methyl phenol, 4- μg/kg 100,000a, 500,000c, 8 Chloronaphthalene, 2- μg/kg 100,000a, 500,000c, 8 Chlorophenol, 2- (ortho-Chlorophenol) μg/kg 100,000a, 500,000c, 8 Chlorophenyl Phenyl Ether, 4- μg/kg 100,000a, 500,000c, 8 Chrysene μg/kg 1,000a, 500,000c, 8 Chrysene μg/kg 1,000a, 500,000c, 8 Cresol, o. (Methylphenol, 2-) μg/kg 330a, 500,000c, 8 Cresol, p. (Methylphenol, 4-) μg/kg 330a, 500,000c, 8 Dibenzofuran μg/kg 7,000² 350,000c, 8 Dibenzofuran μg/kg 100,000a, 500,000c, 8 Dichlorobenzidine, 3,3°- μg/kg 100,000a, 500,000c, 8 Dichlorophenol, 2,4- μg/kg 100,000a, 500,000c, 8 Dimethyl Phthalate μg/kg 100,000a, 500,000c, 8 Dimethyl Phthalate μg/kg 100,000a, 500,000c, 8 Dimitro-o-cresol, 4,6- μg/kg 100,000a, 500,000c, 8 Dinitro-o-bresol, 4,6- μg/kg 100,000a, 500,000c, 8 Dinitrotoluene, 2,8- μg/kg 100,000a, 500,000c, 8 <td< td=""><td>100,000_a^A 1,000,000_d^D</td><td>n/v</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>370 U</td><td>-</td><td>420 U</td><td>450 U</td><td>420 U</td><td>-</td><td>360 U</td></td<>	100,000 _a ^A 1,000,000 _d ^D	n/v	-	-	-	-	-	-	370 U	-	420 U	450 U	420 U	-	360 U
Chloroaphthalene, 2-		n/v	-	-	-	-	-	-	370 U	-	420 U	450 U	420 U	-	360 U
Chloronaphthalene, 2-		n/v	-	-	-	-	-	-	370 U	-	420 U	450 U	420 U	-	360 U
Chlorophenol, 2- (ortho-Chlorophenol)		500,000 _a E 1,000,000 _a F 220 ^G	-	-	-	-	-	-	370 U	-	420 U	450 U	420 U	-	360 U
Chlorophenyl Phenyl Ether, 4- μg/kg 100,000a 500,000c 8 Chrysene μg/kg 1,000a 500,000c 8 1,000a 500,000c 8 Cresol, ο- (Methylphenol, 2-) μg/kg 330a 500,000c 8 1,000 Cresol, p. (Methylphenol, 4-) μg/kg 330a 500,000c 8 1,000 Dibenzofuran μg/kg 330a 500,000c 8 1,000 Dibulyl Phthalate (DBP) μg/kg 100,000a 500,000c 8 1,000 Dichlorobenzidine, 3,3- μg/kg 100,000a 500,000c 8 100,000a 500,000c 8 Diethyl Phthalate μg/kg 100,000a 500,000c 8 100,000a 500,000c 8 Dimethyl Phthalate μg/kg 100,000a 500,000c 8 100,000a 500,000c 8 Dimitro-o-cresol, 4,6- μg/kg 100,000a 500,000c 8 100,000a 500,000c 8 Dimitro-benol, 2,4- μg/kg 100,000a 500,000c 8 100,000a 500,000c 8 Dintrobleme, 2,6- μg/kg 100,000a 500,000c 8 100,000a 500,000c 8 Di-n-Octyl phthalate μg/kg 100,000a 500,000c 8 100,000a 500,000c 8 Fluoranthene μg/kg 100,000a 500,000c 8 100,000a 500,000c 8 <td></td> <td>n/v</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>370 U</td> <td>-</td> <td>420 U</td> <td>450 U</td> <td>420 U</td> <td>-</td> <td>360 U</td>		n/v	-	-	-	-	-	-	370 U	-	420 U	450 U	420 U	-	360 U
Chrysene µg/kg 1,000,6,56,0008,100 Cresol, o- (Methylphenol, 2-) µg/kg 330,6,500,000,8,100 Cresol, p- (Methylphenol, 4-) µg/kg 330,6,500,000,8,100 Dibenzo(a,h)anthracene µg/kg 330,6,500,000,8,100 Dibutyl Phthalate (DBP) µg/kg 1,000,4,500,000,8,100 Dichlorobenzidine, 3,3'- µg/kg 100,000,6,500,000,8,100 Dichlorobenol, 2,4- µg/kg 100,000,6,500,000,8,100 Dimethyl Phthalate µg/kg 100,000,6,500,000,8,100 Dimethylphenol, 2,4- µg/kg 100,000,6,500,000,8,100 Dimitrophenol, 2,4- µg/kg 100,000,6,500,000,8,100 Dinitrophenol, 2,4- µg/kg 100,000,6,500,000,8,100 Dinitrophenol, 2,4- µg/kg 100,000,6,500,000,8,100 Dinitrotoluene, 2,6- µg/kg 100,000,6,500,000,8,100 Dinitrotoluene, 2,6- µg/kg 100,000,6,500,000,8,100 Pluoranthene µg/kg 100,000,6,500,000,8,100 Hexachlorobutadiene (Hexachloro-1,3-butadiene) µg/kg 100,000,6,500,000,8,100 Hexachlorocyclopentadiene µg/kg 100,000,6,5		500,000 _a E 1,000,000 _a F	-	-	-	-	-	-	370 U	-	420 U	450 U	420 U	-	360 U
Cresol, o- (Methylphenol, 2-) µg/kg 330_m^5 500,000_c ^B 1,000 Cresol, p- (Methylphenol, 4-) µg/kg 330_m^5 500,000_c ^B 1,000 Dibenzo(a,h)anthracene µg/kg 330_m^5 660^B 1,100^C 1 Dibetyl Phthalate (DBP) µg/kg 100,000_a^5 500,000_c ^B 1 Dichlorobenzidine, 3,3'- µg/kg 100,000_a^5 500,000_c ^B 1 Dichlorophenol, 2,4- µg/kg 100,000_a^5 500,000_c ^B 1 Diethyl Phthalate µg/kg 100,000_a^5 500,000_c ^B 1 Dimethylphenol, 2,4- µg/kg 100,000_a^5 500,000_c ^B 1 Dimitro-c-cresol, 4,6- µg/kg 100,000_a^5 500,000_c ^B 1 Dinitrotoluene, 2,4- µg/kg 100,000_a^5 500,000_c ^B 1 Dinitrotoluene, 2,6- µg/kg 100,000_a^5 500,000_c ^B 1 Dinitrotoluene, 2,6- µg/kg 100,000_a^5 500,000_c ^B 1 Pluoranthene µg/kg 100,000_a^5 500,000_c ^B 1 Hexachlorobutadiene (Hexachloro-1,3-butadiene) µg/kg 30,000^5 500,000_c ^B 1 Hexachlorobutadiene (Hexachloro-1,3-butadiene) µg/kg 100,000_a^5 500,000_c ^B 1 Hexachlorobutadiene (Hexachloro-1,3-butadiene) µg/kg 100,000_a^5		n/v	-	-	-	-	-	-	370 U	-	420 U	450 U	420 U	-	360 U
Cresol, p- (Methylphenol, 4-) µg/kg 330,		n/v	-	-	-	-	-	-	370 U	-	420 U	450 U	420 U	-	360 U
Dibenzo(a,h)anthracene		n/v	-	-	-	-	-	-	370 U	-	420 U	450 U	420 U	-	360 U
Dibenzofuran		n/v	-	-	-	-	-	-	710 U	-	810 U	860 U	820 U	-	700 U
Dibutyl Phthalate (DBP)		n/v	-	-	-	-	-	-	370 U	-	420 U	450 U	420 U	-	360 U
Dichlorobenzidine, 3,3'- μg/kg 100,000,a' 500,000,e' Dichlorophenol, 2,4- μg/kg 100,000,a' 500,000,e' Diethyl Phthalate μg/kg 100,000,a' 500,000,e' Dimethyl Phthalate μg/kg 100,000,a' 500,000,e' Dimethyl Phthalate μg/kg 100,000,a' 500,000,e' Dimethylphenol, 2,4- μg/kg 100,000,a' 500,000,e' Dinitro-o-cresol, 4,6- μg/kg 100,000,a' 500,000,e' Dinitrotoluene, 2,4- μg/kg 100,000,a' 500,000,e' Dinitrotoluene, 2,6- μg/kg 100,000,a' 500,000,e' Din-Octyl phthalate μg/kg 100,000,a' 500,000,e' Din-Octyl phthalate μg/kg 100,000,a' 500,000,e' Fluoranthene μg/kg 100,000,a' 500,000,e' Hexachlorobenzene μg/kg 100,000,a' 500,000,e' Hexachlorobutadiene (Hexachloro-1,3-butadiene) μg/kg 330,a' 6,000θ 12,00 Hexachlorocyclopentadiene μg/kg 100,000,a' 500,000,e' Hotylnaphthalene, 2- μg/kg 100,000,a' 500,000,e' Nitroaniline, 2- μg/kg 100,000,a' 500,000,e' Nitroaniline, 4- μg/kg 100,000,a' 500,000,e' Nitroaniline, 4- μg/kg 100,000,a' 500,000,e' Nitroaniline, 4- μg/kg 100,000,a' 500,000,e' Nitrobenzene μg/kg 100,000,a' 500,000,e' Nitrobenzene μg/kg 100,000,a' 500,000,e' Nitrobenzene μg/kg 100,000,a' 500,000,e' Nitrosodiphenylamine μg/kg 100,000,a' 500,000,e' N-Nitrosodiphenylamine μg/kg 100,000,a' 500,000,e' Pentachlorophenol μg/kg 100,000,a' 500,000,e' Pentachlorophen	50,000 ^B 1,000,000 _d ^C 210,000 ^D	500,000 _a ^E 1,000,000 _a ^F 6,200 ^G	-	-	-	-	-	-	370 U	-	420 U	450 U	420 U	-	360 U
Dichlorophenol, 2,4- μg/kg 100,000_a^5 500,000_c^8 Diethyl Phthalate μg/kg 100,000_a^5 500,000_c^8 Dimethyl Phthalate μg/kg 100,000_a^5 500,000_c^8 Dimethyl Phthalate μg/kg 100,000_a^5 500,000_c^8 Dimethylphenol, 2,4- μg/kg 100,000_a^5 500,000_c^8 Dinitrophenol, 2,4- μg/kg 100,000_a^5 500,000_c^8 Dinitrotoluene, 2,4- μg/kg 100,000_a^5 500,000_c^8 Din-Octyl phthalate μg/kg 100,000_a^5 500,000_c^8 Fluoranthene μg/kg 100,000_a^5 500,000_c^8 Fluoranthene μg/kg 100,000_a^5 500,000_c^8 Hexachlorobutadiene (Hexachloro-1,3-butadiene) μg/kg 100,000_a^5 500,000_c^8 Hexachlorocyclopentadiene μg/kg 100,000_a^5 500,000_c^8 Indeno(1,2,3-cd)pyrene μg/kg	T. T. T.	500,000 _a ^E 1,000,000 _a ^F 8,100 ^G	-	-	-	-	-	-	370 U	-	420 U	450 U	420 U	-	360 U
Diethyl Phthalate	0 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	-	-	-	-	370 U	-	420 U	450 U	420 U	-	360 U
Dimethyl Phthalate		500,000 _a E 1,000,000 _a F 400 ^G	-	-	-	-	-	-	370 U	-	420 U	450 U	420 U	-	360 U
Dimethylphenol, 2,4- μg/kg 100,000a 500,000c 5.00,000c		500,000 _a ^E 1,000,000 _a ^F 7,100 ^G	-	-	-	-	-	-	370 U	-	420 U	450 U	420 U	-	360 U
Dinitro-o-cresol, 4,6- μg/kg 100,000a 500,000c 50 Dinitrophenol, 2,4- μg/kg 100,000a 500,000c 50 Dinitrotoluene, 2,6- μg/kg 100,000a 500,000c 50 100,000a 500,000c 50 μg/kg 100,000a 500,000c 50 μg/kg 100,000a 500,000c 50 1		500,000 _a ^E 1,000,000 _a ^F 27,000 ^G	-	-	-	-	-	-	370 U	-	420 U	450 U	420 U	-	360 U
Dinitrophenol, 2,4- μg/kg 100,000a 500,000c B μg/kg 100,000a 500,000c B μg/kg 100,000a 500,000c B μg/kg 100,000a 500,000c B 100-0Ctf phthalate μg/kg 100,000a		n/v	-	-	-	-	-	-	370 U	-	420 U	450 U	420 U	-	360 U
Dinitrotoluene, 2,4- μg/kg 100,000_a^1 500,000_c^8 Dinitrotoluene, 2,6- μg/kg 100,000_a^1 500,000_c^8 Di-n-Octyl phthalate μg/kg 100,000_a^1 500,000_c^8 Fluoranthene μg/kg 100,000_a^1 500,000_c^8 Fluorene μg/kg 30,000^5 500,000_c^8 Hexachlorobutadiene (Hexachloro-1,3-butadiene) μg/kg 330,00^5 500,000_c^8 Hexachlorocyclopentadiene μg/kg 100,000_a^1 500,000_c^8 Hothoriticolomous μg/kg 100,000_a^1 500,000_c^8 Hothoriticolomous μg/kg 100,000_a^1 500,000_c^8 Nitroaniline, 2- μg/kg 100,000_a^1 500,000_c^8 Nitroaniline, 4- μg/kg 100,000_a^1 500,000_c^8 Nitroaniline, 4- μg/kg 100,000_a^1 500,000_c^8 Nitrophenol, 2- μg/kg 100,000_a^1 500,000_c^8 Nitrophenol, 4- μg/kg 100,000_a^1 500,000_c^8 N-Nitrosodiphenylamine μg/kg 100,000_a^1 500,000_c^8 N-Nitrosodiphenylamine μg/kg 100,000_a^1 500,000_c^8 Pentachlorophenol μg/kg 300,000_a^1 500,000_a^8 300,000_a^1 500,000_a^8 300,000_a^1 500,000_a^8 300,000_	T. T. T.	n/v	-	-	-	-	-	-	710 U	-	810 U	860 U	820 U	-	700 U
Dinitrotoluene, 2,6- Din-Octyl phthalate μg/kg 100,000a 500,000c 5 100,000a 5		500,000 _a E 1,000,000 _a F 200 ^G	-	-	-	-	-	-	710 U	-	810 U	860 U	820 U	-	700 U
Di-n-Octyl phthalate μg/kg 100,000a h 500,000c в Fluoranthene μg/kg 100,000a h 500,000c в Fluorene μg/kg 30,000 h 500,000c в 1,000 h 500,000c в Hexachlorobenzene μg/kg 330a h 6,000 f 12,000 h 500,000c в 1,000 h 500,000c в Hexachlorocyclopentadiene μg/kg 100,000a h 500,000c в 100,000a h 500,000c в Hexachlorocyclopentadiene μg/kg 100,000a h 500,000c в 100,000a h 500,000c в Hexachlorocyclopentadiene μg/kg 100,000a h 500,000c в 100,000a h 500,000c в Indeno(1,2,3-cd)pyrene μg/kg 100,000a h 500,000c в 100,000a h 500,000c в Isophorone μg/kg 100,000a h 500,000c в 100,000a h 500,000c в Methylnaphthalene, 2- μg/kg 100,000a h 500,000c в 100,000a h 500,000c в Nitroaniline, 2- μg/kg 100,000a h 500,000c в 100,000a h 500,000c в Nitroaniline, 3- μg/kg 100,000a h 500,000c в 100,000a h 500,000c в Nitrophenol, 4- μg/kg 100,000a h 500,000c в 100,000a h 500,000c в N-Nitrosodihenylamine μg/kg 100,000		n/v	-	-	-	-	-	-	370 U	-	420 U	450 U	420 U	-	360 U
Fluoranthene μg/kg 100,000 a 500,000 c 8 100,000 a 500,000 c 8 1,000 c 9 1		500,000 _a ^E 1,000,000 _a ^F 1,000/170 _{b,s1} ^G	-	-	-	-	-	-	370 U	-	420 U	450 U	420 U	-	360 U
Fluorene		500,000 _a ^E 1,000,000 _a ^F 120,000 ^G	-	-	-	-	-	-	370 U	-	420 U	450 U	420 U	-	360 U
Hexachlorobenzene µg/kg 330, м² 6,000° 12,00 Hexachlorobutadiene (Hexachloro-1,3-butadiene) µg/kg 100,000, s² 500,000, s² Hexachlorocyclopentadiene µg/kg 100,000, s² 500,000, s² Hexachlorochane µg/kg 100,000, s² 500,000, s² Indeno(1,2,3-cd)pyrene µg/kg 500, s² 500,000, s² Isophorone µg/kg 100,000, s² 500,000, s² Nettryinaphthalene, 2- µg/kg 100,000, s² 500,000, s² Nitroaniline, 2- µg/kg 100,000, s² 500,000, s² Nitroaniline, 3- µg/kg 100,000, s² 500,000, s² Nitrobenzene µg/kg 100,000, s² 500,000, s² Nitrophenol, 2- µg/kg 100,000, s² 500,000, s² N-Nitrosodiphenol, 4- µg/kg 100,000, s² 500,000, s² N-Nitrosodiphenylamine µg/kg 100,000, s² 500,000, s² Pentachlorophenol µg/kg 100,000, s² 500,000, s² Phenol µg/kg 330, s² 500,000, s²		n/v	-	-	-	-	-	-	370 U	-	420 U	450 U	420 U	-	360 U
Hexachlorobutadiene (Hexachloro-1,3-butadiene) µg/kg 100,000a^5,500,000c^8 Hexachlorocyclopentadiene µg/kg 100,000a^5,500,000c^8 Hexachlorocyclopentadiene µg/kg 100,000a^5,500,000c^8 Indeno(1,2,3-cd)pyrene µg/kg 500,^5,6,600 ⁸ 11,00 Isophorone µg/kg 100,000a^5,500,000c,8 Methylnaphthalene, 2- µg/kg 100,000a^5,500,000c,8 Naphthalene µg/kg 12,000fo ⁵ ,500,000c,8 Nitroaniline, 2- µg/kg 100,000a^5,500,000c,8 Nitroaniline, 3- µg/kg 100,000a^5,500,000c,8 Nitrobenzene µg/kg 100,000a^5,500,000c,8 Nitrophenol, 2- µg/kg 100,000a^5,500,000c,8 N-Nitrosodi-n-Propylamine µg/kg 100,000a^5,500,000c,8 n-Nitrosodiphenylamine µg/kg 100,000a^5,500,000c,8 Pentachlorophenol µg/kg 100,000a^5,670,000c,8 Phenanthrene µg/kg 330a,670,000c,8 Phenol µg/kg 330a,650,000c,8		n/v	-	-	-	-	-	-	370 U	-	420 U	450 U	420 U	-	360 U
Hexachlorocyclopentadiene µg/kg 100,000 a^5 500,000 c ⁸ Hexachloroethane µg/kg 100,000 a^5 500,000 c ⁸ Indeno(1,2,3-cd)pyrene µg/kg 100,000 a^5 500,000 c ⁸ Isophorone µg/kg 100,000 a^5 500,000 c ⁸ Methylnaphthalene, 2- µg/kg 100,000 a^5 500,000 c ⁸ Nitroaniline, 2- µg/kg 12,000 a^5 500,000 c ⁸ Nitroaniline, 3- µg/kg 100,000 a^5 500,000 c ⁸ Nitroaniline, 4- µg/kg 100,000 a^5 500,000 c ⁸ Nitrophenol, 2- µg/kg 100,000 a^5 500,000 c ⁸ Nitrophenol, 4- µg/kg 100,000 a^5 500,000 c ⁸ N-Nitrosodi-n-Propylamine µg/kg 100,000 a^5 500,000 c ⁸ n-Nitrosodiphenylamine µg/kg 100,000 a^5 500,000 c ⁸ Pentachlorophenol µg/kg 800 a^6,700 c ⁸ 50,000 c ⁸ Phenalthrene µg/kg 330 a^6,700,000 c ⁸ 1,000		500,000 _a ^E 1,000,000 _a ^F 1,400 ^G	-	-	-	-	-	-	370 U	-	420 U	450 U	420 U	-	360 U
Hexachloroethane		n/v	-	_	_	-	_	· ·	370 U	_	420 U	450 U	420 U	-	360 U
Indeno(1,2,3-cd)pyrene		500,000 _a E 1,000,000 _a F n/v	-	-	_	l -	_	· ·	370 U 370 U	-	420 U 420 U	450 U 450 U	420 U 420 U	-	360 U 360 U
Isophorone μg/kg 100,000 a^5 500,000 c ⁸ Methylnaphthalene, 2- μg/kg 100,000 a^5 500,000 c ⁸ Naphthalene μg/kg 100,000 a^5 500,000 c ⁸ Nitroaniline, 2- μg/kg 100,000 a^5 500,000 c ⁸ Nitroaniline, 3- μg/kg 100,000 a^5 500,000 c ⁸ Nitrobenzene μg/kg 100,000 a^5 500,000 c ⁸ Nitrophenol, 2- μg/kg 100,000 a^5 500,000 c ⁸ N-Nitrosodi-n-Propylamine μg/kg 100,000 a^5 500,000 c ⁸ N-Nitrosodiphenylamine μg/kg 100,000 a^5 500,000 c ⁸ Pentachlorophenol μg/kg 800, a^6,700 b 55,0 Phenanthrene μg/kg 330, a^6 500,000 c ⁸ 10,000 a^6,700,000 c ⁸			-	-	-	-	-	-	370 U	-	420 0	I		-	
Methylnaphthalene, 2- µg/kg 100,000a ^A 500,000c ^B . Naphthalene µg/kg 12,000f ^{AD} 500,000c ^B . Nitroaniline, 2- µg/kg 100,000a ^A 500,000c ^B . Nitroaniline, 3- µg/kg 100,000a ^A 500,000c ^B . Nitrobenzene µg/kg 100,000a ^A 500,000c ^B . Nitrobenol, 2- µg/kg 100,000a ^A 500,000c ^B . Nitrophenol, 4- µg/kg 100,000a ^A 500,000c ^B . N-Nitrosodi-n-Propylamine µg/kg 100,000a ^A 500,000c ^B . n-Nitrosodiphenylamine µg/kg 100,000a ^A 500,000c ^B . Pentachlorophenol µg/kg 800a ^A 6,700 ^B 55,0 Phenanthrene µg/kg 330a ^A 500,000c ^B . Phenol µg/kg 330a ^A 500,000c ^B .		n/v	-	-	-	-	-	-	0.00	-	1200	450 U	420 U	-	360 U
Naphthalene μg/kg 12,000 ^{AD} 500,000c ^B Nitroaniline, 2- μg/kg 100,000a ^A 500,000c ^B Nitroaniline, 3- μg/kg 100,000a ^A 500,000c ^B Nitrobenzene μg/kg 100,000a ^A 500,000c ^B Nitrophenol, 2- μg/kg 100,000a ^A 500,000c ^B Nitrophenol, 4- μg/kg 100,000a ^A 500,000c ^B N-Nitrosodi-n-Propylamine μg/kg 100,000a ^A 500,000c ^B n-Nitrosodiphenylamine μg/kg 100,000a ^A 500,000c ^B Pentachlorophenol μg/kg 800a ^A 6,700 ^B 55,0 Phenanthrene μg/kg 330a ^A 500,000c ^B Phenol μg/kg 330a ^A 500,000c ^B		500,000 _a ^E 1,000,000 _a ^F 4,400 ^G	-	-	-	-	-	-	370 U	-	420 U	450 U	420 U	-	360 U
Nitroaniline, 2- μg/kg 100,000 a 500,000 c 8 Nitroaniline, 3- μg/kg 100,000 a 500,000 c 8 Nitroaniline, 4- μg/kg 100,000 a 500,000 c 8 Nitrobenzene μg/kg 100,000 a 500,000 c 8 Nitrophenol, 2- μg/kg 100,000 a 500,000 c 8 Nitrophenol, 4- μg/kg 100,000 a 500,000 c 8 N-Nitrosodin-Propylamine μg/kg 100,000 a 500,000 c 8 n-Nitrosodiphenylamine μg/kg 800 a 500,000 c 8 Pentachlorophenol μg/kg 800 a 60,700 650,000 c 8 Phenanthrene μg/kg 330 a 500,000 c 8 100,000 a 500,000 c 8 Phenol μg/kg 330 a 500,000 c 8 1,000		500,000 _a ^E 1,000,000 _a ^F 36,400 ^G	-	-	-	-	-	-	370 U	-	420 U	450 U	420 U	-	360 U
Nitroaniline, 3- μg/kg 100,000 a 500,000 c B Nitroaniline, 4- μg/kg 100,000 a 500,000 c B Nitrobenzene μg/kg 100,000 a 500,000 c B Nitrophenol, 2- μg/kg 100,000 a 500,000 c B N-Nitrosodi-n-Propylamine μg/kg 100,000 a 500,000 c B n-Nitrosodiphenylamine μg/kg 100,000 a 500,000 c B Pentachlorophenol μg/kg 800 a 6,700 B 55,0 Phenanthrene μg/kg 330 a 500,000 c B Phenol μg/kg 330 a 500,000 c B 1,000		n/v	-	-	-	-	-	-	370 U	-	420 U	450 U	420 U	-	360 U
Nitroaniline, 4- μg/kg 100,000a ¹ ,500,000c ¹ . Nitrobenzene μg/kg 100,000a ¹ ,500,000c ¹ . Nitrophenol, 2- μg/kg 100,000a ¹ ,500,000c ¹ . Nitrophenol, 4- μg/kg 100,000a ¹ ,500,000c ¹ . N-Nitrosodi-n-Propylamine μg/kg 100,000a ¹ ,500,000c ¹ . n-Nitrosodiphenylamine μg/kg 100,000a ¹ ,500,000c ¹ . Pentachlorophenol μg/kg 800a ¹ ,6700 ¹ 55,0 Phenanthrene μg/kg 330a ¹ ,500,000c ¹ . Phenol μg/kg 330a ¹ ,500,000c ¹ .		500,000 _a ^E 1,000,000 _a ^F 400 ^G	-	-	-	-	-	-	710 U	-	810 U	860 U	820 U	-	700 U
Nitrobenzene μg/kg 100,000a h 500,000c s. Nitrophenol, 2- μg/kg 100,000a h 500,000c s. Nitrophenol, 4- μg/kg 100,000a h 500,000c s. N-Nitrosodiphenylamine μg/kg 100,000a h 500,000c s. Pentachlorophenol μg/kg 100,000a h 500,000c s. Phenanthrene μg/kg 330a h 500,000c s. Phenol μg/kg 330a h 500,000c s.		500,000 _a ^E 1,000,000 _a ^F 500 ^G	-	-	-	l -	-	· ·	710 U	-	810 U	860 U	820 U	-	700 U
Nitrophenol, 2- μg/kg 100,000g h 500,000g l 8 Nitrophenol, 4- μg/kg 100,000g h 500,000g l 8 N-Nitrosodi-n-Propylamine μg/kg 100,000g h 500,000g l 8 n-Nitrosodi-n-Propylamine μg/kg 100,000g h 500,000g l 8 Pentachlorophenol μg/kg 800 m h 6,700 l 50, 000g l 8 Phenanthrene μg/kg 330 m h 500,000 l 8 Phenol μg/kg 330 m h 500,000 l 8		n/v	-	-	-	_	_	· ·	710 U	-	810 U	860 U	820 U	-	700 U
Nitrophenol, 4- μg/kg 100,000a 500,000c 8 N-Nitrosodin-Propylamine μg/kg 100,000a 500,000c 8 n-Nitrosodiphenylamine μg/kg 100,000a 500,000c 8 Pentachlorophenol μg/kg 800m 6,7008 55,0 Phenanthrene μg/kg 100,000a 500,000c 8 Phenol μg/kg 330m 500,000c 8		69,000 ^E 140,000 ^F 170 _b ^G	-	-	-	_	_	· ·	370 U	-	420 U	450 U	420 U	-	360 U
N-Nitrosodi-n-Propylamine μg/kg 100,000 a^5 500,000 c ⁸ n-Nitrosodiphenylamine μg/kg 100,000 a^5 50,000 c ⁸ Pentachlorophenol μg/kg 800 a 6,700 c ⁸ 55,00 Phenanthrene μg/kg 100,000 a 500,000 c ⁸ 1,000 Phenol μg/kg 330 a 500,000 c ⁸ 1,000	T. T. T.	500,000 _a E 1,000,000 _a F 300 ^G	-	_	_	-	_	· ·	370 U	-	420 U	450 U	420 U	-	360 U
n-Nitrosodiphenylamine μg/kg 100,000 s² 500,000 c² 500,000 c² 500,000 c² 50,000 c² 50,00		500,000 _a ^E 1,000,000 _a ^F 100 ^G	-	_	_		_	-	710 U 370 U	-	810 U 420 U	860 U	820 U 420 U	-	700 U
Pentachlorophenol μg/kg 800 _m Å 6,700 ⁸ 55,0 Phenanthrene μg/kg 100,000 ^Λ 500,000 _c ⁸ 1 Phenol μg/kg 330 _m Å 500,000 _c ⁸ 1,000		n/v	-	_	_	-	_	· ·	370 U	-	420 U	450 U 450 U	420 U	-	360 U 360 U
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		500,000 _a E 1,000,000 _a F n/v	-	_	_	l -	-	1 -	710 U	-	810 U	1	420 U 820 U	-	700 U
Phenol μg/kg 330 _m 500,000 _c 1,000		n/v	_	_		Ι .	_	Ι .	370 U	-	420 U	860 U 450 U	420 U	-	700 U 360 U
		n/v	_	_		Ι .	_	Ι .	370 U		420 U	450 U 450 U	420 U	-	360 U
	00 ^A 500,000 _c B 1,000,000 _d 330 _f	n/v	_		[[[[370 U	_	420 U	450 U	420 U	-	360 U
	0 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 100 ^G	-	_		Ι ΄	_	Ι ΄	370 U	_	420 U	450 U 450 U	420 U	-	360 U
	0 _a 500,000 _c 1,000,000 _d 0 0 _a 500,000 _c 1,000,000 _d CD	500,000 _a 1,000,000 _a 100 500,000 _a 1,000,000 _a F	_	_			_	Ι .	370 U		420 U	450 U	420 U	-	360 U
Total SVOC μg/kg 100,000 _a 300,000 _c		n/v		-	-	:	[:	ND	[ND	450 U ND	420 U	-	ND
SVOC - Tentatively Identified Compounds		:=:		•		•		•	,						
Total SVOC TICs µg/kg n/v	n/v I	n/v	-		-	1 -	-	I -	350 JN	-	6,300 J	I -		-	-

Stantec

 $\label{lem:continuous} U:\ 190500898\ 05_report_deliv\ deliverables\ reports\ SMP\ 2_Tables\ analytical_CL\ tbl4_Rl.soil_CL.LB_20191014.xlsx$

Sample Location Sample Date											B/MW-103			D/M	V-104	
				25-Jul-18	B/MW-101 25-Jul-18	25-Jul-18	B/MW 23-Jul-18	7-102 23-Jul-18	B-102a 24-Jul-18	24-Jul-18	24-Jul-18	24-Jul-18	26-Jul-18	26-Jul-18	v-104 26-Jul-18	26-Jul-18
Sample ID				LIN-B101-S1	LIN-FD1-S	LIN-B101-S2	LIN-B102-S1	LIN-B102-S2	LIN-B102a-S	LIN-B103-S1	LIN-B103-S3	LIN-B103-S2	LIN-B104-S2	LIN-FD2-S	LIN-B104-S1	LIN-B104-S3
Sample Depth				15 - 17 ft	15 - 17 ft	57 - 60 ft	2 - 3.5 ft	50.5 - 52 ft	7 - 8 ft	8 - 10 ft	19 - 19.5 ft	49 - 51 ft	4 - 8 ft	4 - 8 ft	10.5 - 11 ft	45 - 49 ft
Sampling Company				STANTEC												
Laboratory				TAL												
Laboratory Work Order Laboratory Sample ID				460-161448-1 460-161448-1	460-161448-1 460-161448-3	460-161448-1 460-161448-2	460-161196-1 460-161196-1	460-161196-1 460-161196-2	460-161196-1 460-161196-3	460-161196-1 460-161196-4	460-161448-1 460-161448-4	460-161196-1 460-161196-5	460-161448-1 460-161448-8	460-161448-1 460-161448-6	460-161448-1 460-161448-7	460-161448-1 460-161448-9
Sample Type	Units	NYSDEC-Part 375	NYSDEC CP-51		Field Duplicate									Field Duplicate		
Volatile Organic Compounds Acetone	μg/kg	50 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	5.3 U	7.3	63 ^{AD}	23 J-	50 J-	49 J-	5.2 UJ	5.8 UJ	61 J- ^{AD}			10	59 ^{AD}
Benzene	μg/kg	60 ^{AD} 44,000 ^B 89,000 ^C	n/v	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ			1.2 U	0.99 U
Bromodichloromethane	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ	_	_	1.2 U	0.99 U
Bromoform (Tribromomethane)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ	-	_	1.2 U	0.99 U
Bromomethane (Methyl bromide)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ	-	_	1.2 U	0.99 U
Butylbenzene, n-	μg/kg	12,000 ^{AD} 500,000 ₆ 1,000,000 _d C	n/v	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ	-	-	1.2 U	0.99 U
Butylbenzene, sec- (2-Phenylbutane)	μg/kg	11,000 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ	-	-	1.2 U	0.99 U
Butylbenzene, tert-	μg/kg	5,900 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ	-	-	1.2 U	0.99 U
Carbon Disulfide	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a E 1,000,000 _a F 2,700 ^G	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ	-	-	1.2 U	0.99 U
Carbon Tetrachloride (Tetrachloromethane)	μg/kg	760 ^{AD} 22,000 ^B 44,000 ^C	n/v	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ	-	-	1.2 U	0.99 U
Chlorobenzene (Monochlorobenzene)	μg/kg	1,100 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ	-	-	1.2 U	0.99 U
Chloroethane (Ethyl Chloride)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 1,900 ^G	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ	-	-	1.2 U	0.99 U
Chloromothane	μg/kg	370 ^{AD} 350,000 ^B 700,000 ^C	n/v	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ	-	-	1.2 U	0.99 U
Chloromethane Cyclohexane	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v n/v	1.1 U	1.0 U 1.0 U	1.2 U 1.2 U	1.0 UJ 1.0 UJ	1.2 UJ 1.2 UJ	1.0 UJ	1.0 UJ 1.0 UJ	1.2 UJ 1.2 UJ	1.1 UJ	-	-	1.2 U 1.2 U	0.99 U 0.99 U
Dibromo-3-Chloropropane, 1,2- (DBCP)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	1.1 U	1.0 U	1.2 U	1.0 UJ 1.0 UJ	1.2 UJ 1.2 UJ	1.0 UJ	1.0 UJ 1.0 UJ	1.2 UJ 1.2 UJ	1.1 UJ	-	-	1.2 U	0.99 U
Dibromochloromethane	μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F	1.1 U 1.1 U	1.0 U	1.2 U	1.0 UJ 1.0 UJ	1.2 UJ 1.2 UJ	1.0 UJ 1.0 UJ	1.0 UJ 1.0 UJ	1.2 UJ 1.2 UJ	1.1 UJ 1.1 UJ		[1.2 U	0.99 U
Dichlorobenzene, 1,2-	μg/kg	1,100 ^{AD} 500,000 _c 1,000,000 _d 1,100 ^{AD} 500,000 _c 1,000,000 _d C	n/v	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ			1.2 U	0.99 U
Dichlorobenzene, 1,3-	μg/kg	2,400 ^{AD} 280,000 ^B 560,000 ^C	n/v	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ	-	_	1.2 U	0.99 U
Dichlorobenzene, 1,4-	μg/kg	1,800 ^{AD} 130,000 ^B 250,000 ^C	n/v	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ	-	-	1.2 U	0.99 U
Dichlorodifluoromethane (Freon 12)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ	-	-	1.2 U	0.99 U
Dichloroethane, 1,1-	μg/kg	270 ^{AD} 240,000 ^B 480,000 ^C	n/v	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ	-	-	1.2 U	0.99 U
Dichloroethane, 1,2-	μg/kg	20 _m ^A 30,000 ^B 60,000 ^C 20 _q ^D	n/v	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ	-	-	1.2 U	0.99 U
Dichloroethene, 1,1-	μg/kg	330 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ	-	-	1.2 U	0.99 U
Dichloroethene, cis-1,2-	μg/kg	250 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ	-	-	1.2 U	0.99 U
Dichloroethene, trans-1,2-	μg/kg	190 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ	-	-	1.2 U	0.99 U
Dichloropropane, 1,2- Dichloropropene, cis-1,3-	μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a E 1,000,000 _a F n/v	1.1 U 1.1 U	1.0 U 1.0 U	1.2 U 1.2 U	1.0 UJ 1.0 UJ	1.2 UJ 1.2 UJ	1.0 UJ 1.0 UJ	1.0 UJ 1.0 UJ	1.2 UJ 1.2 UJ	1.1 UJ 1.1 UJ	-	-	1.2 U 1.2 U	0.99 U 0.99 U
Dichloropropene, trans-1,3-	μg/kg μg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _a 500,000 _c 1,000,000 _d CD	n/v	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ	-	-	1.2 U	0.99 U
Ethylbenzene	μg/kg μg/kg	1.000 ^{AD} 390.000 ^B 780.000 ^C	n/v	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ			1.2 U	0.99 U
Ethylene Dibromide (Dibromoethane, 1,2-)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ	-	_	1.2 U	0.99 U
Hexanone, 2- (Methyl Butyl Ketone)	μg/kg	100,000 A 500,000 B 1,000,000 CD	n/v	5.3 U	5.2 U	6.2 U	5.1 UJ	6.0 UJ	5.0 UJ	5.2 UJ	5.8 UJ	5.6 UJ	-	-	6.1 U	5.0 U
Isopropylbenzene	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 2,300 ^G	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ	-	-	1.2 U	0.99 U
Isopropyltoluene, p- (Cymene)	μg/kg	100,000 _a A 500,000 _c B 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F 10,000 ^G	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ	-	-	1.2 U	0.99 U
Methyl Acetate	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	5.3 U	5.2 U	6.2 U	5.1 UJ	6.0 UJ	5.0 UJ	5.2 UJ	5.8 UJ	5.6 UJ	-	-	6.1 U	5.0 U
Methyl Ethyl Ketone (MEK) (2-Butanone)	μg/kg	120 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	500,000 _a ^E 1,000,000 _a ^F 300 ^G	5.3 U	5.2 U	6.2 U	5.1 UJ	6.0 UJ	5.0 UJ	5.2 UJ	5.8 UJ	5.6 UJ	-	-	6.1 U	5.0 U
Methyl Isobutyl Ketone (MIBK)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 1,000 ^G	5.3 U	5.2 U	6.2 U	5.1 UJ	6.0 UJ	5.0 UJ	5.2 UJ	5.8 UJ	5.6 UJ	-	-	6.1 U	5.0 U
Methyl tert-butyl ether (MTBE)	μg/kg	930 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ	-	-	1.2 U	0.99 U
Methylcyclohexane	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ	-	-	1.2 U	0.99 U
Methylene Chloride (Dichloromethane) Naphthalene	μg/kg μg/kg	50 ^{AD} 500,000 _c ^B 1,000,000 _d ^C 12,000 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v n/v	2.6 1.1 U	1.8 1.0 U	5.6 1.2 U	3.8 UJ 1.0 UJ	16 J- 1.2 UJ	1.0 UJ 0.22 J-	1.4 UJ 0.21 J-	5.5 J- 1.2 UJ	8.5 UJ 0.21 J-	-	_	12 1.2 U	1.1 0.99 U
Propylbenzene, n-	μg/kg μg/kg	3,900 ^{AD} 500,000 _c 1,000,000 _d 3,900 ^{AD} 500,000 _c 1,000,000 _d C	n/v	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ	-	-	1.2 U	0.99 U
Styrene	μg/kg μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000° 1,000,000° F	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ		[1.2 U	0.99 U
Tetrachloroethane, 1,1,2,2-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _d 500,000 _d	500,000 _a 1,000,000 _a F 600 ^G	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ	-	_	1.2 U	0.99 U
Tetrachloroethene (PCE)	μg/kg	1,300 ^{AD} 150,000 ^B 300,000 ^C	500,000 _a ^E 1,000,000 _a ^F	1.1 U	1.0 U	1.2 U	1.0 UJ	0.62 J-	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ	-	_	1.2 U	0.99 U
Toluene	μg/kg	700 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ	-	_	1.2 U	0.99 U
Trichlorobenzene, 1,2,4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 3,400 ^G	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ	-	-	1.2 U	0.99 U
Trichloroethane, 1,1,1-	μg/kg	680 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ	-	-	1.2 U	0.99 U
Trichloroethane, 1,1,2-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ	-	-	1.2 U	0.99 U
Trichloroethene (TCE)	μg/kg	470 ^{AD} 200,000 ^B 400,000 ^C	n/v	1.1 U	1.0 U	1.2 U	1.0 UJ	0.21 J-	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ	-	-	1.2 U	0.99 U
Trichlorofluoromethane (Freon 11)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	1.1 U	1.0 U	1.2 U	1.0 UJ	0.64 J-	0.65 J-	1.0 UJ	1.2 UJ	1.1 UJ	-	-	1.2 U	0.99 U
Trichlorotrifluoroethane (Freon 113)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 6,000 ^G	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ	-	-	1.2 U	0.99 U
Trimethylbenzene, 1,2,4-	μg/kg	3,600 ^{AD} 190,000 ^B 380,000 ^C	n/v	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	0.10 J-	0.12 J-	1.2 UJ	1.1 UJ	-	-	1.2 U	0.99 U
Trimethylbenzene, 1,3,5- Vinyl Chloride	μg/kg μg/kg	8,400 ^{AD} 190,000 ^B 380,000 ^C 20 ^{AD} 13,000 ^B 27,000 ^C	n/v n/v	1.1 U 1.1 U	1.0 U 1.0 U	1.2 U 1.2 U	1.0 UJ 1.0 UJ	1.2 UJ 1.2 UJ	1.0 UJ 1.0 UJ	1.0 UJ 1.0 UJ	1.2 UJ 1.2 UJ	1.1 UJ 1.1 UJ	-		1.2 U 1.2 U	0.99 U 0.99 U
Xylene, m & p-	μg/kg μg/kg	260 ₀ 500,000 ₀ 1,600 ₀ 1,600 ₀	n/v	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ	_	_	1.2 U	0.99 U
Xylene, o-	μg/kg	260 _p 500,000 _{c,p} 1,000,000 _{d,p} 1,000 _p	n/v	1.1 U	1.0 U	1.2 U	1.0 UJ	1.2 UJ	1.0 UJ	1.0 UJ	1.2 UJ	1.1 UJ	_	_	1.2 U	0.99 U
Xylenes, Total	μg/kg	260 ^A 500,000 _c ^B 1,000,000 _d ^C 1,600 ^D	n/v	2.1 U	2.1 U	2.5 U	2.0 UJ	2.4 UJ	2.0 UJ	2.1 UJ	2.3 UJ	2.3 UJ	-	-	2.5 U	2.0 U
Total VOC	μg/kg	n/v	n/v	2.6	9.1	68.6	23	67.47	49.97	0.33	5.5	61.21	-		22	60.1
VOC Tentethrely Identified Commen		·														
VOC - Tentatively Identified Compounds Total VOC TICs	μg/kg	n/v	n/v													

Stantec

190500898 Page 9 of 19 $\label{lem:u:loss} U: \label{lem:u:loss} U$

Sample Location				I	B/MW-105		B-106	B-107	B-108	В-	109	*DP-1	ss	i-1a	SS-1	1abc	sr	S-1c
Sample Date				27-Jul-18	27-Jul-18	27-Jul-18	31-Jul-18	31-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18
Sample ID				LIN-B105-S1	LIN-B105-S3	LIN-B105-S2	LIN-B106-S	LIN-B107-S	LIN-B108-s	LIN-B109-s	LIN-FD3-s	LIN-DP-s	LIN-SS1a-t-s	LIN-SS1a-b-s	LIN-SS1-t-s	LIN-SS1-b-s	LIN-SS1c-t-s	LIN-SS1c-b-s
Sample Depth				4 - 8 ft	15 - 16 ft	35 - 38 ft	7 - 7.5 ft	3.2 - 3.7 ft	5 - 8 ft	5 - 8 ft	5 - 8 ft		0 - 2 in	2 - 12 in	0 - 2 in	2 - 12 in	0 - 2 in	2 - 12 in
Sampling Company				STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory				TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL
Laboratory Work Order				460-161452-1 460-161452-1	460-161452-1 460-161452-3	460-161452-1 460-161452-2	460-161797-1 460-161797-2	460-161797-1 460-161797-3	460-161576-1 460-161576-27	460-161576-1 460-161576-28	460-161576-1 460-161576-26	460-161576-1 460-161576-17	460-161576-1 460-161576-1	460-161576-1 460-161576-2	460-161576-1 460-161576-18	460-161576-1 460-161576-19	460-161576-1 460-161576-3	460-161576-1 460-161576-4
Laboratory Sample ID Sample Type	Units	NYSDEC-Part 375	NYSDEC CP-51	400-101452-1	400-101452-5	400-101452-2	400-101/9/-2	400-101/9/-3	400-1015/0-2/	460-1615/6-26	Field Duplicate	400-1013/0-1/	400-1015/0-1	400-1015/0-2	400-1013/0-10	400-1015/0-19	460-161576-3	400-1015/0-4
Cample Type	Onits	HIODEO-I UITO/O	NIODES SI -SI								Tiela Daplicate		<u> </u>				<u> </u>	
General Chemistry																		
Cyanide	mg/kg	27 _i ^{AB} 10,000 _{e,I} ^C 40 _i ^D	n/v	0.23 U	-	0.22 U	-	-	-	0.25 U	-	0.54		-	-	-	-	-
Metals																		
Aluminum	mg/kg	10,000 _e ABCD	10,000 _a ^{EFG}	5,470	-	2,350	-	-	3,260	2,580	2,820	3,520	'	-	6,190	6,360	-	-
Antimony	mg/kg	10,000 _e ABCD	10,000 _a EFG	29.0 UJ	-	28.0 U	-	-	32.1 U	28.3 U	32.8 U	31.4 U		-	33.7 U	32.6 U	-	-
Arsenic	mg/kg	13 _n ^A 16 _g ^{BCD}	n/v	3.9 U	-	3.7 U	-	-	4.3 U	3.8 U	4.4 U	4.2 U		-	4.5 U	4.4 U	-	-
Barium	mg/kg	350 _n ^A 400 ^B 10,000 _e ^C 820 ^D	n/v	10.5	-	8.8	-	-	13.6	8.9	9.9	31.2		-	35.1	30.3	-	-
Beryllium	mg/kg	7.2 ^A 590 ^B 2,700 ^C 47 ^D	n/v	0.39 U	-	0.37 U	-	-	0.43 U	0.38 U	0.44 U	0.42 U		-	0.45 U	0.44 U	-	-
Cadmium	mg/kg	2.5 _n ^A 9.3 ^B 60 ^C 7.5 ^D	n/v	0.39 U	-	0.37 U	-	-	0.43 U	0.38 U	0.44 U	0.42 U	'	-	0.45 U	0.44 U	-	-
Calcium	mg/kg	10,000 _e ABCD	10,000 _a EFG	882	-	27,300 ^{ABCDEFG}	-	-	1,790	1,370	1,510	61,300 ^{ABCDEFG}	'	-	3,800	4,280	1 -	-
Chromium	mg/kg	30 _{n.l} A 1,500 _l B 6,800 _l C _{NS.a} D	n/v	6.0	_	4.0	-	-	5.9	4.7	5.3	17.0		_	11.0	9.2	1 -	_
Cobalt	mg/kg	10,000 _e ABCD	10,000 _a EFG	3.0	_	2.3	_	_	3.0	2.5	2.7	2.8			2.6	2.5	1 -	_
Copper	mg/kg	50 ^A 270 ^B 10,000 _a ^C 1,720 ^D	10,000a n/v	6.0	[5.5			12.1	5.6	5.8	22.9			13.5	9.3	1	1
		10,000 _e ABCD	10,000 _a EFG	1	_		_	_				11,100 ^{ABCDEFG}			1		1	
Iron	mg/kg			8,020	_	6,580	_	-	8,810	7,040	7,760				9,020	8,630	1 -	_
Lead	mg/kg	63 _n ^A 1,000 ^B 3,900 ^C 450 ^D	n/v	2.5	-	1.9 U	-	-	3.1	2.3	3.3	42.1		-	29.5	17.2	· -	-
Magnesium	mg/kg	10,000 _e ABCD	n/v	1,290 J	-	5,470	-	-	1,460	1,020	1,080	24,600 ^{ABCD}		-	2,060	2,230	-	-
Manganese	mg/kg	1,600 _n A 10,000 _e BC 2,000 _g D	n/v	143 J	-	211	-	-	95.1	211	219	365		-	250	217	-	-
Mercury	mg/kg	0.18 _n A 2.8 _k B 5.7 _k C 0.73 ^D	n/v	0.019 U	-	0.018 U	-	-	0.024	0.018 U	0.018 U	0.048		-	0.057	0.042	-	-
Nickel	mg/kg	30 ^A 310 ^B 10,000 _e ^C 130 ^D	n/v	9.7 U	-	9.3 U	-	-	10.7 U	9.4 U	10.9 U	12.5	'	-	11.2 U	10.9 U	-	-
Potassium	mg/kg	10,000 _e ABCD	n/v	317	-	334	-	-	413	345	376	888		-	357	353	1 -	-
Selenium	mg/kg	3.9 _n ^A 1,500 ^B 6,800 ^C 4 _n ^D	n/v	7.7 U	-	7.5 U	-	-	8.6 U	7.6 U	8.8 U	8.4 U		-	9.0 U	8.7 U	-	-
Silver	mg/kg	2 ^A 1,500 ^B 6,800 ^C 8.3 ^D	n/v	0.97 U	-	0.93 U	-	-	1.1 U	0.94 U	1.1 U	1.0 U		-	1.1 U	1.1 U	-	-
Sodium	mg/kg	10,000 _e ABCD	n/v	271 U	-	261 U	-	-	300 U	264 U	306 U	293 U		-	314 U	305 U	-	-
Thallium	mg/kg	10,000 _e ABCD	10,000 _a EFG	11.6 U	_	11.2 U	-	-	12.9 U	11.3 U	13.1 U	12.6 U		_	13.5 U	13.1 U	-	_
Vanadium	mg/kg	10,000 _e ABCD	10,000 _a EFG	12.0	_	8.6	_	-	11.2	9.5	10.7	12.1		_	12.3	12.2	1 -	_
Zinc	mg/kg	109 ₀ ^A 10,000 _e ^{BC} 2,480 ^D	n/v	14.6		12.9			153 ^A	14.9	15.8	178 ^A			42.7	37.5	1 -	
Polychlorinated Biphenyls	99	100n 10,000g 2,100				12.0			100			110						
Aroclor 1016	μg/kg	ABCD	n/v	36 U		36 U				37 U		38 U						
Aroclor 1221	μg/kg	o ABCD	n/v	36 U	_	36 U	_	_	_	37 U	_	38 U		_	1	_	1 .	
Aroclor 1232		o ABCD	n/v	36 U	-	36 U	_	-	· ·	37 U	-	38 U			1	-	1	-
	μg/kg	o ABCD	n/v	1	-		-	-	-	1	-	l			- 1	-	1	-
Aroclor 1242	μg/kg	o ABCD	The state of the s	36 U	-	36 U	-	-	· ·	37 U	-	38 U		-	- /	-	1 -	-
Aroclor 1248	μg/kg	o ABCD	n/v	36 U	-	36 U	-	-	· ·	37 U	-	38 U		-	- /	-	1 -	-
Aroclor 1254	μg/kg	ABCD	n/v	36 U	-	36 U	-	-	-	37 U	-	38 U		-	- 1	-	-	-
Aroclor 1260	μg/kg	0	n/v	36 U	-	36 U	-	-	-	37 U	-	38 U		-	- /	-	-	-
Aroclor 1262	μg/kg	ABCD	n/v	36 U	-	36 U	-	-	-	37 U	-	38 U		-	- /	-	-	-
Aroclor 1268	μg/kg	ABCD	n/v	36 U	-	36 U	-	-	-	37 U	-	38 U		-	- /	-	-	-
Polychlorinated Biphenyls (PCBs)	μg/kg	100 ^A 1,000 ^B 25,000 ^C 3,200 ^D	n/v	ND	-	ND	-	-	-	ND	-	ND		-		-		
Pesticides		- ABCD	,	2011		2211				0.711		2211		I				
Aldrin	μg/kg	5 _n ^A 680 ^B 1,400 ^C 190 ^D	n/v	3.6 U	-	3.6 U	-	-	· ·	3.7 U	-	3.8 U		-	1 - /	-	1 -	-
BHC, alpha- BHC, beta-	μg/kg	20 ^{AD} 3,400 ^B 6,800 ^C	n/v n/v	3.6 U	_	3.6 U	-	-	· ·	3.7 U	-	3.8 U		_	1 - 1	-	1	_
BHC, delta-	μg/kg μg/kg	36 ^A 3,000 ^B 14,000 ^C 90 ^D 40 _n 500,000 _c 1,000,000 _d 250 ^D	n/v	3.6 UJ		3.6 U			· ·	3.7 U		3.8 U	, ,		1	_	1	_
Camphechlor (Toxaphene)	μg/kg		n/v	3.6 UJ	_	3.6 U	_	_	· ·	3.7 U		3.8 U	, ,		1		1	_
Chlordane, alpha-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}		36 U	_	36 U 3.6 U	_	-	-	37 U	-	38 U	, ,	_	1	-	1	_
Chlordane, aipna- Chlordane, trans- (gamma-Chlordane)	μg/kg	94 ^A 24,000 ^B 47,000 ^C 2,900 ^D	n/v	3.6 U 3.6 U	_	3.6 U	_	-	· ·	3.7 U 3.7 U	_	3.8 U			1	-	1 -	_
,	μg/kg	100,000 _a ^A 1,000,000 _d ^D	n/v	1	-		_	-	· ·		-	3.8 U			1	-	1 -	_
DDD (p,p'-DDD)	μg/kg	3.3 _m ^A 92,000 ^B 180,000 ^C 14,000 ^D	n/v	3.6 U	_	3.6 U	_	-	· ·	3.7 U	-	3.8 U		_	1 - 1	-	1	_
DDE (p,p'-DDE)	μg/kg	3.3 _m ^A 62,000 ^B 120,000 ^C 17,000 ^D	n/v	3.6 U	-	3.6 U	-	-	· ·	3.7 U	-	3.8 U		-	1 - 1	-	1 -	-
DDT (p,p'-DDT)	μg/kg	3.3 _m A 47,000 ^B 94,000 ^C 136,000 ^D	n/v	3.6 U	-	3.6 U	-	-	-	3.7 U	-	3.8 U		-	1 - 1	-	-	-
Dieldrin	μg/kg	5 _n A 1,400 ^B 2,800 ^C 100 ^D	n/v	3.6 U	-	3.6 U	-	-	-	3.7 U	-	3.8 U	'	-	- '	-	-	-
Endosulfan I	μg/kg	2,400 _i ^A 200,000 _i ^B 920,000 _i ^C 102,000 ^D	n/v	3.6 U	-	3.6 U	-	-	-	3.7 U	-	3.8 U	'		- '	-	-	-
Endosulfan II	μg/kg	2,400, ^A 200,000, ^B 920,000, ^C 102,000 ^D	n/v	3.6 UJ	-	3.6 U	-	-	-	3.7 U	-	3.8 U	'		-	-	-	-
Endosulfan Sulfate	μg/kg	2,400 ^A 200,000 ^B 920,000 ^C 1,000,000 ^D	n/v	R	_	3.6 U	_	-	-	3.7 U	_	3.8 U			1 - '	_	1 -	_
Endrin	µg/kg	14 ^A 89,000 ^B 410,000 ^C 60 ^D	n/v	3.6 U	_	3.6 U	_	_	l -	3.7 U	_	3.8 U			1 - '	_	1 -	_
Endrin Aldehyde	µg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	8.00	_	3.6 U	_	_	l -	3.7 U	_	3.8 U			1 - '	_	1 -	_
Endrin Ketone	µg/kg	100,000 _a 300,000 _c 1,000,000 _d 100,000 _d 500,000 _d 1,000,000 _d 100,000	n/v	R	_	3.6 U	_	_	l .	3.7 U		3.8 U			1 - '	_	1 -	_
	μg/kg	42 ^A 15,000 ^B 29,000 ^C 380 ^D	n/v	3.6 U	-	3.6 U	_	_	-	3.7 U		3.8 U			1 1	_	1 -	
	μg/kg						1		1 -		_	3.8 U			1 1		1	
Heptachlor Heptachlor Enoxide		100 000 A 500 000 B 1 000 000 CD	500 000 ° 1 000 000 ° 200	3611														
Heptachlor Epoxide	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a E 1,000,000 _a F 20 ^G	3.6 U	-	3.6 U	-	-		3.7 U			1]		1 1	-		
		100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100 ^{AD} 9,200 ^B 23,000 ^C 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 20 ^G n/v 500,000 _a ^E 1,000,000 _a ^F 900,000 ^G	3.6 U 3.6 U 3.6 UJ	- - -	3.6 U 3.6 U 3.6 U	-	-	-	3.7 U 3.7 U 3.7 U	-	3.8 U 3.8 U	-	-			-	-

Heptachlor
Heptachlor Epoxide
Lindane (Hexachlorocyclohexane, gamma)
Methoxychlor (4,4"-Methoxychlor)
See notes on last page.

190500898 Page 10 of 19 $U:\\ 190500898\\ 105_report_deliv\\ deliverables\\ reports\\ SMP\\ 2_Tables\\ analytical_CL\\ tbl4_Rl.soil_CL.LB_20191014.x\\ lsx$

Sample Location Sample Date Sample ID Sample Depth Sampling Company Laboratory Laboratory Work Order Laboratory Sample ID Sample Type				27-Jul-18	B/MW-105 27-Jul-18		B-106	B-107	B-108	B-1		*DP-1	SS			labc	SS	S-1c
Sample ID Sample Depth Sampling Company Laboratory Laboratory Work Order Laboratory Sample ID Sample Type				27- Jul-18	27 Jul 19													
Sample ID Sample Depth Sampling Company Laboratory Laboratory Work Order Laboratory Sample ID Sample Type						27-Jul-18	31-Jul-18	31-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18
Sample Depth Sampling Company Laboratory Laboratory Work Order Laboratory Sample ID Sample Type				LIN-B105-S1	LIN-B105-S3	LIN-B105-S2	LIN-B106-S	LIN-B107-S	LIN-B108-s	LIN-B109-s	LIN-FD3-s	LIN-DP-s	LIN-SS1a-t-s	LIN-SS1a-b-s	LIN-SS1-t-s	LIN-SS1-b-s	LIN-SS1c-t-s	LIN-SS1c-b-s
Laboratory Laboratory Work Order Laboratory Sample ID Sample Type				4 - 8 ft	15 - 16 ft	35 - 38 ft	7 - 7.5 ft	3.2 - 3.7 ft	5 - 8 ft	5 - 8 ft	5 - 8 ft		0 - 2 in	2 - 12 in	0 - 2 in	2 - 12 in	0 - 2 in	2 - 12 in
Laboratory Work Order Laboratory Sample ID Sample Type				STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory Sample ID Sample Type				TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL
Sample Type				460-161452-1	460-161452-1	460-161452-1	460-161797-1	460-161797-1	460-161576-1	460-161576-1	460-161576-1	460-161576-1	460-161576-1	460-161576-1	460-161576-1	460-161576-1	460-161576-1	460-161576-1
				460-161452-1	460-161452-3	460-161452-2	460-161797-2	460-161797-3	460-161576-27	460-161576-28	460-161576-26	460-161576-17	460-161576-1	460-161576-2	460-161576-18	460-161576-19	460-161576-3	460-161576-4
	Units	NYSDEC-Part 375	NYSDEC CP-51								Field Duplicate							
								l										
Semi-Volatile Organic Compounds		A B C D																
Acenaphthene	μg/kg	20,000 ^A 500,000 _c ^B 1,000,000 _d ^C 98,000 ^D	n/v	370 UJ	-	370 U	-	-	-	380 U	-	7,800 U	-	-	-		-	-
Acenaphthylene	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^C 107,000 ^D	n/v	370 UJ	-	370 U	-	-	-	380 U	-	7,800 U	-	-	-	-	-	-
Acetophenone	µg/kg	100,000 _a ^A 1,000,000 _d ^D	n/v	370 UJ	-	370 U	-	-	-	380 U	-	7,800 U	-	-	-	-	-	-
Anthracene	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	370 U	-	370 U	-	-	-	380 U	-	7,800 U	-	-	-	-	-	-
Atrazine	μg/kg	100,000 _a ^A 1,000,000 _d ^D	n/v	370 U	-	370 U	-	-	-	380 U	-	7,800 U	-	-	-	-	-	-
Benzaldehyde	μg/kg	100,000 _a ^A 1,000,000 _d ^D	n/v	370 UJ	-	370 U	-	-	-	380 U	-	7,800 U	-	-	-	-	-	-
Benzo(a)anthracene	µg/kg	1,000 ₀ A 5,600 ^B 11,000 ^C 1,000 ₀ D	n/v	370 U	-	370 U	-	-	-	380 U	-	29,000 ^{ABCD}	-	-	-	-	-	-
Benzo(a)pyrene	μg/kg	1,000 ₀ ^A 1,000 ₀ ^B 1,100 ^C 22,000 ^D	n/v	370 U		370 U	-		_	380 U	-	31,000 ^{ABCD}	-		-		-	
Benzo(b)fluoranthene	1 1	1,000 _n ^A 5,600 ^B 11,000 ^C 1,700 ^D	n/v	370 U		370 U				380 U		49,000 ^{ABCD}						
	μg/kg		i i		-		-	· ·	-		-		-	-	-	-	-	-
Benzo(g,h,i)perylene	μg/kg	100,000 ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	370 U	-	370 U	-	-	-	380 U	-	24,000	-	-	-	-	-	-
Benzo(k)fluoranthene	μg/kg	800 _n ^A 56,000 ^B 110,000 ^C 1,700 ^D	n/v	370 U	-	370 U	-	-	-	380 U	-	20,000 ^{AD}	-	-	-	-	-	-
Biphenyl, 1,1'- (Biphenyl)	μg/kg	100,000 _a ^A 1,000,000 _d ^D	500,000 _a ^E 1,000,000 _a ^F	370 UJ	-	370 U	-	-	-	380 U	-	7,800 U	-	-	-	-	-	-
Bis(2-Chloroethoxy)methane	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	370 UJ	-	370 U	-	-	-	380 U	-	7,800 U	-	-	-		-	-
Bis(2-Chloroethyl)ether	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	370 UJ	-	370 U	-	-	-	380 U	-	7,800 U	-	-	-		-	-
Bis(2-Chloroisopropyl)ether (2,2-oxybis(1-Chloropropane))	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	370 UJ	-	370 U	-	-	-	380 U	-	7,800 U	-		-		-	-
Bis(2-Ethylhexyl)phthalate (DEHP)	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F 435,000 ^G	370 U	_	370 U	_	-	_	380 U	-	7,800 U	_		_		_	-
Bromophenyl Phenyl Ether, 4-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	370 U	_	370 U	_		.	380 U	_	7,800 U	_	_	_		_	-
Butyl Benzyl Phthalate	µg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _d 50	500,000 _a E 1,000,000 _a F 122,000 ^G	370 U	_	370 U	_		.	380 U	-	7,800 U	_	_	_		_	1 -
Caprolactam	μg/kg μg/kg	100,000 _a 500,000 _c 1,000,000 _d 1	000,000a 1,000,000a 122,000 n/v	370 U	[[370 U	[[-	7,800 U		[[1
			n/v		-		_	· ·	-	380 U			-	-	_	-	-	1
Carbazole	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v n/v	370 U	-	370 U	-	· ·	-	380 U	-	7,800 U	-	-	_	·	-	1
Chloro-3-methyl phenol, 4-	µg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	_ '''	370 U	-	370 U	-	· ·	-	380 U	-	7,800 U	-	-	-		-	-
Chloroaniline, 4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a E 1,000,000 _a F 220 ^G	370 U	-	370 U	-	-	-	380 U	-	7,800 U	-	-	-	-	-	-
Chloronaphthalene, 2-	µg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	370 UJ	-	370 U	-	-	-	380 U	-	7,800 U	-	-	-	-	-	-
Chlorophenol, 2- (ortho-Chlorophenol)	µg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F	370 UJ	-	370 U	-	-	-	380 U	-	7,800 U	-	-	-	-	-	-
Chlorophenyl Phenyl Ether, 4-	μg/kg	100,000 _a A 500,000 _c B 1,000,000 _d CD	n/v	370 U	-	370 U	-	-	-	380 U	-	7,800 U	-	-	-	-	-	-
Chrysene	μg/kg	1,000 _n A 56,000 ^B 110,000 ^C 1,000 _a D	n/v	370 U	-	370 U	-	-	-	380 U	-	41,000 ^{AD}	-	-	-	-	-	-
Cresol, o- (Methylphenol, 2-)	μg/kg	330 _m ^A 500,000 _c ^B 1,000,000 _d ^C 330 _f ^D	n/v	370 UJ	-	370 U	-	-	-	380 U	-	7,800 U	-	-	-	-	-	-
Cresol, p- (Methylphenol, 4-)	μg/kg	330 _m ^A 500,000 _c ^B 1,000,000 _d ^C 330 _f ^D	n/v	720 UJ	_	720 U	-		_	730 U	_	15,000 U	_	-	-		_	
Dibenzo(a,h)anthracene	μg/kg	330 _m ^A 560 ^B 1,100 ^C 1,000,000 _d ^D	n/v	370 U		370 U				380 U	_	7,800 U						
Dibenzofuran	μg/kg	7,000 ^A 350,000 ^B 1,000,000 _d ^C 210,000 ^D	500,000 _a ^E 1,000,000 _a ^F 6,200 ^G	370 UJ	_	370 U	_	_	_	380 U		7,800 U	_	_	_	_	_	
Dibutyl Phthalate (DBP)	µg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a 1,000,000 _a 0,200 500,000 _a 1,000,000 _a 8,100 ^G	370 U	-	370 U	_		_	380 U	-	7,800 U	-	-	_	-	_	
Dichlorobenzidine, 3,3'-			n/v					· ·			-	7,800 U	-		-			1
	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}		370 U	-	370 U	-	· ·	-	380 U			-	-	-	-	-	-
Dichlorophenol, 2,4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 400 ^G	370 U	-	370 U	-	· ·	-	380 U	-	7,800 U	-	-	-	-	-	-
Diethyl Phthalate	µg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 7,100 ^G	370 U	-	370 U	-	-	-	380 U	-	7,800 U	-	-	-	-	-	-
Dimethyl Phthalate	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 27,000 ^G	370 U	-	370 U	-	-	-	380 U	-	7,800 U	-	-	-	-	-	-
Dimethylphenol, 2,4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	370 UJ	-	370 U	-	-	-	380 U	-	7,800 U	-	-	-	-	-	-
Dinitro-o-cresol, 4,6-	µg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	720 UJ	-	720 U	-	-	-	730 U	-	15,000 U	-	-	-	-	-	-
Dinitrophenol, 2,4-	µg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 200 ^G	720 UJ	-	720 U	-	-	-	730 U	-	15,000 U	-	-	-	-	-	-
Dinitrotoluene, 2,4-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	370 U	-	370 U	-	-	-	380 U	-	7,800 U	-	-	-	-	-	-
Dinitrotoluene, 2,6-	µg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F 1,000/170 _{b.s1} ^G	370 U	-	370 U	-	-	-	380 U	-	7,800 U	-	-	-	-	-	-
Di-n-Octyl phthalate	µg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a E 1,000,000 _a F 120,000 ^G	370 U	-	370 U	-	-	-	380 U	-	7,800 U	-	-	-	-	-	-
Fluoranthene	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	370 U	_	370 U	-	-	-	380 U	-	81,000	-	-	-		-	-
Fluorene	μg/kg	30,000 ^A 500,000 _c ^B 1,000,000 _d ^C 386,000 ^D	n/v	370 U		370 U	-		.	380 U	-	7,800 U	_	_	-		-	-
Hexachlorobenzene	μg/kg	330 _m ^A 6,000 ^B 12,000 ^C 3,200 ^D	500,000 _a ^E 1,000,000 _a ^F 1,400 ^G	370 U	_	370 U	_	-	.	380 U	_	7,800 U	_		-		_	-
Hexachlorobutadiene (Hexachloro-1,3-butadiene)	μg/kg	100.000 ^A 500.000 ^B 1.000.000 ^{CD}	n/v	370 UJ	_	370 U	_	l -	.	380 U	_	7,800 U	_		_		_	-
Hexachlorocyclopentadiene	µg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _d 1,000,000 _d 1,000,000,000 _d 1,000,000 _d 1,000,0	500,000a ^E 1,000,000a ^F	370 UJ	_	370 U	_	l .	l . I	380 U	_	7,800 U	_	_	_		_	-
Hexachloroethane		100,000 _a 500,000 _c 1,000,000 _d 100,000 _a 500,000 _c 1,000,000 _d	000,000a 1,000,000a n/v	370 UJ	-	370 U		1 .		380 U	-	7,800 U	-		l	_	_	1
	μg/kg				-		_	· ·	-	300 0	-	-	-	-	_	-	-	1
Indeno(1,2,3-cd)pyrene	μg/kg	500 ₀ A 5,600 ^B 11,000 ^C 8,200 ^D	n/v	370 U	-	370 U	-	· ·	-	380 U	-	28,000 ^{ABCD}	-	-	-	-	-	-
Isophorone	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 4,400 ^G	370 UJ	-	370 U	-		-	380 U	-	7,800 U	-	-	-	-	-	-
Methylnaphthalene, 2-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 36,400 ^G	370 UJ	-	370 U	-	· ·	-	380 U	-	7,800 U	-	-	-	-	-	-
Naphthalene	μg/kg	12,000 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	370 UJ	-	370 U	-	-	-	380 U	-	7,800 U	-	-	-	-	-	-
Nitroaniline, 2-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 400 ^G	720 U	-	720 U	-	-	-	730 U	-	15,000 U	-	-	-	-	-	-
Nitroaniline, 3-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 500 ^G	720 U	-	720 U	-	-	-	730 U	-	15,000 U	-	-	-	-	-	-
Nitroaniline, 4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	720 U	-	720 U	-	-	-	730 U	-	15,000 U	-	-	-		-	-
Nitrobenzene	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	69,000 ^E 140,000 ^F 170 _b ^G	370 UJ	-	370 U	-	-	-	380 U	-	7,800 U	-	-	-		-	-
Nitrophenol, 2-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 300 ^G	370 UJ	-	370 U	-	-	-	380 U	-	7,800 U	-	-	-		-	-
Nitrophenol, 4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 100 ^G	720 U	-	720 U	-	-	-	730 U	-	15,000 U	-	-	-		-	-
N-Nitrosodi-n-Propylamine	μg/kg	100.000 _a ^A 500.000 _c ^B 1.000.000 _d ^{CD}	n/v	370 UJ	-	370 U	-	-	.	380 U	-	7,800 U	-		-		_	-
n-Nitrosodiphenylamine	µg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _d	500,000 _a E 1,000,000 _a F	370 U	-	370 U	_	l .		380 U	-	7,800 U	_		_		_	
Pentachlorophenol	μg/kg	800 _m ^A 6,700 ^B 55,000 ^C 800 _f ^D	n/v	720 U	-	720 U	_		.	730 U	-	15,000 U	_	_	_		_	-
Phenanthrene		100,000 ^A 500,000, B 1,000,000, CD	n/v		-	720 U	-			380 U	-	29,000		[-	[1
Phenol	μg/kg		n/v	370 U				· ·	-				-	-	_	-	-	1
	μg/kg	330 _m ^A 500,000 _c ^B 1,000,000 _d ^C 330 _f ^D	i i	370 U	-	370 U	-	· ·	-	380 U	-	7,800 U	-	-	-	· ·	-	_
Pyrene	μg/kg	100,000 ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	370 U	-	370 U	-		-	380 U	-	64,000	-	-	-	-	-	_
Trichlorophenol, 2,4,5-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a E 1,000,000 _a F 100 ^G	370 U	-	370 U	-	-	-	380 U	-	7,800 U	-	-	-	-	-	-
Trichlorophenol, 2,4,6-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F	370 U	-	370 U	-	-	-	380 U	-	7,800 U	-	-	-	-	-	-
Total SVOC	μg/kg	n/v	n/v	ND	-	ND	-	<u> </u>	-	ND	-	396,000	-	-	-	-	-	
SVOC - Tentatively Identified Compounds																		
Total SVOC TICs See notes on last page.	μg/kg	n/v	n/v	-	-	-		-	-	-	-	91,000 JN	-	-	-	-	-	-

Stantec

Sample Location				27 Iul 49	B/MW-105 27-Jul-18	27 1.4 40	B-106	B-107 31-Jul-18	B-108 30-Jul-18	B-1		*DP-1		S-1a	SS-1			S-1c
Sample Date Sample ID				27-Jul-18 LIN-B105-S1	27-Jul-18 LIN-B105-S3	27-Jul-18 LIN-B105-S2	31-Jul-18 LIN-B106-S	31-Jul-18 LIN-B107-S	30-Jul-18 LIN-B108-s	30-Jul-18 LIN-B109-s	30-Jul-18 LIN-FD3-s	30-Jul-18 LIN-DP-s	30-Jul-18 LIN-SS1a-t-s	30-Jul-18 LIN-SS1a-b-s	30-Jul-18 LIN-SS1-t-s	30-Jul-18 LIN-SS1-b-s	30-Jul-18 LIN-SS1c-t-s	30-Jul-18 LIN-SS1c-b-s
Sample Depth				4 - 8 ft	15 - 16 ft	35 - 38 ft	7 - 7.5 ft	3.2 - 3.7 ft	5 - 8 ft	5 - 8 ft	5 - 8 ft		0 - 2 in	2 - 12 in	0 - 2 in	2 - 12 in	0 - 2 in	2 - 12 in
Sampling Company Laboratory				STANTEC TAL	STANTEC TAL	STANTEC TAL	STANTEC TAL	STANTEC TAL	STANTEC TAL	STANTEC TAL	STANTEC TAL	STANTEC TAL	STANTEC TAL	STANTEC TAL	STANTEC TAL	STANTEC TAL	STANTEC TAL	STANTEC TAL
Laboratory Laboratory Work Order				460-161452-1	460-161452-1	460-161452-1	460-161797-1	460-161797-1	460-161576-1	460-161576-1	460-161576-1	460-161576-1	460-161576-1	460-161576-1	460-161576-1	460-161576-1	460-161576-1	460-161576-1
Laboratory Sample ID				460-161452-1	460-161452-3	460-161452-2	460-161797-2	460-161797-3	460-161576-27	460-161576-28	460-161576-26	460-161576-17	460-161576-1	460-161576-2	460-161576-18	460-161576-19	460-161576-3	460-161576-4
Sample Type	Units	NYSDEC-Part 375	NYSDEC CP-51								Field Duplicate							
Volatile Organic Compounds								l										
Acetone	μg/kg	50 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	6.2	22	11	5.1 U	11	5.5 U	5.3 U	5.3 U	5.3 U	5.5 U	4.9 U	-	-	5.4 U	5.3 U
Benzene	μg/kg	60 ^{AD} 44,000 ^B 89,000 ^C	n/v	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	-	-	1.1 U	1.1 U
Bromodichloromethane Bromoform (Tribromomethane)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v n/v	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	8.2	0.98 U	-	-	1.1 U	1.1 U
Bromomethane (Methyl bromide)	μg/kg μg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _a 500,000 _c 1,000,000 _d	n/v	1.1 U 1.1 U	1.2 U 1.2 U	1.2 U 1.2 U	1.0 U 1.0 U	0.96 U 0.96 U	1.1 U 1.1 U	1.1 U 1.1 U	1.1 U 1.1 U	1.1 U 1.1 U	1.1 U 1.1 U	0.98 U 0.98 U		_	1.1 U 1.1 U	1.1 UJ 1.1 U
Butylbenzene, n-	μg/kg	12,000 ^{AD} 500,000 _c 1,000,000 _d C	n/v	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	_	_	1.1 U	1.1 U
Butylbenzene, sec- (2-Phenylbutane)	μg/kg	11,000 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	-	-	1.1 U	1.1 U
Butylbenzene, tert-	μg/kg	5,900 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	-	-	1.1 U	1.1 U
Carbon Disulfide	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 2,700 ^G	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	-	-	1.1 U	1.1 U
Carbon Tetrachloride (Tetrachloromethane)	μg/kg	760 ^{AD} 22,000 ^B 44,000 ^C	n/v	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	-	-	1.1 U	1.1 U
Chlorobenzene (Monochlorobenzene)	μg/kg	1,100 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	-	-	1.1 U	1.1 U
Chloroethane (Ethyl Chloride)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a E 1,000,000 _a F 1,900 ^G	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	_	-	1.1 U	1.1 U
Chloroform (Trichloromethane) Chloromethane	μg/kg	370 ^{AD} 350,000 ^B 700,000 ^C 100,000 _a 500,000 _c 1,000,000 _d CD	n/v n/v	1.1 U 1.1 U	1.2 U 1.2 U	1.2 U 1.2 U	1.0 U 1.0 U	0.96 U 0.96 U	1.1 U 1.1 U	1.1 U 1.1 U	1.1 U 1.1 U	1.1 U 1.1 U	26 1.1 U	0.98 U 0.98 U	-	-	1.1 U 1.1 U	1.1 U 1.1 U
Cyclohexane	μg/kg μg/kg	100,000 _a ¹¹ 500,000 _c ¹² 1,000,000 _d ¹²	n/v	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U		-	1.1 U	1.1 U
Dibromo-3-Chloropropane, 1,2- (DBCP)	μg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _a 500,000 _c 1,000,000 _d CD	n/v	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U		_	1.1 U	1.1 U
Dibromochloromethane	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	2.4	0.98 U		-	1.1 U	1.1 U
Dichlorobenzene, 1,2-	μg/kg	1,100 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	-	-	1.1 U	1.1 U
Dichlorobenzene, 1,3-	μg/kg	2,400 ^{AD} 280,000 ^B 560,000 ^C	n/v	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	-	-	1.1 U	1.1 U
Dichlorobenzene, 1,4-	μg/kg	1,800 ^{AD} 130,000 ^B 250,000 ^C	n/v	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	-	-	1.1 U	1.1 U
Dichlorodifluoromethane (Freon 12)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	-	-	1.1 U	1.1 U
Dichloroethane, 1,1- Dichloroethane, 1,2-	μg/kg μg/kg	270 ^{AD} 240,000 ^B 480,000 ^C 20 _m A 30,000 ^B 60,000 ^C 20 _n D	n/v n/v	1.1 U	1.2 U 1.2 U	1.2 U 1.2 U	1.0 U	0.96 U 0.96 U	1.1 U 1.1 U	1.1 U	1.1 U	1.1 U 1.1 U	1.1 U 1.1 U	0.98 U 0.98 U	-	-	1.1 U 1.1 U	1.1 U
Dichloroethane, 1,2-	μg/kg μg/kg	330 ^{AD} 500,000 B 1,000,000 C	n/v	1.1 U 1.1 U	1.2 U	1.2 U	1.0 U 1.0 U	0.96 U	1.1 U	1.1 U 1.1 U	1.1 U 1.1 U	1.1 U	1.1 U	0.98 U	-	-	1.1 U	1.1 U 1.1 U
Dichloroethene, cis-1,2-	μg/kg	250 ^{AD} 500,000 _c 1,000,000 _d 2	n/v	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U			1.1 U	1.1 U
Dichloroethene, trans-1,2-	μg/kg	190 ^{AD} 500,000, ^B 1,000,000, ^C	n/v	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	_	-	1.1 U	1.1 U
Dichloropropane, 1,2-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000° 1,000,000° F	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	-	-	1.1 U	1.1 U
Dichloropropene, cis-1,3-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	-	-	1.1 U	1.1 U
Dichloropropene, trans-1,3-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	-	-	1.1 U	1.1 U
Ethylbenzene	μg/kg	1,000 ^{AD} 390,000 ^B 780,000 ^C	n/v	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	-	-	1.1 U	1.1 U
Ethylene Dibromide (Dibromoethane, 1,2-)	μg/kg	100,000 _a A 500,000 _c B 1,000,000 _d CD	n/v	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	-	-	1.1 U	1.1 U
Hexanone, 2- (Methyl Butyl Ketone)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	5.6 U	6.1 U	6.1 U	5.1 U	4.8 U	5.5 U	5.3 U	5.3 U	5.3 U	5.5 U	4.9 U	-	-	5.4 U	5.3 U
Isopropyltolygon p. (Cymana)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000a 1,000,000a 2,300G	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	-	-	1.1 U	1.1 U 1.1 U
Isopropyltoluene, p- (Cymene) Methyl Acetate	μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 10,000 ^G n/v	1.1 U 5.6 U	1.2 U 6.1 U	1.2 U 6.1 U	1.0 U 5.1 U	0.96 U 4.8 U	1.1 U 5.5 U	1.1 U 5.3 U	1.1 U 5.3 U	1.1 U 5.3 U	1.1 U 5.5 U	0.98 U 4.9 U	-	-	1.1 U 5.4 U	5.3 U
Methyl Ethyl Ketone (MEK) (2-Butanone)	μg/kg	120 ^{AD} 500,000 _c 1,000,000 _d	500,000 _a E 1,000,000 _a F 300 ^G	5.6 U	6.1 U	6.1 U	5.1 U	4.8 U	5.5 U	5.3 U	5.3 U	5.3 U	5.5 U	4.9 U			5.4 U	5.3 U
Methyl Isobutyl Ketone (MIBK)	μg/kg	100,000 _a 500,000 _b 1,000,000 _d CD	500,000° 1,000,000° 1,000°	5.6 U	6.1 U	6.1 U	5.1 U	4.8 U	5.5 U	5.3 U	5.3 U	5.3 U	5.5 U	4.9 U	_	-	5.4 U	5.3 U
Methyl tert-butyl ether (MTBE)	μg/kg	930 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	-	-	1.1 U	1.1 U
Methylcyclohexane	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	-	-	1.1 U	1.1 U
Methylene Chloride (Dichloromethane)	μg/kg	50 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	2.5	2.4	3.3	1.6	2.1	1.1 U	1.2	1.1 U	1.1 U	1.1 U	0.98 U	-	-	1.1 U	1.1 U
Naphthalene	μg/kg	12,000 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	-	-	1.1 U	1.1 U
Propylbenzene, n-	μg/kg	3,900 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	-	-	1.1 U	1.1 U
Styrene	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a E 1,000,000 _a F	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	-	-	1.1 U	1.1 U
Tetrachloroethane, 1,1,2,2- Tetrachloroethene (PCE)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 600 ^G	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	-	-	1.1 U 1.1 U	1.1 U
Toluene	μg/kg μg/kg	1,300 ^{AD} 150,000 ^B 300,000 ^C 700 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	500,000 _a E 1,000,000 _a F n/v	1.1 U 1.1 U	1.2 U 1.2 U	1.2 U 1.2 U	1.0 U 1.0 U	0.96 U 0.96 U	1.1 U 1.1 U	1.1 U 1.1 U	1.1 U 1.1 U	1.1 U 1.1 U	1.1 U 1.1 U	0.98 U 0.98 U		_	1.1 U	1.1 U 1.1 U
Trichlorobenzene, 1,2,4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a E 1,000,000 _a F 3,400 ^G	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U			1.1 U	1.1 U
Trichloroethane, 1,1,1-	μg/kg	680 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	_	-	1.1 U	1.1 U
Trichloroethane, 1,1,2-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	-	-	1.1 U	1.1 U
Trichloroethene (TCE)	μg/kg	470 ^{AD} 200,000 ^B 400,000 ^C	n/v	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	-	-	1.1 U	1.1 U
Trichlorofluoromethane (Freon 11)	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	-	-	1.1 U	1.1 U
Trichlorotrifluoroethane (Freon 113)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 6,000 ^G	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	-	-	1.1 U	1.1 U
Trimethylbenzene, 1,2,4- Trimethylbenzene, 1,3,5-	μg/kg	3,600 ^{AD} 190,000 ^B 380,000 ^C	n/v	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U	_	-	1.1 U	1.1 U
Trimethylbenzene, 1,3,5- Vinyl Chloride	μg/kg μg/kg	8,400 ^{AD} 190,000 ^B 380,000 ^C 20 ^{AD} 13,000 ^B 27,000 ^C	n/v n/v	1.1 U 1.1 U	1.2 U 1.2 U	1.2 U 1.2 U	1.0 U 1.0 U	0.96 U 0.96 U	1.1 U 1.1 U	1.1 U 1.1 U	1.1 U 1.1 U	1.1 U 1.1 U	1.1 U 1.1 U	0.98 U 0.98 U	-	-	1.1 U 1.1 U	1.1 U 1.1 U
Xylene, m & p-	μg/kg	260 ₀ ^A 500,000 _{c,0} ^B 1,000,000 _{d,0} ^C 1,600 ₀ ^D	n/v	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U		_	1.1 U	1.1 U
Xylene, o-	μg/kg	260 ₀ 500,000 ₆ 1,000,000 _d 7,000 _p	n/v	1.1 U	1.2 U	1.2 U	1.0 U	0.96 U	1.1 U	1.1 U	1.1 U	1.1 U	1.1 U	0.98 U		-	1.1 U	1.1 U
Xylenes, Total	μg/kg	260 ^A 500,000 _c ^B 1,000,000 _d ^C 1,600 ^D	n/v	2.3 U	2.4 U	2.5 U	2.1 U	1.9 U	2.2 U	2.1 U	2.1 U	2.1 U	2.2 U	2.0 U	-	-	2.2 U	2.1 U
Total VOC	μg/kg	n/v	n/v	8.7	24.4	14.3	1.6	13.1	ND	1.2	ND	ND	36.6	ND	-	-	ND	ND
VOC - Tentatively Identified Compounds				,													•	
Total VOC TICs	μg/kg	n/v	n/v		-	-	-	<u> </u>	-	-	-	10 JN	-	-	-	-	-	7.7 J
See notes on last page.																		

Stantec

190500898 Page 12 of 19

Sample Location			I	ss	i-2a	SS-	2abc	ss	3-2c	ss	3-3a	SS-3	Babc	ss	i-3b	SS-	4abc
Sample Date				30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18
Sample ID			l	LIN-SS2a-t-s	LIN-SS2a-b-s	LIN-SS2-t-s	LIN-SS2-b-s	LIN-SS2c-t-s	LIN-SS2c-b-s	LIN-SS3a-t-s	LIN-SS3a-b-s	LIN-SS3-t-s	LIN-SS3-b-s	LIN-SS3b-t-s	LIN-SS3b-b-s	LIN-SS4-t-s	LIN-SS4-b-s
Sample Depth				0 - 2 in	2 - 12 in	0 - 2 in	2 - 12 in	0 - 2 in	2 - 12 in	0 - 2 in	2 - 12 in	0 - 2 in	2 - 12 in	0 - 2 in	2 - 12 in	0 - 2 in	2 - 12 in
Sampling Company				STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory				TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL
Laboratory Work Order				460-161576-1	460-161576-1	460-161576-1	460-161576-1	460-161576-1	460-161576-1	460-161576-1	460-161576-1	460-161576-1	460-161576-1	460-161576-1	460-161576-1	460-161576-1	460-161576-1
Laboratory Sample ID Sample Type	Units	NYSDEC-Part 375	NYSDEC CP-51	460-161576-5	460-161576-6	460-161576-20	460-161576-21	460-161576-7	460-161576-8	460-161576-9	460-161576-10	460-161576-22	460-161576-23	460-161576-11	460-161576-12	460-161576-24	460-161576-25
General Chemistry Cyanide	mg/kg	27, AB 10,000 _e C 40, D	n/v	-	-	0.26 U	0.26 U	-	-	-	-	-	-	-	-	0.27 U	1.0
Metals	1 0 0							I	-	1				1			
Aluminum	mg/kg	10,000 _e ABCD	10,000 _a EFG	-	-	7,380	6,160	-	-	-	-	7,290	5,850	-	-	5,930	6,580
Antimony	mg/kg	10,000 _e ABCD	10,000 _a ^{EFG}			31.5 U	32.1 U					32.4 UJ	29.5 U			32.9 U	32.7 U
		13 _n ^A 16 _g ^{BCD}				4.2 U	4.3 U	_	_		_	4.3 U	3.9 U	_		4.4 U	4.4 U
Arsenic	mg/kg	350, A 400 ^B 10,000, C 820 ^D	n/v	-						1		27.9		1		27.4	
Barium	mg/kg		n/v	-	-	24.8	24.8	-	-	_	-	I	23.3	_	-		26.2
Beryllium	mg/kg	7.2 ^A 590 ^B 2,700 ^C 47 ^D	n/v	-	-	0.42 U	0.43 U	-	-	_	-	0.43 U	0.39 U	_	-	0.44 U	0.44 U
Cadmium	mg/kg	2.5 _n ^A 9.3 ^B 60 ^C 7.5 ^D	n/v	-	-	0.42 U	0.43 U	-	-	-	-	0.43 U	0.39 U	-	-	0.44 U	0.44 U
Calcium	mg/kg	10,000 _e ^{ABCD}	10,000 _a ^{EFG}	-	-	2,120	2,200	-	-	-	-	2,260	1,850	-	-	4,590	3,010
Chromium	mg/kg	30 _{n,I} ^A 1,500 _i ^B 6,800 _i ^C _{NS,q} ^D	n/v	-	-	9.7	8.2	-	-	-	-	9.6	7.7	-	-	16.4	19.4
Cobalt	mg/kg	10,000 _e ABCD	10,000 _a ^{EFG}	-	-	4.8	3.7	-	-	-	-	4.0	2.9	-	- 1	2.4	2.7
Copper	mg/kg	50 ^A 270 ^B 10,000 _e ^C 1,720 ^D	n/v	-	-	11.2	8.5	-	-	-	-	10.4	8.8	-	- 1	8.4	8.5
Iron	mg/kg	10,000 _e ABCD	10,000 _a EFG	-	-	13,100 ^{ABCDEFG}	10,900 ^{ABCDEFG}	-	-	-	-	10,800 ^{ABCDEFG}	8,240	-	- 1	7,410	8,080
Lead	mg/kg	63 _n A 1,000 ^B 3,900 ^C 450 ^D	n/v	_	_	7.5	12.3	-	_	_	_	24.2	17.8	_	_	26.3	28.4
Magnesium	mg/kg	10,000 _e ^{ABCD}	n/v			1,940	1,670			l .	.	1,690	1,310	l .	.	2,030	1,550
						1		_									
Manganese	mg/kg	1,600 _n ^A 10,000 _e ^{BC} 2,000 _g ^D	n/v	_	_	356	310	_	_	1	_	283	205	I -	-	181	170
Mercury	mg/kg	0.18 _n ^A 2.8 _k ^B 5.7 _k ^C 0.73 ^D	n/v	-	-	0.030	0.034	-	-	-	-	0.039	0.040	-	-	0.064	0.069
Nickel	mg/kg	30 ^A 310 ^B 10,000 _e ^C 130 ^D	n/v	-	-	11.2	10.7 U	-	-	-	-	10.8 U	9.8 U	-	-	11.0 U	10.9 U
Potassium	mg/kg	10,000 _e ^{ABCD}	n/v	-	-	672	502	-	-	-	-	654	374	-	-	454	440
Selenium	mg/kg	3.9 _n ^A 1,500 ^B 6,800 ^C 4 _g ^D	n/v	-	-	8.4 U	8.6 U	-	-	-	-	8.6 U	7.9 U	-	-	8.8 U	8.7 U
Silver	mg/kg	2 ^A 1,500 ^B 6,800 ^C 8.3 ^D	n/v	-	-	1.1 U	1.1 U	-	-	-	-	1.1 U	0.98 U	-	-	1.1 U	1.1 U
Sodium	mg/kg	10,000 _e ABCD	n/v	-	-	294 U	300 U	-	-	-	-	302 U	275 U	-	-	307 U	305 U
Thallium	mg/kg	10,000 _e ABCD	10,000 _a EFG	-	-	12.6 U	12.9 U	-	-	-	-	12.9 U	11.8 U	-	-	13.2 U	13.1 U
Vanadium	mg/kg	10,000 _e ABCD	10,000 _a ^{EFG}	-	-	17.7	14.7	-	-	-	-	14.9	11.5	-	-	10.9	11.8
Zinc	mg/kg	109 _n A 10,000 _e BC 2,480 ^D	n/v	-	-	30.2	31.2	-	-	-	-	43.9	44.5	-	-	47.2	46.7
Polychlorinated Biphenyls																	
Aroclor 1016	μg/kg	ABCD o	n/v	-	-	37 U	37 U	-	-	-	-	-	-	-	-	38 U	37 U
Aroclor 1221	μg/kg	ABCD	n/v	-	-	37 U	37 U	-	-	-	-	-	-	-	-	38 U	37 U
Aroclor 1232	μg/kg	ABCD	n/v	-	-	37 U	37 U	-	-	-	-	-	-	-	-	38 U	37 U
Aroclor 1242	μg/kg	ABCD	n/v	-	-	37 U	37 U	-	-	-	-	-	-	-	-	38 U	37 U
Aroclor 1248	μg/kg	ABCD	n/v	-	-	37 U	37 U	-	-	-	-	-	-	-	-	38 U	37 U
Aroclor 1254	μg/kg	ABCD	n/v	-	_	37 U	37 U	-	_	-	_	-	_	_	-	38 U	37 U
Aroclor 1260	μg/kg	ABCD	n/v	_	_	37 U	37 U	_	_	_	_	_	_	_	_	38 U	37 U
Aroclor 1262	μg/kg	ABCD	n/v			37 U	37 U									38 U	37 U
Aroclor 1268	μg/kg	ABCD	n/v	_	_	37 U	37 U	_		_		_	_	_	_	38 U	37 U
Polychlorinated Biphenyls (PCBs)	μg/kg	100 ^A 1.000 ^B 25.000 ^C 3.200 ^D	n/v			ND	ND									ND	ND
Pesticides	Parka	100 1,000 23,000 3,200		1		140	IND			1		·		1		ND	ND
Aldrin	ua/ka	5 _n ^A 680 ^B 1,400 ^C 190 ^D	n/u	1		3.7 U	3.7 U									3.8 U	3.7 U
BHC, alpha-	μg/kg μg/kg	20 ^{AD} 3,400 ^B 6,800 ^C	n/v n/v	1 .	[3.7 U	3.7 U		[[[[[3.8 U	3.7 U
BHC, beta-	μg/kg μg/kg	36 ^A 3,000 ^B 14,000 ^C 90 ^D	n/v	.	[3.7 U	3.7 U	-	[1 .	[[[[3.8 U	3.7 U
BHC, delta-	μg/kg	40 _n ^A 500,000 _c ^B 1,000,000 _d ^C 250 ^D	n/v	1	.	3.7 U	3.7 U	_	-	1	-		[-	[3.8 U	3.7 U
Camphechlor (Toxaphene)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v		[3.7 U	3.7 U		.		.		[1 .	[3.6 U	3.7 U
Chlordane, alpha-	μg/kg		n/v		_	3.7 U	3.7 U	_	_		_		_	_		3.8 U	3.7 U
Chlordane, trans- (gamma-Chlordane)		94 ^A 24,000 ^B 47,000 ^C 2,900 ^D	n/v	-		3.7 U	3.7 U			1			-	1		3.8 U	3.7 U
	μg/kg	100,000 _a ^A 1,000,000 _d ^D 3.3 _m ^A 92,000 ^B 180,000 ^C 14,000 ^D		-	-	1		-	-	-	-	-	-	_	-		
DDD (p,p'-DDD)	μg/kg		n/v	-	-	3.7 U	3.7 U	-	-	-	-	-	-	-	-	3.8 U	3.7 U
	μg/kg	3.3 _m ^A 62,000 ^B 120,000 ^C 17,000 ^D	n/v	-	-	3.7 U	3.7 U	-	-	-	-	-	-	-	-	3.8 U	3.7 U
DDE (p,p'-DDE)	μg/kg	3.3 _m ^A 47,000 ^B 94,000 ^C 136,000 ^D	n/v	-	-	3.7 U	3.7 U	-	-	-	-	-	-	-	- 1	3.8 U	3.7 U
DDT (p,p'-DDT)		5 ₀ A 1,400 ^B 2,800 ^C 100 ^D	n/v	-	-	3.7 U	3.7 U	-	-	-	-	-	-	-	-	63 ^A	52 ^A
	μg/kg	On 1,100 E,000 100		-	-	3.7 U	3.7 U	-	-	-	-	-	-	-	- 1	3.8 U	3.7 U
DDT (p,p'-DDT)	μg/kg μg/kg		n/v			3.7 U	3.7 U	-	_	_	_		_	_		3.8 U	3.7 U
DDT (p,p'-DDT) Dieldrin Endosulfan I	μg/kg	2,400 _i ^A 200,000 _i ^B 920,000 _i ^C 102,000 ^D		-	-						1						3.7 U
DDT (p,p'-DDT) Dieldrin Endosulfan I Endosulfan II	μg/kg μg/kg	2,400 _i ^A 200,000 _i ^B 920,000 _i ^C 102,000 ^D 2,400 _i ^A 200,000 _i ^B 920,000 _i ^C 102,000 ^D	n/v	-		1	3.7 U	_	_	1 -	-			_	. I	3.8 U	
DDT (p,p'-DDT) Dieldrin Endosulfan I Endosulfan II Endosulfan Sulfate	µg/kg µg/kg µg/kg	2,400 ₁ ^A 200,000 ₁ ^B 920,000 ₁ ^C 102,000 ^D 2,400 ₁ ^A 200,000 ₁ ^B 920,000 ₁ ^C 102,000 ^D 2,400 ₁ ^A 200,000 ₁ ^B 920,000 ₁ ^C 1,000,000 ₀ ^D	n/v n/v	-	-	3.7 U	3.7 U	-	-	-	-	-	-	-	-	3.8 U 3.8 U	
DDT (p.p'-DDT) Dieldrin Endosulfan I Endosulfan II Endosulfan Sulfate Endrin	μg/kg μg/kg μg/kg μg/kg	2,400, ^A 200,000, ^B 920,000, ^C 102,000 ^D 2,400, ^A 200,000, ^B 920,000, ^C 102,000 ^D 2,400, ^A 200,000, ^B 920,000, ^C 1,000,000, ^D 14 ^A 89,000 ^B 410,000, ^C 60 ^D	n/v n/v n/v	-	- - -	3.7 U 3.7 U	3.7 U	- - -	-	-	-	-	- - -	-	-	3.8 U	3.7 U
DDT (p,p'-DDT) Dieldrin Endosulfan I Endosulfan II Endosulfan Sulfate Endrin Aldehyde	µg/kg µg/kg µg/kg µg/kg µg/kg	2,400, [^] 200,000, [^] 8 920,000, [^] C 102,000, [^] 2,400, [^] 200,000, [^] 8 920,000, [^] C 102,000, [^] 2,400, [^] 200,000, [^] 8 920,000, [^] C 1000,000, [^] C 14, [^] 89,000, ⁸ 410,000, ⁶ 60, ⁸ 100,000, ⁸ 500,000, ⁸ 1,000,000, ⁶ C	n/v n/v n/v n/v	-	- - -	3.7 U 3.7 U 3.7 U	3.7 U 3.7 U	- - -	-		-	- - -	- - -	-		3.8 U 3.8 U	3.7 U 3.7 U
DDT (p,p'-DDT) Dieldrin Endosulfan I Endosulfan II Endosulfan Sulfate Endrin Aldehyde Endrin Ketone	µg/kg µg/kg µg/kg µg/kg µg/kg	2,400/^ 200,000/8 920,000/C 102,000D 2,400/^ 200,000/8 920,000/C 102,000D 2,400/^ 200,000/8 920,000/C 1,000,000,0D 14^A 89,000/8 10,000/C 6DD 100,000/4 500,000/8 1,000,000,0D 100,000/4 500,000/8 1,000,000,0D	n/v n/v n/v n/v	- - - -	- - - -	3.7 U 3.7 U 3.7 U 3.7 U	3.7 U 3.7 U 3.7 U	- - - -	- - - -	-	- - - -	- - -	- - -	- - -		3.8 U 3.8 U 3.8 U	3.7 U 3.7 U 3.7 U
DDT (p,p'-DDT) Dieldrin Endosulfan I Endosulfan II Endosulfan Sulfate Endrin Endrin Aldehyde Endrin Hetone Heptachlor	µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg	2,400/^200,000/8920,000/C102,000D 2,400/^200,000/8920,000/C102,000D 2,400/^200,000/8920,000/C1,000,0000/D 14/^89,000/810,000/C1,000,0000/CD 100,0000/8500,000/81,000,0000/CD 100,000/8500,000/81,000,0000/CD 42/^15,000/829,000/C380D	n/v n/v n/v n/v n/v	- - - - -	- - - - -	3.7 U 3.7 U 3.7 U 3.7 U 3.7 U	3.7 U 3.7 U 3.7 U 3.7 U	- - - - -	- - - - -		- - - -	- - - -	- - - - -	- - - -		3.8 U 3.8 U 3.8 U 3.8 U	3.7 U 3.7 U 3.7 U 3.7 U
DDT (p,p'-DDT) Dieldrin Endosulfan I Endosulfan II Endosulfan Sulfate Endrin Endrin Aldehyde Endrin Ketone Heptachlor Heptachlor Epoxide	µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg	2.400/ ¹ 200,000/ ⁸ 920,000/ ^C 102,000 ^D 2.400/ ¹ 200,000/ ⁸ 920,000/ ^C 102,000 ^D 2.400/ ² 200,000/ ⁸ 920,000/ ^C 1000,000/ ^B 14/ ⁸ 89,000/ ⁸ 410,000/ ^C 60/ ^D 100,000/ ⁸ 500,000/ ⁸ 1,000,000/ ^{CD} 42/ ⁸ 15,000/ ⁸ 29,000/ ^C 380/ ^D 100,000/ ⁸ 500,000/ ⁸ 1,000,000/ ^{CD}	n/v n/v n/v n/v n/v n/v 500,000 _a ^E 1,000,000 _a ^F 20 ^G	- - - - - -	- - - - - -	3.7 U 3.7 U 3.7 U 3.7 U 3.7 U 3.7 U	3.7 U 3.7 U 3.7 U 3.7 U 3.7 U	- - - - -	- - - - - -	-	- - - - -	- - - -	- - - - -	- - - - -		3.8 U 3.8 U 3.8 U 3.8 U 3.8 U	3.7 U 3.7 U 3.7 U 3.7 U 3.7 U
DDT (p,p'-DDT) Dieldrin Endosulfan I Endosulfan II Endosulfan Sulfate Endrin Endrin Aldehyde Endrin Hetone Heptachlor	µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg	2,400/^200,000/8920,000/C102,000D 2,400/^200,000/8920,000/C102,000D 2,400/^200,000/8920,000/C1,000,0000/D 14/^89,000/810,000/C1,000,0000/CD 100,0000/8500,000/81,000,0000/CD 100,000/8500,000/81,000,0000/CD 42/^15,000/829,000/C380D	n/v n/v n/v n/v n/v	- - - - - - -	- - - - - - - -	3.7 U 3.7 U 3.7 U 3.7 U 3.7 U	3.7 U 3.7 U 3.7 U 3.7 U	- - - - - -	- - - - - -	-	- - - - - -	- - - - -	- - - - -	- - - - - -		3.8 U 3.8 U 3.8 U 3.8 U	3.7 U 3.7 U 3.7 U 3.7 U

Stantec

 $\label{lem:u:light} \begin{tabular}{ll} U:l190500898\los_report_deliv\losels reports\losels reports\losels report_deliv\losels reports\losels reports\lose$

Sample Location				SS	i-2a	SS-	2abc	SS	-2c	SS	S-3a	SS-3	3abc	ss	S-3b	SS-4	4abc
Sample Date				30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18
Sample ID				LIN-SS2a-t-s	LIN-SS2a-b-s	LIN-SS2-t-s	LIN-SS2-b-s	LIN-SS2c-t-s	LIN-SS2c-b-s	LIN-SS3a-t-s	LIN-SS3a-b-s	LIN-SS3-t-s	LIN-SS3-b-s	LIN-SS3b-t-s	LIN-SS3b-b-s	LIN-SS4-t-s	LIN-SS4-b-s
Sample Depth				0 - 2 in	2 - 12 in	0 - 2 in	2 - 12 in	0 - 2 in	2 - 12 in	0 - 2 in	2 - 12 in	0 - 2 in	2 - 12 in	0 - 2 in	2 - 12 in	0 - 2 in	2 - 12 in
Sampling Company				STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory				TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL
Laboratory Work Order				460-161576-1 460-161576-5	460-161576-1	460-161576-1	460-161576-1 460-161576-21	460-161576-1	460-161576-1 460-161576-8	460-161576-1	460-161576-1 460-161576-10	460-161576-1	460-161576-1 460-161576-23	460-161576-1 460-161576-11	460-161576-1 460-161576-12	460-161576-1 460-161576-24	460-161576- 460-161576-2
Laboratory Sample ID Sample Type	Units	NYSDEC-Part 375	NYSDEC CP-51	460-1615/6-5	460-161576-6	460-161576-20	460-1615/6-21	460-161576-7	460-1615/6-8	460-161576-9	460-1615/6-10	460-161576-22	460-1615/6-23	460-1615/6-11	460-1615/6-12	460-1615/6-24	460-1615/6-2
Cample Type	Ointo	NIODEO I UNIO	110020 01-01														
Semi-Volatile Organic Compounds																	
Acenaphthene	μg/kg	20,000 ^A 500,000 _c ^B 1,000,000 _d ^C 98,000 ^D	n/v	-	-	380 U	370 U	-	-	-	-	-	-	-	-	390 U	380 U
Acenaphthylene	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^C 107,000 ^D	n/v	-	-	380 U	370 U	-	-	-	-	-	-	-	-	390 U	380 U
Acetophenone	μg/kg	100,000 _a ^A 1,000,000 _d ^D	n/v	-	-	380 U	370 U	-	-	-	-	-	-	-	-	390 U	380 U
Anthracene	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	380 U	370 U	-	-	-	-	-	-	-	-	390 U	380 U
Atrazine	μg/kg	100,000 _a ^A 1,000,000 _d ^D	n/v	-		380 U	370 U	-		_		-	_	-		390 U	380 U
Benzaldehyde	μg/kg	100,000 _a ^A 1,000,000 _d ^D	n/v	_	_	380 U	370 U	_	_	_	_	_	_	_	_	390 U	380 U
Benzo(a)anthracene	μg/kg	1,000 ₀ A 5,600 ^B 11,000 ^C 1,000 ₀ D	n/v			380 U	540									1,600 ^{AD}	560
		1,000 _n A 1,000 _n B 1,100 ^C 22,000 ^D				1	430									1.800 ^{ABC}	630
Benzo(a)pyrene	μg/kg		n/v	-	-	380 U		-	-		-	-	-	-	-	,	
Benzo(b)fluoranthene	μg/kg	1,000 _n A 5,600 ^B 11,000 ^C 1,700 ^D	n/v	-	-	380 U	560	-	-	-	-	-	-	-	-	2,600 ^{AD}	930
Benzo(g,h,i)perylene	μg/kg	100,000 ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	380 U	370 U	-	-	-	-	-	-	-	-	1,200	450
Benzo(k)fluoranthene	μg/kg	800 _n ^A 56,000 ^B 110,000 ^C 1,700 ^D	n/v	-	-	380 U	370 U	-	-	-	-	-	-	-	-	1,000 ^A	380 U
Biphenyl, 1,1'- (Biphenyl)	μg/kg	100,000 _a ^A 1,000,000 _d ^D	500,000 _a ^E 1,000,000 _a ^F	-	-	380 U	370 U	-	-	-	-	-	-	-	-	390 U	380 U
Bis(2-Chloroethoxy)methane	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	380 U	370 U	-	-	-	-	-	-	-	-	390 U	380 U
Bis(2-Chloroethyl)ether	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	380 U	370 U	-	-	-	-	-	-	-	-	390 U	380 U
Bis(2-Chloroisopropyl)ether (2,2-oxybis(1-Chloropropane))	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	380 U	370 U	-	-	-	-	-	-	-	-	390 U	380 U
Bis(2-Ethylhexyl)phthalate (DEHP)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 435,000 ^G	-	-	380 U	370 U	-	-	-	-	-	-	-	-	390 U	380 U
Bromophenyl Phenyl Ether, 4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	380 U	370 U	-	-	-	- 1	-	-	-	-	390 U	380 U
Butyl Benzyl Phthalate	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 122,000 ^G	-	-	380 U	370 U	-	-	-	-	-	-	-	-	390 U	380 U
Caprolactam	μg/kg	100,000 _a ^A 1,000,000 _d ^D	n/v	_	_	380 U	370 U	_	_	_	_	-	_	_	_	390 U	380 U
Carbazole	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	_		380 U	370 U	_	_	_	_	_	_	_	_	390 U	380 U
Chloro-3-methyl phenol, 4-	μg/kg	100,000a 500,000c 1,000,000d CD	n/v			380 U	370 U									390 U	380 U
Chloroaniline, 4-	μg/kg	100,000a 500,000c 1,000,000d CD	500,000 _a ^E 1,000,000 _a ^F 220 ^G			380 U	370 U									390 U	380 U
Chloronaphthalene, 2-		100,000 _a 500,000 _c 1,000,000 _d 100,000 _d	n/v			380 U	370 U	-	_		_		-	_	-	390 U	380 U
	μg/kg	100,000 _a 500,000 _c 1,000,000 _d	l I	-	-	1		-	-	· ·	-	-	-	-	-	1	
Chlorophenol, 2- (ortho-Chlorophenol)	μg/kg		500,000 _a E 1,000,000 _a F	-	-	380 U	370 U	-	-	-	-	-	-	-	-	390 U	380 U
Chlorophenyl Phenyl Ether, 4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	380 U	370 U	-	-	-	-	-	-	-	-	390 U	380 U
Chrysene	μg/kg	1,000 _n ^A 56,000 ^B 110,000 ^C 1,000 _g ^D	n/v	-	-	380 U	480	-	-	-	-	-	-	-	-	2,000 ^{AD}	680
Cresol, o- (Methylphenol, 2-)	μg/kg	330 _m ^A 500,000 _c ^B 1,000,000 _d ^C 330 _f ^D	n/v	-	-	380 U	370 U	-	-	-	-	-	-	-	-	390 U	380 U
Cresol, p- (Methylphenol, 4-)	μg/kg	330 _m ^A 500,000 _c ^B 1,000,000 _d ^C 330 _f ^D	n/v	-	-	730 U	730 U	-	-	-	-	-	-	-	-	760 U	740 U
Dibenzo(a,h)anthracene	μg/kg	330 _m A 560 ^B 1,100 ^C 1,000,000 _d D	n/v	-	-	380 U	370 U	-	-	-	-	-	-	-	-	390 U	380 U
Dibenzofuran	μg/kg	7,000 ^A 350,000 ^B 1,000,000 _d ^C 210,000 ^D	500,000 _a ^E 1,000,000 _a ^F 6,200 ^G	-	-	380 U	370 U	-	-	-	-	-	-	-	-	390 U	380 U
Dibutyl Phthalate (DBP)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a E 1,000,000 _a F 8,100 ^G	-	-	380 U	370 U	-	-	-	-	-	-	-	-	390 U	380 U
Dichlorobenzidine, 3,3'-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	380 U	370 U	-	-	-	-	-	-	-	-	390 U	380 U
Dichlorophenol, 2,4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 400 ^G	-		380 U	370 U	-		_		-	_	-		390 U	380 U
Diethyl Phthalate	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 7,100 ^G	-		380 U	370 U	-	_	_	_	-	_	_	_	390 U	380 U
Dimethyl Phthalate	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 27,000 ^G	_		380 U	370 U	_	_	_	_	_	_	_	_	390 U	380 U
Dimethylphenol, 2,4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v			380 U	370 U									390 U	380 U
Dinitro-o-cresol, 4,6-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d 1	n/v	_	_	730 U	730 U	_	_	_	_	_	_	_	_	760 U	740 U
Dinitrophenol, 2,4-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _d	500,000 _a ^E 1,000,000 _a ^F 200 ^G			730 U	730 U									760 U	740 U
Dinitrotoluene, 2,4-			500,000a 1,000,000a 200			1		-	_		_		-	_		1	380 U
	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500 000 E 4 000 000 F 4 000 470 G	-	-	380 U	370 U	-	-		-	-	-	-	-	390 U	
Dinitrotoluene, 2,6-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 1,000/170 _{b,s1} ^G	-	-	380 U	370 U	-	-	· ·	-	-	-	-	-	390 U	380 U
Di-n-Octyl phthalate	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 120,000 ^G	-	-	380 U	370 U	-	-	-	-	-	-	-	-	390 U	380 U
Fluoranthene	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	380 U	1,100	-	-	-	-	-	-	-	-	4,000	1,500
Fluorene	μg/kg	30,000 ^A 500,000 _c ^B 1,000,000 _d ^C 386,000 ^D	n/v	-	-	380 U	370 U	-	-	-	-	-	-	-	-	390 U	380 U
Hexachlorobenzene	μg/kg	330 _m ^A 6,000 ^B 12,000 ^C 3,200 ^D	500,000 _a ^E 1,000,000 _a ^F 1,400 ^G	-	-	380 U	370 U	-	-	-	-	-	-	-	-	390 U	380 U
Hexachlorobutadiene (Hexachloro-1,3-butadiene)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	380 U	370 U	-	-	-	-	-	-	-	-	390 U	380 U
Hexachlorocyclopentadiene	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F	-	-	380 U	370 U	-	-	-	-	-	-	-	-	390 U	380 U
Hexachloroethane	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	380 U	370 U	-	-	-	-	-	-	-	-	390 U	380 U
Indeno(1,2,3-cd)pyrene	μg/kg	500 _n ^A 5,600 ^B 11,000 ^C 8,200 ^D	n/v	-	-	380 U	370 U	-	-	-	-	-	-	-	-	1,400 ^A	510 ^A
Isophorone	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a E 1,000,000 _a F 4,400 ^G	-	-	380 U	370 U	-	-	-	-	-	-	-	-	390 U	380 U
Methylnaphthalene, 2-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a E 1,000,000 _a F 36,400 ^G	-	-	380 U	370 U	-	-	-	-	-	-	-	-	390 U	380 U
Naphthalene	μg/kg	12,000 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	-	-	380 U	370 U	-	-	-	-	-	-	-	-	390 U	380 U
Nitroaniline, 2-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 400 ^G	-	-	730 U	730 U	-	-	-	-	-	-	-	-	760 U	740 U
Nitroaniline, 3-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 500 ^G	-		730 U	730 U	-		-		-	_	-	_	760 U	740 U
Nitroaniline, 4-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	_	-	730 U	730 U	_	_	-		-	_	-	_	760 U	740 U
Nitrobenzene	μg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _d	69,000 ^E 140,000 ^F 170 _b ^G	_		380 U	370 U	_	_		_	_	_			390 U	380 U
Nitrophenol, 2-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _d 1,000,000 _d 1,000,000,000 _d 1,000,000 _d 1,000,0	500,000 _a ^E 1,000,000 _a ^F 300 ^G		.	380 U	370 U	_	[.	[-		.	390 U	380 U
Nitrophenol, 4-	μg/kg μg/kg	100,000 _a 500,000 _c 1,000,000 _d 1	500,000 _a 1,000,000 _a 300 ^G			730 U	730 U		[-			l [-		760 U	740 U
			500,000a 1,000,000a 100° n/v	[[•	380 U	370 U		-		-		l .	ļ .		390 U	380 U
N-Nitrosodi-n-Propylamine	μg/kg	100,000a ^A 500,000c ^B 1,000,000d ^{CD}	· ·	-	_	380 U		-	_	· ·	_	-	_	_	_	1	
n-Nitrosodiphenylamine	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F	-	_	1	370 U	-	_	· ·	_	-	-	_	-	390 U	380 U
Pentachlorophenol	μg/kg	800 _m ^A 6,700 ^B 55,000 ^C 800 _f ^D	n/v	-	-	730 U	730 U	-	-	· ·	-	-	-	-	-	760 U	740 U
Phenanthrene	μg/kg	100,000 ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	380 U	530	-	-	-	-	-	-	-	-	1,400	550
	μg/kg	330 _m ^A 500,000 _c ^B 1,000,000 _d ^C 330 _f ^D	n/v	-	-	380 U	370 U	-	-	-	-	-	-	-	-	390 U	380 U
	ua/ka	100,000 ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	380 U	950	-	-	-	-	-	-	-	-	3,300	1,200
Phenol Pyrene	μg/kg					380 U	370 U			1 -	1		1		1	20011	380 U
	μg/kg	100,000 _a A 500,000 _c B 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F 100 ^G	-	-	1		-		_	'	_		_	-	390 U	
Pyrene Trichlorophenol, 2,4,5- Trichlorophenol, 2,4,6-	μg/kg μg/kg		500,000 _a ^E 1,000,000 _a ^F	-	-	380 U	370 U	-	-	-	-	-	-	-		390 U	380 U
Pyrene Trichlorophenol, 2,4,5- Trichlorophenol, 2,4,6- Total SVOC	μg/kg	100,000 _a A 500,000 _c B 1,000,000 _d CD		- - -	-	1		-	-	- -	-	- -	-		-	1	
Pyrene Frichlorophenol, 2,4,5- Frichlorophenol, 2,4,6-	μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F	-	- - -	380 U	370 U	- - -		-	-	-	-		- - -	390 U	380 U

Stantec

 $\label{lem:u:loss} U: \label{lem:u:loss} U$

Complet continu	1 1		İ	l		l 66	0-1-	I 66	0-	I 66	2-	l 66	2-1-	1 66	2.05	l	4-1-
Sample Location Sample Date				30-Jul-18	30-Jul-18	30-Jul-18	-2abc 30-Jul-18	30-Jul-18	-2c 30-Jul-18	30-Jul-18	-3a 30-Jul-18	30-Jul-18	3abc 30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	4abc 30-Jul-18
Sample ID				LIN-SS2a-t-s	LIN-SS2a-b-s	LIN-SS2-t-s	LIN-SS2-b-s	LIN-SS2c-t-s	LIN-SS2c-b-s	LIN-SS3a-t-s	LIN-SS3a-b-s	LIN-SS3-t-s	LIN-SS3-b-s	LIN-SS3b-t-s	LIN-SS3b-b-s	LIN-SS4-t-s	LIN-SS4-b-s
Sample Depth				0 - 2 in	2 - 12 in	0 - 2 in	2 - 12 in	0 - 2 in	2 - 12 in	0 - 2 in	2 - 12 in	0 - 2 in	2 - 12 in	0 - 2 in	2 - 12 in	0 - 2 in	2 - 12 in
Sampling Company				STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory				TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL
Laboratory Work Order				460-161576-1	460-161576-1	460-161576-1	460-161576-1	460-161576-1	460-161576-1	460-161576-1	460-161576-1	460-161576-1	460-161576-1	460-161576-1	460-161576-1	460-161576-1	460-161576-1
Laboratory Sample ID	Unito	NVCDEC Boxt 275	NYSDEC CP-51	460-161576-5	460-161576-6	460-161576-20	460-161576-21	460-161576-7	460-161576-8	460-161576-9	460-161576-10	460-161576-22	460-161576-23	460-161576-11	460-161576-12	460-161576-24	460-161576-25
Sample Type	Units	NYSDEC-Part 375	NTSDEC CP-51														
Volatile Organic Compounds																	
Acetone	μg/kg	50 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	4.9 U	5.3 U	-	-	5.4 U	5.7 U	5.3 U	5.1 U	-	-	5.4 U	4.9 U	-	-
Benzene	μg/kg	60 ^{AD} 44,000 ^B 89,000 ^C	n/v	0.98 U	1.1 U	-	-	1.1 U	1.1 U	1.1 U	1.0 U	-	-	1.1 U	0.98 U	-	-
Bromodichloromethane	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	0.98 U	1.1 U	-	-	1.1 U	1.1 U	1.1 U	1.0 U	-	-	1.1 U	0.98 U	-	-
Bromoform (Tribromomethane)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	0.98 U	1.1 U	-	-	1.1 U	1.1 U	1.1 U	1.0 U	-	-	1.1 U	0.98 U	-	-
Bromomethane (Methyl bromide)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	0.98 U	1.1 U	-	-	1.1 U	1.1 U	1.1 U	1.0 U	-	-	1.1 U	0.98 U	-	-
Butylbenzene, n-	μg/kg	12,000 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	0.98 U	1.1 U	-	-	1.1 U	1.1 U	1.1 U	1.0 U	-	-	1.1 U	0.98 U	-	-
Butylbenzene, sec- (2-Phenylbutane)	μg/kg	11,000 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	0.98 U	1.1 U	-	-	1.1 U	1.1 U	1.1 U	1.0 U	-	-	1.1 U	0.98 U	-	-
Butylbenzene, tert-	μg/kg	5,900 ^{AD} 500,000 ₆ ^B 1,000,000 _d ^C	n/v	0.98 U	1.1 U		_	1.1 U	1.1 U	1.1 U	1.0 U	_	_	1.1 U	0.98 U	-	-
Carbon Disulfide	μg/kg	100,000° a 500,000° B 1,000,000° CD	500,000 _a ^E 1,000,000 _a ^F 2,700 ^G	0.98 U	1.1 U	l .		1.1 U	1.1 U	1.1 U	1.0 U			1.1 U	0.98 U		1 -
Carbon Tetrachloride (Tetrachloromethane)	μg/kg	760 ^{AD} 22,000 ^B 44,000 ^C	n/v	0.98 U	1.1 U			1.1 U	1.1 U	1.1 U	1.0 U			1.1 U	0.98 U		1
Chlorobenzene (Monochlorobenzene)	μg/kg	1,100 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	0.98 U	1.1 U			1.1 U	1.1 U	1.1 U	1.0 U			1.1 U	0.98 U		1
Chloroethane (Ethyl Chloride)				0.98 U	1.1 U	'		1.1 U	1.1 U	1.1 U	1.0 U	•		1.1 U	0.98 U		1
	μg/kg	100,000 _a 500,000 _c 1,000,000 _d 1	500,000 _a ^E 1,000,000 _a ^F 1,900 ^G			-	_			1		_	_	I		_	1
Chloroform (Trichloromethane)	μg/kg	370 ^{AD} 350,000 ^B 700,000 ^C	n/v	0.98 U	1.1 U	-	-	1.1 U	1.1 U	1.1 U	1.0 U	_	-	1.1 U	0.98 U	-	-
Chloromethane	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	0.98 U	1.1 U	-	-	1.1 U	1.1 U	1.1 U	1.0 U	-	-	1.1 U	0.98 U	-	-
Cyclohexane	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	0.98 U	1.1 U	-	-	1.1 U	1.1 U	1.1 U	1.0 U	-	-	1.1 U	0.98 U	-	-
Dibromo-3-Chloropropane, 1,2- (DBCP)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	0.98 U	1.1 U	-	-	1.1 U	1.1 U	1.1 U	1.0 U	-	-	1.1 U	0.98 U	-	-
Dibromochloromethane	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F	0.98 U	1.1 U	-	-	1.1 U	1.1 U	1.1 U	1.0 U	-	-	1.1 U	0.98 U	-	-
Dichlorobenzene, 1,2-	μg/kg	1,100 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	0.98 U	1.1 U	-	-	1.1 U	1.1 U	1.1 U	1.0 U	-	-	1.1 U	0.98 U	-	-
Dichlorobenzene, 1,3-	μg/kg	2,400 ^{AD} 280,000 ^B 560,000 ^C	n/v	0.98 U	1.1 U	-	-	1.1 U	1.1 U	1.1 U	1.0 U	-	-	1.1 U	0.98 U	-	-
Dichlorobenzene, 1,4-	μg/kg	1,800 ^{AD} 130,000 ^B 250,000 ^C	n/v	0.98 U	1.1 U	-	-	1.1 U	1.1 U	1.1 U	1.0 U	-	-	1.1 U	0.98 U	-	-
Dichlorodifluoromethane (Freon 12)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	0.98 U	1.1 U	-	-	1.1 U	1.1 U	1.1 U	1.0 U	-	-	1.1 U	0.98 U	-	-
Dichloroethane, 1,1-	μg/kg	270 ^{AD} 240,000 ^B 480,000 ^C	n/v	0.98 U	1.1 U	-	-	1.1 U	1.1 U	1.1 U	1.0 U	-	-	1.1 U	0.98 U	-	-
Dichloroethane, 1,2-	μg/kg	$20_{\rm m}^{\rm A} 30,000^{\rm B} 60,000^{\rm C} 20_{\rm g}^{\rm D}$	n/v	0.98 U	1.1 U	-	-	1.1 U	1.1 U	1.1 U	1.0 U	-	-	1.1 U	0.98 U	-	-
Dichloroethene, 1,1-	μg/kg	330 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	0.98 U	1.1 U			1.1 U	1.1 U	1.1 U	1.0 U	_	_	1.1 U	0.98 U	_	-
Dichloroethene, cis-1,2-	μg/kg	250 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	0.98 U	1.1 U	l .		1.1 U	1.1 U	1.1 U	1.0 U			1.1 U	0.98 U		
Dichloroethene, trans-1,2-	μg/kg	190 ^{AD} 500,000 _c 1,000,000 _d C	n/v	0.98 U	1.1 U			1.1 U	1.1 U	1.1 U	1.0 U			1.1 U	0.98 U		1
Dichloropropane, 1,2-			l					1	1.1 U	1.1 U	1.0 U	_	_	1.1 U			1
	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a 1,000,000 _a F	0.98 U	1.1 U		-	1.1 U		1		-	-	I	0.98 U	-	_
Dichloropropene, cis-1,3-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	0.98 U	1.1 U	· ·	-	1.1 U	1.1 U	1.1 U	1.0 U	-	-	1.1 U	0.98 U	-	-
Dichloropropene, trans-1,3-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	0.98 U	1.1 U	-	-	1.1 U	1.1 U	1.1 U	1.0 U	-	-	1.1 U	0.98 U	-	-
Ethylbenzene	μg/kg	1,000 ^{AD} 390,000 ^B 780,000 ^C	n/v	0.98 U	1.1 U	-	-	1.1 U	1.1 U	1.1 U	1.0 U	-	-	1.1 U	0.98 U	-	-
Ethylene Dibromide (Dibromoethane, 1,2-)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	0.98 U	1.1 U	-	-	1.1 U	1.1 U	1.1 U	1.0 U	-	-	1.1 U	0.98 U	-	-
Hexanone, 2- (Methyl Butyl Ketone)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	4.9 U	5.3 U	-	-	5.4 U	5.7 U	5.3 U	5.1 U	-	-	5.4 U	4.9 U	-	-
Isopropylbenzene	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 2,300 ^G	0.98 U	1.1 U	-	-	1.1 U	1.1 U	1.1 U	1.0 U	-	-	1.1 U	0.98 U	-	-
Isopropyltoluene, p- (Cymene)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 10,000 ^G	0.98 U	1.1 U	-	-	1.1 U	1.1 U	1.1 U	1.0 U	-	-	1.1 U	0.98 U	-	-
Methyl Acetate	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	4.9 U	5.3 U		_	5.4 U	5.7 U	5.3 U	5.1 U	-	_	5.4 U	4.9 U	-	-
Methyl Ethyl Ketone (MEK) (2-Butanone)	μg/kg	120 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	500,000a f 1,000,000a f 300G	4.9 U	5.3 U		_	5.4 U	5.7 U	5.3 U	5.1 U	_	_	5.4 U	4.9 U	_	-
Methyl Isobutyl Ketone (MIBK)	μg/kg	100,000° a 200,000° B 1,000,000° CD	500,000 _a ^E 1,000,000 _a ^F 1,000 ^G	4.9 U	5.3 U	l .		5.4 U	5.7 U	5.3 U	5.1 U			5.4 U	4.9 U		
Methyl tert-butyl ether (MTBE)	μg/kg	930 ^{AD} 500,000° 1,000,000°	n/v	0.98 U	1.1 U	1	1	1.1 U	1.1 U	1.1 U	1.0 U	1		1.1 U	0.98 U		1 1
			· ·					1		1		_	_	I		_	1
Methylcyclohexane	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	0.98 U	1.1 U	1		1.1 U	1.1 U	1.1 U	1.0 U	_	_	1.1 U	0.98 U	_	1
Methylene Chloride (Dichloromethane)	μg/kg	50 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	0.98 U	1.1 U	-	-	1.1 U	1.1 U	1.1 U	1.0 U	-	-	1.1 U	0.98 U	-	-
Naphthalene	μg/kg	12,000 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.4	1.1 U	-	-	1.1 U	1.1 U	1.1 U	1.0 U	-	-	1.1 U	0.98 U	-	-
Propylbenzene, n-	μg/kg	3,900 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	0.98 U	1.1 U	-	-	1.1 U	1.1 U	1.1 U	1.0 U	-	-	1.1 U	0.98 U	-	-
Styrene	μg/kg	100,000 _a A 500,000 _c B 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F	0.98 U	1.1 U	-	-	1.1 U	1.1 U	1.1 U	1.0 U	-	-	1.1 U	0.98 U	-	-
Tetrachloroethane, 1,1,2,2-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a E 1,000,000 _a F 600 ^G	0.98 U	1.1 U	-	-	1.1 U	1.1 U	1.1 U	1.0 U	-	-	1.1 U	0.98 U	-	-
Tetrachloroethene (PCE)	μg/kg	1,300 ^{AD} 150,000 ^B 300,000 ^C	500,000 _a ^E 1,000,000 _a ^F	0.98 U	1.1 U	-	-	1.1 U	1.1 U	1.1 U	1.0 U	-	-	1.1 U	0.98 U	-	-
Toluene	μg/kg	700 ^{AD} 500.000 _c ^B 1.000.000 _d ^C	n/v	0.98 U	1.1 U	-	-	1.1 U	1.1 U	1.1 U	1.0 U	-	-	1.1 U	0.98 U	-	-
Trichlorobenzene, 1,2,4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 3,400 ^G	0.98 U	1.1 U	_	-	1.1 U	1.1 U	1.1 U	1.0 U	_	_	1.1 U	0.98 U	_	-
Trichloroethane, 1,1,1-	μg/kg	680 ^{AD} 500,000° 1,000,000°	n/v	0.98 U	1.1 U			1.1 U	1.1 U	1.1 U	1.0 U		-	1.1 U	0.98 U		1
Trichloroethane, 1,1,2-			n/v			1		1		1		l -		1		_	1
	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}		0.98 U	1.1 U	_	_	1.1 U	1.1 U	1.1 U	1.0 U	_	-	1.1 U	0.98 U	-	-
Trichloroethene (TCE)	μg/kg	470 ^{AD} 200,000 ^B 400,000 ^C	n/v	0.98 U	1.1 U	_	_	1.1 U	1.1 U	1.1 U	1.0 U	_	-	1.1 U	0.98 U	-	-
Trichlorofluoromethane (Freon 11)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	0.98 U	1.1 U	_	_	1.1 U	1.1 U	1.1 U	1.0 U	_	-	1.1 U	0.98 U	-	-
Trichlorotrifluoroethane (Freon 113)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 6,000 ^G	0.98 U	1.1 U	-	-	1.1 U	1.1 U	1.1 U	1.0 U	-	-	1.1 U	0.98 U	-	-
Trimethylbenzene, 1,2,4-	μg/kg	3,600 ^{AD} 190,000 ^B 380,000 ^C	n/v	0.98 U	1.1 U	-	-	1.1 U	1.1 U	1.1 U	1.0 U	-	-	1.1 U	0.98 U	-	-
Trimethylbenzene, 1,3,5-	μg/kg	8,400 ^{AD} 190,000 ^B 380,000 ^C	n/v	0.98 U	1.1 U	-	-	1.1 U	1.1 U	1.1 U	1.0 U	-	-	1.1 U	0.98 U	-	-
Vinyl Chloride	μg/kg	20 ^{AD} 13,000 ^B 27,000 ^C	n/v	0.98 U	1.1 U	-	-	1.1 U	1.1 U	1.1 U	1.0 U	-	-	1.1 U	0.98 U	-	-
Xylene, m & p-	μg/kg	260 _p ^A 500,000 _{c,p} ^B 1,000,000 _{d,p} ^C 1,600 _p ^D	n/v	0.98 U	1.1 U	-	-	1.1 U	1.1 U	1.1 U	1.0 U	-	-	1.1 U	0.98 U	-	-
Xylene, o-	μg/kg	$260_p^A 500,000_{c,p}^B 1,000,000_{d,p}^C 1,600_p^D$	n/v	0.98 U	1.1 U	-	-	1.1 U	1.1 U	1.1 U	1.0 U	-	-	1.1 U	0.98 U	-	-
Xylenes, Total	μg/kg	260 ^A 500,000 _c ^B 1,000,000 _d ^C 1,600 ^D	n/v	2.0 U	2.1 U	-	-	2.2 U	2.3 U	2.1 U	2.1 U	-	-	2.2 U	2.0 U	-	-
Total VOC	μg/kg	n/v	n/v	1.4	ND	-	-	ND	ND	ND	ND	-	-	ND	ND	-	-
VOC - Tentatively Identified Compounds																	
Total VOC TICs	μg/kg	n/v	n/v			-	-	-	-	-	-		-	10 J	-		
See notes on last page.																	

Stantec

190500898 105_report_delivideliverables\textracerotrs\textracer

Sample Location				SS	6-4b	ss	-4c	TP-1a	TP-2a	TP-4	TP-5a	TP-6	TP-7	TP-8a	TP-8c
Sample Date				30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	16-Aug-18	16-Aug-18	17-Aug-18	17-Aug-18	17-Aug-18	16-Aug-18	17-Aug-18	17-Aug-18
Sample ID				LIN-SS4b-t-s	LIN-SS4b-b-s	LIN-SS4c-t-s	LIN-SS4c-b-s	LIN-TP1-S	LIN-TP2a-s	LIN-TP4-s	LIN-TP5a-s	LIN-TP6-s	LIN-TP7-S	LIN-TP8a-s	LIN-TP8c-s
Sample Depth				0 - 2 in	2 - 12 in	0 - 2 in	2 - 12 in	3 ft	2.5 ft	3.5 ft	3 - 3.5 ft	2 ft	6 ft	2.4 ft	1 ft
Sampling Company				STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory				TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL
Laboratory Work Order				460-161576-1	460-161576-1	460-161576-1	460-161576-1	460-162801-1	460-162801-1	460-162801-1	460-162801-1	460-162801-1	460-162801-1	460-162801-1	460-162801-1
Laboratory Sample ID Sample Type	Units	NYSDEC-Part 375	NYSDEC CP-51	460-161576-13	460-161576-14	460-161576-15	460-161576-16	460-162801-2	460-162872-1	460-162872-3	460-162872-2	460-162872-4	460-162801-3	460-162872-5	460-162872-6
- Campie Type	Onits	NIODEO-LACOTO	NIODEO OF ST												
General Chemistry															
Cyanide	mg/kg	27 _i ^{AB} 10,000 _{e,I} ^C 40 _i ^D	n/v	-	-	-	-	0.24 U	0.23 U	0.25 U	0.25 U	0.26 U	0.23 U	-	0.29 U
Metals		ADCD				1				1					_
Aluminum	mg/kg	10,000 _e ^{ABCD}	10,000 _a ^{EFG}	-	-	-	-	5,450	5,500	5,490	7,230	6,070	3,600	-	5,200
Antimony	mg/kg	10,000 _e ABCD	10,000 _a ^{EFG}	-	-	-	-	31.3 U	30.4 U	31.2 U	34.1 U	31.7 U	30.4 U	-	36.5 U
Arsenic	mg/kg	13 _n ^A 16 _g ^{BCD}	n/v	-	-	-	-	4.2 U	4.1 U	4.2 U	5.8	4.2 U	4.1 U	-	4.9 U
Barium	mg/kg	350 _n ^A 400 ^B 10,000 _e ^C 820 ^D	n/v	-	-	-	-	23.4	19.3	32.2	91.0	78.6	8.3	-	19.3
Beryllium	mg/kg	7.2 ^A 590 ^B 2,700 ^C 47 ^D	n/v	-	-	-	-	0.42 U	0.41 U	0.42 U	0.45 U	0.42 U	0.41 U	-	0.49 U
Cadmium	mg/kg	2.5 _n ^A 9.3 ^B 60 ^C 7.5 ^D	n/v	-	-	-	-	0.42 U	0.41 U	0.42 U	0.45 U	0.42 U	0.41 U	-	0.49 U
Calcium	mg/kg	10,000 _e ABCD	10,000 _a EFG	-	-	-	-	1,760	1,200	1,210	3,910	1,850	570	-	1,480
Chromium	mg/kg	30 _{n,I} A 1,500 _i B 6,800 _i C _{NS,q} D	n/v	-	-	-	-	6.5	6.5	6.1	14.2	6.7	3.0	-	5.2
Cobalt	mg/kg	10,000 _e ^{ABCD}	10,000 _a EFG	-	-	-	-	3.5	2.8	2.5	4.3	2.1	2.0	-	2.2
Copper	mg/kg	50 ^A 270 ^B 10,000 _B C 1,720 ^D	n/v	-	-	-	-	12.2	4.7	8.0	15.8	13.7	3.9	-	12.1
Iron	mg/kg	10,000 _e ABCD	10,000 _a EFG		_	-	_	8,050	6,120	7,350	12,100 ^{ABCDEFG}	8,500	3,940	-	6,610
Lead	mg/kg	63 _n ^A 1,000 ^B 3,900 ^C 450 ^D	n/v	l .	-	_	_	7.7	3.0	22.4	207 ^A	49.9	2.0 U		14.0
		10,000 _e ^{ABCD}	n/v						1	l					1
Magnesium	mg/kg		1	1	_	_	-	1,350	1,040	998	2,510	805	876	· ·	1,100
Manganese	mg/kg	1,600 _n ^A 10,000 _e ^{BC} 2,000 _g ^D	n/v	1 .		-	-	191	75.8	227	431	503	118	· ·	112
Mercury	mg/kg	0.18 _n A 2.8 _k B 5.7 _k C 0.73 ^D	n/v	-	-	-	-	0.019	0.016 U	0.033	0.088	0.043	0.016 U	-	0.031
Nickel	mg/kg	30 ^A 310 ^B 10,000 _e ^C 130 ^D	n/v	-	-	-	-	10.4 U	10.1 U	10.4 U	11.4 U	10.6 U	10.1 U	-	12.2 U
Potassium	mg/kg	10,000 _e ^{ABCD}	n/v	-	-	-	-	348	209	230	317	207	143	-	249
Selenium	mg/kg	3.9 _n ^A 1,500 ^B 6,800 ^C 4 _g ^D	n/v	-	-	-	-	8.4 U	8.1 U	8.3 U	9.1 U	8.5 U	8.1 U	-	9.7 U
Silver	mg/kg	2 ^A 1,500 ^B 6,800 ^C 8.3 ^D	n/v	-	-	-	-	1.0 U	1.0 U	1.0 U	1.1 U	1.1 U	1.0 U	-	1.2 U
Sodium	mg/kg	10,000 _e ABCD	n/v	-	-	-	-	293 U	284 U	291 U	318 U	296 U	284 U	-	340 U
Thallium	mg/kg	10,000 _e ABCD	10,000 _a ^{EFG}	-	-	-	-	12.5 U	12.2 U	12.5 U	13.6 U	12.7 U	12.2 U	-	14.6 U
Vanadium	mg/kg	10,000 _e ABCD	10,000 _a EFG	-	-	-	-	8.7	11.5	8.0	12.9	8.1	5.1	-	7.4
Zinc	mg/kg	109 _n A 10,000 _e BC 2,480 ^D	n/v	-	-	-	-	24.3	14.8	49.4	187 ^A	156 ^A	10.4	-	36.3
Polychlorinated Biphenyls		ABCD				1									
Aroclor 1016	μg/kg	ABCD	n/v	-	-	-	-	35 U	35 U	36 U	39 U	36 U	35 U	-	41 U
Aroclor 1221	μg/kg	ABCD	n/v	-	-	-	-	35 U	35 U	36 U	39 U	36 U	35 U	-	41 U
Aroclor 1232	μg/kg	ABCD	n/v	-	-	-	-	35 U	35 U	36 U	39 U	36 U	35 U	-	41 U
Aroclor 1242	μg/kg	0	n/v	-	-	-	-	35 U	35 U	36 U	39 U	36 U	35 U	-	41 U
Aroclor 1248	μg/kg	ABCD	n/v	-	-	-	-	35 U	35 U	36 U	39 U	36 U	35 U	-	41 U
Aroclor 1254	μg/kg	ABCD	n/v	-	-	-	-	35 U	35 U	36 U	39 U	36 U	35 U	-	41 U
Aroclor 1260	μg/kg	ABCD o	n/v	-	-	-	-	35 U	35 U	36 U	39 U	36 U	35 U	-	41 U
Aroclor 1262	μg/kg	ABCD o	n/v	-	-	-	-	35 U	35 U	36 U	39 U	36 U	35 U	-	41 U
Aroclor 1268	μg/kg	ABCD o	n/v	-	-	-	-	35 U	35 U	36 U	39 U	36 U	35 U	-	41 U
Polychlorinated Biphenyls (PCBs)	μg/kg	100 ^A 1,000 ^B 25,000 ^C 3,200 ^D	n/v	-	-	-	-	ND	ND	ND	ND	ND	ND	-	ND
Pesticides															
Aldrin	μg/kg	5 _n A 680 ^B 1,400 ^C 190 ^D	n/v	-	-	-	-	3.5 U	3.5 U	3.6 U	3.9 U	3.6 U	3.5 U	-	4.1 U
BHC, alpha-	μg/kg	20 ^{AD} 3,400 ^B 6,800 ^C	n/v	-	-	-	-	3.5 U	3.5 U	3.6 U	3.9 U	3.6 U	3.5 U	-	4.1 U
BHC, beta-	μg/kg	36 ^A 3,000 ^B 14,000 ^C 90 ^D	n/v	-	-	-	-	3.5 U	3.5 U	3.6 U	3.9 U	3.6 U	3.5 U	-	4.1 U
BHC, delta-	μg/kg	40 _n ^A 500,000 _c ^B 1,000,000 _d ^C 250 ^D	n/v	-	-	-	-	3.5 U	3.5 U	3.6 U	3.9 U	3.6 U	3.5 U	-	4.1 U
Camphechlor (Toxaphene)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	-	-	35 U	35 U	36 U	39 U	36 U	35 U	-	41 U
Chlordane, alpha-	μg/kg	94 ^A 24,000 ^B 47,000 ^C 2,900 ^D	n/v	-	-	-	-	3.5 U	3.5 U	3.6 U	3.9 U	3.6 U	3.5 U	-	4.1 U
Chlordane, trans- (gamma-Chlordane)	μg/kg	100,000 _a ^A 1,000,000 _d ^D	n/v	-	-	-	-	3.5 U	3.5 U	3.6 U	8.6	3.6 U	3.5 U	-	4.1 U
DDD (p,p'-DDD)	μg/kg	3.3 _m ^A 92,000 ^B 180,000 ^C 14,000 ^D	n/v	-	-	-	-	3.5 U	3.5 U	3.6 U	3.9 U	3.6 U	3.5 U	-	4.1 U
DDE (p,p'-DDE)	μg/kg	3.3 _m ^A 62,000 ^B 120,000 ^C 17,000 ^D	n/v	-	-	-	-	3.5 U	3.5 U	3.6 U	39 ^A	3.6 U	3.5 U	-	4.1 U
DDT (p,p'-DDT)	μg/kg	3.3 _m ^A 47,000 ^B 94,000 ^C 136,000 ^D	n/v	-	-	-	-	3.5 U	3.5 U	3.6 U	13 ^A	3.6 U	3.5 U	-	4.1 U
Dieldrin	μg/kg	5 _n A 1,400 ^B 2,800 ^C 100 ^D	n/v	-	-	-	-	3.5 U	3.5 U	3.6 U	35 ^A	3.6 U	3.5 U	-	5.0
Endosulfan I	μg/kg	2,400, ^A 200,000, ^B 920,000, ^C 102,000 ^D	n/v	-	-	-	-	3.5 U	3.5 U	3.6 U	3.9 U	3.6 U	3.5 U	-	4.1 U
Endosulfan II	μg/kg	2,400 ^A 200,000 ^B 920,000 ^C 102,000 ^D	n/v		_	-	_	3.5 U	3.5 U	3.6 U	3.9 U	3.6 U	3.5 U	-	4.1 U
	μg/kg	2,400, ^A 200,000, ^B 920,000, ^C 1,000,000, ^D	n/v		-	-	_	3.5 U	3.5 U	3.6 U	3.9 U	3.6 U	3.5 U	-	4.1 U
Endosulfan Sulfate	μg/kg	14 ^A 89,000 ^B 410,000 ^C 60 ^D	n/v		_	-	_	3.5 U	3.5 U	3.6 U	3.9 U	3.6 U	3.5 U	-	4.1 U
Endosulian Suliate	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	-	-	3.5 U	3.5 U	3.6 U	3.9 U	3.6 U	3.5 U	-	4.1 U
			n/v		_	-	_	3.5 U	3.5 U	3.6 U	3.9 U	3.6 U	3.5 U	-	4.1 U
Endrin Endrin Aldehyde		100.000 500.000 1.000.000						1		l			1	I	1
Endrin Endrin Aldehyde Endrin Ketone	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 42 ^A 15,000 ^B 29,000 ^C 380 ^D	n/v	-	-	-	-	3.5 U	3.5 U	3.6 U	3.9 U	3.6 U	3.5 U	-	4.1 U
Endrin Endrin Aldehyde	μg/kg μg/kg	100,000 _a 500,000 _c 1,000,000 _d 42 ^A 15,000 29,000 ^C 380 ^D 100,000 _a 500,000 _c 1,000,000 _d 50	n/v		-	-	-	3.5 U 3.5 U	3.5 U 3.5 U	3.6 U 3.6 U	3.9 U 3.9 U	3.6 U 3.6 U	3.5 U 3.5 U	-	4.1 U 4.1 U
Endrin Endrin Aldehyde Endrin Ketone Heptachlor	μg/kg	42 ^A 15,000 ^B 29,000 ^C 380 ^D		-	- - -		- - -	1	1	l			1	- - -	

190500898 Page 16 of 19 $\label{lem:u:light} \begin{tabular}{ll} U:l190500898\los_report_deliv\losels reports\losels reports\losels report_deliv\losels reports\losels reports\lose$

Sample Location					5-4b		-4c	TP-1a	TP-2a	TP-4	TP-5a	TP-6	TP-7	TP-8a	TP-8c
Sample Date				30-Jul-18	30-Jul-18	30-Jul-18	30-Jul-18	16-Aug-18	16-Aug-18	17-Aug-18	17-Aug-18	17-Aug-18	16-Aug-18	17-Aug-18	17-Aug-18
Sample ID Sample Depth				LIN-SS4b-t-s 0 - 2 in	LIN-SS4b-b-s 2 - 12 in	LIN-SS4c-t-s 0 - 2 in	LIN-SS4c-b-s 2 - 12 in	LIN-TP1-S 3 ft	LIN-TP2a-s 2.5 ft	LIN-TP4-s 3.5 ft	LIN-TP5a-s 3 - 3.5 ft	LIN-TP6-s 2 ft	LIN-TP7-S 6 ft	LIN-TP8a-s 2.4 ft	LIN-TP8c-s 1 ft
Sampling Company				STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory				TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL
Laboratory Work Order				460-161576-1	460-161576-1	460-161576-1	460-161576-1	460-162801-1	460-162801-1	460-162801-1	460-162801-1	460-162801-1	460-162801-1	460-162801-1	460-162801-1
Laboratory Sample ID	Unito	NYSDEC-Part 375	NYSDEC CP-51	460-161576-13	460-161576-14	460-161576-15	460-161576-16	460-162801-2	460-162872-1	460-162872-3	460-162872-2	460-162872-4	460-162801-3	460-162872-5	460-162872-6
Sample Type	Units	NYSDEC-Part 3/5	NTSDEC CP-51												
Semi-Volatile Organic Compounds															
Acenaphthene Acenaphthylene	μg/kg μg/kg	20,000 ^A 500,000 _c ^B 1,000,000 _d ^C 98,000 ^D 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^C 107,000 ^D	n/v n/v	-	-	-	-	360 U 360 U	350 U 350 U	360 U 360 U	400 U 400 U	360 U 360 U	350 U 350 U	-	410 U 410 U
Acetophenone	μg/kg	100,000 _a 300,000 _c 1,000,000 _d 107,000	n/v	•		· ·		360 U	350 U	360 U	400 U	360 U	350 U	· ·	410 U
Anthracene	μg/kg	100,000 _a 1,000,000 _d 100,000 _a 500,000 _e 1,000,000 _d CD	n/v	•		· ·		360 U	350 U	360 U	400 U	360 U	350 U	· ·	410 U
Atrazine	μg/kg	100,000 _a 300,000 _c 1,000,000 _d	n/v	•		· ·		360 U	350 U	360 U	400 U	360 U	350 U	· ·	410 U
Benzaldehyde	μg/kg	100,000 _a 1,000,000 _d	n/v	-]	[360 U	350 U	360 U	400 U	360 U	350 U	[410 U
Benzo(a)anthracene	μg/kg	1,000, ^A 5,600 ^B 11,000 ^C 1,000, ^D	n/v					360 U	350 U	360 U	400 U	360 U	350 U		410 U
Benzo(a)pyrene	μg/kg	1,000 _n A 1,000 _n B 1,100 ^c 22,000 ^d	n/v					360 U	350 U	360 U	400 U	360 U	350 U		410 U
		1,000 _n 1,000 _g 1,100 22,000 1,000 _n 5,600 ^B 11,000 ^C 1,700 ^D	n/v	•		· ·	_		350 U	360 U	400 U	360 U	350 U	· ·	410 U
Benzo(b)fluoranthene	μg/kg		""	-	-	· ·	-	360 U	1	360 U	400 U	360 U		-	410 U
Benzo(g,h,i)perylene	μg/kg	100,000 ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-		-	360 U	350 U 350 U	360 U	400 U	360 U	350 U 350 U	-	410 U
Benzo(k)fluoranthene	μg/kg	800 _n A 56,000 B 110,000 C 1,700 D	n/v	-	-		-	360 U	1	l				-	
Biphenyl, 1,1'- (Biphenyl) Bis(2-Chloroethoxy)methane	μg/kg	100,000 _a ^A 1,000,000 _d ^D 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a E 1,000,000 _a F n/v	-	-	· ·	-	360 U	350 U 350 U	360 U 360 U	400 U 400 U	360 U 360 U	350 U 350 U	-	410 U 410 U
Bis(2-Chloroethyl)ether	μg/kg		n/v	-	-	· ·	-	360 U 360 U	350 U	360 U	400 U	360 U	350 U	-	410 U
Bis(2-Chloroisopropyl)ether (2,2-oxybis(1-Chloropropane))	μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	[[[360 U	350 U	360 U	400 U	360 U	350 U	[410 U
Bis(2-Ethylhexyl)phthalate (DEHP)	μg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _a 500,000 _c 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F 435,000 ^G	-	-	_	[360 U	350 U	360 U	400 U	360 U	350 U	-	410 U
Bromophenyl Phenyl Ether, 4-	μg/kg	100,000 _a 300,000 _c 1,000,000 _d 100,000 _d 500,000 _c 1,000,000 _d CD	n/v	-	-	_	[360 U	350 U	360 U	400 U	360 U	350 U	-	410 U
Butyl Benzyl Phthalate	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000° E 1,000,000° F 122,000°	-	_	_	_	360 U	350 U	360 U	400 U	360 U	350 U	_	410 U
Caprolactam	μg/kg	100,000 _a 1,000,000 _d 1,000,000 _d	n/v	-	_	_	_	360 U	350 U	360 U	400 U	360 U	350 U	_	410 U
Carbazole	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	_	_	_	360 U	350 U	360 U	400 U	360 U	350 U	-	410 U
Chloro-3-methyl phenol, 4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	-	-	360 U	350 U	360 U	400 U	360 U	350 U	-	410 U
Chloroaniline, 4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 220 ^G	-	_	-	_	360 U	350 U	360 U	400 U	360 U	350 U	-	410 U
Chloronaphthalene, 2-	μg/kg	100,000 A 500,000 B 1,000,000 CD	n/v	-	-	-	-	360 U	350 U	360 U	400 U	360 U	350 U	-	410 U
Chlorophenol, 2- (ortho-Chlorophenol)	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F	-	-	-	-	360 U	350 U	360 U	400 U	360 U	350 U	-	410 U
Chlorophenyl Phenyl Ether, 4-	μg/kg	100,000 _a A 500,000 _c B 1,000,000 _d CD	n/v	-	-	-	-	360 U	350 U	360 U	400 U	360 U	350 U	-	410 U
Chrysene	μg/kg	1,000 _n ^A 56,000 ^B 110,000 ^C 1,000 _g ^D	n/v	-	-	-	-	360 U	350 U	360 U	400 U	360 U	350 U	-	410 U
Cresol, o- (Methylphenol, 2-)	µg/kg	330 _m ^A 500,000 _c ^B 1,000,000 _d ^C 330 _f ^D	n/v	-	-	-	-	360 U	350 U	360 U	400 U	360 U	350 U	-	410 U
Cresol, p- (Methylphenol, 4-)	µg/kg	330 _m ^A 500,000 _c ^B 1,000,000 _d ^C 330 _f ^D	n/v	-	-	-	-	700 U	680 U	710 U	780 U	700 U	680 U	-	800 U
Dibenzo(a,h)anthracene	μg/kg	330 _m ^A 560 ^B 1,100 ^C 1,000,000 _d ^D	n/v	-	-	-	-	360 U	350 U	360 U	400 U	360 U	350 U	-	410 U
Dibenzofuran	μg/kg	7,000 ^A 350,000 ^B 1,000,000 _d ^C 210,000 ^D	500,000 _a ^E 1,000,000 _a ^F 6,200 ^G	-	-	-	-	360 U	350 U	360 U	400 U	360 U	350 U	-	410 U
Dibutyl Phthalate (DBP)	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F 8,100 ^G	-	-	-	-	360 U	350 U	360 U	400 U	360 U	350 U	-	410 U
Dichlorobenzidine, 3,3'-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	-	-	360 U	350 U	360 U	400 U	360 U	350 U	-	410 U
Dichlorophenol, 2,4-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F 400 ^G	-	-	-	-	360 U	350 U	360 U	400 U	360 U	350 U	-	410 U
Diethyl Phthalate	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 7,100 ^G	-	-	-	-	360 U	350 U	360 U	400 U	360 U	350 U	-	410 U
Dimethyl Phthalate	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 27,000 ^G	-	-	-	-	360 U	350 U	360 U	400 U	360 U	350 U	-	410 U
Dimethylphenol, 2,4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	-	-	360 U	350 U	360 U	400 U	360 U	350 U	-	410 U
Dinitro-o-cresol, 4,6-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	-	-	-	-	700 U	680 U	710 U	780 U	700 U	680 U	-	800 U
Dinitrophenol, 2,4- Dinitrotoluene, 2,4-	μg/kg μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F 200 ^G	-	-	· ·	-	700 U	680 U 350 U	710 U 360 U	780 U	700 U 360 U	680 U 350 U	-	800 U 410 U
Dinitrotoluene, 2,6-		100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	I	-	-	· ·	-	360 U 360 U	350 U	360 U	400 U 400 U	360 U	350 U	-	410 U
Di-n-Octyl phthalate	μg/kg μg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _a 500,000 _c B 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F 1,000/170 _{b,s1} ^G 500,000 _a ^E 1,000,000 _a ^F 120,000 ^G	-	-	· ·	-	360 U	350 U	360 U	400 U	360 U	350 U	-	410 U
Fluoranthene	μg/kg	100,000 _a 300,000 _c 1,000,000 _d 100,000 _a 500,000 _c B 1,000,000 _d CD	n/v	-]	[360 U	350 U	360 U	400 U	360 U	350 U	[410 U
Fluorene	μg/kg	30,000 ^A 500,000 _c B 1,000,000 _d C 386,000 ^D	n/v					360 U	350 U	360 U	400 U	360 U	350 U		410 U
Hexachlorobenzene	μg/kg	330 _m ^A 6,000 ^B 12,000 ^C 3,200 ^D	500,000 _a ^E 1,000,000 _a ^F 1,400 ^G	-	_	_	_	360 U	350 U	360 U	400 U	360 U	350 U	_	410 U
Hexachlorobutadiene (Hexachloro-1,3-butadiene)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	-		360 U	350 U	360 U	400 U	360 U	350 U	-	410 U
Hexachlorocyclopentadiene	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F	-	-	-	-	360 U	350 U	360 U	400 U	360 U	350 U	-	410 U
Hexachloroethane	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	-	-	360 U	350 U	360 U	400 U	360 U	350 U	-	410 U
Indeno(1,2,3-cd)pyrene	μg/kg	500 _n A 5,600 ^B 11,000 ^C 8,200 ^D	n/v	-	-	-	-	360 U	350 U	360 U	400 U	360 U	350 U	-	410 U
Isophorone	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 4,400 ^G	-	-	-	-	360 U	350 U	360 U	400 U	360 U	350 U	-	410 U
Methylnaphthalene, 2-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 36,400 ^G	-	-	-	- 1	360 U	350 U	360 U	400 U	360 U	350 U	-	410 U
Naphthalene	μg/kg	12,000 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	-	-	-	-	360 U	350 U	360 U	400 U	360 U	350 U	-	410 U
Nitroaniline, 2-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 400 ^G	-	-	-	- 1	700 U	680 U	710 U	780 U	700 U	680 U	-	800 U
Nitroaniline, 3-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 500 ^G	-	-	-	-	700 U	680 U	710 U	780 U	700 U	680 U	-	800 U
Nitroaniline, 4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	-	-	700 U	680 U	710 U	780 U	700 U	680 U	-	800 U
Nitrobenzene	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	69,000 ^E 140,000 ^F 170 _b ^G	-	-	-	-	360 U	350 U	360 U	400 U	360 U	350 U	-	410 U
Nitrophenol, 2-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 300 ^G	-	-	-	-	360 U	350 U	360 U	400 U	360 U	350 U	-	410 U
Nitrophenol, 4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 100 ^G	-	-	-	-	700 U	680 U	710 U	780 U	700 U	680 U	-	800 U
N-Nitrosodi-n-Propylamine	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	-	-	360 U	350 U	360 U	400 U	360 U	350 U	-	410 U
n-Nitrosodiphenylamine	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F	-	-	-	-	360 U	350 U	360 U	400 U	360 U	350 U	-	410 U
Pentachlorophenol	μg/kg	800 _m ^A 6,700 ^B 55,000 ^C 800 _f ^D	n/v	-	-	-	-	700 U	680 U	710 U	780 U	700 U	680 U	-	800 U
Phenanthrene	μg/kg	100,000 ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	-	-	360 U	350 U	360 U	400 U	360 U	350 U	-	410 U
Phenol	μg/kg	330 _m ^A 500,000 _c ^B 1,000,000 _d ^C 330 _f ^D	n/v	-	-	-	-	360 U	350 U	360 U	400 U	360 U	350 U	-	410 U
Pyrene	μg/kg	100,000 ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	-	-	360 U	350 U	360 U	400 U	360 U	350 U	-	410 U
Trichlorophenol, 2,4,5-	μg/kg	100,000 _a A 500,000 _c B 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F 100 ^G	-	-	-	-	360 U	350 U	360 U	400 U	360 U	350 U	-	410 U
Trichlorophenol, 2,4,6- Total SVOC	μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} n/v	500,000 _a ^E 1,000,000 _a ^F n/v	-	-	-	[360 U ND	350 U ND	360 U ND	400 U ND	360 U ND	350 U ND		410 U ND
SVOC - Tentatively Identified Compounds		•				•									
Total SVOC TICs	μg/kg	n/v	n/v	-	-	-	-	-	-	-	800 JN	340 JN	-	-	350 JN
See notes on last page.	_	·													

Stantec

 $\label{lem:continuous} U:\ 190500898\ 05_report_deliv\ deliverables\ reports\ SMP\ 2_Tables\ analytical_CL\ tbl4_Rl.soil_CL.LB_20191014.xlsx$

Second	Comple Legation	1 1	ı	1	l	46	l	40	TP-1a	TP-2a	TP-4	TP-5a	TP-6	I тр-7	TP-8a	TP-8c
Transport	Sample Date								1		l	l		1		l .
Transfer Part Par																
Second Company	Sample Depth				0 - 2 in		0 - 2 in			2.5 ft	3.5 ft	3 - 3.5 ft		6 ft	2.4 ft	
Section Color Section Colo																
March Marc																
Same Spine Same	Laboratory Work Order Laboratory Sample ID															
AND STATES	Sample Type	Units	NYSDEC-Part 375	NYSDEC CP-51												
AND STATES																
Second Continue	Volatile Organic Compounds															
The content of the					1				1	I	l	1	1	l .		
Second Configuration 1995 March Second Configuration 1995											l					
Secretary Confession (1997) Secretary Confes										l	l	1	1	l .	l	
Transport of the Composition of					1				1	I	l	1	1			
Table Part					1						l	1	1			
Page	-				1					I	l	1	1			l .
Commonweign					1						l		1			l .
Comment Comm	-									I	l	1	1			
Components of Suppose					1						l	l	1	1		
Column				· ·	1				1	I	l	1	1			
Company Comp	*										1	l	1	1		l .
Columnian										I	1	1	1	1		
Commonweign				· ·	1				1	I	l	1	1	1		
Description of the control of the										l	l	1	1	1	l	
December Property											l	l	1	l .		l e
Descriptions 1.5 200 1.00 200.00 1.00 200.0											l	l	1	1		l .
Commentment 1- 1- 1- 1- 1- 1- 1- 1											l	l	1	l .		l e
Commonwers 1-											l	l	1	1		l e
Debte-processors Free 12 Sept. 100,000,000 100,000,000 110	Dichlorobenzene, 1,4-			n/v	1											
Defendence 1.2 Sept	Dichlorodifluoromethane (Freon 12)			n/v				0.99 U	0.98 U	0.91 U	1.1 U	1.0 U	0.94 U	0.95 U	1.1 U	1.1 U
Different was 1-2	Dichloroethane, 1,1-	μg/kg	270 ^{AD} 240,000 ^B 480,000 ^C	n/v	1.1 U	1.0 U	1.1 U	0.99 U	0.98 U	0.91 U	1.1 U	1.0 U	0.94 U	0.95 U	1.1 U	1.1 U
Diblocenteron, cast 2	Dichloroethane, 1,2-	μg/kg	$20_{\rm m}^{\rm A} 30,000^{\rm B} 60,000^{\rm C} 20_{\rm g}^{\rm D}$	n/v	1.1 U	1.0 U	1.1 U	0.99 U	0.98 U	0.91 U	1.1 U	1.0 U	0.94 U	0.95 U	1.1 U	1.1 U
Distance	Dichloroethene, 1,1-	μg/kg	330 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.1 U	1.0 U	1.1 U	0.99 U	0.98 U	0.91 U	1.1 U	1.0 U	0.94 U	0.95 U	1.1 U	1.1 U
District Compose 1.5	Dichloroethene, cis-1,2-	μg/kg		n/v	1.1 U	1.0 U	1.1 U	0.99 U	0.98 U	0.91 U	1.1 U	1.0 U	0.94 U	0.95 U	1.1 U	1.1 U
Defectorspeeds, cert. Section	Dichloroethene, trans-1,2-	μg/kg		n/v	1.1 U	1.0 U	1.1 U	0.99 U	0.98 U	0.91 U	1.1 U	1.0 U	0.94 U	0.95 U	1.1 U	1.1 U
Debtompropose Sept 1-10	Dichloropropane, 1,2-			500,000 _a E 1,000,000 _a F							l	l	1	0.95 U		l e
Empherome											l	l	1	1		l e
Effigence Decoming (Decoming Decoming (Decoming Decoming Decomin										I	l	l	1	1		l e
Heamone, 2 Abrilly Management, 2 Abrilly Management, 2 Abrilly				· ·						l	l	1	1	l .		l .
Interconference Spring 100000_1000000				· ·						l	l	l	1	l .	l	
											l	1	1	l .	l	l e
Morty Acotate Up/0 100 000, 500 000, 100 0											l	1	1	l .	l	
Methy Ethy (Memor (MEX) (Januares) μρ/μ 1000-0500000000000000000000000000000000										l	l	l	1	l .		l l
Methyl foliably Reform (MER)				· ·	1					l	l	1	1	1		
Methyland-July ether (MTBE) UpPo 500 ¹⁶ 500.000 ² 1000.0000 ² 1000.0000 ² 1100 11U 10U 11U 0.99U 0.89U 0.91U 1.1U 1.0U 0.94U 0.95U 1.1U 1.1U 0.99U 0.89U 0.91U 1.1U 1.0U 0.94U 0.95U 1.3 4.1 0.99U 0										l	l	l	1	1	l	l .
Methylophochorame											l	l	1	1		l .
Methylene Chloride (Dichloromethane)											l	l	1	1	l	l e
Naphthalene µp/sq 12,000 ^m 500,000,s 100,000,s 2				· ·							l	l	1	1	l	l .
Propytherazere, n.											l	l	1	1		l .
Syene											l	l	1	1		
Tetrachforcethane, 1,12.2.	Styrene									l	l	1	1	1	l	
Tetrachforcethene (PCE)	•										1	l	1	1		l e
Tollene yg/kg 700°° 500,000, \$1,000,000, \$1,000,000, \$1,000,00	Tetrachloroethene (PCE)				1						l	l	1	1		l e
Trichloroberzene, 1,2,4-	Toluene				1						l	l	1	1		l e
Trichloroethane, 1,1.1- Trichloroethane, 1,1.1- Trichloroethane, 1,1.2- Trichl	Trichlorobenzene, 1,2,4-			500.000° 1.000.000° 3.400°	1		1.1 U	0.99 U	0.98 U	0.91 U	1.1 U	1.0 U	0.94 U	0.95 U	1.1 U	1.1 U
Trichloroethane, 1,1.2- μg/kg μg/kg 100,000, 50	Trichloroethane, 1,1,1-				1.1 U	1.0 U	1.1 U	0.99 U	0.98 U	0.91 U	1.1 U	1.0 U	0.94 U	0.95 U	1.1 U	1.1 U
Trichlorotethene (TCE)	Trichloroethane, 1,1,2-			n/v	1.1 U	1.0 U	1.1 U	0.99 U	0.98 U	0.91 U	1.1 U	1.0 U	0.94 U	0.95 U	1.1 U	1.1 U
Trichlorotiffluoroethane (Freon 113)	Trichloroethene (TCE)	μg/kg	470 ^{AD} 200,000 ^B 400,000 ^C	n/v	1.1 U	1.0 U	1.1 U	0.99 U	0.98 U	0.91 U	1.1 U	1.0 U	0.94 U	0.95 U	1.1 U	1.1 U
Trimethylbenzene, 1,2.4- Trimethylbenzene, 1,2.4- Trimethylbenzene, 1,3.5- India VOC TiCs Ipg/kg India Oct 1	Trichlorofluoromethane (Freon 11)		100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}		1.1 U		1.1 U	0.99 U	0.98 U	0.91 U	1.1 U	1.0 U	0.94 U	0.95 U	1.1 U	1.1 U
Trimethylbenzene, 1,3,5-	Trichlorotrifluoroethane (Freon 113)			500,000 _a ^E 1,000,000 _a ^F 6,000 ^G	1			0.99 U	1	I	l	1	0.94 U	0.95 U		
Vinyl Chloride	Trimethylbenzene, 1,2,4-			n/v	1				1	I	l		1			
	Trimethylbenzene, 1,3,5-															
Xylene, o- µg/kg 260 _p ⁶ 500,000 _{c,p} ⁶ 1,000,000 _{c,p} ^c 1,600 _p ⁰ n/v 1.1 U 1.0 U 1.1 U 0.99 U 0.98 U 0.91 U 1.1 U 1.0 U 0.94 U 0.95 U 1.1 U	-				1						l	l	1	1		
Xylenes, Total µg/kg 260^A 500,000_B 1,000,000_d 1,600 0 n/v 2.2 U 2.1 U 2.3 U 2.0 U 1.8 U 2.2 U 2.1 U 1.9 U 1.9 U 1.9 U 1.9 U 2.2 U 2.2 U Total VOC POC - Tentatively Identified Compounds ND					1					I	l	1	1	1		
Total VOC	· · · · · · · · · · · · · · · · · · ·									I	l	1	1	1		
VOC - Tentatively Identified Compounds Total VOC TICs µg/kg n/v n/v -																
Total VOC TICs			t n/V	104	ND	I ND	1.1	32	ND	NU	NU	IND	NU	NU	1.3	4.1
			n/v	phy	_	_	_	_		_	_		_	_	_	_
		μg/ng	t s/ V	184		-		-								

Stantec

190500898
U\190500898\05_report_deliv/deliverables\reports\SMP\2_Tables\analytical_CL\tb4_Rl.soil_CLLB_20191014.xlsx

Table 4

Summary of Analytical Results for RI Soil Samples

Site Management Plan

820 Linden Ave Site, BCP #C828200

820 Linden Avenue, Pittsford, NY

Notes: NYSDEC-Part 375 NYSDEC 6 NYCRR Part 375 Soil Clean-up Objectives (SCOs)

NYSDEC 6 NYCRR Part 375 - Unrestricted Use Soil Cleanup Objectives
NYSDEC 6 NYCRR Part 375 - Restricted Use SCO - Protection of Human Health - Commercial

NYSDEC 6 NYCRR Part 375 - Restricted Use SCO - Protection of Human Health - Industrial

D NYSDEC 6 NYCRR Part 375 - Restricted Use SCO - Protection of Groundwater
NYSDEC CP-51 New York State Department of Environmental Conservation, DEC Policy CP-51, October 21, 2010

Table 1 Supplemental Soil Cleanup Objectives - Commercial

Table 1 Supplemental Soil Cleanup Objectives - Industrial

Table 1 Supplemental Soil Cleanup Objectives - Protection of Groundwater

Concentration exceeds the indicated standard.

Measured concentration did not exceed the indicated standard.

Analyte was not detected at a concentration greater than the laboratory reporting limit.

No standard/guideline value.

Parameter not analyzed / not available.

The SCOs for unrestricted use were capped at a maximum value of 100 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3

SCOs for organic contaminants (volatile organic compounds, semivolatile organic compounds, and pesticides) are capped at 100 ppm for residential use, 500 ppm for commercial use, 1000 ppm for industrial use. SCOs for metals are capped at 10,000 ppm.

Based on rural background study

Based on rural background study. The value of 1.0 refers to SVOC analyses while the 0.17b refers to VOC analyses.

The SCOs for commercial use were capped at a maximum value of 500 mg/kg. See TSD Section 9.3.

The SCOs for commercial use were capped at a maximum value of 500 mg/kg. See TSD Section 9.3. The criterion is applicable to total xylenes, and the individual isomers should be added for comparison.

The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 mg/kg (Organics) and 10000 mg/kg (Inorganics). See 6 NYCRR Part 375 TSD Section 9.3.

The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3. The criterion is applicable to total xylenes, and the individual isomers should be added for comparison

The SCOS for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3.

The SCOS for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3. The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for the total species of this contaminant is below the specific SCO.

For constituents where the calculated SCO was lower than the CROL the CROL is used as the SCO value

For constituents where the calculated SCO was lower than the rural soil background concentration as determined by the DEC/DOH rural soil survey, the rural soil background concentration is used as the Track 2 SCO value for this use of the site.

The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for the total species of this contaminant is below the specific SCO.

This SCO is the sum of endosulfan I, endosulfan II, and endosulfan sulfate.

This SCO is the lower of the values for mercury (elemental) or mercury (inorganic salts). See 6 NYCRR Part 375 TSD Table 5.6-1.

For constituents where the calculated SCO was lower than the Contract Required Quantitation Limit (CRQL), the CRQL is used as the Track 1 SCO value.

For constituents where the calculated SCO was lower than the rural soil background concentration as determined by the DEC/DOH rural soil survey, the rural soil background concentration is used as the Track 1 SCO value for this use of the site.

For constituents where the calculated SCO was lower than the rural soil background concentration as determined by the DEC/DOH rural soil background concentration is used as the Track 1 SCO value for this use of the site. The SCO for this specific compound() framily of compounds) is considered to be met if the analysis for the total species of this contaminant is below the specific SCO.

No SCO has been established for this compound. No SCO has been established for total chromium; however, see standards for trivalent and hexavalent chromium.

Standard is applicable to total PCBs, and the individual Aroclors should be added for comparison.

The criterion is applicable to total xylenes, and the individual isomers should be added for comparison

The reported result is an estimated value.

The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased low.

ND UJ

Not detected.
Indicates estimated non-detect.
Not reported (not representative)

An asterisk in front of the Sample Location indicates that the material no longer remains on-site following implementation of Interim Remedial Measures

Table 5 Summary of Groundwater Analytical Results Site Management Plan 820 Linden Ave Site, BCP #C828200 820 Linden Avenue, Pittsford, NY

			MV 19-Jul-16 MW-1 STANTEC TAL	V-1 1-Oct-18 LIN-MW1-W STANTEC TAL	MV 19-Jul-16 MW-2 STANTEC TAL	V-2 5-Oct-18 LIN-MW2-W STANTEC TAL	19-Jul-16 MW-3 STANTEC TAL	MW-3 19-Jul-16 DUP-1 STANTEC TAL	5-Oct-18 LIN-MW3-W STANTEC TAL	MW 19-Jul-16 MW-4 STANTEC TAL	1-0ct-18 LIN-MW4-W STANTEC TAL	30-Sep-16 MW-5 STANTEC TAL	MW-5 30-Sep-16 DUP093016 STANTEC TAL	3-Oct-18 LIN-MW5-W STANTEC TAL	B-11D 12-Jan-17 LIN-B11D-W STANTEC TAL	B-12D 11-Jan-17 LIN-B12D-W STANTEC TAL	B- 12-Jan-17 LIN-B13D-W STANTEC TAL	-13D 12-Jan-17 LIN-DUP-W STANTEC TAL	1-Oct-18 LIN-MW101-W STANTEC TAL	1-Oct-18	W-101 1-Oct-18 LIN-FD1-W STANTEC TAL	23-Jan-19 LIN-MW101 STANTEO TAL
			480-103372-1 480-103372-1	460-165839-1	480-103372-1 480-103372-2	460-166345-1	480-103372-1 480-103372-3	480-103372-1 480-103372-5	460-166345-1	480-103372-1 480-103372-4	460-165839-1 460-165839-4	480-106865-1	480-106865-1 480-106865-2	460-166040-1	480-112267-1	480-112267-1	480-112267-1 480-112267-4	480-112267-1 480-112267-5	460-165839-1 460-165839-1	460-165839-1 460-165839-5	460-165839-1 460-165839-6	480-148275 480-148275
Units	TOGS	EPA	400-1033/2-1	400-103033-3	400-1033/2-2	400-100343-2	400-103372-3	Field Duplicate	400-100343-3	400-103372-4	400-103033-4	400-100003-1	Field Duplicate	400-100040-0	400-112207-2	400-112207-3	400-112207-4	Field Duplicate	400-103033-1	400-103033-3	Field Duplicate	
			<u> </u>		<u> </u>							<u> </u>										
μg/L	200 ^B	n/v	10 U	-	10 U	-	10 U	10 U	-	10 U	-	-	-	-	-	-	-	-	-	-	-	T -
				-		-			-		-	-	-	-	-	-	-	-		-	-	-
μg/L	25 ^B	n/v	10 U	-	10 U	-	10 U	10 U	-	10 U	-	-	-	-	-	-	-	-	15.0 U	-	-	-
μg/L μg/L				-		-			-		-		-	-	-	-	-	-		-	-	-
μg/L	5 ^B	n/v	1.0 U	-	1.0 U	-	1.0 U	1.0 U	-	1.0 U	-	-	-	-	-	-	-	-	4.0 U	-	-	-
		n/v n/v	8.1		7.9	-	9.7	104,000		143,000	-		-	-		-	-	-	113,000 10.0 U	-	-	
μg/L	50 ^B	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	10.0 U	10.0 U	-
				-		-			-		-		-	-	-	-	-	-		-	-	-
μg/L	300-B	n/v	930 ^B	-	1,500 ^B	-	1,200 J ^B	1,900 J ^B	-	2,300 ^B	-	-	-	-	-	-	-	-	150 U	-	-	-
				-		-			-		-	-	-	-	-	-	-	-		-	-	-
			37		1					_			-					_	19.7	-	_	
μg/L	0.7 ^B	n/v	0.20 U	-	0.20 U	-	0.20 U	0.20 U	-	0.20 U	-	-	-	-	-	-	-	-	0.20 U	-	-	-
				:		-	10 U 3,400		:	10 U 4.200	-		-		:] [
μg/L	10 ^B	n/v	15 U	-	15 U	-	15 U	15 U	-	15 U	-	-	-	-	-	-	-	-	20.0 U	-	-	-
						-		_	-		-	:	-		:	[[_			
μg/L	0.5 ^A	n/v	20 U	-	20 U	-	20 U	20 U		20 U	-		-	-				-	20.0 U	-	-	:
μg/L	n/v	n/v	5.0 U	_	5.0 U	-	5.0 U	5.0 U	-	5.0 U	-		-	-	:	-	-		50.0 U	-	-	-
µу/L	2,000	11/V	100	-	100		10 0	10 0	-	100		-	-	-	-	-	-	-	30.0 0	-	-	
μg/L	0.09 ^B	n/v	0.38 U	-	0.40 U	-	0.40 U	0.40 U	-	0.38 U	-	-	-	-	-	-	-	-	-	-	-	-
				:		-			:				-	-	-		-		-	-	-	-
μg/L	0.09 ^B	n/v	0.38 U	-	0.40 U	-	0.40 U	0.40 U	-	0.38 U	-	-	-	-	-	-	-	-	-	-	-	-
μg/L μg/l	0.09 ^B	n/v	0.38 U	-	0.40 U	-	0.40 U	0.40 U	-	0.38 U	-	-	-	-	-	-	-	-	-	-	-	-
μg/L	0.09 ^B	n/v	0.38 U		0.40 U		0.40 U	0.40 U		0.38 U		:		-			-	-	-	:] [:
μg/L		n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
μg/L	0.09 _b ^B	n/v	ND	-	ND	-	ND	ND	-	ND		-		-	-	-	-	_	-	_	_	
ua/l	n/u	nh.	0.04011	I	0.05011		0.050.11	0.050.11		0.04011												
μg/L μg/L		n/v	0.048 U 0.048 U		0.050 U 0.050 U	-	0.050 U	0.050 U		0.048 U	-		-	-			-		-	-	-	
μg/L	0.04 ^B	n/v	0.048 U	-	0.050 U	-	0.050 U	0.050 U	-	0.048 U	-	-	-	-	-	-	-	-	-	-	-	-
μg/L μg/L		n/v	0.48 U	-	0.050 U	-	0.050 U	0.50 U		0.48 U	-	-	-	-	-	-	-	-	-	-	-	-
μg/L	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		n/v	0.048 U		0.050 U	-	0.050 U	0.050 U	-	0.048 U	-	-	-	-	-	-	-		-	-	-	-
μg/L	0.2 ^B	n/v	0.048 U	-	0.050 U	-	0.050 U	0.050 U	-	0.048 U	-	-	-	-	-	-	-	-	-	-	-	-
μg/L μg/L						-			_		-	-	-	-		-	-		-	_	-	
μg/L	n/v	n/v	0.048 U	-	0.050 U	-	0.059	0.075	-	0.048 U	-	-	-	-	-	-	-	-	-	-	-	-
			0.048 U	-	0.050 U	_	0.050 U	0.050 U	-	0.048 U 0.048 U			-	_	[-	-		-	_	_	
μg/L	n/v	n/v	0.048 U	-	0.050 U	-	0.050 U	0.050 U	-	0.048 U	-	-	-	-	-	-	-	-	-	-	-	-
	5 ^B	n/v n/v	0.048 U -		0.050 U		0.050 U	0.050 U -	_ :	0.048 U	-		-		:] [-			
μg/L	0.04 ^{AB}	n/v	0.048 U	-	0.050 U	-	0.050 U	0.050 U	-	0.048 U	-	-	-	-	-	-	-	-	-	-	-	-
μg/L uα/L	0.03 ^B			-		-			-		-	-	-	-	-	-	-	-	-	-	-	-
μg/L	35 ^B	n/v	0.048 U	-	0.050 U	-	0.050 U	0.050 U	-	0.048 U	-	-	-	-	-	-	-	-	-	-	-	
ng/l	nh.	n/u												47.11								
ng/L	n/v	n/v	:	-	:	[-	-	:		-		-	17 U	:				-	-	-	
ng/L	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	17 U	-	-	-	-	-	-	-	-
ng/L ng/L	n/v n/v	n/v n/v	:	[:	[-	:	-	-		-	17 U 2.2	:			[-	-	-	-
ng/L	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	4.7	-	-	-	-	-	-	-	-
ng/L ng/L	n/v n/v	n/v n/v	-	:	-			-	:	-	-		-	1.7 U 1.7 U	:	-		[-			-
ng/L	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	1.7 U	-	-	-	-	-	-	-	-
		n/v n/v	:		:	[-	-		-	-		-	1.7 U 6.1	:	-		[-			
ng/L	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	4.0	-	-	-	-	-	-	-	-
			:	:	-			-	:	-	-		-	10 12	:		:	[-			
ng/L	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	1.7 U	-	-	-	-	-	-	-	-
			:	:	:			-	:	-	-	:	-		:	-	-		-			:
ng/L	n/v	n/v	-	-	-	-	-	-	-	-	-	-	-	7.5	-	-	-		-	-	-	-
ng/L	n/v n/v	n/v n/v	-					-	-	-	-		-	1.7 U 1 7 U	:		-	[-	-	-	-
		n/v	1 [[1 [1 [[1 [1 []		1.7 U	1 [I [[[1 [[
ng/L ng/L	n/v	11/ 4	_		_	_	- 1			-	-	-		46.5	_	_			_			
	#9/L #9/L #9/L #9/L #9/L #9/L #9/L #9/L	Pay Pay		Units TOGS EPA Part Part	Units TOGS EPA	Units	Part Part	Part	Units TOGS	The color The					Part		Part Part	Part Part	1	1	Part	Part

Table 5 Summary of Groundwater Analytical Results Site Management Plan 820 Linden Ave Site, BCP #C828200 820 Linden Avenue, Pittsford, NY

ample Location ample Date ample ID ampling Company aboratory aboratory Work Order aboratory Sample ID ample Type semi-Volatile Organic Compounds				19-Jul-16	1-Oct-18	19-Jul-16	5-Oct-18	19-Jul-16			19-Jul-16		l I	30-Sep-16	3-Oct-18	12-Jan-17	11-Jan-17	12-Jan-17	12-Jan-17	1-Oct-18	1-Oct-18	1-Oct-18	23-Jan
ample ID ampling Company aboratory aboratory Sample ID ample Type semi-Volatile Organic Compounds									19-Jul-16	5-Oct-18		1-Oct-18	30-Sep-16										
ampling Company aboratory aboratory Work Order aboratory Sample ID ample Type semi-Volatile Organic Compounds				MW-1	LIN-MW1-W	MW-2	LIN-MW2-W	MW-3	DUP-1	LIN-MW3-W	MW-4	LIN-MW4-W	MW-5	DUP093016	LIN-MW5-W	LIN-B11D-W	LIN-B12D-W	LIN-B13D-W	LIN-DUP-W	LIN-MW101-W		LIN-FD1-W	LIN-MW1
aboratory aboratory Work Order aboratory Sample ID ample Type emi-Volatile Organic Compounds			l	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STAN
aboratory Work Order aboratory Sample ID ample Type emi-Volatile Organic Compounds				TAL	TAL	TAL	TAL				TAL	TAL	TAL	TAL		TAL	TAL	TAL	TAL	TAL			
aboratory Sample ID ample Type semi-Volatile Organic Compounds								TAL	TAL	TAL					TAL						TAL	TAL	TA
ample Type iemi-Volatile Organic Compounds	1			480-103372-1	460-165839-1	480-103372-1	460-166345-1	480-103372-1	480-103372-1	460-166345-1	480-103372-1	460-165839-1	480-106865-1	480-106865-1	460-166040-1	480-112267-1	480-112267-1	480-112267-1	480-112267-1	460-165839-1	460-165839-1	460-165839-1	480-14
emi-Volatile Organic Compounds				480-103372-1	460-165839-3	480-103372-2	460-166345-2	480-103372-3	480-103372-5	460-166345-3	480-103372-4	460-165839-4	480-106865-1	480-106865-2	460-166040-6	480-112267-2	480-112267-3	480-112267-4	480-112267-5	460-165839-1	460-165839-5	460-165839-6	480-14
<u> </u>	Units	TOGS	EPA						Field Duplicate					Field Duplicate					Field Duplicate			Field Duplicate	
<u> </u>																							
cenaphthene	μg/L	20 ^B	n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	-	4.7 U	-	-	-	-	-	-	-	-	-	-	-	-
cenaphthylene	μg/L	n/v	n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	-	4.7 U	-	-	-	-	-	-	-	-	-	-	-	
etophenone	μg/L	n/v	n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	-	4.7 U	-	-	-	-	-	-	-	-	-	-	-	
nthracene	μg/L	50 ^A	n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	-	4.7 U	-		-	-	-	-	-	-	-	-	-	
trazine	μg/L	7.5 ^B	n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	-	4.7 U	-	-	-	-	-	-	-	-	-	-	-	
enzaldehyde	μg/L	n/v	n/v	4.9 U	_	5.0 U	-	5.0 U	5.0 U	_	4.7 U	_		_			-	-	_		_	_	
enzo(a)anthracene	μg/L	0.002 ^A	n/v	4.9 U	_	5.0 U	-	5.0 U	5.0 U	_	4.7 U	_		_	_		_	_	_	-	_	_	
nzo(a)pyrene	μg/L	n/v	n/v	4.9 U	_	5.0 U	-	5.0 U	5.0 U	_	4.7 U	_		_			_	_	_		_		
enzo(b)fluoranthene	µg/L	0.002 ^A	n/v	4.9 U		5.0 U	-	5.0 U	5.0 U		4.7 U			_			_	_		l .			
enzo(g,h,i)perylene	μg/L	n/v	n/v	4.9 U	_	5.0 U	_	5.0 U	5.0 U	_	4.7 U	_	_	_			_	_	_	1	-	_	
enzo(k)fluoranthene				4.9 U		5.0 U		5.0 U	5.0 U		4.7 U		-	-		1	_	_		1 .		-	
	μg/L	0.002 ^A 5+- ^B	n/v		-					-			_	-	-	1 -	-	-	-	1 -	-	-	
phenyl	μg/L		n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	-	4.7 U	-	-	-	-	· -	-	-	-	· ·	-	-	
s(2-Chloroethoxy)methane	μg/L	5⊷ ^B	n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	_	4.7 U	-	-	-	_	1 -	-	l -		1 -	1 -	-	
(2-Chloroethyl)ether	μg/L	1 ^B	n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	-	4.7 U	-	·	-	-	1 -			_	1 -	_	_	
s(2-Chloroisopropyl)ether (2,2-oxybis(1-Chloropropane))	μg/L	5 ^B	n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	-	4.7 U	-	-	-	-	1 -		· ·	-	I -	-	-	
s(2-Ethylhexyl)phthalate (DEHP)	μg/L	5 ^B	n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	-	4.7 U	-	-	-	-	1 -	- 1	- 1	-	1 -	-	-	
omophenyl Phenyl Ether, 4-	μg/L	n/v	n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	-	4.7 U	-	-	-	-	-	-	-	-	-	-	-	
tyl Benzyl Phthalate	μg/L	50 ^A	n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	-	4.7 U	-	-	-	-	-	-	-	-	-	-	-	
aprolactam	μg/L	n/v	n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	-	4.7 U	-	-	-	-	-	- 1		-	-	-	-	
arbazole	μg/L	n/v	n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	-	4.7 U	-	-	-	-	-	-	-	-	-	-	-	
nloro-3-methyl phenol, 4-	μg/L	n/v	n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	-	4.7 U	-		-	-	-	-	-	-	-	-	-	
hloroaniline, 4-	μg/L	5 ^B	n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	-	4.7 U	-		-	-	-	-	-	-	-	-	-	
nloronaphthalene, 2-	μg/L	10 ^B	n/v	4.9 U	_	5.0 U	-	5.0 U	5.0 U	_	4.7 U	_		_			-	-	_		_	_	
ilorophenol, 2- (ortho-Chlorophenol)	μg/L	n/v	n/v	4.9 U	_	5.0 U	-	5.0 U	5.0 U	_	4.7 U	_		_			_	_	_		_		
llorophenyl Phenyl Ether, 4-	µg/L	n/v	n/v	4.9 U	_	5.0 U	-	5.0 U	5.0 U	_	4.7 U	_		_	_			_	_		_	_	
rysene	μg/L	0.002 ^A	n/v	4.9 U	_	5.0 U	_	5.0 U	5.0 U	_	4.7 U	_		_	_	l _	_	_	_	l _		_	
esol, o- (Methylphenol, 2-)	μg/L	n/v	n/v	4.9 U		5.0 U	_	5.0 U	5.0 U		4.7 U	_	[
resol, p- (Methylphenol, 4-)										-				-	-		_	_		1 -		-	
benzo(a,h)anthracene	μg/L	n/v	n/v	9.8 U	-	10 U		10 U	10 U	-	9.4 U		_	-	-	1 -	-	-	-	1 -	-	-	
	μg/L	n/v	n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	-	4.7 U	-	-	-	-	-	-	-	-	· ·	-	-	
benzofuran	μg/L	n/v	n/v	9.8 U	-	10 U	-	10 U	10 U	-	9.4 U	-	-	-	-	-	-	-	-	· ·	-	-	
ibutyl Phthalate (DBP)	μg/L	50 ^B	n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	-	4.7 U	-	-	-	-	-	-	-	-	-	-	-	
chlorobenzidine, 3,3'-	μg/L	5 ^B	n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	-	4.7 U	-	-	-	-	-	-	-	-	-	-	-	
ichlorophenol, 2,4-	μg/L	5 ^B	n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	-	4.7 U	-	-	-	-	-	-	-	-	-	-	-	
iethyl Phthalate	μg/L	50 ^A	n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	-	4.7 U	-	-	-	-	-	-	-	-	-	-	-	
imethyl Phthalate	μg/L	50 ^A	n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	-	4.7 U	-	-	-	-	-	-	-	-	-	-	-	
imethylphenol, 2,4-	μg/L	50 ^A	n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	-	4.7 U	-	-	-	-	-	-	-	-	-	-	-	
initro-o-cresol, 4,6-	μg/L	n/v	n/v	9.8 U	-	10 U	-	10 U	10 U	-	9.4 U	-	-	-	-	-	-	-	-	-	-	-	
initrophenol, 2,4-	μg/L	10 ^A	n/v	9.8 U	-	10 U	-	10 U	10 U	-	9.4 U	-		-	-	-	-	-	-	-	-	-	
nitrotoluene, 2,4-	μg/L	5 ^B	n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	-	4.7 U	-	-	-	-	-	-	-	-	-	-	-	
initrotoluene, 2,6-	μg/L	5 ^B	n/v	4.9 U	_	5.0 U	-	5.0 U	5.0 U	_	4.7 U	_		_			-	-	_		_	_	
i-n-Octyl phthalate	μg/L	50 ^A	n/v	4.9 U	_	5.0 U	-	5.0 U	5.0 U	_	4.7 U	_		_			_	_	_		_		
oxane, 1,4-	μg/L	n/v	n/v			-	_	-	-					_	0.20 U			_					
uoranthene	μg/L	50 ^A	n/v	4.9 U	_	5.0 U	_	5.0 U	5.0 U	_	4.7 U	_	_	-	0.200		_	_	_	1	-	_	
		50 ^A		4.9 U					5.0 U		4.7 U		-	-		1	_	_		1 .		-	
uorene	μg/L		n/v		-	5.0 U	-	5.0 U		-		-	_	-	-	1 -	-	-	-	1 -	-	-	
exachlorobenzene	μg/L	0.04 ^B	n/v	4.9 U	_	5.0 U	-	5.0 U	5.0 U	_	4.7 U	-	-	-	_	1 .		· ·	_	1 .	_	_	
exachlorobutadiene (Hexachloro-1,3-butadiene)	μg/L	0.5 ^B	n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	_	4.7 U	-	-	-	_	1 -	-	l -		1 -	1 -	-	
exachlorocyclopentadiene	μg/L	5 ^B	n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	-	4.7 U	-	·	-	-	1 -			_	1 -	_	_	
exachloroethane	μg/L	5+- ^B	n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	-	4.7 U	-	-	-	-	1 -		· ·	-	I -	-	-	
deno(1,2,3-cd)pyrene	μg/L	0.002 ^A	n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	-	4.7 U	-	-	-	-	-	-	-	-	-	-	-	
ophorone	μg/L	50 ^A	n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	-	4.7 U	-	-	-	-	-	-	-	-	-	-	-	
ethylnaphthalene, 2-	μg/L	n/v	n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	-	4.7 U	-	-	-	-	-	-	-	-	-	-	-	
aphthalene	μg/L	10 ^B	n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	-	4.7 U	-	-	-	-	-	-		-	-	-	-	
itroaniline, 2-	μg/L	5 ^B	n/v	9.8 U	-	10 U	-	10 U	10 U	-	9.4 U	-	-	-	-	-	-	-	-	-	-	-	
troaniline, 3-	μg/L	5 ^B	n/v	9.8 U	-	10 U	-	10 U	10 U	-	9.4 U	-	-	-	-	-	-	-	-	-	-	-	
troaniline, 4-	μg/L	5 ^B	n/v	9.8 U	-	10 U	-	10 U	10 U	-	9.4 U	-	-	-	-	-	-	-	-	-	-	-	
trobenzene	μg/L	0.4 ^B	n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	-	4.7 U	-	-	-	-	-	-	-	-	-	-	-	
trophenol, 2-	μg/L	n/v	n/v	4.9 U		5.0 U	_	5.0 U	5.0 U		4.7 U		-			-	-	-	-				
rophenol, 4-	μg/L	n/v	n/v	9.8 U	-	10 U	_	10 U	10 U	_	9.4 U	_		_	_	1 -			-	1 -	-	_	
Nitrosodi-n-Propylamine	μg/L	n/v	n/v	4.9 U	-	5.0 U	_	5.0 U	5.0 U		4.7 U		l . I	_		1 -		l -	.	1 -	1 .	l <u>-</u>	
Nitrosodiphenylamine		EOA	n/v	4.9 U		5.0 U		5.0 U	5.0 U	1 [4.7 U	1 [[1]			1 - 1	1		1	
ntachlorophenol	μg/L	50 ^A 1.0 ^B 50 ^A			_		-			_		_		-	_	1 .		-	_	1	_	_	
	μg/L μg/L	1.U ⁻	n/v	9.8 U	-	10 U	-	10 U	10 U	_	9.4 U	-	-	-	_	1 -	-	l -		1 -	1 -	-	
enanthrene	μg/L	50°	n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	-	4.7 U	-	·	-	-	1 -			_	1 -	_	_	
enol	μg/L	1.0 ^B	n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	-	4.7 U	-	-	-	-	-	-	-	-	-	-	-	
ene	μg/L	50 ^A	n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	-	4.7 U	-	-	-	-	-	-	-	-	-	-	-	
ichlorophenol, 2,4,5-	μg/L	n/v	n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	-	4.7 U	-	-	-	-	-	-	-	-	-	-	-	
chlorophenol, 2,4,6-	μg/L	n/v	n/v	4.9 U	-	5.0 U	-	5.0 U	5.0 U	-	4.7 U	-	-	-	-	-	- 1		-	-	-	-	
al SVOC	μg/L	n/v	n/v	ND		ND		ND	ND		ND	-	<u> </u>		ND	<u> </u>					-		
OC - Tentatively Identified Compounds																							

Table 5 Summary of Groundwater Analytical Results
Site Management Plan
820 Linden Ave Site, BCP #C828200

820 Linden Avenue, Pittsford, NY

Sample Location				M	W-1	MV	V-2		MW-3		M	N-4	Ī	MW-5		B-11D	B-12D	в	-13D		B/M	W-101	
Sample Date				19-Jul-16	1-Oct-18	19-Jul-16	5-Oct-18	19-Jul-16	19-Jul-16	5-Oct-18	19-Jul-16	1-Oct-18	30-Sep-16	30-Sep-16	3-Oct-18	12-Jan-17	11-Jan-17	12-Jan-17	12-Jan-17	1-Oct-18	1-Oct-18	1-Oct-18	23-Jan-
ample ID				MW-1	LIN-MW1-W	MW-2	LIN-MW2-W	MW-3	DUP-1	LIN-MW3-W	MW-4	LIN-MW4-W	MW-5	DUP093016	LIN-MW5-W	LIN-B11D-W	LIN-B12D-W	LIN-B13D-W	LIN-DUP-W	LIN-MW101-W	LIN-MW101-W	LIN-FD1-W	LIN-MW1
ampling Company				STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANT
aboratory				TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL
aboratory Work Order				480-103372-1	460-165839-1	480-103372-1	460-166345-1	480-103372-1	480-103372-1	460-166345-1	480-103372-1	460-165839-1	480-106865-1	480-106865-1	460-166040-1	480-112267-1	480-112267-1	480-112267-1	480-112267-1	460-165839-1	460-165839-1	460-165839-1	480-1482
aboratory Sample ID				480-103372-1	460-165839-3	480-103372-2		480-103372-3	480-103372-5	460-166345-3	480-103372-4		480-106865-1	480-106865-2	460-166040-6	480-112267-2	480-112267-3	480-112267-4	480-112267-5	460-165839-1	460-165839-5	460-165839-6	480-1482
Sample Type	Units	TOGS	EPA	100 10012 1	100 100000	-100 100012 2	100 1000 10	400 1000/20	Field Duplicate	100 100010 0	100 100012 1	100 100000 4	100 100000 1	Field Duplicate	100 100010 0	100 112201 2	100 112201 0	100 112201 4	Field Duplicate	100 100000 1	100 100000	Field Duplicate	100 1102
/-l-4:l- 0													<u> </u>										
/olatile Organic Compounds	μg/L	50 ^A	n/v	10 U	5.0 U	10 U	10 U	10 U	10 U	10 U	10 U	5.0 U	10 U	10 U	5.0 U	100 J ^A	1.100 ^A	370 ^A	360 ^A	5.0 U		_	10 U
enzene		1 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	0.0	2.0 U	1.0 U	_		1.0 U
	μg/L		n/v															2.0 U			-	-	1.0 0
omodichloromethane	μg/L	50 ^A	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	2.3	1.5	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	-	-	
omoform (Tribromomethane)	μg/L	50 ^A		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	-	-	1.0
omomethane (Methyl bromide)	μg/L	0	n/v	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 UJ	-	-	1.0
tylbenzene, n-	μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 UJ	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	-	-	1.0
tylbenzene, sec- (2-Phenylbutane)	μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	-	-	1.0
ylbenzene, tert-	μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	-	-	1.0
bon Disulfide	μg/L	60 ^A	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	-	-	1.0
bon Tetrachloride (Tetrachloromethane)	μg/L	5 ⁸	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	-	-	1.0
orobenzene (Monochlorobenzene)	μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	-	-	1.0
proethane (Ethyl Chloride)	μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	-	-	1.0
proform (Trichloromethane)	μg/L	7 ^B	n/v	1.7	4.0	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	6.8	3.5	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	-	-	1.0
promethane	μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	1.0 UJ	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	-	-	1.0
lohexane	μg/L	n/v	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	-	-	1.0
omo-3-Chloropropane, 1,2- (DBCP)	μg/L	0.04 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U	2.0 U	1.0 U	_	-	1.0
omochloromethane	μg/L	50 ^A	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	_	_	1.0
llorobenzene, 1,2-	μg/L	3 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	_		1.0
hlorobenzene, 1,3-	μg/L	3 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	_	_	1.0
nlorobenzene, 1,4-	µg/L	3 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	_		1.0
lorodifluoromethane (Freon 12)	μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U			1.
loroethane, 1,1-	μg/L	_ B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	_	_	1.0
loroethane, 1,2-	μg/L	0.6 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	_	_	1.0
loroethene, 1,1-	μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	_	_	1.0
hloroethene, cis-1,2-		5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	_	_	
hloroethene, trans-1,2-	μg/L	5 ^B																			-	-	1.0
	μg/L	5** 1 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	-	-	1.0
chloropropane, 1,2-	μg/L		n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	-	-	1.0
hloropropene, cis-1,3-	μg/L	0.4 _n ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	-	-	1.0
hloropropene, trans-1,3-	μg/L	0.4 _p ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	-	-	1.0
ylbenzene	μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	-	-	1.0
ylene Dibromide (Dibromoethane, 1,2-)	μg/L	0.0006 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	-	-	1.0
kanone, 2- (Methyl Butyl Ketone)	μg/L	50 ^A	n/v	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	20 U	10 U	10 U	5.0 U	-	-	5.0
propylbenzene	μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	-	-	1.0
propyltoluene, p- (Cymene)	μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	-	-	1.0
hyl Acetate	μg/L	n/v	n/v	2.5 U	5.0 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U	5.0 U	2.5 U	2.5 U	5.0 U	2.5 U	10 U	5.0 U	5.0 U	5.0 U	-	-	2.
thyl Ethyl Ketone (MEK) (2-Butanone)	μg/L	50 ^A	n/v	10 U	5.0 U	10 U	10 U	10 U	10 U	10 U	10 U	5.0 U	10 U	10 U	5.0 U	10 U	40 U	20 U	20 U	5.0 U	-	-	10
thyl Isobutyl Ketone (MIBK)	μg/L	n/v	n/v	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	20 U	10 U	10 U	5.0 U	-	-	5.0
hyl tert-butyl ether (MTBE)	μg/L	10 ^A	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	_	-	1.
thylcyclohexane	μg/L	n/v	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	_	-	1.1
hylene Chloride (Dichloromethane)	μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.1	3.3	2.9	1.0 U	-	-	1.
ohthalene	μg/L	10 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U	2.0 U	1.0 U	_		1.
pylbenzene, n-	μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	_	_	1.0
rene	μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	_	_	1.0
rachloroethane, 1,1,2,2-	μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	_		1.
rachloroethene (PCE)		5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U		1	1.0
uene	μg/L	5 ^B		1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	_	_	1.
uene :hlorobenzene, 1,2,4-	μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U 1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ 1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	_	-	
	μg/L		n/v																		-	-	1.
hloroethane, 1,1,1-	μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	-	-	1.
nloroethane, 1,1,2-	μg/L	1"	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	-	-	1.
hloroethene (TCE)	μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.9	-	-	1
hlorofluoromethane (Freon 11)	μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U	2.0 U	1.0 U	-	-	1.
hlorotrifluoroethane (Freon 113)	μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	-	-	1.
nethylbenzene, 1,2,4-	μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	-	-	1.
nethylbenzene, 1,3,5-	μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	_	_	1.
vl Chloride	μg/L	2 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	4.0 U	2.0 U	2.0 U	1.0 U		l <u>.</u>	1.0
ene, m & p-	μg/L	5. B	n/v	2.0 U	1.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	1.0 U	2.0 U	2.0 U	1.0 U	2.0 UJ	8.0 U	4.0 U	4.0 U	1.0 U		l	2.
ene, o-	μg/L μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 UJ	4.0 U	2.0 U	2.0 U	1.0 U	[[1.
		5 ^B																			_	-	
lenes, Total	μg/L	5⊷° n/v	n/v n/v	2.0 U	2.0 U	2.0 U	2.0 U ND	2.0 U	2.0 U	2.0 U ND	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 UJ	8.0 U 1.104.1	4.0 U 373.3	4.0 U 362.9	2.0 U	_	-	2.0
ui 100	µg/L	II/V	n/v	1./	4.0	ND	ND	ND	ND	NU	ND	ND	9.1	0.0	ND	100 J	1,104.1	3/3.3	302.9	1.9	-	-	1
C - Tentatively Identified Compounds																							1
VOC TICs	ua/l	n/v	n/v	I -	-	-	2.5 J	-	-	6.5 J	I -	-	I -	-	-	16	17	21.5	37.7	-	I -	I -	1

Stantec

 $U:\\ 190500898\\ 105_report_deliv\\ 10eliv\\ 10eliverables\\ 10eliv\\ 10el$

Table 5 Summary of Groundwater Analytical Results Site Management Plan 820 Linden Ave Site, BCP #C828200 820 Linden Avenue, Pittsford, NY

Sample Location	1	1	I	B/MV	V-102	B/M\	W-103	I	B/MW-104		I	B/MW-105		MW-110	MW-111	MV	V-112
Sample Date				5-Oct-18	23-Jan-19	1-Oct-18	23-Jan-19	3-Oct-18	23-Jan-19	23-Jan-19	3-Oct-18	3-Oct-18	23-Jan-19	17-Jul-20	17-Jul-20	17-Jul-20	17-Jul-20
Sample ID				LIN-MW102-W STANTEC	LIN-MW102-W STANTEC	LIN-MW103-W STANTEC	LIN-MW103-W STANTEC	LIN-MW104-W STANTEC	LIN-MW104-W STANTEC	LIN-FD3-W STANTEC	LIN-MW105-W STANTEC	LIN-FD2-W STANTEC	LIN-MW105-W STANTEC	LIN-MW110-W STANTEC	LIN-MW111-W STANTEC	LIN-MW112-W STANTEC	LIN-FD4-W STANTEC
Sampling Company Laboratory				TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL
Laboratory Work Order				460-166345-1	480-148275-1	460-165839-1	480-148275-1	460-166040-1	480-148275-1	480-148275-1	460-166040-1	460-166040-1	480-148275-1	480-172564-1	480-172564-1	480-172564-1	480-172564-1
Laboratory Sample ID	11-14-	TO00	- FDA	460-166345-1	480-148275-2	460-165839-2	480-148275-3	460-166040-7	480-148275-4	480-148275-6	460-166040-8	460-166040-10	480-148275-5	480-172564-5	480-172564-4	480-172564-2	480-172564-3 Field Duplicate
Sample Type	Units	TOGS	EPA							Field Duplicate		Field Duplicate		1	1 '	1 '	Field Duplicate
General Chemistry				•	-	•		•			•	-	-				
Cyanide	μg/L	200 ^B	n/v	-	-	10 U	-	10 U	-	-	10 U	10 U	-	-	-		-
Metals Aluminum		-6.	-4.	4.000				00011				00011				00011	00011
Antimony	μg/L μg/L	n/v 3 ^B	n/v n/v	1,000 20 U	_	200 U 20.0 U	_	200 U 20.0 U	-	_	200 U 20.0 U	200 U 20.0 U		'	360 20 U	200 U 20 U	200 U 20 U
Arsenic	μg/L	25 ^B	n/v	10 U	-	15.0 U	-	15.0 U	-	-	15.0 U	15.0 U	-	- '	15 U	15 U	15 U
Barium	μg/L	1,000 ^B	n/v n/v	61	-	200 U	-	200 U 2.0 U	-	-	200 U	200 U	-	- '	96 J-	100	100
Beryllium Cadmium	μg/L μg/L	3 ^A 5 ^B	n/v	2.0 U 1.0 U	_	2.0 U 4.0 U	_	4.0 U	-	_	2.0 U 4.0 U	2.0 U 4.0 U		'	2.0 U 2.0 U	2.0 U 2.0 U	2.0 U 2.0 U
Calcium	μg/L	n/v	n/v	54,000	-	124,000	-	121,000	-	-	133,000	135,000	-	-	159,000 J-	139,000	142,000
Chromium Chromium (Hexavalent)	μg/L μg/L	50 ^B 50 ^B	n/v n/v	4.0 U	_	10.0 U	_	10.0 U 10.0 U	-	_	15.2	15.1		-	4.0 U	4.0 U	4.0 U
Cobalt	μg/L	n/v	n/v	4.0 U	_	50.0 U		50.0 U	-		50.0 U	50.0 U			4.0 U	4.0 U	4.0 U
Copper	μg/L	200 ^B	n/v	10 U	-	25.0 U	-	25.0 U	-	-	25.0 U	25.0 U	-	-	10 U	10 U	10 U
Iron	μg/L	300-B	n/v	1,000 ^B	-	163	-	448 ^B	-	-	205	210	-	-	310 ^B	120	130
Lead Magnesium	μg/L μg/L	25 ^B 35,000 ^A	n/v n/v	5.0 U 12,900		10.0 U 28,900		10.0 U 24,100	-		10.0 U 22,400	10.0 U 22,500			10 U 31,500	10 U 27,400	10 U 28,100
Manganese	µg/L	300 _* B	n/v	35	_	15.0 U	_	42.9	_	_	15.0 U	15.0 U	-	_	22 J-	13	14
Mercury	μg/L	0.7 ^B	n/v	0.2 U	-	0.20 U	-	0.20 U	-	-	0.20 U	0.20 U	-	- '	0.20 U	0.20 U	0.20 U
Nickel Potassium	µg/L	100 ^B	n/v n/v	10 U	-	40.0 U	-	40.0 U	-	-	40.0 U	40.0 U			10 U	10 U	10 U
Potassium Selenium	μg/L μg/L	n/v 10 ^B	n/v n/v	2,000 15 U	:	5,000 U 20.0 U	-	5,000 U 20.0 U		[5,000 U 20.0 U	5,000 U 20.0 U	[[]	3,700 J- 25 U	2,800 25 U	2,900 25 U
Silver	μg/L	50 ^B	n/v	3.0 U	-	10.0 U	-	10.0 U	-	-	10.0 U	10.0 U	-	- '	6.0 U	6.0 U	6.0 U
Sodium Thallium	μg/L	20,000 ^B	n/v n/v	102,000 ^B	-	81,800 ^B	-	82,400 ^B	-	-	349,000 ^B	351,000 ^B	-	- '	381,000 ^B	345,000 ^B	353,000 ^B
Vanadium	μg/L μg/L	0.5 ^A n/v	n/v	20 U 5.0 U	_	20.0 U 50.0 U		20.0 U 50.0 U	-	_	20.0 U 50.0 U	20.0 U 50.0 U		-	20 U 5.0 U	20 U 5.0 U	20 U 5.0 U
Zinc	μg/L	2,000 ^A	n/v	10 U	-	30.0 U	-	30.0 U	-	-	30.0 U	30.0 U	-	-	10 U	10 U	10 U
Polychlorinated Biphenyls																	
Aroclor 1016 Aroclor 1221	μg/L μg/L	0.09 ^B	n/v n/v	-	_	0.40 U 0.40 U	_	0.40 U 0.40 U	-	_	0.40 U 0.40 U	0.40 U 0.40 U		-	0.50 U 0.50 U	0.50 U 0.50 U	0.50 U 0.50 U
Aroclor 1232	μg/L	0.09 ^B	n/v	-	-	0.40 U	-	0.40 U	-	-	0.40 U	0.40 U	-	-	0.50 U	0.50 U	0.50 U
Aroclor 1242	μg/L	0.09 ^B	n/v	-	-	0.40 U	-	0.40 U	-	-	0.40 U	0.40 U	-	- '	0.50 U	0.50 U	0.50 U
Aroclor 1248 Aroclor 1254	μg/L μg/L	0.09 ^B	n/v n/v		-	0.40 U 0.40 U	_	0.40 U 0.40 U	-	-	0.40 U 0.40 U	0.40 U 0.40 U		['	0.50 U 0.50 U	0.50 U 0.50 U	0.50 U 0.50 U
Aroclor 1260	μg/L	0.09 ^B	n/v	-	-	0.40 U	-	0.40 U	-	-	0.40 U	0.40 U	-	- '	0.50 U	0.50 U	0.50 U
Aroclor 1262 Aroclor 1268	μg/L	0.09 ^B 0.09 ^B	n/v n/v	-	-	0.40 U 0.40 U	-	0.40 U 0.40 U	-	-	0.40 U 0.40 U	0.40 U 0.40 U	-	- '	1 - '	- '	-
Polychlorinated Biphenyls (PCBs)	μg/L μg/L	0.09 B	n/v		-	ND		ND	-		ND	ND	_		ND	ND	ND
Pesticides				-													
Aldrin BHC, alpha-	μg/L	n/v	n/v n/v	-	-	0.020 U	-	0.020 U 0.020 U	-	-	0.020 U	0.020 U	-	- '	1 - '	- '	-
BHC, beta-	μg/L μg/L	0.01 ^B 0.04 ^B	n/v	-	_	0.020 U 0.020 U	_	0.020 U	-	_	0.020 U 0.020 U	0.020 U 0.020 U		'	['	[]	
BHC, delta-	μg/L	0.04 ^B	n/v	-	-	0.020 U	-	0.020 U	-	-	0.020 U	0.020 U	-	- '	- '	- '	-
Camphechlor (Toxaphene) Chlordane, alpha-	μg/L μg/L	0.06 ^B n/v	n/v n/v	-	-	0.50 U 0.020 U		0.50 U 0.020 U	-		0.50 U 0.020 U	0.50 U 0.020 U		[1 : '	1 : '	
Chlordane, trans- (gamma-Chlordane)	μg/L	n/v	n/v	-	-	0.020 U	-	0.020 U	-	-	0.020 U	0.020 U	-	- '	- '	- '	-
DDD (p,p'-DDD)	μg/L	0.3 ^B	n/v	-	-	0.020 U	-	0.020 U	-	-	0.020 U	0.020 U	-	- '	1 - '	1 - '	-
DDE (p,p'-DDE) DDT (p,p'-DDT)	μg/L μg/L	0.2 ^B 0.2 ^B	n/v n/v	-	_	0.020 U 0.020 U		0.020 U 0.020 U	-	_	0.020 U 0.020 U	0.020 U 0.020 U		-	1 : '	1 - 1	
Dieldrin	μg/L	0.004 ^B	n/v	-	-	0.020 U	-	0.020 U	-	-	0.020 U	0.020 U	-	- '	- '	1 - '	-
Endosulfan I Endosulfan II	μg/L	n/v n/v	n/v n/v	-	-	0.020 U 0.020 U	-	0.020 U 0.020 U	-	-	0.020 U 0.020 U	0.020 U 0.020 U	-	- '	1 - !	- '	-
Endosulfan Sulfate	μg/L μg/L	n/v	n/v	-	-	0.020 U	-	0.020 U			0.020 U	0.020 U	[[]		'	-
Endrin	μg/L	n/v	n/v	-	-	0.020 U	-	0.020 U	-	-	0.020 U	0.020 U	-	- '	- '	- '	-
Endrin Aldehyde Endrin Ketone	μg/L μg/L	5 ^B 5 ^B	n/v n/v		:	0.020 U 0.020 U		0.020 U 0.020 U	-		0.020 U 0.020 U	0.020 U 0.020 U	[1 : '	1 : '	[]	_
Heptachlor	μg/L	0.04 ^{AB}	n/v	-	-	0.020 U	-	0.020 U	-	-	0.020 U	0.020 U		1 - '	- '	'	-
Heptachlor Epoxide	μg/L	0.03 ^B	n/v	-	-	0.020 U	-	0.020 U	-	-	0.020 U	0.020 U	-	- '	- '	- '	-
Lindane (Hexachlorocyclohexane, gamma) Methoxychlor (4,4'-Methoxychlor)	μg/L μg/L	0.05 ^B 35 ^B	n/v n/v		-	0.020 U 0.020 U	_	0.020 U 0.020 U	-	-	0.020 U 0.020 U	0.020 U 0.020 U		['	1 : '		
Per- and Polyfluoroalkyl Substances (PFAS)	1 -5-																
2-(N-methyl perfluorooctanesulfonamido) acetic acid (NMeFOSAA)	ng/L	n/v	n/v	-	-	-	-	17 U	-	-	17 U	16 U	-	-	- 1	- '	-
6:2 Fluorotelomer sulfonic acid 8:2 Fluorotelomer sulfonic acid	ng/L	n/v n/v	n/v n/v	-	-	-	-	17 U 17 U	-	-	17 U 17 U	16 U 16 U	-	- '	- '	- '	-
N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	ng/L ng/L	n/v	n/v	-	_]		17 U	-		17 U	16 U			['	- '] -
Perfluorobutane Sulfonate (PFBS)	ng/L	n/v	n/v	-	-	-	-	36	-	-	2.5 U	1.7 U	-	- '	- '	- '	-
Perfluorobutanoic Acid (PFBA) Perfluorodecane Sulfonic Acid (PFDS)	ng/L ng/L	n/v n/v	n/v n/v	-	_	-		9.1 1.7 U	-		13 J- 1.7 U	13 J- 1.6 U		1 : '	1 : '	1 : '	_
Perfluorodecanoic Acid (PFDA)	ng/L	n/v	n/v	-	-	:	-	1.7 U	-	-	1.7 U	1.6 U	[[]	[]	[-]	-
Perfluorododecanoic Acid (PFDoA)	ng/L	n/v	n/v	-	-	-	-	1.7 U	-	-	1.7 U	1.6 U	-	- '	1 - '	- '	-
Perfluoroheptane Sulfonate (PFHpS) Perfluoroheptanoic Acid (PFHpA)	ng/L ng/L	n/v n/v	n/v n/v		[:		1.7 U 1.7 U	-	[1.7 U 1.7 U	1.6 U 1.6 U		1 : '	: '	[]	_
Perfluorohexanesulfonic acid (PFHxS)	ng/L	n/v	n/v	-	-	-	-	1.7 U	-	-	1.7 U	1.6 U		1 - '	- '	'	-
Perfluorohexanoic Acid (PFHxA)	ng/L	n/v	n/v	-	-	-	-	4.2	-	-	2.0	2.0	-	- '	1 - '	- '	-
Perfluoro-n-Octanoic Acid (PFOA) Perfluorononanoic Acid (PFNA)	ng/L ng/L	n/v n/v	n/v n/v		-		-	2.6 1.7 U	-	[1.7 U 1.7 U	1.6 U 1.6 U	[1 : '	['	[]	-
Perfluorooctane Sulfonate (PFOS)	ng/L	n/v	n/v	-	-	-	-	1.7 U	-	-	1.7 U	1.6 U	-	- '	- '	- '	-
Perfluorocatanesulfonamide (PFOSA)	ng/L	n/v	n/v	-	-	-	-	1.7 U	-	-	1.7 U	1.6 U	-	1 - '	1 - '	l - '	-
Perfluoropentanoic Acid (PFPeA) Perfluorotetradecanoic Acid (PFTeA)	ng/L ng/L	n/v n/v	n/v n/v] [[:	-	2.9 1.7 U		[3.2 1.7 U	2.9 1.6 U		['	['		-
Perfluorotridecanoic Acid (PFTriA)	ng/L	n/v	n/v	-	-	-	-	1.7 U	-	-	1.7 U	1.6 U	-	1 - '	- '	- '	-
	ng/L	n/v	n/v	1 -	-	-	-	1.7 U	-	-	1.7 U	1.6 U	-	1 - '	(- '		-
Perfluoroundecanoic Acid (PFUnA) Sum of PEAS Analyte List			n/v	_	_	_	_	54.8	_	_			_				_
Perfluoroundecanoic Acid (PFUnA) Sum of PFAS Analyte List Sum of PFOS & PFOA Ratios	ng/L ng/L	n/v n/v	n/v 70 ^c	-		- -	-	54.8 2.6	- -	-	20.7 ND	19.6 ND	-				

Table 5 Summary of Groundwater Analytical Results
Site Management Plan
820 Linden Ave Site, BCP #C828200
820 Linden Avenue, Pittsford, NY

### ample Date #### 23-Jan-19 1-Oct-18 23-Jan-19 1-Oct-18 23-Jan-19 1-Dct-18 23-Jan-19 1-Dct-18 23-Jan-19 1-Dct-18 23-Jan-19 1-Dct-18 23-Jan-19 1-Dct-18 1-Dct-					B/MW	V-102	B/MV	V-103	l	B/MW-104		I	B/MW-105		MW-110	MW-111	MW	<i>l</i> -112
marked Compose of the	Sample Location Sample Date				I .				3-Oct-18		23-Jan-19	3-Oct-18		23-Jan-19				17-Jul-20
withing foundation with a company of the property of the prope																		LIN-FD4-W
incoming minimary state of the control of the contr																		STANTEC
Books Part																		TAL
Second Composed 1985																		480-172564
Part																		480-172564
		Units	TOGS	EPA	100 100010 1	100 1102102	100 100000 2	100 1102100	100 100010 1	100 110210 1		100 100010 0		400 1402100	100 1120010	100 112001 1	1002001 2	Field Duplica
Proceedings	Tampie Type	J									Tiola Daplicato		riola Daplicato					. ioid Dapiioi
Contemplate 100	Semi-Volatile Organic Compounds				•													
Section	Acenaphthene				-	-		-		-	-			-	-	-	-	-
Tribuscies					-	-		-			-			-	-	-	-	-
rement ment ment ment ment ment ment ment					-	-		-		-	-			-	-	-	-	-
Part					-	-		-		-	-			-	-	-	-	-
recognifications					-			-						-	-	-	-	-
recologing memory and property of the property					-	-		-			-			-	-	-	-	-
resolutions removed and a control of the control of					-	-		-		-	-			-	-	-	-	-
According Company Co					-	-		-		-	-			-	-	-	-	-
Second Company of the Company of t					-	-		-			-			-	-	-	-	-
place					-	-		-			-			-	-	-	-	-
## Comment ##					-	-		-			-			-	-	-	-	-
Schoenspring Scho					-	-		-		-	-			-	-	· ·	-	-
Incomparation Incomparatio					_			-		-				-	-	'	_	-
According Marked					[[[[[
Second S					_	-		-		-	-			-	-		-	-
19					-	-		-		-	-			-	-	· ·	-	-
September Sept						-		-		-					-	l -	_	-
selection of the control of the cont					-	-		-		-	-			-	-	· ·	-	-
The content of the co					_			_			_			_		· ·		_
Trickenstand 191					_	-		-		-	-			-	-		-	-
					-	-		-		-	-			-	-	· ·	-	-
Second content Seco					-			-			-			-	-	· ·	-	-
Second S					-	-		-			-			-	-	· ·	-	-
injusement pipe					-	-		-		-	-			-	-	· ·	-	-
result, p. (Methyphemol. 2)					-	-		-		-	-			-	-	· ·	-	-
result p. (Methylphend. 4) pjl. n/v n/v - 10 U 10 U - 10 U 10 U - -					_	-		-			-			-	-		-	-
Searce S					_	-		-						-	-	'	_	-
Secretarian					_	-		-		-	-			-	-		-	-
Look Principle Look Prin					-	-		-		-	-			-	-	· ·	-	-
College-bern 3.4					_	-		-			-			-	-		-	-
College					-	-		-		-	-			-	-	· ·	-	-
Profession Sept.					-	-		-		-	-			-	-	· ·	-	-
methylphenic) 2-4 spil spi ⁿ n/v - 10U 10U - - - - - - - - -					-	-		-		-	-			-	-	· ·	-	-
methylphenol, 2-4					_	-		-			-			-	-		-	-
nitro-o-creasol, 46- upil, niv niv - 20 U 20 U nitro-o-lene, 2,4- upil, niv niv - 20 U 20 U nitro-o-lene, 2,4- upil, 5-2 niv - 20 U 20 U - 20 U 20 U nitro-o-lene, 2,6- upil, 5-2 niv - 20 U 20 U - 20 U 20 U nitro-o-lene, 2,6- upil, 50 niv 10 U - 10 U - 10 U nitro-o-lene, 2,6- upil, 50 niv 10 U nitro-o-lene, 2,6- upil, 50 niv nitro-o-lene, 2,6-					_	-		-						-	-	'	_	-
niteopheno (2,4-					_	-		-						-	-	'	_	-
nitrotaluene, 2.4- ugl. S. n/					_	-		-		-				-	-	'	_	-
					_	-		-		-	-			-	-		-	-
					_			-						-	-	'	_	-
Description					_			-		-				-	-	'	_	-
Use					-	-	10 0	-		-	-			-	-	· ·	-	-
useree μg/L 50° n/ν - 10 U - 10 U - 10 U - - 10 U - - - 10 U - - - - - - - - -					_		10.11	_			_			_	Ī .	l -	[]	_
ygl. 0,04 ⁸ n/v - 1.0 U - 1.0 U - 1.0 U - - - - - - - - -					_			_			_			_	Ī .	l -	[]	_
Package Pack								[_	[[[[
Part Seach Incorpole periadiene Part Seach Incorpole peria					[[[[[l [I .	[[
Page						_		[-	[[_	-		
denot(1,2,3-cd)pyrene deno					[[[[[l [I .	[
pobrone ug/L 50^k n/v - 10 U - 10 U - 10 U - - - - - - - - -					[[[[[l [I .	[
ethyfnaphthalene, 2- a					[[[[[l [I .	[[
aphthalene ug/L 10					_			_			_			_	Ī .	Ι ΄	[]	
troanline, 2- troanline, 2- troanline, 3- troanline, 4- troanline, 4- troanline, 4- trophenol, 2- trophenol, 2- trophenol, 4- Nitrosodip-proplamine µg/L µg/L					_			-						-	-	'	_	-
										_						1 [
troanline, 4- trophenol, 2- trophenol, 2- trophenol, 4- Nitrosodiphenylamine µg/L 1,0 0 1					_			-		-				-	-	'	_	-
					[[[[[l [I .	[
	·				_			_			_			_	Ī .	Ι ΄	[]	
										_						1 [
Nitrosodi-n-Propylamine								[-	[[[
Nitrosodiphenylamine					_			-		-				-	-	'	_	-
entachforophenol		µg/L			1 []			[_				[1 [1 :		
nenanthrene		µg/L	1 0B		1			_						_	Ī .	Ι ΄	[]	
nenol					_			_			_			_	Ī .	Ι ΄	[]	
yrene μg/L 50 ^A n/ν 10 U - 10 U 10 U - 10 U					_	_		_		-	_			_	_		_	_
ichlorophenol, 2,4,5- μg/L n/v n/v 10 U - 10 U						-		-							-	l -		
ichlorophenol, 2,4,6- μg/L n/v n/v 10 U - 10 U 10 U 10 U 10 U 10 U 10 U						-		-		-					-	l -		
ptal SVOC μg/L n/v n/v ND - ND - ND ND VOC - Tentatively Identified Compounds					_	-		_		-	_			_	-	· ·	-	-
VOC - Tentatively Identified Compounds					_	-		-		-	_			-	-	l -		-
			11/V	11/V	1 -	-	ND	-	ND	-	-	ND	IND		-			-
		1 15-																

See notes on last page.

Table 5 Summary of Groundwater Analytical Results
Site Management Plan
820 Linden Ave Site, BCP #C828200
820 Linden Avenue, Pittsford, NY

Sample Location				B/MW		B/MV			B/MW-104	00.146		B/MW-105		MW-110	MW-111	ı	V-112
Sample Date				5-Oct-18	23-Jan-19	1-Oct-18	23-Jan-19	3-Oct-18	23-Jan-19	23-Jan-19	3-Oct-18	3-Oct-18	23-Jan-19	17-Jul-20	17-Jul-20	17-Jul-20	17-Jul-20
Sample ID				LIN-MW102-W	LIN-MW102-W	LIN-MW103-W	LIN-MW103-W	LIN-MW104-W	LIN-MW104-W	LIN-FD3-W	LIN-MW105-W	LIN-FD2-W	LIN-MW105-W	LIN-MW110-W	LIN-MW111-W	LIN-MW112-W	LIN-FD4-W
Sampling Company				STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory				TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL
Laboratory Work Order				460-166345-1	480-148275-1	460-165839-1	480-148275-1	460-166040-1	480-148275-1	480-148275-1	460-166040-1	460-166040-1	480-148275-1	480-172564-1	480-172564-1	480-172564-1	480-172564-1
Laboratory Sample ID				460-166345-1	480-148275-2	460-165839-2	480-148275-3	460-166040-7	480-148275-4	480-148275-6	460-166040-8	460-166040-10	480-148275-5	480-172564-5	480-172564-4	480-172564-2	480-172564-3
Sample Type	Units	TOGS	EPA							Field Duplicate		Field Duplicate					Field Duplicate
Volatile Organic Compounds							·										
Acetone	μg/L	50 ^A	n/v	10 U	10 U	5.0 U	10 U	5.0 U	10 U	10 U	5.0 U	5.0 U	10 U				
Benzene	μg/L	1 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromodichloromethane	μg/L	50 ^A	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromoform (Tribromomethane)	μg/L	50 ^A	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Bromomethane (Methyl bromide)	μg/L	5 ^B	n/v	1.0 U	1.0 UJ	1.0 UJ	1.0 UJ	1.0 U	1.0 UJ	1.0 UJ	1.0 U	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
Butylbenzene, n-	μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Butylbenzene, sec- (2-Phenylbutane)	μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Butylbenzene, tert-	μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Carbon Disulfide	μg/L	60 ^A	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Carbon Tetrachloride (Tetrachloromethane)	μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U 1.0 U	1.0 U	1.0 U 1.0 U	1.0 U	1.0 U	1.0 U
Chlorobenzene (Monochlorobenzene) Chloroethane (Ethyl Chloride)	μg/L	5 ^B 5 ^B	n/v n/v	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U	1.0 U 1.0 U	1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U
Chloroform (Trichloromethane)	μg/L μg/L	7 ^B	n/v n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 0	1.00	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Chloromethane	μg/L μg/L	5 ^B	n/v n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.4 1.0 U	1.5 1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Cyclohexane	μg/L μg/L	n/v	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dibromo-3-Chloropropane, 1,2- (DBCP)	μg/L	0.04 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dibromochloromethane	μg/L	50 ^A	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dichlorobenzene, 1,2-	μg/L	3 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dichlorobenzene, 1,3-	μg/L	3 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dichlorobenzene, 1,4-	μg/L	3 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dichlorodifluoromethane (Freon 12)	μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dichloroethane, 1,1-	μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dichloroethane, 1,2-	μg/L	0.6 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dichloroethene, 1,1-	μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dichloroethene, cis-1,2-	μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dichloroethene, trans-1,2-	μg/L	5+- ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dichloropropane, 1,2-	μg/L		n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Dichloropropene, cis-1,3- Dichloropropene, trans-1,3-	μg/L	0.4 _n ^B	n/v n/v	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U
Ethylbenzene	μg/L μg/L	0.4 _n ^B 5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Ethylene Dibromide (Dibromoethane, 1,2-)	μg/L μg/L	0.0006 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Hexanone, 2- (Methyl Butyl Ketone)	μg/L	50 ^A	n/v	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Isopropylbenzene	μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Isopropyltoluene, p- (Cymene)	μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methyl Acetate	μg/L	n/v	n/v	2.5 U	2.5 U	5.0 U	2.5 U	5.0 U	2.5 U	2.5 U	5.0 U	5.0 U	2.5 U	2.5 U	2.5 U	2.5 U	2.5 U
Methyl Ethyl Ketone (MEK) (2-Butanone)	μg/L	50 ^A	n/v	10 U	10 U	5.0 U	10 U	5.0 U	10 U	10 U	5.0 U	5.0 U	10 U				
Methyl Isobutyl Ketone (MIBK)	μg/L	n/v	n/v	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U	5.0 U
Methyl tert-butyl ether (MTBE)	μg/L	10 ^A	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methylcyclohexane	μg/L	n/v	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Methylene Chloride (Dichloromethane)	μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Naphthalene	μg/L	10 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Propylbenzene, n-	μg/L	5B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Styrene	μg/L	5B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Tetrachloroethane, 1,1,2,2- Tetrachloroethene (PCE)	μg/L	5 ^B	n/v n/v	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U	1.0 U 1.0 U
Toluene	μg/L μg/L	5 ^B	n/v n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichlorobenzene, 1,2,4-	μg/L μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethane, 1,1,1-	μg/L μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethane, 1,1,2-	μg/L μg/L	1 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichloroethene (TCE)	μg/L	5 ^B	n/v	1.0 U	1.0 U	13 ^B	12 ^B	17 ^B	9.7 ^B	9.8 ^B	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trichlorofluoromethane (Freon 11)	μg/L	5 ^B	n/v	1.0 U	1.0 UJ	1.0 U	1.0 UJ	1.0 U	1.0 UJ	1.0 UJ	1.0 U	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
Trichlorotrifluoroethane (Freon 113)	μg/L μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trimethylbenzene, 1,2,4-	μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Trimethylbenzene, 1,3,5-	μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Vinyl Chloride	μg/L	2 ^B	n/v	1.0 U	1.0 UJ	1.0 U	1.0 UJ	1.0 U	1.0 UJ	1.0 UJ	1.0 U	1.0 U	1.0 UJ	1.0 U	1.0 U	1.0 U	1.0 U
Xylene, m & p-	μg/L	5. B	n/v	2.0 U	2.0 U	1.0 U	2.0 U	1.0 U	2.0 U	2.0 U	1.0 U	1.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Xylene, o-	μg/L	5 ^B	n/v	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
V	/1	5 ^B	n/v	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U	2.0 U
Xylenes, Total	μg/L																
Xylenes, Total Total VOC	μg/L μg/L	n/v	n/v	ND	ND	13	12	17	11.1	11.3	ND	ND	ND	ND	ND	ND	ND

Total VOC TICs
See notes on last page.

Stantec

Table 5

Summary of Groundwater Analytical Results

Site Management Plan

820 Linden Ave Site, BCP #C828200

820 Linden Avenue, Pittsford, NY

- Notes:

 TOGS

 NYSDEC TOGS 1.1.1 (Reissued June 1998 with errata in January 1999 and addenda in April 2000 and June 2004)

 A TOGS 1.1.1 Table 1 Ambient Water Quality Standards and Guidance Values, Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1); Guidance TOGS 1.1.1 Table 1 Ambient Water Quality Standards and Guidance Values, Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1); Standards United States Environmental Protection Agency Fact Sheet PFOA & PFOS Drinking Water Health Advisories (2016) Lifetime Health Advisories

 6.5^A

 Concentration exceeds the indicated standard.

 15.2

 Measured concentration did not exceed the indicated standard.

 0.03 U Analyte was not detected at a concentration greater than the laboratory reporting limit.

 No standard/guideline value.

 Parameter not analyzed / not available.

 The standard for Iron and Manganese is 500 ug/L, which applies to the sum of these substances. As individual standards, the standard is 300 ug/L.

 The principal organic contaminant standard for groundwater of 5 ug/L (described elsewhere in the TOGS table) applies to this substance.

 Standard applies to the sum of all polychlorinated biphenyls.

 Applies to the sum of is- and trans-1,3-dichloropropene.

 The reported result is an estimated value.

 The reported result is an estimated value.

 The reported result is an estimated value.

 The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased low.

 ND Not detected.

 UJ Indicates estimated non-detect.

 Takl Test America Laboratory

Table 6 Summary of Analytical Results for Southeast Septic System (RAOC-1) Investigation Soil Samples
Site Management Plan
820 Linden Ave Site, BCP #C828200
820 Linden Avenue, Pittsford, NY

Sample Location	1 1		I	l pbox	Y-SE	l 15	-SE	I	TANK1-SE			ı	TANK2-SE
The state of the s				18-Jun-20	18-Jun-20	18-Jun-20		17-Aug-18	24-Jul-19	18-Jun-20	18-Jun-20	18-Jun-20	18-Jun-20
Sample Date Sample ID				DBOX-SE	DBOX-SE-ADJ	LF2-SE	18-Jun-20 LF1-SE	LIN-TP5a-s	LIN-TANK1SE-WC-S	TANK1-SE	DUP-1	TANK2-SE	TANK2-SE-CONTENTS
				N/A	3 ft	3 ft	4 ft	3 - 3.5 ft	N/A	6 ft	6 ft	6 ft	N/A
Sample Depth				STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Sampling Company Laboratory				TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL
Laboratory Work Order				480-171430-3	480-171430-3	480-171430-3	480-171430-3	460-162801-1	480-156763-1	480-171430-3	480-171430-3	480-171430-3	480-171430-3
Laboratory Sample ID				480-171430-2	480-171430-5	480-171430-6	480-171430-7	460-162872-2	480-156764-2	480-171430-1	480-171430-11	480-171430-3	480-171430-4
Sample Type	Units	NYSDEC-Part 375	NYSDEC CP-51								Field Duplicate		
											-		
General Chemistry													
Cyanide	mg/kg	27 _i ^{AB} 10,000 _{e.l} ^C 40 _i ^D	n/v	0.95 U	0.95 U	1.0 U	0.97 U	0.25 U	-	0.98 U	0.89 U	0.98 U	0.99 U
Flashpoint	deg F	n/v	n/v	-	-	-	-	-	> 176	-	-	-	-
pH, lab	S.U.	n/v	n/v n/v	-	-	-	-	-	7.0 J	-	-	-	-
Temperature, Lab	deg C	n/v	n/v	-	-	-	-	-	20.6 J	-	-	-	-
Metals Aluminum	man /len	40 000 ABCD	40.000 EFG	4.040	E 500	4.070	4.440	7 220	1	4,290	4 700	2.450	5,490
Antimony	mg/kg mg/kg	10,000 _e ABCD 10,000 _e ABCD	10,000 _a EFG 10,000 _a EFG	4,910 15.4 U	5,520 15.6 U	4,970 16.3 U	16.1 U	7,230 34.1 U		15.6 U	4,720 15.7 U	3,450 15.0 U	15.9 U
Arsenic	mg/kg	13. ^A 16. ^{BCD}	10,000a n/v	2.0 U	2.1 U	2.2 U	2.1 U	5.8		2.1 U	2.2	2.0 U	2.3
Barium	mg/kg	350 _n ^A 400 ^B 10,000 _e ^C 820 ^D	n/v	44.4	20.7	7.1	19.4	91.0	_	13.3	15.0	11.0	27.9
Beryllium	mg/kg	7.2 ^A 590 ^B 2,700 ^C 47 ^D	n/v	0.20	0.21 U	0.22 U	0.21 U	0.45 U	_	0.21 U	0.21 U	0.20 U	0.21 U
Cadmium	mg/kg	2.5 _n ^A 9.3 ^B 60 ^C 7.5 ^D	n/v	3.1 ^A	0.21 U	0.22 U	0.21 U	0.45 U	_	0.21 U	0.21 U	0.20 U	0.23
Calcium	mg/kg	10,000 _e ABCD	10,000 _a EFG	10,800 ^{ABCDEFG}	1,410	821	1,550 J-	3,910	_	1,300	1,270	1,010	2,440
Chromium	mg/kg	30_ A 1.500 B 6.800 C NC D	n/v	17.0	7.0	5.1	27.9 J	14.2	_	5.8	5.7	4.2	7.9
Cobalt	mg/kg	10,000 _e ^{ABCD}	10,000 _a EFG	8.7	2.1	1.7	1.7	4.3	_	2.2	2.3	1.8	2.4
Copper	mg/kg	50 ^A 270 ^B 10,000° 1,720 ^D	n/v	102 ^A	7.7	3.5	13.0 J	15.8	-	4.1	4.8	3.3	8.9
Iron	mg/kg	10,000 _e ABCD	10,000 _a EFG	8,810	7,850	6,250	8,340	12.100 ^{ABCDEFG}	_	8,120	7,560	5,800	8,120
Lead	mg/kg	63 _n ^A 1,000 ^B 3,900 ^C 450 ^D	n/v	27.7	5.7	2.1	4.6	207 ^A	_	2.4	3.0	1.6	15.0
Magnesium	mg/kg	10,000 ABCD	n/v	3.170	1.020	863	1.080 J-	2,510		1.020	1.020	868	1,180
Manganese	mg/kg	1,600 _n ^A 10,000 _e ^{BC} 2,000 _e ^D	n/v	128	140	50.7	77.9 J	431	_	158	162	135	161
Mercury	mg/kg	$0.18_{h}^{A} 2.8_{k}^{B} 5.7_{k}^{C} 0.73^{D}$	n/v	0.33 ^A	0.028	0.022 U	0.022 U	0.088	_	0.022 U	0.021 U	0.020 U	0.098
Nickel	mg/kg	30 ^A 310 ^B 10,000 _B 130 ^D	n/v	9.3	5.2 U	5.4 U	5.4 U	11.4 U	_	5.2 U	5.2	5.0 U	5.4
Potassium	mg/kg	10,000 _e ABCD	n/v	1,030	475	353	542	317	-	619	683	521	542
Selenium	mg/kg	3.9 _n ^A 1,500 ^B 6,800 ^C 4 _a ^D	n/v	4.1 U	4.2 U	4.4 U	4.3 U	9.1 U	-	4.2 U	4.2 U	4.0 U	4.2 U
Silver	mg/kg	2 ^A 1,500 ^B 6,800 ^C 8.3 ^D	n/v	18.1 ^{AD}	0.52 U	0.54 U	0.70 J	1.1 U	-	0.52 U	0.52 U	0.50 U	0.53 U
Sodium	mg/kg	10,000 _e ABCD	n/v	180	146 U	152 U	150 U	318 U	-	145 U	146 U	140 U	148 U
Thallium	mg/kg	10,000 _e ABCD	10,000 _a EFG	6.1 U	6.2 U	6.5 U	6.4 U	13.6 U	-	6.2 U	6.3 U	6.0 U	6.4 U
Vanadium	mg/kg	10,000 _e ^{ABCD}	10,000 _a erg	13.5	13.9	11.4	14.6	12.9	-	14.6	13.5	10.2	14.1
Zinc	mg/kg	109 _n ^A 10,000 _e ^{BC} 2,480 ^D	n/v	133 ^A	16.6	11.8	14.5	187 ^A	-	11.0	11.3	8.7	32.0
Polychlorinated Biphenyls		ARCD	T	04011	040.11	05011	040.11	0011		05011	000.11	00011	05011
Aroclor 1016	μg/kg	ABCD	n/v n/v	240 U	210 U	250 U	210 U	39 U	-	250 U	220 U	230 U	250 U
Aroclor 1221 Aroclor 1232	μg/kg μg/kg	ABCD	n/v	240 U 240 U	210 U 210 U	250 U 250 U	210 U 210 U	39 U 39 H		250 U 250 U	220 U 220 U	230 U 230 U	250 U 250 U
Aroclor 1242	μg/kg	ABCD	n/v	240 U	210 U	250 U	210 U	39 U	_	250 U	220 U	230 U	250 U
Aroclor 1248	µg/kg	⁰ ABCD	n/v	240 U	210 U	250 U	210 U	39 U	_	250 U	220 U	230 U	250 U
Aroclor 1254	μg/kg	ABCD	n/v	240 U	210 U	250 U	210 U	39 U	-	250 U	220 U	230 U	250 U
Aroclor 1260	μg/kg	ABCD	n/v	240 U	210 U	250 U	210 U	39 U	-	250 U	220 U	230 U	250 U
Aroclor 1262	μg/kg	ABCD	n/v	240 U	210 U	250 U	210 U	39 U	-	250 U	220 U	230 U	250 U
Aroclor 1268	μg/kg	0	n/v	240 U	210 U	250 U	210 U	39 U	-	250 U	220 U	230 U	250 U
Polychlorinated Biphenyls (PCBs)	μg/kg	100 ^A 1,000 ^B 25,000 ^C 3,200 ^D	n/v	ND	ND	ND	ND	ND	<u> </u>	ND	ND	ND	ND
Pesticides Aldrin		= A 000B 4 400C 400D	n/v	4711	4711	4011	470	3.9 U		1.7 U	1.7 U	1.7 U	4011
BHC, alpha-	μg/kg μg/kg	5 _n ^A 680 ^B 1,400 ^C 190 ^D 20 ^{AD} 3.400 ^B 6.800 ^C	n/v	1.7 U 1.7 U	1.7 U 1.7 U	1.8 U 1.8 U	1.7 U 1.7 U	3.9 U		1.7 U	1.7 U	1.7 U	1.8 U 1.8 U
BHC, beta-	μg/kg μg/kg	36 ^A 3.000 ^B 14.000 ^C 90 ^D	n/v	1.7 U	1.7 U	1.8 U	1.7 U	3.9 U	:	1.7 U	1.7 U	1.7 U	1.8 U
BHC, delta-	μg/kg	40 _n ^A 500,000 _c ^B 1,000,000 _d ^C 250 ^D	n/v	1.7 U	1.7 U	6.1	1.7 U	3.9 U	_	1.7 U	1.7 U	1.7 U	7.5
Camphechlor (Toxaphene)	µg/kg	100,000 _a 500,000 _b 1,000,000 _d CD	n/v	17 U	17 U	18 U	17 U	39 U	_	17 U	17 U	17 U	18 U
Chlordane, alpha-	μg/kg	94 ^A 24,000 ^B 47,000 ^C 2,900 ^D	n/v	1.7 U	22 J	1.8 U	1.7 U	3.9 U	-	1.7 U	1.7 U	1.7 U	46 NJ
Chlordane, trans- (gamma-Chlordane)	μg/kg	100,000 _a ^A 1,000,000 _d ^D	n/v	1.7 U	5.0	1.8 U	1.7 U	8.6	-	1.7 U	1.7 U	1.7 U	20
DDD (p,p'-DDD)	μg/kg	3.3 _m ^A 92,000 ^B 180,000 ^C 14,000 ^D	n/v	1.7 U	7.5 ^A	1.8 U	1.7 U	3.9 U	-	1.7 U	1.7 U	1.7 U	1.8 U
DDE (p,p'-DDE)	μg/kg	3.3 _m ^A 62,000 ^B 120,000 ^C 17,000 ^D	n/v	1.7 U	1.7 U	1.8 U	1.7 U	39 ^A	-	1.7 U	1.7 U	1.7 U	4.0 ^A
DDT (p,p'-DDT)	μg/kg	3.3 _m ^A 47,000 ^B 94,000 ^C 136,000 ^D	n/v	18 ^A	2.4	1.8 U	1.7 U	13 ^A	-	1.7 U	1.7 U	1.7 U	1.8 U
Dieldrin	μg/kg	5 _n A 1,400 ^B 2,800 ^C 100 ^D	n/v	74 ^A	250 ^{AD}	31 ^A	1.7 U	35 ^A	_	37 ^A	34 ^A	2.7	610 ^{AD}
Endosulfan I	µg/kg	2,400, ^A 200,000, ^B 920,000, ^C 102,000 ^D	n/v	1.7 U	1.7 U	1.8 U	1.7 U	3.9 U	-	1.7 U	1.7 U	1.7 U	1.8 U
Endosulfan II	µg/kg	2,400 _i ^A 200,000 _i ^B 920,000 _i ^C 102,000 ^D	n/v	1.7 U	1.7 U	1.8 U	1.7 U	3.9 U	-	1.7 U	1.7 U	1.7 U	1.8 U
Endosulfan Sulfate	µg/kg	2,400 _i ^A 200,000 _i ^B 920,000 _i ^C 1,000,000 _d ^D	n/v	1.7 U	1.7 U	1.8 U	1.7 U	3.9 U	-	1.7 U	1.7 U	1.7 U	1.8 U
Endrin	μg/kg	14 ^A 89,000 ^B 410,000 ^C 60 ^D	n/v	1.7 U	1.7 U	1.8 U	1.7 U	3.9 U	-	1.7 U	1.7 U	1.7 U	4.1
Endrin Aldehyde	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	1.7 U	1.7 U	1.8 U	1.7 U	3.9 U	-	1.7 U	1.7 U	1.7 U	1.8 U
Endrin Ketone	μg/kg	100,000 _a 500,000 _c 1,000,000 _d	n/v	1.7 U	1.7 U	1.8 U	1.7 U	3.9 U	-	1.7 U	1.7 U	1.7 U	1.8 U
Heptachlor Heptachlor Epovide	μg/kg	42 ^A 15,000 ^B 29,000 ^C 380 ^D	n/v	1.7 U	1.7 U	1.8 U	1.7 U	3.9 U	-	1.7 U	1.7 U	1.7 U	1.8 U
Heptachlor Epoxide Lindane (Hexachlorocyclohexane, gamma)	μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100 ^{AD} 9.200 ^B 23.000 ^C	500,000 _a ^E 1,000,000 _a ^F 20 ^G	1.7 U 1.7 U	1.7 U 1.7 U	1.8 U 1.8 U	1.7 U 1.7 U	3.9 U 3.9 U		1.7 U 1.7 U	1.7 U 1.7 U	1.7 U 1.7 U	2.2 1.8 U
Methoxychlor (4,4'-Methoxychlor)	μg/kg μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000 _a E 1,000,000 _a F 900,000 ^G	1.7 U	1.7 U	1.8 U	1.7 U	3.9 U 3.9 U	1 :	1.7 U	1.7 U	1.7 U	1.8 U
monoxyonio (4,4 inotioxyonio)	µg/ng	100,000a 000,000c 1,000,000d		1.7 0	1.7 0	1.00	1.7 0	0.50	·	1.7 0	1.7 0	1.7 0	1.00

See notes on last page.

190500898 Page 1 of 4 U:\190500898\05_report_deliv\deliverables\reports\SMP\2_Tables\analytical_CL\tbl6_20200716-190500898-tbl3a-SES-RAOC-1-Soil_Samples-CL.xlsx

Table 6 Summary of Analytical Results for Southeast Septic System (RAOC-1) Investigation Soil Samples
Site Management Plan
820 Linden Ave Site, BCP #C828200
820 Linden Avenue, Pittsford, NY

Sample Location	1	1	İ	I рво	X-SE	l LF-	-SE	I	TANK1-SE			I	TANK2-SE
Sample Date				18-Jun-20	18-Jun-20	18-Jun-20	18-Jun-20	17-Aug-18	24-Jul-19	18-Jun-20	18-Jun-20	18-Jun-20	18-Jun-20
Sample ID				DBOX-SE	DBOX-SE-ADJ	LF2-SE	LF1-SE	LIN-TP5a-s	LIN-TANK1SE-WC-S	TANK1-SE	DUP-1	TANK2-SE	TANK2-SE-CONTENTS
Sample Depth				N/A	3 ft	3 ft	4 ft	3 - 3.5 ft	N/A	6 ft	6 ft	6 ft	N/A
Sampling Company				STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory				TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL
Laboratory Work Order				480-171430-3	480-171430-3	480-171430-3	480-171430-3	460-162801-1	480-156763-1	480-171430-3	480-171430-3	480-171430-3	480-171430-3
Laboratory Sample ID				480-171430-2	480-171430-5	480-171430-6	480-171430-7	460-162872-2	480-156764-2	480-171430-1	480-171430-11	480-171430-3	480-171430-4
Sample Type	Units	NYSDEC-Part 375	NYSDEC CP-51	100 111100 2	100 11 1100 0	100 11 1100 0	100 111100 1	100 1020122	100 100/012		Field Duplicate	100 111100 0	100 11 1100 1
Sami Valatila Organia Campaunda									<u> </u>				
Semi-Volatile Organic Compounds Acenaphthene	μg/kg	20,000 ^A 500,000 _c ^B 1,000,000 _d ^C 98,000 ^D	n/v	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Acenaphthylene	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^C 107,000 ^D	n/v	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Acetophenone	μg/kg	100,000 _a 1,000,000 _d D	n/v	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Anthracene	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Atrazine	μg/kg	100,000 _a ^A 1,000,000 _d ^D	n/v	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Benzaldehyde	μg/kg	100,000 _a ^A 1,000,000 _d ^D	n/v	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Benzo(a)anthracene	μg/kg	1,000 _n ^A 5,600 ^B 11,000 ^C 1,000 _a ^D	n/v	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Benzo(a)pyrene	μg/kg	1,000 ^A 1,000 ^B 1,100 ^C 22,000 ^D	n/v	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Benzo(b)fluoranthene	μg/kg	1,000 _n 5,600 ^B 11,000 ^C 1,700 ^D	n/v	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Benzo(g,h,i)perylene	μg/kg	100,000 ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Benzo(k)fluoranthene	μg/kg	800, A 56,000 B 110,000 C 1,700 D	n/v	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Biphenyl	μg/kg	100,000 _a ^A 1,000,000 _d ^D	500,000 _a E 1,000,000 _a F	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Bis(2-Chloroethoxy)methane	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Bis(2-Chloroethyl)ether	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Bis(2-Chloroisopropyl)ether (2,2-oxybis(1-Chloropropane))	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Bis(2-Ethylhexyl)phthalate (DEHP) Bromophenyl Phenyl Ether, 4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000, 1,000,000, 435,000 G	170 U 170 U	180 U 180 U	180 U 180 U	180 U 180 U	400 U 400 U	-	180 U 180 U	180 U 180 U	180 U 180 U	880 U 880 U
	μg/kg		n/v						-				
Butyl Benzyl Phthalate Caprolactam	μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 1,000,000 _d ^D	500,000 _a E 1,000,000 _a F 122,000 ^G n/v	170 U 170 U	180 U 180 U	180 U 180 U	180 U 180 U	400 U 400 U	_	180 U 180 U	180 U 180 U	180 U 180 U	880 U 880 U
Carbazole	μg/kg μg/kg	100,000 _a 1,000,000 _d 100,000 _a 500,000 _c 1,000,000 _d CD	n/v	170 U	180 U	180 U	180 U	400 U		180 U	180 U	180 U	880 U
Chloro-3-methyl phenol, 4-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _d 500,000 _c 1,000,000 _d 500,000	n/v	170 U	180 U	180 U	180 U	400 U		180 U	180 U	180 U	880 U
Chloroaniline, 4-	µg/kg	100,000a 500,000c 1,000,000d CD	500.000° 1.000.000° 220°	170 U	180 U	180 U	180 U	400 U		180 U	180 U	180 U	880 U
Chloronaphthalene. 2-	µg/kg	100,000a 500,000c 1,000,000d 100,000d 1,000,000d	n/v	170 U	180 U	180 U	180 U	400 U		180 U	180 U	180 U	880 U
Chlorophenol, 2- (ortho-Chlorophenol)	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000° E 1,000,000° E	170 U	180 U	180 U	180 U	400 U	_	180 U	180 U	180 U	880 U
Chlorophenyl Phenyl Ether, 4-	µg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	170 U	180 U	180 U	180 U	400 U	_	180 U	180 U	180 U	880 U
Chrysene	μg/kg	1,000 _n ^A 56,000 ^B 110,000 ^C 1,000 _n ^D	n/v	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Cresol, o- (Methylphenol, 2-)	μg/kg	330 _m ^A 500,000 _c ^B 1,000,000 _d ^C 330 _f ^D	n/v	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Cresol, p- (Methylphenol, 4-)	μg/kg	330 _m ^A 500,000 _c ^B 1,000,000 _d ^C 330 _f ^D	n/v	330 U	340 U	350 U	340 U	780 U	-	340 U	350 U	340 U	1,700 U
Dibenzo(a,h)anthracene	μg/kg	330 _m ^A 560 ^B 1,100 ^C 1,000,000 _d ^D	n/v	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Dibenzofuran	μg/kg	7,000 ^A 350,000 ^B 1,000,000 _d ^C 210,000 ^D	500,000 _a ^E 1,000,000 _a ^F 6,200 ^G	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Dibutyl Phthalate (DBP)	μg/kg	100,000 _a 500,000 _c 1,000,000 _d D	500,000 _a E 1,000,000 _a F 8,100 ^G	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Dichlorobenzidine, 3,3'-	μg/kg	100,000, A 500,000, B 1,000,000, CD	n/v	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Dichlorophenol, 2,4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a 1,000,000 _a 400 ^G	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Diethyl Phthalate	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000 1,000,000 7,100	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Dimethyl Phthalate	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F 27,000 ^G	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Dimethylphenol, 2,4-	μg/kg	100,000, A 500,000, B 1,000,000, CD	n/v	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Dinitro-o-cresol, 4,6- Dinitrophenol, 2,4-	μg/kg	100,000, A 500,000, B 1,000,000, CD	n/v	330 U	340 U	350 U	340 U	780 U	-	340 U	350 U	340 U	1,700 U
Dinitrotoluene, 2,4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 200 ^G	330 U 170 U	340 U 180 U	350 U 180 U	340 U 180 U	780 U 400 U	-	340 U 180 U	350 U 180 U	340 U 180 U	1,700 U 880 U
Dinitrotoluene, 2,6-	μg/kg μg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _d 500,000 _c 1,000,000 _d 100,000 _d	500,000 _a ^E 1,000,000 _a ^F 1,000/170 _{b,s1} ^G	170 U	180 U	180 U	180 U	400 U	_	180 U	180 U	180 U	880 U
Di-n-Octyl phthalate	μg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _d 500,000 _c 1,000,000 _d CD	500,000 _a 1,000,000 _a 1,000/170 _{b.s1}	170 U	180 U	180 U	180 U	400 U		180 U	180 U	180 U	880 U
Dioxane, 1,4-	μg/kg	100 _m ^A 130,000 ^B 250,000 ^C 100 _f ^D	n/v	100 U	100 U	110 U	100 U	-		100 U	110 U	100 U	520 U
Fluoranthene	µg/kg	100,000 ^A 500,000 ^B 1,000,000 ^{CD}	n/v	170 U	180 U	180 U	180 U	400 U	_	180 U	180 U	180 U	880 U
Fluorene	μg/kg	30,000 ^A 500,000 _c ^B 1,000,000 _d ^C 386,000 ^D	n/v	170 U	180 U	180 U	180 U	400 U	_	180 U	180 U	180 U	880 U
Hexachlorobenzene	μg/kg	330 _m ^A 6,000 ^B 12,000 ^C 3,200 ^D	500,000 _a ^E 1,000,000 _a ^F 1,400 ^G	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Hexachlorobutadiene (Hexachloro-1,3-butadiene)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Hexachlorocyclopentadiene	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a E 1,000,000 _a F	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Hexachloroethane	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Indeno(1,2,3-cd)pyrene	μg/kg	500 _n A 5,600 ^B 11,000 ^C 8,200 ^D	n/v	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Isophorone	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^E 4,400 ^G	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Methylnaphthalene, 2-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F 36,400 ^G	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Naphthalene Nilva arillia a C	μg/kg	12,000 ^{AD} 500,000 _B 1,000,000 _d	n/v	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Nitroaniline, 2-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^E 400 ^G	330 U	340 U	350 U	340 U	780 U	-	340 U	350 U	340 U	1,700 U
Nitroaniline, 3-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000a 1,000,000a 500G	330 U	340 U	350 U	340 U	780 U	-	340 U	350 U	340 U	1,700 U
Nitroaniline, 4- Nitrobenzene	μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v 69,000 ^E 140,000 ^F 170 _h ^G	330 U 170 U	340 U 180 U	350 U 180 U	340 U 180 U	780 U 400 U	-	340 U 180 U	350 U 180 U	340 U 180 U	1,700 U 880 U
Nitrophenol, 2-	μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000° 1,000,000° 1,00° 500° 500° 500° 500° 500° 500° 500°	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Nitrophenol, 4-	μg/kg μg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _a 500,000 _c 1,000,000 _d	500,000 _a 1,000,000 _a 300 ^G	330 U	340 U	350 U	340 U	780 U		340 U	350 U	340 U	1,700 U
N-Nitrosodi-n-Propylamine	μg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _d 500,000 _c 1,000,000 _d 500,000	n/v	170 U	180 U	180 U	180 U	400 U		180 U	180 U	180 U	880 U
n-Nitrosodiphenylamine	μg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _d 500,000 _d 1,000,000 _d 500,000 _d	500,000 _a ^E 1,000,000 _a ^F	170 U	180 U	180 U	180 U	400 U		180 U	180 U	180 U	880 U
Pentachlorophenol	μg/kg	800 A 6 700 ^B 55 000 ^C 800 ^D	n/v	330 U	340 U	350 U	340 U	780 U	_	340 U	350 U	340 U	1,700 U
Phenanthrene	µg/kg	100,000 ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	170 U	180 U	180 U	180 U	400 U	_	180 U	180 U	180 U	880 U
Phenol	µg/kg	330 _m ^A 500,000 _c ^B 1,000,000 _d ^C 330 _f ^D	n/v	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Pyrene	µg/kg	100,000 ^A 500,000 _c B 1,000,000 _d CD	n/v	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Trichlorophenol, 2,4,5-	μg/kg	100,000 _a 500,000 _b 1,000,000 _d CD	500,000 _a E 1,000,000 _a F 100 ^G	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Trichlorophenol, 2,4,6-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F	170 U	180 U	180 U	180 U	400 U	-	180 U	180 U	180 U	880 U
Total SVOC	μg/kg	n/v	n/v	ND	ND	ND	ND	ND	-	ND	ND	ND	ND
SVOC - Tentatively Identified Compounds			<u> </u>						·				
Total SVOC TICs	μg/kg	n/v	n/v	10,590 TJN	19,650 TJN	19,520 TJN	8,860 TJN	800 JN	-	ND	9,720 TJ	15,710 TJ	1,860 TJ
See notes on last page.	1 1 3 3			,			,				,0 10	,	.,

See notes on last page.

190500898 Page 2 of 4 U:\190500898\05_report_deliv\deliverables\reports\SMP\2_Tables\analytical_CL\tbl6_20200716-190500898-tbl3a-SES-RAOC-1-Soil_Samples-CL.xlsx

Table 6
Summary of Analytical Results for Southeast Septic System (RAOC-1) Investigation Soil Samples
Site Management Plan
820 Linden Ave Site, BCP #C828200
820 Linden Avenue, Pittsford, NY

Sample Location	1 1	İ		DBO	(-SE	LE.	-SE	Ī	TANK1-SE			I	TANK2-SE
Sample Date				18-Jun-20	18-Jun-20	18-Jun-20	18-Jun-20	47 4 40	24-Jul-19	18-Jun-20	18-Jun-20	18-Jun-20	18-Jun-20
				DBOX-SE	DBOX-SE-ADJ	18-Jun-20 LF2-SE	18-Jun-20 LF1-SE	17-Aug-18 LIN-TP5a-s	LIN-TANK1SE-WC-S	TANK1-SE	18-Jun-20 DUP-1	TANK2-SE	18-Jun-20 TANK2-SE-CONTENT
Sample ID				N/A		3 ft	4 ft		N/A				N/A
Sample Depth					3 ft			3 - 3.5 ft	1	6 ft	6 ft	6 ft	
Sampling Company				STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory				TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL
Laboratory Work Order				480-171430-3	480-171430-3	480-171430-3	480-171430-3	460-162801-1	480-156763-1	480-171430-3	480-171430-3	480-171430-3	480-171430-3
Laboratory Sample ID				480-171430-2	480-171430-5	480-171430-6	480-171430-7	460-162872-2	480-156764-2	480-171430-1	480-171430-11	480-171430-3	480-171430-4
Sample Type	Units	NYSDEC-Part 375	NYSDEC CP-51								Field Duplicate		
Volatile Organic Compounds					-				<u> </u>		-		
Acetone	μg/kg	50 ^{AD} 500.000 _a ^B 1.000.000 _a ^C	n/v	26 U	26 U	27 U	26 U	5.2 U	-	26 U	22 U	26 U	26 U
Benzene	μg/kg	60 ^{AD} 44.000 ^B 89.000 ^C	n/v	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	-	5.2 U	4.4 U	5.2 U	5.1 U
Bromodichloromethane	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	_	5.2 U	4.4 U	5.2 U	5.1 U
Bromoform (Tribromomethane)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	_	5.2 U	4.4 U	5.2 U	5.1 U
Bromomethane (Methyl bromide)	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	-	5.2 U	4.4 U	5.2 U	5.1 U
Butylbenzene, n-	μg/kg	12,000 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	_	5.2 U	4.4 U	5.2 U	5.1 U
Butylbenzene, sec- (2-Phenylbutane)	μg/kg	11,000 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	_	5.2 U	4.4 U	5.2 U	5.1 U
Butylbenzene, tert-	μg/kg	5,900 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	_	5.2 U	4.4 U	5.2 U	5.1 U
Carbon Disulfide	μg/kg	100,000 _a 500,000 _b 1,000,000 _d CD	500,000° 1,000,000° 2,700°	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	_	5.2 U	4.4 U	5.2 U	5.1 U
Carbon Tetrachloride (Tetrachloromethane)	μg/kg		n/v	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U		5.2 U	4.4 U	5.2 U	5.1 U
Chlorobenzene (Monochlorobenzene)	μg/kg μg/kg	760 ^{AD} 22,000 ^B 44,000 ^C 1,100 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	1	5.2 U	4.4 U	5.2 U	5.1 U
Chloroethane (Ethyl Chloride)	μg/kg μg/kg			5.1 U 5.1 U	5.1 U 5.1 U	5.4 U 5.4 U	5.2 U 5.2 U	1.0 U 1.0 U	1	5.2 U 5.2 U	4.4 U 4.4 U	5.2 U 5.2 U	5.1 U 5.1 U
Chloroform (Trichloromethane)		100,000 _a 500,000 _c 1,000,000 _d D	500,000 _a ^E 1,000,000 _a ^F 1,900 ^G		5.1 U 5.1 U	5.4 U 5.4 U		1.0 U 1.0 U	1		4.4 U 4.4 U		
- ,	μg/kg	370 ^{AD} 350,000 ^B 700,000 ^C		5.1 U			5.2 U		-	5.2 U		5.2 U	5.1 U
Chloromethane	μg/kg	100,000, A 500,000, B 1,000,000, CD	n/v	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	-	5.2 U	4.4 U	5.2 U	5.1 U
Cyclohexane	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	-	5.2 U	4.4 U	5.2 U	5.1 U
Dibromo-3-Chloropropane, 1,2- (DBCP)	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	-	5.2 U	4.4 U	5.2 U	5.1 U
Dibromochloromethane	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a E 1,000,000 _a F	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	-	5.2 U	4.4 U	5.2 U	5.1 U
Dichlorobenzene, 1,2-	μg/kg	1,100 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	-	5.2 U	4.4 U	5.2 U	5.1 U
Dichlorobenzene, 1,3-	μg/kg	2,400 ^{AD} 280,000 ^B 560,000 ^C	n/v	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	-	5.2 U	4.4 U	5.2 U	5.1 U
Dichlorobenzene, 1,4-	μg/kg	1,800 ^{AD} 130,000 ^B 250,000 ^C	n/v	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	-	5.2 U	4.4 U	5.2 U	5.1 U
Dichlorodifluoromethane (Freon 12)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	-	5.2 U	4.4 U	5.2 U	5.1 U
Dichloroethane, 1,1-	μg/kg	270 ^{AD} 240.000 ^B 480.000 ^C	n/v	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	_	5.2 U	4.4 U	5.2 U	5.1 U
Dichloroethane, 1,2-	μg/kg	20 _m ^A 30,000 ^B 60,000 ^C 20 _a ^D	n/v	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	_	5.2 U	4.4 U	5.2 U	5.1 U
Dichloroethene, 1,1-	μg/kg	330 ^{AD} 500,000 ₆ 1,000,000 ₄ C	n/v	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	_	5.2 U	4.4 U	5.2 U	5.1 U
Dichloroethene, cis-1,2-	μg/kg	250 ^{AD} 500,000° 1,000,000° C	n/v	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	_	5.2 U	4.4 U	5.2 U	5.1 U
Dichloroethene, trans-1,2-	μg/kg	190 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	_	5.2 U	4.4 U	5.2 U	5.1 U
Dichloropropane, 1,2-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500.000° 1.000.000°	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U		5.2 U	4.4 U	5.2 U	5.1 U
Dichloropropene, cis-1,3-	μg/kg	100,000a 500,000c 1,000,000d	n/v	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U		5.2 U	4.4 U	5.2 U	5.1 U
		100,000 _a A 500,000 _c B 1,000,000 _d CD		5.1 U	5.1 U				_		4.4 U	5.2 U	5.1 U
Dichloropropene, trans-1,3-	μg/kg	100,000, A 500,000, B 1,000,000, CD	n/v			5.4 U	5.2 U	1.0 U	-	5.2 U			
Ethylbenzene	μg/kg	1,000 ^{AD} 390,000 ^B 780,000 ^C	n/v	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	-	5.2 U	4.4 U	5.2 U	5.1 U
Ethylene Dibromide (Dibromoethane, 1,2-)	μg/kg	100,000, A 500,000, B 1,000,000, CD	n/v	5.1 U	5.1 U	5.4 U	5.2 UJ	1.0 U	-	5.2 U	4.4 U	5.2 U	5.1 U
Hexanone, 2- (Methyl Butyl Ketone)	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	26 U	26 U	27 U	26 U	5.2 U	-	26 U	22 U	26 U	26 U
Isopropylbenzene	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^E 2,300 ^G	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	-	5.2 U	4.4 U	5.2 U	5.1 U
Isopropyltoluene, p- (Cymene)	μg/kg	100,000 A 500,000 B 1,000,000 CD	500,000 _a E 1,000,000 _a E 10,000 ^G	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	-	5.2 U	4.4 U	5.2 U	5.1 U
Methyl Acetate	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	26 U	26 U	27 U	26 U	5.2 U	-	26 U	22 U	26 U	26 U
Methyl Ethyl Ketone (MEK) (2-Butanone)	μg/kg	120 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	500,000 _a E 1,000,000 _a F 300 ^G	26 U	26 U	27 U	26 U	5.2 U	-	26 U	22 U	26 U	26 U
Methyl Isobutyl Ketone (MIBK)	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F 1,000 ^G	26 U	26 U	27 U	26 U	5.2 U	-	26 U	22 U	26 U	26 U
Methyl tert-butyl ether (MTBE)	μg/kg	930 ^{AD} 500.000 ₆ ^B 1.000.000 ₄ ^C	n/v	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	-	5.2 U	4.4 U	5.2 U	5.1 U
Methylcyclohexane	μg/kg	100,000, A 500,000, B 1,000,000, CD	n/v	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	-	5.2 U	4.4 U	5.2 U	5.1 U
Methylene Chloride (Dichloromethane)	μg/kg	50 ^{AD} 500,000 ₆ ^B 1,000,000 _d ^C	n/v	8.9	8.3	5.4 U	5.2 U	1.0 U	-	5.2 U	4.4 U	5.2 U	5.1 U
Naphthalene	μg/kg	12.000 ^{AD} 500.000 _a ^B 1.000.000 _a ^C	n/v	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	_	5.2 U	4.4 U	5.2 U	5.1 U
Propylbenzene, n-	μg/kg	3,900 ^{AD} 500,000 _G 1,000,000 _d C	n/v	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	_	5.2 U	4.4 U	5.2 U	5.1 U
Styrene	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	_	5.2 U	4411	5.2 U	5.1 U
Tetrachloroethane, 1,1,2,2-	μg/kg	100,000a 500,000c 1,000,000d 100,000d CD	500,000a 1,000,000a 500,000G	5.1 U	5.1 U	5.4 U	5.2 UJ	1.0 U	_	5.2 U	4.4 U	5.2 U	5.1 U
Tetrachloroethene (PCE)	μg/kg μg/kg			5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	_	5.2 U	4.4 0	5.2 U	5.1 U
		1,300 ^{AD} 150,000 ^B 300,000 ^C	500,000 _a E 1,000,000 _a F						-				
Toluene	μg/kg	700 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	11/V	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	-	5.2 U	4.4 U 4.4 II	5.2 U	5.1 U
Trichlorobenzene, 1,2,4-	μg/kg	100,000, ^A 500,000, ^B 1,000,000, ^{CD}	500,000 _a ^E 1,000,000 _a ^F 3,400 ^G	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	-	5.2 U		5.2 U	5.1 U
Trichloroethane, 1,1,1-	μg/kg	680 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	-	5.2 U	4.4 U	5.2 U	5.1 U
Trichloroethane, 1,1,2-	μg/kg	100,000, A 500,000, B 1,000,000, CD	n/v	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	-	5.2 U	4.4 U	5.2 U	5.1 U
Trichloroethene (TCE)	μg/kg	470 ^{AD} 200,000 ^B 400,000 ^C	n/v	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	-	5.2 U	4.4 U	5.2 U	5.1 U
Trichlorofluoromethane (Freon 11)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	-	5.2 U	4.4 U	5.2 U	5.1 U
Trichlorotrifluoroethane (Freon 113)	μg/kg	100,000 _a 500,000 _c 1,000,000 _d 5	500,000 _a E 1,000,000 _a F 6,000 ^G	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	-	5.2 U	4.4 U	5.2 U	5.1 U
Trimethylbenzene, 1,2,4-	μg/kg	3,600 ^{AD} 190,000 ^B 380,000 ^C	n/v	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	-	5.2 U	4.4 U	5.2 U	5.1 U
Trimethylbenzene, 1,3,5-	μg/kg	8,400 ^{AD} 190,000 ^B 380,000 ^C	n/v	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	-	5.2 U	4.4 U	5.2 U	5.1 U
Vinyl Chloride	μg/kg	20 ^{AD} 13,000 ^B 27,000 ^C	n/v	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	_	5.2 U	4.4 U	5.2 U	5.1 U
Xylene, m & p-	μg/kg	260 _p ^A 500,000 _c _p ^B 1,000,000 _d _p ^C 1,600 _p ^D	n/v	10 U	10 U	11 U	10 U	1.0 U	_	10 U	8.8 U	10 U	10 U
Xylene, o-	μg/kg	260 ₀ ^A 500,000 ₀ B 1,000,000 _d C 1,600 ₀ D	n/v	5.1 U	5.1 U	5.4 U	5.2 U	1.0 U	_	5.2 U	4.4 U	5.2 U	5.1 U
Xylenes, Total	μg/kg	260 ^A 500,000 _c ^B 1,000,000 _d ^C 1,600 ^D	n/v	10 U	10 U	11 U	10 U	2.1 U	_	10 U	8.8 U	10 U	10 U
Total VOC	μg/kg	260 500,000 _c 1,000,000 _d 1,600	n/v	8.9	8.3	ND	ND	ND		ND	ND	ND	ND
I Utai V U U	µу/кд	11/V	ri/V	1 0.9	0.3	עויו	IND	ND		עוו	עויו	I NU	I NU

Stantec

190500898
U:\190500898\to5_report_deliv\deliverables\reports\SMP\2_Tables\analytical_CL\tbl6_20200716-190500898-tbl3a-SES-RAOC-1-Soil_Samples-CL.xlsx
Page 3 of 4

Table 6

Summary of Analytical Results for Southeast Septic System (RAOC-1) Investigation Soil Samples

Site Management Plan

820 Linden Ave Site, BCP #C828200

820 Linden Avenue, Pittsford, NY

Notes:
NYSDEC 6 NYCRR Part 375 Soil Clean-up Objectives (SCOs)
NYSDEC 6 NYCRR Part 375 - Unrestricted Use Soil Cleanup Objectives
NYSDEC 6 NYCRR Part 375 - Restricted Use SCO - Protection of Human Health - Commercial
NYSDEC 6 NYCRR Part 375 - Restricted Use SCO - Protection of Human Health - Industrial

D NYSDEC 6 NYCRR Part 375 - Restricted Use SCO - Protection of Groundwater
NYSDEC CP-51 New York State Department of Environmental Conservation, DEC Policy CP-51, October 21, 2010

Table 1 Supplemental Soil Cleanup Objectives - Commercial Table 1 Supplemental Soil Cleanup Objectives - Industrial

Table 1 Supplemental Soil Cleanup Objectives - Protection of Groundwate

Concentration exceeds the indicated standard.

Measured concentration did not exceed the indicated standard.

Analyte was not detected at a concentration greater than the laboratory reporting limit. No standard/quideline value. n/v

Parameter not analyzed / not available.

The SCOs for unrestricted use were capped at a maximum value of 100 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3

SCOs for organic contaminants (volatile organic compounds, semivolatile organic compounds, semivolatile organic compounds, and pesticides) are capped at 100 ppm for residential use, 500 ppm for commercial use, 1000 ppm for industrial use. SCOs for metals are capped at 10,000 ppm. Based on rural background study

Based on rural background study. The value of 1.0 refers to SVOC analses while the 0.17b refers to VOC analyses.

The SCOs for commercial use were capped at a maximum value of 500 mg/kg. See TSD Section 9.3.

The SCOs for commercial use were capped at a maximum value of 500 mg/kg. See TSD Section 9.3. The criterion is applicable to total xylenes, and the individual isomers should be added for comparison.

The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 mg/kg (Organics) and 10000 mg/kg (Inorganics). See 6 NYCRR Part 375 TSD Section 9.3.

The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3.

The SCOS for industrial use and the protection of groundwater were capped at a maximum value of 1000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3. The criterion is applicable to total xylenes, and the individual isomers should be added for comparison. The SCOS for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3.

The SCOS for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3. The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for the total species of this contaminant is below the specific SCO. For constituents where the calculated SCO was lower than the CRQL, the CRQL is used as the SCO value.

For constituents where the calculated SCO was lower than the rural soil background concentration as determined by the DEC/DOH rural soil survey, the rural soil background concentration is used as the Track 2 SCO value for this use of the site. The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for the total species of this contaminant is below the specific SCO.

This SCO is the sum of endosulfan I, endosulfan II, and endosulfan sulfate.

This SCO is the sum of endosultan I, endosultan I, and endosultan I, and endosultan I, and endosultan I, and endosultan I, and endosultan I, and endosultan I, and endosultan suitate.

This SCO is the lower of the values for mercury (enremantal) or mercury (inorganic salts). See 6 NYCRR Part 375 TSD Table 5.6-1.

For constituents where the calculated SCO was lower than the Contract Required Quantitation Limit (CRQL), the CRQL is used as the Track 1 SCO value.

For constituents where the calculated SCO was lower than the rural soil background concentration as determined by the DEC/DOH rural soil survey, the rural soil background concentration is used as the Track 1 SCO value for this use of the site.

The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for the total species of this contaminant is below the specific SCO.

No SCO has been established for this compound. No SCO has been established for total chromium; however, see standards for trivalent and hexavalent chromium. Standard is applicable to total PCBs, and the individual Aroclors should be added for comparison.

The criterion is applicable to total xylenes, and the individual isomers should be added for comparison.

Greater than.

The reported result is an estimated value.

The analyte was positively identified: the associated numerical value is an estimated quantity that may be biased low

Presumptive evidence of material.

Not detected.

Result is a tentatively identified compound (TIC) and an estimated value.

Indicates estimated non-detect.

Eurofins Test America Laboratory

Table 7 Summary of Analytical Results for Southwest Septic System (RAOC-2) Confirmatory Soil Samples
Site Management Plan
820 Linden Ave Site, BCP #C828200
820 Linden Avenue, Pittsford, NY

Sample Location					LF-SW	(bottom)						LF-SW	(sidewall)				
Sample Date Sample ID Sample Depth Sampling Company Laboratory Work Order Laboratory Sample ID Sample Type	Units	NYSDEC-Part 375	NYSDEC CP-51	30-Jun-20 LF-SW-CSBOT-3 4.3 ft STANTEC TAL 460-212321-1 460-212321-3	1-Jul-20 LF-SW-CSBOT 1 4.3 ft STANTEC TAL 460-212454-1 460-212454-6	1-Jul-20 LF-SW-CSBOT 2 4.3 ft STANTEC TAL 460-212454-1 460-212454-4	29-Jun-20 LF-SW-CSBOT 4 4.7 ft STANTEC TAL 460-212188-1 460-212188-11	1-Jui-20 LF-SW-CSSIDE 4 3 ft STANTEC TAL 460-212454-1 460-212454-5	29-Jun-20 LF-SW-CSSIDE 8 3 ft STANTEC TAL 460-212188-1 460-212188-12	30-Jun-20 LF-SW-CSSIDE-5 3 ft STANTEC TAL 460-212321-1 460-212321-4	30-Jun-20 LF-SW-CSSIDE-6 3 ft STANTEC TAL 460-212321-1 460-212321-6	1-Jui-20 LF-SW-CSSIDE 1 3 ft STANTEC TAL 460-212454-1 460-212454-3	30-Jun-20 LF-SW-CSSIDE7 3.2 ft STANTEC TAL 460-212321-1 460-212321-1	30-Jun-20 LF-SW-CSDUP-2 3.2 ft STANTEC TAL 460-212321-1 460-212321-2 Field Duplicate	30-Jun-20 LF-SW-CSSIDE-9 3.2 ft STANTEC TAL 460-212321-1 460-212321-5	1-Jui-20 LF-SW-CSSIDE 2 3.2 ft STANTEC TAL 460-212454-1 460-212454-2	1-Jul-20 LF-SW-CSSI 3.2 ft STANTE TAL 460-21245- 460-21245
sample Type	Units	N13DEC-Fait 375	N13DEC CF-31											Field Duplicate			
Metals			•	•											•		
Aluminum	mg/kg	10,000 _e ABCD	10,000 _a EFG	6.410	5,680	3,800	8,320	9.440	7,030	7,670	7,020	4,920	8,630	8,340	9,080	6,160	7,850
Antimony	mg/kg	10,000° ABCD	10,000° EFG	29.4 U	31.0 U	28.7 U	30.6 U	29.2 U	32.4 U	30.0 U	31.6 U	29.0 UJ	31.2 U	30.2 U	30.3 U	30.3 U	30.1 U
Arsenic	mg/kg	13 _n A 16 _a BCD	n/v	3.9 U	4.1 U	3.8 U	4.1 U	3.9 U	4.4	4.0 U	4.2 U	3.9 U	4.2 U	4.0 U	4.0 U	4.0 U	4.0 U
Barium	mg/kg	350 _n ^A 400 ^B 10,000 _e ^C 820 ^D	n/v	9.0	12.0	10.3	15.2	16.0	25.0	31.1	35.6	9.5	41.0 J	11.7 J	24.6	11.7	19.5
Bervllium	mg/kg	7.2 ^A 590 ^B 2.700 ^C 47 ^D	n/v	0.39 U	0.41 U	0.38 U	0.41 U	0.39 U	0.43 U	0.40 U	0.42 U	0.39 U	0.42 U	0.40 U	0.40 U	0.40 U	0.40 U
Cadmium	mg/kg	2.5 _a A 9.3 ^B 60 ^C 7.5 ^D	n/v	0.39 U	0.41 U	0.38 U	0.41 U	0.39 U	0.43 U	0.47	0.42 U	0.39 U	0.84	0.40 U	0.40 U	0.40 U	0.40 U
Calcium	mg/kg	10,000 ₀ ABCD	10,000° EFG	1,050	1,630	1,480	638	516	2,390	1,160	1,670	1,060	1.410	995	990	997	1,080
Chromium	mg/kg	30 _n ^A 1.500 ^B 6.800 ^C NS ^D	n/v	6.4	6.0	5.4	8.0	8.7	7.9	7.2	8.4	5.2	9.0	7.9	8.6	6.0	7.6
Cobalt	mg/kg	10,000, ABCD NS.a	10,000 EFG	2.9	4.6	3.2	3.3	3.4	2.2	1.9	2.1	2.1	1.9	2.2	2.7	3.4	2.8
	mg/kg	50 ^A 270 ^B 10,000 _a ^C 1,720 ^D	n/v	7.5	8.5	7.5	6.2	7.5	15.5	5.2	15.5	6.2	17.6 J	5.7 J	7.3	7.7	15.2
Copper																	
ron	mg/kg	10,000 _e ^{ABCD}	10,000 _a EFG	8,700	9,450	8,120	10,300 ^{ABCDEFG}	10,100 ^{ABCDEFG}	9,900	8,250	7,000	6,980	7,940	11,100 ^{ABCDEFG}	8,090	8,430	7,770
Lead	mg/kg	63 _n ^A 1,000 ^B 3,900 ^C 450 ^D	n/v	2.9	3.5	2.9	4.0	4.7	27.2	14.5	21.6	3.6	12.2 J	4.0 J	6.6	4.0	6.8
Magnesium	mg/kg	10,000, ABCD	n/v	1,250	1,630	1,160	1,160	1,380	1,030	909	963	1,120	978	1,030	1,120	1,440	1,320
Manganese	mg/kg	1,600 _n ^A 10,000 _e ^{BC} 2,000 _n ^D	n/v	65.4	287	77.4	110	64.6	209	186	58.6	73.6	65.0	61.8	106	89.6	59.9
Mercury	mg/kg	$0.18_n^A 2.8_k^B 5.7_k^C 0.73^D$	n/v	0.017 U	0.017 U	0.016 U	0.033	0.018 U	0.047	0.037	0.16	0.026	0.28 J ^A	0.064 J	0.073	0.019	0.079
Nickel	mg/kg	30 ^A 310 ^B 10.000 _o ^C 130 ^D	n/v	9.8 U	10.3 U	9.6 U	10.2 U	9.7 U	10.8 U	10.0 U	10.5 U	9.7 U	10.4 U	10.1 U	10.1 U	10.1 U	10.0 U
Potassium	mg/kg	10.000 ABCD	n/v	314	468	405	282	262	290	253	347	325	299	288	264	338	287
Selenium	mg/kg	3.9° A 1.500 B 6.800 C 4° D	n/v	7.8 U	8.3 U	7.7 U	8.2 U	7.8 U	8.6 U	8.0 U	8.4 U	7.7 U	8.3 U	8.1 U	8.1 U	8.1 U	8.0 U
Silver	mg/kg	2 ^A 1.500 ^B 6.800 ^C 8.3 ^D	n/v	0.98 U	1.0 U	0.96 U	1.0 U	0.97 U	1.1 U	1.0 U	1.1 U	0.97 U	1.0 U	1.0 U	1.0 U	1.0 U	1.0 U
Sodium	mg/kg	10,000 a,600 0.0	n/v	275 U	290 U	268 U	286 U	273 U	302 U	280 U	295 U	271 U	291 U	282 U	282 U	283 U	281 U
Fhallium	mg/kg	10,000 ABCD	10,000 _a EFG	11.8 U	12.4 U	11.5 U	12.3 U	11.7 U	12.9 U	12.0 U	12.6 U	11.6 U	12.5 U	12.1 U	12.1 U	12.1 U	12.1 U
Vanadium	mg/kg	10,000 _a ABCD	10,000a 10,000a ^{EFG}	14.2	12.2	10.9	16.4	16.4	12.2	11.5	11.6	10.2	12.9	14.2	14.5	11.6	11.4
Zinc	mg/kg	109 ₀ ^A 10.000 ₀ ^{BC} 2.480 ^D	n/v	15.7	19.3	16.2	23.6	27.9	50.1	97.0	39.6	18.8	44.5 J	24.9 J	38.5	16.6	33.8
Polychlorinated Biphenyls	mg/kg	109n 10,000e 2,400	104	10.7	10.0	10.2	20.0	21.0	00.1	51.0	00.0	10.0	44.00	24.5 0	00.0	10.0	00.0
Aroclor 1016	μg/kg	ABCD	n/v	35 U	36 U	35 U	36 U	35 U	37 U	36 U	37 U	35 U	37 U	37 U	36 U	35 U	35 U
Aroclor 1221	μg/kg	ABCD	n/v	35 U	36 U	35 U	36 U	35 U	37 U	36 U	37 U	35 U	37 U	37 U	36 U	35 U	35 U
Aroclor 1232		ABCD	n/v	35 U	36 U	35 U	36 U	35 U	37 U	36 U	37 U	35 U	37 U	37 U	36 U	35 U	35 U
Aroclor 1232 Aroclor 1242	μg/kg μg/kg	ABCD	n/v	35 U	36 U	35 U	36 U	35 U	37 U	36 U	37 U	35 U	37 U	37 U	36 U	35 U	35 U
		OABCD															
Aroclor 1248	μg/kg	ABCD	n/v	35 U	36 U	35 U	36 U	35 U	37 U	36 U	37 U	35 U	37 U	37 U	36 U	35 U	35 U
Aroclor 1254	μg/kg	ABCD	n/v	35 U	36 U	35 U	36 U	35 U	37 U	36 U	37 U	35 U	37 U	37 U	36 U	35 U	35 U
Aroclor 1260	μg/kg	ABCD	n/v	35 U	36 U	35 U	36 U	35 U	37 U	36 U	37 U	35 U	37 U	37 U	36 U	35 U	35 U
Aroclor 1262	μg/kg	ABCD	n/v	35 U	36 U	35 U	36 U	35 U	37 U	36 U	37 U	35 U	37 U	37 U	36 U	35 U	35 U
Aroclor 1268	μg/kg	. 0	n/v	35 U	36 U	35 U	36 U	35 U	37 U	36 U	37 U	35 U	37 U	37 U	36 U	35 U	35 U
Polychlorinated Biphenyls (PCBs)	μg/kg	100 ^A 1.000 ^B 25.000 ^C 3.200 ^D	n/v	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

190500898 Page 1 of 5 $U:\\190500898\\105_report_deliv\\1deliverables\\reports\\SMP\\12_Tables\\analytical_CL\\tbl7_202007\\16-190500898-tbl3b-SES-RAOC-2-Soil_Samples-CL_xisx$

Table 7
Summary of Analytical Results for Southwest Septic System (RAOC-2) Confirmatory Soil Samples
Site Management Plan
820 Linden Ave Site, BCP #C828200

820 Linden Avenue, Pittsford, NY

Sample Location	l		1	I	LF-SW	(bottom)						LF-SW	(sidewall)				
Sample Date				30-Jun-20	1-Jul-20	1-Jul-20	29-Jun-20	1-Jul-20	29-Jun-20	30-Jun-20	30-Jun-20	1-Jul-20	30-Jun-20	30-Jun-20	30-Jun-20	1-Jul-20	1-Jul-20
Sample ID				LF-SW-CSBOT-3	LF-SW-CSBOT 1	LF-SW-CSBOT 2	LF-SW-CSBOT 4	LF-SW-CSSIDE 4	LF-SW-CSSIDE 8	LF-SW-CSSIDE-5	LF-SW-CSSIDE-6	LF-SW-CSSIDE 1	LF-SW-CSSIDE7	LF-SW-CSDUP-2	LF-SW-CSSIDE-9	LF-SW-CSSIDE 2	LF-SW-CSS
Sample Depth				4.3 ft	4.3 ft	4.3 ft	4.7 ft	3 ft	3 ft	3 ft	3 ft	3 ft	3.2 ft	3.2 ft	3.2 ft	3.2 ft	3.2 ft
Sampling Company				STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTE
aboratory				TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL
				460-212321-1	460-212454-1	460-212454-1	460-212188-1	460-212454-1	460-212188-1	460-212321-1	460-212321-1	460-212454-1	460-212321-1	460-212321-1	460-212321-1	460-212454-1	460-21245
Laboratory Work Order																	
Laboratory Sample ID	l			460-212321-3	460-212454-6	460-212454-4	460-212188-11	460-212454-5	460-212188-12	460-212321-4	460-212321-6	460-212454-3	460-212321-1	460-212321-2	460-212321-5	460-212454-2	460-21245
Sample Type	Units	NYSDEC-Part 375	NYSDEC CP-51											Field Duplicate			
Volatile Organic Compounds						'				•							
cetone	μg/kg	50 ^{AD} 500,000, B 1,000,000, C	n/v	5.9 U	6.9 U	6.0 U	6.2 U	5.9 U	6.4 U	6.0 U	6.5 U	6.4 U	6.9 U	6.2 U	5.6 UJ	6.1 U	6.5 U
enzene	μg/kg	60 ^{AD} 44,000 ^B 89,000 ^C	n/v	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
romodichloromethane	µg/kg	100,000, A 500,000, B 1,000,000, CD	n/v	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
romoform (Tribromomethane)	µg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
romomethane (Methyl bromide)	µg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
Sutylbenzene, n-	μg/kg	12,000 ^{AD} 500,000 _c 1,000,000 _d	n/v	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
utylbenzene, sec- (2-Phenylbutane)	µg/kg	11,000 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
utylbenzene, tert-	μg/kg	5,900 ^{AD} 500,000 _c 1,000,000 _d C	n/v	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
arbon Disulfide	μg/kg	100,000, A 500,000, B 1,000,000, CD	500,000 _a E 1,000,000 _a E 2,700 ^G	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
arbon Tetrachloride (Tetrachloromethane)	μg/kg	760 ^{AD} 22,000 ^B 44,000 ^C	n/v	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
hlorobenzene (Monochlorobenzene)	μg/kg	1,100 ^{AD} 500,000, ^B 1,000,000, ^C	n/v	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
hloroethane (Ethyl Chloride)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 1,900 ^G	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
Chloroform (Trichloromethane)	μg/kg	370 ^{AD} 350,000 ^B 700,000 ^C	n/v	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
Chloromethane	μg/kg	100,000 _a , 500,000 _c , 1,000,000 _d , CD	n/v	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
Cyclohexane	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
Dibromo-3-Chloropropane, 1,2- (DBCP)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
Dibromochloromethane	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a E 1,000,000 _a F	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
ichlorobenzene, 1,2-	μg/kg	1,100 ^{AD} 500,000 ₆ 1,000,000 _d C	n/v	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
ichlorobenzene, 1,3-	μg/kg	2.400 ^{AD} 280.000 ^B 560.000 ^C	n/v	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
Dichlorobenzene, 1,4-	μg/kg	1,800 ^{AD} 130,000 ^B 250,000 ^C	n/v	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
ichlorodifluoromethane (Freon 12)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
Dichloroethane, 1,1-	μg/kg	270 ^{AD} 240.000 ^B 480.000 ^C	n/v	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
Dichloroethane, 1,2-	µg/kg	20 _m ^A 30,000 ^B 60,000 ^C 20 _n ^D	n/v	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
Dichloroethene, 1,1-	μg/kg	330 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
Dichloroethene, cis-1,2-	μg/kg	250 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
Dichloroethene, trans-1,2-	μg/kg	190 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
Dichloropropane, 1,2-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000a ^E 1,000,000a ^F	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
Dichloropropene, cis-1,3-	μg/kg	100,000a 500,000c 1,000,000d CD	n/v	0.99 U	1.1 UJ	1.0 UJ	1.0 U	0.99 UJ	1.1 U	1.0 U	1.1 U	1.1 UJ	1.2 U	1.0 U	0.93 UJ	1.0 UJ	1.1 UJ
Dichloropropene, trans-1,3-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _d 500,000 _d 1,000,000 _d 500,000	n/v	0.99 U	1.1 UJ	1.0 UJ	1.0 UJ	0.99 UJ	1.1 UJ	1.0 U	1.1 U	1.1 UJ	1.2 U	1.0 U	0.93 UJ	1.0 UJ	1.1 UJ
thylbenzene	μg/kg	1.000 ^{AD} 390.000 ^B 780.000 ^C	n/v	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
thylene Dibromide (Dibromoethane, 1,2-)	μg/kg	1,000 390,000 780,000 100,0000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000	n/v	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
		100,000 _a 500,000 _c 1,000,000 _d 100,000 _d 500,000 _c 1,000,000 _d 500,000 _c 1,000,000 _d 500,000 11/V	4.9 U	5.7 U	5.0 U	5.1 U	5.0 U	5.3 U	5.0 U	5.4 U	5.4 U	5.8 U	5.2 U	4.7 UJ	5.1 U	5.4 U	
lexanone, 2- (Methyl Butyl Ketone)	μg/kg		11/V														
sopropylbenzene	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 2,300 ^G 500,000 _a ^E 1,000,000 _a ^F 10,000 ^G	0.99 U	1.1 U	1.0 U	1.0 U 1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U 1.0 U	0.93 UJ	1.0 U	1.1 U
sopropyltoluene, p- (Cymene) lethyl Acetate	μg/kg	100,000, A 500,000, B 1,000,000, CD		0.99 U	1.1 U	1.0 U		0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U		0.93 UJ 4.7 UJ	1.0 U	1.1 U
	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	4.9 U	5.7 U	5.0 U	5.1 U	5.0 U	5.3 U	5.0 U	5.4 U	5.4 U	5.8 U	5.2 U		5.1 U	5.4 U
lethyl Ethyl Ketone (MEK) (2-Butanone)	μg/kg	120 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	500,000 E 1,000,000 F 300 G	4.9 U	5.7 U	5.0 U	5.1 U	5.0 U	5.3 U	5.0 U	5.4 U	5.4 U	5.8 U	5.2 U	4.7 UJ	5.1 U	5.4 U
lethyl Isobutyl Ketone (MIBK)	μg/kg	100,000 A 500,000 B 1,000,000 CD	500,000 _a E 1,000,000 _a F 1,000 ^G	4.9 U	5.7 U	5.0 U	5.1 U	5.0 U	5.3 U	5.0 U	5.4 U	5.4 U	5.8 U	5.2 U	4.7 UJ	5.1 U	5.4 U
lethyl tert-butyl ether (MTBE)	μg/kg	930 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
ethylcyclohexane	μg/kg	100,000 A 500,000 B 1,000,000 CD	n/v	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
lethylene Chloride (Dichloromethane)	μg/kg	50 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	0.99 U	1.1 U	1.0 U	1.0 U	1.0	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
laphthalene	µg/kg	12,000 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.5 U	1.7 U	1.5 U	1.5 U	1.5 U	1.6 U	1.5 U	1.6 U	1.6 U	1.7 U	1.6 U	1.4 UJ	1.5 U	1.6 U
ropylbenzene, n-	µg/kg	3,900 ^{AD} 500,000, ^B 1,000,000, ^C	n/v	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
tyrene	µg/kg	100,000 _a , 500,000 _c , 1,000,000 _d , 50	500,000 _a ^E 1,000,000 _a ^F	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
etrachloroethane, 1,1,2,2-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a E 1,000,000 _a F 600 ^G	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
etrachloroethene (PCE)	μg/kg	1,300 ^{AD} 150,000 ^B 300,000 ^C	500,000 _a ^E 1,000,000 _a ^F	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
oluene	µg/kg	700 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
richlorobenzene, 1,2,4-	μg/kg	100,000, A 500,000, B 1,000,000, CD	500,000 _a E 1,000,000 _a F 3,400 ^G	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
richloroethane, 1,1,1-	μg/kg	680 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
ichloroethane, 1,1,2-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 (
ichloroethene (TCE)	μg/kg	470 ^{AD} 200.000 ^B 400.000 ^C	n/v	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 (
richlorofluoromethane (Freon 11)	µg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 (
richlorotrifluoroethane (Freon 113)	μg/kg	100,000a 500,000c 1,000,000d CD	500,000° 1,000,000° 6,000°	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 U
rimethylbenzene, 1,2,4-	μg/kg	3,600 ^{AD} 190,000 ^B 380,000 ^C	n/v	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 (
rimethylbenzene, 1,3,5-	μg/kg	8.400 ^{AD} 190.000 ^B 380.000 ^C	n/v	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 (
inyl Chloride	μg/kg	20 ^{AD} 13,000 ^B 27,000 ^C	n/v	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 (
ylene, m & p-	μg/kg μg/kg	260 _n ^A 500,000 _{c, B} 1,000,000 _{d, C} 1,600 _n D	n/v	0.99 U	1.1 U	1.0 U	1.0 U	0.99 U	1.1 U	1.0 U	1.1 U	1.1 U	1.2 U	1.0 U	0.93 UJ	1.0 U	1.1 0
			n/v				1.0 U				1.1 U			1.0 U			1.1 U
Kylene, o- Kylenes, Total	µg/kg	260, A 500,000, B 1,000,000, C 1,600, D	n/v n/v	0.99 U	1.1 U	1.0 U		0.99 U	1.1 U	1.0 U		1.1 U	1.2 U		0.93 UJ	1.0 U	
	μg/kg	260 ^A 500,000 _c ^B 1,000,000 _d ^C 1,600 ^D		2.0 U	2.3 U	2.0 U	2.1 U	2.0 U	2.1 U	2.0 U	2.2 U	2.1 U	2.3 U	2.1 U	1.9 UJ	2.0 U	2.2 U
otal VOC	µg/kg	n/v	n/v	ND	ND	ND	ND	1.0	ND	ND	ND	ND	ND	ND	ND	ND	ND.

Stantec

U:\190500898\05_report_deliv\deliverables\reports\SMP\2_Tables\analytical_CL\thtp_20200716-190500898-tbl3b-SES-RAOC-2-Soil_Samples-CL.xlsx

Table 7 Summary of Analytical Results for Southwest Septic System (RAOC-2) Confirmatory Soil Samples
Site Management Plan
820 Linden Ave Site, BCP #C828200
820 Linden Avenue, Pittsford, NY

Sample Location			l	TANK	(1-SW	TAN	K2-SW	TANK	(3-SW	TAN	(4-SW	TAN	K5-SW
Sample Date				29-Jun-20	29-Jun-20	29-Jun-20	29-Jun-20	29-Jun-20	29-Jun-20	29-Jun-20	29-Jun-20	29-Jun-20	29-Jun-20
Sample ID				TANK1-SW-CS1	TANK1-SW-CS2	TANK2-SW-CS1	TANK2-SW-CS2	TANK3-SW-CS1	TANK3-SW-CS2	TANK4-SW-CS1	TANK4-SW-CS2	TANK5-SW-CS1	TANK5-SW-CS2
Sample Depth				8 ft	8 ft	8 ft	8 ft	9 ft	9 ft	9 ft	9 ft	9 ft	9 ft
Sampling Company				STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory				TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL
Laboratory Work Order				460-212188-1	460-212188-1	460-212188-1	460-212188-1	460-212188-1	460-212188-1	460-212188-1	460-212188-1	460-212188-1	460-212188-1
Laboratory Sample ID				460-212188-1	460-212188-2	460-212188-3	460-212188-4	460-212188-5	460-212188-6	460-212188-7	460-212188-8	460-212188-9	460-212188-10
Sample Type	Units	NYSDEC-Part 375	NYSDEC CP-51										
Metals			l .	-		<u> </u>							
Aluminum	mg/kg	10.000。ABCD	10.000° EFG	3,120	3,090	2,740	2,320	2,640	3,680	3,360	2,830	5,900	6,430
Antimony	mg/kg	10,000 ABCD	10,000° EFG	30.8 U	32.0 UJ	30.4 U	30.9 U	30.9 U	29.4 U	29.7 U	31.2 U	29.6 U	29.8 U
Arsenic	mg/kg	13 _n A 16 _n BCD	n/v	4.1 U	4.3 U	4.1 U	4.1 U	4.1 U	3.9 U	4.0 U	4.2 U	3.9 U	4.0 U
Barium	mg/kg	350 _n ^A 400 ^B 10,000 _e ^C 820 ^D	n/v	8.9	8.2	9.6	8.1	9.9	10.1	10.0	10.1	15.4	24.9
Beryllium	mg/kg	7.2 ^A 590 ^B 2,700 ^C 47 ^D	n/v	0.41 U	0.43 U	0.41 U	0.41 U	0.41 U	0.39 U	0.40 U	0.42 U	0.39 U	0.40 U
Cadmium	mg/kg	2.5 _n ^A 9.3 ^B 60 ^C 7.5 ^D	n/v	0.41 U	0.43 U	0.41 U	0.41 U	0.41 U	0.39 U	0.40 U	0.42 U	0.39 U	0.62
Calcium	mg/kg	10,000 _e ABCD	10,000 _a EFG	1,360	1,300	1,380	1,360	1,450	1,300	1,230	1,100	1,060	1,140
Chromium	mg/kg	30 _{n,i} ^A 1,500 _i ^B 6,800 _i ^C _{NS,g} ^D	n/v	4.0	4.1	4.2	3.8	4.4	4.2	4.0	3.9	5.6	6.8
Cobalt	mg/kg	10,000 _e ABCD	10,000 _a EFG	2.4	2.5	2.6	2.3	2.6	2.5	2.3	2.3	2.1	2.9
Copper	mg/kg	50 ^A 270 ^B 10,000 _e ^C 1,720 ^D	n/v	17.1	5.8	5.8	12.1	49.5	6.7	5.5	5.5	5.5	8.5
Iron	mg/kg	10,000 _e ^{ABCD}	10,000 _a EFG	7,060	6,980	7,180	6,310	7,160	7,520	7,040	6,730	7,530	9,200
Lead	mg/kg	63 _n ^A 1,000 ^B 3,900 ^C 450 ^D	n/v	3.7	2.3	2.5	2.9	6.9	3.2	2.6	2.3	4.9	8.8
Magnesium	mg/kg	10,000 _e ABCD	n/v	907	916	908	824	918	987	972	917	1,030	1,270
Manganese	mg/kg	1,600 ₀ ^A 10,000 ₀ ^{BC} 2,000 ₀ ^D	n/v	206	167	202	181	172	174	181	162	90.5	211
Mercury	mg/kg	0.18 _n ^A 2.8 _k ^B 5.7 _k ^C 0.73 ^D	n/v	0.017 U	0.018 U	0.018 U	0.017 U	0.018 U	0.017 U	0.017 U	0.018 U	0.17	0.23 ^A
Nickel	mg/kg	30 ^A 310 ^B 10,000 _B C 130 ^D	n/v	10.3 U	10.7 U	10.1 U	10.3 U	10.3 U	9.8 U	9.9 U	10.4 U	9.9 U	9.9 U
Potassium	mg/kg	10,000 _e ABCD	n/v	335	359	335	319	371	351	349	327	251	357
Selenium	mg/kg	3.9 _n ^A 1.500 ^B 6.800 ^C 4 _n ^D	n/v	8.2 U	8.5 U	8.1 U	8.2 U	8.2 U	7.8 U	7.9 U	8.3 U	7.9 U	7.9 U
Silver	mg/kg	2 ^A 1.500 ^B 6.800 ^C 8.3 ^D	n/v	1.0 U	1.1 U	1.0 U	1.0 U	1.0 U	0.98 U	0.99 U	1.0 U	0.99 U	0.99 U
Sodium	mg/kg	10,000 _e ABCD	n/v	287 U	299 U	284 U	288 U	289 U	274 U	278 U	291 U	276 U	278 U
Thallium	mg/kg	10,000 ABCD	10,000 _a EFG	12.3 U	12.8 U	12.2 U	12.3 U	12.4 U	11.7 U	11.9 U	12.5 U	11.8 U	11.9 U
Vanadium	mg/kg	10,000 ABCD	10,000 _, EFG	9.7	9.1	9.0	8.1	9.1	10	9.3	8.5	10.6	12.4
Zinc	mg/kg	109 _n ^A 10,000 _e ^{BC} 2,480 ^D	n/v	64.4	17.8	19.2	51.5	196 ^A	35.8	16.2	18.0	24.5	30.3
Polychlorinated Biphenyls													
Aroclor 1016	μg/kg	ABCD	n/v	36 U	36 U	36 U	35 U	35 U	35 U	35 U	36 U	35 U	36 U
Aroclor 1221	μg/kg	ABCD	n/v	36 U	36 U	36 U	35 U	35 U	35 U	35 U	36 U	35 U	36 U
Aroclor 1232	μg/kg	ABCD	n/v	36 U	36 U	36 U	35 U	35 U	35 U	35 U	36 U	35 U	36 U
Aroclor 1242	μg/kg	ABCD	n/v	36 U	36 U	36 U	35 U	35 U	35 U	35 U	36 U	35 U	36 U
Aroclor 1248	μg/kg	ABCD	n/v	36 U	36 U	36 U	35 U	35 U	35 U	35 U	36 U	35 U	36 U
Aroclor 1254	μg/kg	ABCD	n/v	36 U	36 U	36 U	35 U	35 U	35 U	35 U	36 U	35 U	36 U
Aroclor 1260	μg/kg	ABCD	n/v	36 U	36 U	36 U	35 U	35 U	35 U	35 U	36 U	35 U	36 U
Aroclor 1262	μg/kg	°ABCD	n/v	36 U	36 U	36 U	35 U	35 U	35 U	35 U	36 U	35 U	36 U
Aroclor 1268	μg/kg	ABCD	n/v	36 U	36 U	36 U	35 U	35 U	35 U	35 U	36 U	35 U	36 U
Polychlorinated Biphenyls (PCBs)	μg/kg	100 ^A 1,000 ^B 25,000 ^C 3,200 ^D	n/v	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
See notes on last page.	1155												

Stantec

Table 7
Summary of Analytical Results for Southwest Septic System (RAOC-2) Confirmatory Soil Samples
Site Management Plan
820 Linden Ave Site, BCP #C828200
820 Linden Avenue, Pittsford, NY

Sample Location				TANK	(1-SW	TANK	(2-SW	TANK	3-SW	TANK	(4-SW	TANK	(5-SW
•				1									
Sample Date				29-Jun-20									
Sample ID				TANK1-SW-CS1	TANK1-SW-CS2	TANK2-SW-CS1	TANK2-SW-CS2	TANK3-SW-CS1	TANK3-SW-CS2	TANK4-SW-CS1	TANK4-SW-CS2	TANK5-SW-CS1	TANK5-SW-C
Sample Depth				8 ft	8 ft	8 ft	8 ft	9 ft	9 ft	9 ft	9 ft	9 ft	9 ft
Sampling Company				STANTEC									
Laboratory				TAL									
Laboratory Work Order				460-212188-1	460-212188-1	460-212188-1	460-212188-1	460-212188-1	460-212188-1	460-212188-1	460-212188-1	460-212188-1	460-212188-1
Laboratory Work Order Laboratory Sample ID				460-212188-1	460-212188-2	460-212188-3	460-212188-4	460-212188-5	460-212188-6	460-212188-7	460-212188-8	460-212188-9	460-212188-10
				400-212100-1	400-212100-2	400-212100-3	400-212100-4	400-212100-0	400-212100-0	400-212100-7	400-212100-0	400-212100-9	400-212100-10
Sample Type	Units	NYSDEC-Part 375	NYSDEC CP-51										
Volatile Organic Compounds													
Acetone	μg/kg	50 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	6.1 U	6.2	5.8 U	6.1 UJ	7.4	5.9 U	6.0 U	6.1 U	6.0 U	6.2 U
Benzene	μg/kg	60 ^{AD} 44,000 ^B 89,000 ^C	n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Bromodichloromethane	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Bromoform (Tribromomethane)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Bromomethane (Methyl bromide)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Butylbenzene, n-	μg/kg	12,000 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Butylbenzene, sec- (2-Phenylbutane)	μg/kg	11,000 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
		5,900 ^{AD} 500,000 _c 1,000,000 _d 5,900 ^{AD} 500,000 _c 1,000,000 _d C											
Butylbenzene, tert-	μg/kg		n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Carbon Disulfide	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 2,700 ^G	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Carbon Tetrachloride (Tetrachloromethane)	μg/kg	760 ^{AD} 22,000 ^B 44,000 ^C	n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Chlorobenzene (Monochlorobenzene)	μg/kg	1,100 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Chloroethane (Ethyl Chloride)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 1,900 ^G	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Chloroform (Trichloromethane)	μg/kg	370 ^{AD} 350,000 ^B 700,000 ^C	n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Chloromethane	μg/kg	100,000 _a 500,000 _b 1,000,000 _d CD	n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
		100,000 _a 500,000 _c 1,000,000 _d											
Cyclohexane	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Dibromo-3-Chloropropane, 1,2- (DBCP)	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Dibromochloromethane	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a E 1,000,000 _a F	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Dichlorobenzene, 1,2-	μg/kg	1,100 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Dichlorobenzene, 1,3-	μg/kg	2.400 ^{AD} 280.000 ^B 560.000 ^C	n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Dichlorobenzene, 1,4-	μg/kg	1.800 ^{AD} 130.000 ^B 250.000 ^C	n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Dichlorodifluoromethane (Freon 12)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Dichloroethane, 1,1-			n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
	μg/kg	270 ^{AD} 240,000 ^B 480,000 ^C											
Dichloroethane, 1,2-	µg/kg	20 _m ^A 30,000 ^B 60,000 ^C 20 _a ^D	n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Dichloroethene, 1,1-	μg/kg	330 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Dichloroethene, cis-1,2-	μg/kg	250 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Dichloroethene, trans-1,2-	μg/kg	190 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Dichloropropane, 1,2-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000a ^E 1,000,000a ^F	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Dichloropropene, cis-1,3-	μg/kg	100.000 A 500.000 B 1.000.000 CD	n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
		100,000a 500,000 _c 1,000,000 _d				0.97 UJ							
Dichloropropene, trans-1,3-	μg/kg	100,000, A 500,000, B 1,000,000, CD	n/v	1.0 UJ	1.0 UJ		1.0 UJ	0.99 UJ	0.98 UJ	1.0 UJ	1.0 UJ	0.99 UJ	1.0 UJ
Ethylbenzene	μg/kg	1,000 ^{AD} 390,000 ^B 780,000 ^C	n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Ethylene Dibromide (Dibromoethane, 1,2-)	µg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Hexanone, 2- (Methyl Butyl Ketone)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	5.1 U	5.0 U	4.9 U	5.1 UJ	5.0 U	4.9 U	5.0 U	5.1 U	5.0 U	5.1 U
Isopropylbenzene	μg/kg	100.000° 500.000° 1.000.000°	500.000° 1.000.000° 2.300°	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Isopropyltoluene, p- (Cymene)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000° 1,000,000° 10,000°	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Methyl Acetate	μg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _d 20	n/v	5.1 U	5.0 U	4.9 U	5.1 UJ	5.0 U	4.9 U	5.0 U	5.1 U	5.0 U	5.1 U
Methyl Ethyl Ketone (MEK) (2-Butanone)	μg/kg μg/kg	120 ^{AD} 500,000 _c 1,000,000 _d 1	500 000 E 1 000 000 F 200G	5.1 U	5.0 U	4.9 U	5.1 UJ	5.0 U	4.9 U	5.0 U	5.1 U	5.0 U	5.1 U
		12U 5UU,UUU _c 1,UUU,UUU _d	500,000 F 1,000,000 F 300 G										
Methyl Isobutyl Ketone (MIBK)	μg/kg	100,000, A 500,000, B 1,000,000, CD	500,000 _a ^E 1,000,000 _a ^F 1,000 ^G	5.1 U	5.0 U	4.9 U	5.1 UJ	5.0 U	4.9 U	5.0 U	5.1 U	5.0 U	5.1 U
Methyl tert-butyl ether (MTBE)	µg/kg	930 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Methylcyclohexane	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Methylene Chloride (Dichloromethane)	μg/kg	50 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Naphthalene	μg/kg	12,000 ^{AD} 500,000 _G 1,000,000 _d C	n/v	1.5 U	1.5 U	1.5 U	1.5 UJ	1.5 U					
Propylbenzene, n-	μg/kg	3.900 ^{AD} 500.000 _a ^B 1.000.000 _a ^C	n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Styrene	μg/kg μg/kg		244	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
		100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000a 1,000,000a F										
Tetrachloroethane, 1,1,2,2-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000a ^E 1,000,000a ^F 600 ^G	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Tetrachloroethene (PCE)	μg/kg	1,300 ^{AD} 150,000 ^B 300,000 ^C	500,000 _a E 1,000,000 _a F	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Toluene	μg/kg	700 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Trichlorobenzene, 1,2,4-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000° 1,000,000° 3,400°	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Frichloroethane, 1,1,1-	μg/kg	680 ^{AD} 500,000 _B 1,000,000 _d C	n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Frichloroethane, 1,1,2-	µg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Frichloroethene (TCE)	μg/kg μg/kg		n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
		470 ^{AD} 200,000 ^B 400,000 ^C											
Frichlorofluoromethane (Freon 11)	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Trichlorotrifluoroethane (Freon 113)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 6,000 ^G	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Trimethylbenzene, 1,2,4-	μg/kg	3,600 ^{AD} 190,000 ^B 380,000 ^C	n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Trimethylbenzene, 1,3,5-	μg/kg	8.400 ^{AD} 190.000 ^B 380.000 ^C	n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
/inyl Chloride	μg/kg	20 ^{AD} 13,000 ^B 27,000 ^C	n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
(ylene, m & p-	μg/kg μg/kg	260 A 500 000 B 1 000 000 C 1 600 D	n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
		260 _D ^A 500,000 _C ^B 1,000,000 _d ^C 1,600 _D ^D											
Xylene, o-	μg/kg	260 _n ^A 500,000 _c ^B 1,000,000 _d ^C 1,600 _n ^D	n/v	1.0 U	1.0 U	0.97 U	1.0 UJ	0.99 U	0.98 U	1.0 U	1.0 U	0.99 U	1.0 U
Xylenes, Total	μg/kg	260 ^A 500,000 _c ^B 1,000,000 _d ^C 1,600 ^D	n/v	2.0 U	2.0 U	1.9 U	2.0 UJ	2.0 U	2.1 U				
Total VOC	ua/ka	n/v	n/v	ND	6.2	ND	ND	7.4	ND	ND	ND	ND	ND

Stantec

190500898
U:\190500898\to5_report_deliv\deliverables\reports\SMP\2_Tables\analytical_CL\tbl7_20200716-190500898-tbl3b-SES-RAOC-2-Soil_Samples-CL.xlsx
Page 4 of 5

Table 7

Summary of Analytical Results for Southwest Septic System (RAOC-2) Confirmatory Soil Samples

Site Management Plan

820 Linden Ave Site, BCP #C828200

820 Linden Avenue, Pittsford, NY

Notes:

NYSDEC-Part 375 NYSDEC 6 NYCRR Part 375 Soil Clean-up Objectives (SCOs)

NYSDEC 6 NYCRR Part 375 - Unrestricted Use Soil Cleanup Objectives

NYSDEC 6 NYCRR Part 375 - Restricted Use SCO - Protection of Human Health - Commercial

NYSDEC 6 NYCRR Part 375 - Restricted Use SCO - Protection of Human Health - Industrial

P NYSDEC 6 NYCRR Part 375 - Restricted Use SCO - Protection of Groundwater
NYSDEC CP-51 New York State Department of Environmental Conservation, DEC Policy CP-51, October 21, 2010

Table 1 Supplemental Soil Cleanup Objectives - Commercial Table 1 Supplemental Soil Cleanup Objectives - Industrial

Table 1 Supplemental Soil Cleanup Objectives - Protection of Groundwater

Concentration exceeds the indicated standard.

Measured concentration did not exceed the indicated standard.

Analyte was not detected at a concentration greater than the laboratory reporting limit. No standard/guideline value.

Parameter not analyzed / not available.

The SCOs for unrestricted use were capped at a maximum value of 100 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3

SCOs for organic contaminants (volatile organic compounds, semivolatile organic compounds, semivolatile organic compounds, and pesticides) are capped at 100 ppm for residential use, 500 ppm for commercial use, 1000 ppm for industrial use. SCOs for metals are capped at 10,000 ppm. The SCOs for commercial use were capped at a maximum value of 500 mg/kg. See TSD Section 9.3.

The SCOs for commercial use were capped at a maximum value of 500 mg/kg. See TSD Section 9.3. The criterion is applicable to total xylenes, and the individual isomers should be added for comparison.

The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 mg/kg (Organics) and 10000 mg/kg (Inorganics). See 6 NYCRR Part 375 TSD Section 9.3.

The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3. The criterion is applicable to total xylenes, and the individual isomers should be added for comparison. The SCOS for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3. The criterion is applicable to total xylenes, and the individual isomers should be added for comparison. The SCOS for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3. The criterion is applicable to total xylenes, and the individual isomers should be added for comparison. The SCOS for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3. The criterion is applicable to total xylenes, and the individual isomers should be added for comparison. The SCOS for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3. The criterion is applicable to total xylenes, and the individual isomers should be added for comparison. The SCOS for industrial use and the protection of groundwater were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3. The criterion is applicable to total xylenes, and the individual isomers should be added for comparison. The SCOS for industrial use and the protection of groundwater were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3. The criterion is applicable to total xylenes, and the individual isomers should be added for comparison.

This SCO is the lower of the values for mercury (elemental) or mercury (inorganic salts). See 6 NYCRR Part 375 TSD Table 5.6-1. For constituents where the calculated SCO was lower than the Contract Required Quantitation Limit (CRQL), the CRQL is used as the Track 1 SCO value.

For constituents where the calculated SCO was lower than the rural soil background concentration as determined by the DEC/DOH rural soil survey, the rural soil background concentration is used as the Track 1 SCO value for this use of the site. For constituents where the calculated SCO was lower than the rural soil background concentration as determined by the DEC/DOH rural soil survey, the rural soil background concentration is used as the Track 1 SCO value for this use of the site.

The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for the total species of this contaminant is below the specific SCO. No SCO has been established for this compound. No SCO has been established for total chromium; however, see standards for trivalent and hexavalent chromium.

Standard is applicable to total PCBs, and the individual Aroclors should be added for comparison.

The criterion is applicable to total xylenes, and the individual isomers should be added for comparison.

The reported result is an estimated value.

Not detected.

Indicates estimated non-detect.
Eurofins Test America Laboratory

Sample Location	ı	1		LF-1	LF-2	l ı	.F-3	LF-4	TANK1	-NW	TANE	(2-NW
Sample Date				25-Jul-19	25-Jul-19	25-Jul-19	25-Jul-19	25-Jul-19	25-Jul-19	25-Jul-19 LIN-	25-Jul-19	25-Jul-19
Sample ID				LIN-LF1-S	LIN-LF2-S	LIN-LF3-S	LIN-LFDUP-S	LIN-LF4-S	LIN-TANK1NW- WC-S	TANK1NW-	LIN-TANK2NW- WC-S	LIN-TANK2NW-S
Sample Depth Sampling Company Laboratory				4.5 - 5.5 ft STANTEC TAL	6 - 8 ft STANTEC TAL	4.5 - 6.5 ft STANTEC TAL	4.5 - 6.5 ft STANTEC TAL	4.5 - 5.5 ft STANTEC TAL	N/A STANTEC TAL	8 - 10 ft STANTEC TAL	N/A STANTEC TAL	8 - 10 ft STANTEC TAL
Laboratory Work Order Laboratory Sample ID				480-156805-1 480-156805-3	480-156805-1 480-156805-4	480-156805-1 480-156805-5	480-156805-1 480-156805-10	480-156805-1 480-156805-6	480-156805-2 480-156805-11	480-156805-1	480-156805-2 480-156805-12	480-156805-1 480-156805-8
Sample Type	Units	NYSDEC-Part 375	NYSDEC CP-51				Field Duplicate					
General Chemistry Cyanide Flashpoint	mg/kg	27 ^{AB} 10,000 _a ^C 40 ^D	n/v n/v	1.0 U	1.1 U	1.1 U	1.0 U	1.2 U	1.0 U > 176	1.0 U	1.0 U > 176	1.2 U
PH, lab Temperature, Lab	deg F S.U. deg C	n/v n/v	n/v n/v	-	-	-	-	-	7.8 J 21.0 J	-	7.4 J 21.3 J	-
Metals Aluminum	mg/kg	10,000 _a ABCD	10,000 _a EFG	7,380	4,120	4,530	4,220	9,670	6,150	6,680 J	6,100	8,560
Antimony Arsenic	mg/kg mg/kg	10,000 ABCD 10,000 BBCD 13, A 16 BBCD	10,000 _a EFG n/v	16.2 U 2.8	15.8 U 2.6	17.7 U 2.5	16.1 U 2.7	17.7 U 5.7	16.0 U 2.5	16.3 UJ 2.7 J	16.0 U 2.9	18.3 U 3.3
Barium Beryllium Cadmium	mg/kg mg/kg mg/kg	350, ^A 400 ^B 10,000, ^C 820 ^D 7.2 ^A 590 ^B 2,700 ^C 47 ^D 2.5, ^A 9.3 ^B 60 ^C 7.5 ^D	n/v n/v n/v	24.2 0.28 0.22 U	15.0 0.23 0.21 U	16.6 0.24 U 0.24 U	15.6 0.21 0.21 U	38.4 0.49 0.24 U	21.4 0.26 0.21 U	20.1 0.28 J 0.22 UJ	18.5 0.28 0.21 U	26.2 0.51 0.80
Calcium Chromium	mg/kg mg/kg	10,000 _e ABCD 30 ₀ A 1,500 _e 6,800 _e NS a	10,000 _a ^{EFG} n/v	1,690 9.9	23,200 ^{ABCDEFG} 6.3	26,400^{ABCDEFG} 7.3	29,200 ^{ABCDEFG} 6.6	2,340 14.1	1,600 7.3	6,050 J 9.4	2,150 9.1	3,740 13.8
Cobalt Copper	mg/kg mg/kg	10,000 _e ^{ABCD} 50 ^A 270 ^B 10,000 _e ^C 1,720 ^D	10,000 _a EFG n/v	3.2 7.7	3.2 5.3	3.7 6.0	3.5 6.7	7.1 11.6	2.6 10.9	3.5 10.1	4.0 8.6	10.8 30.3
Iron Lead Magnesium	mg/kg mg/kg mg/kg	10,000 _e ^{ABCD} 63 _n ^A 1,000 ^B 3,900 ^C 450 ^D 10,000 _e ^{ABCD}	10,000 _a EFG n/v n/v	9,700 5.9 1,500	8,360 1.9 5.110	9,650 2.1 6,270	8,740 2.2 7,560	19,000 ^{ABCDEFG} 5.3 2.600	8,280 6.6 1,220	9,880 4.2 2,480 J	11,000 ^{ABCDEFG} 3.4 1,640	12,100 ^{ABCDEFG} 6.8 1,930
Manganese Mercury	mg/kg mg/kg	1,600 ^A _n 10,000 ^{BC} _n 2,000 ^D 0.18 ^A _n 2.8 ^B _b 5.7 ^C _b 0.73 ^D	n/v n/v	206 B 0.035	227 B 0.022 U	317 B 0.024 U	324 B 0.021 U	187 B 0.025 U	105 B 0.023 U	213 B 0.022 U	122 B 0.020 U	1,950 162 B 3.2 ^{ABD}
Nickel Potassium	mg/kg mg/kg	30 ^A 310 ^B 10,000, ^C 130 ^D 10,000, ^{ABCD}	n/v n/v	7.6 781	6.6 969	7.4 1,040	6.7 943	15.0 1,590	6.3 613	8.0 816	8.3 937	11.5 1,430
Selenium Silver Sodium	mg/kg mg/kg mg/kg	3.9, ^A 1,500 ^B 6,800 ^C 4, ^D 2 ^A 1,500 ^B 6,800 ^C 8.3 ^D 10,000, ^{BECD}	n/v n/v n/v	4.3 U 0.54 U 152 U	4.2 U 0.53 U 153	4.7 U 0.59 U 165 U	4.3 U 0.54 U 165	4.7 U 0.59 U 165 U	4.3 U 0.53 U 149 U	4.3 UJ 0.54 U 152 UJ	4.3 U 0.53 U 159	4.9 U 0.61 U 580
Thallium Vanadium	mg/kg mg/kg	10,000 ABCD 10,000 ABCD	10,000 _a EFG 10,000 _a EFG	6.5 U 16.4	6.3 U 12.8	7.1 U 15.0	6.4 U 13.3	7.1 U 26.9	6.4 U 13.6	6.5 U 15.9	6.4 U 18.0	7.3 U 18.6
Zinc Polychlorinated Biphenyls	mg/kg	109 ₀ A 10,000 _e BC 2,480 ^D	n/v	23.8	14.8	17.3	17.0	25.5	24.5	20.2 J-	20.6	77.6
Aroclor 1016 Aroclor 1221	μg/kg μg/kg	ABCD ABCD ABCD	n/v n/v n/v	260 U 260 U	250 U 250 U	270 U 270 U	240 U 240 U	270 U 270 U	250 U 250 U	230 U 230 U	260 U 260 U	280 U 280 U
Aroclor 1232 Aroclor 1242 Aroclor 1248	μg/kg μg/kg μg/kg	ABCD ABCD	n/v n/v n/v	260 U 260 U 260 U	250 U 250 U 250 U	270 U 270 U 270 U	240 U 240 U 240 U	270 U 270 U 270 U	250 U 250 U 250 U	230 U 230 U 230 U	260 U 260 U 260 U	280 U 280 U 280 U
Aroclor 1254 Aroclor 1260	μg/kg μg/kg	ABCD ABCD ABCD	n/v n/v	260 U 260 U	250 U 250 U	270 U 270 U	240 U 240 U	270 U 270 U	250 U 250 U	230 U 230 U	260 U 260 U	280 U 280 U
Aroclor 1262 Aroclor 1268 Polychlorinated Biphenyls (PCBs)	μg/kg μg/kg μg/kg	ABCD ABCD 100 ^A 1,000 ^B 25,000 ^C 3,200 ^D	n/v n/v n/v	260 U 260 U ND	250 U 250 U ND	270 U 270 U ND	240 U 240 U ND	270 U 270 U ND	250 U 250 U ND	230 U 230 U ND	260 U 260 U ND	280 U 280 U ND
Polychlorinated Biphenyls (PCBs) Pesticides Aldrin	µд/кд	100^ 1,000° 25,000° 3,200° 5 _n 680 ^B 1,400° 190 ^D	n/v	180 U	1.8 U	1.9 U	1.7 U	2.0 U	1.8 U	1.8 U	1.7 U	4.0 U
Aldrin BHC, alpha- BHC, beta-	μg/kg μg/kg μg/kg	20 ^{AD} 3,400 ^B 6,800 ^C 36 ^A 3,000 ^B 14,000 ^C 90 ^D	n/v n/v n/v	180 U 180 U 180 U	1.8 U 1.8 U 1.8 U	1.9 U 1.9 U 1.9 U	1.7 U 1.7 U 1.7 U	2.0 U 2.0 U 2.0 U	1.8 U 1.8 U 1.8 U	1.8 U 1.8 U 1.8 U	1.7 U 1.7 U 1.7 U	4.0 U 4.0 U 4.0 U
BHC, delta- Camphechlor (Toxaphene)	μg/kg μg/kg	40 _n ^A 500,000 _c ^B 1,000,000 _d ^C 250 ^D 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v n/v	180 U 1,800 U	1.8 U 18 U	1.9 U 19 U	1.7 U 17 U	2.0 U 20 U	1.8 U 18 U	1.8 U 18 U	1.7 U 17 U	4.0 U 40 U
Chlordane, alpha- Chlordane, trans- (gamma-Chlordane) DDD (p,p'-DDD)	μg/kg μg/kg μg/kg	94 ^A 24,000 ^B 47,000 ^C 2,900 ^D 100,000 _a A 1,000,000 _d D 3.3 _m A 92,000 ^B 180,000 ^C 14,000 ^D	n/v n/v n/v	180 U 180 U 180 U	1.8 U 1.8 U 1.8 U	1.9 U 1.9 U 1.9 U	1.7 U 1.7 U 1.7 U	2.0 U 2.0 U 2.0 U	1.8 U 1.8 U 1.8 U	1.8 U 1.8 U 1.8 U	1.7 U 1.7 U 1.7 U	4.5 4.0 U 4.0 U
DDE (p,p'-DDE) DDT (p,p'-DDT)	μg/kg μg/kg	3.3 _m ^A 62,000 ^B 120,000 ^C 17,000 ^D 3.3 _m ^A 47,000 ^B 94,000 ^C 136,000 ^D	n/v n/v	180 U 180 U	1.8 U 1.8 U	1.9 U 1.9 U	1.7 U 1.7 U	2.0 U 2.0 U	1.8 U 1.8 U	1.8 U 1.8 U	1.7 U 1.7 U	4.0 U 4.0 U
Dieldrin Endosulfan I Endosulfan II	μg/kg μg/kg μg/kg	5 _n ^A 1,400 ^B 2,800 ^C 100 ^D 2,400 ₁ ^A 200,000 ₁ ^B 920,000 ₁ ^C 102,000 ^D	n/v n/v n/v	180 U 180 U	1.8 U 1.8 U	1.9 U 1.9 U	1.7 U 1.7 U	2.0 U 2.0 U	1.8 U 1.8 U	1.8 U 1.8 U	1.7 U 1.7 U	4.0 U 4.0 U
Endosulfan Sulfate Endrin	μg/kg μg/kg	2,400, ^A 200,000, ^B 920,000, ^C 102,000, ^D 2,400, ^A 200,000, ^B 920,000, ^C 1,000,000, ^D 14 ^A 89,000, ^B 410,000, ^C 60, ^D	n/v n/v	180 U 180 U 180 U	1.8 U 1.8 U 1.8 U	1.9 U 1.9 U 1.9 U	1.7 U 1.7 U 1.7 U	2.0 U 2.0 U 2.0 U	1.8 U 1.8 U 1.8 U	1.8 U 1.8 U 1.8 U	1.7 U 1.7 U 1.7 U	4.0 U 4.0 U 4.0 U
Endrin Aldehyde Endrin Ketone	μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v n/v	180 U 180 U	1.8 U 1.8 U	1.9 U 1.9 U	1.7 U 1.7 U	2.0 U 2.0 U	1.8 U 1.8 U	1.8 U 1.8 U	1.7 U 1.7 U	10 J 4.0 U
Heptachlor Heptachlor Epoxide Lindane (Hexachlorocyclohexane, gamma)	μg/kg μg/kg	42 ^A 15,000 ^B 29,000 ^C 380 ^D 100,000 _a 500,000 _b 1,000,000 _d CD	n/v 500,000 _a ^E 1,000,000 _a ^F 20 ^G n/v	180 U 180 U 180 U	1.8 U 1.8 U 1.8 U	1.9 U 1.9 U 1.9 U	1.7 U 1.7 U 1.7 U	2.0 U 2.0 U 2.0 U	1.8 U 1.8 U 1.8 U	1.8 U 1.8 U 1.8 U	1.7 U 1.7 U 1.7 U	4.0 U 4.0 U 4.0 U
Methoxychlor (4,4'-Methoxychlor) Per- and Polyfluoroalkyl Substances (PFAS)	μg/kg μg/kg	100,000 _a A 500,000 _c B 1,000,000 _d CD	500,000 _a E 1,000,000 _a F 900,000 ^G	180 U	1.8 U	1.9 U	1.7 U	2.0 U	1.8 U	1.8 U	1.7 U	4.0 U
2-(N-methyl perfluorooctanesulfonamido) acetic acid (NMeFOSAA) 6:2 Fluorotelomer sulfonic acid	μg/kg μg/kg	n/v n/v	n/v n/v	-	-	2.3 U 2.3 U	2.1 U 2.1 U	-	-	2.3 U 2.3 U	-	-
8:2 Fluorotelomer sulfonic acid N-ethyl perfluorooctane sulfonamidoacetic acid (NEtFOSAA)	μg/kg μg/kg	n/v n/v	n/v n/v	-	-	2.3 U 2.8	2.1 U 2.1 U	-	-	2.3 U 2.8	-	-
Perfluorobutane Sulfonate (PFBS) Perfluorobutanoic Acid (PFBA) Perfluorodecane Sulfonate (PFDS)	μg/kg μg/kg μg/kg	n/v n/v n/v	n/v n/v n/v	-	-	0.23 U 0.23 U 0.23 U	0.21 U 0.21 U 0.21 U	-	-	0.23 U 0.23 U 0.23 U	-	-
Perfluorodecanoic Acid (PFDA) Perfluorododecanoic Acid (PFDoA)	μg/kg μg/kg	n/v n/v	n/v n/v	-	-	0.23 U 0.23 U	0.21 U 0.21 U	-	-	0.23 U 0.23 U	-	-
Perfluoroheptane Sulfonate (PFHpS) Perfluoroheptanoic Acid (PFHpA) Perfluorohexanesulfonic acid (PFHxS)	μg/kg μg/kg	n/v n/v	n/v n/v	-	-	0.23 U 0.23 U 0.23 U	0.21 U 0.21 U 0.21 U	-	-	0.23 U 0.23 U 0.23 U	-	-
Perfluorohexanoic Acid (PFHxA) Perfluoro-n-Octanoic Acid (PFOA)	μg/kg μg/kg μg/kg	n/v n/v n/v	n/v n/v n/v	-	-	0.23 U 0.23 U	0.21 U 0.21 U 0.21 U	-	-	0.23 U 0.28 U	-	-
Perfluorononanoic Acid (PFNA) Perfluorooctane Sulfonate (PFOS)	μg/kg μg/kg	n/v n/v	n/v n/v	-	-	0.23 U 0.57 U	0.21 U 0.53 U	-	-	0.23 U 1.5 J	-	-
Perfluorooctanesulfonamide (PFOSA) Perfluoropentanoic Acid (PFPeA) Perfluorotetradecanoic Acid (PFTeA)	μg/kg μg/kg μg/kg	n/v n/v n/v	n/v n/v n/v	-	-	0.23 U 0.23 U 0.23 U	0.21 U 0.21 U 0.21 U	-	-	0.74 J 0.23 U 0.23 U	-	-
Perfluorotridecanoic Acid (PFTriA) Perfluoroundecanoic Acid (PFUnA)	μg/kg μg/kg	n/v n/v	n/v n/v	-	-	0.23 U 0.23 U	0.21 U 0.21 U	-	-	0.23 U 0.23 U	-	-
Sum of PFAS Analyte List Sum of PFOS & PFOA Ratios	μg/kg μg/kg	n/v n/v	n/v n/v	-	-	2.8 ND	ND ND	-	-	5.04 1.5 J	-	-
Semi-Volatile Organic Compounds Acenaphthene	μg/kg	20,000 ^A 500,000 _c ^B 1,000,000 _d ^C 98,000 ^D	n/v	180 U	180 U	200 U	180 U	210 U	190 U	180 U	180 U	8,000 U
Acenaphthylene Acetophenone Anthracene	μg/kg μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^C 107,000 ^D 100,000 _a ^A 1,000,000 _d ^D 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v n/v n/v	180 U 180 U 180 U	180 U 180 U 180 U	200 U 200 U 200 U	180 U 180 U 180 U	210 U 210 U 210 U	190 U 190 U 190 U	180 U 180 U 180 U	180 U 180 U 180 U	8,000 U 8,000 U 8,000 U
Atrazine Benzaldehyde	μg/kg μg/kg	100,000 _a ^A 1,000,000 _d ^D 100,000 _a ^A 1,000,000 _d ^D	n/v n/v	180 U 180 U	180 U 180 U	200 U 200 U	180 U 180 U	210 U 210 U	190 U 190 U	180 U 180 U	180 U 180 U	8,000 U 8,000 U
Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	μg/kg μg/kg μg/kg	1,000, ^A 5,600 ^B 11,000 ^C 1,000, ^D 1,000, ^A 1,000, ^B 1,100 ^C 22,000 ^D 1,000, ^A 5,600 ^B 11,000 ^C 1,700 ^D	n/v n/v n/v	180 U 180 U 180 U	180 U 180 U 180 U	200 U 200 U 200 U	180 U 180 U 180 U	210 U 210 U 210 U	190 U 190 U 190 U	180 U 180 U 180 U	180 U 180 U 180 U	8,000 U 8,000 U 8,000 U
Benzo(g,h,i)perylene Benzo(k)fluoranthene	μg/kg μg/kg	100,000 ^A 500,000 _c ^B 1,000,000 _d ^{CD} 800 _n ^A 56,000 ^B 110,000 ^C 1,700 ^D	n/v n/v	180 U 180 U	180 U 180 U	200 U 200 U	180 U 180 U	210 U 210 U	190 U 190 U	180 U 180 U	180 U 180 U	8,000 U 8,000 U
Biphenyl Bis(2-Chloroethoxy)methane Bis(2-Chloroethyl)ether	μg/kg μg/kg	100,000, A 1,000,000, D 100,000, A 500,000, B 1,000,000, CD	500,000 _a E 1,000,000 _a F n/v n/v	180 U 180 U 180 U	180 U 180 U 180 U	200 U 200 U 200 U	180 U 180 U 180 U	210 U 210 U 210 U	190 U 190 U	180 U 180 U	180 U 180 U	8,000 U 8,000 U 8,000 U
Bis(2-Chloroethyl)ether Bis(2-Chloroisopropyl)ether (2,2-oxybis(1-Chloropropane)) Bis(2-Ethylhexyl)phthalate (DEHP)	μg/kg μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v n/v 500,000 _a ^E 1,000,000 _a ^F 435,000 ^G	180 U 180 U 180 U	180 U 180 U 180 U	200 U 200 U 200 U	180 U 180 U 180 U	210 U 210 U 280	190 U 190 U 190 U	180 U 180 U 420	180 U 180 U 180 U	8,000 U 8,000 U 8,000 U
Bromophenyl Phenyl Ether, 4- Butyl Benzyl Phthalate	μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v 500,000 _a ^E 1,000,000 _a ^F 122,000 ^G	180 U 180 U	180 U 180 U	200 U 200 U	180 U 180 U	210 U 210 U	190 U 190 U	180 U 180 U	180 U 180 U	8,000 U 8,000 U
Caprolactam Carbazole Chloro-3-methyl phenol, 4-	μg/kg μg/kg μg/kg	100,000 _a ^A 1,000,000 _d ^D 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v n/v n/v	180 U 180 U 180 U	180 U 180 U 180 U	200 U 200 U 200 U	180 U 180 U 180 U	210 U 210 U 210 U	190 U 190 U 190 U	180 U 180 U 180 U	180 U 180 U 180 U	8,000 U 8,000 U 8,000 U
Chloroaniline, 4- Chloronaphthalene, 2-	μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _a ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 220 ^G n/v	180 U 180 U	180 U 180 U	200 U 200 U	180 U 180 U	210 U 210 U	190 U 190 U	180 U 180 U	180 U 180 U	8,000 U 8,000 U
Chlorophenol, 2- (ortho-Chlorophenol) Chlorophenyl Phenyl Ether, 4-	μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F n/v	180 U 180 U	180 U 180 U	200 U 200 U	180 U 180 U	210 U 210 U	190 U 190 U	180 U 180 U	180 U 180 U	8,000 U 8,000 U
Chrysene Cresol, o- (Methylphenol, 2-) Cresol, p- (Methylphenol, 4-)	μg/kg μg/kg μg/kg	1,000 _n ^A 56,000 ^B 110,000 ^C 1,000 _n ^D 330 _m ^A 500,000 _c ^B 1,000,000 _d ^C 330 _f ^D 330 _m ^A 500,000 _c ^B 1,000,000 _d ^C 330 _f ^D	n/v n/v n/v	180 U 180 U 350 U	180 U 180 U 350 U	200 U 200 U 390 U	180 U 180 U 350 U	210 U 210 U 400 U	190 U 190 U 360 U	180 U 180 U 350 U	180 U 180 U 350 U	8,000 U 8,000 U 16,000 U
Dibenzo(a,h)anthracene Dibenzofuran	μg/kg μg/kg	330 _m ^A 560 ^B 1,100 ^C 1,000,000 _d ^D 7,000 ^A 350,000 ^B 1,000,000 _d ^C 210,000 ^D	n/v 500,000 _a ^E 1,000,000 _a ^F 6,200 ^G	180 U 180 U	180 U 180 U	200 U 200 U	180 U 180 U	210 U 210 U	190 U 190 U	180 U 180 U	180 U 180 U	8,000 U 8,000 U
Dibutyl Phthalate (DBP) Dichlorobenzidine, 3,3'- Dichlorophand, 2,4-	μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a E 1,000,000 _a F 8,100 ^G n/v	180 U 180 U	180 U 180 U	200 U 200 U	180 U 180 U	210 U 210 U	190 U 190 U	180 U 180 U	180 U 180 U	8,000 U 8,000 U
Dichlorophenol, 2,4- Diethyl Phthalate Dimethyl Phthalate	μg/kg μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 400 ^G 500,000 _a ^E 1,000,000 _a ^F 7,100 ^G 500,000 _a ^E 1,000,000 _a ^F 27,000 ^G	180 U 180 U 180 U	180 U 180 U 180 U	200 U 200 U 200 U	180 U 180 U 180 U	210 U 210 U 210 U	190 U 190 U 190 U	180 U 180 U 180 U	180 U 180 U 180 U	8,000 U 8,000 U 8,000 U
Dimethylphenol, 2,4- Dinitro-o-cresol, 4,6-	μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v n/v	180 U 350 U	180 U 350 U	200 U 390 U	180 U 350 U	210 U 400 U	190 U 360 U	180 U 350 U	180 U 350 U	8,000 U 16,000 U
Dinitrophenol, 2,4- Dinitrotoluene, 2,4- Dinitrotoluene, 2,6-	μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a E 1,000,000 _a F 200 ^G n/v	350 U 180 U	350 U 180 U	390 U 200 U	350 U 180 U	400 U 210 U	360 U 190 U	350 U 180 U	350 U 180 U	16,000 U 8,000 U
Dinitrotoluene, 2,6- Di-n-Octyl phthalate Dioxane, 1,4-	μg/kg μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100 _m ^A 130,000 ^B 250,000 ^C 100 _t ^D	500,000 _a ^E 1,000,000 _a ^F 1,000/170 _{bs1} ^G 500,000 _a ^E 1,000,000 _a ^F 120,000 ^G n/v	180 U 180 U 210 U	180 U 180 U 210 U	200 U 200 U 230 U	180 U 180 U 210 U	210 U 210 U 240 U	190 U 190 U 220 U	180 U 180 U 210 U	180 U 180 U 210 U	8,000 U 8,000 U 9,400 U
Fluoranthene Fluorene	μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 30,000 ^A 500,000 _c ^B 1,000,000 _d ^C 386,000 ^D	n/v n/v	180 U 180 U	180 U 180 U	200 U 200 U	180 U 180 U	210 U 210 U	190 U 190 U	180 U 180 U	180 U 180 U	8,000 U 8,000 U
Hexachlorobenzene Hexachlorobutadiene (Hexachloro-1,3-butadiene) Hexachlorocyclopentadiene	μg/kg μg/kg μα/kα	330 _m ^A 6,000 ^B 12,000 ^C 3,200 ^D 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000a ^E 1,000,000a ^F 1,400 ^G n/v 500,000 ^E 1,000,000 ^F	180 U 180 U 180 U	180 U 180 U 180 U	200 U 200 U 200 U	180 U 180 U 180 U	210 U 210 U 210 U	190 U 190 U 190 U	180 U 180 U 180 U	180 U 180 U 180 U	8,000 U 8,000 U 8,000 U
Hexachlorocyclopentadiene Hexachloroethane Indeno(1,2,3-cd)pyrene	μg/kg μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 500 _c ^A 5.600 ^B 11.000 ^C 8.200 ^D	500,000a ^E 1,000,000a ^F n/v n/v	180 U 180 U 180 U	180 U 180 U 180 U	200 U 200 U 200 U	180 U 180 U 180 U	210 U 210 U 210 U	190 U 190 U 190 U	180 U 180 U 180 U	180 U 180 U 180 U	8,000 U 8,000 U 8,000 U
Isophorone Methylnaphthalene, 2-	μg/kg μg/kg	100,000 ^A 500,000 ^B 1,000,000 ^{CD} 100,000 ^A 500,000 ^B 1,000,000 ^{CD}	500,000 _a ^E 1,000,000 _a ^F 4,400 ^G 500,000 _a ^E 1,000,000 _a ^F 36,400 ^G	180 U 180 U	180 U 180 U	200 U 200 U	180 U 180 U	210 U 210 U	190 U 190 U	180 U 180 U	180 U 180 U	8,000 U 8,000 U
Naphthalene Nitroaniline, 2- Nitroaniline, 3-	μg/kg μg/kg	12,000 ^{AD} 500,000 _c ^B 1,000,000 _d ^C 100,000 _c ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v 500,000a 1,000,000a 400G	180 U 350 U	180 U 350 U	200 U 390 U	180 U 350 U 350 U	210 U 400 U	190 U 360 U	180 U 350 U	180 U 350 U	8,000 U 16,000 U
Nitroaniline, 3- Nitroaniline, 4- Nitrobenzene	μg/kg μg/kg μg/kg	100,000 _a ^A 500,000 _e ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _e ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _e ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 500 ^G n/v 69,000 ^E 140,000 ^F 170 _b ^G	350 U 350 U 180 U	350 U 350 U 180 U	390 U 390 U 200 U	350 U 350 U 180 U	400 U 400 U 210 U	360 U 360 U 190 U	350 U 350 U 180 U	350 U 350 U 180 U	16,000 U 16,000 U 8,000 U
Nitrophenol, 2- Nitrophenol, 4-	μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 300 ^G 500,000 _a ^E 1,000,000 _a ^F 100 ^G	180 U 350 U	180 U 350 U	200 U 390 U	180 U 350 U	210 U 400 U	190 U 360 U	180 U 350 U	180 U 350 U	8,000 U 16,000 U
N-Nitrosodi-n-Propylamine n-Nitrosodiphenylamine Pentachlorophenol	μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v 500,000 _a E 1,000,000 _a F n/v	180 U 180 U 350 U	180 U 180 U	200 U 200 U 300 U	180 U 180 U	210 U 210 U 400 U	190 U 190 U 360 U	180 U 180 U 350 U	180 U 180 U 350 U	8,000 U 8,000 U
Pentachiorophenol Phenanthrene Phenol	μg/kg μg/kg μg/kg	800 _m ^A 6,700 ^B 55,000 ^C 800 _f ^D 100,000 ^A 500,000 _c ^B 1,000,000 _d ^{CD} 330 _m ^A 500,000 _c ^B 1,000,000 _d ^C 330 _f ^D	n/v n/v n/v	350 U 180 U 180 U	350 U 180 U 180 U	390 U 200 U 200 U	350 U 180 U 180 U	400 U 210 U 210 U	360 U 190 U 190 U	350 U 180 U 180 U	350 U 180 U 180 U	16,000 U 8,000 U 8,000 U
Pyrene Trichlorophenol, 2,4,5-	μg/kg μg/kg	100,000 ^A 500,000, B 1,000,000, CD 100,000, A 500,000, B 1,000,000, CD	n/v 500,000 _a E 1,000,000 _a F 100 ^G	180 U 180 U	180 U 180 U	200 U 200 U	180 U 180 U	210 U 210 U	190 U 190 U	180 U 180 U	180 U 180 U	8,000 U 8,000 U
Trichlorophenol, 2,4,6- Total SVOC See notes on last page.	μg/kg μg/kg	100,000 ^A 500,000 ^B 1,000,000 ^{CD} n/v	500,000 _a E 1,000,000 _a F n/v	180 U ND	180 U ND	200 U ND	180 U ND	210 U 280	190 U ND	180 U 420	180 U ND	8,000 U ND
oee notes on last page.												

Summary of Analytical Results for Northwest Septic System (RAOC-3) Investigation Soil Samples

Site Management Plan

820 Linden Ave Site, BCP #C828200

820 Linden Avenue, Pittsford, NY

Bangeling Description De	Sample Location	1 1	1		LF-1	LF-2	Ι ι	.F-3	LF-4	TANK1	I-NW	TANE	K2-NW
Sample Depth	•												25-Jul-19
A										LIN-TANK1NW-		LIN-TANK2NW-	
Sample (Company Company Compan	Sample ID				LIN-LF1-S	LIN-LF2-S	LIN-LF3-S	LIN-LFDUP-S	LIN-LF4-S	wc-s			LIN-TANK2NW-S
Laboratory Wind Cord Line Laboratory Wind Cord Line Lin	Sample Depth				4.5 - 5.5 ft	6 - 8 ft	4.5 - 6.5 ft	4.5 - 6.5 ft	4.5 - 5.5 ft	N/A		N/A	8 - 10 ft
Laborating Year Order Labo													STANTEC
Laboratory Samples Dots WisDEC Part 375													TAL
Volatile Organic Compounds													480-156805-1 480-156805-8
Volume Compounds		Unite	NVSDEC-Part 375	NYSDEC CP-51	400-150005-3	460-156605-4	400-130003-3		400-130003-0	400-130003-11	400-150005-7	400-150005-12	400-150005-0
Decision Section Sec	oumple Type	Onits	1105E3-1 alt 575	NIODEO GI -OI				Tiela Daplicate					
Bessers													
Bernarder (Tremementaries)													30 U
Brommerhame (Processes)			60° 44,000° 89,000°										6.0 U 6.0 U
Brownendmann (Neffry Incremish)			100,000 _a 500,000 _c 1,000,000 _d										6.0 U
Bufytherromen.n.			100,000, 500,000, 1,000,000, CD										6.0 U
Big Big			12,000 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	5.4 U	5.4 U							6.0 U
Carbon Tellariothor (Flariothoride)			11,000 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v									6.0 U
Carbon Teleschricher (Teleschromorbane)			5,900 ^{AD} 500,000 _c ^B 1,000,000 _d ^C										6.0 U
Chronochamerame (Monochronochronomerame)			100,000 _a 500,000 _c 1,000,000 _d 50										6.0 U
Chicordomic (Ethyl Chicords)				***									6.0 U 6.0 U
Chicomortificationemethene ways 370° 350,0002° 700,0005° 100,0000,0000 100,00000			1,100 500,000 _c 1,000,000 _d										6.0 U
Cisconnethane			370 ^{AD} 350,000 ^B 700,000 ^C										6.0 U
Cyclehrame	Chloromethane		100.000° 500.000° 1.000.000° 1	n/v									6.0 U
Dictronchizementhane		μg/kg	100,000 _a A 500,000 _c B 1,000,000 _d CD		5.4 U								6.0 U
Dichtoroberzene, 1-2			100,000, 500,000, 1,000,000, CD										6.0 U
Dichtoroberezene, 1,3-			100,000 _a 500,000 _c 1,000,000 _d										6.0 U 6.0 U
Dichtorochemonentame (Feen 12) Upskg 10,0000_*500,0000_*10,000,000_*000_*10,0000,000_*000_*			1,100° 500,000, 1,000,000, 3										6.0 U
Dichtoroidhucomethane (Fenen 12)			1 800 ^{AD} 130 000 ^B 250 000 ^C										6.0 U
Dichtorochame, 1,1- Dichtorochame, 1,2- Dichtorochame, 1,2- Dichtorochame, 1,2- Dichtorochame, 1,1- Dichto			1,000 130,000 230,000 100,000 A 500,000 B 1,000,000 CD										6.0 U
Dichtorethane, 1,2-			270 ^{AD} 240,000 ^B 480,000 ^C										6.0 U
Dichirochehene, cis-12-			$20_{m}^{A} 30,000^{B} 60,000^{C} 20_{n}^{D}$										6.0 U
Dichlorothere, trans-12-			330 ^{AD} 500,000, ^B 1,000,000, ^C										6.0 U
Dichloropropages 1.2													6.0 U
Dichicropropene, cis-1,3-			190 - 500,000 _e 1,000,000 _d -										6.0 U 6.0 U
Dichloropropene, trans-1.3- µg/kg 100,000, \$00,000, \$10,000,000, \$00,000, \$10,000,000, \$00,000, \$10,000,000, \$10,000,000, \$10,000,000, \$10,000,000, \$10,000,000, \$10,000,000, \$10,000, \$10,000,00			100,000 _a 500,000 _b 1,000,000 _d										6.0 U
Ethylene Dibromide (Dibromoethane, 1,2-) µg/kg 10,000 ² 390,000 ² 190,000,000 ² 100,000,000 ² 100,000 ² 100,000,000 ² 1			100.000 A 500.000 B 1.000.000 CD										6.0 U
Hexanone, 2- (Methyl Butyl Ketone)			1.000 ^{AD} 390.000 ^B 780.000 ^C				5.8 U						6.0 U
Sopropylebrazene			100,000 A 500,000 B 1,000,000 CD										6.0 U
Sopropyltoluene, p- (Cymene) Hg/kg 100,000,^\$ 1,000,000,000,^\$ 1,000,000,000,^\$ 1,000,000,000,^\$ 1,000,000,000,^\$ 1,000,000,000,^\$ 1,000,000,000,^\$ 1,000,000,000,^\$ 1,000,000,000,^\$ 1,000,000,000,^\$ 1,000,000,000,000,000,000,000,000,000,0			100,000a 500,000a 1,000,000a CD										30 U
Methyl Acetate Methyl Acetate Methyl Acetate Methyl (Acetate Methyl (Aceta			100,000 _a ^ 500,000 _c ^B 1,000,000 _d ^{CB}										6.0 U 6.0 U
Methyl Ethyl Ketone (MEK) (2-Butanone) µg/kg 120 ^{Mc} 500,000,6 ^k 1,000,000,000,c ^k 500,000,6 ^k 1,000,000,000,00 27 U 27 U 29 U 25 U 52 U 52 U 52 U 52 U 52 U 52 U 52 U 52 U 52 U 52 U			100,000 _a 500,000 _c 1,000,000 _d	500,000a 1,000,000a 10,000									30 U
Methyl Isobutyl Ketonic (MIBK)			120 ^{AD} 500,000° 1,000,000°	500.000° 1.000.000° 300°									30 U
	Methyl Isobutyl Ketone (MIBK)		100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}		27 U	27 U	29 U	27 U	29 U	27 U	26 UJ	26 U	30 U
Methylene Chloride (Dichloromethane) µg/kg 50 ⁰⁰ 500,000, ⁸ 1,000,000, ⁶ 0 n/v 5.4 U 5.8 U 5.3 U 5.9 U 5.5 U 5.2 U			930 ^{AD} 500.000 _c ^B 1.000.000 _d ^C										6.0 U
Naphthalene			100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}										6.0 U
Propylbenzene, n-													6.0 U 6.0 U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	•												6.0 U
Tetrachloroethane, $1,1,2.2$ - $\mu g / kg$ $\mu g / kg$ $\mu g / kg$ $1,00,000_0^{-5},00,000_0,00_0^{-5}$ $0,000_0,00_0,00_0^{-5}$ $0,000_0,00_0^{-5}$			100.000. ^A 500.000. ^B 1.000.000. ^{CD}										6.0 U
Tetrachioroethene (PCE)	Tetrachloroethane, 1,1,2,2-		100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}		5.4 U	5.4 U	5.8 U	5.3 U	5.9 U	5.5 U	5.2 UJ	5.2 U	6.0 U
Trichlorobenzene, 1,2,4-			1,300 ^{AD} 150,000 ^B 300,000 ^C	500,000 _a ^E 1,000,000 _a ^F									6.0 U
Trichloroethane, 1,1.1-			700 ^{AD} 500,000 _c ^B 1,000,000 _d ^C										6.0 U
Trichloroethane, 1.1.2- $ \mu g / kg \qquad 100,000_{0}^{+} 00,0000_{0}^{-} 0,000,000_{0}^{-} 0 \\ \mu g / kg \qquad 470^{62} 200,000^{2} 400,000^{0} \\ \nu g / kg \qquad 100,000_{0}^{+} 500,000_{0}^{-} 0 \\ \nu g / kg \qquad 100,000_{0}^{+} 500,000_{0}^{-} 0 \\ \nu g / kg \qquad 100,000_{0}^{+} 500,000_{0}^{-} 0 \\ \nu g / kg \qquad 100,000_{0}^{+} 500,000_{0}^{-} 0 \\ \nu g / kg \qquad 100,000_{0}^{+} 00,000_{0}^{-} 0 \\ \nu g / kg \qquad 100,000$			100,000 _a ^ 500,000 _c 1,000,000 _d										6.0 U 6.0 U
Trichloroethene (TCE) $\mu g/kg$ $470^{A_0} 200,000^8 400,000^\circ$ n/v 5.4 U 5.8 U 5.3 U 5.9 U 5.2 U 5.2 U Trichlorofturormethane (Freon 11) $\mu g/kg$ $100,0000_0^* 500,000_0^8 1,000,000_0^* 1,000,0$			100 000 A 500 000 B 1 000 000 CD										6.0 U
Trichloroffluoromethane (Freon 11) μg/kg 100,000, 500,000, 1,000,000, 00, 000 π/ν 5.4 U 5.4 U 5.8 U 5.3 U 5.9 U 5.5 U 5.2 U 5.2 U 7 π/ν 1			470 ^{AD} 200 000 ^B 400 000 ^C										6.0 U
Trichfortorffluoroethnae (Freon 113) $\mu g/kg = 100,000_0^+500,000_0^+1,000,000_0^+ 1,000,000_0^+6,000^+ 5.4 U 5.4 U 5.8 U 5.3 U 5.9 U 5.5 U 5.2 U 5.2 U Trimethylberzenee, 1,2.4 \mu g/kg = 3,600^+0+9,000,000_0^+3,000^+ 1,000,000_0^+6,000^+ 5.4 U 5.8 U 5.3 U 5.9 U 5.5 U 5.2 U 5.2 U 5.2 U 5.2 U 5.2 U 5.4 U 5$			100.000° 500.000° 1.000.000° 1										6.0 U
Trimethylbenzene, 1,2,4- µg/kg 3,600 ^{AD} 190,000 ^B 380,000 ^C n/v 5.4 U 5.4 U 5.8 U 5.3 U 5.9 U 5.5 U 5.2 U 5.2 U		μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000 _a E 1,000,000 _a F 6,000 ^G						5.5 U			6.0 U
Trimethylhenzene 135-	Trimethylbenzene, 1,2,4-		3,600 ^{AD} 190,000 ^B 380,000 ^C										6.0 U
10111001111001111001111001111001111001111	Trimethylbenzene, 1,3,5-	μg/kg	8,400 ^{AD} 190,000 ^B 380,000 ^C	n/v	5.4 U	5.4 U	5.8 U	5.3 U	5.9 U	5.5 U	5.2 U	5.2 U	6.0 U
Vinyl Chloride μg/kg 20 ^{0D} 13,000 ^B 27,000 ^C n/v 5.4 U 5.4 U 5.8 U 5.3 U 5.9 U 5.5 U 5.2 U 5.2 U Xylene, m & p- μg/kg 260. Λ 500,000 B 1,000,000 C 1,600 D n/v 11 U 11 U 12 U 11 U 12 U 11 U 10 U 10 U													6.0 U
Xylene, m & p- μg/kg 260, h 500,000, B 1,000,000, L 1,600, D n/ν 11 U 11 U 12 U 11 U 12 U 11 U 10 U 10 U													12 U 6.0 U
Aylenes, Total 9,9/8g 260,6 500,000,6 1,000,0 10V 3.4 U 3.4 U 3.6 U 3.5 U 3.5 U 3.2 U 3.2 U 3.5													12 U
7) Total VCC													ND ND

Notes:

NYSDEC -Part 375

NYSDEC 6 NYCRR Part 375 Soil Clean-up Objectives (SCOs)

NYSDEC 6 NYCRR Part 375 - Unrestricted Use Soil Cleanup Objectives

NYSDEC 6 NYCRR Part 375 - Restricted Use SCO - Protection of Human Health - Commercial

NYSDEC 6 NYCRR Part 375 - Restricted Use SCO - Protection of Human Health - Industrial

NYSDEC 6 NYCRR Part 375 - Restricted Use SCO - Protection of Groundwater

NYSDEC CP-51

NYSDEC CP-51

Table 1 Supplemental Soil Cleanup Objectives - Commercial

Table 1 Supplemental Soil Cleanup Objectives - Industrial

Table 1 Supplemental Soil Cleanup Objectives - Protection of Groundwater

Concentration exceeds the indicated standard.

Measured concentration did not exceed the indicated standard.

åFG

Measured concentration did not exceed the indicated standard.

Analyte was not detected at a concentration greater than the laboratory reporting limit.

No standard/guideline value.

Parameter not analyzed / not available.

The SCOs for unrestricted use were capped at a maximum value of 100 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3

SCOs for organic contaminants (volatile organic compounds, semivolatile organic compounds, and pesticides) are capped at 100 ppm for residential use, 500 ppm for commercial use, 1000 ppm for industrial use. SCOs for metals are capped at 10,000 ppm.

Based on rural background study. The value of 1.0 refers to SVOC analses while the 0.17b refers to VOC analyses.

The SCOs for commercial use were capped at a maximum value of 500 mg/kg. See TSD Section 9.3.

The SCOs for commercial use were capped at a maximum value of 500 mg/kg. See TSD Section 9.3. The criterion is applicable to total xylenes, and the individual isomers should be added for comparison.

The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 mg/kg (Organics) and 10000 mg/kg (Inorganics). See 6 NYCRR Part 375 TSD Section 9.3.

The SCOs for metals were capped at a maximum value of 1000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3. The criterion is applicable to total xylenes, and the individual isomers should be added for comparison.

The SCOs for metals were capped at a maximum value of 10000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3. The criterion is applicable to total xylenes, and the individual isomers should be added for comparison.

The SCOs for metals were capped at a maximum value of 10000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3. The criterion is applicable to total xylenes, and the individual isomers should be added for comparison.

The SCOs for metals were capped at a maximum value of 10000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3. The criterion is applicable to total xylenes, and the individual isomers should be added for comparison.

The SCOs for metals

This SCO is the stune of endocation in endocation in endocation in source.

This SCO is the bower of the values for mercury (elemental) or mercury (inorganic salts). See 6 NYCRR Part 375 TSD Table 5.6-1.

For constituents where the calculated SCO was lower than the Contract Required Quantitation Limit (CRQL), the CRQL is used as the Track 1 SCO value.

For constituents where the calculated SCO was lower than the curtact Required Quantitation Limit (CRQL), tied excl. is used as the Track 1 SCO Value.

For constituents where the calculated SCO was lower than the rural soil background concentration as determined by the DEC/DOH rural soil survey, the rural soil background concentration is used as the Track 1 SCO value for this use of the site.

For constituents where the calculated SCO was lower than the rural soil background concentration as determined by the DEC/DOH rural soil survey, the rural soil background concentration is used as the Track 1 SCO value for this use of the site.

The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for the total species of this contaminant is below the specific SCO.

No SCO has been established for this compound. No SCO has be

The criterion is applicable to total xylenes, and the individual isomers should be added for comparison. Greater than. Indicates analyte was found in associated blank, as well as in the sample. The reported result is an estimated value. The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased low. Not detected. Indicates estimated non-detect. Eurofins Test America Laboratory

Sample Location Sample Date Sample ID Sampling Company Laboratory Laboratory Work Order Laboratory Sample ID	Units	NYSDEC-Part 375	NYSDEC CP-51	30-Jul-18 *LIN-DP-s STANTEC TAL 460-161576-1 460-161576-17	DP-1 19-Jun-20 *DP-CSSIDE1 STANTEC TAL 480-171508-1 480-171508-1	6-Jul-20 DP-CSSIDE2 STANTEC TAL 460-212667-1 460-212667-1
General Chemistry						
Cyanide Metals	mg/kg	27 ^{AB} 10,000 _{e,I} ^C 40 _I ^D	n/v	0.54	-	-
Aluminum	mg/kg	10,000 _e ABCD	10,000 _a ^{EFG}	3,520	-	-
Antimony Arsenic	mg/kg mg/kg	10,000 _e ^{ABCD} 13 _n A 16 _q ^{BCD}	10,000 _a ^{EFG} n/v	31.4 U 4.2 U	-	-
Barium Beryllium	mg/kg	350 _n ^A 400 ^B 10,000 _e ^C 820 ^D 7.2 ^A 590 ^B 2,700 ^C 47 ^D	n/v n/v	31.2 0.42 U	-	-
Cadmium	mg/kg mg/kg	2.5, A 9.3 B 60 C 7.5 D	n/v	0.42 U		-
Calcium Chromium	mg/kg	10,000 _e ^{ABCD}	10,000 _a ^{EFG}	61,300 ^{ABCDEFG}	-	-
Cobalt	mg/kg mg/kg	30 _{n,I} ^A 1,500 _i ^B 6,800 _i ^C _{NS,q} ^D 10,000 _e ^{ABCD}	n/v 10,000 _a ^{EFG}	17.0 2.8	-	-
Copper ron	mg/kg mg/kg	50 ^A 270 ^B 10,000 _e ^C 1,720 ^D 10,000 _e ABCD	n/v 10,000 _a ^{EFG}	22.9 11,100 ^{ABCDEFG}	-	-
ead	mg/kg	63 _n ^A 1,000 ^B 3,900 ^C 450 ^D	n/v	42.1	-	-
Magnesium	mg/kg	10,000 _e ABCD	n/v	24,600 ^{ABCD}	-	-
Manganese Mercury	mg/kg mg/kg	1,600 _n ^A 10,000 _e ^{BC} 2,000 _q ^D 0.18 _n ^A 2.8 _k ^B 5.7 _k ^C 0.73 ^D	n/v n/v	365 0.048	-	-
Nickel	mg/kg	30 ^A 310 ^B 10,000 _e ^C 130 ^D	n/v	12.5	-	-
Potassium Selenium	mg/kg mg/kg	10,000 _e ^{ABCD} 3.9 ₀ ^A 1,500 ^B 6,800 ^C 4 ₀ ^D	n/v n/v	888 8.4 U	-	-
Silver	mg/kg	2 ^A 1,500 ^B 6,800 ^C 8.3 ^D 10,000 _e ABCD	n/v n/v	1.0 U	-	-
Sodium Fhallium	mg/kg mg/kg	10,000 _e ABCD	10,000 _a EFG	293 U 12.6 U	-	-
/anadium	mg/kg	10,000 _e ^{ABCD}	10,000 _a EFG	12.1	-	-
Zinc Polychlorinated Biphenyls	mg/kg	109 _n A 10,000 _e BC 2,480 ^D	n/v	178 ^A	-	
Aroclor 1016	μg/kg	ABCD	n/v	38 U	-	-
Aroclor 1221 Aroclor 1232	μg/kg μg/kg	ABCD ABCD	n/v n/v	38 U 38 U		-
Aroclor 1242	μg/kg	ABCD	n/v	38 U	-	-
Aroclor 1248 Aroclor 1254	μg/kg μg/kg	ABCD ABCD	n/v n/v	38 U 38 U	-	-
Aroclor 1260	μg/kg	ABCD	n/v	38 U	-	-
Aroclor 1262 Aroclor 1268	μg/kg μg/kg	ABCD ABCD	n/v n/v	38 U 38 U		-
Polychlorinated Biphenyls (PCBs)	μg/kg μg/kg	100 ^A 1,000 ^B 25,000 ^C 3,200 ^D	n/v	ND	-	-
Pesticides Aldrin	μg/kg	5 _n ^A 680 ^B 1,400 ^C 190 ^D	n/v	3.8 U		
BHC, alpha-	μg/kg	20 ^{AD} 3,400 ^B 6,800 ^C	n/v	3.8 U	-	-
BHC, beta- BHC, delta-	μg/kg μg/kg	36 ^A 3,000 ^B 14,000 ^C 90 ^D 40 _n 500,000 _c 1,000,000 _d 250 ^D	n/v n/v	3.8 U 3.8 U		-
Camphechlor (Toxaphene)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v n/v	38 U	-	-
Chlordane, alpha- Chlordane, trans- (gamma-Chlordane)	µg/kg µg/kg	94 ^A 24,000 ^B 47,000 ^C 2,900 ^D 100,000 _a A 1,000,000 _d D	n/v n/v	3.8 U 3.8 U		-
DDD (p,p'-DDD) DDE (p,p'-DDE)	μg/kg μg/kg	3.3 _m ^A 92,000 ^B 180,000 ^C 14,000 ^D 3.3 _m ^A 62,000 ^B 120,000 ^C 17,000 ^D	n/v n/v	3.8 U 3.8 U	-	-
DDT (p,p'-DDT)	μg/kg μg/kg	3.3 _m 62,000 120,000 17,000 3.3 _m 47,000 ^B 94,000 ^C 136,000 ^D	n/v	3.8 U	-	-
Dieldrin	μg/kg	5 _n ^A 1,400 ^B 2,800 ^C 100 ^D	n/v	3.8 U	-	-
Endosulfan I Endosulfan II	μg/kg μg/kg	2,400 _i ^A 200,000 _i ^B 920,000 _i ^C 102,000 ^D 2,400 _i ^A 200,000 _i ^B 920,000 _i ^C 102,000 ^D	n/v n/v	3.8 U 3.8 U	-	-
Endosulfan Sulfate	μg/kg	2,400 _i ^A 200,000 _i ^B 920,000 _i ^C 1,000,000 _d ^D	n/v	3.8 U	-	-
Endrin Endrin Aldehyde	μg/kg μg/kg	14 ^A 89,000 ^B 410,000 ^C 60 ^D 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v n/v	3.8 U 3.8 U	-	-
Endrin Ketone	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v n/v	3.8 U	-	-
Heptachlor Heptachlor Epoxide	μg/kg μg/kg	42 ^A 15,000 ^B 29,000 ^C 380 ^D 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 20 ^G	3.8 U 3.8 U	-	-
.indane (Hexachlorocyclohexane, gamma) Methoxychlor (4,4'-Methoxychlor)	μg/kg μg/kg	100 ^{AD} 9,200 ^B 23,000 ^C 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v 500,000 _a ^E 1,000,000 _a ^F 900,000 ^G	3.8 U 3.8 U	-	-
Semi-Volatile Organic Compounds						
Acenaphthene Acenaphthylene	μg/kg μg/kg	20,000 ^A 500,000 _c ^B 1,000,000 _d ^C 98,000 ^D 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^C 107,000 ^D	n/v n/v	7,800 U 7,800 U	870 U 870 U	700 U 700 U
Acetophenone	μg/kg	100,000 _a ^A 1,000,000 _d ^D	n/v	7,800 U	870 U	700 U 870
Anthracene Atrazine	μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 1,000,000 _d ^D	n/v n/v	7,800 U 7,800 U	1,700 870 U	700 U
Benzaldehyde Benzo(a)anthracene	μg/kg	100,000 _a ^A 1,000,000 _d ^D 1,000 _a ^A 5,600 ^B 11,000 ^C 1,000 _a ^D	n/v n/v	7,800 U	870 U	700 UJ
Benzo(a)pyrene	µg/kg µg/kg	1,000 _n 5,600 11,000 1,000 _g 1,000 _n 1,000 _a 1,100 ^c 22,000 ^b	n/v	29,000 ^{ABCD} 31,000 ^{ABCD}	8,300 ^{ABD} 8,200 ^{ABC}	4,100 ^{AD} 4,200 ^{ABC}
Benzo(b)fluoranthene	μg/kg	1,000 _n A 5,600 ^B 11,000 ^C 1,700 ^D	n/v	49,000 ^{ABCD}	11,000 ^{ABD}	6,100 ^{ABD}
Benzo(g,h,i)perylene Benzo(k)fluoranthene	µg/kg µg/kg	100,000 ^A 500,000 _c ^B 1,000,000 _d ^{CD} 800 ₀ ^A 56,000 ^B 110,000 ^C 1,700 ^D	n/v n/v	24,000 20,000 ^{AD}	6,000 5,600^{AD}	1,800 2,500^{AD}
Biphenyl	μg/kg	100,000 _a ^A 1,000,000 _d ^D	500,000 _a ^E 1,000,000 _a ^F	7,800 U	870 U	700 U
Bis(2-Chloroethoxy)methane Bis(2-Chloroethyl)ether	μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v n/v	7,800 U 7,800 U	870 U 870 U	700 U 700 U
Bis(2-Chloroisopropyl)ether (2,2-oxybis(1-Chloropropane))	μg/kg μg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _a 500,000 _c 1,000,000 _d	n/v	7,800 U	870 U	700 U
Bis(2-Ethylhexyl)phthalate (DEHP) Bromophenyl Phenyl Ether, 4-	μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 435,000 ^G	7,800 U 7,800 U	870 U 870 U	700 U 700 U
Butyl Benzyl Phthalate	μg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _d 500,000 _c B 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F 122,000 ^G	7,800 U	870 U	700 U
Caprolactam	μg/kg	100,000 _a ^A 1,000,000 _d ^D 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v n/v	7,800 U	870 U	700 U
Carbazole Chloro-3-methyl phenol, 4-	μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	7,800 U 7,800 U	2,000 870 U	1,100 700 U
Chloroaniline, 4- Chloronaphthalene, 2-	µg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 220 ^G n/v	7,800 U	870 U 870 U	700 U 700 U
Chlorophenol, 2- (ortho-Chlorophenol)	μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v 500,000 _a ^E 1,000,000 _a ^F	7,800 U 7,800 U	870 U	700 U
Chlorophenyl Phenyl Ether, 4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	7,800 U	870 U	700 U
Chrysene Cresol, o- (Methylphenol, 2-)	μg/kg μg/kg	1,000 _n ^A 56,000 ^B 110,000 ^C 1,000 _g ^D 330 _m ^A 500,000 _c ^B 1,000,000 _d ^C 330 _f ^D	n/v n/v	41,000^{AD} 7,800 U	10,000^{AD} 870 U	5,300^{AD} 700 U
Cresol, p- (Methylphenol, 4-) Dibenzo(a,h)anthracene	µg/kg	330 _m ^A 500,000 _c ^B 1,000,000 _d ^C 330 _f ^D 330 _m ^A 560 ^B 1,100 ^C 1,000,000 _d ^D	n/v n/v	15,000 U	1,700 U 1,700 ^{ABC}	1,400 U
Dibenzo(a,h)anthracene Dibenzofuran	μg/kg μg/kg	330 _m ² 560 ^B 1,100 ^C 1,000,000 _d ^D 7,000 ^A 350,000 ^B 1,000,000 _d ^C 210,000 ^D	500,000 _a ^E 1,000,000 _a ^F 6,200 ^G	7,800 U 7,800 U	1,700 ^{ABC} 870 U	700 U 700 U
Dibutyl Phthalate (DBP)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 8,100 ^G	7,800 U	870 U	700 U
Dichlorobenzidine, 3,3'-	μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v 500,000 _a E 1,000,000 _a F 400 ^G	7,800 U 7,800 U	870 U 870 U	700 U 700 U
Dichlorophenol, 2,4-		100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 7,100 ^G	7,800 U	870 U	700 U
Diethyl Phthalate	μg/kg		500,000 _a ^E 1,000,000 _a ^F 27,000 ^G	7,800 U 7,800 U	870 U 870 U	700 U 700 U
Diethyl Phthalate Dimethyl Phthalate	µg/kg µg/kg µg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	7,000 0		1,400 U
Diethyl Phthalate Dimethyl Phthalate Dimethylphenol, 2,4- Dinitro-o-cresol, 4,6-	μg/kg μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v n/v	15,000 U	1,700 U	
Dichlorophenol, 2,4- Diethyl Phthalate Dimethyl Phthalate Dimethylphenol, 2,4- Dinitro-o-cresol, 4,6- Dinitrophenol, 2,4- Dinitrotoluene, 2,4-	μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v		1,700 U 1,700 U 870 U	1,400 U 700 U
Diethyl Phthalate Dimethyl Phthalate Dimethylphenol, 2,4- Dinitro-o-cresol, 4,6- Dinitrophenol, 2,4- Dinitrotoluene, 2,4- Dinitrotoluene, 2,4- Dinitrotoluene, 2,6-	µg/kg µg/kg µg/kg µg/kg µg/kg	100,000a ^ 500,000c ^B 1,000,000d ^{CD} 100,000c ^ 500,000c ^B 1,000,000d ^{CD} 100,000a ^ 500,000c ^B 1,000,000d ^{CD} 100,000a ^ 500,000c ^B 1,000,000d ^{CD} 100,000a ^ 500,000c ^B 1,000,000d ^{CD} 100,000c ^ 500,000c ^B 1,000,000d ^{CD} 100,000a ^ 500,000c ^B 1,000,000d ^{CD}	n/v n/v 500,000 _a ^E 1,000,000 _a ^F 200 ^G n/v 500,000 _a ^E 1,000,000 _a ^F 1,000/170 _{b,5} f	15,000 U 15,000 U 7,800 U 7,800 U	1,700 U 870 U 870 U	700 U 700 U
Diethyl Phthalate Dimethyl Phthalate Dimethylphenol, 2.4- Dinitro-o-cresol, 4.6- Dinitrophenol, 2.4-	µg/kg µg/kg µg/kg µg/kg µg/kg	100,000a^5,500,000c^B 1,000,000d^CD 100,000a^5,500,000c^B 1,000,000d^CD 100,000a^5,500,000c^B 1,000,000d^CD 100,000a^5,500,000c^B 1,000,000d^CD 100,000a^5,500,000c^B 1,000,000d^CD 100,000a^5,500,000c^B 1,000,000d^CD 100,000a^5,500,000c^B 1,000,000d^CD 100,000a^5,500,000c^B 1,000,000d^CD 100,000a^5,500,000c^B 1,000,000d^CD	n/v n/v 500,000 _a ^E 1,000,000 _a ^F 200 ^G n/v	15,000 U 15,000 U 7,800 U	1,700 U 870 U	700 U
Diethyl Phthalate Dimethyl Phthalate Dimethylphenol, 2,4- Dinitro-to-cresol, 4,6- Dinitrotoluene, 2,4- Dinitrotoluene, 2,4- Dinitrotoluene, 2,6- Di-n-Octyl phthalate Dioxane, 1,4- Fluoranthene	µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg	100,000a ^A 500,000c ^B 1,000,000d ^{CD} 100,000a ^A 500,000c ^B 1,000,000d ^{CD} 100,000a ^A 500,000c ^B 1,000,000d ^{CD} 100,000a ^A 500,000c ^B 1,000,000d ^{CD} 100,000a ^A 500,000c ^B 1,000,000d ^{CD} 100,000a ^A 500,000c ^B 1,000,000d ^{CD} 100,000a ^A 500,000c ^B 1,000,000d ^{CD} 100,000a ^A 500,000c ^B 1,000,000d ^{CD} 100m ^A 130,000 ^B 250,000 ^C 100c ^D 100m ^A 130,000 ^B 1,000,000d ^{CD}	n/v 500,000 _a ^E 1,000,000 _a ^F 200 ^G n/v 500,000 _a ^E 1,000,000 _a ^F 1,000/170 _{0,81} ^G 500,000 _a ^E 1,000,000 _a ^F 120,000 ^G n/v n/v	15,000 U 15,000 U 7,800 U 7,800 U 7,800 U - 81,000	1,700 U 870 U 870 U 870 U 870 U 510 U 22,000	700 U 700 U 700 U - 12,000
Diethyl Phthalate Dimethyl Phthalate Dimethylphenol, 2,4- Dinitro-o-cresol, 4,6- Dinitrotoluene, 2,4- Dinitrotoluene, 2,4- Dinitrotoluene, 2,6- Di-n-Octyl phthalate Dioxane, 1,4- Elucranthene Elucrene	µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg µg/kg	100,000a^5,500,000c^B 1,000,000d^CD 100,000a^5,500,000c^B 1,000,000d^CD 100,000a^5,500,000c^B 1,000,000d^CD 100,000a^5,500,000c^B 1,000,000d^CD 100,000a^5,500,000c^B 1,000,000d^CD 100,000a^5,500,000c^B 1,000,000d^CD 100,000a^5,500,000c^B 1,000,000d^CD 100,000a^5,500,000c^B 1,000,000d^CD 100,000a^5,500,000c^B 1,000,000d^CD 30,000^5,500,000c^B 1,000,000d^CD 30,000^5,500,0000d^DD 30,000^5,500,000d^DD	n/v	15,000 U 15,000 U 7,800 U 7,800 U 7,800 U -	1,700 U 870 U 870 U 870 U 510 U	700 U 700 U 700 U -
Diethyl Phthalate Dimethyl Phtha	нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд	100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100m^5 130,000^5 100p^5 1000,000c_B 1,000,000c_D 30,000^5 100p^5 100,000c_B 1,000,000c_D 330,000^5 100,000c_B 1,000,000c_D 330,000^5 100,000c_B 1,000,000c_B 386,000^5 100,000c_B 1,000,000c_D 3,2000^5 100,000c_B 500,000c_B 1,000,000c_D 0,000c_D 1,000,000c_D	n/v n/v 500,000a ^E 1,000,000a ^F 200 ^G n/v 500,000a ^E 1,000,000a ^F 1,000/170 _{b,s1} G 500,000a ^E 1,000,000a ^F 120,000 ^G n/v n/v n/v 500,000a ^E 1,000,000a ^F 1,400 ^G n/v	15,000 U 15,000 U 7,800 U 7,800 U 7,800 U - 81,000 7,800 U 7,800 U 7,800 U	1,700 U 870 U 870 U 870 U 510 U 22,000 870 U 870 U 870 U	700 U 700 U 700 U - 12,000 700 U 700 U 700 U
Diethyl Phthalate Dimethyl Phthalate Dimethylphenol, 2,4- Dinitro-O-cresol, 4,6- Dinitrotoluene, 2,4- Dinitrotoluene, 2,6- Din-Octyl phthalate Dioxane, 1,4- Eluoranthene Eluorene Hexachlorobenzene Hexachlorobutadiene (Hexachloro-1,3-butadiene) Hexachlorocyclopentadiene	Halka Ha Halka Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha Ha	100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 30,000a^5,500,000c_B 1,000,000d_CD 30,000a^5,500,000c_B 1,000,000d_CD 30,000a^5,500,000c_B 1,000,000d_CD 30,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD	n/v n/v 500,000a ^E 1,000,000a ^F 200 ^G n/v 500,000a ^E 1,000,000a ^F 1,000/170 _{b,s} 1 ^G 500,000a ^E 1,000,000a ^F 120,000 ^G n/v n/v n/v 500,000a ^E 1,000,000a ^F 1,400 ^G	15,000 U 15,000 U 7,800 U 7,800 U 7,800 U - 81,000 7,800 U 7,800 U 7,800 U 7,800 U 7,800 U 7,800 U 7,800 U	1,700 U 870 U 870 U 870 U 510 U 22,000 870 U 870 U	700 U 700 U 700 U - 12,000 700 U 700 U
Diethyl Phthalate Dimethyl Phtha	Hajkaj Hajkaj Hajkaj Hajkaj Hajkaj Hajkaj Hajkaj Hajkaj Hajkaj Hajkaj Hajkaj Hajkaj	100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000d_A^5,500,000c_B 1,000,000d_CD 100,000d_A^5,500,000c_B 1,000,000d_CD 100m_A^5,500,000c_B 1,000,000d_CD 100,000d_A^5,500,000c_B 1,000,000d_CD 330m_A^5,500,000c_B 1,000,000d_CD 100,000d_A^5,500,000c_B 1,000,000d_CD 100,000d_A^5,500,000c_B 1,000,000d_CD 100,000d_A^5,500,000c_B 1,000,000d_CD 100,000d_A^5,500,000c_B 1,000,000d_CD 100,000d_A^5,500,000c_B 1,000,000d_CD 100,000d_A^5,500,000c_B 1,000,000d_CD 550d_A^5,5000B 11,0000,000d_CD 550d_A^5,5000B 11,0000,000d_DD	n/v n/v 500,000a ^E 1,000,000a ^F 200 ^G n/v 500,000a ^E 1,000,000a ^F 1,000/170 _{0.5} 1 ^G 500,000a ^E 1,000,000a ^F 120,000 ^G n/v n/v 10v 500,000a ^E 1,000,000a ^F 1,400 ^G n/v 500,000a ^E 1,000,000a ^F 1,400 ^G n/v 10v 10v 10v 10v 10v 10v 10v 10v 10v 10	15,000 U 15,000 U 7,800 U 7,800 U 7,800 U - 81,000 7,800 U 7,800 U 7,800 U 7,800 U 7,800 U 7,800 U 7,800 U 7,800 U	1,700 U 870 U 870 U 870 U 510 U 22,000 870 U 870 U 870 U 870 U 870 U	700 U 700 U 700 U - 12,000 700 U 700 U 700 U 700 U 700 U 700 U 700 U 2,300 ^A
Diethyl Phthalate Dimethyl Phtha	Hajkaj Hajkaj Hajkaj Hajkaj Hajkaj Hajkaj Hajkaj Hajkaj Hajkaj Hajkaj Hajkaj	100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 30,000^5,500,000c_B 1,000,000d_CD 30,000^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000c_B 1,000,000d_CD 100,000c_B 1,000,000c_B 1,000,000d_DD 100,000a^5,500,000c_B 1,000,0000d_DD 100,000a^5,500,000c_B 1,000,0000d_DD 100,0000a^5,500,000c_B 1,000,0000d_DD 100,0000a^5,500,000c_B 1,000,0000d_DD 100,0000d_DD 100,0000d_DD 100,0000d_DD 100,0000d_DD 100,0000d_DD 100,0000d_DD 100,000	n/v n/v 500,000a ^E 1,000,000a ^F 200 ^G n/v 500,000a ^E 1,000,000a ^F 1,000/170 _{0.5} f ^G 500,000a ^E 1,000,000a ^F 120,000 ^G n/v n/v n/v 500,000a ^E 1,000,000a ^F 1,400 ^G n/v 500,000a ^E 1,000,000a ^F 1,400 ^G n/v	15,000 U 15,000 U 7,800 U 7,800 U 7,800 U - 81,000 7,800 U 7,800 U 7,800 U 7,800 U 7,800 U 7,800 U 7,800 U	1,700 U 870 U 870 U 870 U 510 U 22,000 870 U 870 U 870 U 870 U 870 U	700 U 700 U 700 U - 12,000 700 U 700 U 700 U 700 U 700 U 700 U
Diethyl Phthalate Dimethyl Phthalate Dioxane, 1,4- Cliuoranthene	нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд	100,000a^5,500,000c_B 1,000,000d_CD 12,000^0 500,000c_B 1,000,000d_CD 12,000^0 500,0000_B 1,000,000d_CD 12,000^0 500,0000_B 1,000,0000_DD 12,000^0 500,0000_B 1,000,0000_DD 12,000^0 500,0000_B 1,000,0000_DD 12,000^0 500,0000_B 1,000,0000_DD 12,000^0 500,0000_B 1,000,0000_DD 12,000^0 500,0000_B 1,000,0000_DD 12,000^0 500,0000_DD 12,0000_DD 12,0000	n/v n/v 500,000a ^E 1,000,000a ^F 200 ^G n/v 500,000a ^E 1,000,000a ^F 1,000/170 _{0.5} 1 ^G 500,000a ^E 1,000,000a ^F 120,000 ^G n/v n/v 500,000a ^E 1,000,000a ^F 1,400 ^G n/v 500,000a ^E 1,000,000a ^F 1,400 ^G n/v 500,000a ^E 1,000,000a ^F 1,400 ^G n/v 500,000a ^E 1,000,000a ^F 36,400 ^G n/v	15,000 U 15,000 U 7,800 U 7,800 U 7,800 U - 81,000 7,800 U 7,800 U 7,800 U 7,800 U 7,800 U 7,800 U 7,800 U 7,800 U 7,800 U 7,800 U 7,800 U	1,700 U 870 U 870 U 870 U 510 U 22,000 870 U 870 U 870 U 870 U 870 U 870 U 870 U 870 U	700 U 700 U 700 U 700 U - 12,000 700 U 700 U 700 U 700 U 700 U 700 U 700 U 700 U 700 U 700 U 700 U
Diethyl Phthalate Dimethyl Phthalate Dimethyl Phthalate Dimethyl Phthalate Dimethylphenol, 2,4- Dinitro-O-cresol, 4,6- Dinitrophenol, 2,4- Dinitrotoluene, 2,4- Dinitrotoluene, 2,6- Di-n-Octyl phthalate Dioxane, 1,4- Iuoranthene Iuoranthene Hexachlorobenzene Hexachlorobutadiene (Hexachloro-1,3-butadiene) Hexachlorobutadiene Hexachlorobutadiene Hexachlorobutadiene Hexachlorobutadiene Hexachlorobutadiene Hexachlorobutadiene Hexachlorobutadiene Hexachlorobutadiene Hexachlorobutadiene Hexachlorobutadiene Hexachlorobutane Hexachlorob	нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд	100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 30,000^5,500,000c_B 1,000,000d_CD 30,000^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000c_B 1,000,000d_CD 100,000c_B 1,000,000c_B 1,000,000d_DD 100,000a^5,500,000c_B 1,000,0000d_DD 100,000a^5,500,000c_B 1,000,0000d_DD 100,0000a^5,500,000c_B 1,000,0000d_DD 100,0000a^5,500,000c_B 1,000,0000d_DD 100,0000d_DD 100,0000d_DD 100,0000d_DD 100,0000d_DD 100,0000d_DD 100,0000d_DD 100,000	n/v n/v 500,000a ^E 1,000,000a ^F 200 ^G n/v 500,000a ^E 1,000,000a ^F 1,000/170 _{b,s} 1 ^G 500,000a ^E 1,000,000a ^F 120,000 ^G n/v n/v n/v 500,000a ^E 1,000,000a ^F 1,400 ^G n/v 500,000a ^E 1,000,000a ^F 1,400 ^G n/v 500,000a ^E 1,000,000a ^F 4,400 ^G	15,000 U 15,000 U 7,800 U 7,800 U 7,800 U 7,800 U - 81,000 7,800 U 7,800 U 7,800 U 7,800 U 7,800 U 7,800 U 7,800 U 7,800 U 7,800 U 7,800 U 7,800 U 7,800 U	1,700 U 870 U 870 U 870 U 510 U 22,000 870 U 870 U 870 U 870 U 870 U 870 U 870 U 870 U	700 U 700 U 700 U - 12,000 700 U 700 U 700 U 700 U 700 U 700 U 700 U 700 U 700 U 700 U 700 U 700 U
Diethyl Phthalate Dimethyl Phtha	нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд	100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 30,000^5,500,000c_B 1,000,000d_CD 30,000^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,0000d_CD 100,000a^5,500,000c_B 1,000,0000d_CD 100,000a^5,500,000c_B 1,000,0000d_CD 100,000a^5,500,000c_B 1,000,0000d_CD 100,000a^5,000,000c_B 1,000,0000d_CD 100,000a^5,000,000c_B 1,000,0	n/v n/v 500,000a ^E 1,000,000a ^F 200 ^G n/v 500,000a ^E 1,000,000a ^F 1,000/170 _{b.81} G 500,000a ^E 1,000,000a ^F 120,000 ^G n/v n/v sou,000a ^E 1,000,000a ^F 1,400 ^G n/v 500,000a ^E 1,000,000a ^F 1,400 ^G n/v 500,000a ^E 1,000,000a ^F 4,400 ^G 500,000a ^E 1,000,000a ^F 4,400 ^G 500,000a ^E 1,000,000a ^F 4,400 ^G 500,000a ^E 1,000,000a ^F 50,400 ^G n/v 500,000a ^E 1,000,000a ^F 50,00 ^G sou,000a ^E 1,000,000a ^F 500 ^G n/v	15,000 U 15,000 U 7,800 U 15,000 U 15,000 U	1,700 U 870 U 870 U 870 U 870 U 22,000 870 U 870 U 870 U 870 U 870 U 870 U 870 U 870 U 1,700 U 1,700 U	700 U 700 U 700 U - 12,000 700 U 700 U 700 U 700 U 700 U 700 U 700 U 700 U 700 U 1,400 U 1,400 U 1,400 U
Diethyl Phthalate Dimethyl Phtha	нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд нд/кд	100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 30,000^5,500,000c_B 1,000,000d_CD 30,000^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000d_CD n/v 500,000 _a ^E 1,000,000 _a ^F 200 ^G n/v 500,000 _a ^E 1,000,000 _a ^F 1,000/170 _{b,31} ^G 500,000 _a ^E 1,000,000 _a ^F 1,000/170 _{b,31} ^G n/v n/v 500,000 _a ^E 1,000,000 _a ^F 1,400 ^G n/v 500,000 _a ^E 1,000,000 _a ^F 1,400 ^G 500,000 _a ^E 1,000,000 _a ^F 4,400 ^G 500,000 _a ^E 1,000,000 _a ^F 36,400 ^G n/v 500,000 _a ^E 1,000,000 _a ^F 4,600 ^G 500,000 _a ^E 1,000,000 _a ^F 500 ^G	15,000 U 15,000 U 7,800 U 7,800 U 7,800 U - 81,000 7,800 U 7,800 U 7,800 U 7,800 U 7,800 U 7,800 U 7,800 U 7,800 U 7,800 U 1,800 U	1,700 U 870 U 870 U 870 U 870 U 510 U 22,000 870 U 870 U 870 U 870 U 870 U 5,400 ^A 870 U 870 U 870 U 1,700 U 1,700 U	700 U 700 U 700 U - 12,000 700 U 700 U 700 U 700 U 700 U 700 U 700 U 700 U 700 U 700 U 1,400 U 1,400 U	
Diethyl Phthalate Dimethyl Phthalate Dimethylphenol, 2,4- Dinitrotopersol, 4,6- Dinitrotoluene, 2,4- Dinitrotoluene, 2,4- Dinitrotoluene, 2,6- Din-Octyl phthalate Dioxane, 1,4- Fluoranthene Fluoranthene Hexachlorobenzene Hexachlorobutadiene (Hexachloro-1,3-butadiene) Hexachlorobutadiene (Hexachloro-1,3-butadiene) Hexachlorotethane Indeno(1,2,3-cd)pyrene Indeno(1,2,	H9/kg H9/kg	100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 30,000^5,500,000c_B 1,000,000d_CD 30,000^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000d_DD 100,000a^5,500,000c_B 1,000,000d_DD 100,000d_DD 100,000a^5,500,000c_B 1,000,000d_DD 100,000d_DD n/v 500,000 _a ^E 1,000,000 _a ^F 200 ^G n/v 500,000 _a ^E 1,000,000 _a ^F 1,000/170 _{b,31} ^G 500,000 _a ^E 1,000,000 _a ^F 1,20,000 ^G n/v 1/v 500,000 _a ^E 1,000,000 _a ^F 1,400 ^G n/v 500,000 _a ^E 1,000,000 _a ^F 1,400 ^G 500,000 _a ^E 1,000,000 _a ^F 4,400 ^G 500,000 _a ^E 1,000,000 _a ^F 36,400 ^G n/v 500,000 _a ^E 1,000,000 _a ^F 36,400 ^G n/v 500,000 _a ^E 1,000,000 _a ^F 36,400 ^G n/v 69,000 ^E 1,000,000 _a ^F 30,400 ^G 500,000 _a ^E 1,000,000 _a ^F 30,400 ^G 500,000 _a ^E 1,000,000 _a ^F 300 ^G 500,000 _a ^E 1,000,000 _a ^F 100 ^G	15,000 U 15,000 U 7,800 U 15,000 U 15,000 U 15,000 U 7,800 U 15,000 U	1,700 U 870 U 870 U 870 U 870 U 22,000 870 U 870 U 870 U 870 U 870 U 870 U 870 U 1,700 U 1,700 U 870 U 870 U 1,700 U 1,700 U 1,700 U 1,700 U	700 U 700 U 700 U - 12,000 700 U 700 U 700 U 700 U 700 U 700 U 700 U 700 U 1,400 U	
Diethyl Phthalate Dimethyl Phthalate Dimethylphenol, 2,4- Dinitro-o-cresol, 4,6- Dinitrophenol, 2,4- Dinitrotoluene, 2,4- Dinitrotoluene, 2,4- Dinitrotoluene, 2,6- Di-n-Octyl phthalate Dioxane, 1,4- Luoranthene Luoranthene Lexachlorobutadiene (Hexachloro-1,3-butadiene) Hexachlorobutadiene (Hexachloro-1,3-butadiene) Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlororone Methylnaphthalene, 2- Agphthalene Vitroaniline, 2- Vitroaniline, 2- Vitroaniline, 3- Vitroaniline, 4- Vitroblenzene Vitrob	нд/кд нд/кд	100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_DD 100,000a^5,500,000c_B 1,000,000d_DD 100,000a^5,500,000c_B 1,000,000d_DD 100,000a^5,500,000c_B 1,000,000d_DD 100,000a^5,500,000c_B 1,000,00	n/v 500,000a ^E 1,000,000a ^F 200 ^G n/v 500,000a ^E 1,000,000a ^F 1,000/170 _{b.81} G 500,000a ^E 1,000,000a ^F 120,000 ^G n/v n/v 10/v 500,000a ^E 1,000,000a ^F 1,400 ^G n/v 500,000a ^E 1,000,000a ^F 1,400 ^G n/v 500,000a ^E 1,000,000a ^F 4,400 ^G 500,000a ^E 1,000,000a ^F 4,400 ^G 500,000a ^E 1,000,000a ^F 4,400 ^G 500,000a ^E 1,000,000a ^F 4,400 ^G 500,000a ^E 1,000,000a ^F 4,400 ^G 500,000a ^E 1,000,000a ^F 3,6400 ^G n/v 69,000 ^E 1,000,000a ^F 3,00 ^G 500,000a ^E 1,000,000a ^F 3,00 ^G 500,000a ^E 1,000,000a ^F 3,00 ^G 500,000a ^E 1,000,000a ^F 3,00 ^G 500,000a ^E 1,000,000a ^F 1,70a ^G 500,000a ^E 1,000,000a ^F 1,70a ^G 500,000a ^E 1,000,000a ^F 1,70a ^G	15,000 U 15,000 U 7,800 U 15,000 U 15,000 U 15,000 U 7,800 U	1,700 U 870 U 870 U 870 U 870 U 510 U 22,000 870 U 870 U 870 U 870 U 870 U 870 U 1,700 U 1,700 U 870 U 870 U	700 U 700 U 700 U - 12,000 700 U 700 U 700 U 700 U 700 U 700 U 700 U 700 U 1,400 U 1,400 U 1,400 U 1,700 U 700 U
Diethyl Phthalate Dimethyl Phthalate Dimethylphenol, 2,4- Dinitro-Coresol, 4,6- Dinitrophenol, 2,4- Dinitrotoluene, 2,4- Dinitrotoluene, 2,4- Dinitrotoluene, 2,6- Di-n-Octyl phthalate Dioxane, 1,4- Lucranthene Huoranthene Hexachlorobutadiene (Hexachloro-1,3-butadiene) Hexachlorobutadiene (Hexachloro-1,3-butadiene) Hexachlorobutadiene Hexachlorotethane Hexachlorotethane Hexachlorotethane Hexachlorotethane Hexachlorotethane Hexachlorotethane Hethylnaphthalene, 2- Naphthalene Nitroaniline, 3- Nitroaniline, 3- Nitroaniline, 4- Nitrobenol, 2- Nitrophenol, 2- Nitrophenol, 2- Nitrophenol, 4- Nitrosodi-n-Propylamine Pentachlorophenol	ug/kg ug	100,000a^5 500,000c_B 1,000,000d_CD 100,000a^5 500,000c_B 1,000,000d_DD 100,000a^5 500,000c_B 1,000,000d_DD 100,000a^5 500,000c_B 1,000,000d_DD 100,000a^5 500,000c_B 1,000,00	n/v 500,000a ^E 1,000,000a ^F 200 ^G n/v 500,000a ^E 1,000,000a ^F 1,000/170 _{0,43} G 500,000a ^E 1,000,000a ^F 1,000/170 _{0,43} G n/v n/v 500,000a ^E 1,000,000a ^F 1,400 ^G n/v 500,000a ^E 1,000,000a ^F 1,400 ^G 500,000a ^E 1,000,000a ^F 4,400 ^G 500,000a ^E 1,000,000a ^F 36,400 ^G n/v 500,000a ^E 1,000,000a ^F 300 ^G 500,000a ^E 1,000,000a ^F 300 ^G 500,000a ^E 1,000,000a ^F 300 ^G 500,000a ^E 1,000,000a ^F 300 ^G 500,000a ^E 1,000,000a ^F 300 ^G 500,000a ^E 1,000,000a ^F 170b ^G 500,000a ^E 1,000,000a ^F 170G n/v 500,000a ^E 1,000,000a ^F 100G n/v 500,000a ^E 1,000,000a ^F 100G n/v 500,000a ^E 1,000,000a ^F 100G	15,000 U 15,000 U 7,800 U 15,000 U 15,000 U 15,000 U 15,000 U 7,800 U 7,800 U 7,800 U 15,000 U 15,000 U 7,800 U 7,800 U	1,700 U 870 U 870 U 870 U 870 U 870 U 22,000 870 U 870 U 870 U 870 U 870 U 870 U 1,700 U 1,700 U 1,700 U 870 U 870 U 870 U 870 U 870 U 1,700 U 1,700 U 1,700 U 1,700 U 870 U 870 U 870 U 870 U 870 U 1,700 U 870 U 870 U	700 U 700 U 700 U - 12,000 700 U 700 U 700 U 700 U 700 U 700 U 700 U 700 U 700 U 700 U 700 U 1,400 U 1,400 U 1,400 U 1,400 U 700 U 1,400 U 700 U 1,400 U 700 U 1,400 U
Diethyl Phthalate Dimethyl Phthalate Dittonalline, 2- Dittonalline, 3- Dittonalline, 3- Dittonalline, 4	ug/kg ug/kg	100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,500,000c_B 1,000,000d_CD 32,000^5 1000_CD 100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,50	n/v 500,000a ^E 1,000,000a ^F 200 ^G n/v 500,000a ^E 1,000,000a ^F 1,000/170 _{0.81} G 500,000a ^E 1,000,000a ^F 120,000 ^G n/v 1/v 500,000a ^E 1,000,000a ^F 1,400 ^G n/v 500,000a ^E 1,000,000a ^F 1,400 ^G n/v 500,000a ^E 1,000,000a ^F 36,400 ^G 500,000a ^E 1,000,000a ^F 36,400 ^G 500,000a ^E 1,000,000a ^F 36,400 ^G 500,000a ^E 1,000,000a ^F 30,400 ^G 500,000a ^E 1,000,000a ^F 300 ^G	15,000 U 16,000 U 7,800 U 15,000 U 15,000 U 15,000 U 7,800 U 15,000 U	1,700 U 870 U 870 U 870 U 870 U 510 U 22,000 870 U 870 U 870 U 870 U 870 U 870 U 1,700 U 1,700 U 1,700 U 870 U 870 U 1,700 U 1,700 U 870 U 1,700 U	700 U 700 U 700 U 700 U - 12,000 700 U 700 U 700 U 700 U 700 U 700 U 700 U 700 U 700 U 1,400 U 1,400 U 1,400 U 700 U 7,100
Diethyl Phthalate Dimethyl Phtha	ug/kg ug	100,000a^5 500,000c_B 1,000,000d_CD 100,000a^5 500,000c_B 1,000,00	n/v n/v 500,000a ^E 1,000,000a ^F 200 ^G n/v 500,000a ^E 1,000,000a ^F 1,000/170 _{0.5} 1 ^G 500,000a ^E 1,000,000a ^F 120,000 ^G n/v n/v 500,000a ^E 1,000,000a ^F 1,400 ^G n/v 500,000a ^E 1,000,000a ^F 1,400 ^G n/v 500,000a ^E 1,000,000a ^F 36,400 ^G n/v 500,000a ^E 1,000,000a ^F 36,400 ^G n/v 500,000a ^E 1,000,000a ^F 36,400 ^G 500,000a ^E 1,000,000a ^F 30,400 ^G 500,000a ^E 1,000,000a ^F 30,400 ^G 500,000a ^E 1,000,000a ^F 300 ^G 500,000a ^E 1,000,000a ^F 170a ^G n/v n/v n/v n/v	15,000 U 15,000 U 7,800 U 15,000 U	1,700 U 870 U 870 U 870 U 870 U 870 U 22,000 870 U 870 U 870 U 870 U 870 U 870 U 1,700 U 1,700 U 1,700 U 1,700 U 1,700 U 1,700 U 1,700 U 1,700 U 1,700 U 1,700 U 1,700 U 1,700 U 1,700 U 870 U 870 U 870 U 870 U 870 U 870 U 1,870 U 870 U 1,870 U 870 U 1,870 U	700 U 700 U 700 U 700 U - 12,000 700 U 700 U 700 U 700 U 700 U 700 U 700 U 1,400 U 700 U 700 U 1,400 U 700 U 700 U 1,400 U 700 U 700 U 700 U 700 U 7,100 U 7,100 U 7,100 U 7,100 U 9,100
iethyl Phthalate imethyl Phthalate imethylphenol, 2,4- initro-o-cresol, 4,6- initrophenol, 2,4- initroblene, 2,4- initroblene, 2,4- initroblene, 2,4- initroblene, 2,6- i-n-Octyl phthalate ioxane, 1,4- uoranthene uoranthene uorantene exachlorobutadiene (Hexachloro-1,3-butadiene) exachlorobutadiene (Hexachloro-1,3-butadiene) exachlorocyclopentadiene exachlorocyclopentadiene exachlorocyclopentadiene exachlorocyclopentadiene exachlorocyclopentadiene iterophane) exachlorocyclopentadiene exachloro	ug/kg ug/kg	100,000a^5,500,000c_B 1,000,000d_CD 100,000a^5,700,000c_B 1,000,0000a^5,700,0000_DD 100,000a^5,700,0000_DD 100,0000a^5,700,0000_DD 100,000	n/v 500,000a ^E 1,000,000a ^F 200 ^G n/v 500,000a ^E 1,000,000a ^F 1,000/170 _{b,51} G 500,000a ^E 1,000,000a ^F 1,20,000 ^G n/v n/v 500,000a ^E 1,000,000a ^F 1,400 ^G n/v 500,000a ^E 1,000,000a ^F 1,400 ^G 500,000a ^E 1,000,000a ^F 4,400 ^G 500,000a ^E 1,000,000a ^F 36,400 ^G n/v 500,000a ^E 1,000,000a ^F 4,400 ^G 500,000a ^E 1,000,000a ^F 30,400 ^G 500,000a ^E 1,000,000a ^F 300 ^G 500,000a ^E 1,000,000a ^F 300 ^G 500,000a ^E 1,000,000a ^F 100 ^G n/v 500,000a ^E 1,000,000a ^F 100 ^G n/v 10/v 10/v 10/v 10/v	15,000 U 15,000 U 7,800 U 15,000 U 15,000 U 15,000 U 15,000 U 7,800 U	1,700 U 870 U 870 U 870 U 870 U 870 U 22,000 870 U 870 U 870 U 870 U 870 U 870 U 1,700 U 1,700 U 1,700 U 1,700 U 870 U 870 U 870 U 870 U 870 U 870 U	700 U 700 U 700 U 700 U - 12,000 700 U 700 U 700 U 700 U 700 U 700 U 700 U 700 U 700 U 700 U 700 U 700 U 1,400 U 1,400 U 700 U

820 Linden Ave Site, BCP #C828200 820 Linden Avenue, Pittsford, NY

Sample Location					DP-1	
Sample Date				30-Jul-18	19-Jun-20	6-Jul-20
Sample ID				*LIN-DP-s	*DP-CSSIDE1	DP-CSSIDE2
Sampling Company				STANTEC	STANTEC	STANTEC
_aboratory				TAL	TAL 480-171508-1	TAL
_aboratory Work Order _aboratory Sample ID	Units	NYSDEC-Part 375	NYSDEC CP-51	460-161576-1 460-161576-17	480-171508-1	460-212667-1 460-212667-1
aboratory cumple is	Ointo	1110D20-1 at 070	W10DE0 01 -01	400-1010/0-1/	400-171000-1	400-212007-
/olatile Organic Compounds				_		
acetone	μg/kg	50 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	5.3 U	-	-
Benzene	μg/kg	60 ^{AD} 44,000 ^B 89,000 ^C	n/v	1.1 U	-	-
Bromodichloromethane	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	1.1 U	-	-
Bromoform (Tribromomethane)	µg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	1.1 U	-	-
Bromomethane (Methyl bromide)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	1.1 U	-	-
Butylbenzene, n-	μg/kg	12,000 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.1 U	-	-
Butylbenzene, sec- (2-Phenylbutane)	μg/kg	11,000 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.1 U	_	_
Butylbenzene, tert-	μg/kg	5,900 ^{AD} 500,000 _B 1,000,000 _d C	n/v	1.1 U	_	_
Carbon Disulfide	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F 2,700 ^G	1.1 U	_	_
			500,000a 1,000,000a 2,700 n/v		_	_
Carbon Tetrachloride (Tetrachloromethane)	μg/kg	760 ^{AD} 22,000 ^B 44,000 ^C		1.1 U	-	-
Chlorobenzene (Monochlorobenzene)	μg/kg	1,100 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.1 U	-	-
Chloroethane (Ethyl Chloride)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 1,900 ^G	1.1 U	-	-
Chloroform (Trichloromethane)	μg/kg	370 ^{AD} 350,000 ^B 700,000 ^C	n/v	1.1 U	-	-
Chloromethane	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	1.1 U	-	-
Cyclohexane	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	1.1 U	-	-
Dibromo-3-Chloropropane, 1,2- (DBCP)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	1.1 U	-	-
Dibromochloromethane	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F	1.1 U	_	_
Dichlorobenzene, 1,2-	μg/kg	1,100 ^{AD} 500,000 ₆ B 1,000,000 _d C	n/v	1.1 U	_	
Dichlorobenzene, 1,3-	μg/kg	2.400 ^{AD} 280,000 ^B 560,000 ^C	n/v	1.1 U	_	_
Dichlorobenzene, 1,4-	μg/kg μg/kg	1,800 ^{AD} 130,000 ^B 250,000 ^C	n/v	1.1 U	_	_
		1,800 130,000 250,000 CD			_	_
Dichlorodifluoromethane (Freon 12)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	1.1 U	-	-
Dichloroethane, 1,1-	μg/kg	270 ^{AD} 240,000 ^B 480,000 ^C	n/v	1.1 U	-	-
Dichloroethane, 1,2-	μg/kg	20 _m ^A 30,000 ^B 60,000 ^C 20 _q ^D	n/v	1.1 U	-	-
Dichloroethene, 1,1-	μg/kg	330 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.1 U	-	-
Dichloroethene, cis-1,2-	μg/kg	250 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.1 U	-	-
Dichloroethene, trans-1,2-	μg/kg	190 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.1 U	-	-
Dichloropropane, 1,2-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F	1.1 U	-	-
Dichloropropene, cis-1,3-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	1.1 U	_	_
Dichloropropene, trans-1,3-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	1.1 U	_	_
Ethylbenzene	μg/kg	1,000 ^{AD} 390,000 ^B 780,000 ^C	n/v	1.1 U	_	_
		100,000 _a 500,000 _c 1,000,000 _d CD	n/v	1.1 U	_	_
Ethylene Dibromide (Dibromoethane, 1,2-)	μg/kg				-	-
Hexanone, 2- (Methyl Butyl Ketone)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	5.3 U	-	-
sopropylbenzene	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 2,300 ^G	1.1 U	-	-
sopropyltoluene, p- (Cymene)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 10,000 ^G	1.1 U	-	-
Methyl Acetate	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	5.3 U	-	-
Methyl Ethyl Ketone (MEK) (2-Butanone)	μg/kg	120 ^{AD} 500,000 ₆ ^B 1,000,000 _d ^C	500,000 _a ^E 1,000,000 _a ^F 300 ^G	5.3 U	-	-
Methyl Isobutyl Ketone (MIBK)	μg/kg	100,000 _a A 500,000 _c B 1,000,000 _d CD	500,000a E 1,000,000a F 1,000 G	5.3 U	_	_
Nethyl tert-butyl ether (MTBE)	μg/kg	930 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.1 U	_	_
		100,000 _a 500,000 _c 1,000,000 _d CD			_	_
Methylcyclohexane	μg/kg		n/v	1.1 U	-	-
Methylene Chloride (Dichloromethane)	μg/kg	50 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.1 U	-	-
Naphthalene	μg/kg	12,000 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.1 U	-	-
Propylbenzene, n-	μg/kg	3,900 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.1 U		-
Styrene	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F	1.1 U	-	-
etrachloroethane, 1,1,2,2-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 600 ^G	1.1 U	-	-
etrachloroethene (PCE)	μg/kg	1,300 ^{AD} 150,000 ^B 300,000 ^C	500,000 _a ^E 1,000,000 _a ^F	1.1 U		_
oluene	μg/kg	700 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.1 U		_
richlorobenzene. 1.2.4-				1.1 U	-	· -
	μg/kg	100,000 _a A 500,000 _c B 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F 3,400 ^G			-
richloroethane, 1,1,1-	μg/kg	680 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	1.1 U	-	-
richloroethane, 1,1,2-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	1.1 U	-	-
richloroethene (TCE)	μg/kg	470 ^{AD} 200,000 ^B 400,000 ^C	n/v	1.1 U	-	-
richlorofluoromethane (Freon 11)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	1.1 U		-
richlorotrifluoroethane (Freon 113)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a E 1,000,000 _a F 6,000 ^G	1.1 U	-	-
rimethylbenzene, 1,2,4-	μg/kg	3,600 ^{AD} 190,000 ^B 380,000 ^C	n/v	1.1 U		-
rimethylbenzene, 1,3,5-	μg/kg	8,400 ^{AD} 190,000 ^B 380,000 ^C	n/v	1.1 U		-
/inyl Chloride	μg/kg	20 ^{AD} 13,000 ^B 27,000 ^C	n/v	1.1 U		-
(ylene, m & p-	μg/kg	260 _p ^A 500,000 _{c,p} ^B 1,000,000 _{d,p} ^C 1,600 _p ^D	n/v	1.1 U		_
(ylene, o-	μg/kg	260 _p A 500,000 _{c,p} B 1,000,000 _{d,p} C 1,600 _p D	n/v	1.1 U		_
(ylenes, Total	μg/kg	260 ^A 500,000 _{c,p} 1,000,000 _{d,p} 1,600 _p 260 ^A 500,000 _c 1,000,000 _d 1,600 ^D	n/v	2.1 U		_
	µg/kg					-
otal VOC	μg/kg	n/v	n/v	ND		

Notes:
NIVODEO

NYSDEC-Part 375 NYSDEC 6 NYCRR Part 375 Soil Clean-up Objectives (SCOs)

NYSDEC 6 NYCRR Part 375 - Unrestricted Use Soil Cleanup Objectives

NYSDEC 6 NYCRR Part 375 - Restricted Use SCO - Protection of Human Health - Commercial NYSDEC 6 NYCRR Part 375 - Restricted Use SCO - Protection of Human Health - Industrial

NYSDEC 6 NYCRR Part 375 - Restricted Use SCO - Protection of Groundwater
New York State Department of Environmental Conservation, DEC Policy CP-51, October 21, 2010 NYSDEC CP-51

Table 1 Supplemental Soil Cleanup Objectives - Commercial Table 1 Supplemental Soil Cleanup Objectives - Industrial
Table 1 Supplemental Soil Cleanup Objectives - Protection of Groundwater

Concentration exceeds the indicated standard.

6.5^A 15.2 0.03 U

contaminant is below the specific SCO.

Measured concentration did not exceed the indicated standard.

Analyte was not detected at a concentration greater than the laboratory reporting limit.

No standard/guideline value.

Parameter not analyzed / not available.

n/v

The SCOs for unrestricted use were capped at a maximum value of 100 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3

SCOs for organic contaminants (volatile organic compounds, semivolatile organic compounds, and pesticides) are capped at 100 ppm for residential use, 500 ppm for commercial use, 1000 ppm for industrial use. SCOs for metals are capped at 10,000 ppm. Based on rural background study

Based on rural background study. The value of 1.0 refers to SVOC analses while the 0.17b refers to VOC analyses The SCOs for commercial use were capped at a maximum value of 500 mg/kg. See TSD Section 9.3.

The SCOs for commercial use were capped at a maximum value of 500 mg/kg. See TSD Section 9.3. The criterion is applicable to total xylenes, and the individual isomers should be added for comparison.

The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 mg/kg (Organics) and 10000 mg/kg (Inorganics). See 6 NYCRR Part 375 TSD Section 9.3.

The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3. The criterion is applicable to total xylenes, and the individual isomers should be added for comparison.

The SCOS for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3.

The SCOS for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3. The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for the total species of this

contaminant is below the specific SCO.

For constituents where the calculated SCO was lower than the CRQL, the CRQL is used as the SCO value.

For constituents where the calculated SCO was lower than the rural soil background concentration as determined by the DEC/DOH rural soil survey, the rural soil background concentration is used as the Track 2 SCO value for this use of the site. The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for the total species of this contaminant is below the specific SCO.

This SCO is the sum of endosulfan I, endosulfan II, and endosulfan sulfate. This SCO is the lower of the values for mercury (elemental) or mercury (inorganic salts). See 6 NYCRR Part 375 TSD Table 5.6-1.

For constituents where the calculated SCO was lower than the Contract Required Quantitation Limit (CRQL), the CRQL is used as the Track 1 SCO value.

For constituents where the calculated SCO was lower than the rural soil background concentration as determined by the DEC/DOH rural soil background concentration is used as the Track 1 SCO value for this use of the site.

For constituents where the calculated SCO was lower than the rural soil background concentration as determined by the DEC/DOH rural soil background concentration is used as the Track 1 SCO value for this use of the site. The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for the total species of this contaminant is below the specific SCO.

No SCO has been established for this compound. No SCO has been established for total chromium; however, see standards for trivalent and hexavalent chromium.

Standard is applicable to total PCBs, and the individual Aroclors should be added for comparison.

The criterion is applicable to total xylenes, and the individual isomers should be added for

N ND T UJ TAL

The criterion is applicable to total xylenes, and the individual isomers should be added for comparison.

The reported result is an estimated value.

Presumptive evidence of material.

Not detected.

Result is a tentatively identified compound (TIC) and an estimated value.

Indicates estimated non-detect.

Eurofins Test America Laboratory

An asterisk in front of the Sample ID indicates that the material no longer remains on-site following implementation of Interim Remedial Measures.

Summary of Analytical Results for Eastern Surface Soil Impacts (RAOC-5)
Site Management Plan

820 Linden Ave Site, BCP #C828200 820 Linden Avenue, Pittsford, NY

	1 1	Í	1	٠ ا	I	4-1	1		. 41-		ı		
Sample Location				SS-4a		4abc			5-4b			SS-4c	
Sample Date				7-Apr-20	30-Jul-18	30-Jul-18	30-Jul-18	7-Apr-20	7-Apr-20	30-Jul-18	30-Jul-18	7-Apr-20	30-Jul-18
Sample ID				LIN-SS4a-t-S2	LIN-SS4-t-s	LIN-SS4-b-s	LIN-SS4b-t-s	LIN-SS4b-t-S2	LIN-SS-DUP-S2	LIN-SS4b-b-s	LIN-SS4c-t-s	LIN-SS4c-t-S2	LIN-SS4c-b-s
Sample Depth				0 - 2 in	0 - 2 in	2 - 12 in	0 - 2 in	0 - 2 in	0 - 2 in	2 - 12 in	0 - 2 in	0 - 2 in	2 - 12 in
				STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Sampling Company													
Laboratory				TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL
Laboratory Work Order				480-168313-1	460-161576-1	460-161576-1	460-161576-1	480-168313-1	480-168313-1	460-161576-1	460-161576-1	480-168313-1	460-161576-1
Laboratory Sample ID				480-168313-1	460-161576-24	460-161576-25	460-161576-13	480-168313-2	480-168313-4	460-161576-14	460-161576-15	480-168313-3	460-161576-16
Sample Type	Units	NYSDEC-Part 375	NYSDEC CP-51						Field Duplicate				
oumpie Type	Oilles	INTODES-TUITOTS	NIODEO OI OI						r icia Dapiicate				
2 10 11				l									
General Chemistry													
Cyanide	mg/kg	27 _i 10,000 _{e 1} 40 _i 40	n/v	-	0.27 U	1.0	-	-	-	-	-	-	-
Metals													
Aluminum	ma/ka	10.000 ABCD	10 000 EFG	-	E 020	0.500	1						
	mg/kg	10,000 _e ABCD	10,000 _a EFG	1 -	5,930	6,580	· -	-	-	-	-	-	-
Antimony	mg/kg	10,000 ABCD	10,000 EFG	-	32.9 U	32.7 U	-	-	-	-	-	-	-
Arsenic	mg/kg	13 _n A 16 _a BCD	n/v	-	4.4 U	4.4 U	-	-	-	-	-	-	-
Barium	mg/kg	350 _n ^A 400 ^B 10,000 _e ^C 820 ^D	n/v	-	27.4	26.2	-	-	-	-	-	-	-
Beryllium	mg/kg	7.2 ^A 590 ^B 2.700 ^C 47 ^D	n/v	l .	0.44 U	0.44 U	l .	_		_			_
Cadmium			n/v		0.44 U	0.44 U							
	mg/kg	2.5 _n ^A 9.3 ^B 60 ^C 7.5 ^D		1 -			· -	-	-	-	-		-
Calcium	mg/kg	10,000 ABCD	10,000 a EFG	1 -	4,590	3,010	-	-	-	-	I -	-	-
Chromium	mg/kg	30 _{n I} ^A 1,500 _i ^B 6,800 _i ^C _{NS a} ^D	n/v	-	16.4	19.4	-	-	-	-	-	-	-
Cobalt	mg/kg	10,000 _e ABCD	10,000 _a EFG	-	2.4	2.7	-	-	-	-	-	-	-
Copper	mg/kg	50 ^A 270 ^B 10,000 _a ^C 1,720 ^D	n/v	1 -	8.4	8.5	l -			_	l -	-	-
Iron	mg/kg	10,000 _e ABCD	10,000 _a ^{EFG}	1 -	7,410	8,080	1 -	_	_	_	l .	_	_
		10,000 _e	10,000a	1			1				i -		-
Lead	mg/kg	63 _n ^A 1,000 ^B 3,900 ^C 450 ^D	n/v	1 -	26.3	28.4	1 -	_	-	-	I -		_
Magnesium	mg/kg	10,000 _e ABCD	n/v	1 -	2,030	1,550	-	-	-	-	I -	-	-
Manganese	mg/kg	1,600 _n ^A 10,000 _e ^{BC} 2,000 ₀ ^D	n/v	-	181	170	-	-	-	-	-	-	-
Mercury	mg/kg	$0.18_n^A 2.8_k^B 5.7_k^C 0.73^D$	n/v	-	0.064	0.069	-	_		_	-	_	-
Nickel	mg/kg	30 ^A 310 ^B 10,000 _B ^C 130 ^D	n/v	l .	11.0 U	10.9 U	l .	_		_			_
Potassium	mg/kg	10,000 _e 130	n/v		454	440							
		10,000 _e		· ·			_	-	-	-	-	-	-
Selenium	mg/kg	$3.9_{n}^{A} 1,500^{B} 6,800^{C} 4_{a}^{D}$	n/v	-	8.8 U	8.7 U	-	-	-	-	-	-	-
Silver	mg/kg	2 ^A 1,500 ^B 6,800 ^C 8.3 ^D	n/v	-	1.1 U	1.1 U	-	-	-	-	-	-	-
Sodium	mg/kg	10,000 _a ABCD	n/v	-	307 U	305 U	-	-	-	-	-	-	-
Thallium	mg/kg	10,000 ABCD	10,000 _a	-	13.2 U	13.1 U	-	-	-	-	-	-	-
Vanadium	mg/kg	10,000 _a ABCD	10,000 _a EFG	l .	10.9	11.8	l .	_		_			_
Zinc	mg/kg	109, ^A 10.000, ^{BC} 2.480 ^D	n/v		47.2	46.7							
	IIIg/kg	109 _n 10,000 _e 2,460	II/V		41.2	40.7		-				-	-
Polychlorinated Biphenyls													
Aroclor 1016	μg/kg	ABCD	n/v	-	38 U	37 U	-	-	-	-	-	-	-
Aroclor 1221	μg/kg	ABCD	n/v	-	38 U	37 U	-	_		_	-		-
Aroclor 1232	μg/kg	ABCD	n/v	l .	38 U	37 U	l .	_		_			_
Aroclor 1242		ABCD	n/v		38 U	37 U							
	μg/kg	ABCD		-			-	-	-	-	· ·	-	-
Aroclor 1248	μg/kg	ABCD	n/v	-	38 U	37 U	-	-	-	-	-	-	-
Aroclor 1254	μg/kg		n/v	-	38 U	37 U	-	-	-	-	-	-	-
Aroclor 1260	μg/kg	ABCD	n/v	-	38 U	37 U	-	-	-	-	-	-	-
Aroclor 1262	μg/kg	ABCD	n/v	l -	38 U	37 U	_	_	_	_		_	_
Aroclor 1268	μg/kg	°ABCD	n/v		38 U	37 U							
Polychlorinated Biphenyls (PCBs)		100A 1 000B 05 000C 0 000D	n/v	1 -	ND	ND	· -	_		-	· ·	_	_
	μg/kg	100 ^A 1,000 ^B 25,000 ^C 3,200 ^D	11/V		IND	ND		-	-			-	
Pesticides													
Aldrin	μg/kg	5 _n ^A 680 ^B 1,400 ^C 190 ^D	n/v	-	3.8 U	3.7 U	-	-	-	-	-	-	
BHC, alpha-	μg/kg	20 ^{AD} 3,400 ^B 6,800 ^C	n/v	1 -	3.8 U	3.7 U	-	-		-	-	-	-
BHC, beta-	μg/kg	36 ^A 3.000 ^B 14.000 ^C 90 ^D	n/v	l .	3.8 U	3.7 U	l .			_	l .		
BHC, delta-			n/v	1 .	3.8 U	3.7 U	1	_		_	1 .		1
	μg/kg	40 _n 500,000 _c 1,000,000 _d 250 ^D		1 -			1	_		-	1 -	_	_
Camphechlor (Toxaphene)	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	-	38 U	37 U	-	-	-	-	-	-	-
Chlordane, alpha-	μg/kg	94 ^A 24,000 ^B 47,000 ^C 2,900 ^D	n/v	-	3.8 U	3.7 U	-	-	-	-	-	-	-
Chlordane, trans- (gamma-Chlordane)	μg/kg	100,000 _a ^A 1,000,000 _d ^D	n/v	-	3.8 U	3.7 U	-	-	-	-	-	-	-
DDD (p,p'-DDD)	μg/kg	$3.3_{\rm m}^{\rm A}92,000^{\rm B}180,000^{\rm C}14,000^{\rm D}$	n/v	l -	3.8 U	3.7 U		_	_	_		_	_
DDE (p,p'-DDE)	μg/kg	3.3 _m ^A 62,000 ^B 120,000 ^C 17,000 ^D	n/v		3.8 U	3.7 U							
DDT (p,p'-DDT)	μg/kg	3.3 _m 47,000 120,000 17,000 3.3 _m 47,000 ^B 94,000 ^C 136,000 ^D	n/v	1	3.8 U	3.7 U	1				i -		-
	μg/kg			1 -			-	_	-	-	I -		
Dieldrin	μg/kg	5 _n ^A 1,400 ^B 2,800 ^C 100 ^D	n/v	-	63 ^A	52 ^A	-	-	-	-	-	-	-
	μg/kg	2,400, ^A 200,000, ^B 920,000, ^C 102,000 ^D	n/v	-	3.8 U	3.7 U	-	-	-	-	l -	-	-
Endosulfan I	μg/kg	2.400, A 200.000, B 920.000, C 102.000	n/v	1 -	3.8 U	3.7 U	_	_	_	_	l -	-	
	ra'''a	2,400 _i 200,000 _i 920,000 _i 102,000 2,400 _i 200,000 _i 920,000 _i 1,000,000 _d D	n/v	1 -	3.8 U	3.7 U	_			_	_		
Endosulfan II	ua/ka			1	3.8 U		1				i -		_
Endosulfan II Endosulfan Sulfate	μg/kg		w.L.			3.7 U	1 -	-	-	-		-	-
Endosulfan II Endosulfan Sulfate Endrin	μg/kg	14 ^A 89.000 ^B 410.000 ^C 60 ^D	n/v	1 -									
Endosulfan II Endosulfan Sulfate Endrin Endrin Aldehyde	μg/kg μg/kg	14 ^A 89,000 ^B 410,000 ^C 60 ^D 100,000 _a 500,000 _c 1,000,000 _d CD	n/v	-	3.8 U	3.7 U	-	-	-	-	-	-	-
Endosulfan II Endosulfan Sulfate Endrin	μg/kg μg/kg	14 ^A 89,000 ^B 410,000 ^C 60 ^D 100,000 _a 500,000 _c 1,000,000 _d CD		-		3.7 U 3.7 U	-	-	-	-	-	-	-
Endosulfan II Endosulfan Sulfate Endrin Endrin Aldehyde	μg/kg μg/kg μg/kg	14 ^A 89,000 ^B 410,000 ^C 60 ^D 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	3.8 U		- - -	- - -		- - -	-	- - -	-
Endosulfan II Endosulfan Sulfate Endrin Endrin Aldehyde Endrin Ketone Heptachlor	µg/kg µg/kg µg/kg µg/kg	14 ^A 89.000 ^B 410.000 ^C 60 ^D 100,000a ^A 500,000c ^B 1,000,000d ^{CD} 100,000a ^A 500,000c ^B 1,000,000d ^{CD} 42 ^A 15,000 ^B 29,000 ^C 380 ^D	n/v n/v n/v	-	3.8 U 3.8 U 3.8 U	3.7 U 3.7 U	-	- - -	- - -	- - -	- - -	- - - -	-
Endosulfan II Endosulfan Sulfate Endrin Endrin Aldehyde Endrin Ketone Heptachlor Heptachlor Epoxide	µg/kg µg/kg µg/kg µg/kg µg/kg	14 ^A 89.000 ^B 410.000 ^C 60 ^D 100.000 _a ^A 500.000 _c ^B 1.000.000 _a ^{CD} 100.000 _a ^A 500.000 _c ^B 1.000.000 _a ^{CD} 42 ^A 15.000 ^B 29.000 ^C 380 ^D 100.000 _a ^A 500.000 _c ^B 1.000.000 _a ^{CD}	n/v n/v n/v 500,000 _a E 1,000,000 _a F 20 ^G	-	3.8 U 3.8 U 3.8 U 3.8 U	3.7 U 3.7 U 3.7 U	-		- - -	- - - -	- - - -	- - - -	- - -
Endosulfan II Endosulfan Sulfate Endrin Endrin Aldehyde Endrin Ketone Heptachlor	µg/kg µg/kg µg/kg µg/kg	14 ^A 89.000 ^B 410.000 ^C 60 ^D 100,000a ^A 500,000c ^B 1,000,000d ^{CD} 100,000a ^A 500,000c ^B 1,000,000d ^{CD} 42 ^A 15,000 ^B 29,000 ^C 380 ^D	n/v n/v n/v	-	3.8 U 3.8 U 3.8 U	3.7 U 3.7 U	-	- - - -	- - - -	- - - -	- - - -	- - - - -	- - - -

190500898 Page 1 of 4 $\label{lem:update} \begin{tabular}{ll} U:&190500898\\&05_report_deliv'ldeliverables\\&reports\\&SMP\\&2_Tables\\&analytical_CL\\&tbl10_20200716-190500898-tbl5-ESS-RAOC-5-Soil_Samples-CL.xlsx\\&190500898\\&190500898-tbl5-ESS-RAOC-5-Soil_Samples-CL.xlsx\\&190500898\\&190500898-tbl5-ESS-RAOC-5-Soil_Samples-CL.xlsx\\&190500898\\&190500898-tbl5-ESS-RAOC-5-Soil_Samples-CL.xlsx\\&190500898-tbl5-ESS-RAOC-5-Soil_Samples-CL.xlxx\\&190500898-tbl5-ESS-RAOC-5-Soil_Samples-CL.xlxx\\&190500898-tbl5-ESS-RAOC-5-Soil_Samples-CL.xlxx\\&190500898-tbl5-ESS-RAOC-5-Soil_Samples-CL.xlxx\\&190500898-tbl5-ESS-RAOC-5-Soil_Samples-CL.xlxx\\&190500898-tbl5-ESS-RAOC-5-Soil_Samples-CL.xlxx\\&190500898-tbl5-ESS-RAOC-5-Soil_Samples-CL.xlxx\\&190500898-tbl5-ESS-RAOC-5-Soil_Samples-CL.xlxx\\&190500898-tbl5-ESS-RAOC-5-Soil_Samples-CL.xlxx\\&190500898-tbl5-ESS-RAOC-5-Soil_Samples-CL.xlxx\\&190500898-tbl5-ESS-RAOC-5-Soil_Samples-CL.xlxx\\&190500898-tbl5-ESS-RAOC-5-Soil_Samples-CL.xlxx\\&190500898-tbl5-ESS-RAOC-5-Soil_Samples-CL.xlxx\\&190500898-tbl5-ESS-RAOC-5-Soil_Samples-CL.xlxx\\&1$

Summary of Analytical Results for Eastern Surface Soil Impacts (RAOC-5) Site Management Plan

820 Linden Ave Site, BCP #C828200 820 Linden Avenue, Pittsford, NY

	1	i i		٠			1		45		I	00.4-	
Sample Location				SS-4a	SS-				-4b			SS-4c	
Sample Date		l		7-Apr-20	30-Jul-18	30-Jul-18	30-Jul-18	7-Apr-20	7-Apr-20	30-Jul-18	30-Jul-18	7-Apr-20	30-Jul-18
Sample ID				LIN-SS4a-t-S2	LIN-SS4-t-s	LIN-SS4-b-s	LIN-SS4b-t-s	LIN-SS4b-t-S2	LIN-SS-DUP-S2	LIN-SS4b-b-s	LIN-SS4c-t-s	LIN-SS4c-t-S2	LIN-SS4c-b-s
Sample Depth		l		0 - 2 in	0 - 2 in	2 - 12 in	0 - 2 in	0 - 2 in	0 - 2 in	2 - 12 in	0 - 2 in	0 - 2 in	2 - 12 in
Sampling Company		l		STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory				TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL
Laboratory Work Order		l		480-168313-1	460-161576-1	460-161576-1	460-161576-1	480-168313-1	480-168313-1	460-161576-1	460-161576-1	480-168313-1	460-161576-1
Laboratory Sample ID		l		480-168313-1	460-161576-24	460-161576-25	460-161576-13	480-168313-2	480-168313-4	460-161576-14	460-161576-15	480-168313-3	460-161576-16
Sample Type	Units	NYSDEC-Part 375	NYSDEC CP-51						Field Duplicate				
Semi-Volatile Organic Compounds	-							-					
Acenaphthene	μg/kg	20,000 ^A 500,000 _c ^B 1,000,000 _d ^C 98,000 ^D	n/v	-	390 U	380 U	-	-	-	-	-	-	-
Acenaphthylene	μg/kg	100,000 _a ^A 500,000 _b ^B 1,000,000 _d ^C 107,000 ^D	n/v	-	390 U	380 U	-	-	-	-	-	-	-
Acetophenone	μg/kg	100,000° 1,000,000° D	n/v	-	390 U	380 U	-	-	-	-	-	-	-
Anthracene	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	390 U	380 U	-	-	-	-	-	-	-
Atrazine	μg/kg	100,000 _a ^A 1,000,000 _d ^D	n/v	-	390 U	380 U	-	-	-	-	-	-	-
Benzaldehyde	μg/kg	100,000 _a ^A 1,000,000 _d ^D	n/v	-	390 U	380 U	-	-	-	-	-	-	-
Benzo(a)anthracene	μg/kg	1.000° 5.600° 11.000° 1.000°	n/v	_	1,600 ^{AD}	560	_	_	_	_	_	_	_
Benzo(a)pyrene	μg/kg	1,000 _n A 1,000 _n B 1,100 ^C 22,000 ^D	n/v	2 200ABC	1,800 ^{ABC}	630		42 000ABC	42 000ABC			ara aggABCD	
* ** *				2,300 ^{ABC}	1,800		_	12,000 ^{ABC}	13,000 ^{ABC}	-	-	350,000 ^{ABCD}	-
Benzo(b)fluoranthene	μg/kg	1,000 _n ^A 5,600 ^B 11,000 ^C 1,700 ^D	n/v	-	2,600 ^{AD}	930	-	-	-	-	-	-	-
Benzo(g,h,i)perylene	μg/kg	100,000 ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	1,200	450	-	-	-	-	-	-	-
Benzo(k)fluoranthene	μg/kg	800 _n ^A 56,000 ^B 110,000 ^C 1,700 ^D	n/v	-	1,000 ^A	380 U	-	-	-	-	-	-	-
Biphenyl	μg/kg	100,000 _a ^A 1,000,000 _d ^D	500,000 _a E 1,000,000 _a F	-	390 U	380 U	-	-	-	-	-	-	-
Bis(2-Chloroethoxy)methane	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	-	390 U	380 U	-	-	-	-	-	-	-
Bis(2-Chloroethyl)ether	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	-	390 U	380 U	-	-	-	-	-	-	-
Bis(2-Chloroisopropyl)ether (2,2-oxybis(1-Chloropropane))	μg/kg	100,000° A 200,000° B 1,000,000° CD	n/v	-	390 U	380 U	-	-	-	-	-	-	-
Bis(2-Ethylhexyl)phthalate (DEHP)	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500.000° 1.000.000° 435.000°	-	390 U	380 U	-	_	-	-	-	-	-
Bromophenyl Phenyl Ether, 4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	390 U	380 U	-	-	-	-	-	-	-
Butyl Benzyl Phthalate	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 122,000 ^G	-	390 U	380 U	-	_	-	-	-	-	-
Caprolactam	μg/kg	100,000 _a ^A 1,000,000 _d ^D	n/v	-	390 U	380 U	-	-	-	-	-	-	-
Carbazole	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	390 U	380 U	-	-	-	-	-	-	-
Chloro-3-methyl phenol, 4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	390 U	380 U	-	_	-	-	-	-	-
Chloroaniline, 4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a E 1,000,000 _a F 220 ^G	-	390 U	380 U	-	_	-	-	-	-	-
Chloronaphthalene, 2-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	390 U	380 U	-	_	-	-	-	-	-
Chlorophenol, 2- (ortho-Chlorophenol)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F	_	390 U	380 U	_	_	_	_	_	_	_
Chlorophenyl Phenyl Ether, 4-	µg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	_	390 U	380 U	_	_	_	_	_	_	_
Chrysene	μg/kg	1,000 _n ^A 56,000 ^B 110,000 ^C 1,000 _n ^D	n/v	_	2,000 ^{AD}	680	l _	_	_	_	l <u>.</u>	_	_
Cresol, o- (Methylphenol, 2-)		330 _m ^A 500,000 B 1,000,000 _d C 330 _f D	n/v		390 U	380 U							
Cresol, p- (Methylphenol, 4-)	μg/kg	330 _m 500,000 _c 1,000,000 _d 330 _f 330 _f 330 _f 330 _f 330 _f	n/v	-	760 U	740 U		-	-	-		_	-
Dibenzo(a,h)anthracene	μg/kg μg/kg	330 _m ^A 560 ^B 1,100 ^C 1,000,000 _d 330 _f	n/v	_	390 U	380 U							
Dibenzofuran		7,000 ^A 350,000 ^B 1,000,000 _d C 210,000 ^D		-	390 U	380 U	· ·	-	-	-	-	-	-
Dibutyl Phthalate (DBP)	μg/kg		500,000 _a ^E 1,000,000 _a ^F 6,200 ^G	-			-	-	-	-	-	-	-
Dichlorobenzidine, 3,3'-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 8,100 ^G	-	390 U	380 U	_	-	-	-	-	-	-
	μg/kg		11/V	-	390 U	380 U	-	-	-	-	-	-	-
Dichlorophenol, 2,4- Diethyl Phthalate	μg/kg	100,000 _a A 500,000 _c B 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F 400 ^G	-	390 U	380 U	-	-	-	-	-	-	-
	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 7,100 ^G	-	390 U	380 U	-	-	-	-	-	-	-
Dimethyl Phthalate	μg/kg	100,000 _a 500,000 _c 1,000,000 _c CD	500,000 _a ^E 1,000,000 _a ^E 27,000 ^G	-	390 U	380 U	-	-	-	-	· ·	-	-
Dimethylphenol, 2,4-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	***	-	390 U	380 U	-	-	-	-	-	-	-
Dinitro-o-cresol, 4,6-	μg/kg	100,000, A 500,000, B 1,000,000, CD	n/v	-	760 U	740 U	-	-	-	-	-	-	-
Dinitrophenol, 2,4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 200 ^G	-	760 U	740 U	-	-	-	-	-	-	-
Dinitrotoluene, 2,4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	390 U	380 U	-	-	-	-	-	-	-
Dinitrotoluene, 2,6-	μg/kg	100,000 A 500,000 B 1,000,000 CD	500,000, E 1,000,000, F 1,000/170 _{b,s1} G	-	390 U	380 U	-	-	-	-	-	-	-
Di-n-Octyl phthalate	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 120,000 ^G	-	390 U	380 U	-	-	-	-	-	-	-
Fluoranthene	μg/kg	100,000, A 500,000, B 1,000,000, CD	n/v	-	4,000	1,500	-	-	-	-	-	-	-
Fluorene	μg/kg	30,000 ^A 500,000 _c ^B 1,000,000 _d ^C 386,000 ^D	n/v	-	390 U	380 U	-	-	-	-	-	-	-
Hexachlorobenzene	μg/kg	330 _m ^A 6,000 ^B 12,000 ^C 3,200 ^D	500,000 _a ^E 1,000,000 _a ^F 1,400 ^G	-	390 U	380 U	· -	-	-	-	· ·	-	-
Hexachlorobutadiene (Hexachloro-1,3-butadiene)	μg/kg	100,000, A 500,000, B 1,000,000, CD	n/v	-	390 U	380 U	-	-	-	-	· -	-	-
Hexachlorocyclopentadiene	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000 _a E 1,000,000 _a F	-	390 U	380 U	-	-	-	-	-	-	-
Hexachloroethane	μg/kg	100,000, A 500,000, B 1,000,000, CD	n/v	-	390 U	380 U	-	-	-	-	-	-	-
Indeno(1,2,3-cd)pyrene	μg/kg	500 _n ^A 5,600 ^B 11,000 ^C 8,200 ^D	n/v	-	1,400 ^A	510 ^A	-	-	-	-	-	-	-
Isophorone	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F 4,400 ^G	-	390 U	380 U	-	-	-	-	-	-	-
Methylnaphthalene, 2-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 36,400 ^G	-	390 U	380 U	-	-	-	-	-	-	-
Naphthalene	μg/kg	12,000 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	-	390 U	380 U	-	-	-	-	-	-	-
Nitroaniline, 2-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 400 ^G	-	760 U	740 U	-	-	-	-	-	-	-
Nitroaniline, 3-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 500 ^G	-	760 U	740 U	-	-	-	-	-	-	-
Nitroaniline, 4-	μg/kg	100,000 A 500,000 B 1,000,000 CD	n/v	-	760 U	740 U	-	-	-	-	-	-	-
Nitrobenzene	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	69,000 ^E 140,000 ^F 170 _b ^G	-	390 U	380 U	-	-	-	-	-	-	-
Nitrophenol, 2-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 300 ^G	-	390 U	380 U	-	-	-	-	-	-	-
Nitrophenol, 4-	μg/kg	100.000° 500.000° 1.000.000° CD	500,000 _a ^E 1,000,000 _a ^F 100 ^G	-	760 U	740 U	-	-	-	-	-	-	-
N-Nitrosodi-n-Propylamine	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	-	390 U	380 U	-	-	-	-	-	-	-
n-Nitrosodiphenylamine	μg/kg	100,000 A 500,000 B 1,000,000 CD	500,000 _a E 1,000,000 _a F	-	390 U	380 U	-	_	-	-	-	-	-
Pentachlorophenol	μg/kg	800 _m ^A 6.700 ^B 55.000 ^C 800 _f ^D	n/v	-	760 U	740 U	-	_	-	-	-	-	-
Phenanthrene	μg/kg	100,000 ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	_	1,400	550	_	_	_	_	_	_	_
Phenol	μg/kg	330 _m ^A 500,000 _c ^B 1,000,000 _d ^C 330 _f ^D	n/v	_	390 U	380 U		_	_	_			_
Pyrene	μg/kg	100,000 ^A 500,000 _c 1,000,000 _d 330 ^F	n/v	_	3,300	1,200	l -	_	_	_	l -		_
Trichlorophenol, 2,4,5-	μg/kg	100,000 300,000c 1,000,000d 100,000d 500,000c B 1,000,000d CD	500,000 _a ^E 1,000,000 _a ^F 100 ^G	_	390 U	380 U	l -	_	_	_	l -	-	_
Trichlorophenol, 2,4,6-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _d 500,000 _c 1,000,000 _d 500	500,000, 1,000,000, 100 500,000, 1,000,000, 100		390 U	380 U	1 -	-		_	1 -		_
Total SVOC	μg/kg	n/v	n/v	2.300	20.300	7.010	1 -	12.000	13.000	_	1 -	350.000	_
	pg/ng	14.4	1 I/ V	2,000	20,000	1,010		12,000	10,000		-	330,000	
SVOC - Tentatively Identified Compounds	-												
Total SVOC TICs	μg/kg	n/v	n/v	38,140 TJN	11,180 JN	4,960 JN	-	126,900 TJN	126,000 TJN	-	-	1,188,000 TJN	-
See notes on last page.													

Summary of Analytical Results for Eastern Surface Soil Impacts (RAOC-5)
Site Management Plan
820 Linden Ave Site, BCP #C828200
820 Linden Avenue, Pittsford, NY

Sample Location	1 1	I		SS-4a	ss-	lahc	l	SS	-4b		İ	SS-4c	
Sample Date				7-Apr-20	30-Jul-18	30-Jul-18	30-Jul-18	7-Apr-20	7-Apr-20	30-Jul-18	30-Jul-18	7-Apr-20	30-Jul-18
Sample ID				LIN-SS4a-t-S2	LIN-SS4-t-s	LIN-SS4-b-s	LIN-SS4b-t-s	LIN-SS4b-t-S2	LIN-SS-DUP-S2	LIN-SS4b-b-s	LIN-SS4c-t-s	LIN-SS4c-t-S2	LIN-SS4c-b-s
Sample Depth				0 - 2 in	0 - 2 in	2 - 12 in	0 - 2 in	0 - 2 in	0 - 2 in	2 - 12 in	0 - 2 in	0 - 2 in	2 - 12 in
Sampling Company				STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory				TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL
Laboratory Work Order				480-168313-1	460-161576-1	460-161576-1	460-161576-1	480-168313-1	480-168313-1	460-161576-1	460-161576-1	480-168313-1	460-161576-1
Laboratory Sample ID				480-168313-1	460-161576-24	460-161576-25	460-161576-13	480-168313-2	480-168313-4	460-161576-14	460-161576-15	480-168313-3	460-161576-16
Sample Type	Units	NYSDEC-Part 375	NYSDEC CP-51						Field Duplicate				
Volatile Organic Compounds				1	<u> </u>		I				1	I	
Acetone	μg/kg	50 ^{AD} 500,000 _c B 1,000,000 _d C	n/v	l .		-	5.5 U			5.2 U	7.7		5.0 U
Benzene	μg/kg	60 ^{AD} 44,000 ^B 89,000 ^C	n/v	_	_	_	1.1 U	_	_	1.0 U	1.1 U	_	0.99 U
Bromodichloromethane	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	_	_	_	1.1 U	_	_	1.0 U	1.1 U	_	7.1
Bromoform (Tribromomethane)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	_	_	_	1.1 U	_	_	1.0 U	1.1 U	_	0.99 U
Bromomethane (Methyl bromide)	μg/kg	100,000a 500,000c 1,000,000d 100,000d CD	n/v	_	_	_	1.1 U	_	_	1.0 U	1.1 U	_	0.99 U
Butylbenzene, n-	μg/kg	12,000 ^{AD} 500,000 _c B 1,000,000 _d C	n/v				1.1 U			1.0 U	1.1 U		0.99 U
Butylbenzene, sec- (2-Phenylbutane)	μg/kg	11,000 ^{AD} 500,000 _c 1,000,000 _d 11,000,000 _d C	n/v				1.1 U			1.0 U	1.1 U		0.99 U
Butylbenzene, tert-	μg/kg	5.900 ^{AD} 500.000 ₀ 1,000,000 ₄ 5.900 ^{AD}	n/v	_	_		1.1 U	_		1.0 U	1.1 U		0.99 U
Carbon Disulfide		100,000 _a 500,000 _c 1,000,000 _d CD		-	-	-	1.1 U	-	-	1.0 U	1.1 U	-	0.99 U
Carbon Tetrachloride (Tetrachloromethane)	μg/kg μg/kg	760 ^{AD} 22,000 ^B 44,000 ^C	500,000a 1,000,000a 2,700 ^G	1	l -		1.1 U 1.1 U	_	_	1.0 U	1.1 U 1.1 U	_	0.99 U
		760 22,000 44,000 C		-	-	-		-	-			-	
Chlorobenzene (Monochlorobenzene)	μg/kg	1,100 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	_	_	-	1.1 U	-	_	1.0 U	1.1 U	-	0.99 U
Chloroethane (Ethyl Chloride)	μg/kg	100,000 _a A 500,000 _c B 1,000,000 _d CD	500,000 _a E 1,000,000 _a F 1,900 ^G	_	_	-	1.1 U 1 1 U	-	_	1.0 U 1.0 U	1.1 U 1.1 U	-	0.99 U
Chloroform (Trichloromethane)	μg/kg	370 ^{AD} 350,000 ^B 700,000 ^C		-	-	-		-	-			-	23
Chloromethane	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	_	-	-	1.1 U	-	-	1.0 U	1.1 U	-	0.99 U
Cyclohexane	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	-	-	-	1.1 U	-	-	1.0 U	1.1 U	-	0.99 U
Dibromo-3-Chloropropane, 1,2- (DBCP)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	-	1.1 U	-	-	1.0 U	1.1 U	-	0.99 U
Dibromochloromethane	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F	-	-	-	1.1 U	-	-	1.0 U	1.1 U	-	1.9
Dichlorobenzene, 1,2-	μg/kg	1,100 ^{AD} 500,000 ₆ 1,000,000 _d C	n/v	-	-	-	1.1 U	-	-	1.0 U	1.1 U	-	0.99 U
Dichlorobenzene, 1,3-	μg/kg	2,400 ^{AD} 280,000 ^B 560,000 ^C	n/v	-	-	-	1.1 U	-	-	1.0 U	1.1 U	-	0.99 U
Dichlorobenzene, 1,4-	μg/kg	1,800 ^{AD} 130,000 ^B 250,000 ^C	n/v	-	-	-	1.1 U	-	-	1.0 U	1.1 U	-	0.99 U
Dichlorodifluoromethane (Freon 12)	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	-	-	-	1.1 U	-	-	1.0 U	1.1 U	-	0.99 U
Dichloroethane, 1,1-	μg/kg	270 ^{AD} 240,000 ^B 480,000 ^C	n/v	-	-	-	1.1 U	-	-	1.0 U	1.1 U	-	0.99 U
Dichloroethane, 1,2-	μg/kg	20 _m ^A 30,000 ^B 60,000 ^C 20 _n ^D	n/v	-	-	-	1.1 U	-	-	1.0 U	1.1 U	-	0.99 U
Dichloroethene, 1,1-	μg/kg	330 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	-	-	-	1.1 U	-	-	1.0 U	1.1 U	-	0.99 U
Dichloroethene, cis-1,2-	μg/kg	250 ^{AD} 500,000 _c 1,000,000 _d C	n/v	-	-	-	1.1 U	-	-	1.0 U	1.1 U	-	0.99 U
Dichloroethene, trans-1,2-	μg/kg	190 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	-	-	-	1.1 U	-	-	1.0 U	1.1 U	-	0.99 U
Dichloropropane, 1,2-	μg/kg	100,000 _a , 500,000 _c , 1,000,000 _d , CD	500,000 _a E 1,000,000 _a F	-	-	-	1.1 U	-	-	1.0 U	1.1 U	-	0.99 U
Dichloropropene, cis-1,3-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	-	-	-	1.1 U	-	-	1.0 U	1.1 U	-	0.99 U
Dichloropropene, trans-1,3-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	-	1.1 U	-	-	1.0 U	1.1 U	-	0.99 U
Ethylbenzene	μg/kg	1,000 ^{AD} 390,000 ^B 780,000 ^C	n/v	-	-	-	1.1 U	-	-	1.0 U	1.1 U	-	0.99 U
Ethylene Dibromide (Dibromoethane, 1,2-)	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	-	-	-	1.1 U	-	-	1.0 U	1.1 U	-	0.99 U
Hexanone, 2- (Methyl Butyl Ketone)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	-	5.5 U	-	-	5.2 U	5.7 U	-	5.0 U
Isopropylbenzene	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F 2,300 ^G	-	-	-	1.1 U	-	-	1.0 U	1.1 U	-	0.99 U
Isopropyltoluene, p- (Cymene)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 10,000 ^G	-	-	-	1.1 U	-	-	1.0 U	1.1 U	-	0.99 U
Methyl Acetate	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	-	-	-	5.5 U	-	-	5.2 U	5.7 U	-	5.0 U
Methyl Ethyl Ketone (MEK) (2-Butanone)	μg/kg	120 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	500,000 _a ^E 1,000,000 _a ^F 300 ^G	-	-	-	5.5 U	-	-	5.2 U	5.7 U	-	5.0 U
Methyl Isobutyl Ketone (MIBK)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000a ^E 1,000,000a ^F 1,000 ^G	-	-	-	5.5 U	-	-	5.2 U	5.7 U	-	5.0 U
Methyl tert-butyl ether (MTBE)	μg/kg	930 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	-	-	-	1.1 U	-	-	1.0 U	1.1 U	-	0.99 U
Methylcyclohexane	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	-	-	-	1.1 U	_	-	1.0 U	1.1 U	_	0.99 U
Methylene Chloride (Dichloromethane)	μg/kg	50 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	-	-	-	1.1 U	_	-	1.0 U	1.1 U	_	0.99 U
Naphthalene	μg/kg	12,000 ^{AD} 500,000 ₆ 1,000,000 _d C	n/v	-	-	-	1.1 U	_	-	1.0 U	1.1 U	_	0.99 U
Propylbenzene, n-	μg/kg	3,900 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	-	-	-	1.1 U	_	-	1.0 U	1.1 U	_	0.99 U
Styrene	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000° 1,000,000° F	_	-	_	1.1 U	_	_	1.0 U	1.1 U	_	0.99 U
Tetrachloroethane, 1,1,2,2-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 600 ^G	_	_	_	1.1 U	_	_	1.0 U	1.1 U	_	0.99 U
Tetrachloroethene (PCE)	μg/kg	1,300 ^{AD} 150,000 ^B 300,000 ^C	500,000 _a ^E 1,000,000 _a ^F	_	_	_	1.1 U	_	_	1.0 U	1.1 U	_	0.99 U
Toluene	μg/kg	700 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	_	_	_	1.1 U	_	_	1.0 U	1.1 U	_	0.99 U
Trichlorobenzene, 1,2,4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 3,400 ^G	_	_	_	1.1 U	_	_	1.0 U	1.1 U	_	0.99 U
Trichloroethane, 1,1,1-	μg/kg	680 ^{AD} 500.000 _c ^B 1.000.000 _d ^C	n/v	_	_	_	1.1 U	_	_	1.0 U	1.1 U	_	0.99 U
Trichloroethane, 1,1,2-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	_	_	_	1.1 U	_	_	1.0 U	1.1 U	_	0.99 U
Trichloroethene (TCE)	μg/kg	470 ^{AD} 200,000 ^B 400,000 ^C	n/v	_	_	_	1.1 U	_	_	1.0 U	1.1 U		0.99 U
Trichlorofluoromethane (Freon 11)	μg/kg	100,000, A 500,000, B 1,000,000, CD	n/v			_	1.1 U	_		1.0 U	1.1 U		0.99 U
Trichlorotrifluoroethane (Freon 113)	μg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _d 500,000 _d 1,000,000 _d 500,000 _d 100,000	500,000a ^E 1,000,000a ^F 6,000 ^G	1 -	_		1.1 U	_	-	1.0 U	1.1 U	-	0.99 U
Trimethylbenzene, 1,2,4-	μg/kg	3.600 ^{AD} 190.000 ^B 380.000 ^C	n/v	1 -	_		1.1 U		-	1.0 U	1.1 U	-	0.99 U
Trimethylbenzene, 1,3,5-	μg/kg	8,400 ^{AD} 190,000 ^B 380,000 ^C	n/v		l -		1.1 U	_		1.0 U	1.1 U	_	0.99 U
Vinyl Chloride	μg/kg	20 ^{AD} 13.000 ^B 27.000 ^C	n/v	1 .	1 [-	1.1 U			1.0 U	1.1 U		0.99 U
Xylene, m & p-	μg/kg μg/kg	260 ₀ ^A 500,000 ₀ ^B 1,000,000 _d ^C 1,600 ₀ ^D	n/v	1 [l [1.1 U			1.0 U	1.1 U	[0.99 U
Xylene, o-	μg/kg μg/kg	260 _p 500,000 _c 1,000,000 _d 1,600 _p 260 _p 1,600 _p	n/v			-	1.1 U	_		1.0 U	1.1 U		0.99 U
Xylenes, Total	μg/kg	260 ^A 500,000 _c ^B 1,000,000 _d ^C 1,600 ^D	n/v	1 .	1 [2.2 U			2.1 U	2.3 U		2.0 U
Total VOC	μg/kg μg/kg	260 500,000 _c 1,000,000 _d 1,600 n/v	n/v		l -		ND	_		ND	7.7	_	32
10101 100	µg/kg	1 I/ V	1 tr A			-	שוו		-	שוו	1.1		32

Stantec

Summary of Analytical Results for Eastern Surface Soil Impacts (RAOC-5)

Site Management Plan

820 Linden Ave Site. BCP #C828200

820 Linden Avenue, Pittsford, NY

NVSDEC -Part 375 NYSDEC 6 NYCRR Part 375 Soil Clean-up Objectives (SCOs)

NYSDEC 6 NYCRR Part 375 - Unrestricted Use Soil Cleanup Objectives

NYSDEC 6 NYCRR Part 375 - Restricted Use SCO - Protection of Human Health - Commercial

NYSDEC 6 NYCRR Part 375 - Restricted Use SCO - Protection of Human Health - Industrial

P NYSDEC 6 NYCRR Part 375 - Restricted Use SCO - Protection of Groundwater
NYSDEC CP-51 New York State Department of Environmental Conservation, DEC Policy CP-51, October 21, 2010

Table 1 Supplemental Soil Cleanup Objectives - Commercial Table 1 Supplemental Soil Cleanup Objectives - Industrial

Table 1 Supplemental Soil Cleanup Objectives - Protection of Groundwate

Concentration exceeds the indicated standard.

Measured concentration did not exceed the indicated standard.

Analyte was not detected at a concentration greater than the laboratory reporting limit.

No standard/quideline value.

Parameter not analyzed / not available.

The SCOs for unrestricted use were capped at a maximum value of 100 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3

SCOs for organic contaminants (volatile organic compounds, semivolatile organic compounds, and pesticides) are capped at 100 ppm for residential use, 500 ppm for commercial use, 1000 ppm for industrial use. SCOs for metals are capped at 10,000 ppm.

Based on rural background study

Based on rural background study. The value of 1.0 refers to SVOC analses while the 0.17b refers to VOC analyses.

Based on rural background study. The value of 1.0 refers to SVOC analses while the 0.17b refers to VOC analyses.
The SCOs for commercial use were capped at a maximum value of 500 mg/kg. See TSD Section 9.3.
The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 mg/kg (Organics) and 10000 mg/kg (Inorganics). See 6 NYCRR Part 375 TSD Section 9.3.
The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3.
The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3. The criterion is applicable to total xylenes, and the individual isomers should be added for comparison.
The SCOS for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3.
The SCOS for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3. The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for the total species of this contaminant is below the specific SCO.
For constituents where the calculated SCO was lower than the CRQL, the CRQL is used as the SCO value.

For constituents where the calculated SCO was lower than the rural soil background concentration as determined by the DEC/DOH rural soil survey, the rural soil background concentration is used as the Track 2 SCO value for this use of the site. The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for the total species of this contaminant is below the specific SCO.

This SCO is the sum of endosulfan I, endosulfan II, and endosulfan II, and endosulfan II, and endosulfan II, and endosulfan II, and endosulfan II, and endosulfan II, and endosulfan II, and endosulfan II, and endosulfan III, an

No SCO has been established for this compound. No SCO has been established for total chromium; however, see standards for trivalent and hexavalent chro Standard is applicable to total PCBs, and the individual Aroclors should be added for comparison.

The criterion is applicable to total xylenes, and the individual isomers should be added for comparison.

The reported result is an estimated value.

Result is a tentatively identified compound (TIC) and an estimated value.

Eurofins Test America Laboratory

Table 11a Summary of Solid Sample Results for Septic System Waste Characterization Site Management Plan 820 Linden Ave Site, BCP #C828200 820 Linden Avenue, Pittsford, NY

Sample Location Sample Date Sample ID Sample Depth Sampling Company Laboratory Under Laboratory Work Order Laboratory Sample ID Sample Type General Chemistry	Units	NYSDEC-Part 375	NYSDEC CP-51	25-Jul-19 LIN-DBOX2-NW-S NIA STANTEC TAL 480-156805-1 480-156805-9	*DBOX-NW 25-Jul-19 LIN-DBOX-NW-S NIA STANTEC TAL 480-156805-2 480-156805-13	26-Jul-19 LIN-DB0X3-NW-SLD N/A STANTEC TAL 480-156805-1 480-156853-1	18-Jun-20 LIN-RAOC2-LF1-WC-S 2 ft STANTEC TAL 480-171430-1 480-171430-8	*LF 18-Jun-20 LIN-RAOC2-LF1-WC-S 2 ft STANTEC TAL 480-171430-2 480-171430-8	.SW 18-Jun-20 LIN-RAOC2-LF2-WC-S 2 ft STANTEC TAL 480-171430-1 480-171430-9	18-Jun-20 LIN-RAOC2-LF2-WC-S 2 ft STANTEC TAL 480-171430-2 480-171430-9	23-Jul-19 LIN-TANK1SW-WC-SED N/A STANTEC TAL 480-156763-1 480-156764-4	*TANK1-SW 18-Jun-20 LIN-RAOC2-TANK1-WC-SLG NIA STANTEC TAL 480-171430-1 480-171430-10	18-Jun-20 LIN-RAOC2-TANK1-WC-SLG NIA STANTEC TAL 480-171430-2 480-171430-10	"TANK4-SW 23-Jul-19 LIN-TANK4SW-WC-S NIA STANTEC TAL 480-156763-1 480-156764-7
Cyanide Cyanide	mg/kg	27 _i ^{AB} 10,000 _e C 40 _i ^D	n/v	0.96 U	1.1 U	0.95 U	-	-	-	-	3.9 U	-	-	1.1 U
Flashpoint	deg F S.U.	n/v	n/v	-	> 176	> 180	-	-	-	-	-	-	-	-
pH, lab Temperature, Lab	S.U. deg C	n/v n/v	n/v n/v	-	7.9 J 21.1 J	7.6 21.1	-		-	-		-		-
Metals		-		•										!
Aluminum	mg/kg	10,000 _e ABCD	10,000 _a EFG	7,060	6,530	1,680	-	8,060	-	7,520	751	-	-	10,400 ^{ABCDEFG}
Antimony	mg/kg	10,000 ABCD	10,000 _a EFG	16.2 U	16.9 U	15.3 U	-	16.2 U	-	15.9 U	68.7 U	-	-	17.5 U
Arsenic Barium	mg/kg mg/kg	13, ^A 16, ^{BCD} 350, ^A 400 ^B 10,000, ^C 820 ^D	n/v n/v	3.0 22.8	10.1 209	2.0 U 7.2		2.2 U 30.9 ^		2.1 U 16.0 ^	9.2 U 36.4			2.3 U 39.0
Beryllium	mg/kg	7.2 ^A 590 ^B 2,700 ^C 47 ^D	n/v	0.30	0.28	0.20 U	-	0.26	-	0.22	0.92 U	-	-	0.39
Cadmium	mg/kg	2.5 _n ^A 9.3 ^B 60 ^C 7.5 ^D	n/v	0.22 U	5.7 ^A	0.20 U	-	0.22 U	-	0.21 U	1.1	-	-	0.57
Calcium	mg/kg	10,000, ABCD	10,000 _a ^{EFG}	1,890	6,040	468	-	879	-	790	7,010	-	-	2,930
Chromium Cobalt	mg/kg mg/kg	30 _{n,i} ^A 1,500 _i ^B 6,800 _i ^C _{NS,q} ^D 10,000 _a ABCD	n/v 10,000 _a ^{EFG}	8.9 4.0	61.2 ^A 7.4	2.6 0.76		8.5 2.4		7.7 2.8	7.7 2.3 U	-]	11.5 3.7
Copper	mg/kg	50 ^A 270 ^B 10,000 _e ^C 1,720 ^D	n/v	8.9	48.0	3.2	-	5.2	-	5.5	75.3 ^A	-	-	30.5
Iron	mg/kg	10,000 _e ABCD	10,000 _a ^{EFG}	10,600 ^{ABCDEFG}	14,600 ^{ABCDEFG}	2,380	-	9,000	-	8,800	1,500	-	-	10,400 ^{ABCDEFG}
Lead	mg/kg	63 _n ^A 1,000 ^B 3,900 ^C 450 ^D	n/v	6.4	95.2 ^A	5.9	-	13.3	-	4.2	55.1	-	-	25.7
Magnesium Manganese	mg/kg mg/kg	10,000, ABCD 1,600, A 10,000, BC 2,000, D	n/v n/v	1,660 239 B	1,920 129 B	392 52.8 B		1,080 171	-	1,260 67.1	237 16.0	-		1,550 164
Mercury	mg/kg	0.18 _n A 2.8 _k B 5.7 _k C 0.73 ^D	n/v	0.021 U	0.95 ^{AD}	0.021 U		0.029	-	0.020	3.1 ^{ABD}			0.41 ^A
Nickel	mg/kg	30 ^A 310 ^B 10.000° 130 ^D	n/v	8.9	13.1	5.1 U	-	6.0	-	6.0	22.9 U	-	-	7.6
Potassium Selenium	mg/kg mg/kg	10,000 _a ABCD 3.9 _a A 1,500 ^B 6,800 ^C 4 _a D	n/v n/v	1,040 4.3 U	931 4.5 U	241 4.1 U	-	486 4.3 U	-	583 4.2 U	196 18.3 U	-	-	848 4.7 U
Silver	mg/kg	2 ^A 1,500 ^B 6,800 ^C 8.3 ^D	n/v	0.54 U	117 ^{AD}	0.51 U		0.54 U		0.53 U	2.3 U]	0.58 U
Sodium	mg/kg	10,000 _e ABCD	n/v	151 U	158 U	143 U	-	151 U	-	149 U	641 U	-	-	164 U
Thallium Vanadium	mg/kg	10,000 ABCD	10,000 _a ^{EFG} 10,000 _a ^{EFG}	6.5 U 17.2	6.8 U	6.1 U	-	6.5 U 14.7	-	6.4 U 14.8	27.5 U 2.3 U	-	-	7.0 U 16.7
vanadium Zinc	mg/kg mg/kg	10,000 ABCD 109, A 10,000 BC 2,480D	10,000 _a n/v	17.2 22.2	15.5 36.9	19.9 10.6		14.7 37.2	-	14.8 19.4	2.3 U 223 ^A	-		16.7 77.4
Polychlorinated Biphenyls	99	100 ₀ 10,000 ₀ 2,100			00.0	10.0	ı	07.2		10.1	223			
Aroclor 1016	μg/kg	ABCD	n/v	190 U	270 U	11,000 U	-	260 U	-	240 U	1,100 UJ	-	560 U	270 U
Aroclor 1221 Aroclor 1232	μg/kg	ABCD ABCD	n/v	190 U 190 U	270 U 270 U	11,000 U 11,000 U	-	260 U	-	240 U 240 U	1,100 UJ 1,100 UJ	-	560 U 560 U	270 U
Aroclor 1232 Aroclor 1242	μg/kg μg/kg	ABCD	n/v n/v	190 U	270 U	11,000 U 11,000 U		260 U 260 U	-	240 U 240 U	1,100 UJ 1,100 UJ	-	560 U	270 U 270 U
Aroclor 1248	μg/kg	ABCD ABCD	n/v	190 U	270 U	11,000 U	-	260 U	-	240 U	1,100 UJ	-	560 U	270 U
Aroclor 1254 Aroclor 1260	μg/kg μg/kg	ABCD	n/v n/v	190 U 190 U	270 U 270 U	11,000 U 11.000 U	-	260 U 260 U	-	240 U 240 U	5,200 J- 1,100 UJ	-	2,300 560 U	270 U 270 U
Aroclor 1260 Aroclor 1262	μg/kg	ABCD	n/v	190 U	270 U	11,000 U		260 U		240 U	1,100 UJ		560 U	270 U
Aroclor 1268	μg/kg	ABCD	n/v	190 U	270 U	11,000 U	-	260 U	-	240 U	1,100 UJ	-	560 U	270 U
Polychlorinated Biphenyls (PCBs)	μg/kg	100 ^A 1,000 ^B 25,000 ^C 3,200 ^D	n/v	ND	ND	ND	-	-	-	-	5,200 J- ^{ABD}	-	-	ND
Pesticides Aldrin	ua/ka	5, A 680 ^B 1,400 ^C 190 ^D	n/v	1.8 U	19.11	6,800 U		I -	_	_	380 U	_	_	9.8 U
BHC, alpha-	μg/kg μg/kg	20 ^{AD} 3,400 ^B 6,800 ^C	n/v	1.8 U	18 U 18 U	6,800 U	-	-	-	-	380 U	-	-	9.8 U
BHC, beta-	μg/kg	36 ^A 3,000 ^B 14,000 ^C 90 ^D	n/v	1.8 U	18 U	6,800 U	-	-	-	-	380 U	-	-	9.8 U
BHC, delta- Camphechlor (Toxaphene)	μg/kg μg/kg	40, A 500,000, B 1,000,000, C 250 D 100,000, A 500,000, B 1,000,000, CD	n/v n/v	1.8 U 18 U	18 U 180 U	6,800 U 68,000 U] [-	380 U 3.800 U	-]	9.8 U 98 U
Chlordane, alpha-	μg/kg	94 ^A 24,000 ^B 47,000 ^C 2,900 ^D	n/v	1.8 U	18 U	6,800 U	-	-	-	-	380 U	-	-	54 J
Chlordane, trans- (gamma-Chlordane)	μg/kg	100,000 _a A 1,000,000 _d D	n/v	1.8 U	18 U	6,800 U	-	-	-	-	380 U	-	-	27 J
DDD (p,p'-DDD) DDE (p,p'-DDE)	μg/kg μg/kg	3.3 _m ^A 92,000 ^B 180,000 ^C 14,000 ^D 3.3 _m ^A 62,000 ^B 120,000 ^C 17,000 ^D	n/v n/v	1.8 U 1.8 U	18 U 18 U	6,800 U 6,800 U] [-	380 U 380 U	-		9.8 U 9.8 U
DDT (p,p'-DDT)	μg/kg	3.3 _m ^A 47,000 ^B 94,000 ^C 136,000 ^D	n/v	1.8 U	18 U	6,800 U	-	-	-	-	380 U	-	-	9.8 U
Dieldrin	µg/kg	5 _n A 1,400 ^B 2,800 ^C 100 ^D	n/v	1.8 U	18 U	6,800 U	-	-	-	-	380 U	-	-	180 ^{AD}
Endosulfan I Endosulfan II	μg/kg μg/kg	2,400, ^A 200,000, ^B 920,000, ^C 102,000 ^D 2,400, ^A 200,000, ^B 920,000, ^C 102,000 ^D	n/v n/v	1.8 U 1.8 U	18 U 18 U	6,800 U 6,800 U				-	380 U 380 U	-		9.8 U 9.8 U
Endosulfan Sulfate	μg/kg	2,400 ^A 200,000 ^B 920,000 ^C 1,000,000 ^D	n/v	1.8 U	18 U	6,800 U	-	-	-	-	380 U	-	-	9.8 U
Endrin Endrin Aldehyde	μg/kg	14 ^A 89,000 ^B 410,000 ^C 60 ^D	n/v n/v	1.8 U	18 U	6,800 U	-	-	-	-	380 U	-	-	9.8 U
Endrin Aldenyde Endrin Ketone	μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v n/v	1.8 U 1.8 U	59 18 U	6,800 U 6,800 U		:		-	380 U 380 U	-		9.8 U 9.8 U
Heptachlor	μg/kg	42 ^A 15,000 ^B 29,000 ^C 380 ^D	n/v	1.8 U	18 U	6,800 U	-	-	-	-	380 U	-	-	9.8 U
Heptachlor Epoxide Lindane (Hexachlorocyclohexane, gamma)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 20 ^G	1.8 U	18 U	6,800 U 6,800 U	-	-	-	-	380 U	-	-	9.8 U
Methoxychlor (4,4'-Methoxychlor)	μg/kg μg/kg	100 ^{AD} 9,200 ^B 23,000 ^C 100,000 _a 500,000 _c 1,000,000 _d CD	500,000° E 1,000,000° E 900,000°	1.8 U 1.8 U	18 U 18 U	6,800 U] :	[-	380 U 380 U	-] [9.8 U 9.8 U
See notes on last page.		.,,					-							•

 $U:\\ 190500898\\ 05_report_deliv\\ Ideliverables\\ Ireports\\ SMP\\ 2_Tables\\ analytical_CL\\ tbl\\ 11a_20200716-190500898-tbl\\ 6a-Septic_WC_Samples-CL\\ x\\ lsx$

Table 11a Summary of Solid Sample Results for Septic System Waste Characterization Site Management Plan 820 Linden Ave Site, BCP #C828200 820 Linden Avenue, Pittsford, NY

Sample Location	1 1		İ	ı	*DBOX-NW		ı	*1 F	F-SW		ı	*TANK1-SW		*TANK4-SW
Sample Date				25-Jul-19	25-Jul-19	26-Jul-19	18-Jun-20	18-Jun-20	18-Jun-20	18-Jun-20	23-Jul-19	18-Jun-20	18-Jun-20	23-Jul-19
Sample ID				LIN-DBOX2-NW-S	LIN-DBOX-NW-S	LIN-DB0X3-NW-SLD	LIN-RAOC2-LF1-WC-S	LIN-RAOC2-LF1-WC-S	LIN-RAOC2-LF2-WC-S	LIN-RAOC2-LF2-WC-S	LIN-TANK1SW-WC-SED	LIN-RAOC2-TANK1-WC-SLG	LIN-RAOC2-TANK1-WC-SLG	LIN-TANK4SW-WC-S
Sample Depth				N/A	N/A	N/A	2 ft	2 ft	2 ft	2 ft	N/A	N/A	N/A	N/A
Sampling Company				STANTEC TAL	STANTEC TAL	STANTEC TAI	STANTEC TAL	STANTEC TAL	STANTEC TAL	STANTEC TAL	STANTEC TAL	STANTEC TAL	STANTEC TAL	STANTEC TAL
Laboratory Laboratory Work Order				480-156805-1	480-156805-2	480-156805-1	480-171430-1	480-171430-2	480-171430-1	480-171430-2	480-156763-1	480-171430-1	480-171430-2	480-156763-1
Laboratory Work Order Laboratory Sample ID				480-156805-9	480-156805-13	480-156853-1	480-171430-8	480-171430-2	480-171430-9	480-171430-9	480-156764-4	480-171430-10	480-171430-2	480-156764-7
Sample Type	Units	NYSDEC-Part 375	NYSDEC CP-51											
Cami Valatila Ornania Campayada							l .							<u></u>
Semi-Volatile Organic Compounds Acenaphthene	μg/kg	20,000 ^A 500,000 _c ^B 1,000,000 _d ^C 98,000 ^D	n/v	890 U	7,500 U	260.000 U	-	-		-	39.000 U	-	-	10.000 U
Acenaphthylene	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^C 107,000 ^D	n/v	890 U	7,500 U	260,000 U	-	-		-	39,000 U	-	-	10,000 U
Acetophenone	μg/kg	100,000 _a ^A 1,000,000 _d ^D	n/v	890 U	7,500 U	260,000 U	-	-	-	-	39,000 U	-	-	10,000 U
Anthracene	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	890 U	7,500 U	260,000 U	-	-	-	-	39,000 U	-	-	10,000 U
Atrazine Benzaldehvde	μg/kg μg/kg	100,000, ^A 1,000,000, ^D	n/v n/v	890 U 890 U	7,500 U 7,500 U	260,000 U 260,000 U	-	-	-	-	39,000 U 39,000 U	-	-	10,000 U 10,000 U
Benzo(a)anthracene	μg/kg	1,000, A 5,600 ^B 11,000 ^C 1,000, D	n/v	890 U	7,500 U	260,000 U	:				39.000 U]]	10,000 U
Benzo(a)pyrene	μg/kg	1.000° A 1.000° B 1.100° 22.000°	n/v	890 U	7,500 U	260,000 U	-		-	-	39,000 U	_	-	10,000 U
Benzo(b)fluoranthene	μg/kg	1,000 _n A 5,600 ^B 11,000 ^C 1,700 ^D	n/v	890 U	7,500 U	260,000 U	-	-		-	39,000 U	-	-	10,000 U
Benzo(g,h,i)perylene	μg/kg	100,000 ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	890 U	7,500 U	260,000 U	-	-	-	-	39,000 U	-	-	10,000 U
Benzo(k)fluoranthene Biphenyl	μg/kg	800, A 56,000 110,000 1,700 D	n/v	890 U 890 U	7,500 U 7.500 U	260,000 U 260,000 U	-	-	-	-	39,000 U	-	-	10,000 U
Bis(2-Chloroethoxy)methane	μg/kg μg/kg	100,000 _a ^A 1,000,000 _d ^D 100,000 _a ^A 500,000 _a ^B 1,000,000 _a ^{CD}	500,000a ^E 1,000,000a ^F	890 U	7,500 U	260,000 U					39,000 U 39,000 U			10,000 U 10.000 U
Bis(2-Chloroethyl)ether	μg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _a 500,000 _c 1,000,000 _d ^{CD}	n/v	890 U	7,500 U	260,000 U		-	-	-	39,000 U	_]	10,000 U
Bis(2-Chloroisopropyl)ether (2,2-oxybis(1-Chloropropane))	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	890 U	7,500 U	260,000 U	-	-	-	-	39,000 U	-	-	10,000 U
Bis(2-Ethylhexyl)phthalate (DEHP)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 435,000 ^G	890 U	7,500 U	260,000 U	-	-	-	-	39,000 U	-	-	10,000 U
Bromophenyl Phenyl Ether, 4-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d D	n/v	890 U	7,500 U	260,000 U	-	-	-	-	39,000 U	-	-	10,000 U
Butyl Benzyl Phthalate Caprolactam	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 1,000,000 _d ^D	500,000 _a ^E 1,000,000 _a ^F 122,000 ^G	890 U 890 U	7,500 U 7,500 U	260,000 U	-	-	-	-	39,000 U 39,000 U	-	-	10,000 U
Carbazole	μg/kg μg/kg	100,000 _a 1,000,000 _d 100,000 _a 500,000 _c 1,000,000 _d CD	n/v	890 U	7,500 U	260,000 U 260,000 U	1 :		1 :		39,000 U]	10,000 U 10.000 U
Chloro-3-methyl phenol, 4-	μg/kg	100,000 _a 500,000 _e 1,000,000 _d 100,000 _d CD	n/v	890 U	7,500 U	260,000 U	_	_	_	_	39,000 U	_	_	10,000 U
Chloroaniline, 4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a E 1,000,000 _a F 220 ^G	890 U	7,500 U	260,000 U	-	-	-	-	39,000 U	-	-	10,000 U
Chloronaphthalene, 2-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d	n/v	890 U	7,500 U	260,000 U	-	-	-	-	39,000 U	-	-	10,000 U
Chlorophenol, 2- (ortho-Chlorophenol)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000a 1,000,000a F	890 U	7,500 U	260,000 U	-	-	-	-	39,000 U	-	-	10,000 U
Chlorophenyl Phenyl Ether, 4- Chrysene	μg/kg	100,000 _a 500,000 _c 1,000,000 _d D	n/v n/v	890 U 890 U	7,500 U 7,500 U	260,000 U 260,000 U	-	-	-	-	39,000 U 39,000 U	-	-	10,000 U 10,000 U
Cresol, o- (Methylphenol, 2-)	μg/kg μg/kg	1,000 _n ^A 56,000 ^B 110,000 ^C 1,000 _n ^D 330 _m ^A 500,000 _c ^B 1,000,000 _d ^C 330 _f ^D	n/v	890 U	7,500 U 7,500 U	260,000 U					39,000 U	_		10,000 U
Cresol, p- (Methylphenol, 4-)	μg/kg	330 _m ^A 500,000 _c ^B 1,000,000 _d ^C 330 _f ^D	n/v	1.700 U	15.000 U	500,000 U		_	_	_	75.000 U		-	20,000 U
Dibenzo(a,h)anthracene	μg/kg	330 _m ^A 560 ^B 1,100 ^C 1,000,000 _d ^D	n/v	890 U	7,500 U	260,000 U	-	-	-	-	39,000 U	-	-	10,000 U
Dibenzofuran	μg/kg	7,000 ^A 350,000 ^B 1,000,000 _d C 210,000 ^D	500,000 _a ^E 1,000,000 _a ^F 6,200 ^G	890 U	7,500 U	260,000 U	-	-	-	-	39,000 U	-	-	10,000 U
Dibutyl Phthalate (DBP)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a E 1,000,000 _a F 8,100 ^G	890 U	7,500 U	260,000 U	-	-	-	-	39,000 U	-	-	10,000 U
Dichlorobenzidine, 3,3'- Dichlorophenol, 2,4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v 500,000 _a ^E 1,000,000 _a ^F 400 ^G	890 U 890 U	7,500 U 7,500 U	260,000 U 260,000 U	-		-	-	39,000 U 39,000 U	-	-	10,000 U 10,000 U
Diethyl Phthalate	μg/kg μg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _a 500,000 _c 1,000,000 _d CD	500,000° 1,000,000° 400° 500,000° 1,000,000° 7,100°	890 U	7,500 U	260,000 U	1 :		1 :		39,000 U			10,000 U
Dimethyl Phthalate	μg/kg	100,000° A 200,000° B 1,000,000° CD	500,000° 1,000,000° 27,000°	890 U	7,500 U	260,000 U	_			_	39,000 U	_	_	10,000 U
Dimethylphenol, 2,4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	890 U	7,500 U	260,000 U	-	-	-	-	39,000 U	-	-	10,000 U
Dinitro-o-cresol, 4,6-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	1,700 U	15,000 U	500,000 U	-	-	-	-	75,000 U	-	-	20,000 U
Dinitrophenol, 2,4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 200 ^G	1,700 U	15,000 U	500,000 U	-	-	-	-	75,000 U	-	-	20,000 U
Dinitrotoluene, 2,4- Dinitrotoluene, 2,6-	μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v 500,000° 1,000,000° 1,000/170° 9	890 U 890 U	7,500 U 7,500 U	260,000 U 260,000 U	-	-	-	-	39,000 U 39,000 U	-	-	10,000 U 10,000 U
Di-n-Octyl phthalate	μg/kg μg/kg	100,000 _a 500,000 _b 1,000,000 _d 100,000 _a 500,000 _b 1,000,000 _d 500,000	500,000 _a 1,000,000 _a 1,000/170 _{h,a1} 500,000 _a 1,000/170 _{h,a1}	890 U	7,500 U	260,000 0	1 :		1 :		39,000 0			10,000 U
Dioxane, 1,4-	μg/kg	100 _m ^A 130,000 ^B 250,000 ^C 100 _f ^D	n/v	1.000 U	8,800 U	300,000 U	_			_	45,000 U	_	_	12,000 U
Fluoranthene	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	890 U	11,000	530.000 ^{AB}	-	-		-	39,000 U	-	-	10,000 U
Fluorene	μg/kg	30,000 ^A 500,000 _c ^B 1,000,000 _d ^C 386,000 ^D	n/v	890 U	7,500 U	260,000 U	-	-		-	39,000 U	-	-	10,000 U
Hexachlorobenzene	μg/kg	330 _m ^A 6,000 ^B 12,000 ^C 3,200 ^D	500,000 _a ^E 1,000,000 _a ^F 1,400 ^G	890 U	7,500 U	260,000 U	-	-	-	-	39,000 U	-	-	10,000 U
Hexachlorobutadiene (Hexachloro-1,3-butadiene)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	890 U	7,500 U	260,000 U	-	-	-	-	39,000 U	-	-	10,000 U
Hexachlorocyclopentadiene Hexachloroethane	μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000a ^E 1,000,000a ^F	890 U 890 U	7,500 U 7.500 U	260,000 U 260,000 U	-		_	-	39,000 U 39,000 U		-	10,000 U 10,000 U
Indeno(1,2,3-cd)pyrene	μg/kg μg/kg	500 ₀ 5,600 ^B 11,000 ^C 8,200 ^D	n/v	890 U	7,500 U	260,000 U	1 :		1 :		39,000 U			10,000 U
Isophorone	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000a ^E 1,000,000a ^F 4,400 ^G	890 U	7,500 U	260,000 U	_			_	39,000 U	_	_	10,000 U
Methylnaphthalene, 2-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000a ^E 1,000,000a ^F 36,400 ^G	890 U	7,500 U	260,000 U	-	-	-	-	39,000 U	-	-	10,000 U
Naphthalene	μg/kg	12,000 ^{AD} 500,000 _c 1,000,000 _d C	n/v	890 U	7,500 U	260,000 U	-	-	-	-	39,000 U	-	-	10,000 U
Nitroaniline, 2-	μg/kg	100,000, A 500,000, B 1,000,000, CD	500,000a L 1,000,000a L 400 G	1,700 U	15,000 U	500,000 U	-	-	-	-	75,000 U	-	-	20,000 U
Nitroaniline, 3- Nitroaniline, 4-	μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000a ^E 1,000,000a ^F 500 ^G	1,700 U 1,700 U	15,000 U 15,000 U	500,000 U 500,000 U	-		-	-	75,000 U 75,000 U	-	-	20,000 U 20,000 U
Nitrobenzene	μg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _a 500,000 _c 1,000,000 _d ^{CD}	69,000 ^E 140,000 ^F 170 _b ^G	890 U	7.500 U	260,000 U]				39.000 U]]	10.000 U
Nitrophenol, 2-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _d CD	500,000 _a ^E 1,000,000 _a ^F 300 ^G	890 U	7,500 U	260,000 U	_	_	_	_	39.000 U	_	_	10,000 U
Nitrophenol, 4-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a ^E 1,000,000 _a ^F 100 ^G	1,700 U	15,000 U	500,000 U	-	-	-	-	75,000 U	-	-	20,000 U
N-Nitrosodi-n-Propylamine	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	890 U	7,500 U	260,000 U	-	-	-	-	39,000 U	-	-	10,000 U
n-Nitrosodiphenylamine	μg/kg	100,000 _a 500,000 _c 1,000,000 _d 1,000,000 _d	500,000 _a ^E 1,000,000 _a ^F	890 U	7,500 U	260,000 U	-	-	-	-	39,000 U	-	-	10,000 U
Pentachlorophenol	μg/kg	800 _m ^A 6,700 ^B 55,000 ^C 800 _f ^D	n/v	1,700 U	15,000 U	500,000 U	-	-	-	-	75,000 U	-	-	20,000 U
Phenanthrene Phenol	μg/kg	100,000 ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	890 U 890 U	11,000 7.500 U	550,000 ^{AB} 260,000 U	•			-	39,000 U 39,000 U		-	10,000 U 10.000 U
Phenol Pyrene	μg/kg	330 _m ^A 500,000 _c ^B 1,000,000 _d ^C 330 _f ^D 100,000 ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v n/v	890 U 890 U	7,500 U 7.500 U	,			_	-	39,000 U 39,000 U		-	10,000 U 10.000 U
Pyrene Trichlorophenol. 2.4.5-	μg/kg μg/kg	100,000, 500,000, 1,000,000, 5 100,000, 500,000, 1,000,000, 5	n/v 500,000 _a ^E 1,000,000 _a ^F 100 ^G	890 U	7,500 U 7.500 U	440,000 ^A 260,000 U		_	_	_	39,000 U	_	-	10,000 U
Trichlorophenol, 2,4,6-	μg/kg μg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _a 500,000 _c 1,000,000 _d 50	500,000 _a 1,000,000 _a 100 500,000 _a 1,000,000 _a F	890 U	7,500 U	260,000 U	:	:	:	:	39,000 U		-	10,000 U
Total SVOC	μg/kg	n/v	n/v	ND ND	22,000	1,520,000					ND	<u> </u>	-	ND
SVOC - Tentatively Identified Compounds														
Total SVOC TICs	μg/kg	n/v	n/v	-	-	-	-			-	21,728,000 TJN	-	-	32,000 TJ

See notes on last page.

Table 11a Summary of Solid Sample Results for Septic System Waste Characterization Site Management Plan 820 Linden Ave Site, BCP #C828200 820 Linden Avenue, Pittsford, NY

Sample Location					*DBOX-NW		40.1.00		F-SW			*TANK1-SW	40.4.00	*TANK4-SW
Sample Date Sample ID				25-Jul-19 LIN-DBOX2-NW-S	25-Jul-19 LIN-DBOX-NW-S	26-Jul-19 LIN-DB0X3-NW-SLD	18-Jun-20 LIN-RAOC2-LF1-WC-S	18-Jun-20 LIN-RAOC2-LF1-WC-S	18-Jun-20 LIN-RAOC2-LF2-WC-S	18-Jun-20 LIN-RAOC2-LF2-WC-S	23-Jul-19 LIN-TANK1SW-WC-SED	18-Jun-20 LIN-RAOC2-TANK1-WC-SLG	18-Jun-20 LIN-RAOC2-TANK1-WC-SLG	23-Jul-19 LIN-TANK4SW-WC-S
Sample Depth				N/A	N/A	N/A	2 ft	2 ft	2 ft	2 ft	N/A	N/A	N/A	N/A
Sampling Company				STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC	STANTEC
Laboratory				TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL	TAL
Laboratory Work Order				480-156805-1 480-156805-9	480-156805-2 480-156805-13	480-156805-1 480-156853-1	480-171430-1 480-171430-8	480-171430-2 480-171430-8	480-171430-1 480-171430-9	480-171430-2 480-171430-9	480-156763-1 480-156764-4	480-171430-1 480-171430-10	480-171430-2 480-171430-10	480-156763-1 480-156764-7
Laboratory Sample ID Sample Type	Units	NYSDEC-Part 375	NYSDEC CP-51	400-130003-9	400-150005-15	400-130033-1	400-17 1430-0	400-171430-0	400-17 1430-9	400-171430-9	400-150/04-4	400-171430-10	400-17 1430-10	400-150704-7
Volatile Organic Compounds	//	roAD roo ooo B 4 ooo ooo G	-6.	0711	2011	05.111		2011		07.11	00.00011			
Acetone Benzene	μg/kg μg/kg	50 ^{AD} 500,000, ^B 1,000,000, ^C 60 ^{AD} 44,000 ^B 89,000 ^C	n/v n/v	27 U 5.3 U	28 U 5.5 U	25 UJ 5.0 UJ	-	26 U 5.2 U	-	27 U 5.3 U	63,000 U 13,000 U			29 U 5.9 U
Bromodichloromethane	µg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	5.3 U	5.5 U	5.0 UJ	-	5.2 U	-	5.3 U	13,000 U	-	-	5.9 U
Bromoform (Tribromomethane)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	5.3 U	5.5 U	5.0 UJ	-	5.2 U	-	5.3 U	13,000 U	-	-	5.9 U
Bromomethane (Methyl bromide) Butylbenzene, n-	μg/kg μg/kg	100,000, A 500,000, B 1,000,000, CD 12,000,AD 500,000, B 1,000,000, C	n/v n/v	5.3 U 5.3 U	5.5 U 5.5 U	5.0 UJ 5.0 UJ	-	5.2 U 5.2 U	-	5.3 U 5.3 U	13,000 U 13,000 U	-	-	5.9 U 5.9 U
Butylbenzene, sec- (2-Phenylbutane)	μg/kg	11,000 ^{AD} 500,000 _c 1,000,000 _d C	n/v	5.3 U	5.5 U	5.0 UJ	-	5.2 U	_	5.3 U	13,000 U	-	-	5.9 U
Butylbenzene, tert-	μg/kg	5,900 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	5.3 U	5.5 U	5.0 UJ	-	5.2 U	-	5.3 U	13,000 U	-	-	5.9 U
Carbon Disulfide	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a E 1,000,000 _a F 2,700 ^G	5.3 U	5.5 U	5.0 UJ	-	5.2 U	-	5.3 U	13,000 U	-	-	5.9 U
Carbon Tetrachloride (Tetrachloromethane) Chlorobenzene (Monochlorobenzene)	μg/kg μg/kg	760 ^{AD} 22,000 ^B 44,000 ^C 1,100 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	5.3 U 5.3 U	5.5 U 5.5 U	5.0 UJ 5.0 UJ	-	5.2 U 5.2 U	-	5.3 U 5.3 U	13,000 U 13,000 U	-	-	5.9 U 5.9 U
Chloroethane (Ethyl Chloride)	μg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _d 100,000 _d 500,000 _c 100,000 _d 500,000 _d 100,000 _d 500,000 _d	500,000 _a ^E 1,000,000 _a ^F 1,900 ^G	5.3 U	5.5 U	5.0 UJ		5.2 U		5.3 U	13,000 U]	<u> </u>	5.9 U
Chloroform (Trichloromethane)	μg/kg	370 ^{AD} 350,000 ^B 700,000 ^C	n/v	5.3 U	5.5 U	5.0 UJ	-	5.2 U	-	5.3 U	13,000 U	-	-	5.9 U
Chloromethane	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	5.3 U	5.5 U	5.0 UJ	-	5.2 U	-	5.3 U	13,000 U	-	-	5.9 U
Cyclohexane Dibrono 3 Chloropropage 1.2 (DRCP)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v n/v	5.3 U	5.5 U	10 J	-	5.2 U	-	5.3 U	13,000 U	-	-	5.9 U
Dibromo-3-Chloropropane, 1,2- (DBCP) Dibromochloromethane	μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v 500,000 _a ^E 1,000,000 _a ^F	5.3 U 5.3 U	5.5 U 5.5 U	5.0 UJ 5.0 UJ	-	5.2 U 5.2 U		5.3 U 5.3 U	13,000 U 13,000 U] :] :	5.9 U 5.9 U
Dichlorobenzene, 1,2-	μg/kg	1,100 ^{AD} 500,000 ₆ 1,000,000 _d 1,100,000 _d 1,000,000 000 _d 1,000,000	n/v	5.3 U	5.5 U	5.0 UJ	_	5.2 U	_	5.3 U	13,000 U	_	_	5.9 U
Dichlorobenzene, 1,3-	μg/kg	2,400 ^{AD} 280,000 ^B 560,000 ^C	n/v	5.3 U	5.5 U	5.0 UJ	-	5.2 U	-	5.3 U	13,000 U	-	-	5.9 U
Dichlorobenzene, 1,4-	μg/kg	1,800 ^{AD} 130,000 ^B 250,000 ^C	n/v	5.3 U	5.5 U	5.0 UJ	-	5.2 U	-	5.3 U	18,000 ^{AD}	-	-	5.9 U
Dichlorodifluoromethane (Freon 12)	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	5.3 U	5.5 U	5.0 UJ	-	5.2 U	-	5.3 U	13,000 U	-	-	5.9 U
Dichloroethane, 1,1- Dichloroethane, 1,2-	μg/kg μg/kg	270 ^{AD} 240,000 ^B 480,000 ^C 20 _m A 30,000 ^B 60,000 ^C 20 _n D	n/v n/v	5.3 U 5.3 U	5.5 U 5.5 U	5.0 UJ 5.0 UJ	-	5.2 U 5.2 U	1	5.3 U 5.3 U	13,000 U 13,000 U]	_	5.9 U 5.9 U
Dichloroethene, 1,1-	μg/kg	330 ^{AD} 500,000 B 1,000,000 C	n/v	5.3 U	5.5 U	5.0 UJ	-	5.2 U	_	5.3 U	13,000 U	_	_	5.9 U
Dichloroethene, cis-1,2-	μg/kg	250 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	n/v	5.3 U	5.5 U	5.0 UJ	-	5.2 U	-	5.3 U	13,000 U	-	-	5.9 U
Dichloroethene, trans-1,2-	μg/kg	190 ^{AD} 500,000, ^B 1,000,000, ^C	n/v	5.3 U	5.5 U	5.0 UJ	-	5.2 U	-	5.3 U	13,000 U	-	-	5.9 U
Dichloropropane, 1,2-	μg/kg	100,000 _a A 500,000 _c B 1,000,000 _d CD	500,000 _a E 1,000,000 _a F	5.3 U	5.5 U	5.0 UJ	-	5.2 U	-	5.3 U	13,000 U	-	-	5.9 U
Dichloropropene, cis-1,3- Dichloropropene, trans-1,3-	μg/kg μg/kg	100,000, A 500,000, B 1,000,000, CD	n/v n/v	5.3 U 5.3 U	5.5 U 5.5 U	5.0 UJ 5.0 UJ	-	5.2 U 5.2 U		5.3 U 5.3 U	13,000 U 13,000 U]		5.9 U 5.9 U
Ethylbenzene	μg/kg	1,000 ^{AD} 390,000 ^B 780,000 ^C	n/v	5.3 U	5.5 U	5.0 UJ	-	5.2 U	-	5.3 U	13,000 U	-	-	5.9 U
Ethylene Dibromide (Dibromoethane, 1,2-)	µg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	n/v	5.3 U	5.5 U	5.0 UJ	-	5.2 U	-	5.3 U	13,000 U	-	-	5.9 U
Hexanone, 2- (Methyl Butyl Ketone)	μg/kg	100,000a 500,000c 1,000,000d CD	n/v	27 U	28 U	25 UJ	-	26 U	-	27 U	63,000 U	-	-	29 U
Isopropylbenzene	μg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _d 500,000 _d 1,000,000 _d 1,000,000 _d 500,000 _d 1,000,000 _d 500,000 _d 1,000,000 _d 500,000 _d 5	500,000 _a E 1,000,000 _a F 2,300 ^G 500,000 _a E 1,000,000 _a F 10,000 ^G	5.3 U 5.3 U	5.5 U	5.0 UJ	-	5.2 U	-	5.3 U	13,000 U 13,000 U	-	-	5.9 U 5.9 U
Isopropyltoluene, p- (Cymene) Methyl Acetate	μg/kg μg/kg	100,000 _a 500,000 _c 1,000,000 _d 100,000 _d 500,000 _c 1,000,000 _d 500,000 _d	n/v	27 U	5.5 U 28 U	5.0 UJ 25 UJ		5.2 U 26 U]	5.3 U 27 U	63,000 U]	<u> </u>	29 U
Methyl Ethyl Ketone (MEK) (2-Butanone)	μg/kg	120 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	500,000 _a E 1,000,000 _a F 300 ^G	27 U	28 U	25 UJ	-	26 U	-	27 U	63,000 U	-	-	29 U
Methyl Isobutyl Ketone (MIBK)	μg/kg	100,000 A 500,000 B 1,000,000 CD	500,000 _a E 1,000,000 _a F 1,000 ^G	27 U	28 U	25 UJ	-	26 U	-	27 U	63,000 U	-	-	29 U
Methyl tert-butyl ether (MTBE) Methylcyclohexane	μg/kg	930 ^{AD} 500,000 _c ^B 1,000,000 _d ^C 100,000 _s ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v n/v	5.3 U 5.3 U	5.5 U 5.5 U	5.0 UJ 5.4 J	-	5.2 U 5.2 U	-	5.3 U 5.3 U	13,000 U 13,000 U	-	-	5.9 U 5.9 U
Methylene Chloride (Dichloromethane)	μg/kg μg/kg	50 ^{AD} 500,000 ₆ 1,000,000 ₆ 50 ^{AD} 500,000 ₆ 1,000,000 ₆ C	n/v	5.3 U	5.5 U	5.4 J	-	6.9		23	13,000 U]	_	5.9 U
Naphthalene	μg/kg	12,000 ^{AD} 500,000 ₆ 1,000,000 _d ^C	n/v	5.3 U	5.5 U	33 J	-	5.2 U	-	5.3 U	13,000 U	-	-	5.9 U
Propylbenzene, n-	μg/kg	3,900 ^{AD} 500,000, B 1,000,000, C	_n/v	5.3 U	5.5 U	5.0 UJ	-	5.2 U	-	5.3 U	13,000 U	-	-	5.9 U
Styrene	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000a ^E 1,000,000a ^F	5.3 U	5.5 U	5.0 UJ	-	5.2 U	-	5.3 U	13,000 U	-	-	5.9 U
Tetrachloroethane, 1,1,2,2- Tetrachloroethene (PCE)	μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 1,300 ^{AD} 150,000 ^B 300,000 ^C	500,000a 1,000,000a 600 G	5.3 U 5.3 U	5.5 U 5.5 U	5.0 UJ 9.7 J	-	5.2 U 5.2 U	-	5.3 U 5.3 U	13,000 U	-	-	5.9 U
Toluene	μg/kg μg/kg	700 ^{AD} 500,000 _c ^B 1,000,000 _d ^C	500,000a 1,000,000a P	5.3 U	5.5 U	9.7 J 5.2 J	-	5.2 U		5.3 U	80,000 ^{AD} 13,000 U	[_	22 5.9 U
Trichlorobenzene, 1,2,4-	μg/kg	100,000 _a 500,000 _c 1,000,000 _d CD	500,000 _a ^E 1,000,000 _a ^F 3,400 ^G	5.3 U	5.5 U	5.0 UJ	-	5.2 U	_	5.3 U	13,000 U	_	_	5.9 U
Trichloroethane, 1,1,1-	μg/kg	680 ^{AD} 500,000, B 1,000,000, C	n/v	5.3 U	5.5 U	5.0 J	-	5.2 U	-	5.3 U	13,000 U		-	5.9 U
Trichloroethane, 1,1,2-	μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	n/v	5.3 U	5.5 U	5.0 UJ	-	5.2 U	-	5.3 U	13,000 U	-	-	5.9 U
Trichloroethene (TCE)	μg/kg	470 ^{AD} 200,000 ^B 400,000 ^C	n/v	5.3 U 5.3 U	5.5 U	5.0 UJ	-	5.2 U	-	5.3 U	13,000 U			5.9 U
Trichlorofluoromethane (Freon 11) Trichlorotrifluoroethane (Freon 113)	μg/kg μg/kg	100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD} 100,000 _a ^A 500,000 _c ^B 1,000,000 _d ^{CD}	500,000 _a E 1,000,000 _a F 6,000 ^G	5.3 U	5.5 U 5.5 U	5.0 UJ 5.0 UJ	-	5.2 U 5.2 U		5.3 U 5.3 U	13,000 U 970,000 ^{ABEG}		:	5.9 U 5.9 U
Trimethylbenzene, 1,2,4-	μg/kg μg/kg	3,600 ^{AD} 190,000 ^B 380,000 ^C	n/v	5.3 U	5.5 U	38 J	-	5.2 U	-	5.3 U	13,000 U	! :	:	5.9 U
Trimethylbenzene, 1,3,5-	μg/kg	8,400 ^{AD} 190,000 ^B 380,000 ^C	n/v	5.3 U	5.5 U	22 J	-	5.2 U	-	5.3 U	13,000 U	-		5.9 U
Vinyl Chloride	μg/kg	20 ^{AD} 13,000 ^B 27,000 ^C	n/v	5.3 U	5.5 U	5.0 UJ	-	5.2 U	-	5.3 U	13,000 U	-	-	5.9 U
Xylene, m & p-	μg/kg	260, A 500,000, B 1,000,000, C 1,600, D	n/v	11 U	11 U	10 UJ	-	10 U	-	11 U	25,000 U	-	-	12 U
Xylene, o- Xylenes, Total	μg/kg μg/kg	260 _n ^A 500,000 _e _n ^B 1,000,000 _d _n ^C 1,600 _n ^D 260 ^A 500,000 _e ^B 1,000,000 _d ^C 1,600 ^D	n/v n/v	5.3 U 11 U	5.5 U 11 U	9.0 J 10 UJ	-	5.2 U 10 U	-	5.3 U 11 U	13,000 U 25,000 U			5.9 U 12 U
Total VOC	μg/kg μg/kg	260 500,000 _e 1,000,000 _d 1,600 n/v	n/v	ND	ND	142.5 J	-	6.9	-	23	1,068,000	:	:	22
VOC - Tentatively Identified Compounds		-	-	•										•
Total VOC TICs	μg/kg	n/v	n/v	-	_	2,420 J	_		-				-	500 TJ
Volatile Organic Compound - TCLP														
Benzene	mg/L	n/v	n/v	-	-	-	0.010 U	-	0.010 U	-	-	0.010 U	-	-
Carbon Tetrachloride (Tetrachloromethane)	mg/L	n/v	n/v	-	-	-	0.010 U	-	0.010 U	-	-	0.010 U	-	-
Chlorobenzene (Monochlorobenzene) Chloroform (Trichloromethane)	mg/L mg/L	n/v n/v	n/v n/v			-	0.010 U 0.010 U	-	0.010 U 0.010 U			0.010 U 0.010 U	-	_
Dichloroethane, 1,2-	mg/L mg/L	n/v n/v	n/v		[-	0.010 U	:	0.010 U	:	:	0.010 U] :	
Dichloroethene, 1,1-	mg/L	n/v	n/v	-	-	-	0.010 U	-	0.010 U	-	-	0.010 U	-	-
Methyl Ethyl Ketone (MEK) (2-Butanone)	mg/L	n/v	500 _a E 1,000 _a F 0.3 ^G	-	-	-	0.050 U	-	0.050 U	-	-	0.050 U	-	-
	mg/L	n/v	500 _a E 1,000 _a F	1 -	-	-	0.010 U	-	0.010 U	-	-	0.047	-	I -
Tetrachloroethene (PCE)		n/·	ph.	1			0.040.11		0.04011			0.040.11		1
Tetrachloroethene (PCE) Trichloroethene (TCE) Vinyl Chloride	mg/L mg/L	n/v n/v	n/v n/v	-	-	-	0.010 U 0.010 U	:	0.010 U 0.010 U	-	:	0.010 U 0.010 U	-	

 $U:\\ 190500898\\ 05_report_deliv\\ Ideliverables\\ Ireports\\ SMP\\ 2_Tables\\ analytical_CL\\ tbl\\ 11a_20200716-190500898-tbl\\ 6a-Septic_WC_Samples-CL\\ x\\ lsx$

Table 11a

Summary of Solid Sample Results for Septic System Waste Characterization

Site Management Plan

820 Linden Ave Site. BCP #C828200

820 Linden Avenue, Pittsford, NY

Notes:

NYSDEC-Part 375 NYSDEC 6 NYCRR Part 375 Soil Clean-up Objectives (SCOs)

NYSDEC 6 NYCRR Part 375 - Unrestricted Use Soil Cleanup Objectives

NYSDEC 6 NYCRR Part 375 - Restricted Use SCO - Protection of Human Health - Commercial

NYSDEC 6 NYCRR Part 375 - Restricted Use SCO - Protection of Human Health - Industrial

NYSDEC 6 NYCRR Part 375 - Restricted Use SCO - Protection of Groundwater

NYSDEC 6 NYCRR Part 375 - Restricted Use SCO - Protection of Groundwater

NYSDEC CP-51

New York State Department of Environmental Conservation, DEC Policy CP-51, October 21, 2010

Table 1 Supplemental Soil Cleanup Objectives - Commercial

Table 1 Supplemental Soil Cleanup Objectives - Protection of Groundwater

Concentration exceeds the indicated standard.

Measured concentration did not exceed the indicated standard.

Laboratory reporting limit was greater than the applicable standard.

Analyte was not detected at a concentration greater than the laboratory reporting limit.

No standard/quideline value.

Parameter not analyzed / not available.

The SCOs for unrestricted use were capped at a maximum value of 100 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3

SCOs for organic contaminants (volatile organic compounds, semivolatile organic compounds, and pesticides) are capped at 100 ppm for residential use, 500 ppm for commercial use, 1000 ppm for industrial use. SCOs for metals are capped at 10,000 ppm.

Based on rural background study

Based on rural background study
Based on rural background study. The value of 1.0 refers to SVOC analses while the 0.17b refers to VOC analyses.
The SCOs for commercial use were capped at a maximum value of 500 mg/kg. See TSD Section 9.3.
The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 500 mg/kg. See TSD Section 9.3. The criterion is applicable to total xylenes, and the individual isomers should be added for comparison.
The SCOs for industrial use and the protection of groundwater were capped at a maximum value of 1000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3.
The SCOs for metals were capped at a maximum value of 1000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3. The criterion is applicable to total xylenes, and the individual isomers should be added for comparison.
The SCOS for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3.
The SCOS for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3.
The SCOS for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3.
The SCOS for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3.
The SCOS for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3. The SCO for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3.
The SCOS for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3.
The SCOS for metals were capped at a maximum value of 10,000 mg/kg. See 6 NYCRR Part 375 TSD Section 9.3. The SCO for this specific scope of the second scope of the s

The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for the total species of this contaminant is below the specific SCO. This SCO is the sum of endosulfan I, endosulfan II, and endosulfan sulfate.

This SCO is the sum of endosulfan II, endosulfan II, and endosulfan suifate.

This SCO is the lower of the values for mercury (elemental) or mercury (inorganic salts). See 6 NYCRR Part 375 TSD Table 5.6-1.

For constituents where the calculated SCO was lower than the Contract Required Quantitation Limit (CRQL), the CRQL is used as the Track 1 SCO value.

For constituents where the calculated SCO was lower than the rural soil background concentration as determined by the DEC/DOH rural soil survey, the rural soil background concentration is used as the Track 1 SCO value for this use of the site.

For constituents where the calculated SCO was lower than the rural soil background concentration as determined by the DEC/DOH rural soil survey, the rural soil background concentration is used as the Track 1 SCO value for this use of the site.

The SCO for this specific compound (or family of compounds) is considered to be met if the analysis for the total species of this contaminant is below the specific SCO. No SCO has been established for this compound. No SCO has been established for total chromium; however, see standards for trivalent and hexavalent chromium. Standard is applicable to total PCBs, and the individual Aroclors should be added for comparison.

The criterion is applicable to total xylenes, and the individual isomers should be added for comparison. ICV,CCV,ICB,CCB, ISA, ISB, CRI, CRA, DLCK or MRL standard: Instrument related QC exceeds the control limits.

Indicates analyte was found in associated blank, as well as in the sample.

The reported result is an estimated value.

The analyte was positively identified; the associated numerical value is an estimated quantity that may be biased low.

Not detected.

Result is a tentatively identified compound (TIC) and an estimated value. Indicates estimated non-detect.

Eurofins Test America Laboratory

An asterisk in front of the Sample Location indicates that the material no longer remains on-site following implementation of Interim Remedial Measures

Table 11b

Summary of Liquid Sample Results for Characterization of Septic System Contents

Site Management Plan 820 Linden Ave Site BCP #C828200 820 Linden Avenue, Pittsford, NY

Liboratory Work Order Liboratory Work Order Liboratory Sample ID	Sample Location Sample Date Sample ID Sampling Company Laboratory				*TANK1-SW 23-Jul-19 LIN-TANK1SW-WC-W STANTEC TALBU	*TANK2-SW 23-Jul-19 LIN-TANK2SW-WC-W STANTEC TALBU	*TANK3-SW 23-Jul-19 LIN-TANK3SW-WC-W STANTEC TALBU
Acetome	Laboratory Work Order	Units	TOGS	NYSDEC	480-156763-1	480-156763-1	480-156763-1
Betzere	Volatile Organic Compounds		•	•			•
Bromodichromethane			50 ^A			10 0	200
Bromonform (Tribromonethane) pg/L 50° n/v 20 U 4.0 U 2.0 U			1 ^B				
Bromonethane (Methyl bromide)							
Buytherzene, se-C.2-Phenybutane) Buytherzene, se-Carbettane, se-Carbettane, se-Carbettane, se-Carbettane, se-Carbettane, se-Carbettane, se-Carbettane, se-Carbettane, se-Carbet							
Buylberzene, sec. (2-Pherybutane)			5 ^D				
Bulytherrane, terf-							
Carbon Disalifide Uppl. 60			5 ^D				
Carbon Tetrachioride (Tetrachioromethane) UpU. 5-8 500° 20 U 4.0 U 2.0 U							
Chloroberzene (Moncolhoroberzene)				-			
Chlorothane (Elhy Chloride)							
Chlorider (Trichbromethane)							
Circiomethane UpU S8 N/ 20 U 4.0 U 2.0 U			7 ^B	-			
Cyclohexane μg/L n/V n/V 20 U 4.0 U 2.0 U Dibromo-S-Chloropropane, 1.2- (DBCP) μg/L 50^A n/V 20 U 4.0 U 2.0 U Dibromo-S-Chloropropane, 1.2- (DBCP) μg/L 50^A n/V 20 U 4.0 U 2.0 U Dichlorobersene, 1.3- (Dichloropharene, 1.3- (Dichloropharene, 1.4- (Dichloropharene, 1.4- (Dichloropharene, 1.4- (Dichloropharene, 1.4- (Dichloropharene, 1.4- (Dichloropharene, 1.4- (Dichloropharene, 1.4- (Dichloropharene, 1.2- (Dichloropharene, 1.4- (Dichloropharene) (Dichloropharene, 1.4- (Dichloropharene, 1.4- (Dichloropharene, 1.4- (Dichloropharene, 1.4- (Dichloropharene, 1.4- (Dichloropharene, 1.4- (Dichloropharene, 1.4- (Dichloropharene, 1.4- (Dichloropharene, 1.4- (Dichloropharene, 1.4- (Dichloropharene, 1.4- (Dichloropharene, 1.4- (Dichloropharene, 1.4- (Dichloropharene, 1.4- (Dichloropharene, 1.4- (Dichloropharene, 1.4- (Dichlorop			, B				
Dichrono-S-Chicopropoane, 1,2- (DBCP) μg/L 0.04° n/v 20 U 4.0 U 2.0 U Dichroroberzene, 1,2- μg/L 3° n/v 20 U 4.0 U 2.0 U Dichroroberzene, 1,3- μg/L 3° n/v 20 U 4.0 U 2.0 U 2.0 U Dichroroberzene, 1,3- μg/L 3° n/v 20 U 4.0 U 2.0 U 2.0 U Dichroroberzene, 1,4- μg/L 3° n/v 20 U 4.0 U 2.0 U 2.0 U Dichroroberzene, 1,4- μg/L 5° n/v 20 U 4.0 U 2.0 U 2.0 U Dichroroberzene, 1,4- μg/L 5° n/v 20 U 4.0 U 2.0 U Dichroroberzene, 1,1- μg/L 5° n/v 20 U 4.0 U 2.0 U Dichroroberzene, 1,1- μg/L 5° n/v 20 U 4.0 U 2.0 U Dichroroberzene, 1,1- μg/L 5° n/v 20 U 4.0 U 2.0 U Dichroroberzene, 1,1- μg/L 5° n/v 20 U 4.0 U 2.0 U Dichroroberzene, 1,1- μg/L 5° n/v 20 U 4.0 U 2.0 U Dichroroberzene, 1,1- μg/L 5° n/v 20 U 4.0 U 2.0 U Dichroroberzene, 1,1- μg/L 5° n/v 20 U 4.0 U 2.0 U Dichroroberzene, 1,2- μg/L 5° n/v 20 U 4.0 U 2.0 U Dichroropopene, cis-1,3- μg/L 0.4° n/v 20 U 4.0 U 2.0 U Dichroropopene, cis-1,3- μg/L 0.4° n/v 20 U 4.0 U 2.0 U Dichroropopene, cis-1,3- μg/L 0.4° n/v 20 U 4.0 U 2.0 U Dichroropopene, cis-1,3- μg/L 0.4° n/v 20 U 4.0 U 2.0 U Dichroropopene, cis-1,3- μg/L 0.4° n/v 20 U 4.0 U 2.0 U Dichroropopene, cis-1,3- μg/L 0.4° n/v 20 U 4.0 U 2.0 U Dichroropopene, cis-1,3- μg/L 0.6° n/v 20 U 4.0 U 2.0 U Dichroropopene, cis-1,3- μg/L 0.6° n/v 20 U 4.0 U 2.0 U Dichroropopene, cis-1,3- μg/L 0.6° n/v 20 U 4.0 U 2.0 U Dichroropopene, cis-1,3- μg/L 0.6° n/v 20 U 4.0 U 2.0 U Dichroropopene, cis-1,3- μg/L 0.6° n/v 20 U 4.0 U 2.0 U Dichroropopene, cis-1,3- μg/L 0.6° n/v 20 U 4.0 U 2.0 U Dichroropopene, cis-1,3- μg/L 0.6° n/v 20 U 4.0 U 2.0 U Dichroropopene, cis-1,3- μg/L 0.6° n/v 0.0000000000000000000000000000000000			n/v	-			
Discharcohoromethane	-,						
Dichlorobenzene, 1,2-							
Dichloroberzene, 1.3- μg/L 3° n/V 20 U 4.0 U 2.0 U Dichloroberzene, 1.4- μg/L 5.8 n/V 20 U 4.0 U 2.0 U Dichlorodifluoromethane (Freon 12) μg/L 5.8 n/V 20 U 4.0 U 2.0 U Dichlorodifluoromethane (Freon 12) μg/L 5.8 n/V 20 U 4.0 U 2.0 U Dichlorodethane, 1.1- μg/L 5.8 n/V 20 U 4.0 U 2.0 U Dichlorodethane, 1.2- μg/L 5.8 n/V 20 U 4.0 U 2.0 U Dichlorodethane, 1.1- μg/L 5.8 n/V 20 U 4.0 U 2.0 U Dichlorodethane, 1.1- μg/L 5.8 n/V 20 U 4.0 U 2.0 U Dichloroptene, 1.1- μg/L 5.8 n/V 20 U 4.0 U 2.0 U Dichloroptene, 1.1- μg/L 5.8 n/V 20 U 4.0 U 2.0 U Dichloroptene, 1.1- μg/L 5.8 n/V 20 U 4.0 U 2.0 U Dichloroptene, 1.1- μg/L 0.4 n/V 20 U 4.0 U 2.0 U Dichloroptene, 1.1- μg/L 0.4 n/V 20 U 4.0 U 2.0 U Dichloroptene, 1.1- μg/L 0.4 n/V 20 U 4.0 U 2.0 U Dichloroptene, 1.1- μg/L 0.4 n/V 20 U 4.0 U 2.0 U Dichloroptene, 1.1- μg/L 5.8 n/V 20 U 4.0 U 2.0 U Dichloroptene, 1.1- μg/L 5.8 n/V 20 U 4.0 U 2.0 U Dichloroptene, 1.1- μg/L 5.8 n/V 20 U 4.0 U 2.0 U Dichloroptene, 2- (Methyl Busyl Ketone) μg/L 5.8 n/V 20 U 4.0 U 2.0 U Dichloroptene, 2- (Methyl Busyl Ketone) μg/L 5.8 n/V 20 U 4.0 U 2.0 U Dichloroptene, 2- (Methyl Busyl Ketone) μg/L 5.8 n/V 20 U 4.0 U 2.0 U Dichloroptene, 2- (Methyl Busyl Ketone) μg/L 5.8 n/V 20 U 4.0 U 2.0 U Dichloroptene, 2- (Methyl Busyl Ketone) μg/L 5.8 n/V 20 U 4.0 U 2.0 U Dichloroptene, 2- (Methyl Busyl Ketone) μg/L 5.8 n/V 20 U 4.0 U 2.0 U Dichloroptene, 2- (Methyl Busyl Ketone) μg/L 5.8 n/V 20 U 4.0 U 2.0 U Dichloroptene, 2- (Methyl Busyl Ketone) μg/L 5.8 n/V 20 U 4.0 U 2.0 U Dichloroptene, 2- (Methyl Busyl Ketone) μg/L 5.8 n/V 20 U 4.0 U 2.0 U Dichloroptene, 2- (Methyl Busyl Ketone) 2.0 U Dichloroptene, 2- (Methyl Busyl Ketone) 2.				n/v			
Dichlorodifluoromethane (Freon 12) µg/L 5-8 n/v 20 U 4.0 U 2.0 U	Dichlorobenzene, 1,3-		3 ^B	n/v	20 U	4.0 U	2.0 U
Dichloroedfluoromethane (Freen 12) µg/L 5-8 n/v 20 U 4.0 U 2.0	Dichlorobenzene, 1,4-	μg/L	3 ^B	7,500 ^C	20 U	4.0 U	2.0 U
Dichloroethane, 1,1-	Dichlorodifluoromethane (Freon 12)	μg/L	5 ^B	n/v	20 U	4.0 U	2.0 U
Dichloroethene, 1,1-	Dichloroethane, 1,1-	μg/L	5++ ^B	n/v	20 U	4.0 U	2.0 U
Dichloroethene, cis-1,2- µg/L 5,8 n/v 20 U 4,0 U 2,0 U	Dichloroethane, 1,2-	μg/L			20 U	4.0 U	2.0 U
Dichloroethene, trans-1,2- µg/L 5 B n/V 20 U 4.0 U 2.0 U 2.0 U Dichloropropene, 1,2- µg/L 18 n/V 20 U 4.0 U 2.0 U 2.0 U 2.0 U Dichloropropene, cis-1,3- µg/L 0.4 B n/V 20 U 4.0 U 2.0 U Dichloropropene, cis-1,3- µg/L 0.4 B n/V 20 U 4.0 U 2.0 U Dichloropropene, trans-1,3- µg/L 0.4 B n/V 20 U 4.0 U 2.0 U Dichloropropene, trans-1,3- µg/L 5 B n/V 20 U 4.0 U 2.0 U Dichloropropene, trans-1,3- µg/L 5 B n/V 20 U 4.0 U 2.0 U Dichloropropene, trans-1,3- µg/L 5 B n/V 20 U 4.0 U 2.0 U Dichloropropene, trans-1,3- µg/L 5 B n/V 20 U 4.0 U 2.0 U Dichloropropene, trans-1,3- µg/L 5 B n/V 20 U 4.0 U 2.0 U Dichloropropene, trans-1,3- µg/L 5 B n/V 20 U 4.0 U 2.0 U Dichloropropene, trans-1,3- µg/L 5 B n/V 20 U 4.0 U 2.0 U Dichloropropene, trans-1,3- µg/L 5 B n/V 20 U 4.0 U 2.0 U Dichloropropene, trans-1,3- µg/L 5 B n/V 20 U 4.0 U 2.0 U Dichloropropene, trans-1,3- µg/L 10 N/V 10 N/V 20 U 4.0 U 2.0 U Dichloropropene, trans-1,3- µg/L 10 N/V 10 N/V 20 U 4.0 U 2.0 U Dichloropropene, trans-1,3- µg/L 10 N/V 20 U 4.0 U 2.0 U Dichloropropene, trans-1,3- µg/L 5 B n/V 20 U 4.0 U 2.0 U Dichloropropene, trans-1,1,2- µg/L 5 B n/V 20 U 4.0 U 2.0 U Dichloropropene, trans-1,1,1- µg/L 5 B n/V 20 U 4.0 U 2.0 U Dichloropropene, trans-1,1,1- µg/L 5 B n/V 20 U 4.0 U 2.0 U Dichloropropene, trans-1,1,1- µg/L 5 B n/V 20 U 4.0 U 2.0 U Dichloropropene, trans-1,1,1- µg/L 5 B n/V 20 U 4.0 U 2.0 U Dichloropropene, trans-1,1,1- µg/L 5 B n/V 20 U 4.0 U 2.0 U Dichloropropene, trans-1,1,1- µg/L 5 B n/V 20 U 4.0 U 2.0 U Dichloropropene, trans-1,1,1- µg/L 5 B n/V 20 U 4.0 U 2.0 U Dichloropropene, trans-1,2- µg/L 5 B n/V 20 U 4.0 U	Dichloroethene, 1,1-			700 ^C	20 U	4.0 U	2.0 U
Dichloropropage, 1,2- μg/L 18 n/v 20 U 4.0 U 2	Dichloroethene, cis-1,2-	μg/L		n/v	20 U	4.0 U	2.0 U
Dichloropropene, cis-1,3- μg/L 0.4,8 n/v 20 U 4.0 U 2.0	Dichloroethene, trans-1,2-	μg/L	5B	n/v	20 U	4.0 U	2.0 U
Dichloropropene, trans-1,3- μg/L 0.4,8 b sB n/V n/V 20 U 4.0 U 2.0 U Ethylene Dibromide (Dibromoethane, 1,2-) μg/L pg/L 5B n/V 20 U 4.0 U 2.0 U Hexanone, 2- (Methyl Butyl Ketone) μg/L pg/L 50-A n/V 100 U 20 U 4.0 U 2.0 U Isopropyloburene, p- (Cymene) μg/L pg/L 5B n/V 20 U 4.0 U 2.0 U Isopropyloburene, p- (Cymene) μg/L pg/L 5B n/V 20 U 4.0 U 2.0 U Isopropyloburene, p- (Cymene) μg/L pg/L 5B n/V 20 U 4.0 U 2.0 U Methyl Acetate μg/L pg/L 5B n/V 20 U 4.0 U 2.0 U Methyl Ketone (MIEK) 2-Buthyl pg/L 5.0 N 200,000° 200 U 4.0 U 2.0 U Methyl Stevbyl Ketone (MIEK) μg/L 5.0 N n/V 20 U 4.0 U 2.0 U Methyl Stevbyl Ketone (MIEK) μg/L 5B n/V 20 U 4.0 U 2.0 U Methyl Stevbyl Ketone (MIEK) μg/L 5B n/V <td>Dichloropropane, 1,2-</td> <td>μg/L</td> <td></td> <td>n/v</td> <td>20 U</td> <td>4.0 U</td> <td>2.0 U</td>	Dichloropropane, 1,2-	μg/L		n/v	20 U	4.0 U	2.0 U
Dichloropropene, trans-1,3- μg/L 0.4,8 b sB n/V n/V 20 U 4.0 U 2.0 U Ethylene Dibromide (Dibromoethane, 1,2-) μg/L pg/L 5B n/V 20 U 4.0 U 2.0 U Hexanone, 2- (Methyl Butyl Ketone) μg/L pg/L 50-A n/V 100 U 20 U 4.0 U 2.0 U Isopropyloburene, p- (Cymene) μg/L pg/L 5B n/V 20 U 4.0 U 2.0 U Isopropyloburene, p- (Cymene) μg/L pg/L 5B n/V 20 U 4.0 U 2.0 U Isopropyloburene, p- (Cymene) μg/L pg/L 5B n/V 20 U 4.0 U 2.0 U Methyl Acetate μg/L pg/L 5B n/V 20 U 4.0 U 2.0 U Methyl Ketone (MIEK) 2-Buthyl pg/L 5.0 N 200,000° 200 U 4.0 U 2.0 U Methyl Stevbyl Ketone (MIEK) μg/L 5.0 N n/V 20 U 4.0 U 2.0 U Methyl Stevbyl Ketone (MIEK) μg/L 5B n/V 20 U 4.0 U 2.0 U Methyl Stevbyl Ketone (MIEK) μg/L 5B n/V <td>Dichloropropene, cis-1,3-</td> <td>μg/L</td> <td>0.4_p^B</td> <td>n/v</td> <td>20 U</td> <td>4.0 U</td> <td>2.0 U</td>	Dichloropropene, cis-1,3-	μg/L	0.4 _p ^B	n/v	20 U	4.0 U	2.0 U
Ethylene Dibromide (Dibromoethane, 1,2-) µg/L 0.0006 ⁸ n/V n/V 20 U 4.0 U 2.0 U Hexanone, 2- (Methyl Butyl Ketone) µg/L 50.5 No n/V 100 U 20 U 4.0 U 2.0 U Isopropyltoluene, p- (Cymene) µg/L 58 n/V n/V 20 U 4.0 U 548 Methyl Acetate µg/L 508 n/V n/V 20 U 4.0 U 548 Methyl Sobulyl Ketone (MEK) (2-Butanone) µg/L 50200,000° 200 U 40 U 20 U Methyl Isobulyl Ketone (MIBK) µg/L n/V 20.0000° 200 U 40 U 20 U Methyl sobulyl Ketone (MIBK) µg/L 10 n/V n/V 100 U 20 U 4.0 U 20 U Methyl sobulyl Ketone (MIBK) µg/L 10 n/V n/V 20 U 4.0 U 20 U Methyl sobulyl Ketone (MIBK) µg/L 10 n/V n/V 20 U 4.0 U 20 U Methyl sobulyl Ketone (MIBK) µg/L 5 n/N n/V 20 U 4.0 U	Dichloropropene, trans-1,3-	μg/L	0.4 _p ^B	n/v	20 U	4.0 U	2.0 U
Ethylene Dibromide (Dibromoethane, 1,2-) µg/L 0,0006 ⁸ n/V n/V 20 U 4,0 U 2.0 U Hexanone, 2- (Methyl Butyl Ketone) µg/L 50.5 No n/V 100 U 20 U 4.0 U 2.0 U Isopropyltoluene, p- (Cymene) µg/L 5 B n/V 20 U 4.0 U 5 B Methyl Acetate µg/L 50 B n/V 20 U 4.0 U 5 B Methyl Sebutyl Ketone (MEK) (2-Butanone) µg/L 50 S 200,000° 200 U 40 U 20 U Methyl sobutyl Ketone (MIBK) µg/L 10 n/V 100 U 20 U 4.0 U 20 U Methyl ether (MTBE) µg/L 10 n/V 10 n/V 20 U 4.0 U 20 U Methylene Chloride (Dichloromethane) µg/L 10 n/V 10.V 20 U 4.0 U 2.0 U Methylene Chloride (Dichloromethane) µg/L 5 n/V 20 U 4.0 U 2.0 U Popyllene Chloride (Dichloromethane) µg/L 5 n/V 20 U 4.0 U 2.0 U <	Ethylbenzene	μg/L	5B	n/v	20 U	4.0 U	2.0 U
Sopropylbenzene	Ethylene Dibromide (Dibromoethane, 1,2-)	μg/L		n/v	20 U	4.0 U	2.0 U
Sopropyltoluene, p- (Cymene)				-			
Methyl Acetate µg/L n/v n/v 50 U 10 U 5.0 U Methyl Ethyl Ketone (MEK) (2-Butanone) µg/L 50 V 200,000° 200 U 40 U 20 U Methyl Isobutyl Ketone (MIBK) µg/L n/v 100 U 20 U 4.0 U 20 U Methyl tert-butyl ether (MTBE) µg/L n/v 20 U 4.0 U 2.0 U Methylchocksvane µg/L n/v 20 U 4.0 U 2.0 U Methylene Chloride (Dichloromethane) µg/L 5*8 n/v 20 U 4.0 U 2.0 U Naphthalene µg/L 5*8 n/v 20 U 4.0 U 2.0 U Naphthalene µg/L 5*8 n/v 20 U 4.0 U 2.0 U Styrene µg/L 5*8 n/v 20 U 4.0 U 2.0 U Styrene µg/L 5*8 n/v 20 U 4.0 U 2.0 U Tetrachloroethane, (1,1.2-2 µg/L 5*8 n/v 20 U 4.0 U <td< td=""><td>Isopropylbenzene</td><td>μg/L</td><td>5++^B</td><td>n/v</td><td>20 U</td><td>4.0 U</td><td>2.0 U</td></td<>	Isopropylbenzene	μg/L	5++ ^B	n/v	20 U	4.0 U	2.0 U
Methyl Acetate µg/L n/v n/v 50 U 10 U 5.0 U Methyl Ethyl Ketone (MEK) (2-Butanone) µg/L 50 V 200,000° 200 U 40 U 20 U Methyl Isobutyl Ketone (MIBK) µg/L n/v 100 U 20 U 4.0 U 20 U Methyl tert-butyl ether (MTBE) µg/L n/v 20 U 4.0 U 2.0 U Methylchocksvane µg/L n/v 20 U 4.0 U 2.0 U Methylene Chloride (Dichloromethane) µg/L 5*8 n/v 20 U 4.0 U 2.0 U Naphthalene µg/L 5*8 n/v 20 U 4.0 U 2.0 U Naphthalene µg/L 5*8 n/v 20 U 4.0 U 2.0 U Styrene µg/L 5*8 n/v 20 U 4.0 U 2.0 U Styrene µg/L 5*8 n/v 20 U 4.0 U 2.0 U Tetrachloroethane, (1,1.2-2 µg/L 5*8 n/v 20 U 4.0 U <td< td=""><td>Isopropyltoluene, p- (Cymene)</td><td>μg/L</td><td>5++^B</td><td>n/v</td><td>20 U</td><td>4.0 U</td><td>5.4^B</td></td<>	Isopropyltoluene, p- (Cymene)	μg/L	5++ ^B	n/v	20 U	4.0 U	5.4 ^B
Methyl Isobutyl Ketone (MIBK) µg/L n/v n/v 100 U 20 U 10 U Methyl tert-butyl ether (MTBE) µg/L 10^{A} n/v 20 U 4.0 U 2.0 U Methylcyclohexane µg/L 58 n/v 20 U 4.0 U 2.0 U Methylene Chloride (Dichloromethane) µg/L 58 n/v 20 U 4.0 U 2.0 U Maphthalene µg/L 58 n/v 20 U 4.0 U 2.0 U Propylbenzene, n. µg/L 58 n/v 20 U 4.0 U 2.0 U Styrene µg/L 58 n/v 20 U 4.0 U 2.0 U Tetrachloroethane, 1,1,2.2- µg/L 58 n/v 20 U 4.0 U 2.0 U Tetrachloroethane (PCE) µg/L 58 n/v 20 U 4.0 U 2.0 U Trichloroethane, 1,1,2- µg/L 58 n/v 20 U 4.0 U 2.0 U Trichloroethane, 1,1,2- µg/L 58 n/v <	,		n/v				
Methyl ter-butyl ether (MTBE) µg/L µg/L µg/L n/v 10^A n/v 20 U 4.0 U 2.0 U Methylcyclohexane (Dichloromethane) µg/L b. 58 n/v 20 U 4.0 U 2.0 U Methylene Chloride (Dichloromethane) µg/L b. 58 n/v 20 U 4.0 U 2.0 U Naphthalene µg/L b. 58 n/v 20 U 4.0 U 2.0 U Propylbenzene, n. µg/L b. 58 n/v 20 U 4.0 U 2.0 U Styrene µg/L b. 58 n/v 20 U 4.0 U 2.0 U Tetrachloroethane, 1,1,2,2- µg/L b. 58 n/v 20 U 4.0 U 2.0 U Tetrachloroethene (PCE) µg/L b. 58 n/v 700° 848 b 258 c 218 c Toluene µg/L b. 58 n/v n/v 20 U 4.0 U 2.0 U Trichloroethane, 1,1,2- µg/L b. 58 n/v n/v 20 U 4.0 U 2.0 U Trichloroethane, 1,1,1- µg/L b. 58 n/v n/v 20 U 4.0 U 2.0 U Trichloroethane, (TCE) µg/L b. 58 sooc 2 500° 20 U 4.0 U 2.0 U							
Methylcyclohexane µg/L n/v n/v 20 U 4.0 U 2.0 U Methylene Chloride (Dichloromethane) µg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Naphthalene µg/L 1.0° n/v 20 U 4.0 U 2.0 U Propylbenzene, n. µg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Styrene µg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Tetrachloroethane, 1,1,2-2- µg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Tetrachloroethene (PCE) µg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Trichloroethene (PCE) µg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Trichloroethene (PCE) µg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Trichloroethane, 1,1,1- µg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Trichloroethane, (TCE) µg/L 5 ⁸ 500°				_			
Methylene Chloride (Dichloromethane) µg/L µg/L µg/L hg/l 5 ⁸ n/v n/v 20 U 4.0 U 2.0 U Naphthalene µg/L hg/L hg/l 5 ⁸ n/v 20 U 4.0 U 2.0 U Propylbenzene, n. µg/L hg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Styrene µg/L hg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Tetrachloroethane, 1,1,2,2- µg/L hg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Tetrachloroethane (PCE) µg/L hg/L 5 ⁸ n/v 700° 84.8 25.8 21.8 Tokene µg/L hg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Trichloroethane, 1,1,1- µg/L hg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Trichloroethane, 1,1,2- µg/L hg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Trichloroethane (TCE) µg/L hg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Trichloroethane (Freon 11) µg/L hg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U <td></td> <td>µg/L</td> <td>10"</td> <td></td> <td></td> <td></td> <td></td>		µg/L	10"				
Naphthalene μg/L 10 ⁸ n/v n/v 20 U 4.0 U 2.0 U Propylbenzene, n- μg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Styrene μg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Tetrachloroethane, 1,1,2,2- μg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Tetrachloroethene (PCE) μg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Trickloroethene (PCE) μg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Trickloroethene (PCE) μg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Trickloroethane, 1,1,1- μg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Trickloroethane, 1,1,2- μg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Tricklorofluoromethane (TCE) μg/L 5 ⁸ 500° 20 U 4.0 U 2.0 U Tricklorofluoromethane (Freen 113) μg/L 5 ⁸ n/v 10/v 680° 120° 88° Trimethylbenzene, 1,2,4-							
Propylbenzene, n- Styrene μg/L μg/L L 5 ⁸ 5 ⁸ n/v n/v 20 U 4.0 U 20 U 4.0 U 20 U 2.0 U Tetrachloroethane, 1,1,2,2- Tetrachloroethene (PCE) μg/L μg/L 5 ⁸ 5 ⁸ n/v 700° 20 U 84.8 25 S 25 S 21 S Toluene μg/L 10 S ⁸ n/v 5 ⁸ 20 U n/v 20 U 4.0 U 20 U Trichloroethane, 1,2,4- Trichloroethane, 1,1,1- Trichloroethane, 1,1,2- Up/L μg/L 1 S ⁸ n/v 10 U 4.0 U 20 U Trichloroethane, 1,1,2- Trichloroethane (TCE) μg/L 1 S ⁸ n/v 500° 20 U 4.0 U 2.0 U Trichloroethane (Freon 11) μg/L 1 S ⁸ n/v 500° 20 U 4.0 U 2.0 U Trichlorofluoromethane (Freon 113) μg/L 1 S ⁸ n/v 5 ⁸ n/v n/v 20 U 4.0 U 2.0 U Trimethylbenzene, 1,2,4- Trimethylbenzene, 1,2,4- Trimethylbenzene, 1,2,4- Trimethylbenzene, 1,2,4- Trimethylbenzene, 1,2,4- Trimethylbenzene, 1,2,4- Nylene, o- μg/L 5 ⁸ n/v n/v 20 U 4.0 U 2.0 U Trimethylbenzene, 1,3,5- Vinyl Chloride μg/L 2 S ⁸ n/v 5 ⁸ n/v n/v 20 U 4.0 U 2.0 U <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>							
Styrene							
Tetrachloroethane, 1,1,2,2- µg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Tetrachloroethene (PCE) µg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Toluene µg/L 5 ⁸ n/v 20 U 4.0 U 20 U Trichloroethane, 1,2,4- µg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Trichloroethane, 1,1,2- µg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Trichloroethane, 1,1,2- µg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Trichloroethane, 1,1,2- µg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Trichloroethane, 1,2- µg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Trichloroethane (Freon 113) µg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Trimethylbenzene, 1,2,4- µg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Trimethylbenzene, 1,3,5- µg/L 2 ⁸ </td <td></td> <td></td> <td>5^B</td> <td>n/v</td> <td></td> <td></td> <td></td>			5 ^B	n/v			
Tetrachloroethene (PCE) μg/L 5 ⁸ 700° 84 ⁸ 25 ⁸ 21 ⁸ Toluene μg/L 5 ⁸ n/ν 20 U 4.0 U 2.0 U Trichlorobenzene, 1,2,4- μg/L 5 ⁸ n/ν 20 U 4.0 U 2.0 U Trichloroethane, 1,1,1- μg/L 5 ⁸ n/ν 20 U 4.0 U 2.0 U Trichloroethane, 1,1,2- μg/L 1.8 n/ν 20 U 4.0 U 2.0 U Trichloroethane (TCE) μg/L 5 ⁸ 500° 20 U 4.0 U 2.0 U Trichlorofluoromethane (Feon 11) μg/L 5 ⁸ n/ν 20 U 4.0 U 2.0 U Trichlorofluoromethane (Feon 11) μg/L 5 ⁸ n/ν 20 U 4.0 U 2.0 U Trichlorofluoromethane (Feon 113) μg/L 5 ⁸ n/ν 20 U 4.0 U 2.0 U Trimethylbenzene, 1,2,4- μg/L 5 ⁸ n/ν 20 U 4.0 U 2.0 U Trimethylbenzene, 1,3,5- μg/L 5 ⁸ n/ν 20 U 4.0 U 2.0 U Trimethylbenzene, 1,3,5- μg/L 5 ⁸ n/ν 20 U 4.0 U 2.0 U Trimethylbenzene, 1,3,5- μg/L 5 ⁸ n/ν 20 U 4.0 U 2.0 U Trimethylbenzene, 1,3,5- μg/L 5 ⁸ n/ν 20 U 4.0 U 2.0 U Trimethylbenzene, 1,3,5- μg/L 5 ⁸ n/ν 20 U 4.0 U 2.0 U Trimethylbenzene, 1,3,5- μg/L 5 ⁸ n/ν 20 U 4.0 U 2.0 U Trimethylbenzene, 1,3,5- μg/L 5 ⁸ n/ν 20 U 4.0 U 2.0 U Trimethylbenzene, 1,3,5- μg/L 5 ⁸ n/ν 20 U 4.0 U 2.0 U Trimethylbenzene, 1,3,5- μg/L 5 ⁸ n/ν 20 U 4.0 U 2.0 U Trimethylbenzene, 1,3,5- μg/L 5 ⁸ n/ν 40 U 8.0 U 4.0 U 2.0 U Trimethylbenzene, 1,3,5- μg/L 5 ⁸ n/ν 40 U 8.0 U 4.0 U 2.0 U Trimethylbenzene, 1,3,5- μg/L 5 ⁸ n/ν 40 U 8.0 U 4.0 U 2.0 U Trimethylbenzene, 1,3,5- μg/L 5 ⁸ n/ν 40 U 8.0 U 4.0 U 2.0 U Trimethylbenzene, 1,3,5- μg/L 5 ⁸ n/ν 40 U 8.0 U 4.0 U 2.0 U	,						
Toluene μg/L 5 ⁸ n/ν n/ν 20 U 4.0 U 2.0 U Trichlorobenzene, 1,2,4- μg/L 5 ⁸ n/ν 20 U 4.0 U 2.0 U Trichloroethane, 1,1,1- μg/L 5 ⁸ n/ν 20 U 4.0 U 2.0 U Trichloroethane, 1,1,2- μg/L 1.8 n/ν 20 U 4.0 U 2.0 U Trichloroethane (FCE) μg/L 5 ⁸ 500° 20 U 4.0 U 2.0 U Trichlorofluoromethane (Freon 11) μg/L 5 ⁸ n/ν 20 U 4.0 U 2.0 U Trimethylbenzene, 1,2,4- μg/L 5 ⁸ n/ν 20 U 4.0 U 2.0 U Trimethylbenzene, 1,3,5- μg/L 5 ⁸ n/ν 20 U 4.0 U 2.0 U Vinyl Chloride μg/L 2.8 200° 20 U 4.0 U 2.0 U Xylene, α- μg/L 5 ⁸ n/ν 10 U 8.0 U 4.0 U Xylene, α- μg/L 5 ⁸ n/ν 10 U 8.0 U 4.0 U Xylene, α- μg/L 5 ⁸ n/ν <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
Trichlorobenzene, 1,2,4- μg/L 5 ⁸ n/v n/v 20 U 4.0 U 2.0 U Trichloroethane, 1,1,1- μg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Trichloroethane, 1,1,2- μg/L 5 ⁸ 500° 20 U 4.0 U 2.0 U Trichlorofluoromethane (Freon 11) μg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Trichlorotifluoromethane (Freon 11) μg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Trichlorotifluoromethane (Freon 113) μg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Trimethylbenzene, 1,2,4- μg/L 5 ⁸ n/v n/v 20 U 4.0 U 2.0 U Trimethylbenzene, 1,3,5- μg/L 5 ⁸ n/v n/v 20 U 4.0 U 2.0 U Vylene, n & p- μg/L 5 ⁸ n/v 10 U 8.0 U 4.0 U 2.0 U Xylene, o- μg/L 5 ⁸ n/v 10 U 8.0 U 4.0 U 2.0 U Xylene, o- μg/L 5 ⁸ n/v 10 U 4.0 U			5 B				
Trichloroethane, 1,1,1- μg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Trichloroethane, 1,1,2- μg/L 1.8 n/v 20 U 4.0 U 2.0 U Trichloroethane, 1,1,2- μg/L 5 ⁸ 500° 20 U 4.0 U 2.0 U Trichlorothane (Freon 11) μg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Trichlorotrifluoroethane (Freon 113) μg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Trimethylbenzene, 1,2,4- μg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Trimethylbenzene, 1,3,5- μg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Vilyor Chloride μg/L 2.8 200° 20 U 4.0 U 2.0 U Xylene, m & p- μg/L 5 ⁸ n/v 40 U 8.0 U 4.0 U Xylene, o- μg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Xylenes, Total μg/L 5 ⁸ n/			_ B				
Trichloroethane, 1,1,2-			5++ F B				
Trichlorofethene (TCE) μg/L 5 ⁸ 500°c 20 U 4.0 U 2.0 U Trichloroffluoromethane (Freon 11) μg/L 5 ⁸ n/ν 20 U 4.0 U 2.0 U Trichloroffluoromethane (Freon 113) μg/L 5 ⁸ n/ν 688 ^B 120 ^B 88 ^B Trimethylbenzene, 1,2,4- μg/L 5 ⁸ n/ν 20 U 4.0 U 2.0 U Vinyl Chloride μg/L 5 ⁸ n/ν 20 U 4.0 U 2.0 U Vylene, n & p. μg/L 5 ⁸ n/ν 40 U 8.0 U 4.0 U Xylene, o- μg/L 5 ⁸ n/ν 20 U 4.0 U 2.0 U Xylene, Total μg/L 5 ⁸ n/ν 20 U 4.0 U 2.0 U Xylene, Total VOC μg/L 5 ⁸ n/ν 40 U 8.0 U 4.0 U Xylene, O- μg/L 5 ⁸ n/ν 40 U 8.0 U 4.0 U Xylene, O- μg/L 5 ⁸ n/ν <t< td=""><td>, ., ., .,</td><td></td><td>5" 4B</td><td></td><td></td><td></td><td></td></t<>	, ., ., .,		5" 4B				
Trichlorofluoromethane (Freon 11) µg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Trichlorofilluoroethane (Freon 113) µg/L 5 ⁸ n/v 680 ⁸ 120 ⁸ 88 ⁸ Trimethylbenzene, 1,2,4- µg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Vimyl Chloride µg/L 2 ⁸ 200° 20 U 4.0 U 2.0 U Xylene, m & p- µg/L 5 ⁸ n/v 40 U 8.0 U 4.0 U Xylene, o- µg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Xylenes, Total µg/L 5 ⁸ n/v 40 U 8.0 U 4.0 U Total VOC µg/L n/v n/v 40 U 8.0 U 4.0 U VOC - Tentatively Identified Compounds Total Voc n/v n/v n/v 145 114.4			5 B				
Trichlorotrifluoroethane (Freon 113) μg/L 5 ⁸ n/ν 680 ⁸ 120 ⁸ 88 ⁸ Trimethylbenzene, 1,2,4- μg/L 5 ⁸ n/ν 20 U 4.0 U 2.0 U Trimethylbenzene, 1,3,5- μg/L 5 ⁸ n/ν 20 U 4.0 U 2.0 U Vilyor Chloride μg/L 2.8 200 ^C 20 U 4.0 U 2.0 U Xylene, m & p- μg/L 5 ⁸ n/ν 40 U 8.0 U 4.0 U Xylene, o- μg/L 5 ⁸ n/ν 40 U 8.0 U 4.0 U Xylenes, Total μg/L 5 ⁸ n/ν 40 U 8.0 U 4.0 U Total VOC μg/L n/ν n/ν n/ν 40 U 8.0 U 4.0 U VOC - Tentatively Identified Compounds 114.4 VOC 145 114.4			_ B				
Trimethylbenzene, 1,2,4- µg/L 5 ^B n/v 20 U 4.0 U 2.0 U Trimethylbenzene, 1,3,5- µg/L 5 ^B n/v 20 U 4.0 U 2.0 U Vinyl Chloride µg/L 2. ^B 200° 20 U 4.0 U 2.0 U Xylene, m & p- µg/L 5 ^B n/v 40 U 8.0 U 4.0 U Xylene, o- µg/L 5 ^B n/v 20 U 4.0 U 2.0 U Xylenes, Total µg/L 5 ^B n/v 40 U 8.0 U 4.0 U Total VOC µg/L n/v n/v 764 145 114.4 VOC - Tentatively Identified Compounds							
Trimethylbenzene, 1,3,5- µg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Vinyl Chloride µg/L 2.8 200°c 20 U 4.0 U 2.0 U Xylene, n & p- µg/L 5 ⁸ n/v 40 U 8.0 U 4.0 U Xylene, o- µg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Xylenes, Total µg/L 5 ⁸ n/v 40 U 8.0 U 4.0 U Total VOC µg/L n/v n/v 764 145 114.4 VOC - Tentatively Identified Compounds			D++		000		
Vinyl Chloride µg/L 2 ^B 200 ^C 20 U 4.0 U 2.0 U Xylene, m & p- µg/L 5 ^B n/v 40 U 8.0 U 4.0 U Xylene, o- µg/L 5 ^B n/v 20 U 4.0 U 2.0 U Xylenes, Total µg/L 5 ^B n/v 40 U 8.0 U 4.0 U Total VOC µg/L n/v n/v 764 145 114.4 VOC - Tentatively Identified Compounds	The state of the s		5°				
Xylene, m & p- μg/L 5 ⁸ n/v 40 U 8.0 U 4.0 U Xylene, o- μg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Xylenes, Total μg/L 5 ⁸ n/v 40 U 8.0 U 4.0 U Total VOC μg/L n/v n/v 764 145 114.4 VOC - Tentatively Identified Compounds			5°				
Xylene, o- µg/L 5 ⁸ n/v 20 U 4.0 U 2.0 U Xylenes, Total µg/L 5 ⁸ n/v 40 U 8.0 U 4.0 U Total VOC µg/L n/v n/v 764 145 114.4 VOC - Tentatively Identified Compounds							
Total VOC µg/L n/v n/v 764 145 114.4 VOC - Tentatively Identified Compounds			5"				
VOC - Tentatively Identified Compounds							
VOC - Lentauvery identified Compounds			n/V	n/V	704	145	114.4
Total VOC TICs	Total VOC TICs	nαs μg/L	n/v	n/v	<u> </u>		8.8 TJN

Notes: TOGS NYSDEC TOGS 1.1.1 (Reissued June 1998 with errata in January 1999 and addenda in April 2000 and June 2004)

- TOGS 1.1.1 Table 1 Ambient Water Quality Standards and Guidance Values, Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1); Guidance TOGS 1.1.1 Table 1 Ambient Water Quality Standards and Guidance Values, Division of Water, Technical and Operational Guidance Series (TOGS 1.1.1); Standards New York State Department of Environmental Conservation, September 5, 2006
 Part 371.3: Characteristics of Hazardous Waster, Table 1 Maximum Concentration of Contaminants for the Toxicity Characteristic NYSDEC

Concentration exceeds the indicated standard.

- Measured concentration did not exceed the indicated standard.


 Analyte was not detected at a concentration greater than the laboratory reporting limit. 0.03 U
- No standard/guideline value n/v -
- No startdardugueure varue.

 Parameter not analyzed / not available.

 The principal organic contaminant standard for groundwater of 5 ug/L (described elsewhere in the TOGS table) applies to this substance.
- Applies to the sum of cis- and trans-1,3-dichloropropene.
- TJN
 - Result is a tentatively identified compound (TIC) and an estimated value. I Indicates an Estimated Value for TICs. I Presumptive evidence of material. An asterisk in front of the Sample Location indicates that the material no longer remains on-site following implementation of Interim Remedial Measures.

FIGURES

Legend

- Notes

 1. Coordinate System: NAD 1983 StatePlane New York
 West FIPS 3103 Feet
 2. ArcGIS Bosemaps: USA Topo Maps (main frame) and
 World Street Map (key map).

Disclaimer: Stantec assumes no responsibility for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and completeness of the data. The recipient releases Stantee, its officers, employees, consultants and agents, from any and all claims arising in any way from the content or provision of the data.

Project Location	190500898
820 Linden Avenue	Prepared by LB on 2020-06-30
Pittsford, Monroe Co., NY	
	Independent Review by MPS/KI on 2020-08-26
Client/Project	
820 Linden Ave S	ite
BCP Site #C8282	00
	**
Site Managemer	nt Plan
Figure No.	
1	
1	

Site Location Map

ner: Stantec assumes no responsibility for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and completeness of the data. The recipient releases Stantec, its officers, employees, consultants and agents, from any and all claims arising in any way from the content or provision of the data

Legend

Site Property Outline

Building Outline

Newport tenant space (permitted addition

JML Optical tenant space (five construction phases, see below)

Year of Building Permits for Construction Phases of Southern Tenant Space

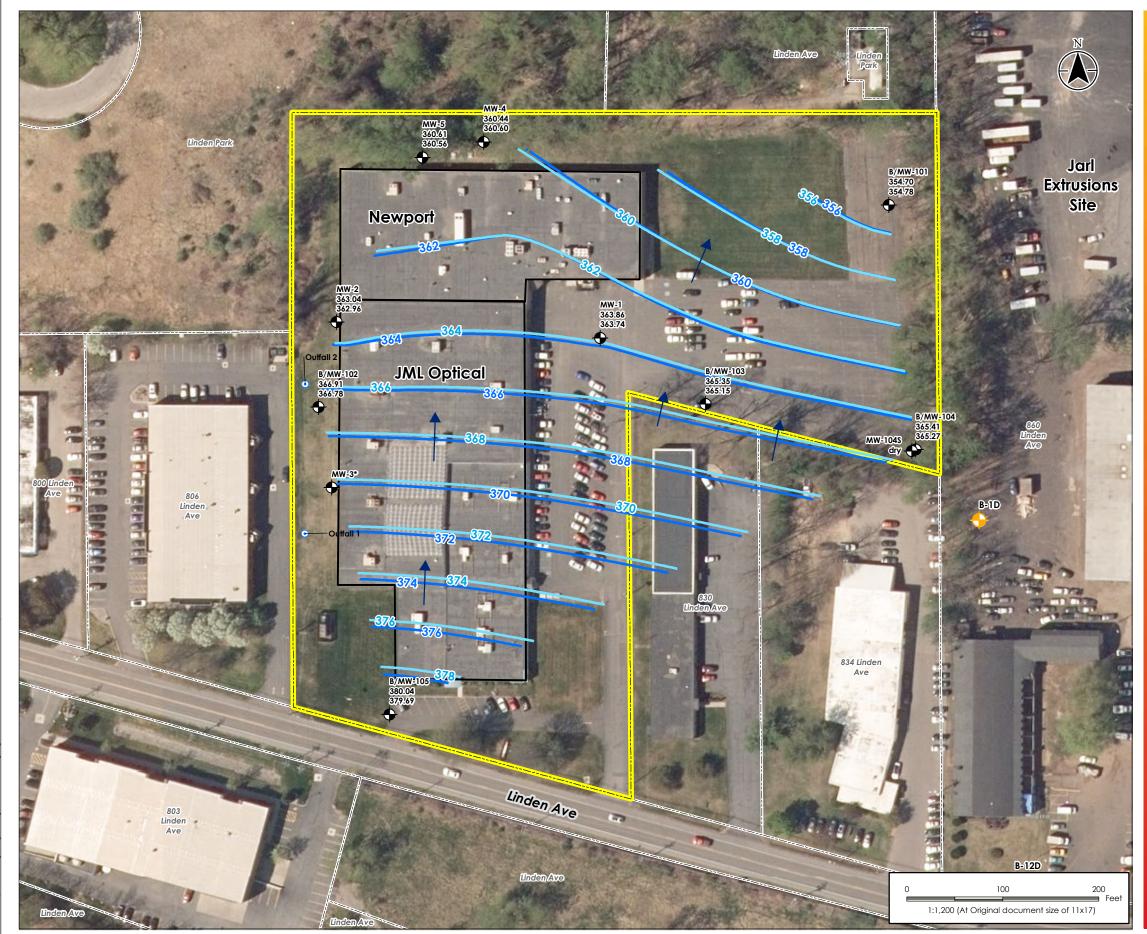
1956 1958

1959 1966

Nearby Parcel Boundaries

Roof Drain Outfall Locations

- 1. Coordinate System: NAD 1983 StatePlane New York West FIPS 3103 Feet
 2. Orthoimagery (2015) downloaded from gis.ny.gov.
 3. Site building is occupied by two tenants: JML Optical in the southern building section and Newport Corporation in the northern building section. Both current tenants are optics manufacturing facilities.



820 Linden Avenue Pittsford, Monroe Co., NY

Prepared by LB on 2020-06-30 Technical Review by SRS on 2020-08-26 Independent Review by MPS/KI on 2020-08-26

820 Linden Ave Site BCP Site #C828200 Site Management Plan

Site Layout Map

Monitoring Well Gauging Locations and Calculated Groundwater Elevation (note: October 2018 upper; January 2019 lower)

Groundwater Elevation Contour (ft AMSL) -October 1, 2018

Groundwater Elevation Contour (ft AMSL) -January 23, 2019

→ Approximate Inferred Direction of Groundwater Flow

Roof Drain Outfall Locations

Jarl Extrusions Monitoring Well

Building Tenant Spaces

Nearby Parcel Boundaries

- Coordinate System: NAD 1983 StatePlane New York West FIPS 3103 Feet

2. Ortholmagery (2015) downloaded from gis.ny.gov.
3. On-site monitoring wells were gauged on October 1, 2018 and January 23, 2019, during the RI. Groundwater elevations and contours are given in feet above mean sea level (ff AMSL, NAVD 88). Shallow monitoring well MW-104S was dry during both rounds

fever (in Ams), in Amb (w), stress than a great well that terminates under the building.

4. *Monitoring well MW-3 is an angled well that terminates under the building.

Groundwater elevation could not be accurately calculated and is therefore not used in contouring. The other monitoring wells are vertical wells.

5. Well locations surveyed for vertical and horizontal coordinates by a Stantec surveyor.

820 Linden Avenue Pittsford, Monroe Co., NY

Prepared by LB on 2020-06-30 Technical Review by SRS on 2020-08-26 Independent Review by MPS/KI on 2020-08-26

820 Linden Ave Site


BCP Site #C828200 Site Management Plan

Client/Project

3a

RI Groundwater Elevation Contour Map (October 2018 and January 2019)

ner: Stantec assumes no responsibility for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and completeness of the data. The recipient releases Stantec, its officers, employees, consultants and agents, from any and all claims arising in

Legend

- Monitoring Well Gauging Locations and Calculated Groundwater Elevation (July 2020; dashed where
- Groundwater Elevation Contour (ft AMSL) July 17, 2020
- Roof Drain Outfall Locations
- → Jarl Extrusions Monitoring Well
- Site
- Building Tenant Spaces
- Nearby Parcel Boundaries

- Coordinate System: NAD 1983 StatePlane New York West FIPS 3103 Feet
- 1. Coordinate System: NAD 1983 StatePlane New York West FIPS 3103 Feet
 2. Orthoimagery (2015) downloaded from gis.ny.gov.
 3. On-site monitoring wells were gauged on July 17, 2020 as part of IRM2. Groundwater elevations and contours are given in feet above mean sea level (ft AMSL, NAVD 88). Shallow monitoring well MW-104S was dry during gauging. NG=not gauged (MW-101 was inaccessible due to overlying IRM2 soil stockpile).
 4. "Monitoring well MW-3 is an angled well that terminates under the building. Groundwater elevation could not be accurately calculated and is therefore not used in contouring. The other monitoring wells are vertical wells.
 5. Well locations surveyed for vertical and horizontal coordinates by a Stantec surveyor.

820 Linden Avenue Pittsford, Monroe Co., NY

Prepared by LB on 2020-07-20 Technical Review by SRS on 2020-08-26 Independent Review by MPS/KI on 2020-08-26

Client/Project

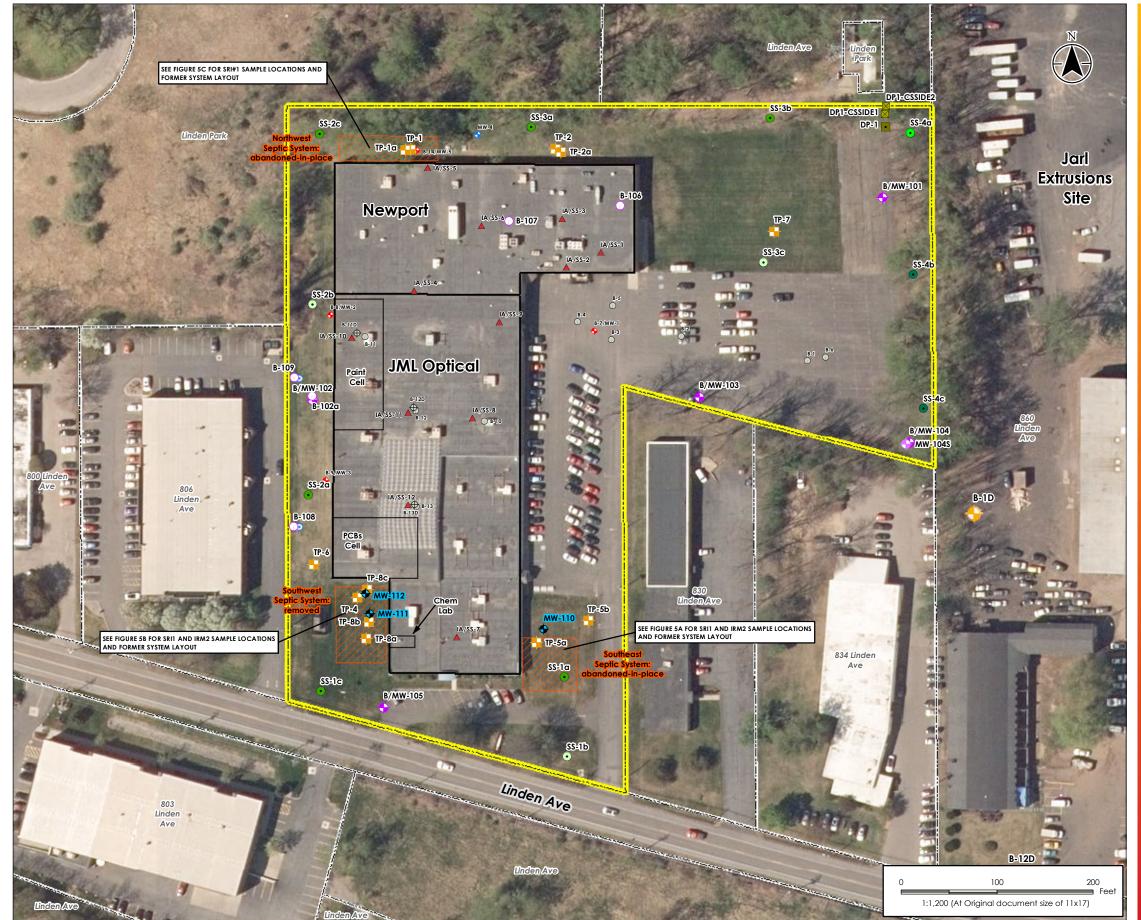

820 Linden Ave Site BCP Site #C828200 Site Management Plan

Figure No.

3b

IRM2 Groundwater Elevation Contour Map (July 2020)

mer; Stantec assumes no responsibility for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and completeness of the data. The recipient releases Stantec, its officers, employees, consultants and agents, from any and all claims arising in any way from the co

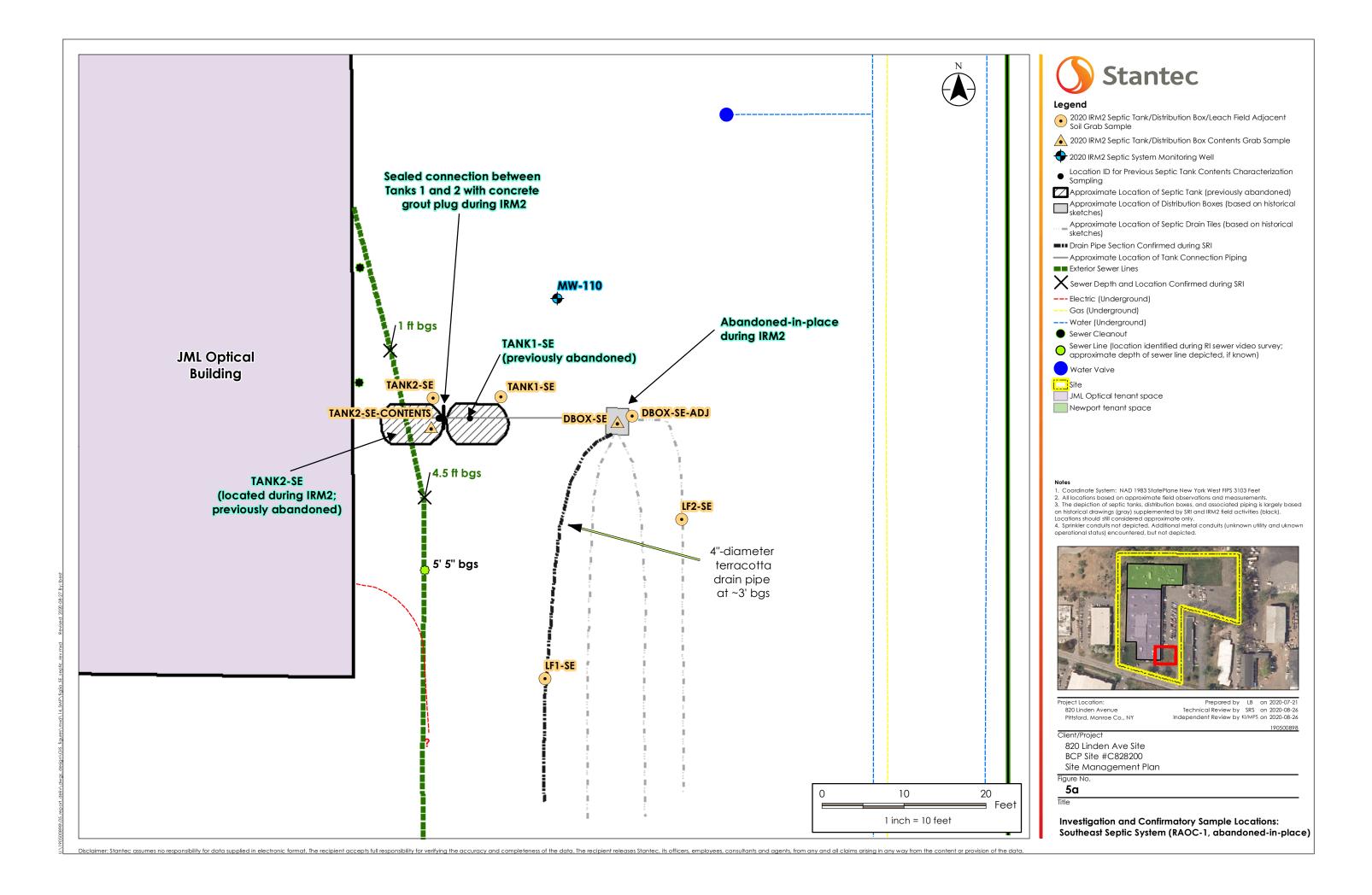
- ♦ 2020 IRM2 Septic System Monitoring Well
- 2020 IRM2 Debris Pile Removal Sidewall Samples
- + 2018 RI Soil Boring/Monitoring Well
- + 2018 RI Shallow Monitoring Well
- 2018 RI Soil Boring
- 2018 RI Test Pit
- 2018 RI Discrete Surface Soil Sample for Composite*
- 2018 RI Discrete Surface Soil Sample for Composite and Grab Sample for VOCs*
- SS-4a = 2018 RI Discrete Surface Soil Sample for Composite and 2020 SRI#2 Discrete Surface Soil Grab Sample for SVOCs*
- SS-4b and SS-4c = 2018 RI Discrete Surface Soil Sample for Composite and Grab Sample for VOCs and 2020 SRI#2 Discrete Surface Soil Grab Sample for SVOCs*
- 2018 RI Debris Pile Sample
- Historical Septic Systems (Removed or Abandoned-in-Place during IRM2)
- 2016 Limited Phase II ESA Soil Boring and Monitoring Well
- 2016 Limited Phase II ESA Shallow Soil Boring
- ♦ 2017 Limited Phase II ESA Deep Soil Boring/Temporary Monitoring Well
- Previously Existing Monitoring Well
- ▲ 2016-2017 Indoor Air/Sub-Slab Vapor Sample Location
- Jarl Extrusions Monitoring Well
- Roof Drain Outfall Locations
- Site Property Outline
- Nearby Parcel Boundaries
- Building Tenant Spaces Historical Building Usage

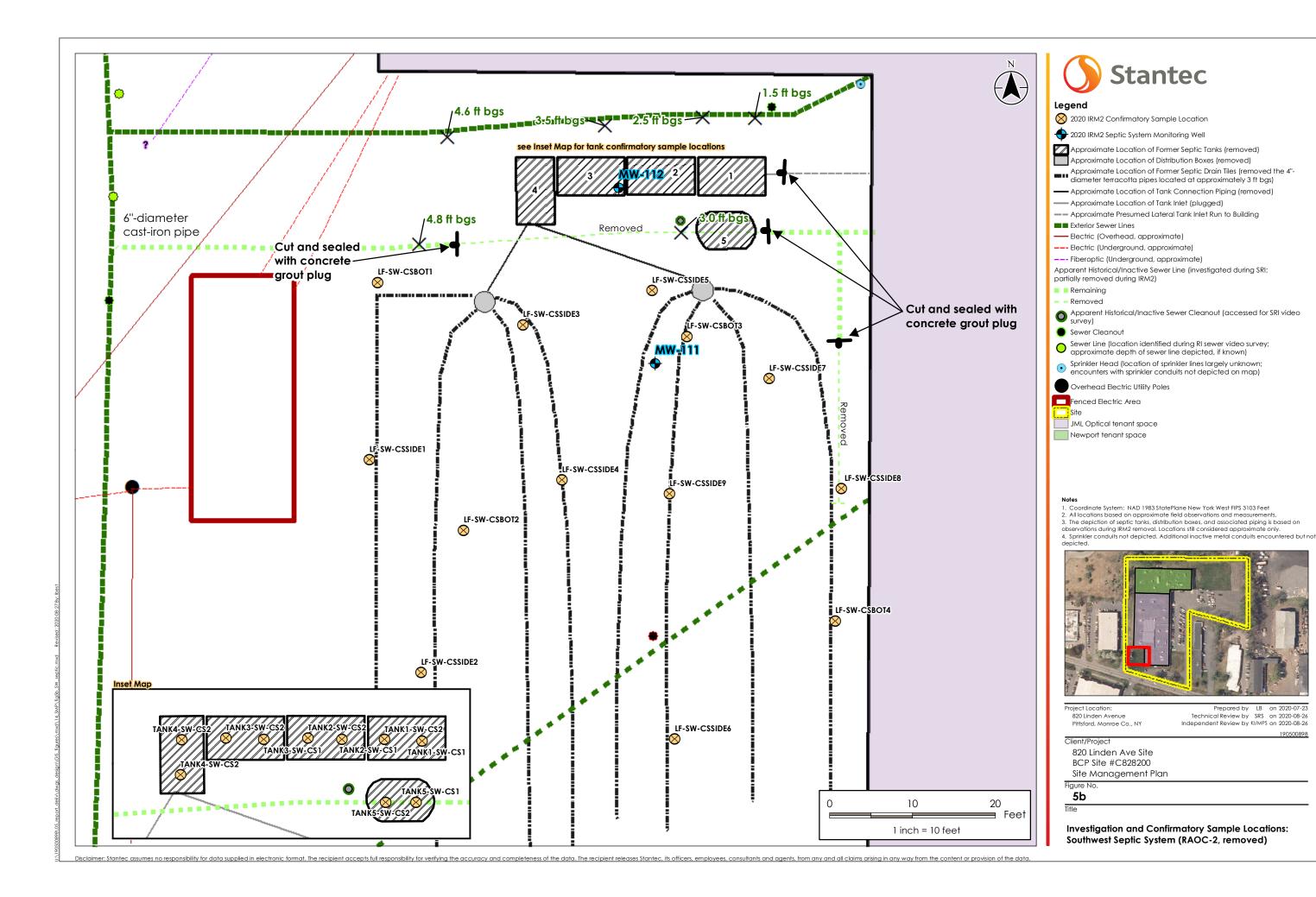
- . Coordinate System: NAD 1983 StatePlane New York West FIPS 3103 Feet
- Orthoimagery (2015) downloaded from gis.ny.gov.
 Monitoring well MW-3 is an angled well that terminates under the building. The other monitoring wells are vertical wells.
- A. Interior boring/well locations and sub-slab vapor/indoor air sample locations are estimated based on building structure tie-offs. The exterior locations are based on handheld GPS (Trimble) unit measurements and/or field measurements.
- 5. Well locations surveyed for vertical and horizontal coordinates by a Stantec surveyor.

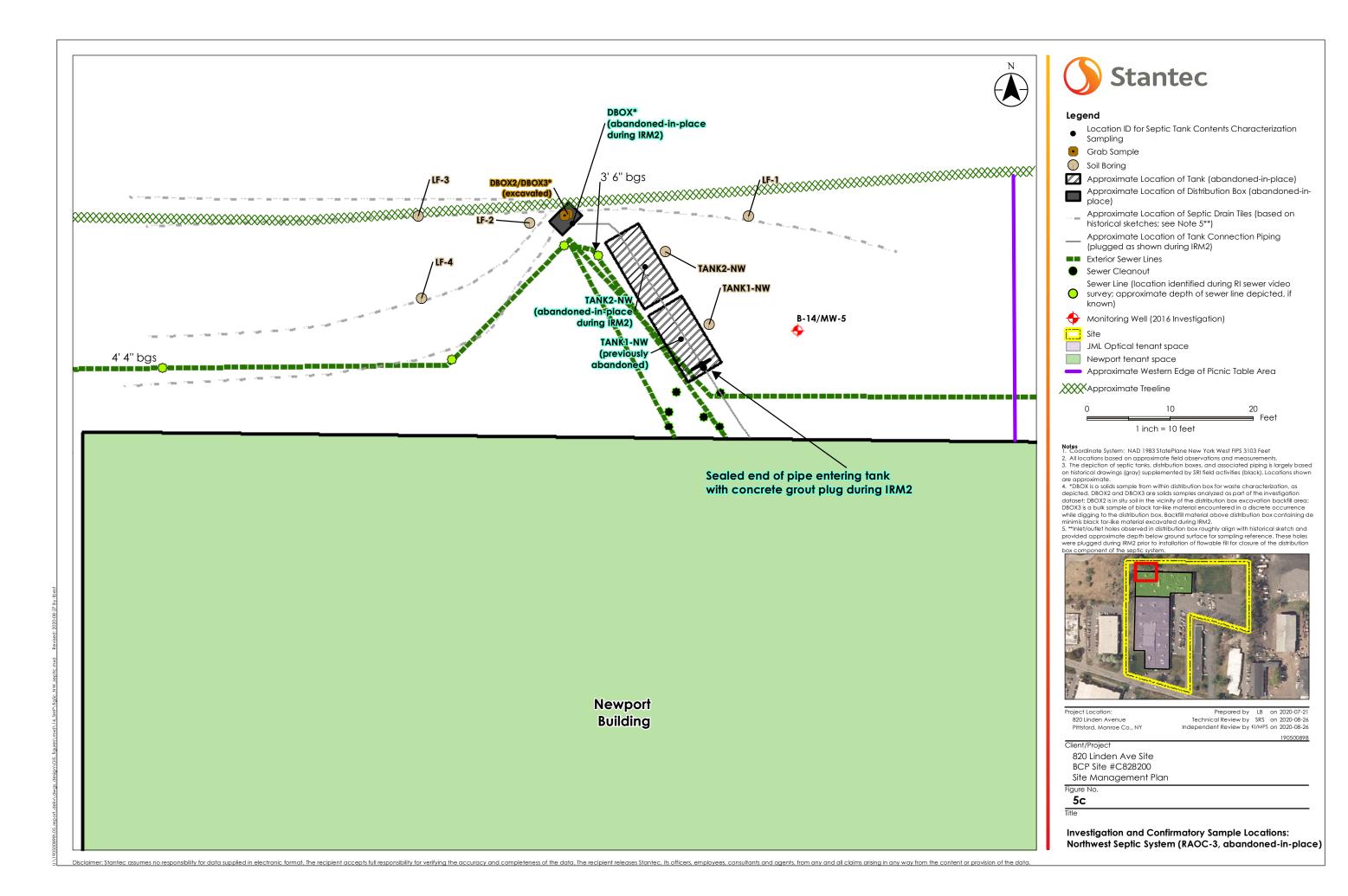
 6. *Surface soil sample locations were selected based on NYSDEC's Draft Soil Screening Guidance. Soil was collected from two depths at each sample location. Of the twelve discrete sample locations, eight included the collection of additional soil for VOC analysis (in addition to the soil collected for a composite analysis of other parameters). Each of the eight composite samples (4 groups at two depths) were comprised of three discrete samples. The discrete surface soil sample locations SS-4a, SS-4b, and SS-4c were re-sampled in April 2020 as part of SRI2. Samples from 0-2" below ground cover were each analyzed for benzo(a)pyrene to delineate PAH impacts to surface soil.

820 Linden Avenue Pittsford, Monroe Co., NY Prepared by LB on 2020-07-21 Technical Review by SRS on 2020-08-26 Independent Review by MPS/KI on 2020-08-26

Client/Project


820 Linden Ave Site BCP Site #C828200 Site Management Plan


Figure No.



Investigation and Sample Locations

imer: Stantec assumes no responsibility for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and completeness of the data. The recipient releases Stantec, its officers, employees, consultants and agents, from any and all claims arising in any way from the content or provision of the data.

- ◆ 2020 IRM2 Septic System Monitoring Well
- Permanent Site Monitoring Wells (2018 RI/2016 Limited Phase II ESA)
- Temporary Monitoring Well (2016-2017 Limited Phase II ESA)
- Jarl Extrusions Monitoring Well
- Roof Drain Outfall Locations
- Site Property Outline
- Building Tenant Spaces

- . Coordinate System: NAD 1983 StatePlane New York West FIPS 3103 Feet
- 2. Orthoimagery (2015) downloaded from gis.ny.gov.
 3. Monitoring well MW-3 is an angled well that terminates under the building. The other monitoring wells are vertical wells.
- Interior temporary well locations are estimated based on building structure tie-offs.
 Exterior well locations surveyed for vertical and horizontal coordinates by a Stantec
- 5. Shallow monitoring well MW-104S was dry during gauging events and therefore could
- 6. This figure depicts compounds with identified exceedances of NYSDEC Standards and Guidance Values (SGVs) based on the 2016-2017 Limited Phase II ESA, the 2018 RI datasets, and the 2020 IRM2 event. Exceedances of common, naturally-occurring metals such as iron, magnesium, managnese, and sodium, are not included herein. Refer to Report Tables
- for a complete tabulation of groundwater analytical data. Results with concentrations exceeding the NYSDEC SGVs are shaded in orange with bold text. Duplicate results are indicated with a slash ("/").

- T. Data Abbreviations:

 J the reported result is an estimated value

 ND "non-detect"; the analyte was not detected at a concentration greater than the reportina limit.

Technical Review by SRS on 2020-08-26 Independent Review by MPS/KI on 2020-08-26 820 Linden Avenue Pittsford, Monroe Co., NY

Client/Project

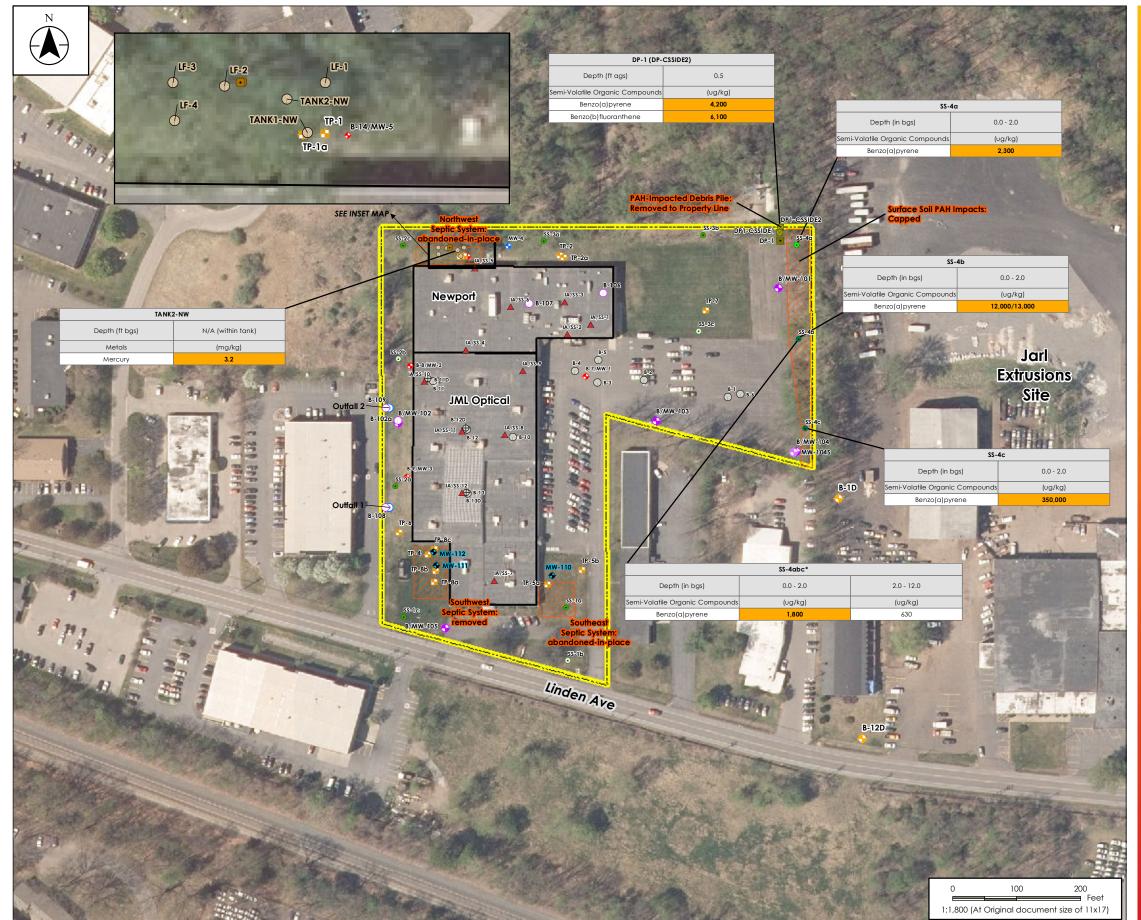

820 Linden Ave Site BCP Site #C828200 Site Management Plan

Figure No.

Exceedances of Standards and Guidance **Values in Groundwater Samples**

laimer: Stantec assumes no responsibility for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and completeness of the data. The recipient releases Stantec, its officers, employees, consultants and agents, from any and all claims arising in any way from the content or provision of the data.

mer; Stantec assumes no responsibility for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and completeness of the data. The recipient releases Stantec, its officers, employees, consultants and agents, from any and all claims arising in any way from the content or provision of the dat

- 2020 IRM2 Septic System Monitoring Well
- 2020 IRM2 Debris Pile Removal Sidewall Samples
- 2019 SRI Grab Soil Sample
- 2019 SRI Soil Boring
- 4 2018 RI Soil Boring/Monitoring Well
- 4 2018 RI Shallow Monitoring Well
- 2018 RI Soil Boring
- 5 2018 RI Test Pit
- 2018 RI Discrete Surface Soil Sample for Composite*
- 2018 RI Discrete Surface Soil Sample for Composite and Grab Sample for VOCs*
- SS-4a = 2018 RI Discrete Surface Soil Sample for Composite and 2020 SRI#2 Discrete Surface Soil Grab Sample for SVOCs*
- SS-4b and SS-4c = 2018 RI Discrete Surface Soil Sample for Composite and Grab Sample for VOCs and 2020 SRI#2 Discrete Surface Soil Grab Sample for SVOCs*
- 2018 RI Debris Pile Sample
- 2016 Limited Phase II ESA Soil Boring and Monitoring Well
- 2016 Limited Phase II ESA Shallow Soil Boring
- * 2017 Limited Phase II ESA Deep Soil Boring/Temporary Monitoring Well
- Previously Existing Monitoring Well
- ▲ 2016-2017 Indoor Air/Sub-Slab Vapor Sample Location
- Jarl Extrusions Monitoring Well
- Roof Drain Outfall Locations
- Area of Concern Addressed by IRMs 2 and 4
- Site Property Outline
- Building Tenant Spaces

- otes
 Coordinate System: NAD 1983 StatePlane New York West FIPS 3103 Feet

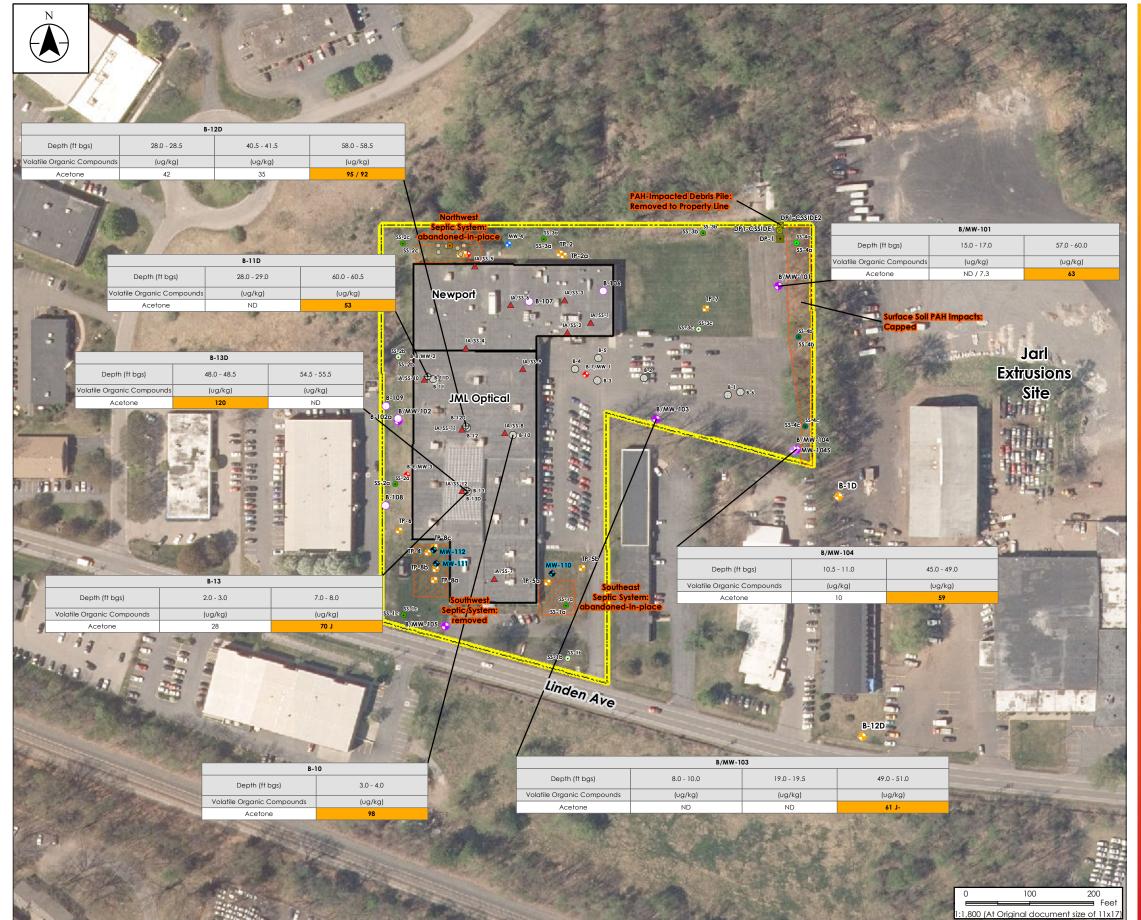
- 1. Coordinate System: NAD 1983 StatePlane New York West FIPS 3103 Feet
 2. Orthoirageny (2015) downloaded from gis.nv.gov.
 3. Monitoring well MW-3 is an angled well that terminates under the building. The other monitoring wells are vertical wells.
 4. Interior boring/well locations and sub-slab vapor/indoor air sample locations are estimated based on building structure fie-offs. The exterior locations are based on handheld GPS (Trimble) unit measurements and/or field measurements.
 5. Well locations surveyed for vertical and horizontal coordinates by a Stantec surveyor.
 6. *SS-4abc is a composite of discrete surface soil samples collected from locations SS-4a, SS-4b, and SS-4c. In April 2020, grab surface soil samples were collected at locations SS-4a, SS-4b, and SS-4c for SVOC analyses under SRI2.

 7. This figure depicts soil sample location exceedances of NYSDFC Commercial and Industrial Soil.
- analyses under SRI2.

 7. This figure depicts soil sample location exceedances of NYSDEC Commercial and Industrial Soil Cleanup Objectives (SCOs) that remain post-IRMs. Exceedances of common, naturally-occurring metals such as aluminum, calcium, ron, and magnesium are not included herein, Refer to Report Tables for a complete tabulation of soilds analytical data; locations with results meeting NYSDEC SCOs are not shown on this figure. Results with concentrations exceeding the listed applicable NYSDEC SCOs are shaded in orange with bold text. Duplicate results are indicated with a slash ("/").

820 Linden Avenue Pittsford, Monroe Co., NY

Prepared by LB on 2020-07-17 Technical Review by SRS on 2020-08-26 Independent Review by MPS/KI on 2020-08-26


Client/Project

820 Linden Ave Site BCP Site #C828200 Site Management Plan

Figure No.

7a

Remaining Soil Sample Exceedances of Commercial/Industrial Use SCOs

aimer: Stantec assumes no responsibility for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and completeness of the data. The recipient releases Stantec, its officers, employees, consultants and agents, from any and all claims arising in any way from the content or provision of the data.

- 2020 IRM2 Septic System Monitoring Well
- 2020 IRM2 Debris Pile Removal Sidewall Samples
- 2019 SRI Grab Soil Sample
- 2019 SRI Soil Boring
- 2018 RI Soil Boring/Monitoring Well
- 2018 RI Shallow Monitoring Well
- 2018 RI Soil Boring
- 5 2018 RI Test Pit
- 2018 RI Discrete Surface Soil Sample for Composite
- 2018 RI Discrete Surface Soil Sample for Composite and Grab Sample for
- SS-4a = 2018 RI Discrete Surface Soil Sample for Composite and 2020 SRI#2 Discrete Surface Soil Grab Sample for SVOCs
- SS-4b and SS-4c = 2018 RI Discrete Surface Soil Sample for Composite and Grab Sample for VOCs and 2020 SRI#2 Discrete Surface Soil Grab Sample for SVOCs
- 2018 RI Debris Pile Sample
- 2016 Limited Phase II ESA Soil Boring and Monitoring Well
- 2016 Limited Phase II ESA Shallow Soil Boring
- 2017 Limited Phase II ESA Deep Soil Boring/Temporary Monitoring Well
- Previously Existing Monitoring Well
- ▲ 2016-2017 Indoor Air/Sub-Slab Vapor Sample Location
- Jarl Extrusions Monitoring Well
- Area of Concern Addressed by IRMs 2 and 4
- Site Property Outline
- Building Tenant Spaces

- Notes
 1. Coordinate System: NAD 1983 StatePlane New York West FIPS 3103 Feet
 2. Orthoimagery (2015) downloaded from gis.ny.gov.
 3. Monitoring well MW-3 is an angled well that terminates under the building. The other
- 3. Monitoring well MW-3 is an angled well that terminates under the building. The other monitoring wells are vertical wells.

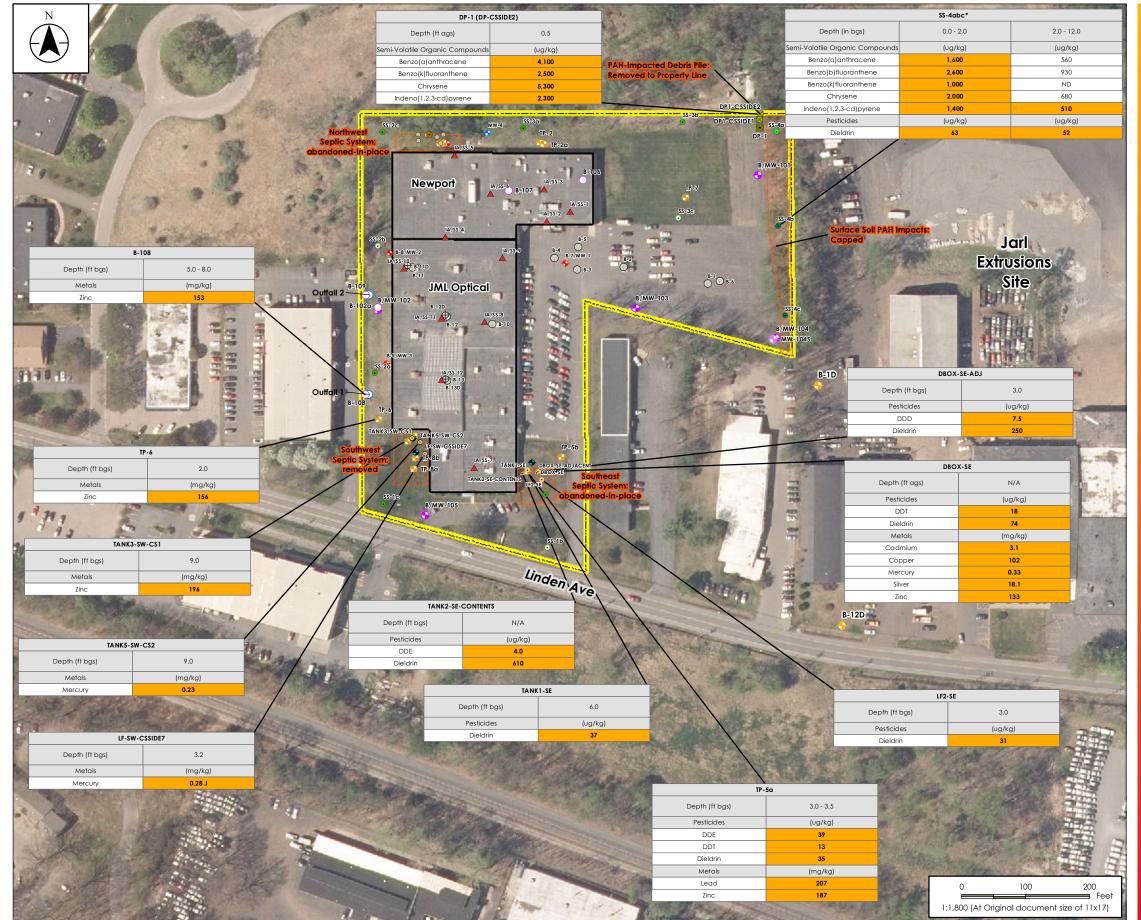
 4. Interior boring/well locations and sub-slab vapor/indoor air sample locations are estimated based on building structure lie-offs. The exterior locations are based on handheld GPS [frimble] unit measurements and/or field measurements.

 5. Well locations surveyed for vertical and horizontal coordinates by a Stantec surveyor.
- This figure depicts soil sample location exceedances of NYSDEC Protection of Groundwater (POGW) Soil Cleanup Objectives (SCOs) that remain post-IRMs. This does not include POGW exceedances where groundwater impacts were not reported. Exceedances of common, naturally-occurring metals such as aluminum, calcium, iron, and magnesium are not included herein. Refer to Report Tables for a complete tabulation of solids analytical data. Results with concentrations exceeding the listed applicable NYSDEC SCOs are shaded in orange with bold text. Duplicate results are indicated with a slash [7].
- 7. Data Abbreviations:
- but a Abbreviation.

 I the reported result is an estimated value.

 -- the analyte was positive identified; the associated numerical value is an estimated.
- quantity that may be biased low. ND "non-detect"; the analyte was not detected at a concentration greater than the
- reporting limit.
- VOC volatile organic compound

Project Location 820 Linden Avenue Pittsford, Monroe Co., NY Prepared by LB on 2020-07-17 Technical Review by SRS on 2020-08-26 Independent Review by MPS/KI on 2020-08-26


Client/Project

820 Linden Ave Site BCP Site #C828200 Site Management Plan

Figure No.

7b

Remaining Soil Sample Exceedances of **POGW SCOs**

aimer: Stantec assumes no responsibility for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and completeness of the data. The recipient releases Stantec, its officers, employees, consultants and agents, from any and all claims arising in any way from the content or provision of the data.

Legend

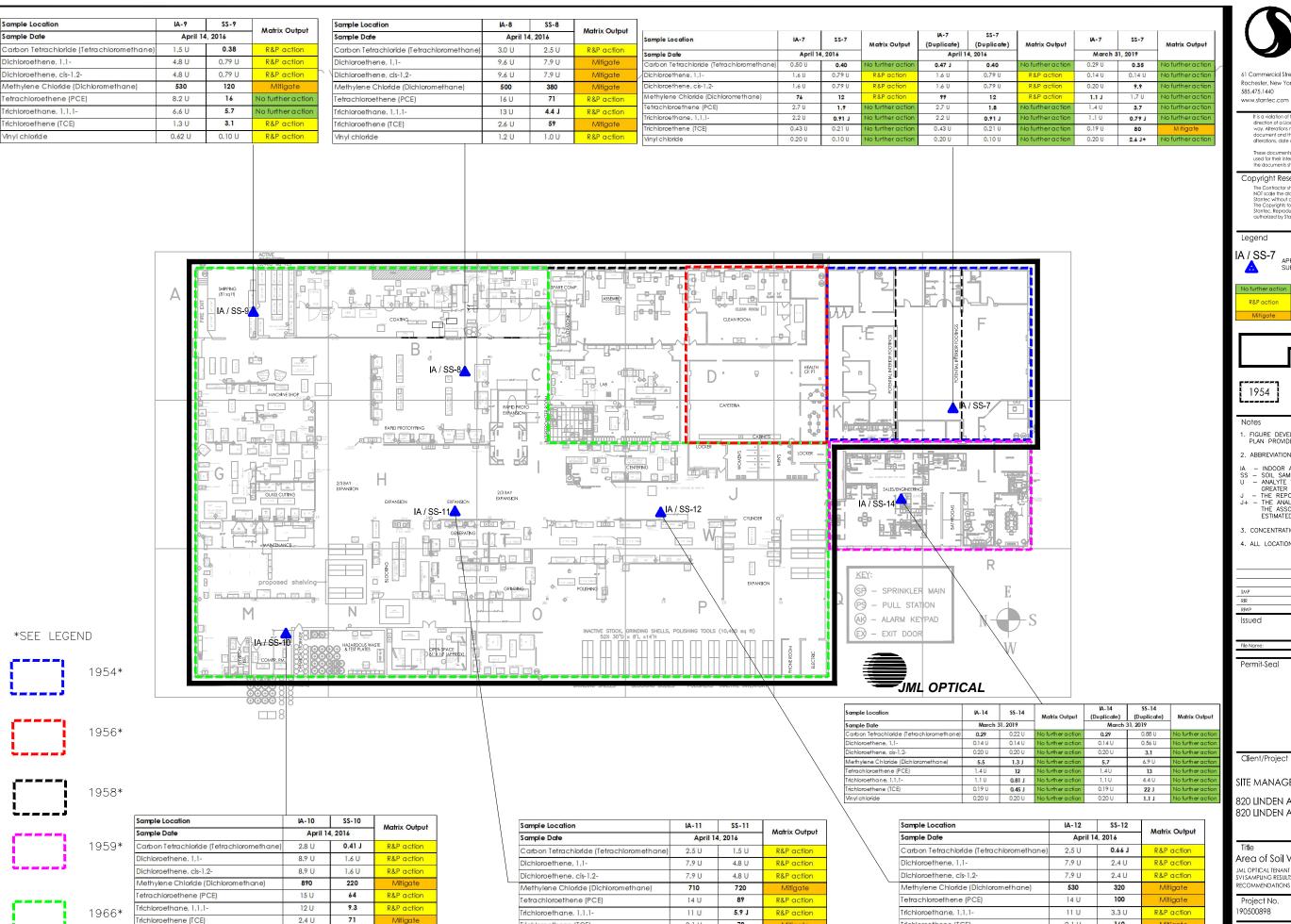
- 2020 IRM2 Septic System Monitoring Well
- 2020 IRM2 Septic Tank/Distribution Box/Leach Field Adjacent Soil Investigation
 Grab Sample
- ▲ 2020 IRM2 Septic Tank/Distribution Box Contents Investigation Grab Sample
- ⊗ 2020 IRM2 Confirmatory Sample Location (Southwest Septic System, RAOC-
- 2020 IRM2 Debris Pile Removal Sidewall Samples
- 2019 SRI Grab Soil Sample
- 2019 SRI Soil Boring
- 2018 RI Soil Boring/Monitoring Well
- 2018 RI Shallow Monitoring Well
- 2018 RI Soil Boring
- 🐈 2018 RI Test Pit
- 2018 RI Discrete Surface Soil Sample for Composite
- 2018 RI Discrete Surface Soil Sample for Composite and Grab Sample for VOCs
- SS-4a = 2018 RI Discrete Surface Soil Sample for Composite and 2020 SRI#2 Discrete Surface Soil Grab Sample for SVOCs
- SS-4b and SS-4c = 2018 RI Discrete Surface Soil Sample for Composite and Grab Sample for VOCs and 2020 SRI#2 Discrete Surface Soil Grab Sample for SVOCs
- 2018 RI Debris Pile Sample
- 2016 Limited Phase II ESA Soil Boring and Monitoring Well
- 2016 Limited Phase II ESA Shallow Soil Boring
- ♦ 2017 Limited Phase II ESA Deep Soil Boring/Temporary Monitoring Well
- Previously Existing Monitoring Well
- ▲ 2016-2017 Indoor Air/Sub-Slab Vapor Sample Location
- Jarl Extrusions Monitoring Well
- Roof Drain Outfall Locations
- Area of Concern Addressed by IRMs 2 and 4
- Site Property Outline
- Building Tenant Spaces

- 1. Coordinate System: NAD 1983 StatePlane New York West FIPS 3103 Feet
 2. Orthormagery (2015) downloaded from gis.ny.gov.
 3. Monitoring well MW-3 is an angled well that terminates under the building. The other monitoring wells are vertical wells. 4. Interior boring/well locations and sub-slab vapor/indoor air sample locations are estimated based on
- building structure tie-offs. The exterior locations are based on handheld GPS (Trimble) unit measi and/or field measurements.

 Well locations surveyed for vertical and horizontal coordinates by a Stantec surveyor.

- 5. Well locations surveyed for vertical and horizontal coordinates by a Stantec surveyor.
 6. See septic layout Figures 5a-5c for a closer view of the sample locations. See Figure 4 for site-wide sample location map.
 7. "SS-4abc is a composite of discrete surface soil samples collected from locations SS-4a, SS-4b, and SS-4c. In April 2020, grab surface soil samples were collected at locations SS-4a, SS-4b, and SS-4c for benzo(a)pyrene analyses under SRI2.
 8. This figure depicts remaining (post-IRMs) soil sample locations with exceedances of NYSDEC Unrestricted Use Soil Cleanup Objectives (SCOs) only, Sample locations depicted on the
- on Resonance does also care PO 90 % CO figures are not included herein. Exceedances of common, commercial/hadustrial or according to the common service of the common services of common, not refer to Report Tables for a complete tabulation of solids and data; locations with results meeting Refer to Report Tables for a complete tabulation of solids and data; locations with results meeting the common services of the common services
- NYSDEC SCOs are not shown on this figure. Results with concentrations exceeding the listed applicable NYSDEC SCOs are shaded in orange with bold text. Duplicate results are indicated with a slash ("/"). Non-detect results are indicated by "ND".

820 Linden Avenue Pittsford, Monroe Co., NY Technical Review by SRS on 2020-08-26 Independent Review by MPS/KI on 2020-08-26


Client/Project

820 Linden Ave Site BCP Site #C828200 Site Management Plan

Figure No.

7c

Remaining Soil Sample Exceedances of **Unrestricted Use SCOs**

Trichloroethene (TCF)

Vinyl chloride

0.20 U R&P action

1.1 U

Vinyl chloride

2.1 U

1.0 U

79

0.62 U

Mitigate

R&P action

Trichloroethene (TCE)

Vinyl chloride

61 Commercial Street, Suite 100 Rochester, New York USA 14614 585.475.1440

www.stantec.com

It is a violation of the RYS Education Law for any person, unless under the direction of a Licensed Professional Engineer, to other this document in any way. Alterations must have the claring Engineer's sed affixed to the document and the notation "Altered By" along with a description of the direction, and on the Professional Engineer's signature alterations, add or it the alteration and the Professional Engineer's signature

These documents contain potentially sensitive information and shall only be used for their intended purpose. Once the intended purpose has ceased, the documents shall be destroyed in a secure manner.

Copyright Reserved

The Confloctor shall verify and be responsible for all almensions, DO NOT scale the drawing - any errors or omissions shall be reported to Stantec without delay.

The Copyrights to all designs and drawings are the property of Stantec, Reproduction or use for any purpose other than that authorized by Stantec is forbidden.

Legend

IA / SS-7

APPROXIMATE INDOOR AIR AND SAMPLE LOCK SUB-SLAB VAPOR SAMPLE LOCATION

No further action	No further action is recommended.
R&P action	Take reasonable and practical actions to identify source(s) and reduce exposures.
Mitigate	Mitigation is recommended.

General Area of Building Footprint Serviced by SSDS

1954

Approximate Slab Footprints and Year of Building Permit

FIGURE DEVELOPED USING BASE BUILDING PLAN PROVIDED BY JML OPTICAL.

- INDOOR AIR
- SOIL SAMPLE
- ANALYTE WAS NOT DETECTED AT A CONCENTRATION
GREATER THAN THE LABORATORY REPORTING LIMIT
- THE REPORTED RESULT IS AN ESTIMATED VALUE
- THE AVALYTE WAS POSITIVELY IDENTIFIED VALUE
- THE AVALYTE WAS POSITIVELY IDENTIFIED VALUE THE ASSOCIATED NUMERICAL VALUE IS AN ESTIMATED QUANTITY THAT MAY BE BIASED HIGH

3. CONCENTRATIONS ARE PROVIDED IN µg/m3

ALL LOCATIONS SHOWN ARE APPROXIMATE.

		=	=	
SMP		LB	MPS	20.07.xx
RIR		LB	MPS	19.02.21
RIWP		APL	MPS	17.09.05
Issued		Ву	Appd.	YY.MM.DD
File Name:	APL	SRS	LB	16.07.18
•	Dom	Child	D	VV MAN DD

Permit-Seal

SITE MANAGEMENT REPORT

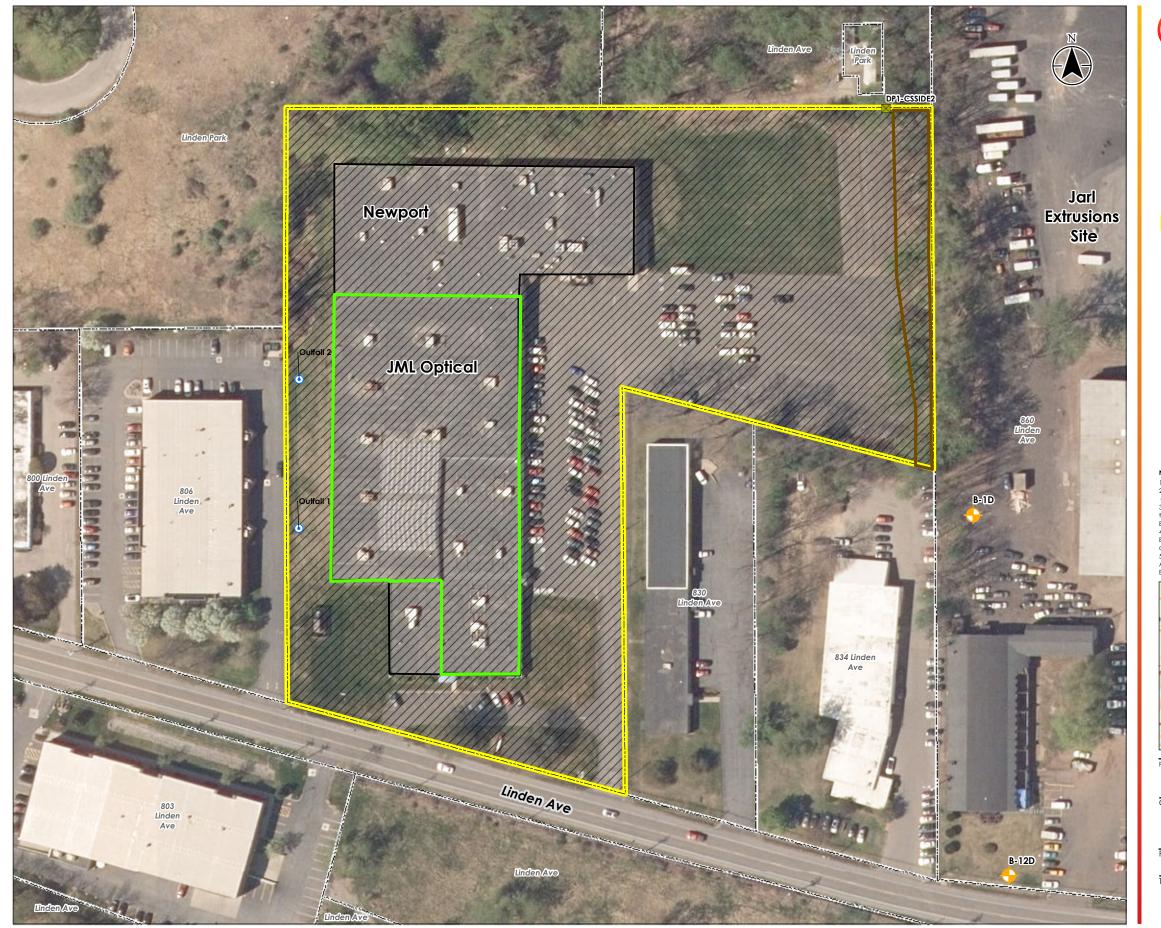
820 LINDEN AVE. BCP SITE # C828200 820 LINDEN AVENUE, PITTSFORD, NY

160

0.31 U

Mitigate

R&P action


2.1 U

1.0 U

Area of Soil Vapor Intrusion Concern JML OPTICAL TENANT SPACE INTERIOR BUILDING PLAN AND SVI SAMPLING RESULTS WITH MYSDOH MATRIX ECOMMENDATIONS (JML OPTICAL)

Project No. 190500898	Scale NOT TO SCALE	
Drawing No.	Sheet	Revision

Figure 8

ner: Stantec assumes no responsibility for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and completeness of the data. The recipient releases Stantec, its officers, employees, consultants and agents, from any and all claims arising in any way from the content or provision of the data

Legend

- 2020 IRM2 Debris Pile Removal Final Sidewall Sample at Northern Property Line
- /// Site Cover System to Maintain
- Extent of Engineered Cover System over PAH-impacted Surface Soil
- General Area of Building Footprint Serviced by SSDS to Address Chlorinated Solvents in Sub-Slab Vapor Requiring SVI Mitigation
- Site Property Outline
- Building Outline (concrete floor slab serves as cover for the building footprint)
- Nearby Parcel Boundaries
- Jarl Extrusions Monitoring Well
- Storm Drain Outfall Locations

1:1,200 (At Original document size of 11x17)

- Notes

 1. Coordinate System: NAD 1983 StatePlane New York West FIPS 3103 Feet

 2. Basemap sources: Orthoimagery (2015) downloaded from
 gis.ny.gov (Main Frame): ArcGIS World Street Map (Inset Frame).

 3. Site building was occupied by two tenants at the time this SMP was issued: JML Optical in
 the southern building section and Newport Corporation in the northern building section.
 Both current tenants are optics manufacturing facilities.

 4. Institutional Controls applicable to portion of the Site included in the Environmental
 Easement, as defined in the Site Management Plan. Limits of the Environmental Easement
 are the Site property boundaries.
- are the Sife property boundaries.

 5. Engineering Controls include the SSDS and composite Cover System as shown herein.
 Any ground-intrusive activity within an Engineered Control areas are subject to the
 Excavation Work Plan appended to the SMP.

820 Linden Avenue Pittsford, Monroe Co., NY

Prepared by LB on 2020-08-18 Technical Review by SRS on 2020-08-26 Independent Review by KI/MPS on 2020-08-26

Client/Project

820 Linden Ave Site BCP Site #C828200 Site Management Plan

Engineering Controls Layout Map

Appendix A

Environmental Easement

Survey map included herein. Environmental Easement to be included upon its completion in the Final SMP.

DEED DESCRIPTION:

ALL THAT TRACT OR PARCEL OF LAND BEING PART OF LOT NO 5, TOWNSHIP 12, RANGE 5, TOWN OF PITTSFORD, COUNTY OF MONROE AND STATE OF NEW YORK, AND MORE PARTICULARLY BOUNDED AND DESCRIBED AS FOLLOWS;

BEGINNING AT A POINT IN THE CENTERLINE OF LINDEN AVENUE (49.50 FEET WIDE) SAID POINT BEING DISTANT 333.47 FEET NORTHWESTERLY MEASURED ALONG SAID CENTERLINE, FROM THE LEASE LINE OF PROPERTY CONVEYED TO CARL F. GRABOSKE AND ALICE GRABOSKE, THENCE (I) NORTHERLY, FORMING AN INTERIOR ANGLE OF 75 DEGREES 05' 25" WITH THE CENTERLINE OF LINDEN AVENUE, A DISTANCE OF 450.00 FEET. THENCE (2) SOUTHEASTERLY, FORMING AN INTERIOR ANGLE OF 284 DEGREES 54' 35", A DISTANCE OF 332.01 FEET, THENCE (3) NORTHERLY, FORMING AN INTERIOR ANGLE OF 74 DEGREES 54' 40", A DISTANCE OF 1011.60 FEET TO THE DIVISION LINE BETWEEN THE TOWN OF PENFIELD ON THE NORTH AND THE TOWN OF PITTSFORD ON THE SOUTH; THENCE (4) WESTERLY, FORMING AN INTERIOR ANGLE OF 89 DEGREES 46' 04", ALONG THE AFOREMENTIONED DIVISION LINE BETWEEN THE TOWN OF PENFIELD AND PITTSFORD, A DISTANCE OF 293.50 FEET TO A POINT IN THE EASTERLY LINE OF PANORAMA TRAIL SOUTH (A PRIVATE DRIVE 60 FEET WIDE), THENCE (5) SOUTHWESTERLY, FORMING AN INTERIOR ANGLE OF 112 DEGREES 34' 41", ALONG THE EASTERLY LINE OF PANORAMA TRAIL SOUTH, A DISTANCE OF 80.69 FEET TO AN ANGLE POINT, THENCE (6) SOUTHWESTERLY, FORMING AN INTERIOR ANGLE OF 187 DEGREES 30' OO" CONTINUING ALONG THE EASTERLY LINE OF PANORAMA TRAIL SOUTH, A DISTANCE OF 28.21 FEET, THENCE (7) SOUTHERLY FORMING AN INTERIOR ANGLE OF 150 DEGREES 27' 00", A DISTANCE OF 539.45 FEET; THENCE (8) WESTERLY, FORMING AN INTERIOR ANGLE OF 269 DEGREES 42' 15", A DISTANCE OF 330.39 FEET, THENCE (9) SOUTHERLY, FORMING AN INTERIOR ANGLE OF 90 DEGREES 10' 45", A DISTANCE OF 640.68 FEET TO A POINT IN THE CENTERLINE OF LINDEN AVENUE, THENCE (10) SOUTHEASTERLY FORMING AN INTERIOR ANGLE OF 104 DEGREES 54' 35" ALONG THE CENTERLINE OF LINDEN AVENUE, A DISTANCE OF 363,975 FEET TO THE POINT OR PLACE OF BEGINNING.

SAID ABOVE DESCRIBED PARCEL IS SUBJECT TO RIGHT OF WAY EASEMENT OVER PANORAMA TRAIL SOUTH (PRIVATE ROAD) PER LIBER 3952 OF DEEDS, AT PAGE 194 AND LIBER 3459 OF DEEDS, PAGE 265

SUBJECT TO ALL COVENANTS AND EASEMENTS OF RECORD AFFECTING SAID PREMISES, IF ANY EXCEPTING THE FOLLOWING PROPERTY

ALL THAT TRACT OR PARCEL OF LAND, SITUATE IN THE TOWN OF PITTSFORD, COUNTY OF MONROE, STATE OF NEW YORK, BEING MORE PARTICULARLY BOUNDED AND DESCRIBED AS FOLLOWS:

BEGINNING AT A POINT FORMED BY THE INTERSECTION OF THE SOUTHEASTERLY RIGHT OF WAY LINE OF A PRIVATE DRIVE KNOWN AS PANORAMA TRAIL SOUTH (60 FEET WIDE) WITH THE DIVISION LINE BETWEEN THE TOWN OF PENFIELD ON THE NORTH AND THE

TOWN OF PERINTON ON THE SOUTH; THENCE I. SOUTHWESTERLY, ALONG THE SOUTHEASTERLY RIGHT OF WAY LINE OF PANORAMA TRAIL SOUTH, A DISTANCE OF 81.19 FEET, THENCE

2. SOUTHWESTERLY, FORMING AN INTERIOR ANGLE OF 187 DEGREES 30 MINUTES OO SECONDS. CONTINUING ALONG THE SOUTHEASTERLY RIGHT OF WAY LINE OF PANORAMA TRAIL SOUTH, A DISTANCE OF 34.23 FEET, THENCE

3. SOUTHERLY, FORMING AN INTERIOR ANGLE OF 150 DEGREES 17 MINUTES 43 SECONDS, A DISTANCE OF 533.91 FEET, THENCE

4. EASTERLY. FORMING AN INTERIOR ANGLE OF 89 DEGREES 42 MINUTES 15 SECONDS, A DISTANCE OF 341.00 FEET; THENCE 5.NORTHERLY, FORMING AN INTERIOR ANGLE OF 90 DEGREES OO MINUTES OO SECONDS, ALONG THE EAST LINE OF THE FORMER A. GRABOSKE FARM, A DISTANCE OF

639.74 FEET TO THE DIVISION LINE BETWEEN THE TOWN OF PENFIELD ON THE NORTH AND THE TOWN OF PERINTON ON THE SOUTH, THENCE

6.WESTERLY, FORMING AN INTERIOR ANGLE OF 89 DEGREES 46 MINUTES 04 SECONDS, ALONG THE DIVISION LINE BETWEEN THE TOWN OF PENFIELD ON THE NORTH AND THE TOWN OF PERINTON ON THE SOUTH, A DISTANCE OF 290.04 FEET TO THE POINT OR PLACE OF BEGINNING.

ALL AS SHOWN ON A MAP PREPARED BY DAVID E. VAN LARE, L.S. DATED APRIL 16, 1993.

CONTAINING 347,225,99 SQ. FT. (7.97) ACRES) TO CENTERLINE MORE OR LESS.

REFERENCES

I. DEEDS REFERENCED HEREON FILED AT THE MONROE COUNTY CLERK'S OFFICE.

2. MAP TITLED "MAP SHOWING PARCELS TO BE CONVEYED" DATED APRIL 16, 1993. PREPARED BY DAVID E. VANLARE.

EASEMENTS

I. TO AMERICAN TELEPHONE & TELEGRAPH COMPANY FOR POLES AND WIRES PER LIBER 1430, PAGE 339.

2. TO ROCHESTER GAS & ELECTRIC CORP. AND ROCHESTER TELEPHONE CORPORATION FOR POLES AND WIRES PER LIBER 2914, PAGE 2.

3. TO ROCHESTER GAS & ELECTRIC CORP. FOR GAS MAINS PER LIBER 3108, PAGE 272.

4. TO ROCHESTER GAS & ELECTRIC CORP. AND ROCHESTER TELEPHONE CORPORATION FOR POLES AND WIRES PER LIBER 3106, PAGE 274. 5. TO ROCHESTER GAS & ELECTRIC CORP. FOR GAS MAINS PER LIBER 3760, PAGE 70.

6. TO PANORAMA DEVELOPMENT CO., INC.; EMIL MULLER AND EMIL MULLER CONSTRUCTION CO., INC. FOR PRIVATE ROAD (SOUTH PANORAMA TRAIL) PER LIBER 3612. PAGE 23.

7. TO PENFIELD SEWER DISTRICT NO. I FOR STORM AND/OR SANITARY SEWERS PER LIBER 4121, PAGE 45.

8. TO ROCHESTER GAS & ELECTRIC CORP. AND ROCHESTER TELEPHONE CORPORATION FOR POLES AND WIRES PER LIBER 5134, PAGE 173.

9. TO ROCHESTER GAS & ELECTRIC CORP. AND ROCHESTER TELEPHONE CORPORATION FOR POLES AND WIRES PER LIBER 5134, PAGE 252. 10.TO ROCHESTER GAS & ELECTRIC CORP. AND ROCHESTER TELEPHONE CORPORATION FOR POLES AND WIRES PER LIBER 5134, PAGE 263.

THIS PROPERTY IS SUBJECT TO AN ENVIRONMENTAL EASEMENT HELD BY THE NEW YORK STATE DEPARTMENT OF ENVIRONMENTAL CONSERVATION PURSUANT TO TITLE 36 OF ARTICLE 71 OF THE NEW YORK ENVIRONMENTAL CONSERVATION LAW. THE ENGINEERING AND INSTITUTIONAL CONTROLS FOR THIS EASEMENT ARE SET FORTH IN THE SITE MANAGEMENT PLAN (SMP). A COPY OF THE SMP MUST BE OBTAINED BY ANY PARTY WITH AN INTEREST IN THE PROPERTY. THE SMP CAN BE OBTAINED FROM NYS DEPARTMENT OF ENVIRONMENTAL CONSERVATION, DIVISION OF ENVIRONMENTAL REMEDIATION, SITE CONTROL SECTION, 625 BROADWAY, ALBANY, NY 12233 OR AT DERWEB@DEC.NY.GOV.

BROWNFIELD CLEANUP PROGRAM EASEMENT AREA:

ALL THAT TRACT OR PARCEL OF LAND BEING PART OF LOT NO 5, TOWNSHIP 12, RANGE 5, TOWN OF PITTSFORD, COUNTY OF MONROE

AND STATE OF NEW YORK, AND MORE PARTICULARLY BOUNDED AND DESCRIBED AS

BEGINNING AT A POINT ON THE NORTHERLY RIGHT OF WAY LINE OF LINDEN AVENUE (49.5' WIDE), AT THE INTERSECTION OF LANDS REPUTEDLY OWNED BY 830 LINDEN AVENUE LLC ON THE EAST AND LANDS REPUTEDLY OWNED BY 820 LINDEN AVENUE ON THE WEST. THENCE NORTHERLY FORMING AN INTERIOR ANGLE OF 75°05'25" WITH THE SAID NORTHERLY LINE OF LINDEN AVENUE, A DISTANCE OF 424.39 FEET TO A POINT; THENCE SOUTHEASTERLY FORMING AN INTERIOR ANGLE OF 284°54'35" A DISTANCE OF 332.01 FEET TO A REBAR FOUND 0.3 FEET SOUTH; THENCE NORTHERLY FORMING AN INTERIOR ANGLE OF 74°54'40" A DISTANCE OF 371.86 FEET TO A POINT; THENCE WESTERLY FORMING AN INTERIOR ANGLE OF 90°00'00" A DISTANCE OF 671.39 FEET TO A POINT; THENCE SOUTHERLY FORMING AN INTERIOR ANGLE OF 90°10'45" A DISTANCE OF 615.07 FEET TO AN IRON PIPE FOUND O.1 FEET SOUTH AND 0.5 FEET EAST ON THE NORTHERLY RIGHT OF WAY LINE OF LINDEN AVENUE; THENCE ALONG SAID RIGHT OF WAY LINE FORMING AN INTERIOR ANGLE OF 104°54'35" A DISTANCE OF 363.97 FEET TO THE POINT OF BEGINNING.

> LINDEN INDUSTRIAL PARK INC. LINDEN PARK

> > 138,15-1-11**,**11

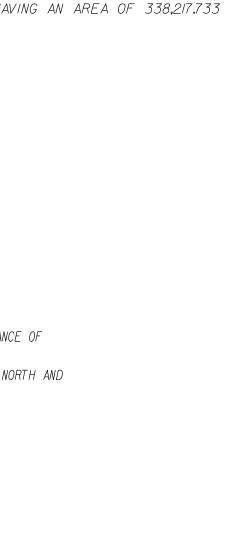
L. 3614 P. 576

WE, RAVI ENGINEERING AND LAND SURVEYING, HEREBY CERTIFY TO:

THAT THIS SURVEY MAP WAS PREPARED FROM NOTES OF A LAND SURVEY COMPLETED BY RAVI ENGINEERING & LAND SURVEYING, P.C.

ON MAY I, 2020 AND FROM THE REFERENCES NOTED HEREON, AND

THAT THE MAP OR PLAT AND THE SURVEY UPON WHICH IT WAS BASED MEETS THE GVLSA 2017 MINIMUM STANDARDS FOR A SURVEY MAP.


ITS COMMISSIONER OF THE DEPARTMENT OF ENVIRONMENTAL CONSERVATION

THE PEOPLE OF THE STATE OF NEW YORK ACTING THROUGH

RIDGECREST ASSOCIATES, L.P.

KNAUF SHAW LLP

HAVING AN AREA OF 338,217.733 SQUARE FEET OR 7.76 ACRES MORE OR LESS.

LEGEND

 \odot

Overhead Utilities

Easement Line

Iron Pipe Found

Iron Rebar Found

Monument

Catch Basin

Clean Out

Storm Manhole

Sanitary Manhole

Electric Manhole

Utility Junction Box

Electric Meter

Water Valve

Gas Valve

Fire Hydrant

Utility Pole

Light Pole

Flag Pole

Post

ASPHALT

LINDEN AVENUE

PAVER PATIO MONITERING WELL MW-4

CLEANOUT

3" ROUND METAL

BOLLARDS¬ GAS

" CHAIN LINK

ASPHALT

-POINT OF BEGINNING EASEMENT DESCRIPTION

 \blacksquare

MONITERING WELL

CLEANOUTS

MW-5

O 2.5" ROUND METAL

POST 6' TALL

2.5" ROUND METAL

2.5" ROUND METAL

POST 6' TALL

O POST 6' TALL

EJ DEL MONTE CORPORATION

820 LINDEN AVENUE

138,15-1-9,12 L. 8474 P. 441

4" ROUND METAL

B/MW-101 @

MONITERING WELL-

MONITERING WELL-

FUERBACHER FAMILY LP

834 LINDEN AVENUE

138,15-1-007 L. 10703 P. 243

MONITERING WELL

ASPHALT

860 LINDEN PARK IN

860 LINDEN AVENUE

138,16-1-001

L. 8820 P. 614

PROJECT #

ISSUE DATE

20-20-068

08/26/2020

SHEET 1 OF

POST 5' TALL

 ∞

PINCH PIPE

FOUND

Appendix B

List of Site Contacts

List of Site Contacts

Contact	Name	Email Address/Phone Number
Site Owner/Remedial Party	Joe Lobozzo, Ridgecrest Associates	j.lobozzo@me.com (585) 766-3949
Stantec Project Manager	Stephanie Reynolds-Smith	stephanie.reynoldssmith@stantec.com (585) 298-2382
Stantec Senior Consulting Lead	Mike Storonsky	mike.storonsky@stantec.com (585) 298-2386
Stantec Engineering Lead	Kevin Ignaszak	kevin.ignaszak@stantec.com (585) 284-6713
Stantec SSDS Engineering Lead	Dwight Harrienger	dwight.harrienger@stantec.com (585) 413-8740
Remedial Party Attorney	Linda Shaw, Knauf Shaw	lshaw@nyenvlaw.com (585) 414-3122
NYSDEC DER Project Manager	Tasha Mumbrue	tasha.mumbrue@dec.ny.gov (585) 226-5459
NYSDEC Regional HW Engineer	David Pratt	david.pratt@dec.ny.gov (585) 226-5315
NYSDEC Site Control	n/a	derweb@gw.dec.state.ny.us
NYSDOH Project Manager	Kristin Kulow	kristin.kulow@health.ny.gov (518) 402-7860
Tenant, JML Optical	Steve Burton, Vice President, Operations	steveb@jmloptical.com (585) 218-2906
Tenant, JML Optical	Mark Zaso	markz@jmloptical.com (315) 289-3038
Tenant, Newport Corporation	Brian Grove	brian.grove@mksinst.com (585) 739-6046
Library Repository	Pittsford Community Library	(585) 248-6275

Appendix C

Soil Boring and Monitoring Well Construction Logs

61 Commercial St, Suite 100 Rochester, NY 14614 (585) 475-1440

Test Boring No.: B-1
Page: 1 of 1

Project:	820 Linden Ave. Phase II ESA	Drill Contractor:	Parratt-Wolff Inc.	Start Date:	6/20/2016
Project #:	190500898	Driller:	Glenn	Completion Date:	6/20/2016
Client:	Ridgecrest Associates	Elevation:	NM	Casing Type:	NA
Location:	820 Linden Avenue	Weather:	75°F	Drilling Method:	Direct Push
	Rochester, NY	Field Rep.:	Charles Yarrington	•	

Depth	Recovery	Sample Depth	PID	
(ft. bgs)	(ff.)	(ft. bgs)	(ppm)	Soil Description and Observations
				0' - 4": Asphalt and subgrade
			2.6	4" - 1.5': Dark brown fine SAND, non-cohesive, loose, moist
			0.3	4 - 1.5. Dark brown line sand, non-conesive, loose, moisi
			0.0	1.5' - 4': Light brown fine SAND, non-cohesive, loose, moist
			0	
4	3'/4'		0	AL ARCHITICAL CONTRACTOR CONTRACT
			0.4	4' - 4'2": Light brown fine SAND, non-cohesive, loose, moist
			0.4	4'2" - 4'4": Dark brown fine SAND and GRAVEL, non-cohesive, loose, moist
			1.3	
				4'4" - 8" Light brown fine SAND, non-cohesive, loose, moist
			0.3	
	41.7.41			
8	4'/4'		0	8' - 12': Brown fine SAND, non-cohesive, moist, loose
			0	6 - 12 . BIOWIT III IE SAND, HOH-COHESIVE, HIOISI, IOOSE
			0	
			0	
12	4'/4'		0	
12	4/4		0	

Notes: 1. PID Model Mini-Rae 3000 with 10.6 eV lamp. Other Notes and Observations:	Boring Location:	Far east in parking lot

Test Boring No.:	B-2
Page:	1 of 1

Project:	820 Linden Ave. Phase II ESA	Drill Contractor:	Parratt-Wolff Inc.	Start Date:	6/20/2016
Project #:	190500898	Driller:	Glenn	Completion Date:	6/20/2016
Client:	Ridgecrest Associates	Elevation:	NM	Casing Type:	NA
Location:	820 Linden Avenue	Weather:	75°F	Drilling Method:	Direct Push
	Rochester, NY	Field Rep.:	Charles Yarrington	_	

Depth (ft. bgs)	Recovery (ff.)	Sample Depth (ft. bgs)	PID (ppm)	Soil Description and Observations
(290)	(,	(II. bgs)	(PP)	0' - 6": Asphalt and subgrade
			12.1	
			_	6" - 4": Light brown fine SAND, non-cohesive, loose moist
			0	
			0	
			0	
4	3'/4'		0	
				4' - 4'6": Light brown fine SAND, dark brown staining, non-cohesive, loose, moist
			0.5	
			1.0	4'6" - 8': Light brown fine SAND, non-cohesive, loose, moist
			1.3	
			0.3	
			0.0	
8	4'/4'		0	
				8' - 12': Light brown fine SAND, non-cohesive, loose, moist
			0	
			0	
			U	
			0	
12	4'/4'		0	

NI -	
No	LGC.
110	<u> </u>

1. PID Model Mini-Rae 3000 with 10.6 eV lamp.	Boring Location:	Intermediate parking lot
Other Notes and Observations:	•	, ,
DUP-01 collected here		

Test Boring No.:	B-3
Page:	1 of 1

Project:	820 Linden Ave. Phase II ESA	Drill Contractor:	Parratt-Wolff Inc.	Start Date:	6/20/2016
Project #:	190500898	Driller:	Glenn	Completion Date:	6/20/2016
Client:	Ridgecrest Associates	Elevation:	NM	Casing Type:	NA
Location:	820 Linden Avenue	Weather:	90°F	Drilling Method:	Direct Push
	Rochester, NY	Field Rep.:	Charles Yarrington	•	

Depth	Recovery	Sample	PID	
(ft. bgs)	(ff.)	Depth (ft. bgs)	(ppm)	Soil Description and Observations
		Çasa se y ey		0' - 6": Asphalt and subgrade
			2	ZIII. Li salat la sa con fina CANID. In sa con Ala dia sa Cara data da sa casa di sa cata da sa casa da da sa c
			2.2	6" - 1': Light brown fine SAND, trace Medina Sandstone, small matrix suspended sub-angular gravel, non-cohesive, moist
			2.2	1' - 4': Brown fine SAND, non-cohesive, loose, moist
			0	
4	3'/4'		0.2	
			1	4' - 8': Light brown fine SAND with dark staining at 4.5', non-cohesive, moist
			'	
			0	
			0	
8	4'/4'		0	
0	4/4		0	8' - 12': Light brown fine SAND, non-cohesive, loose, moist
			0	2 121 Light Brown line of the principle contains, lease, main
			0	
			0	
			0	
12	3.5'/4'		0	

Notes:	Parina Lagatian	South armost point poor loading dooks
1. PID Model Mini-Rae 3000 with 10.6 eV lamp.	Boring Location:	Southernmost point near loading docks
Other Notes and Observations:		

Test Boring No.:	B-4
Page:	1 of 1

Project:	820 Linden Ave. Phase II ESA	Drill Contractor:	Parratt-Wolff Inc.	Start Date:	6/20/2016
Project #:	190500898	Driller:	Glenn	Completion Date:	6/20/2016
Client:	Ridgecrest Associates	Elevation:	NM	Casing Type:	NA
Location:	820 Linden Avenue	Weather:	90°F	Drilling Method:	Direct Push
	Rochester, NY	Field Rep.:	Charles Yarrington	_	

Depth	Recovery	Sample Depth	PID	
(ft. bgs)	(ft.)	(ft. bgs)	(ppm)	Soil Description and Observations
			0.5	0' - 4": Asphalt and subgrade
			0.5	4" - 4': Light brown fine SAND, non-cohesive, loose, moist
			0	- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
			0	
4	3'/4'		0	
				4' - 8': Light brown fine SAND with dark staining at 4'-4.5', non-cohesive, moist
			3.2	
			0	
			0	
	41.7.41		_	
8	4'/4'		0	8' - 12': Light brown fine SAND, non-cohesive, loose, moist
			0	2 12121911 2121111111111111111111111111
			0	
			0	
12	4'/4'		0	

Notes: 1. PID Model Mini-Rae 3000 with 10.6 eV lamp. Other Notes and Observations:	Boring Location:	Easternmost point near loading docks

Test Boring No.: B-5
Page: 1 of 1

Project:	820 Linden Ave. Phase II ESA	Drill Contractor:	Parratt-Wolff Inc.	Start Date:	6/20/2016
Project #:	190500898	Driller:	Glenn	Completion Date:	6/20/2016
Client:	Ridgecrest Associates	Elevation:	NM	Casing Type:	NA
Location:	820 Linden Avenue	Weather:	90°F	Drilling Method:	Direct Push
	Rochester, NY	Field Rep.:	Charles Yarrington	-	

Depth (ft. bgs)	Recovery (ft.)	Sample Depth	PID (ppm)	Soil Description and Observations
(II. Dgs)	(11.)	(ft. bgs)		0' - 6": Asphalt and subgrade
			8.5	0 - 6 . Aspirali and subgrade
			0.0	6" - 4": Light brown fine SAND, non-cohesive, loose, moist
			4	
			0	
4	4'/4'		0.2	
				4' - 8': Light brown fine SAND with dark staining at 4'-4.5', non-cohesive, moist
			6.8	
			F 2	
			5.3	
			0	
			0	
8	2.5'/4'		0	
	_,,,			8' - 12': Light brown fine SAND, non-cohesive, loose, moist
			0	
			0	
			0	
10	41.44			
12	4'/4'		0	

Notes: 1. PID Model Mini-Rae 3000 with 10.6 eV lamp. Other Notes and Observations:	Boring Location:	Northernmost point near loading docks
	_ _	

Test Boring No.:	B-6
Page:	1 of 1

Project:	820 Linden Ave. Phase II ESA	Drill Contractor:	Parratt-Wolff Inc.	Start Date:	6/21/2016
Project #:	190500898	Driller:	Glenn	Completion Date:	6/21/2016
Client:	Ridgecrest Associates	Elevation:	NM	Casing Type:	NA
Location:	820 Linden Avenue	Weather:	80°F	Drilling Method:	Direct Push
	Rochester, NY	Field Rep.:	Charles Yarrington	_	

Depth	Recovery	Sample Depth	PID	
(ft. bgs)	(ft.)	(ft. bgs)	(ppm)	Soil Description and Observations
			0.9	0' - 6": Asphalt and subgrade
			0.7	6" - 4": Brown fine SAND, non-cohesive, loose, moist
			0	a H. Blown line of the first contained, locate, moisi
			0	
4	3'/4'		0	
				4' - 4'4": Light brown fine SAND , non-cohesive, moist
			0.9	
			0	4'4" - 4'5": Fine angular matrix suspended GRAVEL and fine SAND, some
			0	4'5" - 8': Brown find SAND, non-cohesive, moist
			0	40 - 0. BIOWITHING SAND, HOH-COHESIVE, HIOISI
			0	
8	3'/4'		0	
	-			8' - 12': Light brown fine SAND, non-cohesive, loose, moist
			0	
			0	
			_	
			0	
12	3'/4'		0	
12	3/4		0	

Matas
Notes:
140163

1. PID Model Mini-Rae 3000 with 10.6 eV lamp.	Boring Location:	Northernmost point near loading docks
Other Notes and Observations:		
MS/MSD collected here		
	<u></u>	
		

Test Boring No.: MW-1 (B-7)
Page: 1 of 3

Project: 820 Linden Ave. Phase II ESA Parratt-Wolff Inc. Start Date: 6/21/2016 **Drill Contractor:** Project #: 190500898 Glenn Completion Date: 6/22/2016 Driller: Client: Ridgecrest Associates Elevation: NM Casing Type: PVC **Location:** 820 Linden Avenue Weather: 80°F Drilling Method: Hollow Stem Auger Field Rep.: Rochester, NY Charles Yarrington

		Sample		
Depth	Recovery	Depth	PID	
(ft. bgs)	(ft.)	(ft. bgs)	(ppm)	Soil Description and Observations 0' - 1': Asphalt and subgrade
			1.7	0 - 1 : Asprian and subgrade
			.,,	1' - 4': Brown fine SAND, non-cohesive, loose, moist
			0	
			0	
4	4'/4'		0.5	
	,			4' - 8': Light brown fine SAND , non-cohesive, moist
			5.3	
			0	
			0	
			0	
8	4'/4'		0	
				8' - 12': Light brown fine SAND, non-cohesive, loose, moist.
			0	
			0	
			0	
10	41.4.41			
12	4'/4'		0	12' - 16': Light brown fine SAND, non-cohesive, loose, moist.
			0	12 - 10. Light brown line sainb, horr-conesive, loose, moist.
			0	
			0	
16	4'/4'		0	
1.2	., .		_	16' - 20': Light brown fine SAND, non-cohesive, loose, moist.
			0	
			0	
			0	
20	2'/4'		0	
				20' - 24': Light brown fine SAND, non-cohesive, loose, moist and becoming wet at
			0	approximately 23' bgs
22	2'/2'		0	
			0	
24	2'/2'		0	

NI -		
INC	otes:	

1. PID Model Mini-Rae 3000 with 10.6 eV lamp.	Boring Location:	Well in parking lo
Other Notes and Observations:		

Test Boring No.: MW-1 (B-7)
Page: 2 of 3

Project: 820 Linden Ave. Phase II ESA Parratt-Wolff Inc. Start Date: 6/21/2016 **Drill Contractor:** Completion Date: Project #: 190500898 Glenn 6/22/2016 Driller: Client: Ridgecrest Associates Elevation: NM Casing Type: PVC **Location:** 820 Linden Avenue Weather: 80°F Drilling Method: Hollow Stem Auger Rochester, NY Field Rep.: Charles Yarrington

Depth (ft. bgs)	Recovery (ff.)	Sample Depth (ft. bgs)	PID (ppm)	Soil Description and Observations
			_	24' - 28': Grayish brown fine SAND, non-cohesive, loose, moist
			0	
26	2'/2'		0	
			0	
28	2'/2'		0	
				28' - 32': Brownish gray fine SAND , non-cohesive, loose, moist
			0	
30	2'/2'		0	
		1		
			0	
32	2'/2'		0	
				32' - 36': Brownish gray fine SAND , non-cohesive, loose, moist
			0	
34	2'/2'		0	
		1		
			0	
36	2'/2'		0	
				36' - 40': Brownish gray fine SAND , non-cohesive, loose, moist
			0	
38	2'/2'		0	
- 55	2/2			
			0	
40	2'/2'		0	
40	2/2		0	40' - 44': Brownish gray fine SAND , non-cohesive, loose, moist
			0	
42	2'/2'		0	
42	2/2		0	
			0	
	01.401			
44	2'/2'		0	44' - 48': Brownish gray fine SAND , non-cohesive, loose, moist
			0	, , , , , , , , , , , , , , , , , , , ,
	01.401		_	
46	2'/2'		0	
			0	
48	2'/2'		0	

	_		
N	ot	0	٠.
.,	v	С.	"

1.	PID Model	Mini-Rae 3000 with	10.6 eV lamp.	
----	-----------	--------------------	---------------	--

Other Notes and Observations:

Boring Location: Well in parking lot

Test Boring No.: MW-1 (B-7)
Page: 3 of 3

Project: 820 Linden Ave. Phase II ESA Parratt-Wolff Inc. Start Date: 6/21/2016 **Drill Contractor:** Completion Date: Project #: 190500898 Glenn 6/22/2016 Driller: Client: Ridgecrest Associates Elevation: NM Casing Type: PVC **Location:** 820 Linden Avenue Weather: 80°F Drilling Method: Hollow Stem Auger Rochester, NY Field Rep.: Charles Yarrington

Depth (ft. bgs)	Recovery (ff.)	Sample Depth (ft. bgs)	PID (ppm)	Soil Description and Observations
		, ,		48' - 52': Grayish brown fine SAND, non-cohesive, loose, moist
			0	
50	1'/2'		0	
- 50	1 / 2			
			0	
52	2'/2'		0	
			0	52' - 56': Brownish gray fine SAND , non-cohesive, loose, moist and becoming wet at 56'
			0	
54	2'/2'		0	
	,			
			0	
56	2'/2'		0	E/L /Oh David hara variab every fina CAND, mare as begins la see as the worked
			0	56' - 60': Dark brownish gray fine SAND, non-cohesive, loose saturated
58	2'/2'		0	
			0	
40	01.701		0	
60	2'/2'		0	60' - 64': Dark brownish gray fine SAND, non-cohesive, loose saturated
			0	100 - 04. Dark brownish gray line SAND, non-conesive, loose saturated
62	2'/2'		0	
			0	
64	2'/2'		0	
04	2/2		0	64' - 68': Dark brownish gray fine SAND, non-cohesive, loose saturated
			0	
66	2'/2'		0	
			_	
			0	
68	2'/2'		0	
	-,-		Ŭ	68' - 70': Dark brownish gray fine SAND, non-cohesive, loose saturated
			0	End of boring @ 69.5'
				Portland cement: 1' - 49.5'
70	2'/2'		0	Bentonite chips: 49.5' - 52.5'
			0	Sand: 52.5' - 69.5' Screen: 54.5' - 69.5'
			0	SCIECH, 54.5 - 07.5
			0	
	1	l .		

NI	ol	-	••
ľ	v	c	ъ.

1.	PID	Model	Mini-Rae	3000 with	10.6 eV	lamp.		
----	-----	-------	----------	-----------	---------	-------	--	--

Other Notes and Observations:

Boring Location: Well in parking lot

Test Boring No.: MW-2 (B-8)
Page: 1 of 3

Project: 820 Linden Ave. Phase II ESA Parratt-Wolff Inc. Start Date: 6/23/2016 **Drill Contractor:** Completion Date: Project #: 190500898 Glenn 6/24/2016 Driller: Client: Ridgecrest Associates Elevation: NM Casing Type: PVC **Location:** 820 Linden Avenue Weather: 70°F Drilling Method: Hollow Stem Auger Field Rep.: Rochester, NY Charles Yarrington

Depth (ft. bgs)	Recovery (ff.)	Sample Depth	PID (ppm)	Soil Description and Observations
(II. Dgs)	(11.)	(ft. bgs)	(ррііі)	0' - 1': Light brown sandy SILT trace organics, non-cohesive, loose, moist
			0	
				1' - 3.5': Light brown sandy SILT, trace clay, semi-cohesive, loose, moist
			0.2	
			0.7	3.5' - 4': Light brown sandy SILT and matrix suspended coarse angular GRAVEL
			0.6	
4	3.5'/4'		1.5	
				4' - 8': Light brown fine SAND and SILT , non-cohesive, loose, moist
			0.7	
			0	
			0	
8	4'/4'		0	
				8' - 12': Light brown fine SAND and SILT trace gravel at 7', non-cohesive, loose, moist
			0.2	
			0.5	
			0.5	
			0	
12	2.5'/4'		0	
			0.1	12' - 14': Light brown fine SAND and SILT , non-cohesive, loose, moist
			0.1	14' - 16': Brown to gray fine SAND, tight, non-cohesive, moist
			0	14 10. Blown to gray line 37 (42), light, from contained, moist
			0	
	41.4.4			
16	4'/4'		0	1/1 201: Proven to grow fine SAND tight non cohesive maint
			0	16' - 20': Brown to gray fine SAND, tight, non-cohesive, moist
			0	
			0	
20	4'/4'		0	
20	7/7			20' - 24': Brown to gray fine SAND, tight, non-cohesive, moist with perched water at 22'
			0	
22	2'/2'		0	
			0	
			0	
24	2'/2'		0	
'	- / -	1		

NI	of	-	•	
14	O	E	3	

1. F	PID Model Mini-Rae 3000 v	vith 10.6 eV lamp.	В
------	---------------------------	--------------------	---

Other Notes and Observations:

Boring Location: Well in grass near north of property

Test Boring No.: MW-2 (B-8)
Page: 2 of 3

Project: 820 Linden Ave. Phase II ESA Parratt-Wolff Inc. Start Date: 6/23/2016 **Drill Contractor:** Completion Date: Project #: 190500898 Glenn 6/24/2016 Driller: Client: Ridgecrest Associates Elevation: NM Casing Type: PVC **Location:** 820 Linden Avenue Weather: 70°F Drilling Method: Hollow Stem Auger Field Rep.: Rochester, NY Charles Yarrington

Depth (ft. bgs)	Recovery (ff.)	Sample Depth (ft. bgs)	PID (ppm)	Soil Description and Observations
			0	24' - 28': Brownish gray fine SAND, medium tight, non-cohesive, moist.
			0	
26	2'/2'		0	
			0	
28	2'/2'		0	
			0	28' - 32': Brownish gray fine SAND, medium tight, non-cohesive, moist.
30	1'/2'		0	
			0	
32	2'/2'		0	32' - 36': Brownish gray fine SAND, medium tight, non-cohesive, moist.
			0	32 - 36 : Brownish gray line SAND, medium light, non-conesive, moist.
34	2'/2'		0	
			0	
36	2'/2'		0	36' - 40': Brownish gray fine SAND, medium tight, non-cohesive, moist.
			0	40. BIOWHISH gray line 37 (AB), HICKIOTH light, HOTH COTIOSIVO, HICKIO.
	01101			
38	2'/2'		0	
			0	
40	11/01		•	
40	1'/2'		0	40' - 44': Brownish gray fine SAND, medium tight, non-cohesive, moist.
			0	2
40	01/01		0	
42	2'/2'		0	
			0	
4.4	01/01		0	
44	2'/2'		0	44' - 48': Brownish gray fine SAND, medium tight, non-cohesive, moist.
			0	
46	2'/2'		0	
40			0	
			0	
40	21/21		0	
48	2'/2'		0	

NI	_1	_	_	
N	ot	е	S	

1.	PID Model Mini-Rae	3000 with	10.6 eV lamp.	Вс
----	--------------------	-----------	---------------	----

Other Notes and Observations:

Boring Location: Well in grass near north of property

Test Boring No.: MW-2 (B-8)
Page: 3 of 3

Project:	820 Linden Ave. Phase II ESA	Drill Contractor:	Parratt-Wolff Inc.	Start Date:	6/23/2016
Project #:	190500898	Driller:	Glenn	Completion Date:	6/24/2016
Client:	Ridgecrest Associates	Elevation:	NM	Casing Type:	PVC
Location:	820 Linden Avenue	Weather:	70°F	Drilling Method:	Hollow Stem Auger
	Rochester, NY	Field Rep.:	Charles Yarrington	_	

Depth	Recovery	Sample Depth	PID	
(ft. bgs)	(ft.)	(ft. bgs)	(ppm)	Soil Description and Observations
				48' - 52': Brownish gray fine SAND, medium tight, non-cohesive, moist.
			0	
50	2'/2'		0.2	
	272		0.2	
			0.6	
52	2'/2'		1.5	
			0	52' - 56': Brownish gray fine SAND, medium tight, non-cohesive, moist.
			0	
54	2'/2'		0	
			0	
			_	
56	2'/2'		0	E// /Ole Description or service of the CANID recordings tight may be colored.
			0	56' - 60': Brownish gray fine SAND, medium tight, non-cohesive, moist.
			0	
58	2'/2'		0	
	,			
			0	
40	01.401			
60	2'/2'		0	60' - 64': Dark brownish gray fine SAND, non-cohesive, moist and becoming wet at 61'
			0	60 - 64. Dark brownish gray line SAND, hon-conesive, moist and becoming wer at 61
62	2'/2'		0	
			0	
64	2'/2'		0	
04	2/2		U	64' - 68': Dark brownish gray fine SAND, non-cohesive, loose, saturated
			0	22. 23. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3
66	2'/2'		0	
			_	
			0	
68	2'/2'		0	
	<i>L1L</i>			68' - 72': Dark brownish gray fine SAND, non-cohesive, loose, saturated
			0	End of boring @ 73' (overdrilled bottom by 1')
				Portland cement: 1' - 52'
70	2'/2'		0	Bentonite chips: 52' - 56'
			0	Sand: 56' - 73'
			0	Screen: 58' - 73'
72	2'/2'		0	
12	Z / Z		U	

NI	of	ŀ	
ľ	U	c	ъ.

1. PID Model Mini-Rae 3000 with 10.6 eV la	mp.
--	-----

Boring Location:

Well in grass near north of property

Other Notes and Observations:

Client:

Project #: 190500898

Location: 820 Linden Avenue

Rochester, NY

Project: 820 Linden Ave. Phase II ESA

Ridgecrest Associates

61 Commercial St, Suite 100 Rochester, NY 14614 (585) 475-1440

Driller:

Elevation:

Weather:

Field Rep.:

Drill Contractor:

Parratt-Wolff Inc.

Glenn

Completion Date:

NM

Casing Type:

70°F

Drilling Method:

Hollow Stem Auger

Test Boring No.: MW-3 (B-9)

Page: 1 of 4

		Sample		
Depth	Recovery	Depth	PID	
(ft. bgs)	(ft.)	(ft. bgs)	(ppm)	Soil Description and Observations 0' - 2": [TOPSOIL] Brown sandy SILT trace organics, loose moist
			0	0 - 2 . [10F301L] BIOWITSAIRAY SILT ITACE OFGATICS, 100SE THOIST
				2" - 4': Light brown fine SAND, non-cohesive, loose, moist
			0	
			0	
			0	
4	3.5'/4'		0	
	0,0,			4' - 5': Light brown fine SAND, non-cohesive, loose, moist
			0	
				5' - 8': Light brown fine SAND, non-cohesive, loose moist
			0	
			0	
8	4'/4'		0	
				8' - 10': Light brown fine SAND, non-cohesive, loose moist
			0	
			0	
			0	10' - 12': Brownish gray fine SAND, non-cohesive, tight, moist
			0	
12	2.5'/4'		0	
			0	12' - 16': Brownish gray fine SAND, non-cohesive, tight, moist
			0	
			0	
			0	
1.4	41.7.41		0	
16	4'/4'		0	16' - 20': Brown to gray fine SAND, tight, non-cohesive, moist
			0	20. Brown to gray fine 3/44b, fight, notificonesive, moist
			-	
			0	
			-	
			0	
20	4'/4'		0	
20	¬ , ¬			20' - 25': Brownish gray fine SAND, non-cohesive, tight, moist
			0	
			0	
			3.5	
			3.3	
25	5'/5'		0.5	

Notes:

1. PID Model Mini-Rae 3000 with 10.6 eV lamp.

Other Notes and Observations:

Boring is angled 45 degrees to go under the building

Auger to 20' then pull auger and begin rotary fluid drilling @20'.

Boring Location:

Well in grass near middle of property

Client:

Project #: 190500898

Location: 820 Linden Avenue

Rochester, NY

Project: 820 Linden Ave. Phase II ESA

Ridgecrest Associates

61 Commercial St, Suite 100 Rochester, NY 14614 (585) 475-1440

Driller:

Elevation:

Weather:

Field Rep.:

Drill Contractor:

 Parratt-Wolff Inc.
 Start Date:
 6/28/2016

 Glenn
 Completion Date:
 6/30/2016

 NM
 Casing Type:
 PVC

 70°F
 Drilling Method:
 Hollow Stem Auger

Test Boring No.: MW-3 (B-9)

Page: 2 of 4

Depth	Recovery	Sample Depth	PID	
(ft. bgs)	(ft.)	(ft. bgs)	(ppm)	Soil Description and Observations
			0	25' - 30': No recovery
			0	
			0	
30	0'/5'		0	
				30' - 35': Brownish gray fine SAND, non-cohesive, tight, moist
			0	
			3.2	
			0.2	
			0.3	
0.5	51.45		0.0	
35	5'/5'		0.2	No sampling
			0	TVO SOFTIPILITY
			0	
			0	
40			0	
				No sampling
			0	
			0	
			0	
45			0	
75				No sampling
			0	
			0	
			0	
50			0	
			0	No sampling
			0	
			0	
			0	
55			0	
- 00			<u> </u>	1

Notes:

1. PID Model Mini-Rae 3000 with 10.6 eV lamp.

Other Notes and Observations:

Boring is angled 45 degrees to go under the building

Auger to 20' then pull auger and begin rotary fluid drilling @20'

and switch to 5' macrocores. Sampling was halted after 35'.

Boring Location: Well in grass near middle of property

Test Boring No.: MW-3 (B-9)

Page: 3 of 4

Project: 820 Linden Ave. Phase II ESA Parratt-Wolff Inc. 6/28/2016 **Drill Contractor:** Start Date: Project #: 190500898 6/30/2016 Driller: Glenn Completion Date: Client: Ridgecrest Associates Elevation: NM Casing Type: PVC **Location:** 820 Linden Avenue Weather: 70°F Drilling Method: Hollow Stem Auger Rochester, NY Field Rep.: Charles Yarrington

Depth	Recovery	Sample Depth	PID	
(ft. bgs)	(ft.)	(ft. bgs)	(ppm)	Soil Description and Observations
				No sampling
			0	
			0.2	
			0.2	
			0.6	
60			1.5	
			-	No sampling
			0	
			0	
			0	
			0	
65			0	
				No sampling
			0	
			0	
			0	
			0	
70			0	
				No sampling
			0	
			0	
			0	
			0	
			•	
75			0	
				No sampling
			0	
			0	
			0	
			0	
80			0	
				No sampling
			0	
			6	
			0	
			0	
			0	
85			0	

Notes:

1. PID Model Mini-Rae 3000 with 10.6 eV lamp.

Other Notes and Observations:

Boring is angled 45 degrees to go under the building

Auger to 20' then pull auger and begin rotary fluid drilling @20'

and switch to 5' macrocores. Sampling was halted after 35'.

Boring Location: Well in grass near middle of property

Client:

Project #: 190500898

Location: 820 Linden Avenue

Rochester, NY

Project: 820 Linden Ave. Phase II ESA

Ridgecrest Associates

61 Commercial St, Suite 100 Rochester, NY 14614 (585) 475-1440

Drill Contractor:

Driller:

Elevation:

Weather:

Field Rep.:

Parratt-Wolff Inc.

Glenn

Completion Date:

NM

Casing Type:

To°F

Charles Yarrington

Start Date:

6/28/2016

6/30/2016

PVC

PVC

Hollow Stem Auger

Test Boring No.: MW-3 (B-9)

Page: 4 of 4

Depth	Recovery	Sample Depth	PID	
(ft. bgs)	(ft.)	(ft. bgs)	(ppm)	Soil Description and Observations
			0	85' - 86: Dark brownish gray fine SAND, non-cohesive, tight moist
			0	86' - 90': Dark brownish gray fine SAND, non-cohesive, tight, saturated.
			0	
			0	
90	3'/5'		0	
				No sampling
			0	
			0	
			0	
			0	
95			0	
, ,			Ŭ	No sampling
			0	
			0	
			0	
100			0	
				EOB @ 100' (rod length) Grout: 1' - 75'
				Bentonite chips: 75' - 78'
				Sand: 78' - 100'
				Screen: 80' - 100'

Notes:

1. PID Model Mini-Rae 3000 with 10.6 eV lamp.

Other Notes and Observations:

Boring is angled 45 degrees to go under the building

Auger to 20' then pull auger and begin rotary fluid drilling @20'

and switch to 5' macrocores. Sampling was halted after 35'.

Boring Location: We

Well in grass near middle of property

Test Boring No.: B-10
Page: 1 of 1

Project:	820 Linden Ave. Phase II ESA	Drill Contractor:	Parratt-Wolff Inc.	Start Date:	7/5/2016
Project #:	190500898	Driller:	Glenn	Completion Date:	7/5/2016
Client:	Ridgecrest Associates	Elevation:	NM	Casing Type:	NA
Location:	820 Linden Avenue	Weather:	75°F	Drilling Method:	Direct Push
	Rochester, NY	Field Rep.:	Charles Yarrington	_	

		Sample		
Depth	Recovery	Depth	PID	
(ft. bgs)	(ft.)	(ft. bgs)	(ppm)	Soil Description and Observations
				0' - 5": Concrete
			5.5	E" 7" Dark brown CAND and CDANEL non cohosive maist
			5.5	5" - 7": Dark brown SAND and GRAVEL, non-cohesive, moist
			3.3	7" - 4': Light brown fine SAND, non-cohesive, tight dry
			5.5	7. Light Statistics of the street contestine, highlight dry
4	3'/4'		5.2	
				4' - 7': Light brown fine SAND, staining at ~7', non-cohesive, tight, dry
			5.3	
				7' - 10': Light brown fine SAND, non-cohesive, tight dry
			5.4	
			5.0	
			5.2	
8	4'/4'		5.5	
0	4/4		5.5	10' - 12': Light brown fine SAND, non-cohesive, tight dry
			5	12 121 Eight Brown into 5 tt 2, from concerns, fight any
			4.8	
12	4'/4'			

Notes:	
MOIES.	

I. PID Model Mini-Rae 3000 with 10.6 eV lamp.	Boring Location:	East side of building hall east of SV point
---	-------------------------	---

Other Notes and Observations: Background PID of 5.5

Test Boring No.: B-11
Page: 1 of 1

Project: 820 Linden Ave. Phase II ESA Parratt-Wolff Inc. Start Date: 7/5/2016 **Drill Contractor:** 7/5/2016 Project #: 190500898 Glenn Completion Date: Driller: Client: Ridgecrest Associates Elevation: NM Casing Type: NA **Location:** 820 Linden Avenue Weather: 75°F Drilling Method: Direct Push Rochester, NY Field Rep.: Charles Yarrington

Depth (ft. bgs)	Recovery (ff.)	Sample Depth (ft. bgs)	PID (ppm)	Soil Description and Observations
(' ' ' ' ' ' '	,	(II. Dgs)		0' - 5": Concrete
			4.3	
				5" - 11": Dark brown SAND and GRAVEL, non-cohesive, moist
			4.1	
			4.1	11" - 4': Light brownish tan fine SAND, non-cohesive, tight dry
			4.1	
4	3'/4'		4.2	
-	074		7,2	4' - 8': Light brownish tan fine SAND, non-cohesive, tight dry
			3.3	
			4.8	
			4.7	
8	4'/4'		4.3	Cl. 10th Light have unich tour fine CANID, upon a choosing timbs due.
			6.4	8' - 12': Light brownish tan fine SAND, non-cohesive, tight dry
			0.4	
			4.6	
			7.0	
			5.1	
12	4'/4'		5	

		_	1	_	_	
г	v	O	T	_	ς	-
	•	<u> </u>		•	•	٠

1. PID Model Mini-Rae 3000 with 10.6 eV lamp.	Boring Location:	NW corner near wash sink east of SV point
---	-------------------------	---

Other Notes and Observations: Background PID of 5.2

Test Boring No.: B-12
Page: 1 of 1

Project:	820 Linden Ave. Phase II ESA	Drill Contractor:	Parratt-Wolff Inc.	Start Date:	7/5/2016
Project #:	190500898	Driller:	Glenn	Completion Date:	7/5/2016
Client:	Ridgecrest Associates	Elevation:	NM	Casing Type:	NA
Location:	820 Linden Avenue	Weather:	75°F	Drilling Method:	Direct Push
	Rochester, NY	Field Rep.:	Charles Yarrington	•	

Depth	Recovery	Sample Depth (ft. bas)	PID (nnm)	Sail Decembring and Observations
(ft. bgs)	(ft.)	(ft. bgs)	(ppm)	Soil Description and Observations 0' - 5": Concrete
			6.3	0 - 3 . Concrete
				5" - 6": Dark brown SAND and GRAVEL, non-cohesive, wet
			6.4	
				6" - 4": Light brown fine SAND, non-cohesive, loose, dry
			6.3	
4	21741			
4	3'/4'		6.4	4' - 6': Light brown fine SAND, non-cohesive, loose, dry
			5.4	4 - 6 . Light brown line 3AND, non-conesive, loose, dry
			0.4	6' - 7': Light brown fine SAND, non-cohesive, tight, dry
			5.7	
				7' - 8': Brownish gray fine SAND, non-cohesive, very tight, moist
			6.4	
8	4'/4'		6.1	
			/ 5	8' - 12': Brownish gray fine SAND, non-cohesive, very tight, moist
			6.5	
			6.2	
			0.2	
			6.1	
12	4'/4'		6	

		_	1	_	_	
г	v	O	T	_	ς	-
	•	<u> </u>		•	•	٠

1. PID Model Mini-Rae 3000 with 10.6 eV lamp.	Boring Location:	Near column 14 east of SV point
---	------------------	---------------------------------

Other Notes and Observations:Background PID of 6-7

Test Boring No.: B-13
Page: 1 of 1

Project:	820 Linden Ave. Phase II ESA	Drill Contractor:	Parratt-Wolff Inc.	Start Date:	7/5/2016
Project #:	190500898	Driller:	Glenn	Completion Date:	7/5/2016
Client:	Ridgecrest Associates	Elevation:	NM	Casing Type:	NA
Location:	820 Linden Avenue	Weather:	75°F	Drilling Method:	Direct Push
	Rochester, NY	Field Rep.:	Charles Yarrington	•	

		Sample		
Depth	Recovery	Depth	PID	
(ft. bgs)	(ft.)	(ft. bgs)	(ppm)	Soil Description and Observations
			6.3	0' - 5": Concrete
			0.0	5" - 4': [FILL] Mixture of SAND and GRAVEL, various colors including white, gray, black, and
			6.4	brown, chemical odor
			6.3	
4	3'/4'		6.4	
4	3/4		0.4	4' - 8': [FILL] Mixture of SAND and GRAVEL, various colors including white, gray, black, and
			5.4	brown, chemical odor
			5.7	
			6.4	
8	2'/4'		6.1	
	2/4		0.1	8' - 9.5': [FILL] Mixture of SAND and GRAVEL, various colors including white, gray, black, and
			6.5	brown, chemical odor
			6.2	
			. 1	9.5' - 12': [NATIVE] Light brown fine SAND, non-cohesive, tight, moist
			6.1	
12	4'/4'		6	

Notes:	
<u> 140162.</u>	

I. PID Model Mini-Rae 3000 with 10.6 eV lamp.	Boring Location:	Near column 18 east of SV point
---	------------------	---------------------------------

Other Notes and Observations:Background PID of 4.8

Test Boring No.: <u>MW-5 (B-14)</u>
Page: 1 of 3

Project: 820 Linden Ave. Phase II ESA Parratt-Wolff Inc. Start Date: 9/13/2016 **Drill Contractor:** Rick/Wayne Project #: 190500898 9/14/2016 Driller: Completion Date: Client: Ridgecrest Associates Elevation: NM Casing Type: PVC Weather: **Location:** 820 Linden Avenue 75°F Drilling Method: Fluid rotary Field Rep.: Rochester, NY Charles Yarrington

Depth (ft. b.gs)	Recovery	Sample Depth	PID	
(ft. bgs)	(ft.)	(ft. bgs)	(ppm)	Soil Description and Observations 0-2": Brown silty SAND, trace organic matter, non-cohesive, loose, moist.
			0	10-2 . Brown sirry SAND, frace organic marier, non-corresive, loose, moist.
				2" - 5': Light brown find SAND, loose, non-cohesive, moist
			0	
			0	
			0	
5	5'/5'	3'-4'	0	
				5' - 9': Light brown fine SAND, loose, non-cohesive, moist
			0	
			0	
			0	
			0	
9	2'/4'		0	OL 10h Light have a fine CANID have a selective gradiet
			0	9' - 13': Light brown fine SAND, loose, non-cohesive, moist
			0	
			0	
13	3.5'/4'		0	
	,			13' - 16': Light brown fine SAND, semi-tight, non-cohesive, moist.
			0	
			0	
			0	
16	2.5'/3'		0	
			0	16' - 20': Light brown fine SAND, semi-tight, non-cohesive, moist.
			0	
			0	
20	3.5'/4'		0	
20	0.074			20' - 24': Light brown fine SAND, semi-tight, non-cohesive, moist.
			0	
			0	
			0	
24	3'/4'		0	

NI	of	-	•	
14	O	E	3	

1. PID Model Mini-Rae 3000 with 10.6 eV lamp.	Boring Location:	North side of building
---	------------------	------------------------

Other Notes and Observations:

Samples were labeled as B-10, but should be B-14 in the report.

Test Boring No.: MW-5 (B-14)
Page: 2 of 3

Project: 820 Linden Ave. Phase II ESA Parratt-Wolff Inc. 9/13/2016 **Drill Contractor:** Start Date: Project #: 190500898 9/14/2016 Driller: Rick/Wayne Completion Date: Client: Ridgecrest Associates Elevation: NM Casing Type: PVC **Location:** 820 Linden Avenue Weather: 75°F Drilling Method: Fluid rotary Field Rep.: Rochester, NY Charles Yarrington

Depth (ft. bgs)	Recovery (ff.)	Sample Depth (ft. bgs)	PID (ppm)	Soil Description and Observations
(295)	()	(II. Dgs)	(PP)	24' - 28': Light brown fine SAND, semi-tight, non-cohesive, moist.
			0	
			0	
			0	
			0	
28	3'/4'		0	
				28' - 32': Light tannish brown fine SAND, medium tight, non-cohesive, moist.
			0	
			_	
			0	
			0	
			0	
32	3'/4'		0	
				32' - 36': Light tannish brown fine SAND, medium tight, non-cohesive, moist.
			0	
			0	
			0	
36	3'/4'		0	
				36' - 40': Light tannish brown fine SAND, medium tight, non-cohesive, moist.
			0	
			0	
			0	
			0	
40	3'/4'		0	
				40' - 44': Light brown fine SAND, semi-tight, non-cohesive, moist.
			0	
			0	
			0	
			0	
44	3'/4'		0	
			_	44' - 48': Light tannish brown fine SAND, medium tight, non-cohesive, moist.
			0	
			0	
			0	
48	0.5'/4'		0	

Notes:

1. PID Model Mini-Rae 3000 with 10.6 eV lamp.

Other Notes and Observations:

Samples were labeled as B-10, but should be B-14 in the report.

Boring Location: North side of building

Test Boring No.: MW-5 (B-14)
Page: 3 of 3

Project: 820 Linden Ave. Phase II ESA Parratt-Wolff Inc. 9/13/2016 **Drill Contractor:** Start Date: Project #: 190500898 9/14/2016 Driller: Rick/Wayne Completion Date: Client: Ridgecrest Associates Elevation: NM Casing Type: PVC **Location:** 820 Linden Avenue Weather: 75°F Drilling Method: Fluid rotary Rochester, NY Field Rep.: Charles Yarrington

Depth (ft. bgs)	Recovery (ff.)	Sample Depth (ft. bgs)	PID (ppm)	Soil Description and Observations
		(295)		48' - 52': Light brown fine SAND, semi-tight, non-cohesive, moist.
			0	
			0	
			0	
			0	
52	3'/4'		0	
				52' - 56': Light tannish brown fine SAND, medium tight, non-cohesive, moist.
			0	
			0	
			0	
			0	
			-	
56	2.5'/4'		0	
			_	56' - 60': Light brown fine SAND, tight, non-cohesive, very moist.
			0	
			0	
			0	
			0	
60	3'/4'		0	
			0	60' - 64': Light brown fine SAND, tight, non-cohesive, very moist and becoming wet at
			0	approximately 64' bgs.
			0	
			0	
64	3'/4'		0	(4) (0) 13-14-1
			0	64'-68': Light brown fine SAND, tight, non-cohesive, very moist.
			0	
			0	
			0	
40	01741		0	
68	2'/4'		0	68'-72': Light brown fine SAND, tight, non-cohesive, very moist.
			0	End of boring @ 72' bgs.
				Grout: 0.5' - 58'
			0	Riser: 0.5' - 62'
				Bentonite: 58' - 60'
			0	Sand: 60' - 72'
70	01741		0	Screen: 62' - 72'
72	2'/4'		0	

Notes:

1. PID Model Mini-Rae 3000 with 10.6 eV lamp.

Other Notes and Observations:

Samples were labeled as B-10, but should be B-14 in the report.

Boring Location: North side of building

Rochester, NY

61 Commercial St, Suite 100 Rochester, NY 14614

(585) 475-1440

Parratt-Wolff Inc. Start Date: 1/12/2017 **Drill Contractor:**

Test Boring No.:

Page:

B-11D

1 of 4

Project: 820 Linden Ave. Phase II ESA Project #: 190500898 Driller: W. Nielson Completion Date: 1/12/2017

NM Client: Ridgecrest Associates Elevation: Drilling Method: Direct Push (Geoprobe 6712DT) Location: 820 Linden Avenue Weather: Indoors Supervisor: L. Best

FID No. Rec. Change			SA	MPLE		Depth of		
Open No. (ff) Depth (ft) (ft) Concerns		DID		Poc				
1 3.5 0 0.4 CONCRETE 1.0 Brown fine to coarse SAND AND fine to medium GRAVEL, dry FILL - Light brown fine to medium SAND, little silt and clay, dry FILL - Light brown fine uniform SAND, little silt and clay, loose, dry 2.1 0.7 2 3.0 Light brown fine uniform SAND, little silt and clay, loose, dry - NATIVE SOIL - - N	0		No.		Depth (ft)		Material Description and Remarks	
1.2		/						
1.1		1.2					Brown fine to coarse SAND AND fine to medium GRAVEL, dry	- FILL -
1,4							Light brown fine to medium SAND, little silt and clay, dry	
Light brown fine uniform SAND, little silt and clay, loose, dry		1.1						
Light brown fine uniform SAND, little silt and clay, loose, dry		1.4				2.0		
2.1		1.4				3.0	Light brown fine uniform SAND little silt and clay loose dry	
5 0.7 2 3.0		2.1			4		Eight brown the difficitit 57 (45), time sin drid clay, 10030, dry	
1.0			2	3.0				
- NATIVE SOIL - - NATI	5				•			
- NATIVE SOIL - - NATI		1.0						
- NATIVE SOIL - - NATI								
0.5 3 3.5 8.6		0.7						NO2 TAIL
0.5 3 3.5								- NATIVE 3OIL -
0.5 3 3.5					. 8			
0.2		0.5	3	3.5		8.6		
10							Light grayish brown fine to medium SAND, little silt and clay, tighter pack, dry	
0.6		0.2						
0.8	10							
12 Same lithology S		0.6						
12 Same lithology S		0.8						
0.9		0.0			12			
0.5		0.9	4	3.5			Same lithology	
0.9								
15		0.5						
15								
0.8	1.5							
0.7 5 3.9 0.5 Same lithology 0.3 0.4	15							
0.7 5 3.9 0.5 0.3 0.4 Same lithology		0.0			16			
0.5 0.3 0.4		0.7	5	3.9			Same lithology	
0.3								
0.4		0.5						
0.4								
		0.3						
		0.4						
	20	0.4			20			
					20			

Notes:

ra

Test Boring No.:

Page: 2 of 4

B-11D

Project: Project #: Client: Location: 820 Linden Ave. Phase II ESA

190500898

Ridgecrest Associates

820 Linden Avenue

Rochester, NY

Drill Contractor:

Driller:

Elevation:

Weather:

Parratt-Wolff Inc.
W. Nielson

NM
Indoors

Parratt-Wolff Inc.
Completion Date:

Prilling Method:
Supervisor:

1/12/2017 1/12/2017 Direct Push (Geoprobe 6712DT) L. Best

F			_		Strata	
	PID		Rec.	.	Change	
20 (p		No.		Depth (ft)		Material Description and Remarks
	1.7	6	4.0	20	20.0	Light brown to brown fine SAND, little silt and clay, dry
<u> </u>				ı,		
<u>_</u> _	1.0			ı,		
<u> </u>				ı,		
(8.0			i		
L				,		
	0.5					
<u> </u>				24		
	0.6	7	3.5	,	24.5	
25				,		Light grayish brown fine to medium SAND, little silt and clay, tighter pack, dry
	0.7			,		
<u> </u>	0.4					Turner (" on large of " on one of 104.0 O. 04.51)
	0.4					Trace fine to medium gravel (26.0 - 26.5')
<u> </u>						
	1.1			0.0		
<u> </u>		_		28		
	1.4	8	3.5			Same lithology
<u> </u>	1 1			,		
	1.1			,		
30	0.0					
<u> </u>	0.9					
<u> </u>	0.4					
	0.4			32		
<u> </u>	0.7	9	4.0	32		Same lithology
	0.7	7	4.0			same imology
<u> </u>	0.7					
<u></u>	0.7					
	1.1					
35	1.1			,		
	1.1					
<u> </u>				36		
-	1.2	10	3.0	50		Same lithology
H	1.4	10	0.0			
 (0.9					
+	<u></u>					
(0.6					
 	1.0					
40				40		

Notes:

Project:

61 Commercial St, Suite 100 Rochester, NY 14614

(585) 475-1440

Parratt-Wolff Inc. Start Date: 1/12/2017 820 Linden Ave. Phase II ESA **Drill Contractor:**

Test Boring No.:

Page:

B-11D

3 of 4

Driller: Project #: 190500898 W. Nielson Completion Date: 1/12/2017 NM Client: Ridgecrest Associates Elevation: Drilling Method: Direct Push (Geoprobe 6712DT)

Location: 820 Linden Avenue Weather: Indoors Supervisor: L. Best Rochester, NY

		SA	MPLE		Depth of	
	PID		Dan		Strata	
40		No.	Rec. (ft)	Depth (ft)	Change (ft)	Material Description and Remarks
-10	1.6	11	3.8	40	()	Same lithology
	1.2					
	1.1					
	1.1					
	1.1					
	1.0	10	0.0	44		Course little also and
45	1.0	12	3.9			Same lithology
	0.5					
						Little tan coarse sand and trace fine to medium gravel (46.0 - 46.8')
	1.0					
	2.2					
_	2.2			48		
	0.9	13	3.7			Same lithology
50	0.6					
30	0.9					
	1.4					
	0.7	14	3.7	52		Same lithology
	0.7	14	3.7			Surie iiiiology
	1.2					
55	0.5					
55	0.5					
				56		
	1.6	15	4.0			Light grayish brown fine to medium SAND, little tan coarse sand and silt and clay, dry
	0.7					
	0.7					Increasing lightness and pack tightness
	0.5					
	0.4			40		N. 1. 1. (0)
60				60		Moist at 60'

Notes:

820 Linden Ave. Phase II ESA

Project:

61 Commercial St, Suite 100 Rochester, NY 14614

(585) 475-1440

Parratt-Wolff Inc. Start Date: 1/12/2017 **Drill Contractor:**

Test Boring No.:

Page:

B-11D

4 of 4

Driller: Project #: 190500898 W. Nielson Completion Date: 1/12/2017 NM Client: Ridgecrest Associates Elevation: Drilling Method: Direct Push (Geoprobe 6712DT) Location: 820 Linden Avenue Weather: Indoors Supervisor: L. Best

Rochester, NY

		SA	MPLE		Depth of	
	PID		Rec.		Strata Change	
60	(ppm)	No.	(ff)	Depth (ft)	(ft)	Material Description and Remarks
	2.2	16	3.9	60		Brown fine to coarse SAND ("beach sand"), little tan medium to coarse sand, moist
	0.7					
				<u> </u>		
	0.8			1		
	0.5					
	0.0	17	4.0	64		Town for head for an electrical transfer
65	0.8	17	4.0			Trace fine to medium gravel (64-66.1')
	0.3					
	0.5				▼ 66.1	Brown fine SAND AND SILT, little clay, cohesive, wet
	0.5					Brown line SAND AND Silt, little cidy, conesive, well
	0.5					
				68		Some fine to medium sand (67.3-68') End boring at 68'
						Life boiling at 60
70						
70						
75				1		
				ļ		
80]		

Notes:

Project:

61 Commercial St, Suite 100 Rochester, NY 14614

(585) 475-1440

Parratt-Wolff Inc. Start Date: 1/11/2017 **Drill Contractor:** Driller: W. Nielson Completion Date: 1/11/2017

Test Boring No.:

Page:

B-12D

1 of 4

Project #: 190500898 NM Client: Ridgecrest Associates Elevation: Drilling Method: Direct Push (Geoprobe 6712DT) Location: 820 Linden Avenue Weather: Indoors Supervisor: L. Best

Rochester, NY

820 Linden Ave. Phase II ESA

		\$4	AMPLE		Depth of	
			I		Strata	
	PID		Rec.		Change	
0	(ppm)	No.	(ft)	Depth (ft)	(ft)	Material Description and Remarks
	,	1	3.1	0	0.6	CONCRETE
	4.1	•		ľ	0.8	Light and dark brown fine to medium SAND AND GRAVEL, loose, uncohesive, dry
					0.0	Light brown fine to medium SAND, few silt and coarse sand, dry
	9.7					Eight brown file to modifin 57 (45), fow sin did coalse saile, ary
	7.7			•		Increasing tightness
	8.2					- FILL - I
	0.2					-11LL-
				,	4.0	
				4	4.0	
_	13.1	2	3.8			Brown fine SAND, some silt, few clay, dry
5						
	5.2				5.5	
						Light grayish brown fine to medium SAND, few silt and coarse sand, dry
	8.3					
						- NATIVE SOIL -
	8.1			8	8.0	
	9.9	3	4.0			Light grayish brown fine to medium SAND, few silt, dry
	9.9					
10				1		
	7.9					Increasing tightness
	9.3					
	7.0			12		
	7.2	4	3.8	12		Same lithology
	7.2	4	5.0			Surie iiilology
	6.4					
			ļ			
15						
	7.1					
	6.7			16		
		5	3.6			Same lithology
	6.7					
	3.5				18.3	
						Brown SILT AND CLAY, trace coarse sand and fine gravel, "spongy", moist
	2.9		 		19.6	5 ,
20	4.9			20	.,,,	Light brown fine to medium SAND, few silt and coarse sand, dry
	1.,			20		and and and an an an an an an an an an an an an an

Notes:

Test Boring No.: Page:

ge: 2 of 4

B-12D

Project: Project #: Client: Location:
 820 Linden Ave. Phase II ESA
 D

 190500898
 D

 Ridgecrest Associates
 EI

 820 Linden Avenue
 W

 Rochester, NY

 Drill Contractor:
 Parratt-Wolff Inc.
 Start Date:

 Driller:
 W. Nielson
 Completion Date:

 Elevation:
 NM
 Drilling Method:

 Weather:
 Indoors
 Supervisor:

1/11/2017 1/11/2017 Direct Push (Geoprobe 6712DT) L. Best

		SA	AMPLE		Depth of	
			_		Strata	
	PID		Rec.		Change	
20	(ppm)	No.	(ft)	Depth (ft)		Material Description and Remarks
	8.5	6	3.7	20	20.0	Light grayish brown fine to medium SAND, few silt and tan coarse sand, tight pack, dry
	2.8					
	0.0			 		
	2.8			 		
				24		
	2.8	7	3.9	24		Same lithology
25			5.7			June imology
20	0.7			ł		
				ľ		
	2.0					
	3.5			28		
	9.0	8	3.8			Same lithology
	1.4					
30						
	2.0					
	4.8		0.7	32		
	7.9	9	3.7	•		Same lithology
	1.5			 		
	1.5			1		
	2.4					
35						
				ļ		
	2.7			36		
	3.9	10	3.8	- 50		Same lithology
						<u> </u>
	2.3					
				†		
	3.9			1		
				İ		
				Î		
40	3.2			40		

Notes:

61 Commercial St, Suite 100 Rochester, NY 14614

(585) 475-1440

Parratt-Wolff Inc. Start Date: 1/11/2017 **Drill Contractor:**

Test Boring No.:

Page:

B-12D

3 of 4

Project: 820 Linden Ave. Phase II ESA Driller: Project #: 190500898 W. Nielson Completion Date: 1/11/2017

NM Client: Ridgecrest Associates Elevation: Drilling Method: Direct Push (Geoprobe 6712DT) Location: 820 Linden Avenue Weather: Indoors Supervisor: L. Best

Rochester, NY

		SA	AMPLE		Depth of	
	PID		Rec.		Strata Change	
40	(ppm)	No.	(ft)	Depth (ft)	(ft)	Material Description and Remarks
	4.2	11	2.3	40		Same lithology
	2.5					Minor orange (possibly iron oxide) staining (40.9 - 41.4')
						, , , , ,
	3.4			1		
	1.0	10	0.0	44		Same I'll also
45	1.8	12	3.9			Same lithology
	1.1					
	1.0					Minor orange (possibly iron oxide) staining (46.4 - 46.8')
						, , , , , , , , , , , , , , , , , , ,
	1.3 0.9	13	3.4	48		Same lithology
	0.7	10	0.4			Surio limbiogy
	1.1]		
50	1.5					
	0.8			52		
		14	3.1	52		Same lithology
	2.5					
	0.8			ľ		
55	0.6					
	0.8			56	56.0	
		15	3.9			Light brown to brown fine to coarse SAND, little silt and clay, moist
	1.0			1		
	1.0				58.4	
	0.6					Brown medium to coarse SAND, some fine to medium tan sand, little silt, moist
	0.4					Increasing moisture content
60				60	lacktriangle	Wet at 60'

Notes:

Test Boring No.: B-12D 4 of 4

Page:

Project: Project #: Client: Location:

820 Linden Ave. Phase II ESA 190500898 Ridgecrest Associates 820 Linden Avenue Rochester, NY

Parratt-Wolff Inc. Start Date: **Drill Contractor:** Driller: W. Nielson Completion Date: NM Elevation: Drilling Method: Weather: Indoors Supervisor:

1/11/2017 1/11/2017 Direct Push (Geoprobe 6712DT) L. Best

		SA	MPLE		Depth of	
	מום		Des		Strata	
/0	PID (ppm)	No.	Rec. (ft)	Depth (ft)	Change	Markeyini Decembrican annal Democratica
60	(ppm) 0.7	16	4.0	60 60	(ft)	Material Description and Remarks Same lithology, wet
	0.7	16	4.0	60		Same lilhology, wel
	0.5					
	0.0					
	0.4			1		
	0.5					
				64		
						End boring at 64'
65						
				•		
70						
				1		
75						
				ŀ		
80						

Notes:

820 Linden Ave. Phase II ESA

Project:

61 Commercial St, Suite 100 Rochester, NY 14614

(585) 475-1440

Parratt-Wolff Inc. Start Date: 1/11/2017 **Drill Contractor:**

Test Boring No.:

Page:

B-13D

1 of 3

Project #: 190500898 Driller: W. Nielson Completion Date: 1/12/2017

NM Client: Ridgecrest Associates Elevation: Drilling Method: Direct Push (Geoprobe 6712DT) Location: 820 Linden Avenue Weather: Indoors Supervisor: L. Best Rochester, NY

	SAMPLE				Depth of	
	PID		Rec.		Strata Change	
0	(ppm)	No.	(ft)	Depth (ft)	(ft)	Material Description and Remarks
	1.6	1	1.6	0	0.5	CONCRETE
					1.1	Brown and gray fine to coarse SAND AND GRAVEL, trace brick, loose, dry
	1.1				1.5	Gray COBBLES, pulverized, dry - FILL -
				4		
		2	0.0			No recovery
5						
	-			8	8.0	
		3	3.3			Light grayish brown fine to medium SAND, little silt, trace clay, cohesive, dry
	1.5					
10	1.7					
	0.5					- NATIVE SOIL -
	0.5					
	1.3			12		
	1.8	4	4.0			Same lithology
				•		
	1.1					
1.5	1.0					
15	1.0					
	1.0			16	16.0	
	0.9	5	3.0	10	10.0	Light grayish brown fine to medium SAND, little silt, trace clay and tan coarse sand, cohesive,
						dry
	1.3					
	1.3					
	0.7					
20	0.7			20		
				20		

Notes:

Project:

61 Commercial St, Suite 100 Rochester, NY 14614

(585) 475-1440

Parratt-Wolff Inc. Start Date: 1/11/2017 **Drill Contractor:**

Test Boring No.:

Page:

B-13D

2 of 3

Driller: Project #: 190500898 W. Nielson Completion Date: 1/12/2017 NM Client: Ridgecrest Associates Elevation: Drilling Method: Direct Push (Geoprobe 6712DT) Location: 820 Linden Avenue Weather: Indoors Supervisor: L. Best

Rochester, NY

820 Linden Ave. Phase II ESA

	SAMPLE		Depth of	Г		
		3,	-/VII EE		Strata	
	PID		Rec.		Change	
20	(ppm)	No.	(ft)	Depth (ft)	(ft)	Material Description and Remarks
	0.3	6	3.7	20	20.0	Brown fine SAND AND SILT, little clay, few medium to coarse gravel, wet
	0.6				21.1	Brown SILT AND CLAY, trace fine gravel, "spongy", moist
					21.7	Light grayish brown fine to medium SAND, little silt, trace clay and tan coarse sand, tight, dry
	0.7					
	0.9					
				24		
	0.7	7	4.0			Same lithology
25						
	0.4					
	0.5					
	0.9					
				28	28.0	
	0.2	8	3.8			Light grayish brown fine to medium SAND, little silt, trace clay and tan coarse sand, tight, hard
						(slow drilling), dry
	0.6			•		
30						
	4.6					
	0.7					
	0.7			20	20.0	
	0.7	0	0.0	32	32.0	
	2.6	9	3.8	<u> </u>		Light grayish brown fine to medium SAND, some dark brown to black sand intermixed 32.0-
	1.1			•		32.4'), little silt, trace clay and tan coarse sand, tight, dry
	1.1			•		
	1 1					
35	1.1			-		
33	1.3			ļ		
	1.0			36	36.0	
	1.4	10	3.5	50	50.0	Light grayish brown fine to medium SAND, little silt, trace clay and tan coarse sand, tight, dry
	1.4	10	0.0			Eligini grazion provintinto to mediom oznazo, inne sin, nace ciay ana tan coaise sana, ligin, ary
	1.1					
	1.1			ł l		
	 			ł		
	1.0			†		
40				40		

Notes:

Project:

Client:

Project #:

Location:

61 Commercial St, Suite 100 Rochester, NY 14614

(585) 475-1440

Parratt-Wolff Inc. Start Date: 1/11/2017 **Drill Contractor:**

Test Boring No.:

Page:

B-13D

3 of 3

Driller: 190500898 W. Nielson Completion Date: 1/12/2017 NM Ridgecrest Associates Elevation: Drilling Method: Direct Push (Geoprobe 6712DT) 820 Linden Avenue Weather: Indoors Supervisor: L. Best

Rochester, NY

820 Linden Ave. Phase II ESA

	SAMPLE				Depth of	
	PID Rec.		Strata Change			
40	(ppm)	No.	(ft)	Depth (ft)	(ft)	Material Description and Remarks
	2.5	11	3.5	40	()	Same lithology
				i i		
	0.8					
	0.7			ı		
				,		
	0.9					
		12	0.8	44		Same lithology
45	6.0 0.2	12	0.8	ı		same iiinology
	0.2					
				i		
				48	48.0	
	6.4	13	1.5			Light grayish brown fine to medium SAND, little silt, trace clay and tan coarse sand, tight, faint
	0.4			,		chemical odor (48.0 - 48.5'), dry
50	2.4					
				ı		
				50	50.0	
	5.7	14	3.9	52	52.0	Light grayish brown fine to medium SAND, with increasing coarsening sand component little
	0.7	17	0.7	,		silt, trace clay and tan coarse sand, tight, dry
	3.0					
	1 (,		Moist at 54.2'
55	1.6			·	55.3	
	1.1			,	▼ 55.5	Brown fine to coarse SAND ("beach sand"), little silt and tan coarse sand, wet
			_	56		
	0.9	15	3.8			Same lithology
	0.2					
	0.2					
	0.6					
60	0.8			60		Lighter brown sand at 59'
00				00		End boring at 60'

Notes:

OVERBURDEN MONITORING WELL

DESIGN DETAILS

PROJECT NAME	820 Linden Ave RI	
PROJECT NUMBER	190500898	
CLIENT	Ridgecrest Associates	
LOCATION	820 Linden Avenue	
_	Pittsford, NY	

HOLE DESIGNATION	B/MW-101
DATE COMPLETED	7/25/2018
DRILLING METHOD	Hollow Stem Auger
SUPERVISOR	L. Best
-	

Test Boring No.:	B/MW-101
Page:	1 of 4

Project:	820 Linden Ave RI	Drill Contractor:	Nothnagle	Start Date:	7/25/2018
Project #:	190500898	Driller:	Neal Short	Completion Date:	7/25/2018
Client:	Ridgecrest Associates	Elevation:	NM	Drilling Method:	Direct Push with Macrocore
Location:	820 Linden Avenue	Weather:	70s-80s, humid, over-	- Supervisor:	L. Best
'	Pittsford NY		cast intermittent rain	<u>-</u>	

[SA	MPLE		Depth of		
	J.		Daa		Strata		
0	PID (ppm)	No.	Rec. (ft)	Depth (ft)	Change (ft)	Material Description and Remarks	
-	(РРП)	1	3.1	0	0.4	ASPHALT Material Description and Remarks	
ŀ	0.0	ı	0.1		0.4	Gray and brown SAND AND GRAVEL, loose, dry	- FILL -
ŀ	0.0				1.4	Orangish brown fine to medium SAND, little fine to medium gravel, dry	
ŀ						Light brown fine to medium SAND, little silt and coarse sand, dry, no odor	
ľ							
	0.0						
ľ							
İ				4			
İ	0.0	2	2.9				- NATIVE SOIL -
5							
	0.0						
	0.0				6.5		
						Brown SILT AND CLAY, little fine sand, soft and cohesive, moist, no odor	
	0.0						
				8			
	0.0	3	3.4				
	0.0			•			
10					10.0		
	0.0					Light brown fine to medium SAND, little silt, dry	
	0.0						
ŀ	0.0			10			
ŀ	0.0	4	2.0	12	10.5		
	0.0	4	3.0		12.5	De delide le verve CHT AND CLAV Little fine de vere divers CAND establ	
ŀ	0.0				13.0	Reddish brown SILT AND CLAY, little fine to medium SAND, moist Light brown fine SAND, some silt, little medium sand, trace clay, dry	
ŀ	0.0		-			Light brown line sand, some siit, linie mediom sand, nace clay, ary	
}	0.0		-				
15				15			
13	0.0	5	2.7	10			
ł			- "		16.0		
ŀ	0.0					Light brown fine to medium SAND, little silt and clay, dry	
ŀ					17.0		
ŀ	0.0				17.5	Reddish brown CLAY, little silt and fine sand, soft, wet, no odor	
						Light brown fine SAND, some silt, little medium sand, dry	
ŀ							
ľ				19			
ľ		6	3.2				
20	0.0]			

Notes

Test Boring No.: B/MW-101
Page: 2 of 4

Project:	820 Linden Ave RI	Drill Contractor:	Nothnagle	Start Date:	7/25/2018
Project #:	190500898	Driller:	Neal Short	Completion Date:	7/25/2018
Client:	Ridgecrest Associates	Elevation:	NM	Drilling Method:	Direct Push with Macrocore
Location:	820 Linden Avenue	Weather:	70s-80s, humid, over-	· Supervisor:	L. Best
•	Pittsford, NY		cast, intermittent rain	_ 1	

	SAMPLE		Depth of			
20	PID (ppm)	No.	Rec. (ft)	Depth (ft)	Strata Change (ft)	Material Description and Remarks
						Same as above, with trace fine to medium gravel 20-21'
	0.0			1		
	0.0			1		
	0.0]		
		7	0.0	23		
	0.0	7	3.3	-		
	0.0			1		
25	0.0				25.0	
						Light brown fine to medium SAND, little silt and coarse tan and white sand, trace clay, dry
	0.0			1		
	0.0			27		
		8	2.4			
	0.0]		
	0.0			_		
	0.0			1		
30	0.0			30		
		9	3.0			Same, with increasing denseness
	0.0					
	0.0			1		
	0.0			1		
	0.0			-		
]		
	0.0	10	2.0	34		
35	0.0	10	3.2	1		
- 55	5.0			1	35.5	Fine to medium gravel lens 35.4-35.5'
	0.0]		Brown CLAY, little silt and fine sand, soft, cohesive, wet
						Fine to medium gravel lens 36.4-36.5'
	0.0			_	37.0	Brown SILT AND CLAY, little fine sand, hard, moist Light brown fine SAND, some silt and medium sand, trace clay, dry
				38	38.0	Light brown tine sand, some siit and medium sand, frace clay, ary
	0.0	11	3.5	55	33.0	Lighter brown fine to medium SAND, little silt and coarse tan and white sand, loose, dry
]		
	0.0			1		
40				-		
			I]		

Notes:

Test Boring No.: B/MW-101
Page: 3 of 4

Project:	820 Linden Ave RI	Drill Contractor:	Nothnagle	Start Date:	7/25/2018
Project #:	190500898	Driller:	Neal Short	Completion Date:	7/25/2018
Client:	Ridgecrest Associates	Elevation:	NM	Drilling Method:	Direct Push with Macrocore
Location:	820 Linden Avenue	Weather:	70s-80s, humid, over-	- Supervisor:	L. Best
	Pittsford, NY		cast, intermittent rain	<u>-</u> า	

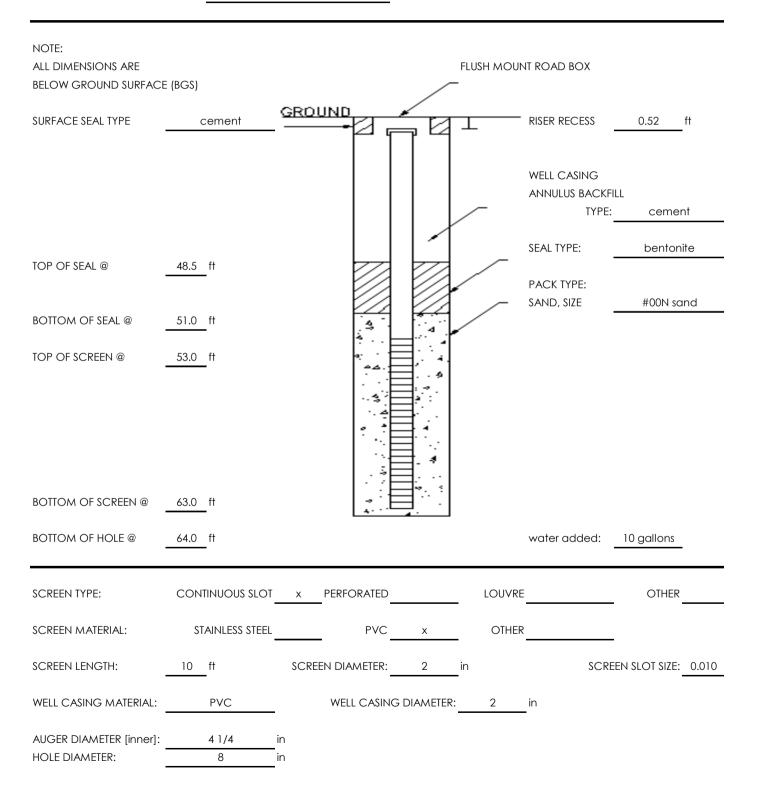
	SAMPLE				Depth of	
40	PID (ppm)	No.	Rec. (ff)	Depth (ft)	Strata Change (ft)	Material Description and Remarks
	0.0					
	0.0					
				42		
	0.0	12	2.4			
	0.0					
]	44.0	
4.5	0.0			45	45.0	Light brown fine SAND, little silt and medium sand, trace clay, more dense, dry
45		13	3.1	45	45.0	Light brown fine to medium SAND, little silt, trace clay, loose, non-cohesive, dry
	0.0]		
	0.0					
	0.0					
	0.0]		
				49		
	0.0	14	3.1	47		
50						
	0.0				51.0	
	0.0				31.0	Light brown fine to medium SAND, little silt and clay, increasing cohesion and denseness, trace
						intermittent orange coloration (possibly iron oxide), dry
				53		
	0.0	15	3.4	00		
	0.0					
55	0.0					
	0.0					
	0.0					
	0.0			57		
		16	2.4			
	0.0					
	0.0					
					▼ 59.5	
60	8.0			60		Brown fine to medium SAND, little silt, trace clay, wet, no odor

Notes:

Test Boring No.:	B/MW-101
Page:	4 of 4

Project:	820 Linden Ave RI	Drill Contractor:	Nothnagle	Start Date:	7/25/2018
Project #:	190500898	Driller:	Neal Short	Completion Date:	7/25/2018
Client:	Ridgecrest Associates	Elevation:	NM	Drilling Method:	Direct Push with Macrocore
Location:	820 Linden Avenue	Weather:	70s-80s, humid, over-	- Supervisor:	L. Best
•	Pittsford, NY		cast, intermittent rain	<u>-</u> า	

	SAMPLE		Depth of			
60	PID (ppm)	No.	Rec. (ff)	Depth (ft)	Strata Change	Material Description and Remarks
	0.5	17	3.1	60		
	0.3					
	0.1			-		
		18		64	64.0	Brown fine to medium SAND, little silt and coarse sand, trace clay, wet, no odor
65		10		1		Brown file to mediam 37 (42), time sin did codise sand, fidee clay, well, no odol
	0.1 - 0.2			1		
				68		
						Bottom of Boring at 68'
				_		
				1		
				-		
				-		
]		
]		
				-		
]		
				-		
]		


Notes:

- 1. PID Model MiniRAE 3000 with 10.6eV lamp.
- 2. Macrocore Sample 18 from 64-68' could not be extracted from rod. The soil contents were instead poured out of sleeve for observations and scr

PROJECT NAME	820 Linden Ave RI
PROJECT NUMBER	190500898
CLIENT	Ridgecrest Associates
LOCATION	820 Linden Avenue
_	Pittsford, NY

HOLE DESIGNATION	B/MW-102
DATE COMPLETED	7/23/2018
DRILLING METHOD	Hollow Stem Auger
SUPERVISOR	L. Best

Test Boring No.: B/MW-102
Page: 1 of 4

Project:	820 Linden Ave RI	Drill Contractor:	Nothnagle	Start Date:	7/23/2018
Project #:	190500898	Driller:	Neal Short	Completion Date:	7/23/2018
Client:	Ridgecrest Associates	Elevation:	NM	Drilling Method:	Direct Push with Macrocore
Location:	820 Linden Avenue	Weather:	70s-80s, overcast	Supervisor:	L. Best
-	Pittsford NY			-	

	SAMPLE		Depth of					
0	PID (ppm)	No.	Rec. (ff)	Depth (ft)	Strata Change (ft)	Material Description and Remarks		
		1	2.8	0	0.3	Dark brown fine SAND, little silt, dry - TOPSOIL -		
	1.5					Brown fine SAND, little silt and medium sand, dry, no odor		
	1.2							
	1.1							
				4				
		2	2.8					
5								
	1.0							
	0.8							
	0.0) TIVE 0 O		
	0.9					- NATIVE SOIL -		
	0.4	_	0.0	8				
	0.4	3	2.8					
10				-				
10								
	0.5							
	0.8							
	0.0			12				
	0.6	4	2.2	12				
	0.6	4	2.2					
	0.5							
	0.5			-				
	0.3				14.5			
15				15		Brown fine to medium SAND, little silt and clay, trace coarse sand, tighter, moist, no odor		
	1.6	5	2.7	10	10.0	Brown fine SAND, little silt and clay, loose, dry, no odor		
	1.0		2.7			Brown into 5, true sin arta diay, 10030, ary, 110 odor		
				1				
	1.8			1				
	1.0			•				
				1				
	1.6			1				
				19	19.0			
	0.0	6	3.4	.,		Brown fine to medium SAND, some tan coarse sand, little silt and clay, dry, no odor		
20				1				
				1				

Notes:

- 1. PID Model MiniRAE 3000 with 10.6eV lamp.
- 2. At 19', began testing empty Ziploc bags to measure blank headspace; low-level VOCs were detected. After 19', different bags were used after confirming 0.0 ppm in blanks.

Test Boring No.:	B/MW-102
Page:	2 of 4

Project:	820 Linden Ave RI	Drill Contractor:	Nothnagle	Start Date:	7/23/2018
Project #:	190500898	Driller:	Neal Short	Completion Date:	7/23/2018
Client:	Ridgecrest Associates	Elevation:	NM	Drilling Method:	Direct Push with Macrocore
Location:	820 Linden Avenue	Weather:	70s-80s, overcast	Supervisor:	L. Best
•	Pittsford, NY			_	

ĺ	SAMPLE		Depth of			
	PID		Rec.		Strata Change	
20	(ppm)	No.	(ff)	Depth (ft)	(ft)	Material Description and Remarks
	0.0					
	0.0					
	0.0					
	0.0					
				23		
	0.0	7	3.1			
	0.0					
25						
	0.0					
	0.0					
	0.0			27	27.0	
	0.0	8	2.8	27	27.0	
						Brown and light brown fine to medium SAND, little silt and coarse sand, trace clay, dry, no odor
	0.0					
	0.0					
30	0.0			30		
	0.0	9	2.3	00		
	0.0					
	0.0					
	0.0					
	0.0					
				34		
0.5		10	3.1			Increasing coarse sand component
35						
						Minor orange discoloration at 37'
				38	38.0	
	0.0	11	3.2	30		Brown and light brown fine to medium SAND, little silt and coarse sand, trace clay and medium
]		gravel, with trace orange discoloration, slightly dense, dry, no odor
	0.0					
40						
			Ī			

Notes:

Test Boring No.: B/MW-102
Page: 3 of 4

Project:	820 Linden Ave RI	Drill Contractor:	Nothnagle	Start Date:	7/23/2018
Project #:	190500898	Driller:	Neal Short	Completion Date:	7/23/2018
Client:	Ridgecrest Associates	Elevation:	NM	Drilling Method:	Direct Push with Macrocore
Location:	820 Linden Avenue	Weather:	70s-80s, overcast	Supervisor:	L. Best
•	Pittsford, NY			-	

	SAMPLE		Depth of			
	PID		Rec.		Strata Change	
40	(ppm)	No.	(ft)	Depth (ft)	(ft)	Material Description and Remarks
	0.0					
	0.0					
				42	42.0	
	0.0	12	2.3			Light grayish brown fine to medium SAND, little silt and coarse sand, loose, dry, no odor
	0.0					
	0.0					
	0.0					
45				45		
	0.0	13	3.2			
	0.0					
	0.0					
	0.0					
	0.1			40		
	0.0	14	3.2	49		
50		17	0.2			
	0.0				50.5	
						Brown fine SAND, some silt, little clay and medium sand, more cohesive, moist, no odor
	0.2				52.0	
	0.0				32.0	Brown medium SAND, some light brown and white coarse sand, little silt, moist, no odor
-	0.0			53		
	0.0	15	3.2			
	0.0				54.0 ▼	
55	0.0					Brown fine to medium SAND, little silt and clay, wet, no odor, no sheen
- 55	0.0					
					56.0	
	0.0					Brown and white/tan fine to coarse SAND, little silt and clay, wet, no odor
		16	1.8	57	57.0	Brown fine to medium SAND, little silt and clay, wet, no odor
	0.0	10	1.0			BIOWITTING TO THE GIOTI SAND, TITTE SIII GIIG CIGY, WEI, NO OGO!
	0.0					
				40		
60				60		

Notes

Test Boring No.: B/MW-102
Page: 4 of 4

Project:	820 Linden Ave RI	Drill Contractor:	Nothnagle	Start Date:	7/23/2018
Project #:	190500898	Driller:	Neal Short	Completion Date:	7/23/2018
Client:	Ridgecrest Associates	Elevation:	NM	Drilling Method:	Direct Push with Macrocore
Location:	820 Linden Avenue	Weather:	70s-80s, overcast	Supervisor:	L. Best
•	Pittsford, NY				

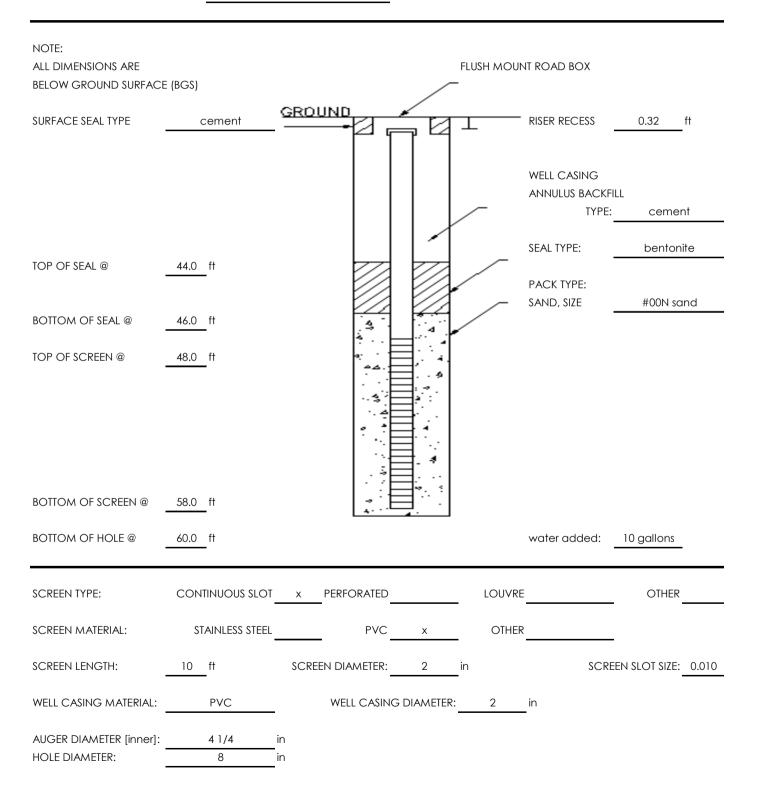
ſ		SA	MPLE		Depth of	
	PID		Rec.		Strata Change	
60	(ppm)	No.	(ff)	Depth (ft)	(ft)	Material Description and Remarks
		17	2.3	60		
	0.0					
	0.0					
	0.0					Trace orange discoloration at 63'
	0.0			64		nace orange ascoloration at 65
						Bottom of Boring at 64'
}						
ŀ						
ŀ						
ŀ						
Ì						
}						
İ						
}						
ŀ						

Notes

Test Boring No.:	B-102a
Page:	1 of 1

Project:	820 Linden Ave RI	Drill Contractor:	Nothnagle	Start Date:	7/24/2018
Project #:	190500898	Driller:	Neal Short	Completion Date:	7/24/2018
Client:	Ridgecrest Associates	Elevation:	NM	Drilling Method:	Direct Push with Macrocore
Location:	820 Linden Avenue	Weather:	70s, humid, overcast	Supervisor:	L. Best
	Pittsford, NY			-	

		SA	MPLE		Depth of		
0	PID (ppm)	No.	Rec. (ft)	Depth (ft)	Strata Change (ft)	Material Description and Remarks	
		1	3.0	0		Brown fine SAND AND SILT with roots, trace clay, moist	- TOPSOIL -
	0.0		0.0		0.0	Light brown fine SAND, little silt and medium sand, trace clay, dry, no odor	
	0.0						
	0.0						
							- NATIVE SOIL -
				4			
	0.0	2	3.2				
5			0.2				
	0.0						
	0.0						
	0.0						
	0.0			0			
				8		D. H (D O	
						Bottom of Boring at 8'	
				1			
]			
				1			
				ł			
			-				
			I				


Notes:

- 1. PID Model MiniRAE 3000 with 10.6eV lamp.
- 2. Groundwater not encountered.

PROJECT NAME	820 Linden Ave RI	
PROJECT NUMBER	190500898	
CLIENT	Ridgecrest Associates	
LOCATION	820 Linden Avenue	
_	Pittsford, NY	

HOLE DESIGNATION	B/MW-103
DATE COMPLETED	7/24/2018
DRILLING METHOD	Hollow Stem Auger
SUPERVISOR	L. Best

Test Boring No.:	B/MW-103
Page:	1 of 3

Project:	820 Linden Ave RI	Drill Contractor:	Nothnagle	Start Date:	7/24/2018
Project #:	190500898	Driller:	Neal Short	Completion Date:	7/24/2018
Client:	Ridgecrest Associates	Elevation:	NM	Drilling Method:	Direct Push with Macrocore
Location:	820 Linden Avenue	Weather:	80s, humid, overcast	Supervisor:	L. Best
_	Pittsford, NY			-	

	SAMPLE			Depth of		
	PID		Do o		Strata	
0	(ppm)	No.	Rec. (ft)	Depth (ft)	Change (ft)	Material Description and Remarks
	(66)	1	2.7	0	0.4	ASPHALT
	0.0	'	2./		0.6	Brown medium SAND AND fine GRAVEL, dry - FILL -
					0.7	Orangish light brown fine SAND, little silt and medium sand, dry, no odor
	0.0			1		Light brown fine SAND, some medium sand, little silt, trace clay, dry, no odor
	0.0					
				4		
	0.0	2	2.9			
5				1		
	0.0					
	0.0					
						- NATIVE SOIL -
				8		
	0.1	3	3.1			
10	0.0					
	0.0					
				12		
	0.0	4	2.2		12.5	
						Light grayish brown fine to medium SAND, little silt and coarse tan and white sand, trace clay,
	0.0					denser, dry
	0.0					
1.5	0.0			1.5		
15		5	2.1	15	155	
	0.0	5	2.1		15.5 16.0	Brown fine SAND, little silt and clay and medium sand, slightly cohesive, moist
	0.0		-	1	10.0	Light grayish brown fine to medium SAND, little silt and coarse tan and white sand, trace clay,
	0.0			1		dry
	0.0			1		\
	0.0			-		
				-		
			-	19	19.0	
	0.0	6	3.0	.,		Brown fine SAND AND SILT, little medium to coarse sand and clay, wet
20				1		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Notes

Test Boring No.:	B/MW-103
Page:	2 of 3

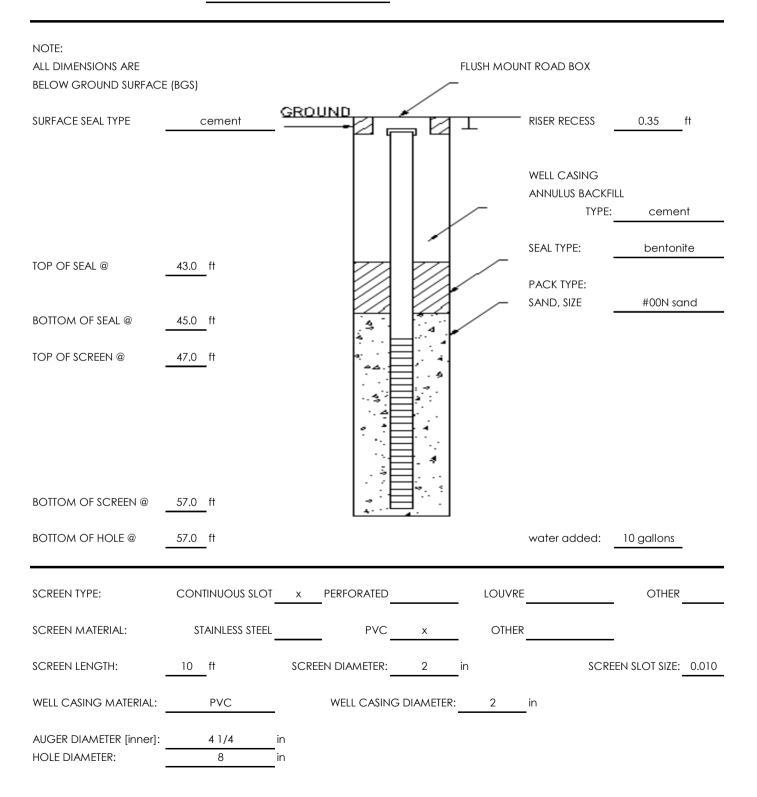
Project:	820 Linden Ave RI	Drill Contractor:	Nothnagle	Start Date:	7/24/2018
Project #:	190500898	Driller:	Neal Short	Completion Date:	7/24/2018
Client:	Ridgecrest Associates	Elevation:	NM	Drilling Method:	Direct Push with Macrocore
Location:	820 Linden Avenue	Weather:	80s, humid, overcast	Supervisor:	L. Best
•	Pittsford, NY	_		•	

	SAMPLE		Depth of				
20	PID (ppm)	No.	Rec. (ft)	Depth (ft)	Strata Change (ft)	Material Description and Remarks	
	0.0					Moist at 20'	
	0.0					Light grayish brown fine to medium SAND, little silt and coarse tan and white sand, dry	
	0.0						
	0.0						
				23			
	0.0	7	3.3				
	0.0						
25	0.0						
	0.0						
	0.0						
	0.0	0	0.7	27	07.5		
	0.0	8	2.7		27.5	Light grayish brown fine SAND, some silt, little medium to coarse sand, dry	
	0.0					Eight grayish brown line 37,142, 30the siit, line mealoth to coarse sand, ary	
	0.0						
30		0	0.0	30	30	Light and the second of the se	
	0.0	9	2.8			Light grayish brown fine to medium SAND, some silt, little coarse sand, trace clay, slightly cohesive, dry	
	0.0						
	0.0						
	0.0						
				34			
	0.0	10	3.3	04		Trace orange discoloration (possibly iron oxide) 34-42'	
35							
	0.0						
	0.0						
	0.0						
	0.0						
				38			
	0.0	11	3.4				
	0.0						
40	0.0						

Notes:

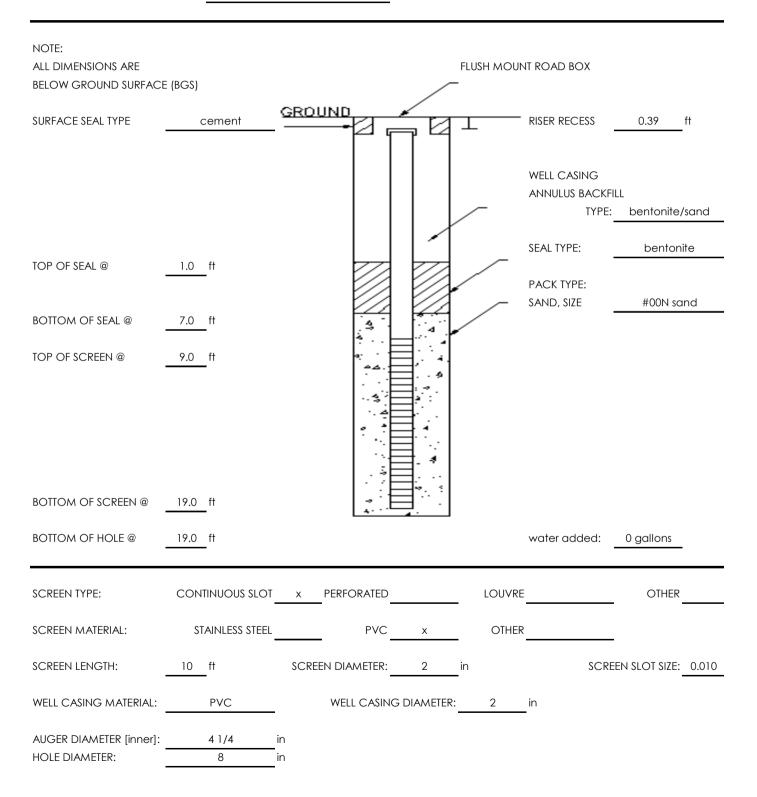
Test Boring No.: B/MW-103
Page: 3 of 3

Project:	820 Linden Ave RI	Drill Contractor:	Nothnagle	Start Date:	7/24/2018
Project #:	190500898	Driller:	Neal Short	Completion Date:	7/24/2018
Client:	Ridgecrest Associates	Elevation:	NM	Drilling Method:	Direct Push with Macrocore
Location:	820 Linden Avenue	Weather:	80s, humid, overcast	Supervisor:	L. Best
•	Pittsford, NY	_		•	


[SAMPLE		Depth of			
	PID		Rec.	5 11 415	Strata Change	
40	(ppm)	No.	(ft)	Depth (ft)	(ft)	Material Description and Remarks
ŀ	0.1					
ŀ	0.0					
				42		
	0.0	12	2.4		42.5	
-	0.1					Light grayish brown fine to medium SAND, little silt and coarse tan and white sand, denser, dry
ŀ	0.1					
ŀ						
45				45		
	0.0	13	2.8			
-	0.0					
-	0.0					
ŀ	0.0					
-	0.0	14	2.8	49	49.0	Drawn fine to reading CANID little silt trace clay and course sand regist no oder
50	0.0	14	2.0			Brown fine to medium SAND, little silt, trace clay and coarse sand, moist, no odor
- 00	0.0					
į					lacksquare	Wet at 51'
	0.1					
				53	53.0	
-		15	2.6	00		Brown fine to medium SAND, some coarse sand, little silt, trace clay, wet, no odor
į	0.0					
55	0.0					
ŀ	0.1					
ŀ	J.1					
ļ				57	57.0	
	0.0	16				Brown fine to coarse SAND, little silt and coarse tan and white sand, wet, no odor
,	0.0					
ŀ	0.0					
ł	0.0					
60	-			60		
						Bottom of Boring at 60'

Notes:

PROJECT NAME	820 Linden Ave RI
PROJECT NUMBER	190500898
CLIENT	Ridgecrest Associates
LOCATION	820 Linden Avenue
•	Pittsford, NY


HOLE DESIGNATION	B/MW-104
DATE COMPLETED	7/26/2018
DRILLING METHOD	Hollow Stem Auger
SUPERVISOR	L. Best
_	

PROJECT NAME	820 Linden Ave RI
PROJECT NUMBER	190500898
CLIENT	Ridgecrest Associates
LOCATION	820 Linden Avenue
_	Pittsford, NY

HOLE DESIGNATION	MW-104S
DATE COMPLETED	7/27/2018
DRILLING METHOD	Hollow Stem Auger
SUPERVISOR	L. Best
· ·	

Test Boring No.:	B/MW-104
Page:	1 of 3

Project:	820 Linden Ave RI	Drill Contractor:	Nothnagle	Start Date:	7/26/2018
Project #:	190500898	Driller:	Neal Short	Completion Date:	7/26/2018
Client:	Ridgecrest Associates	Elevation:	NM	Drilling Method:	Direct Push with Macrocore
Location:	820 Linden Avenue	Weather:	70s-80s, sunny	Supervisor:	L. Best
	Pittsford, NY				

		SA	MPLE		Depth of	
0	PID (ppm)	No.	Rec. (ft)	Depth (ft)	Strata Change (ft)	Material Description and Remarks
	(-	1	3.3	0	0.3	ASPHALT
	0.0		0.0		0.6	Brown fine SAND AND fine GRAVEL, little silt and clay, trace roots, moist - FILL -
						Brown CLAY, little silt and fine sand, hard, dry, no odor
	0.0					
	0.0					
						Moist at 3.5' and becoming softer
	0.0			4	4.0	Duran CLAV and a market
_	0.0	2	3.7			Brown CLAY, soft, moist
5	0.0					
	0.0					
	0.0					
	0.0					- NATIVE SOIL
	0.0					10 1111 2 3 3 12
	0.0			8		
		3	2.9		8.5	
	0.0					Brown SILT AND CLAY, stiff, moist
10	0.0			<u> </u>		
					11.0	
	0.0					Brown CLAY, trace dark gray staining, soft, wet
				12	12.0	
	0.0	4	1.3			Brown CLAY, stiff, wet
	0.0					
	0.0					
15	0.0			15	15.0	
- 13	0.0	5	3.1	13	13.0	Brown to reddish brown CLAY, plastic and medium soft, wet
	0.0	-	0.1			Brown to readistribrown 627(1) plastic and medicin 3011, wer
	0.0					
				1		
	0.0					
				1		
	0.0]		
				19	19.0	
		6	3.2			Light brown fine SAND, some silt, little clay, cohesive, dense, dry
20	0.0]		

Notes

Test Boring No.:	B/MW-104
Page:	2 of 3

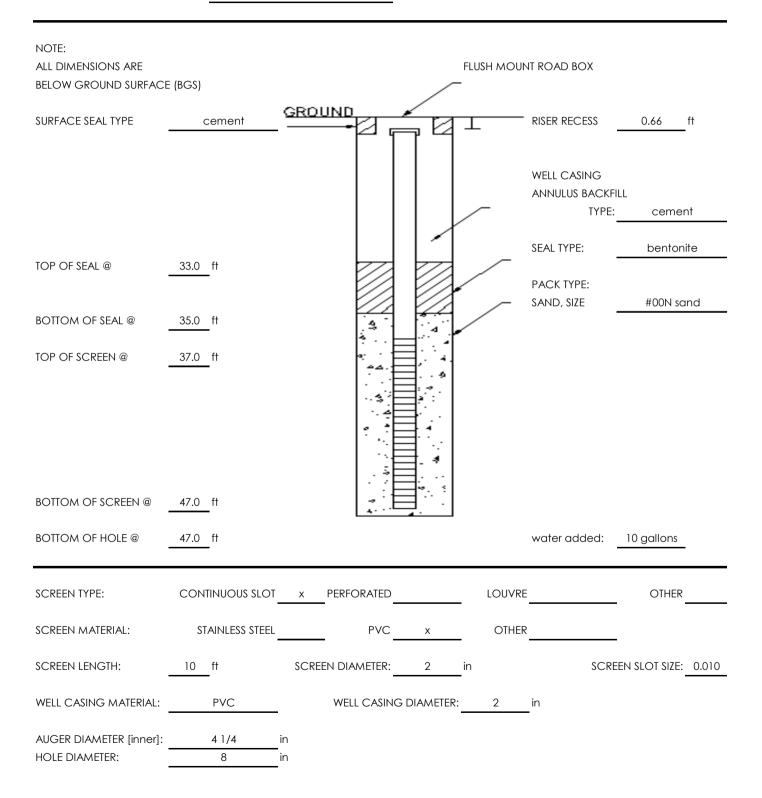
Project:	820 Linden Ave RI	Drill Contractor:	Nothnagle	Start Date:	7/26/2018
Project #:	190500898	Driller:	Neal Short	Completion Date:	7/26/2018
Client:	Ridgecrest Associates	Elevation:	NM	Drilling Method:	Direct Push with Macrocore
Location:	820 Linden Avenue	Weather:	70s-80s, sunny	Supervisor:	L. Best
•	Pittsford, NY				

	SAMPLE		Depth of			
20	PID (ppm)	No.	Rec. (ft)	Depth (ft)	Strata Change (ft)	Material Description and Remarks
	0.0					
	0.0				22.0	
					22.5	Reddish brown CLAY
				23	23.0	Light brown fine SAND, some silt, little clay, cohesive, dense, dry
	0.0	7	3.3		24.0	Reddish brown fine SAND AND SILT, little clay, stiff, dry
	0.0				24.5	Light brown fine SAND, some silt, little clay and fine to medium gravel, looser Light brown fine SAND, little silt and medium sand, trace clay, slightly cohesive, dry
25	0.0					Light brown line sand, little siit and mediom sand, trace clay, stignity conesive, dry
	0.0					
	0.0					
				27		
	0.2	8	2.3			
	0.1					
	0.1					
	0.2					
30				30		
	0.1	9	2.8			
	0.1					
	0.1				32.0	
	0.2				02.0	Light brown fine SAND, little silt and medium sand, dry
		10	0.0	34	34.0	
35	0.1	10	3.0			Light brown fine SAND, little silt and clay, dry, no odor or staining
	0.2					
	0.2					
				20		
	0.1	11	3.1	38		Denser at 38'
	0.1	11	0.1			201301 41 00
	0.0					
40						

Notes

Test Boring No.:	B/MW-104
Page:	3 of 3

Project:	820 Linden Ave RI	Drill Contractor:	Nothnagle	Start Date:	7/26/2018
Project #:	190500898	Driller:	Neal Short	Completion Date:	7/26/2018
Client:	Ridgecrest Associates	Elevation:	NM	Drilling Method:	Direct Push with Macrocore
Location:	820 Linden Avenue	Weather:	70s-80s, sunny	Supervisor:	L. Best
	Pittsford, NY			<u> </u>	


	SAMPLE		Depth of			
40	PID (ppm)	No.	Rec. (ft)	Depth (ft)	Strata Change (ft)	Material Description and Remarks
	0.0					
	0.0					
ŀ				42	42.0	
	0.2	12	2.3			Light brown fine SAND, little silt and clay, trace orange staining at 42', cohesive, dry, no odor
-	0.0					
}	0.0					
-	0.0					
45				45		
	0.6	13	3.0			
-	0.5				46.0	Light brown fine to medium SAND, little silt and coarse white and tan sand, no staining, no odor
ŀ	0.0					Light brown line to medicin sand, time sit and coarse write and fair sand, no stairting, no odor
-	0.2					
-	0.2			49		Moist at 48'
-	0.4	14	3.4	47	▼	Wet at 49'
50			0.1			
	1.1					
-	0.0					
-	0.3					
}	0.0					
				53	53.0	
	0.0	15	2.7			Brown fine to medium SAND, little silt and coarse white and tan sand, wet
-	0.1					
55						
	0.0					
-				57	56.5	Reddish brown fine to medium SAND, some silt and clay, little coarse sand, wet
ŀ				5/		Bottom of Boring at 57'
						25 3. 25
Į						
60						
- 50						

Notes

PROJECT NAME	820 Linden Ave RI	
PROJECT NUMBER	190500898	_
CLIENT	Ridgecrest Associates	
LOCATION	820 Linden Avenue	
	Pittsford, NY	

B/MW-105
7/27/2018
Hollow Stem Auger
L. Best

Test Boring No.:	B/MW-105
Page:	1 of 3

Project:	820 Linden Ave RI	Drill Contractor:	Nothnagle	Start Date:	7/27/2018
Project #:	190500898	Driller:	Neal Short	Completion Date:	7/27/2018
Client:	Ridgecrest Associates	Elevation:	NM	Drilling Method:	Direct Push with Macrocore
Location:	820 Linden Avenue	Weather:	70s, partly sunny to	Supervisor:	L. Best
•	Pittsford, NY		overcast	_	

	SAMPLE		Depth of			
0	PID (ppm)	No.	Rec. (ft)	Depth (ft)	Strata Change (ft)	Material Description and Remarks
		1	2.4	0	0.3	Dark brown fine SAND AND SILT with grass and roots, trace clay, moist - TOPSOIL -
	0.0					Light brown fine SAND, little silt and medium sand, trace clay, dry
				-		
	0.0					
				1		- NATIVE SOIL -
]		Dark brown coloring at 3.5', no odor
	0.0			4	4.0	
	0.0	2	2.8			Orangish brown fine to medium SAND, little silt, trace clay, dry, no odor
5	0.0			-	5.0	Light brown fine SAND, little silt and medium sand, trace clay, dense, dry
	0.0			-		Light brown line SAND, little siit and mealum sand, trace clay, dense, ary
	0.0			1		
	0.0					
				8		
	0.0	3	3.0			
	0.0					
10	0.0			1		
10	0.0			-	10.5	
	0.0			1	10.0	Brown fine to medium SAND, little silt and clay, moist, no odor
				12	12.0	
	0.0	4	1.4			Light brown fine to medium SAND, little silt, trace clay, medium dense, dry, no odor
	0.0			-		
	0.0			-		
				-		
15				15		
-	0.0	5	2.9			
]	16.0	
	0.0				17.0	Brown SILT AND CLAY, little fine sand, wet, no odor
	0.0				17.0 17.5	Brown fine SAND AND SILT, little clay and medium sand, no odor
	0.0			1	17.3	Light brown fine to medium SAND, little silt and coarse sand, trace clay, dry
	0.0			1		Eight Stown and to modicini state, and course sund, nace day, any
				19	19	
	0.0	6	3.4			Light brown fine to medium SAND, little silt and clay, moist, no odor
20]		
-						

Notes

Test Boring No.:	B/MW-105	
Page:	2 of 3	

Project:	820 Linden Ave RI	Drill Contractor:	Nothnagle	Start Date:	7/27/2018
Project #:	190500898	Driller:	Neal Short	Completion Date:	7/27/2018
Client:	Ridgecrest Associates	Elevation:	NM	Drilling Method:	Direct Push with Macrocore
Location:	820 Linden Avenue	Weather:	70s, partly sunny to	Supervisor:	L. Best
•	Pittsford, NY		overcast		

PID (ppm) No. 0.0 0.0	Rec. (ft)	Depth (ft)	Strata Change	
0.0			(ft)	Material Description and Remarks
0.0				·
1 ()()			21.0 21.5	Brown SILT AND CLAY, little fine sand, soft, moist, no odor
0.0	+	-	21.0	Light brown fine to medium SAND, little silt and clay, dense, cohesive, moist, no odor
0.0		-		
		23		
0.0 7	3.4			
0.0		_		
0.0		1		
0.0		1		
		1		
0.0]		
	0.0	27		
0.0	2.0	-		
0.0		1		
0.0				
30	2.0	30		
0.0 9	3.2	1		
0.0		1		
0.0				
0.0		-		
0.0	+	34	34.0	
0.0 10	3.7	01		Light brown fine to medium SAND, little silt, trace clay, looser, dry, no odor
35				
0.0				
0.0	+	-	36.0	Brown fine SAND AND SILT, little clay, trace medium sand, no odor
0.0		_	37.0	brown line 3AND AND 3E1, little clay, frace medicin sand, no oddi
0.0	+	-	07.0	Light brown fine to medium SAND, little silt and clay, trace coarse sand, medium dense, dry, no
		38		odor
0.0 11	2.6		0.5.5	
0.0	+	▼	39.0	Brown fine to medium SAND, little silt, trace clay, wet, no odor
40	+	1		Brown fine to mediciti sand, little siit, frace clay, wet, no odor
	†	1		

Notes

Test Boring No.:	B/MW-105		
Page:	3 of 3		

Project:	820 Linden Ave RI	Drill Contractor:	Nothnagle	Start Date:	7/27/2018
Project #:	190500898	Driller:	Neal Short	Completion Date:	7/27/2018
Client:	Ridgecrest Associates	Elevation:	NM	Drilling Method:	Direct Push with Macrocore
Location:	820 Linden Avenue	Weather:	70s, partly sunny to	Supervisor:	L. Best
•	Pittsford, NY		overcast	_	

	SAMPLE				Depth of	
	PID		Rec.		Strata	
40	(ppm)	No.		Depth (ft)	Change (ft)	Material Description and Remarks
-10	0.0		. ,	. ()	()	maional 2000 pilon and nomano
ŀ						
	0.0					
				42		
	0.0	12	2.7			
	0.0					
	0.0				44.0	
	0.0					Brown fine SAND AND SILT, some clay, little fine to medium gravel, wet, no odor
45						2.0 3.1. 3.1. 3.1. 3.1. 3.1. 3.1. 3.
	0.0					
ŀ				46		
						Bottom of Boring at 46'
ΕO						
50						
55						
ŀ						
ŀ						
ļ						
60						
T						

Notes:

Test Boring No.:	B-106		
Page:	1 of 1		

Project:	820 Linden Ave RI	Drill Contractor:	Nothnagle	Start Date:	7/31/2018
Project #:	190500898	Driller:	Jeff Schweitzer	Completion Date:	7/31/2018
Client:	Ridgecrest Associates	Elevation:	NM	Drilling Method:	Direct Push with Macrocore
Location:	820 Linden Avenue	Weather:	Indoors	Supervisor:	L. Best
	Pittsford, NY				

	SAMPLE				Depth of	
0	PID (ppm)	No.	Rec. (ff)	Depth (ft)	Strata Change (ft)	Material Description and Remarks
		1	3.1	0	0.5	CONCRETE
	0.0				8.0	Brown medium to coarse SAND AND fine to medium GRAVEL, loose, dry - FILL -
						Light brown fine SAND, little silt and trace fine to medium gravel, loose, dry, no odor
	0.0					
	0.0					- NATIVE SOIL -
				4	4.3	
	0.0	2	3.1		4.5	Brown fine to medium SAND, little silt, dry
5					5.0	Light brown fine SAND, little silt and trace fine to medium gravel, dry
						Brown fine to medium SAND, little silt and clay, trace fine gravel, moist
	0.0					
	0.0				7.5	
				8	8.0	Light brown fine SAND AND SILT, little clay, dry, no odor
	0.0	3	3.4		8.5	Brown fine to medium SAND AND SILT, little clay, dry
					9.0	Orangish brown fine to medium SAND AND SILT, loose, dry
	0.0				7.0	Light brown fine SAND AND SILT, little clay, medium cohesive, dry
10						Light brown into or the fitter stay, modern contesting, any
	0.0					
	0.0					
				12		
			-	12		Bottom of Boring at 12'
						Bottom of Bolling at 12
			<u> </u>			
			I			

Notes

- 1. PID Model MiniRAE 3000 with 10.6eV lamp.
- 2. Groundwater not encountered.

Test Boring No.:	B-107		
Page:	1 of 1		

Project:	820 Linden Ave RI	Drill Contractor:	Nothnagle	Start Date:	7/31/2018
Project #:	190500898	Driller:	Jeff Schweitzer	Completion Date:	7/31/2018
Client:	Ridgecrest Associates	Elevation:	NM	Drilling Method:	Direct Push with Macrocore
Location:	820 Linden Avenue	Weather:	Indoors	Supervisor:	L. Best
	Pittsford, NY				

	SAMPLE				Depth of	
0	PID (ppm)	No.	Rec. (ft)	Depth (ft)	Strata Change (ft)	Material Description and Remarks
		1	3.1	0	0.4	CONCRETE
	0.0				0.7	Dark brown fine to medium SAND AND fine to medium GRAVEL, loose, dry, no odor - FILL -
						Brown fine SAND, little silt, trace fine gravel, loose, dry, no odor
	0.0					
	0.0					- NATIVE SOIL -
					3.5	
	0.0			4		Light brown fine SAND AND SILT, little medium sand, loose, dry, no odor
		2	3.0			
5	0.0				5.0	
					5.5	Brown fine SAND, little silt, trace fine gravel, loose, dry, no odor
	0.0				6.0	Orangish brown fine SAND AND SILT, loose, dry
						Light brown fine SAND AND SILT, little clay, medium cohesive, dry, no odor
	0.0					Light brown this of the fill films stay, medicin contest of ally, no cast
	0.0					
	0.0			8		
	0.0	3	3.7	O		
	0.0	0	0.7			
	0.0					
10	0.0					
-10	0.0					
	0.0					
	0.0					
	0.0			12		
	0.0			12		
						Bottom of Boring at 12'
]		
]		
]		
				1		

Notes:

- 1. PID Model MiniRAE 3000 with 10.6eV lamp.
- 2. Groundwater not encountered.

Test Boring No.: B-108
Page: 1 of 1

Project:	820 Linden Ave RI	Drill Contractor:	Nothnagle	Start Date:	7/30/2018
Project #:	190500898	Driller:	Jeff Schweitzer	Completion Date:	7/30/2018
Client:	Ridgecrest Associates	Elevation:	NM	Drilling Method:	Direct Push with Macrocore
Location:	820 Linden Avenue	Weather:	70s, sunny	Supervisor:	R. Mahoney
	Pittsford, NY			_	

	SAMPLE		Depth of	of			
	PID	Na	Rec.	Dombh (fil)	Strata Change		
0	(ppm)	No.	(ft)	Depth (ft)	(ft)	Material Description and Remarks	
	0.0	1	4.0	0		Dark brown SILT, little fine sand, organics, and roots, moist	
					0.7	Dark gray seam, approx 0.1 ft thick.	- TOPSOIL / FILL -
	0.0					Brown silty fine SAND, moist	
	0.0						
	0.0						
				4			
	0.0	2					
5						Same, moist	
	0.0						
				1			- NATIVE SOIL -
	0.0						
	0.0						
	0.0						
	0.0			0			
	0.0	3		8			
	0.0	3					
						Same, moist	
	0.0			ļ			
10							
	0.0						
	0.0						
				12			
						Bottom of Boring at 12'	
				1			
				1			
				1			
				1			
				1			
]			

Notes:

- 1. PID Model MiniRAE 3000 with 10.6eV lamp.
- 2. Groundwater not encountered.

Test Boring No.:	B-109
Page:	1 of 1

Project:	820 Linden Ave RI	Drill Contractor:	Nothnagle	Start Date:	7/30/2018
Project #:	190500898	Driller:	Jeff Schweitzer	Completion Date:	7/30/2018
Client:	Ridgecrest Associates	Elevation:	NM	Drilling Method:	Direct Push with Macrocore
Location:	820 Linden Avenue	Weather:	70s, sunny	Supervisor:	R. Mahoney
	Pittsford, NY				

	SAMPLE		Depth of				
0	PID (ppm)	No.	Rec. (ft)	Depth (ft)	Strata Change (ft)	Material Description and Remarks	
	0.0	1	4.0	0		Dark gray sandy SILT, heavy roots, organics	
	0.0	<u>'</u>	1.0		0.9	Dark gray seam, approx 0.1 ft thick. - TOPSOIL / FILL -	
	0.0				1.0	Light brown SILT, little fine sand, moist	
	0.1						
						Saturated zone approximately 3-5 ft.	
	0.0						
				4	4.0		
		2	3.2				
5	0.0						
						Brown silty fine SAND, moist	
	0.0						
						- NATIVE SOIL -	
	0.0						
	0.0			8			
		3	3.5				
	0.0					Brown silty fine SAND, moist	
10	0.0						
	0.0						
	0.0			12			
						Bottom of Boring at 12'	
]			
			Ī				

Notes

- 1. PID Model MiniRAE 3000 with 10.6eV lamp.
- 2. Groundwater not encountered, except shallow perced zone approx 3-5 ft.

PROJECT NAME	820 Linden Ave IRM2	WELL DESIGNATION	MW-110
PROJECT NUMBER	190500898.237	DATE COMPLETED	7/8/2020
CLIENT	Ridgecrest Associates	DRILLING METHOD	Hollow Stem Auger
LOCATION	820 Linden Avenue	SUPERVISOR	K. Nelson
-	Pittsford, NY	_	

NOTE: ALL DIMENSIONS ARE BELOW GROUND SURFAC	E (BGS)		FL	.USH MOUN ⁻	T ROAD BOX	
SURFACE SEAL TYPE	cement	GROUND	797	_	RISER RECESS _	0.40 ft
					WELL CASING ANNULUS BACKFIL TYPE: _	L cement*
TOP OF SEAL @	42.0 ft			-	SEAL TYPE:	bentonite
TOT OF SEAL &	42.0				PACK TYPE: SAND, SIZE	#00N sand
BOTTOM OF SEAL @	44.0 ft	4			_	
TOP OF SCREEN @	<u>46.0</u> ft	44.	4			
BOTTOM OF SCREEN @	56.0 ft	l 🛴 🗎				
BOTTOM OF HOLE @	ff			water a	dded (gallons): _	20
SCREEN TYPE:	CONTINUOUS SLOT	x PERFORATED		LOUVRE		OTHER
SCREEN MATERIAL:	STAINLESS STEEL	PVC	Х	OTHER		
SCREEN LENGTH:	ft	SCREEN DIAMETER:	in		SCREE	N SLOT SIZE: 0.010
WELL CASING MATERIAL:	PVC	WELL CASING I	DIAMETER:	2	in	
HOLE DIAMETER: AUGER DIAMATER		in in (inner diameter)				

^{*}From 13 ft bgs to surface mixture of cement and sand used for well casing annulus backfill

Test Boring No.:	MW-110
Page:	1 of 1

 Project:
 820 Linden Ave IRM2

 Project #:
 190500898.237

 Client:
 Ridgecrest Associates

 Location:
 820 Linden Avenue

 Pittsford, NY

Drill Contractor: Nothnagle
Driller: T. Mangefrida
Elevation: NM
Weather: 80s, sunny

Nothnagle Start Date:

Mangefrida Completion Date:

NM Drilling Method: Ho

80s, sunny Supervisor:

7/7/2020 7/7/2020 Hollow Stem Auger with Macrocore K. Nelson

	SAMPLE					
0	PID (ppm)	No.	Rec. (ft)	Depth (ft)	Depth of Strata Change (ft)	Material Description and Remarks
						Hand clear to 5 ft
ŀ						Auger to 35 ft
35				35		
		1	4.0		35.0	Light brown fine SAND, little silt, dry, no odor
	0.7					
ŀ	0.6					
ŀ						
	0.3					
				0.0		
		2	4.0	39		trace gravel from 39-43'
40			4.0			nace graver norm 37-43
	0.0					
[
ŀ	0.8					
				43		
		3	2.0			
ŀ	0.5					
45	0.5			45		
		4	3.6			
	1.3					
ŀ	1.0					moist at 47.3'
	.,,					
			2.0	49	48.6	Proving modelings CANID little fine cond and silt patricular and an activities
50		5	3.0		▼ 49	Brown medium SAND, little fine sand and silt, saturated, no odor
- 50	1.0					
	0.5					Pottom of continuous sampling at E21
						Bottom of continuous sampling at 53' Auger to 56' for well installation

Notes:

PROJECT NAME	820 Linden Ave IRM2	WELL DESIGNATION	MW-111
PROJECT NUMBER	190500898.237	DATE COMPLETED	7/10/2020
CLIENT	Ridgecrest Associates	DRILLING METHOD	Hollow Stem Auger
LOCATION	820 Linden Avenue	SUPERVISOR	K. Nelson
	Pittsford, NY	_ _	

NOTE: ALL DIMENSIONS ARE BELOW GROUND SURFAC	E (BGS)		FL	NOM HSU	IT ROAD BOX	
SURFACE SEAL TYPE	cement	GROUND	191	_	RISER RECESS	ff
				_	WELL CASING ANNULUS BACKF TYPE:	FILL cement*
TOP OF SEAL @	39.5 ft			_	SEAL TYPE:	bentonite
TOP OF SEAL @				_	PACK TYPE: SAND, SIZE	#00N sand
BOTTOM OF SEAL @	42.0 ft					
TOP OF SCREEN @						
BOTTOM OF SCREEN @	54.0 ft					
BOTTOM OF HOLE @	ff			water o	added (gallons):	40
SCREEN TYPE:	CONTINUOUS SLOT	x PERFORATED		LOUVRE		OTHER
SCREEN MATERIAL:	STAINLESS STEEL	PVC	Х	OTHER		<u>-</u>
SCREEN LENGTH:	10 ft	SCREEN DIAMETER:	in		SCRE	EEN SLOT SIZE: 0.010
WELL CASING MATERIAL:	PVC	WELL CASING D	IAMETER:	2	in	
HOLE DIAMETER: AUGER DIAMATER		in in (inner diameter)				

^{*}From 4.5 ft bgs to surface mixture of cement and sand used for well casing annulus backfill

Test Boring No.:	MW-111
Page:	1 of 1

Project:820 Linden Ave IRM2Drill Contractor:Project #:190500898.237Driller:Client:Ridgecrest AssociatesElevation:Location:820 Linden AvenueWeather:Pittsford, NY

Start Date:
Completion Date:
Drilling Method:
Supervisor:

7/9/2020				
7/9/2020				
Hollow Stem Auger with Macrocore				
K. Nelson				

	SAMPLE					
l	DID.				Depth of	
0	PID (ppm)	No.	Rec. (ff)	Depth (ft)	Strata Change (ft)	Material Description and Remarks
	(PP)		(,	2 3 p ()	Change (ii)	Material Description and Remarks
ļ						Auger to 40 ft
40				40		
40		1	3.6	70	40.0	Light brown medium SAND, some fine sand, little silt, dry, no odor
	0.1					
ŀ						
_	0.1					
				44		
45		2	2.0			
43					¥ 45.0	wet
Ì					<u>*</u>	
ŀ						
Ì						Bottom of continuous sampling at 48'
ļ						Auger to 54' for well installation
50						
ŀ						
ŀ						
}						
ŀ						
ŀ						
ŀ						
ŀ						

Notes:

PROJECT NAME	820 Linden Ave IRM2	WELL DESIGNATION	MW-112
PROJECT NUMBER	190500898.237	DATE COMPLETED	7/9/2020
CLIENT	Ridgecrest Associates	DRILLING METHOD	Hollow Stem Auger
LOCATION	820 Linden Avenue	SUPERVISOR	K. Nelson
_	Pittsford, NY		

NOTE: ALL DIMENSIONS ARE BELOW GROUND SURFACE	E (BGS)	FLUSH MOUNT ROAD BOX				
SURFACE SEAL TYPE	cement	GROUND	1 4	L .	RISER RECESS _	0.44 ft
					WELL CASING ANNULUS BACKFIL TYPE: _	L cement*
TOP OF SEAL @	38.5 ft			, ;	SEAL TYPE:	bentonite
TOT OF SLAL @	11				PACK TYPE: SAND, SIZE	#00N sand
BOTTOM OF SEAL @	41.0 ft	4			_	
TOP OF SCREEN @	<u>43.0</u> ft					
BOTTOM OF SCREEN @	53.0 ft					
BOTTOM OF HOLE @	53.0 ft			water a	dded (gallons): _	50
SCREEN TYPE:	CONTINUOUS SLOT	x PERFORATED		LOUVRE		OTHER
SCREEN MATERIAL:	STAINLESS STEEL	PVC	х	OTHER_		
SCREEN LENGTH:	ft	SCREEN DIAMETER:	in	1	SCREE	N SLOT SIZE: 0.010
WELL CASING MATERIAL:	PVC	WELL CASING	G DIAMETER:	i	'n	
HOLE DIAMETER: AUGER DIAMATER		in in (inner diameter)				

^{*}From 6 ft bgs to surface mixture of cement and sand used for well casing annulus backfill

Test Boring No.:	MW-112
Page:	1 of 1

 Project:
 820 Linden Ave IRM2

 Project #:
 190500898.237

 Client:
 Ridgecrest Associates

 Location:
 820 Linden Avenue

 Pittsford, NY

Drill Contractor:
Driller:
Elevation:
Weather:

Nothnagle Start Date:

T. Mangefrida Completion Date:

NM Drilling Method:

80s, cloudy Supervisor:

7/8/2020 7/8/2020 Hollow Stem Auger with Macrocore K. Nelson

	SAMPLE					
	DID				Depth of	
0	PID (ppm)	No.	Rec. (ft)	Depth (ft)	Strata Change (ft)	Material Description and Remarks
- 0	(PPIII)	110.	()	Depin (ii)	Change (II)	Malerial Description and Remarks
ľ						
						Auger to 40 ft
40				40		
40		1	4.0	40	40.0	Light brown medium SAND, little fine sand and silt, loose, dry, no odor
Ì		-				
	0.2					
	0.0					
ŀ	0.0					
				44		
4.5		2	3.0			
45	0.0				45.0	Brown medium SAND, little coarse sand, trace fine sand and silt, moist, no odor
ŀ	0.0				▼ 45.8	wet at 45.8'
ľ						
	0.0					
ŀ						
ŀ						Bottom of continuous sampling at 48'
						Auger to 53' for well installation
50						
-						
ŀ						
ŀ						
ŀ						
•						
ŀ						
ŀ						

Notes:

Appendix D

Excavation Work Plan

D-1 Introduction

This document presents an Excavation Work Plan (EWP) for the 820 Linden Ave Site located at 820 Linden Avenue in Pittsford, Monroe County, New York (the "Site"; see location, Figure 1). The EWP was prepared by Stantec Consulting Services, Inc. (Stantec) on behalf of Ridgecrest Associates, L. P. (Ridgecrest) pursuant to a Brownfield Cleanup Agreement (BCA) for the Site between Ridgecrest, the Site owner and BCP "Participant," and the New York State Department of Environmental Conservation (NYSDEC or Department) executed by the Department on April 24, 2018. The Site is designated by the Department as BCP Site #C828200. This EWP is included as Appendix D of the Site Management Plan (SMP) for the Site.

The EWP shall be implemented when Site activities have the potential to encounter remaining contamination, namely activities where the Site-wide Cover System will be breached.

D-2 Notification

At least 15 days prior to the start of any activity that is anticipated to encounter remaining contamination, the Site Owner or their representative will notify the NYSDEC. Table 1 below includes contact information for the above notification. A full listing of Site-related contact information is provided in Appendix B of this SMP.

Table 1: Notifications*

Name	Contact Information
Tasha Mumbrue,	e-mail: tasha.mumbrue@dec.ny.gov
NYSDEC Project Manager	phone: (585) 226-5459
David Pratt,	e-mail: david.pratt@dec.ny.gov
NYSDEC Regional HW Engineer	phone: (585) 226-5315
NYSDEC Site Control	e-mail: derweb@gw.dec.state.ny.us

^{*} Note: Notifications are subject to change and will be updated as necessary.

This notification will include:

• A detailed description of the work to be performed, including the location and areal extent of excavation, plans/drawings for site re-grading, intrusive elements or utilities

to be installed below the soil cover, estimated volumes of contaminated soil to be excavated and any work that may impact an engineering control;

- A summary of environmental conditions anticipated to be encountered in the work areas, including the nature and concentration levels of COCs, potential presence of grossly contaminated media, and plans for any pre-construction sampling;
- A schedule for the work, detailing the start and completion of all intrusive work;
- A summary of the applicable components of this EWP;
- A statement that the work will be performed in compliance with this EWP and 29 Code of Federal Regulations (CFR) 1910.120;
- A copy of the contractor's health and safety plan (HASP), in electronic format, if it differs from the HASP provided in Appendix E of this SMP;
- Identification of disposal facilities for potential waste streams; and
- Identification of sources of any anticipated backfill, along with all required chemical testing results.

D-3 Soil Screening Methods

Visual, olfactory and instrument-based (e.g. photoionization detector) soil screening will be performed by a qualified environmental professional during all excavations into known or potentially contaminated material (remaining contamination). Soil screening will be performed when such invasive work is done and will include all excavation and invasive work performed during development, such as excavations for foundations and utility work, after issuance of the Certificate of Completion.

Soils will be segregated based on previous environmental data and screening results into material that requires off-site disposal and material that requires testing to determine if the material can be reused on-site as soil beneath a cover or if the material can be used as cover soil. Further discussion of off-site disposal of materials and on-site reuse is provided in Section D-8 and Section D-9 of this Appendix.

D-4 Soil Staging Methods

Soil stockpiles will be continuously encircled with a berm and/or silt fence. Hay bales will be used as needed near catch basins, surface waters, and other discharge points.

Stockpiles will be kept covered at all times with appropriately anchored tarps. Stockpiles will be routinely inspected and damaged tarp covers will be promptly replaced.

Stockpiles will be inspected at a minimum once each week and after every storm event. Results of inspections will be recorded in a logbook and maintained at the Site and available for inspection by the NYSDEC.

D-5 Materials Excavation and Load-Out

A qualified environmental professional or person under their supervision will oversee all invasive work and the excavation and load-out of all excavated material.

The owner of the property and its contractors are responsible for safe execution of all invasive and other work performed under this Plan.

The presence of utilities and easements on the Site will be investigated by the qualified environmental professional. It will be determined whether a risk or impediment to the planned work under this SMP is posed by utilities or easements on the Site.

Loaded vehicles leaving the Site will be appropriately lined, tarped, securely covered, manifested, and placarded in accordance with appropriate Federal, State, local, and NYSDOT requirements (and all other applicable transportation requirements).

A truck wash will be operated on-site, as appropriate. The qualified environmental professional will be responsible for ensuring that all outbound trucks will be washed at the truck wash before leaving the Site until the activities performed under this section are complete. Truck wash waters will be collected and disposed of off-site in an appropriate manner.

Locations where vehicles enter or exit the Site shall be inspected daily for evidence of off-site soil tracking.

The qualified environmental professional will be responsible for ensuring that all egress points for truck and equipment transport from the Site are clean of dirt and other materials derived from the site during intrusive excavation activities. Cleaning of the adjacent streets will be performed as needed to maintain a clean condition with respect to Site-derived materials.

D-6 Cover System Restoration

After the completion of soil removal and any other invasive activities the Cover System will be restored in a manner that complies with the Decision Document. The Cover System is comprised of the following existing and newly-installed components:

- Existing concrete building floor slab;
- Existing landscaped, vegetated, or lawn areas with at least one foot of non-impacted soil overlying remaining soil with SCOs exceedances;
- Existing paved parking lot areas; and
- A newly-installed engineered cover consisting of a one-foot thick cap of gabion stone over a demarcation layer for the eastern [formerly vegetated] property line area (RAOC-5) remediated during IRM4.

Where present and if breached, the demarcation layer will be replaced to provide a visual reference to the top of the remaining contamination zone, the zone that requires adherence to special conditions for disturbance of remaining contaminated soils defined in this SMP. If the type of Cover System changes from that which exists prior to the excavation (i.e., a soil cover is replaced by asphalt), this will constitute a modification of the cover element of the remedy and the upper surface of the remaining contamination. A figure showing the modified surface will be included in the subsequent Periodic Review Report (PRR) and in an updated SMP.

D-7 Materials Transport Off-Site

All transport of materials will be performed by licensed haulers in accordance with appropriate local, State, and Federal regulations, including 6 NYCRR Part 364. Haulers will be appropriately licensed and trucks properly placarded.

Material transported by trucks exiting the Site will be secured with tight-fitting covers. Loose-fitting canvas-type truck covers will be prohibited. If loads contain wet material capable of producing free liquid, truck liners will be used.

Truck transport routes will be pre-determined as needed. All trucks loaded with Site materials will exit the vicinity of the Site using the pre-determined truck routes. This is the most appropriate route and takes into account: (a) limiting transport through residential areas and past sensitive sites; (b) use of city mapped truck routes; (c) prohibiting off-site queuing of trucks entering the facility; (d) limiting total distance to major highways; (e) promoting safety in access to highways; and (f) overall safety in transport.

Trucks will be prohibited from stopping and idling in the neighborhood outside the Site.

Egress points for truck and equipment transport from the Site will be kept clean of dirt and other materials during site remediation and development.

Queuing of trucks will be performed on-site in order to minimize off-site disturbance. Off-site queuing will be prohibited.

D-8 Materials Disposal Off-Site

All material excavated and removed from the Site will be treated as contaminated and regulated material and will be transported and disposed in accordance with all local, State and Federal regulations. If disposal of material from this Site is proposed for unregulated off-site disposal (i.e. clean soil removed for development purposes), a formal request with an associated plan will be made to the NYSDEC. Unregulated off-site management of materials from this Site will not occur without formal NYSDEC approval.

Off-site disposal locations for excavated soils will be identified in the pre-excavation notification. This will include estimated quantities and a breakdown by class of disposal facility if appropriate, i.e. hazardous waste disposal facility, solid waste landfill, petroleum treatment facility, C&D debris recovery facility, etc. Actual disposal quantities and associated documentation will be reported to the NYSDEC in the PRR. This documentation will include: waste profiles, test results, facility acceptance letters, manifests, bills of lading and facility receipts.

Non-hazardous historic fill and contaminated soils taken off-site will be handled consistent with 6NYCRR Parts 360, 361, 362, 363, 364 and 365. Material that does not meet Unrestricted Use (UU) SCOs is prohibited from being taken to a New York State C&D debris recovery facility (6NYCRR Subpart 361-5 registered or permitted facility).

D-9 Materials Reuse On-Site

Chemical criteria for on-site reuse of material are NYSDEC's Commercial Use and/or POGW SCOs, which are established in 6NYCRR Part 375.6.

Impacted materials that will be re-used on-site will need to be segregated based upon field screening, previous investigation findings, and/or additional pre-construction and/or construction sampling and analyses. The analyses will include the following:

- U.S. Environmental Protection Agency (USEPA) Target Compound List (TCL) VOCs, analyzed by USEPA SW846 Method 8260C;
- TCL SVOCs (SW846 Method 8270B);
- TCL Pesticides (SW846 Method 8081);
- PCBs (SW846 Method 8082); and
- Target Analyte List (TAL) Metals (SW846 Methods 6010 or 7000-series).

The analysis results will be compared to NYSDEC's Commercial Use and POGW SCOs. If concentrations are below both sets of SCOs, the soil can be reused on-site. If the concentrations

are elevated above POGW SCOs, but below Commercial Use SCOs, the results shall be shared with the NYSDEC and approval obtained prior to their specified reuse on-site. It should be noted the NYSDEC may require significantly impacted materials to be transported off-site and disposed of at a permitted landfill facility. Staging and stockpiling management of materials should be conducted as described in the sections above.

The qualified environmental professional will ensure that procedures defined for materials reuse in this SMP are followed and that unacceptable material does not remain on-site. Contaminated on-site material, including historic fill and contaminated soil, that is acceptable for reuse on-site will be placed below the demarcation layer or impervious surface, and will not be reused within a cover soil layer, within landscaping berms, or as backfill for subsurface utility lines.

Any demolition material proposed for reuse on-site will be sampled for asbestos and the results will be reported to the NYSDEC for acceptance. Concrete crushing or processing on-site will not be performed without prior NYSDEC approval. Organic matter (wood, roots, stumps, etc.) or other solid waste derived from clearing and grubbing of the Site will not be reused on-site.

D-10 Fluids Management

All liquids to be removed from the Site, including but not limited to, excavation dewatering, decontamination waters and groundwater monitoring well purge and development waters, will be handled, transported and disposed in accordance with applicable local, State, and Federal regulations. Dewatering, purge and development fluids will not be recharged back to the land surface or subsurface of the Site, and will be managed off-site, unless prior approval is obtained from NYSDEC.

Discharge of water generated during large-scale construction activities to surface waters (i.e. a local pond, stream or river) will be performed under a State Pollutant Discharge Elimination System (SPDES) permit.

D-11 Backfill from Off-Site Sources

All materials proposed for import onto the Site will be approved by the qualified environmental professional and will be in compliance with provisions in this SMP prior to receipt at the Site. A Request to Import/Reuse Fill or Soil form, which can be found at http://www.dec.ny.gov/regulations/67386.html, will be prepared and submitted to the NYSDEC project manager allowing a minimum of 5 business days for review.

Material from industrial sites, spill sites, or other environmental remediation sites or potentially contaminated sites will not be imported to the Site.

All imported soils will meet the backfill and cover soil quality standards established in 6NYCRR 375-6.7(d). Based on an evaluation of the land use, protection of groundwater and protection of ecological resources criteria, the resulting soil quality standards are POGW SCOs. Soils that meet 'exempt' fill requirements under 6 NYCRR Part 360, but do not meet backfill or cover soil objectives for this Site, will not be imported onto the Site without prior approval by NYSDEC. Solid waste will not be imported onto the Site.

Trucks entering the Site with imported soils will be securely covered with tight fitting covers. Imported soils will be stockpiled separately from excavated materials and covered to prevent dust releases.

D-12 Stormwater Pollution Prevention

Silt fencing, hay bales or other applicable erosion and sediment control devices will be installed around the entire perimeter of the construction area, as needed. Barriers and hay bale checks will be installed and inspected once a week and after every storm event. Results of inspections will be recorded in a logbook and maintained at the site and available for inspection by the NYSDEC. All necessary repairs shall be made immediately.

Accumulated sediments will be removed as required to keep the barrier and hay bale check functional. All undercutting or erosion of the silt fence toe anchor shall be repaired immediately

with appropriate backfill materials. Manufacturer's recommendations will be followed for replacing silt fencing damaged due to weathering.

Erosion and sediment control measures identified in the SMP shall be observed to ensure that they are operating correctly. Where discharge locations or points are accessible, they shall be inspected to ascertain whether erosion control measures are effective in preventing significant impacts to receiving waters.

D-13 Excavation Contingency Plan

If underground tanks or other previously unidentified contaminant sources are found during postremedial subsurface excavations or development related construction, excavation activities will be suspended until sufficient equipment is mobilized to address the condition.

Sampling will be performed on product, sediment and surrounding soils, etc. as necessary to determine the nature of the material and proper disposal method. Chemical analysis will be performed for a full list of analytes (TAL metals; TCL volatiles and semi-volatiles, TCL pesticides and PCBs), unless the Site history and previous sampling results provide a sufficient justification to limit the list of analytes. In this case, a reduced list of analytes will be proposed to the NYSDEC for approval prior to sampling.

Identification of unknown or unexpected contaminated media identified by screening during invasive Site work will be promptly communicated by phone to NYSDEC's Project Manager. Reportable quantities of petroleum product will also be reported to the NYSDEC spills hotline. These findings will be also included in the PRR.

D-14 Community Air Monitoring Plan

Procedures for air monitoring are defined in the Community Air Monitoring Plan (CAMP, Appendix F of this SMP) prepared for the Site. Air monitoring locations will be selected on a daily basis during invasive work based on actual wind directions to provide an upwind and at

least one downwind monitoring stations. Appendix F also includes the special requirements for work within 20 feet of occupied structures or indoors with co-located facility operations.

Exceedances of action levels listed in the CAMP will be reported to NYSDEC and NYSDOH Project Managers.

D-15 Odor Control Plan

This odor control plan is capable of controlling emissions of nuisance odors off-site and on-site. Specific odor control methods to be used on a routine basis will include (1) covering soil stockpiles or other containerized wastes, (2) controlling the size of open excavations, and (3) limiting duration of open excavation and stockpile staging. If nuisance odors are identified at the Site boundary, or if odor complaints are received, work will be halted and the source of odors will be identified and corrected. Work will not resume until all nuisance odors have been abated. NYSDEC and NYSDOH will be notified of all odor events and of any other complaints about the project. Implementation of all odor controls, including the halt of work, is the responsibility of the remedial party's Remediation Engineer, and any measures that are implemented will be discussed in the PRR.

All necessary means will be employed to prevent on- and off-site nuisances. At a minimum, these measures will include: (a) limiting the area of open excavations and size of soil stockpiles; (b) shrouding open excavations with tarps and other covers; and (c) using foams to cover exposed odorous soil. If odors develop and cannot be otherwise controlled, additional means to eliminate odor nuisances will include: (d) direct load-out of soils to trucks for off-site disposal; (e) use of chemical odorants in spray or misting systems; and, (f) use of staff to monitor odors in surrounding neighborhoods.

If nuisance odors develop during intrusive work that cannot be corrected, or where the control of nuisance odors cannot otherwise be achieved due to on-site conditions or close proximity to sensitive receptors, odor control will be achieved by sheltering the excavation and handling areas in a temporary containment structure equipped with appropriate air venting/filtering systems.

D-16 Dust Control Plan

A dust suppression plan that addresses dust management during invasive on-site work will include, at a minimum, the items listed below:

- Dust suppression will be achieved through the use of a dedicated on-site water truck for road wetting. The truck will be equipped with a water cannon capable of spraying water directly onto off-road areas including excavations and stockpiles.
- Clearing and grubbing of larger sites will be done in stages to limit the area of exposed, unvegetated soils vulnerable to dust production.
- Gravel will be used on roadways to provide a clean and dust-free road surface.
- On-site roads will be limited in total area to minimize the area required for water truck sprinkling.

D-17 Other Nuisances

If necessary, a plan for rodent control will be developed and utilized by the contractor prior to and during Site clearing and Site grubbing, and during all remedial work.

If necessary, a plan will be developed and utilized by the contractor for all remedial work to ensure compliance with local noise control ordinances.

Appendix E

Health and Safety Plan

Health and Safety Plan Site Management Plan 820 Linden Ave Brownfield Cleanup Program Site #C82820 820 Linden Avenue Pittsford, Monroe County, New York

Prepared for:

New York State Department of Environmental Conservation 6274 Avon-Lima Road Avon, New York 14414

Prepared on behalf of:

Ridgecrest Associates, L.P. 135 Orchard Park BV Rochester, New York 14609

Prepared by:

Stantec Consulting Services Inc. 61 Commercial Street, Suite 100 Rochester, New York 14614

September 2020

Table of Contents

1.0	INTRODU	JCTION	1
1.1	BACKGR	ROUND	1
1.2	HAZARD	RECOGNITION	1
	1.2.1	Health Hazards	2
	1.2.2	Safety Hazards	2
1.3	HAZARD	ASSESSMENT	3
1.4		CIFIC CHEMICALS OF CONCERN	
2.0	STANTEC	C PERSONNEL ORGANIZATION	6
2.1	PROJEC [®]	T MANAGER	7
2.2	SITE SAFE	ETY OFFICER/FIELD TEAM LEADER	7
2.3		ieetings	
3.0	MEDICA	L SURVEILLANCE REQUIREMENTS	7
3.1	INTRODU	UCTION	7
3.2	MEDICA	L EXAMINATIONS	7
4.0		HAZARDS	
4.1		CAL HAZARDS	
4.2		AL HAZARDS	
	4.2.1	Drilling and Excavation Activities	
	4.2.2	Roadway Hazards	
	4.2.3	Noise	
	4.2.4	Heat and Cold Stress Exposure	
	4.2.5 4.2.6	Weather-Related Hazards Poison Ivy	
	4.2.6 4.2.7	Ladders	
	4.2.7 4.2.8	Hand and Power Tools	
	4.2.9	Manual Lifting	
	4.2.10	Lock-Out/Tag-Out	
	4.2.11	Electrical Work	
5.0	SITE WO	RK ZONES	17
5.1	CONTRO	DL ZONES	17
5.2	EXCLUSION	ON ZONE	17
5.3	DECON	TAMINATION ZONE	17
6.0	SITE MOI	NITORING AND ACTION LEVELS	18
6.1	SITE MOI	NITORING	18
6.2	ACTION	LEVELS	19
7.0	PERSON	AL PROTECTIVE EQUIPMENT	19
7.1	PROTEC [*]	TIVE CLOTHING/RESPIRATORY PROTECTION	19

8.0	DECONTAMINATION	20
8.1	PERSONAL DECONTAMINATION	20
8.2	EQUIPMENT DECONTAMINATION	
9.0	EMERGENCY PROCEDURES	21
9.1	LIST OF EMERGENCY CONTACTS	21
9.2	DIRECTIONS TO HOSPITAL	22
9.3	ACCIDENT INVESTIGATION AND REPORTING	22

List of Figures

Figure 1 Site Location Map

Figure 2 Map and Driving Directions to Medical Facilities

List of Tables

Table 1 Health and Safety Data for COCs

Table 2 Exposure Pathways and First Aid Response for COCs
Table 3 Exposure Symptoms and First Aid for Heat Exposure

List of Appendices

Appendix A Stantec COVID-19 Guidance

Appendix B Safety Data Sheets

Appendix C Onsite Safety Meeting Forms

Appendix D Incident Reporting

Abbreviations

1,1-DCE 1,1-dichloroethene

BCOL business center operating leader
CAMP Community Air Monitoring Plan
CFR Code of Federal Regulations

cis-1,2-DCE cis-1,2-dichloroethene
COC Contaminant of Concern

CVOC chlorinated volatile organic compound

dB decibel

DER [NYSDEC] Division of Environmental Remediation

FTL Field Team Leader

HASP Health and Safety Plan

JML JML Optical

NEC National Electrical Code

Newport Corporation

NYSDEC New York State Department of Environmental Conservation

OSHA Occupational Safety and Health Administration

PCE tetrachloroethene

PEL Permissible Exposure Limit
PID photoionization detector

ppm parts per million

PPE Personal Protective Equipment

RI Remedial Investigation
SMP Site Management Plan

SSO Site Safety Officer
SWP Safe Work Practice
TCE trichloroethene

TSP trisodium phosphate

TWA Time Weighted Average

VOC volatile organic compound

Introduction

1.0 INTRODUCTION

The following Health and Safety Plan (HASP) describes personal safety protection standards and procedures to be followed by Stantec staff during the implementation of Site Management activities for the 820 Linden Ave Site located at 820 Linden Avenue in Pittsford, New York (Figure 1).

This HASP establishes mandatory safety procedures and personal protection standards pursuant to the Occupational Safety and Health Administration (OSHA) regulations 29 Code of Federal Regulations (CFR) 1910.120. The HASP applies to all Stantec personnel conducting any Site work, as defined in 29 CFR 1910.120(a). All personnel involved in the mentioned activities must familiarize themselves with this HASP, comply with its requirements and have completed the required health and safety training and medical surveillance program participation pursuant to 29 CFR 1910.120 prior to beginning any work onsite.

THIS HASP IS FOR THE EXPRESS USE OF STANTEC EMPLOYEES. ALL OTHER CONTRACTORS TO BE WORKING IN THE EXCLUSION AREAS ARE REQUIRED BY LAW TO DEVELOP THEIR OWN HASP, AS WELL TO MEET ALL PERTINENT ASPECTS OF OSHA REGULATIONS. STANTEC RESERVES THE RIGHT TO STOP ANY SITE WORK WHICH IS DEEMED TO POSE A HEALTH AND SAFETY THREAT TO ITS STAFF OR OTHERS.

1.1 BACKGROUND

A Site Management Plan (SMP) is being is being submitted to the New York State Department of Environmental Conservation (NYSDEC) for the 820 Linden Ave Site located at 820 Linden Avenue in the Town of Pittsford, Monroe County, New York. The objectives of the SMP are to manage residual contamination and provide policies and procedures for maintaining, inspecting, and certifying the Institutional and Engineering Controls implemented to mitigate exposure of the public and environment to residual contamination.

The Site consists of an approximately 7.97-acre parcel located in the Town of Pittsford, Monroe County, New York. The Site is improved with an approximately 108,400 square foot slab-ongrade building. The southern tenant space in this building is approximately 70,200 square feet and is currently occupied by JML Optical (JML). The northern tenant space is approximately 38,200 square feet and is currently occupied by Newport Corporation (Newport). Both current tenants are optics manufacturing facilities.

1.2 HAZARD RECOGNITION

Several health and safety hazards associated with this Site and the anticipated job tasks that could be performed as part of the SMP have been identified and are listed below.

Introduction

While in the field, new hazards may be identified as part of the field level risk assessment. This HASP should be updated to reflect new hazards as they are identified during the various investigation stages.

1.2.1 Health Hazards

The following is a list of the potential health hazards identified for the Site.

Chemical hazards include:

- Halogenated organic compounds;
- Polycyclic aromatic hydrocarbons (PAHs);
- Polychlorinated biphenyls (PCBs);
- Mercury;
- Petroleum hydrocarbons; and
- Solvents/flammables.

Physical hazards include:

- Cold stress/frostbite:
- Heat stress/sunburn;
- Driver fatigue;
- Dust/dusty environment;
- Flora or fauna (ticks and poison ivy known to be present);
- Noise; and
- Rough terrain/heavy brush.

1.2.2 Safety Hazards

The following is a list of the potential safety hazards identified for the Site.

Machine-related hazards include:

- Heavy equipment;
- Moving parts;
- Excavations (test pits);
- Pinch points; and
- Rotating parts.

Material handling hazards include:

• Load < 50 lbs; and

Introduction

• Sharp/rough surface (drums).

1.3 HAZARD ASSESSMENT

At the minimum, Stantec personnel will review the following Stantec Safe Work Practices (SWPs) identified as being relevant to the Site and project tasks prior to implementation of SMP activities.

- SWP 104 Hazard Communication
- SWP 105 Personal Protective Equipment (PPE)
- SWP 107 First Aid
- SWP 111 Medical Surveillance
- SWP 113 Heat Stress
- SWP 114 Working in Cold Environments
- SWP 115 Material Handling and Safe Lifting
- SWP 124 Safe Driving
- SWP 201 Fall Protection/Working from Heights
- SWP 213 Ground Disturbance and Overhead Utility
- SWP 214 Entering Excavation and Trenches
- SWP 216 Working Near Mobile Equipment
- SWP 314 Working Around Hazardous Waste and Wastewater
- SWP 407 Traffic Control and Protection Planning
- SWP 409 Respiratory Protection
- SWP 416 Supervision of Contracted Drilling Activities
- SWP 511 Ticks and Tickborne Diseases

If new hazards are identified, additional SWPs should be reviewed, if available. This process should occur prior to the commencement of field work and throughout the stages of the Site Management.

In addition, hazards and safety practices associated with COVID-19 are summarized in Appendix A.

1.4 SITE-SPECIFIC CHEMICALS OF CONCERN

A detailed description of prior investigation results is provided in the SMP. An overview of the applicable findings is included below with an emphasis on the Site-specific chemicals of concern (COCs).

Four Areas of Concern (AOCs) have been identified at the Site based on findings from previous investigations and interim remedial actions and are summarized below.

Introduction

- AOC-1: Chlorinated Volatile Organic Compounds (VOCs) have been identified in subslab soil vapor beneath the JML tenant space at concentrations requiring mitigation. Chlorinated VOC impacts to sub-slab vapor were first identified from historical PSG surveys. The potential for SVI was investigated by Stantec through combined sub-slab vapor and indoor air sampling in 2016-2017 as part of the Limited Phase II ESA (Stantec, 2017b). The following chlorinated VOCs were identified as COCs for this media: 1,1-DCE; cis-1,2-DCE; PCE; and TCE. No source has been identified despite extensive shallow and deep soil and groundwater investigations in the areas of impact. Potential exposure has been or is being addressed through implementation of IRM1 and IRM3 with the installation and operation of the SSDS, which will be subject to the long-term OM&M Plan as well as the site-wide SMP.
- AOC-2: The debris pile located in the northeast corner of the parking lot area was found to contain elevated levels of PAHs [benzo(a)anthracene; benzo(a)pyrene; benzo(b)fluoranthene; indeno(1,2,3-cd)pyrene] associated with significant crushed asphalt contents. Removal of this debris pile was conducted in IRM2 up to the northern property line; however, confirmatory sampling indicated that while contamination was reduced, residual PAHs are present in soil at the Site edge north of the former debris pile.
- AOC-3: Three former septic systems were identified during the test pit program. The
 buried structures were addressed through system removal and/or in-place closure.
 Potential impacts associated with the septic systems have been largely addressed and
 no particular COCs remain, except for mercury described later.
- AOC-4: One semi-volatile organic compound (SVOC) was detected above commercial/industrial SCOs in the RI SS-4 composite sample which was derived from discrete sampling locations SS-4a, SS-4b, and SS-4c along the vegetated berm near the eastern property line. A second limited Supplemental Remedial Investigation (SRI#2) was conducted to discretely sample each of the composite locations. Sampling results indicated shallow surface soil PAH impacts (0-2") across the vegetated berm on the eastern property line. Exposure to these soils was mitigated by installation of an engineered cover system in IRM4.

Instances where there were exceedances of Commercial or POGW SCOs or Groundwater standards or guidance values, but the issue does not rise to the level of an AOC include:

- An isolated exceedance of the Commercial SCO for mercury in the sample adjacent to the Northwest Septic System Tank 2. This sample was taken at 8-10 ft bgs and due to its isolated location and depth, and the proposed site use, it is not considered a concern.
- TCE was identified in groundwater in the eastern parking lot area in B/MW-101, B/MW-104, and B/MW-105.

Introduction

 Acetone impacts to groundwater beneath the building were identified during Stantec's Limited Phase II ESA (Stantec, 2017b). Delineation of these impacts was addressed during the RI, which confirmed that groundwater acetone impacts are limited to beneath the building. Levels of acetone reported in Site soil samples meet both Commercial and Industrial SCOs, but in some cases exceed the POGW SCO.

Table 1 summarizes health and safety data for the COCs, and the SDSs for the COCs is included in HASP Appendix B.

Stantec Personnel Organization

2.0 STANTEC PERSONNEL ORGANIZATION

Below is a list of **Project Contact** information:

Title	Name	Company	Phone Number
Stantec Office	Rochester, NY	Stantec	(585) 475-1440
Project Manager	Stephanie Reynolds-Smith, PG	Stantec	(585) 413-5272 c. (585)298-2382
Project Remedial Engineer	Kevin Ignaszak, PE	Stantec	(585) 413-5355
Project SSDS Engineer	Dwight Harrienger, PE	Stantec	(585) 413-5273
Site Safety Officer/Field Team Leader	Laura Best	Stantec	(585) 413-5327 c. (585) 301-0166
Site Safety Officer/Field Team Leader	Amanda Kelly, EIT	Stantec	(585) 413-5370 c. (585) 319-9499
Site Safety Officer/Field Team Leader	Amanda Matkosky	Stantec	(585) 413-5208 c. (585) 285-3598
Site Safety Officer/Field Team Leader	Kyle Stone, EIT	Stantec	(585) 413-5209 c. (585) 284-6433
After-Hours Project Contact	Stephanie Reynolds-Smith, PG	Stantec	c. (585) 298-2382
After-Hours Project Contact [alternate]	Mike Storonsky	Stantec	c. (585) 298-2386
Client (Ridgecrest Associates)	Joe Lobozzo	Ridgecrest Associates	c. (585) 766-3949
Primary Facility Contact - JML	Steve Burton	JML	c. (585) 218-2906
Facility Contact - JML (Until 4:00 pm)	Mark Zaso	JML	c. (315) 289-3038
Facility Contact - JML (4:00 pm – 2:00 am)	Corbin Beck	JML	c. (585) 314-2663
Primary Facility Contact -Newport	Brian Grove	Newport	c. (585) 739-6046
Office Safety Environment Coordinator	Michele D'Agostino	Stantec	(585) 413-5206
Local HR Representative	Keith Kiss	Stantec	(585) 413-5228 c. (585) 287-4502
Stantec Corporate HSE Representative (US Northeast)	Fred Miller, CSP	Stantec	(610) 235-7315
Stantec Public Relations Specialist, US Northeast	Trevor Eckart	Stantec	(215) 665-7187

The following describes the Stantec personnel involved in health and safety operations at the 820 Linden Ave Site located at 820 Linden Avenue in Pittsford, NY.

Medical Surveillance Requirements

2.1 PROJECT MANAGER

The Project Manager is responsible for ensuring that all Stantec procedures and methods are carried out, and that all Stantec personnel abide by the provisions of this HASP.

2.2 SITE SAFETY OFFICER/FIELD TEAM LEADER

The Site Safety Officer (SSO) and Field team leader (FTL) will report directly to the Project Manager and will be responsible for the implementation of this HASP as well as daily calibration of Stantec's safety monitoring instruments. The FTL/SSO will keep a log book of all calibration data and instrument readings for the Site that will be utilized by the field team onsite during the various SMP activities.

2.3 DAILY MEETINGS

All Stantec personnel and contractors working within the exclusion zone will be required to sign off on the daily safety meeting form presented in HASP Appendix C.

3.0 MEDICAL SURVEILLANCE REQUIREMENTS

3.1 INTRODUCTION

Hazardous waste site workers can often experience high levels of physical and chemical stress. Their daily tasks may expose them to toxic chemicals, physical hazards, biologic hazards, or radiation. They may develop heat stress while wearing protective equipment or working under temperature extremes, or face life-threatening emergencies such as explosions and fires. Therefore, a medical program is essential to: assess and monitor worker's health and fitness both prior to employment and during the course of the work; provide emergency and other treatment as needed; and keep accurate records for future reference. In addition, OSHA requires a medical evaluation for employees that may be required to work on hazardous waste sites and/or wear a respirator (29 CFR Part 1910.120 and 1910.134), and certain OSHA standards include specific medical surveillance requirements (e.g., 29 CFR Part 1926.62, Part 1910.95 and Parts 1910.1001 through 1910.1045).

3.2 MEDICAL EXAMINATIONS

All Stantec personnel working in areas of the Site where Site-related contaminants may be present shall have been examined by a licensed physician as prescribed in 29 CFR Part 1910.120,

Onsite Hazards

and determined to be medically fit to perform their duties for work conditions which require respirators. Employees will be provided with medical examinations as outlined below:

- Pre-job physical examination
- Annually thereafter if contract duration exceeds 1 year;
- Termination of employment;
- Upon reassignment in accordance with 29 CFR Part 1910.120(e)(3)(i)(C);
- If the employee develops signs or symptoms of illness related to workplace exposures;
- If the physician determines examinations need to be conducted more often than once a year; and
- When an employee develops a lost time injury or illness during the contract period.

Examinations will be performed by, or under the supervision of a licensed physician, preferably one knowledgeable in occupational medicine, and will be provided without cost to the employee, without loss of pay and at a reasonable time and place. Medical surveillance protocols and examination and test results shall be reviewed by an Occupational Physician.

4.0 ONSITE HAZARDS

4.1 CHEMICAL HAZARDS

The primary chemical hazards onsite are detailed in Table 1. SDSs for the anticipated compounds presenting potential chemical exposure hazards are provided in Appendix B.

Any activity at the Site which causes physical disturbance of the soil can potentially allow the release of contaminants into the air. For volatiles, this can include release of organic vapors into the air. Such an occurrence may be recognized by noticeable chemical odors. Field personnel should be aware of the odor threshold for these chemicals and their relation to the action levels and PELs (see Table 1).

Symptoms of overexposure to primary compounds of concern are detailed in Table 1. To prevent exposure to these chemicals, dermal contact will be minimized by using disposable surgical gloves with work gloves (as appropriate) when handling soil, groundwater equipment or samples. Real time, breathing zone levels of total VOCs will be monitored using a portable photoionization detector (PID). If ambient levels exceed action levels, all Site activities will be performed using Level C PPE until ambient concentrations dissipate. Where levels exceed 50 parts per million (ppm), work will cease, and the project manager will be notified immediately. Intrusive work may also be halted where required by action levels detailed in the Community Air Monitoring Plan (CAMP), Appendix F of the SMP.

Onsite Hazards

Depending on seasonal conditions, disturbance of the Site soils may cause the particulate contaminants to become airborne as dust. Therefore, particulates will be monitored as discussed in Section 6.1 and dust-suppression methods used where appropriate as discussed in Section 6.2, or in the CAMP. Additionally, aeration of the groundwater may cause volatilization of chemicals into the air, particularly VOCs.

Table 2 summarizes first aid instructions for exposure pathways for the Site COCs.

4.2 PHYSICAL HAZARDS

The following sub-sections describe the physical hazards anticipated to be encountered at this Site. Field team members will wear the basic safety apparel such as steel-toed shoes, hard hat, safety vest, and safety glasses during all appropriate activities. See Section 7 Personal Protective Equipment for additional information.

4.2.1 Drilling and Excavation Activities

Hazards typically encountered at construction sites with drilling and excavation activities will be a concern at this Site. These hazards include slippery ground surfaces, holes, exposure to chemical vapors, and operation of heavy and mobile machinery and equipment.

Excavation

The potential exists for falling into the excavation due to a slip or trip and also due to potential caving of the test pit sidewalls. During the excavation, field personnel will generally perform observation from the end of the excavation opposite the excavation equipment and will avoid standing along the long sidewalls of the pit. If it is necessary to make observations from a point along the long side of the excavation, they will maintain adequate distance between themselves and the excavation walls and be mindful of signs that caving may be likely. These could include raveling of sidewall material into the pit, or the development of cracks in the ground surface.

Field personnel will not enter excavations deeper than four feet. Field personnel will not approach within six feet of any excavation that is ten feet or greater in depth without the presence of a fall prevention of fall arrest system in place and functioning.

The test pit contractor shall make all necessary contacts with utilities and/or underground utility locater hotlines prior to digging.

Onsite Hazards

Drilling

Under no circumstances will Stantec personnel approach the borehole during active drilling operation. All field personnel working around the rig will be shown the location and operation of kill switches, which are to be tested daily.

The driller shall make all necessary contacts with utilities and/or underground utility locater hotlines prior to drilling and shall meet OSHA requirements for distances between the drilling rig and overhead utilities. No drilling work will be carried out where the drill rig chassis has not been stabilized and the rig is not to be moved between locations with its boom in a vertical position.

As with any soil disturbance, monitoring for VOCs with a PID will be performed continuously during drilling, test pit excavation, and logging/sampling activities. Work will be stopped, and the area vacated if sustained PID readings are observed at concentrations in excess of the Action Levels specified in Section 6.

Multi-purpose fire extinguishers, functional and within the annual inspection period, will be staged and readily accessible for use.

The use of electrical equipment in any established exclusion zones will be limited to areas verified as containing non-explosive atmospheres (<10% LEL) prior to operation, unless the equipment has been previously demonstrated or designed to be FM or UL rated as intrinsically safe. Care will be taken to avoid an ignition source while working in the presence of vapors.

4.2.2 Roadway Hazards

Field activities may take place near active roadways and/or parking lots with vehicle traffic. Where such work zones are established, personnel shall assure that protective measures including signage, cones, and shielding through use of vehicles parked at workmen perimeter, are in place. All contractors shall be responsible for meeting signage requirements of DOT. Fluorescent safety vests shall be worn by all personnel during activities in or adjacent to roadways and driveways.

4.2.3 **Noise**

Operation of heavy machinery and equipment may result in noise exposures, which require hearing protection. Exposure to noise can result in temporary hearing losses, interference with speech communication, interference with complicated tasks, or permanent hearing loss due to repeated exposure to noise.

Onsite Hazards

During the investigative activities, all Stantec field team members will use hearing protection when sound levels are in excess of 90 decibels (dB) time weighted average (TWA). In the absence of noise dosimetry data, field personnel will wear hearing protection during the test boring and monitoring well installation program, and where mandatory per JML/Newport standards when working indoors. Other instances requiring hearing protection may include use of hand power tools.

4.2.4 Heat and Cold Stress Exposure

Heat is a potential threat to the health and safety of Site personnel. The SSO under the direction of the Project Manager will determine the schedule of work and rest. These schedules will be employed as necessary so that personnel do not suffer adverse effects from heat. Table 3 summarizes exposure symptoms and first aid instructions for heat stress. Non-caffeinated, thirst replenishment liquids will be available onsite.

Cold stress is also a potential threat to the health and safety of Site personnel. Symptoms of cold stress include, shivering, blanching of the extremities, numbness or burning sensations, blue, purple or gray discoloration of hands and feet, frostbite, hypothermia, and loss of consciousness. Cold stress can be prevented by acclimatizing one's self to the cold, increasing fluid intake, avoiding caffeine and alcohol, maintaining proper salt and electrolyte intake, eating a well-balanced diet, wearing proper clothing, building heated enclosures to work in, and taking regular breaks to warm up. If any of the above symptoms are encountered the person should be removed from the cold area. Depending on the severity of the cold stress, 911 should be contacted and first aid administered. No fluids should be given to an unconscious person.

4.2.5 Weather-Related Hazards

Weather-related hazards include the potential for heat or cold stress (described in Section 4.2.4), electrical storms, treacherous weather-related working and/or driving conditions, or limited visibility. These hazards correlate with the season in which Site activities occur. Outside work will be suspended during electrical storms. Site work will not be resumed until 30 minutes have passed without thunder and lightning. In the event of other adverse weather conditions, the SSO, in consultation with the project manager, if needed, will determine if work can continue without endangering the health and safety of Site personnel.

4.2.6 Poison Ivy

Poison ivy has been identified along the western side of the northern Site boundary, near the Northwest Septic System as well as on the eastern side of the Site along the vegetated berm. Poison ivy is a plant that is found throughout much of North America and can be present as a shrub, vine or groundcover. It has sets of three glossy leaves with the stalk of the middle leaf

Onsite Hazards

longer than the outside leaves. It can cause an allergic reaction after contact with its active oil (urushiol). Reactions develop over a period of time, often taking hours or days. Reactions consist of itching and burning that develops into a reddish colored inflammation or non-colored bumps, followed by blistering. Treatment includes removal of all contaminated clothing and footwear without further skin contact and washing with a product such as Tecnu®. Antihistamine creams are often helpful, but severe cases may require prescription medication.

4.2.7 Ladders

Over one-third of worker deaths in construction result from falls (https://www.osha.gov/oshstats/commonstats.html). Many falls occur because ladders are not placed or used safely. Ladder use will comply with OSHA 1926.1053 through 1926.1060, including the following safety requirements.

STEP	PROPER LADDER USE PROCEDURE
1	Choose the right ladder for the task including the proper type and size, with a sufficient rating for the task.
2	 Check the condition of the ladder before climbing. Do not use a ladder with broken, loose, or cracked rails or rungs. Do not use a ladder with oil, grease, or dirt on its rungs. The ladder should have safety feet.
3	Place the ladder on firm footing, with a four-to-one pitch.
4	Support the ladder by: Tying it off; Using ladder outrigger stabilizers; or Have another worker hold the ladder at the bottom. If another worker holds the ladder, they must: Wear a hard hat; Hold the ladder with both hands; Brace the ladder with their feet; and Not look up.
5	Keep the areas around the top and bottom of the ladder clear.
6	Extend the top of the ladder at least 36 inches (3 feet) above the landing.
7	Climb the ladder carefully - facing it - and use both hands. Use a tool belt and hand-line to carry material to the top or bottom of the ladder. Wear shoes in good repair with clean soles.
8	Inspect the ladder every day, prior to use, for the following problems: Rail or rung damage Broken feet Rope or pulley damage Rung lock defects or damage

Onsite Hazards

STEP	PROPER LADDER USE PROCEDURE Excessive dirt, oil, or grease
	If the ladder fails inspection, it must be removed from service and tagged with a "Do Not Use" sign.

4.2.8 Hand and Power Tools

All hand and power tools will be maintained in a safe condition and in good repair. Hand and power tools will be used in accordance with 29 CFR 1926, Subpart I (1926.300 through 1926.307). Neither Stantec nor its subcontractors will issue unsafe tools, and workers are not permitted to bring unsafe tools onsite. All tools will be used, inspected, and maintained in accordance with the manufacturer's instructions. Throwing tools or dropping tools to lower levels is prohibited. Hand and power tools will be inspected, tested, and determined to be in safe operating condition prior to each use. Periodic safety inspections of all tools will be conducted to assure that the tools are in good condition, all guards are in place, and the tools are being properly maintained. Any tool that fails an inspection will be immediately removed from service and tagged with a "Do Not Use" sign.

Workers using hand and power tools, who are exposed to falling, flying, abrasive, or splashing hazards will be required to wear personal protective equipment (PPE). Eye protection must always be worn when working onsite. Additional eye and face protection, such as safety goggles or face shields, may also be required when working with specific hand and power tools. Workers, when onsite, will wear hard hats. Additional hearing protection may be required when working with certain power tools. Workers using tools, which may subject their hands to an injury, such as cuts, abrasions, punctures, or burns, will wear protective gloves. Loose or frayed clothing, dangling jewelry, or loose long hair will not be worn when working with power tools, or near others operating machinery or equipment with moving or rotating parts.

Electric power-operated tools will be double insulated or grounded, and equipped with an on/off switch. Guards must be provided to protect the operator and other nearby workers from hazards such as in-going nip points, rotating parts, flying chips, and sparks. All reciprocating, rotating and moving parts of tools will be guarded if contact is possible. Removing machine guards is prohibited.

Abrasive wheels will only be used on equipment provided with safety guards. Safety guards must be strong enough to withstand the effect of a bursting wheel. Abrasive wheels will not be operated in excess of their rated speed. Work or tool rests will not be adjusted while the wheel is in motion. All abrasive wheels will be closely inspected, and ring tested before each use, and any cracked or damaged wheels will be removed immediately and destroyed.

Onsite Hazards

Circular saws must be equipped with guards that completely enclose the cutting edges and have anti-kickback devices. All planer and joiner blades must be fully guarded. The use of cracked, bent, or otherwise defective parts is prohibited. Chain saws must have an automatic chain brake or kickback device. The worker operating the chain saw will hold it with both hands during cutting operations. A chain saw must never be used to cut above the operator's shoulder height. Chain saws will not be re-fueled while running or hot. Power saws will not be left unattended.

Only qualified workers will operate pneumatic tools, powder-actuated tools, and abrasive blasting tools.

4.2.9 Manual Lifting

Back injuries are among the leading occupational injuries reported by industrial workers. Back injuries such as pulls and disc impairments can be reduced by using proper manual lifting techniques. Leg muscles are stronger than back muscles, so workers should lift with their legs and not with their back. Proper manual lifting techniques include the following steps:

STEP	PROPER MANUAL LIFTING PROCEDURE
1	Plan the lift before lifting the load. Take into consideration the weight, size, and shape of the load.
2	Preview the intended path of travel and the destination to ensure there are no tripping hazards along the path.
3	Wear heavy-duty work gloves to protect hands and fingers from rough edges, sharp corners, and metal straps. Also, keep hands away from potential pinch points between the load and other objects.
4	Get the load close to your ankles, and spread your feet apart. Keep your back straight and do not bend your back too far; instead bend at your knees.
5	Feel the weight; test it.
6	Lift the load smoothly, and let your legs do the lifting. If you must pivot, do not swing just the load; instead, move your feet and body with the load.

If the load is too heavy, then do not lift it alone. Lifting is always easier when performed with another person. Assistance should always be used when it is available, particularly when walking on uneven terrain, up/down stairs and near moving vehicles (or in other situations where sightlines are necessary).

Onsite Hazards

4.2.10 Lock-Out/Tag-Out

Before a worker sets up, services, or repairs a system where unexpected energizing (or release of stored energy) could occur and cause injury or electrocution, the circuits energizing the parts must be locked-out and tagged. Only authorized personnel will perform lock-out/tag-out procedures. All workers affected by the lock-out/tag-out will be notified prior to, and upon completion of, the lock-out/tag-out procedure.

Lock-out/tag-out devices must be capable of withstanding the environment to which they are exposed. Locks will be attached in such a way as to prevent other personnel from operating the equipment, circuit, or control, or from removing the lock unless they resort to excessive force. Tags will identify the worker who attached the device, and contain information, which warns against the hazardous condition that will result from the system's unauthorized start-up. Tags must be legible and understood by all affected workers and incidental personnel. The procedures for attaching and removing lock-out/tag-out devices include the steps outlined in the following table.

If maintenance work is required, the electrical supply to the equipment must be disconnected. Turning off the MAIN breaker using the disconnect switch will disconnect all power to the system. Once the disconnect switch has been turned off, the switch will be locked-out using the steps outlined below.

STEP	LOCK-OUT/TAG-OUT PROCEDURES
1	Disconnect the circuits and/or equipment to be worked on from all electrical energy sources.
2	Ensure that the system is completely isolated so that it cannot be operated at that shut-off point or at any other location.
3	Release stored electrical energy.
4	Block or relieve stored non-electrical energy.
5	Place a lock on each shut-off or disconnect point necessary to isolate all potential energy sources. Place the lock in such a manner that it will maintain the shut-off/disconnect in the off position.
6	Place a tag on each shut-off or disconnect point. The tag must contain a statement prohibiting the unauthorized re-start or re-connect of the energy source and the removal of the tag, and the identity of the individual performing the tag and lock-out.
7	Workers who will be working on the system must place their own lock and tag on <u>each</u> lock-out point.
8	A qualified person must verify the system cannot be re-started or re- connected, and de-energization of the system has been accomplished.

Onsite Hazards

STEP	LOCK-OUT/TAG-OUT PROCEDURES	
	Once the service or repairs have been made on the system:	
9	A qualified person will conduct an inspection of the work area, to verify that all tools, jumpers, shorts, grounds, etc., have been removed so that the system can then be safely re-energized.	
10	All workers stand clear of the system.	
11	Each lock and tag will be removed by the worker who attached it. If the worker has left the Site, then the lock and tag may be removed by a qualified person under the following circumstances:	
	a. The qualified person ensures the worker who placed the lock and tag has left the Site; and	
	b. The qualified person ensures the worker is aware the lock and tag has been removed before the worker resumes work onsite.	

No Stantec personnel are permitted to perform lock-out/tag-out work without prior approval of the Project Manager and completion of required specialized training.

4.2.11 Electrical Work

Site work involving electrical installation or energized equipment must be performed by a qualified electrician. All electrical work will be performed in accordance with the OSHA electrical safety requirements found in 29 CFR 1926.400 through 1926.449. Workers are not permitted to work near electrical power circuits unless the worker is protected against electric shock by de-energizing and grounding the circuit or by guarding or barricading the circuit and providing proper PPE. All electrical installations must comply with National Electric Code (NEC) regulations. All electrical wiring and equipment used must be listed by a nationally recognized testing laboratory.

All electrical circuits and equipment must be grounded in accordance with the NEC regulations. The path to ground from circuits, equipment, and enclosures will be permanent and continuous. Ground Fault Circuit Interrupters (GFCIs) are required on all 120-volt, single phase, 15- and 20-amp outlets in work areas that are not part of the permanent wiring of the building or structure. A GFCI is required when using an extension cord. GFCIs must be tested regularly with a GFCI tester.

Heavy-duty extension cords will be used; flat-type extension cords are not allowed. All extension cords must be the three-wire type, and designed for hard/extra hard usage. Electrical wire or cords passing through work areas must be protected from water and damage. Worn, frayed, or damaged cords and cables will not be used. Walkways and work spaces will be kept clear of cords and cables to prevent a tripping hazard. Extension cords and cables may not be secured

Site Work Zones

with staples, hung from nails, or otherwise temporarily secured. Cords or cables passing through holes in covers, outlet boxes, etc., will be protected by bushings or fittings.

All lamps used in temporary lighting will be protected from accidental contact and breakage. Metal shell and paper-lined lamp holders are not permitted. Fixtures, lamp holders, lamps, receptacles, etc. are not permitted to have live parts. Workers must not have wet hands while plugging/unplugging energized equipment. Plugs and receptacles will be kept out of water (unless they are approved for submersion).

5.0 SITE WORK ZONES

The following work zones will be delineated by Stantec during the investigation activities.

5.1 CONTROL ZONES

Control boundaries will be established within the areas of Site activities. Examples of boundary zones include the exclusion and decontamination zone. All boundaries will be dynamic, and will be determined by the planned activities for the day. The FTL will record the names of any visitors to the Site.

5.2 EXCLUSION ZONE

The controlled portion of the Site will be delineated to identify the exclusion zone, wherein a higher level of PPE may be required for entry during intrusive activities. The limits of the exclusion zone will be designated at each work location appropriately. A decontamination zone will be located immediately outside the entrance to the exclusion zone. All personnel leaving the exclusion zone will be required to adhere to proper decontamination procedures.

A "super exclusion" zone will be established around the borehole which will not be entered by Stantec personnel at any time during any active drilling, slambar, cathead, silica sand dumping, or other related activities. The drilling contractor will be directed to stop such activity when Stantec Site team members have a need to enter this zone.

5.3 DECONTAMINATION ZONE

The decontamination zone will be located immediately outside the entrance to the exclusion zone on its apparent upwind side, if feasible, and will be delineated with caution tape and traffic cones as needed. This zone will contain the necessary decontamination materials for personnel decontamination. Decontamination procedures are outlined in Section 8.0 of this plan.

Site Monitoring and Action Levels

6.0 SITE MONITORING AND ACTION LEVELS

6.1 SITE MONITORING

Field activities associated with drilling, excavation, and sampling may create potentially hazardous conditions due to the migration of contaminants into the breathing zone. These substances may be in the form of mists, vapors, dusts, or fumes that can enter the body through ingestion, inhalation, absorption, and direct dermal contact. Monitoring for VOCs and particulates will be performed as needed to ensure appropriate personal protective measures are employed during Site activities.

A separate CAMP has also been developed (Appendix F of the SMP) to protect the surrounding neighborhood as well as the building tenants/Site workers. Based on NYSDEC comments on the Remedial Investigation Work Plan (RIWP) for this Site, supplemental CAMP requirements must be followed for work performed near the building when occupied by workers and/or inside the building. The special requirements required by NYSDEC, as listed in the RIWP comment letter dated May 21, 2018, are transcribed in the CAMP addendum (SMP Appendix F). It is assumed that continuous downwind particulate and VOC monitoring will be required during the test pit and drilling programs.

The following describes the conditions that will be monitored for during the investigation activities. All background and Site readings will be logged, and all instrument calibrations, etc., will be logged.

Organic Vapor Concentrations – During drilling, organic vapors will be monitored continuously in the breathing zone in the work area with a portable PID, such as a miniRAE Model 3000 with a 10.6 eV lamp. The instrument will be calibrated daily or as per the manufacturer's recommendations. PID readings will be used as the criteria for upgrading or downgrading protective equipment and for implementing additional precautions or procedures.

Split spoons or other soil sampling devices will be monitored using the PID at the time they are opened, with appropriate PPE to be used where soils exhibit measurable VOC levels.

Particulates - Stantec will perform particulate monitoring with an aerosol monitor (such as the TSI 8530 DustTrak II) within the outdoor work area to monitor personal exposures to particulates and to compare work area readings with downwind and upwind readings. The first readings of the day will be obtained prior to the commencement of work to obtain a daily background reading, and the instrument will be zeroed daily and calibrated to manufacturer's specifications. Readings will be manually recorded approximately every 30 minutes thereafter. If the work area

Personal Protective Equipment

particulate levels exceed the background levels by more than 0.15 mg/m³, the Contractor will be instructed to implement dust suppression measures.

6.2 ACTION LEVELS

During the course of any activity, as long as sustained PID readings in the breathing zone are less than 5 ppm above background, Level D protection will be considered adequate. Level C protection will be required when VOC concentrations in ambient air in the work zone are sustained at levels exceeding 5 ppm total VOCs above background but remain below 50 ppm total VOCs. Onsite use of VOCs (including acetone, toluene, and methylene chloride) within one or both tenant spaces may contribute to background VOCs, particularly given assumed operation of ventilation/exhaust systems.

If concentrations in the work zone exceed 50 ppm for a period of 5 minutes or longer, work will immediately be terminated by the SSO. Options to allow continued drilling would then be discussed amongst all parties. Supplied-air respiratory protection is generally required for drilling to resume under these conditions. If Level B protection is not used, work may resume in Level C once monitoring concentrations have decreased below 50 ppm and conditions outlined in the CAMP are met.

If the monitoring of fugitive particulate levels within the work area exceeds 0.15 mg/m³ above background, then the drilling Contractor will be directed to implement fugitive dust control measures which may include use of engineering controls such as water spray at the borehole.

7.0 PERSONAL PROTECTIVE EQUIPMENT

Based on an evaluation of the hazards at the Site, PPE will be required for all personnel and visitors entering the drilling exclusion zone(s). It is anticipated that all Stantec oversight work will be performed in Level D. All contractors will be responsible for selection and implementation of PPE for their personnel.

7.1 PROTECTIVE CLOTHING/RESPIRATORY PROTECTION

Protective equipment for each level of protection is as follows:

If PID readings are above 50 ppm, requiring an upgrade to Level B, Site work will be halted pending review of conditions and options by Stantec and other involved parties.

When PID readings range between 5 and 50 ppm, upgrade to Level C:

Decontamination

Level C

- Full face, air purifying respirator with organic/HEPA cartridge;
- Disposable chemical resistant one-piece suit (Tyvek or Saranex, as appropriate);
- Inner and outer chemical resistant gloves;
- Hard hat;
- Steel-toed boots: and
- Disposable booties.

When PID readings range between background and 5 ppm use Level D:

Level D

- Safety glasses;
- Steel-toed boots:
- Protective cotton, latex or leather gloves depending on Site duties;
- Hard hat; and
- Tyvek coverall (optional).

Stantec employees are expected to wear long sleeves when doing so would not pose an additional hazard (i.e. heat stress). Steel-toed boots should be approximately 6" to provide sufficient ankle protection. Safety vests should be worn for visibility; alternatively, bright colored shirts (safety yellow, for example) can be utilized when reflective properties of the safety vests are not necessary.

Caution will be taken to avoid direct skin contact with poison ivy, leaf litter, root systems, and the soil in contact with roots. Individuals known to be sensitive to poison ivy should not work in these areas of the Site. If sensitive individuals cannot avoid working in this area, after approval from their business center operating leader (BCOL), a Tyvek like clothing with hood will be worn and a full-face respirator will be used to provide complete body coverage, regardless of PID readings. In the warmer months, KleenGuard, which is lighter than Tyvek, should be considered.

8.0 DECONTAMINATION

8.1 PERSONAL DECONTAMINATION

For complete decontamination, all personnel will observe the following procedures upon leaving the exclusion zone:

1. If worn, remove disposable outer boots and outer gloves and place in disposal drum.

Emergency Procedures

- 2. If using a respirator, remove respirator, dispose of cartridges if necessary, and set aside for later cleaning.
- 3. If worn, remove disposable chemical resistant suits and dispose of articles in drum.
- 4. Remove and dispose of inner gloves.

Decontamination solutions shall be supplied at the decontamination zone. The wash solution will consist of water and detergent such as Alconox or trisodium phosphate (TSP), and the rinse solution will consist of clean water.

Contaminated wash solutions shall be collected in drums for disposal. All other disposable health and safety equipment will be decontaminated and disposed of as non-hazardous waste.

When working in the vicinity of poison ivy, washing with Tecnu® or a similar product subsequent to Site work will be required.

8.2 EQUIPMENT DECONTAMINATION

If equipment is used during field activities, it will be properly washed or steam-cleaned prior to exiting the decontamination zone. Any needed pre- or post-use rinsing using solvents will be done wearing appropriate PPE.

When feasible, monitoring instruments will be either wrapped in plastic or carried by personnel not involved in handling contaminated materials, to reduce the need for decontamination. All instruments will be wet-wiped prior to removal from the work zone.

9.0 EMERGENCY PROCEDURES

The SSO will coordinate emergency procedures and will be responsible for initiating emergency response activities. Emergency communications at the Site will be conducted verbally and by means of an air or vehicle horn. All personnel will be informed of the location of the cellular telephone and horn. Three blasts on the air or vehicle horn will be used to signal distress.

9.1 LIST OF EMERGENCY CONTACTS

Ambulance: 911

Hospital: Highland Hospital: (585) 473-2200

Fire Department: 911

Police: 911

Emergency Procedures

Poison Control Center: 1-800-222-1222

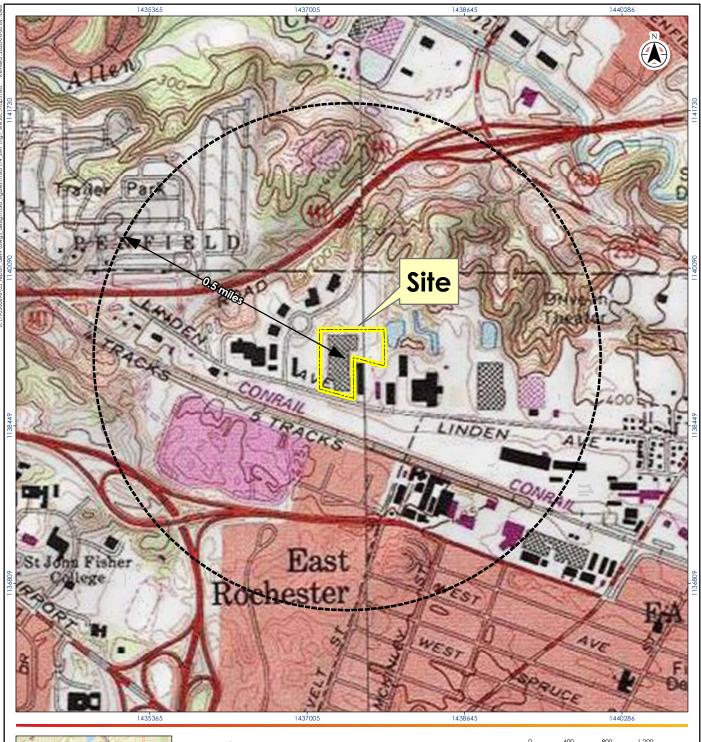
Utility Emergency: 911

9.2 DIRECTIONS TO HOSPITAL

Maps presenting directions to the nearest hospital (Highland Hospital) and urgent care centers (UR Medicine Urgent Care centers on Monroe Avenue and Penfield Road) are provided in Figure 2. The routes shall be reviewed at the initial Site safety meeting onsite and as needed for Site orientation if new personnel are added to the field team.

9.3 ACCIDENT INVESTIGATION AND REPORTING

The incident reporting form and protocol is included in Appendix D.


In the event that an accident or some other incident such as an explosion or exposure to toxic chemicals occurs during the course of the project, the Project Manager will be telephoned as soon as possible and receive a written notification within 24 hours (see Appendix D).

Where reportable injuries, hospitalizations or fatalities occur amongst Stantec personnel, the necessary document required by OSHA will be submitted within timeframes allowed by law.

FIGURES

Legend

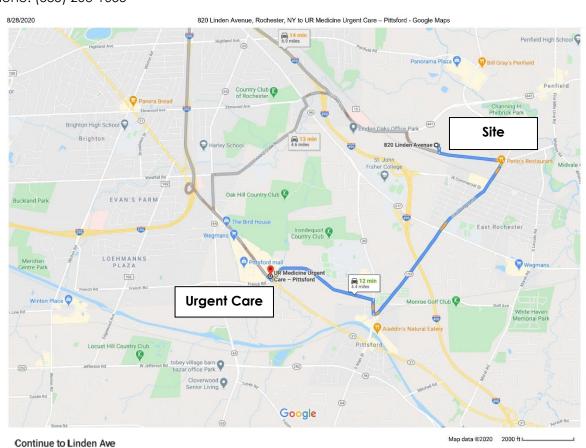
- Notes

 1. Coordinate System: NAD 1983 StatePlane New York
 West FIPS 3103 Feet
 2. ArcGIS Bosemaps: USA Topo Maps (main frame) and
 World Street Map (key map).

Disclaimer: Stantec assumes no responsibility for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and completeness of the data. The recipient releases Stantee, its officers, employees, consultants and agents, from any and all claims arising in any way from the content or provision of the data.

820 Linden Avenue Prepared by LB on 2020-06-30 Plitsford, Monroe Co., NY Technical Review by SRS on 2020-07-xx Independent Review by MPS/KI on 2020-07-xx

Client/Project 820 Linden Ave Site BCP Site #C828200 Site Management Plan


DRAFT

Site Location Map

Figure 2 Map and Driving Directions to Medical Facilities

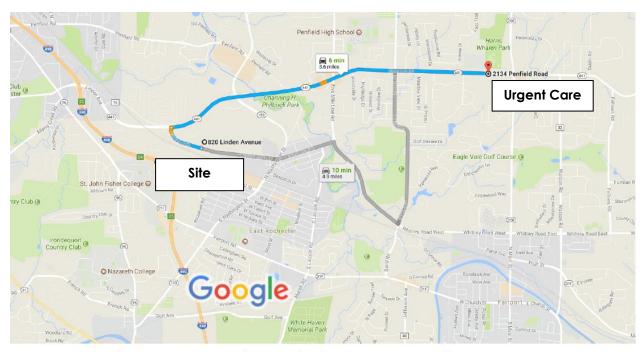
<u>Urgent Care Option 1:</u> UR Medicine Urgent Care – Pittsford

Pittsford Colony Plaza 3400 Monroe Ave Rochester, NY, 14618 Phone: (585) 203-1055

39 s (476 ft)

1	1.	Head south toward Linden Ave	
Ļ	2.	Turn right toward Linden Ave	– 233 ft
	Drive	along NY-153 S/N Washington St and French Rd	- 243 ft (4.3 mi)
	4	Turn left onto Linden Ave	
	Ļ	4. Turn right onto NY-153 S/N Washington St 1 Pass by Wendy's (on the right in 0.3 mi)	- 0.7 mi
	Ļ	5. Turn right onto NY-96 N/N Main St 1 Continue to follow NY-96 N	- 2.2 mi - 0.2 mi
	4	6. Turn left onto French Rd	
	L →	7. Turn right onto NY-31 W	– 1.2 mi
			– 295 ft

	41 s (427
8. Turn right	
9. Turn right	89
·····g···	220
10. Turn left	
 Destination will be on the right 	
	118


UR Medicine Urgent Care - Pittsford

3400 Monroe Ave, Rochester, NY 14618

Figure 2 Map and Driving Directions to Medical Facilities

<u>Urgent Care Option 2:</u> UR Medicine Urgent Care – Penfield

2134 Penfield Rd Penfield, NY 14526 Phone: (585) 276-8280

Map data ©2017 Google United States 2000 ft ■

820 Linden Ave

Rochester, NY 14625

1. Head west on Linden Ave toward Linden Park

0.4 mi

2. Turn right onto NY-441 E

3.2 mi

2134 Penfield Rd

Penfield, NY 14526

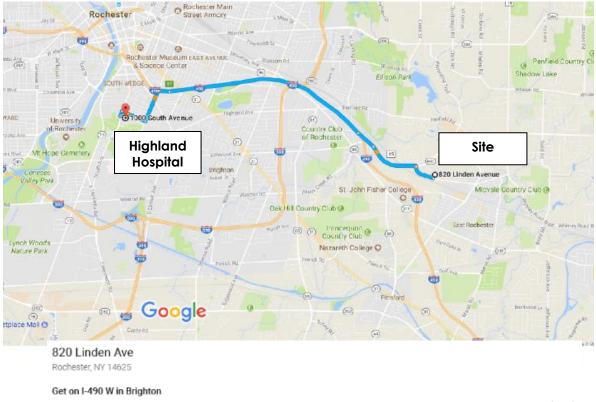

anticipated travel times for individual steps not shown as entire route is under 10 minutes and the majority of travel is along Route 441

Figure 2 Map and Driving Directions to Medical Facilities

<u>Hospital:</u>

Highland Hospital

1000 South Ave Rochester, NY 14620 Phone: (585) 473-2200

Get o	ın I-	190 W in Brighton	
ţ	1.	Head west on Linden Ave toward Linden Park	3 min (1.6 m
4	2.	Use any lane to turn left onto NY-441 W	0.4 n
*	3.	Use the right lane to take the Interstate 490 W ramp	0.9 n
			0.4n
ollo	w I-	490 W to S Goodman St in Rochester. Take exit 17 from I-490 W	4 min (3.7 m
٨	4.	Merge onto I-490 W	
ř	5.	Take exit 17 for Goodman St	3.5 n
			0.2 m
ollo	w S	Goodman St and Rockingham St to South Ave	
4	6.	Turn left onto S Goodman St	5 min (1.1 m
r ⇒	7.	Turn right onto Rockingham St	0.6 n
			0.4 m

8. Turn left onto South Ave

Rochester, NY 14620

445 ft

HEALTH AND SAFETY PLAN
SITE MANAGEMENT PLAN
820 LINDEN AVE BROWNFIELD CLEANUP PROGRAM SITE #C828200
820 LINDEN AVENUE
PITTSFORD, MONROE COUNTY, NEW YOR

TABLES

Table 1 Health and Safety Data for COCs Site Management Plan

Health and Safety Plan 820 Linden Ave Site 820 Linden Avenue, Pittsford, NY

Compound	OSHA PEL ¹	NIOSH REL ²	ACGIH TLV ³	Physical Description	Odor Threshold in Air	Route of Exposure	Symptoms	Target Organs
Acetone	1000 ppm	250 ppm	250 ppm 500 ppm STEL	Colorless liquid with a fragrant, mint-like odor	20 ppm	Inhalation, ingestion, skin and/or eye contact	Irritation eyes, nose, throat; headache, dizziness, central nervous system depression; dermatitis	Eyes, skin, respiratory system, central nervous system
Aroclor 1254/PCBs	0.5 mg/m³	0.001 mg/m³	0.05 mg/m³	Colorless to pale-yellow, viscous liquid or solid (below 50°F) with a mild, hydrocarbon odor	N/A	Inhalation, skin absorption, ingestion, skin and/or eye contact	Irritation eyes, chloracne; liver damage; reproductive effects; [potential occupational carcinogen]	Skin, eyes, liver, reproductive system
Coal tar pitch volatiles (Benzo(a)pyrene, Phenanthrene, etc.)	0.2 mg/m ³	0.1 mg/m ³	0.2 mg/m³	Black or dark-brown amorphous residue.	N/A	Inhalation, skin and/or eye contact	Dermatitis, bronchitis, [potential occupational carcinogen]	Respiratory system, skin, bladder, kidneys
1,1-dichloroethene (1,1-DCE)	NE	NE	5 ppm	Colorless liquid or gas (above 89°F) with a mild, sweet, chloroform-like odor	190 ppm	Inhalation, skin absorption, ingestion, skin and/or eye contact	Irritation eyes, skin, throat; dizziness, headache, nausea, dyspnea (breathing difficulty); liver, kidney disturbance; pneumonitis; [potential occupational carcinogen]	Eyes, skin, respiratory system, central nervous system, liver, kidneys
cis-1,2- dichloroethene (cis-1,2-DCE)	200 ppm	200 ppm	200 ppm	Colorless liquid (usually a mixture of the cis & trans isomers) with a slightly acrid, chloroform-like odor	17 ppm	Inhalation, ingestion, skin and/or eye contact	Irritation eyes, respiratory system; central nervous system depression	Eyes, respiratory system, central nervous system
Freon 113	1,000 ppm	1,000 ppm	1,000 ppm	Colorless to water-white liquid with an odor like carbon tetrachloride at high concentrations.	N/A	Inhalation, ingestion, skin and/or eye contact	Irritation skin, throat, drowsiness, dermatitis; central nervous system depression; In Animals: cardiac arrhythmias, narcosis	Skin, heart, central nervous system, cardiovascular system
Mercury	0.1 mg/m³	0.05 mg/m ³	0.025 mg/m³	Metal: Silver-white, heavy, odorless liquid	N/A	Inhalation, skin absorption, ingestion, skin and/or eye contact	Irritation eyes, skin; cough, chest pain, dyspnea (breathing difficulty), bronchitis, pneumonitis; tremor, insomnia, irritability, indecision, headache, lassitude (weakness, exhaustion); stomatitis, salivation; gastrointestinal disturbance, anorexia, weight loss; proteinuria	Eyes, skin, respiratory system, central nervous system, kidneys
Methylene chloride	25 ppm 125 ppm STEL 12.5 ppm AL	NE	50 ppm	Colorless liquid with a chloroform-like odor	250 ppm	Inhalation, skin absorption, ingestion, skin and/or eye contact	Irritation eyes, skin; lassitude, drowsiness, dizziness; numb, tingle limbs; nausea	Eyes, skin, cardiovascular system, central nervous system
Tetrachloroethene (aka Perchloroethene [PCE])	100 ppm 200 ppm C	NE	25 ppm 100 ppm STEL	Colorless liquid with a mild chloroform-like odor	1 ppm	Inhalation, skin absorption, ingestion, skin and/or eye contact	Irritation eyes, skin, nose, throat, respiratory system; nausea; flush face, neck; dizziness, incoordination; headache, drowsiness; skin erythema (skin redness); liver damage; [potential occupational carcinogen]	Eyes, skin, respiratory system, liver, kidneys, centra nervous system
Toluene	200 ppm TWA 300 ppm C	100 ppm TWA 150 ppm STEL	20 ppm	Colorless liquid with a sweet, pungent, benzene-like odor	2.9 ppm	Inhalation, skin absorption, ingestion, skin and/or eye contact	Irritation eyes, nose; lassitude (weakness, exhaustion), confusion, euphoria, dizziness, headache; dilated pupils, lacrimation (discharge of tears); anxiety, muscle fatigue, insomnia; paresthesia; dermatitis; liver, kidney damage	Eyes, skin, respiratory system, central nervous system, liver, kidneys
1,1,1-Trichloroethane (1,1,1-TCA)	350 ppm	350 ppm	350 ppm 450 ppm STEL	Colorless liquid with a mild, chloroform-like odor	120 ppm	Inhalation, ingestion, skin and/or eye contact	Irritation eyes, skin; headache, lassitude (weakness, exhaustion), central nervous system depression, poor equilibrium; dermatitis; cardiac arrhythmias; liver damage	Eyes, skin, central nervous system, cardiovascular system, liver
Trichloroethene (TCE)	100 ppm 200 ppm C	25 ppm	10 ppm 25 ppm STEL	Colorless liquid with a chloroform-like odor	28 ppm	Inhalation, skin absorption, ingestion, skin and/or eye contact	Irritation eyes, skin; headache, visual disturbance, lassitude (weakness, exhaustion), dizziness, tremor, drowsiness, nausea, vomiting; dermatitis; cardiac arrhythmias, paresthesia; liver injury; [potential occupational carcinogen]	Eyes, skin, respiratory system, heart, liver, kidneys, central nervous system

190500898 Page 1 of 2 $\label{lem:u:19050089805_report_deliv} U:\label{lem:u:19050089805_report_deliv} Ideliverables \endown{2}{l} Appendix \endown{2}{l} Appe$

Table 1

Health and Safety Data for COCs

Site Management Plan Health and Safety Plan 820 Linden Ave Site 820 Linden Avenue, Pittsford, NY

Abbreviations:

AL Action Level

C Ceiling limits are not to be exceeded during any part of the workday

mg/m3 milligrams per cubic meter

NE Not established N/A Not available ppm parts per million

STEL Short-Term Exposure Limit is a 15-min TWA

TWA Time-weighted average

Notes:

- 1. Occupational Safety and Health Administration (OSHA) Permissible Exposure Limit (PEL) for general industry. The OSHA PELs are 8-hour TWAs, unless otherwise noted.
- 2. National Institute for Occupational Safety and Health (NIOSH) Recommended Exposure Limit (REL) are based on 10-hour workdays during a 40-hour workweek.
- 3. American Conference for Governmental Industrial Hygenists (ACGIH) Threshold Limit Value (TLV). The ACGIH TLVs are 8-hr TWAs, unless otherwise noted.

190500898
U:\190500898\05_report_deliv\deliverables\reports\SMP\3_Appendix\appE_HASP\2_tbl\tbl1_COC.xlsx

Table 2 Exposure Pathways and First Aid Response for COCs

Site Management Plan Health and Safety Plan 820 Linden Ave Site 820 Linden Avenue, Pittsford, NY

Substsance	Exposure Pathways	First Aid Instructions
	Eye	Irrigate immediately
VOCs and SVOCs listed in Table 1	Dermal	Soap wash promptly; or Soap wash immediately (acetone and coal tar pitch volatiles); or Soap flush immediately (1,1-DCE)
	Inhalation	Respiratory support
	Ingestion	Medical attention immediately
	Eye	Irrigate immediately
DCDs and Marcun	Dermal	Soap wash promptly
PCBs and Mercury	Inhalation	Respiratory support
	Ingestion	Medical attention immediately

Table 3 Exposure Symptoms and First Aid for Heat Exposure

Site Management Plan Health and Safety Plan 820 Linden Ave 820 Linden Avenue, Pittsford, NY

Heat Disorder	Symptoms	First Aid Instructions
Heat Rash	Red skin	Remove victim from sun; allow skin to dry; washing skin may further cool the victim.
Heat Cramps	Muscle cramps	Move victim to cooler environment and lay down if possible; remove or lighten tight clothing; cool victim by sponging and fanning (do not cool worker too much); administer fluids (juice, non-caffeinated soft drinks or sports drinks are preferable) if victim is alert and not nauseated.
Heat Exhaustion	Heavy sweating; weakness; cool to cold skin; pale and clammy; thready pulse; possible confusion; fainting; vomiting.	Stop work immediately; remove victim from sun to cooler environment; lie down and loosen clothing; apply cool, wet cloths; fan or move to location with AC; sips of water; if nausea occurs, discontinue fluids; if vomiting continues, seek immediate medical attention.
Heat Stroke	High body temperature; hot, dry skin (red mottled or bluish); rapid and strong pulse; confusion/disorientation; dizziness; possible loss of consciousness.	I Stan work immediately, call 911, move victim to

HEALTH AND SAFETY PLAN
SITE MANAGEMENT PLAN
820 LINDEN AVE BROWNFIELD CLEANUP PROGRAM SITE #C828200
820 LINDEN AVENUE
PITTSFORD, MONROE COUNTY, NEW YOR

APPENDIX A Stantec COVID-19 Guidance

Stantec COVID-19 Field Guidance and Best Practices

NOTE: Recent revisions highlighted in yellow for ease of identification

The COVID-19 pandemic is rapidly evolving, and Stantec's Pandemic Committee continues to work diligently to secure guidance from global and regional health authorities to help protect the health and safety of our employees and minimize the spread of the virus. They provide regular updates to employees through Stantec's internal communications platform (The Lens) which allow us to continue to serve our clients. Our people are at the heart of everything we do; they give our work purpose and deliver the critical support our clients require. Supporting our employees' health and the health of those around them is entrenched in our corporate values. Stantec's Pandemic Committee has instituted a number of precautionary measures to promote continued health and mitigate the chance of virus spread. All employees are encouraged to refer to The Lens for the most up to date guidance.

This document is intended to provide guidance on managing the risks associated with COVID-19 for those that perform or direct **field work**.

This guidance should be incorporated as part of existing or new project Risk Management Strategy (RMS1) or Health and Safety Plans (HASPs).

Symptoms

Those who are infected with COVID-19 may have little to no symptoms. Symptoms may take up to 14 days to appear after exposure to COVID-19. A person may not realize they have symptoms of COVID-19 because they are similar to a cold or flu. Symptoms have included: fever, cough, sore throat, shortness of breath, chills, headache, repeated shaking with chills, muscle pain, new loss of taste or smell, or toes and extremities turning blue.

Worksite Considerations

For those working on project sites or in client settings, Stantec team members will work to uphold our company standards and work transparently with clients to coordinate approaches where appropriate. Relevant topics include, but are not limited to:

- 1. Social Distancing
- 2. Communication
- 3. Fitness for Duty
- 4. Safety Plans
- 5. Work at Remote sites
- 6. Emergency Responses

1. Social Distancing

Heath authorities are recommending social distancing to slow the spread of the virus. Social distancing includes voluntary avoidance of crowded places as defined by government agencies where exposure risks are increased. Experts also recommend staying a minimum of 2 metres (6 feet) away from others.

Project sites under the care and control of Stantec are asked to follow the direction of regional government and health agencies regarding social distancing or other measures. Field employees are asked to practice social distancing at toolbox meetings, in break or lunchrooms, site trailers, and vehicles. Confined spaces can also present unique challenges with respect to COVID-19 controls. When Stantec staff are requested to enter a confined space, and where possible and safe to do so, staff should request to not have others in the space with them while they conduct their work.

Minimize activities where groups of workers congregate. If reasonably practicable, conduct toolbox meetings outside, practice social distancing, and keep group sizes small.

Stantec staff will travel alone in vehicles when on Stantec business unless the work is covered by a variance or the following allowances below.

Where it is not reasonably practicable or would cause undue financial impact (as determined by the appropriate Regional Business Leader (RBL), Stantec Operational Business Line employees may travel in the same motor vehicle with one other person while on Stantec business with the following conditions.

- 1) When travelling in motor vehicles with more than one occupant, it is not likely that occupants will be able to maintain 2 metres / 6 feet physical distancing, and a cloth face covering should be worn as described by the CDC. Follow cleaning and disinfectant, and cloth face covering guidance provided in Section 1.4 of the *Hygiene and Wellness COVID-19* document posted on The Lens. The passenger is to sit in the back seat on the opposite side of the driver.
- 2) For travel in a shuttle, bus or multi-row van, there is a maximum of one occupant per row of seating, alternating in a checkerboard seating arrangement. The vehicle will be loaded from the back to front and unloaded from the front to back.

These allowances do not apply under the following situations:

- any travel within the same municipality,
- travel under 2 hours when travelling from the base location,
- where it contravenes local or regional government orders,
- the vehicle has one row of seating, or
- travel in boats, UTVs and helicopters.

If a variance is required, two variance options are available:

- Business Line variances for certain work categories (i.e. land surveying, remote biological surveys). The HSSE Manager for the BOU (MOC Reviewer) and the BL (MOC Owner) will work together to prepare and submit a plan to the Director HSSE Operations for approval.
- Project level variances for one-off project requirements. For this scenario, the project team will prepare and submit a plan to the Regional HSSE Manager (MOC Reviewer)

and appropriate RBL (MOC Owner) for joint review and feedback. Once finalized, it will be sent to the Director HSSE Operations for approval.

Final approvals will also be shared with the appropriate Regional Leader(s) and HSSE Manager(s).

When two individuals have been permitted to travel in a vehicle through the Stantec variance process, do not use the air recirculation feature in the vehicle, and when practicable, open windows to provide continual replacement of cabin air with fresh air.

Where possible, adjust work planning to maximize social distancing between workers, teams, and site personnel. This may include staggering meal and break times to avoid large gatherings of workers. If workers are required to sign in and out of a site, assign one individual to add the names to the sheet or permit to minimize the possibility of spreading the virus.

If a meeting must take place in-person onsite, the location must be large enough to permit 2 metres (6 feet) of separation between attendees; surfaces will be wiped down prior to convening the meeting; hand sanitizer and wipes must be available to all participants; invitees will be asked not to attend if they are not feeling well; person-to-person contact must be avoided (shaking hands, etc.); and all attendees are reminded to cover any coughs or sneezes using the crook of their arm.

The CDC, WHO and PHAC are recommending cloth face coverings be worn (covering the nose and mouth) to protect people around you if you may be infected but do not have symptoms. A cloth face covering should be worn in settings where other social distancing measures are difficult to or cannot be maintained (e.g. you cannot maintain 2 metres/ 6 feet at all times). This practice does not replace social distancing and is instead meant to be an additional control. If your task required the use of an N95 mask to protect you from workplace hazards before the outbreak of the pandemic, you should continue to wear the N95 mask while conducting your task. Any personal protective equipment, including face coverings of all types, should always be assessed, worn, and maintained as per the manufacturer's instructions.

The cloth face coverings recommended are not surgical masks or N-95 respirators.

According to these organizations, cloth face coverings should:

- 1) Fit snugly but comfortably against the side of the face
- Be secured with ties or ear loops
- 3) Include multiple layers of fabric
- 4) Allow for breathing without restriction
- Be able to be laundered and machine dried without damage or change to shape

Before donning a cloth face covering, wash your hands thoroughly. Cover your mouth and nose and ensure there are no gaps between your face and the face covering. Avoid touching the face covering with your hands while you are wearing it; if you do, clean your hands with alcohol-based hand rub or soap and water. Replace the face covering with a new one as soon as it is damp.

When removing your face covering handle it by the straps and place it in a sealable container until it can be laundered. Launder cloth masks using the warmest water and appropriate detergent for the items and dry the coverings completely. The CDC indicates that standard laundering will remove the virus, use of bleach or a disinfectant is not required. Allow laundered face coverings to dry before reuse.

For any staff wanting to wear a cloth face covering at work or out in the community, please use the link to the <u>website</u> below for instructions on how to make one.

If access to a client site requires a cloth face covering, please speak to your supervisor to approve associated expenses.

https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/diy-cloth-face-coverings.html

2. Communication

Our COVID-19 response follows CDC, WHO, and PHAC guidelines. If our practices are not aligned with client practices, employees are to meet with their project manager and supervisor to discuss the differences and determine an appropriate solution to continue supporting our clients. Please seek the support of HSSE as needed.

Differences in plans may affect our level of service, project schedule, and resourcing of construction laborers, materials, or other resources. We often have contractual obligations to formally notify our clients of these situations in order to be entitled to schedule or cost relief, and often these notices must be submitted within a short period of time. If you have questions, please contact regional counsel for support.

Project managers, in cooperation with our clients, will need to determine the appropriate staffing and resources for field offices while maintaining social distancing. Project teams are asked to maintain open lines of communication with their client contacts, request a copy of changes to site safety protocols (including fit for duty), and communicate any updates to the project team.

In the event that a Stantec employee has a confirmed diagnosis or exhibits symptoms of COVID-19 and interacted with a client (either in office settings or on project sites), the project team will connect with the Stantec Regional Crisis Team who will communicate with the client.

3. Fitness for Duty

As part of the **fitness for duty** checks documented on the Field Level Risk Assessment (RMS2) form, Stantec field employees are asked to verify that any personnel who will be visiting or conducting any work on a Stantec work site:

You are not fit for duty if any of the following conditions are met.

You have a temperature above 100.4 °F (38 °C).

You have any symptoms associated with COVID-19 such as cough, sore throat, shortness of breath, chills, headache, repeated shaking with chills, muscle pain, new loss of taste or smell, or toes and extremities turning blue.

You have been exposed to someone in the last 14 days that has been diagnosed with COVID-19 or is presumptively positive.

You or any members of your household travelled internationally in the last 14 days.

There are prepared speaking notes and a *Field Level Risk Assessment Fit for Duty COVID-19 Guidance* tool to assist field employees to verify worker fitness for duty related to COVID-19.

4. Safety Plans

Incorporate the guidance below into existing and new project Risk Management Strategy (RMS1) or Health and Safety Plans (HASPs).

- Notify BC leadership of ongoing field work so that local orders or directives can be communicated
 to field personnel in a timely manner. These may require project managers to determine which
 tasks are deemed critical and which tasks can be deferred.
- Maintain a current call down list for all field-based employees.
- For projects that extend beyond a single day, verify that the site is tidied up and left in a safe and secure condition. Project teams may not be able to return to the project site based on government orders or directives. In addition, where logistically feasible, plan on traveling home at the end of the workday rather than staying in a hotel. Be mindful of local maximum allowable work hours per day or per week.
- Discuss projects that require employees to enter a residential structure with BC leadership if the
 work is deemed critical or if it can be deferred. When entering a residential structure,
 communicate expectations ahead of scheduled visits, practice social distancing at the door, and
 make arrangements for the client to determine the following from the occupants of the residence
 before entry.

Does anyone have a temperature above 100.4 °F (38 °C).

Does anyone have any symptoms associated with COVID-19 such as cough, sore throat, shortness of breath, chills, headache, repeated shaking with chills, muscle pain, new loss of taste or smell, or toes and extremities turning blue.

Has anyone been exposed to someone in the last 14 days that has been diagnosed with COVID-19 or is presumptively positive.

Have any members of your household travelled internationally in the last 14 days.

 Where possible, employees are encouraged to pack meals and snacks as needed for the project duration and avoid visiting stores and restaurants. If necessary, modify your schedule to avoid restaurants and public restrooms during peak (i.e., crowded, periods to minimize contact with the public). Use drive-through service for food pick-up if available.

Personal Hygiene and Wellness

The following personal hygiene and wellness practices are recommended to prevent or control the transmission of bacteria and/or viruses:

 Wash your hands with soap and water for at least 20 seconds after using toilet facilities, before and after eating, after handling potentially contaminated or infectious materials, after removing

hand protection and other PPE, and after sneezing, coughing, or touching your face. When soap and water is not available use an alcohol-based hand sanitizer.

- Avoid touching your eyes, nose, and mouth with unwashed hands.
- Cover your mouth and nose when coughing or sneezing with a tissue or crook of your elbow.
 Throw the used tissue in the trash and wash your hands.
- Maintain lunchroom facilities through cleaning and disinfecting objects and surfaces. Leave contaminated tools, materials, or clothing outside.
- Maintain vehicles through regular cleaning and disinfecting of surfaces.
- Do not share tools or equipment (e.g. cell phones, shovels, etc.) between employees without disinfecting them first.
- Avoid handling common use items such as pens and clipboards; equip each worker with their own. If it is necessary to have common use items, include them in the cleaning and disinfecting cycle outlined below.
- Avoid unnecessary, unprotected contact with wild or farm animals, and wash hands immediately
 if contact does occur.
- Get vaccinated against seasonal influenza viruses.
- Get adequate rest, eat a healthy, balanced diet, and stay hydrated.
- Don't share personal items that can't be disinfected. Furthermore, any protective clothing or other safety device that is worn next to the skin must be cleaned and disinfected prior to use by another employee.

Cleaning and Disinfecting

COVID-19 can survive on different surfaces but can be killed by most cleaners and disinfectants. To prevent transmission of COVID-19 while cleaning, good hygiene measures and consistent use of appropriate personal protective equipment is recommended.

Cleaning refers to the removal of germs, dirt, and impurities from surfaces. Cleaning does not kill germs, but by removing them, it lowers their numbers and the risk of spreading infection.

Disinfecting refers to using chemicals to kill germs on surfaces. This process does not necessarily clean dirty surfaces or remove germs, but by killing germs on a surface after cleaning, it can further lower the risk of spreading infection.

Practice routine cleaning of frequently touched surfaces (for example: vehicle door handles, interior of vehicle such as steering wheel and control panel, equipment controls, handles, stair railings, toilet facility doors, etc.) with household cleaners and disinfectants that are appropriate for the surface, following label instructions. Labels contain instructions for safe and effective use of the cleaning product including precautions you should take, such as wearing gloves and making sure you have good ventilation during use. It is recommended to clean and disinfect high touch surfaces a minimum of twice daily.

It is important to keep vehicles clean. Do not transfer items between vehicles and limit the transfer of objects between the vehicle and the office. Each vehicle should have an ample supply of clean tissues

and hand sanitizer, as well as cleaning supplies and disinfectants. Clean vehicles after each use and wear appropriate personal protective equipment (PPE) when cleaning. When possible, use disposable gloves and masks that may be required for cleaning and disinfecting. Rental vehicles are to be cleaned prior to use, and when possible, use Stantec preferred vehicle rental agencies that have a COVID-19 cleaning protocol in place. All passengers are to clean their hands before touching common areas of the vehicle.

What you should know:

- Commonly used cleaners and disinfectants are effective against COVID-19.
- Frequently touched surfaces are most likely to be contaminated.
- Check the expiry date of products you use and always follow manufacturer's instructions.

If surfaces are dirty, they need to be cleaned using a detergent or soap and water prior to disinfection. For disinfection, refer to a list of products from the <u>American Chemistry Council</u>

Drinking Water

A reasonable supply of potable drinking water is to be kept readily accessible at the project site for the use of workers. Drinking water is to be supplied from a piping system, individual servings or from a clean, covered container with a drain faucet or pump. Workers will be given a sanitary means of drinking the drinking water and must not be required to share a common drinking container. If using water coolers to provide drinking water, wear clean gloves to operate the spigot and verify that a clean source of disposable cups is available. Verify that the cooler is cleaned and sanitized on a regular basis. If using bottled water sources, have employees take measures such as labeling bottles to avoid drinking out of someone else's bottle.

Toilet Facilities

Toilet facilities will be provided or arranged for workers before work has started at the project and workers will be provided reasonable access to these facilities. Project teams need to consider local closures of restaurants and other establishments when deciding on reasonable access to these facilities. The location of the toilet facilities will be posted in a conspicuous location. The toilet facilities will be serviced, cleaned, and sanitized on a regular basis to maintain them in a clean and sanitary condition. All toilet facilities will have toilet paper available at each toilet.

For toilets that are not connected to a sanitary sewer system, provide the user privacy and protection from weather and from falling objects. The toilets are to be illuminated by natural or artificial light, have adequate ventilation, and have a self-closing door that can be locked from the inside. If the facility is intended for use by female workers, a disposal receptacle for sanitary napkins will be provided. If the toilet facility is intended for use by males only or by females only, it must have a sign indicating that fact.

If a project is being carried out in a remote unpopulated area and it is not reasonably practicable to provide toilet facilities as described above, other types of toilet facilities that come as close as possible to having the features of non-sewered flush toilet facilities will be provided instead, and must be located to provide the user privacy. The minimum number of toilet facilities will be dependent on the gender and number of workers regularly employed on the project and be determined by local legislation.

Clean-up Facilities

Each toilet facility must be provided with its own clean-up facility. Each clean-up facility will meet the following requirements:

- A wash basin with both hot and cold running water if reasonably possible.
- Soap or an alcohol-based hand cleaner.
- Paper towels or a hand dryer. If paper towels are provided, there shall be a waste disposal receptacle nearby.
- If it is not reasonably possible to have a wash basin with running water at a clean-up facility, alcohol-based hand cleanser will be provided instead.

Workers who handle or use corrosive, poisonous or other substances likely to endanger their health will be provided with washing facilities with clean water, soap and individual paper towels.

5. Work at Remote Sites

Working at remote sites presents unique challenges. Items to consider and address in the Risk Management Strategy (RMS1) or Health and Safety Plan (HASP) include:

Pre-mobilization

 Each employee needs to review the Field Level Risk Assessment Fit for Duty COVID-19 Guidance document.

Transportation

 How the employees are accessing the site, by vehicle, airplane or helicopter, and what methods of social distancing they will have with their means of transportation; if reasonable, have the employees access the site via their own vehicle.

Emergency response

A protocol needs to be developed should an employee show signs, or symptoms associated with COVID-19 which includes how they will access medical advice and how they will be evacuated out in case of an emergency. If employees are accessing the site via airplane or helicopter, they may not be allowed access to the airplane or helicopter to evacuate out if they are experiencing any signs or symptoms of COVID-19.

Accommodations

 Research the accommodations available, plan for each employee to have their own private lodging to assist with social distancing. If staying in a camp setting, request the camp COVID-19 protocol and review it to ensure it meets Stantec's standard as a minimum. If there is no standard available, the Project Manager will need to discuss Stantec's requirements with the client / camp director.

Food and water

 Research the dining options, choose food that is either full service or pre-bagged instead of self-serve buffet style.

- Determine how staff will access potable water
- Cleaning
 - Employees will need to have ready access to tissues and disinfecting wipes.

6. Emergency Response

If you experience signs or symptoms of illness, distance yourself from others and notify your supervisor. Your supervisor will work with the Regional Crisis Team to help manage the response.

This guidance document does not address every situation with our projects related to COVID-19 precautionary measures. Additional communication through The Lens as the situation evolves. If there are any questions or situations not currently addressed by any of the available resources found on The Lens, please reach out to your supervisor, project manager, or Regional HSSE resource.

Fit for Duty COVID-19 Guidance

Pre-mobilization fit for duty questions for Stantec field personnel

Please review the following statements and answer the question below:				
You are not fit for duty if any of the following conditions are met.				
You have a temperature above 100.4 °F (38 °C).				
You have any symptoms associated with COVID-19 such as cough, sore throat, shortness of breath, chills, headache, repeated shaking with chills, muscle pain, new loss of taste or smell, or toes and extremities turning blue.				
You have been exposed to someone in the last 14 days that has been diagnosed with COVID-19 or is presumptively positive.				
You or any members of your household travelled internationally in the last 14 days.				
Are you Fit for Duty?				
Yes □ No □				

If you answer **YES**, you can mobilize to the project field site.

If you answer **NO**, or you choose to not answer, please consult with your supervisor prior to mobilizing to the project field site.

Field Level Risk Assessment

Questions for non-Stantec personnel accessing field sites under Stantec control

"Hello. As you are aware, COVID-19, also known as the novel coronavirus, was declared a global pandemic on March 11, 2020 by the World Health Organization (WHO). The COVID-19 situation continues to evolve and Stantec is now conducting active fit for duty affirmations prior to allowing access to this site."

Please review the following statements and answer the question below:
You are not fit for duty if any of the following conditions are met.
You have a temperature above 100.4 °F (38 °C).
You have any symptoms associated with COVID-19 such as cough, sore throat, shortness of breath, chills, headache, repeated shaking with chills, muscle pain, new loss of taste or smell, or toes and extremities turning blue.
You have been exposed to someone in the last 14 days that has been diagnosed with COVID-19 or is presumptively positive.
You or any members of your household travelled internationally in the last 14 days.
Are you Fit for Duty?
Yes □ No □

If the individual answers **YES**, site access can be granted.

If the individual answers **NO**, or refuses to answer, do not allow them access and consult with your supervisor, project manager and/or Regional Leader.

Rev: May 11, 2020 Owner: HSSE

"Thank you for your honesty and understanding. While at this Stantec project site please adhere to social distancing to the fullest extent possible. Social distancing means staying 2 metres (6 feet) away from others and avoiding crowds. Please advise Stantec if your task requires you to be within 2 metres (6 feet) of another individual."

- * Close contact is defined as a person who:
 - Provided care for the individual, including healthcare workers, family members or other caregivers, or who had other similar close physical contact with the person without consistent and appropriate use of personal protective equipment OR
 - Lived with or otherwise had close prolonged contact (within 2 metres / 6 feet) with the person while the person was infectious OR
 - Had direct contact with infectious bodily fluids of the person (e.g., was coughed or sneezed on) while not wearing recommended personal protective equipment.

Rev: May 11, 2020 Owner: HSSE

Cleaning and Disinfecting: COVID-19

NOTE: RECENT CHANGES ARE HIGHLIGHTED IN YELLOW

COVID-19 is spread from person to person most likely through:					
 close contact with an infectious person contact with droplets from an infected person's cough or sneeze; or touching objects or surfaces (like doorknobs, light switches, or tables, etc.) contaminated by cough or sneeze droplets from a person with a COVID-19 infection, and then touching your mouth, nose or eyes. 					
COVID-19 can survive on different surfaces but can be killed by most cleaners and disinfectants. To prevent transmission of COVID-19 while cleaning, good hygiene measures and consistent use of appropriate personal protective equipment is recommended.					
This document addresses the following:					
 Cleaners and Disinfectants Routine Cleaning and PPE Preparing your own bleach solution Cleaning your electronics Personal clothing Receiving mail and packages 					
1) <u>Cleaners and Disinfectants</u>					
Cleaning refers to the removal of germs, dirt, and impurities from surfaces. Cleaning does not kill germs, but by removing them, it lowers their numbers and the risk of spreading infection.					
Disinfecting refers to using chemicals to kill germs on surfaces. This process does not necessarily clean dirty surfaces or remove germs, but by killing germs on a surface after cleaning, it can further lower the risk of spreading infection.					
Cleaners					
 Break down grease and remove organic material from the surface. Used separately before using disinfectants. Can be purchased with cleaner and disinfectant combined in a single product. 					
Disinfectants					
 Have chemicals that kill most germs. Applied after the surfaces have been cleaned. 					

Disinfectant Wipes

Have combined cleaners and disinfectants in one solution.
May become dry due to fast drying properties. Should be discarded if they become dry
Not recommended for heavily soiled surfaces.

2) Routine Cleaning and PPE

Practice routine cleaning of frequently touched surfaces (for example: tables, doorknobs, light switches, handles, desks, stair railings, push panels on doors, toilets, faucets, sinks) with household cleaners and disinfectants that are appropriate for the surface, following label instructions. Labels contain instructions for safe and effective use of the cleaning product including precautions you should take, such as wearing gloves, chemical interactions, and making sure you have good ventilation during use.

What you should know:

Commonly used cleaners and disinfectants are effective against COVID-19.
Frequently touched surfaces are most likely to be contaminated.
Check the expiry date of products you use and always follow manufacturer's instructions.

If surfaces are dirty, they should be cleaned using a detergent or soap and water prior to disinfection. For disinfection, diluted household bleach solutions, alcohol solutions with at least 70% alcohol, and most common household disinfectants should be effective.

- a) Prepare products for use:
- ☐ Where possible, use pre-mixed solution.
- ☐ Read and follow manufacturer's instructions on how to:
 - properly prepare solution
 - allow adequate contact time for disinfectant to kill germs (see product label)
 - wear personal protective equipment (PPE such as gloves and eye protection)
 - provide adequate ventilation
- b) Clean the surface if necessary, using a compatible cleaner. Do not saturate the surface or submerge the item.
- c) Disinfect the surface following the label instructions. Wear the appropriate PPE. Be sure to apply the disinfectant uniformly across the surface. Keep the surface wet for the recommended period of time (see product label). Maintain good ventilation and allow the surface to dry before use.
- d) Dispose of your gloves and any wipes/towels and wash your hands following good hygiene practices.

Safety glasses, hard hats, and similar hard surface PPE can be disinfected following these procedures when in accordance with manufacturer's instructions. Some PPE such as fall arrest harnesses and lanyards should only be cleaned following the manufacturer's recommendations.

3) Preparing your own bleach solution

Diluted household bleach solutions can be used if appropriate for the surface and premixed cleaners are not available. Follow manufacturer's instructions for application and proper ventilation during mixing and

use of bleach solutions. Validate the product is not past its expiration date. Never mix household bleach with ammonia or any other cleanser. Unexpired household bleach will be effective against coronaviruses when properly diluted. Bleach solutions should be made fresh daily and gloves should be worn when handling and preparing bleach solutions. Protective eyewear should be worn in case of splashing.

Pre	Prepare a bleach solution by mixing:				
		5 tablespoons (1/3rd cup, 75 ml) bleach per US gallon (4 litres) of water or 4 teaspoons (20 ml) bleach per quart (950 ml) of water Application of the bleach solution can be through wiping the surface or spray bottle application			
4)		Cleaning Your Electronics			
cov disi	er o	ctronics, such as tablets, touch screens, keyboards, and similar, consider applying a wipeable or sleeve, on the electronics when feasible. Follow manufacturer's instruction for cleaning and sting equipment to prevent damage.			
it tr	nere	<mark>is no guidance,</mark>			
		Wash hands following good hand hygiene.			
5)		Personal clothing (cloth face coverings, clothing, shoes, towels, and other linens)			
		ase note: Shoes and clothing are not considered a likely source of transmission.			
		Launder items according to the manufacturer's instructions. Use the warmest appropriate water setting and dry items completely.			
		If doing laundry for someone who is sick, wear gloves when handling dirty laundry; items do no have to be washed separately from other laundry.			
		Do not shake dirty laundry.			
		Clean and disinfect clothes hampers according to guidance above for hard surfaces. Always wash your hands right after handling the items.			
		Remove shoes and leave them in your garage, mudroom, washroom, or porch – outside of the social areas of your home. Wash footwear following label instructions. Most rubber or plastic soles can be treated as a hard surface.			
6)		Receiving mail and packages			
	П	Very low risk of spread from products or packaging.			
		thoroughly.			

*prepared using information sources from the World Health Organization (WHO), the Centers for Disease Control and Prevention (CDC), and Public Health Agency of Canada (PHAC).

HEALTH AND SAFETY PLAN
SITE MANAGEMENT PLAN
820 LINDEN AVE BROWNFIELD CLEANUP PROGRAM SITE #C828200
820 LINDEN AVENUE
PITTSFORD, MONROE COUNTY, NEW YOR

APPENDIX B Safety Data Sheets

SAFETY DATA SHEET

Version 4.12 Revision Date 03/23/2017 Print Date 05/16/2017

1. PRODUCT AND COMPANY IDENTIFICATION

1.1 Product identifiers

Product name : 1,1-Dichloroethene

Product Number : 48526
Brand : Supelco
Index-No. : 602-025-00-8

CAS-No. : 75-35-4

1.2 Relevant identified uses of the substance or mixture and uses advised against

Identified uses : Laboratory chemicals, Synthesis of substances

1.3 Details of the supplier of the safety data sheet

Company : Sigma-Aldrich

3050 Spruce Street

SAINT LOUIS MO 63103

USA

Telephone : +1 800-325-5832 Fax : +1 800-325-5052

1.4 Emergency telephone number

Emergency Phone # : +1-703-527-3887 (CHEMTREC)

2. HAZARDS IDENTIFICATION

2.1 Classification of the substance or mixture

GHS Classification in accordance with 29 CFR 1910 (OSHA HCS)

Flammable liquids (Category 1), H224 Acute toxicity, Oral (Category 3), H301 Skin irritation (Category 2), H315 Eye irritation (Category 2A), H319 Carcinogenicity (Category 2), H351

For the full text of the H-Statements mentioned in this Section, see Section 16.

2.2 GHS Label elements, including precautionary statements

Pictogram

Signal word Danger

Hazard statement(s)

H224 Extremely flammable liquid and vapour.

H301 Toxic if swallowed. H315 Causes skin irritation.

H319 Causes serious eye irritation. H351 Suspected of causing cancer.

Precautionary statement(s)

P201 Obtain special instructions before use.

P202 Do not handle until all safety precautions have been read and

understood.

P210	Keep away from heat/sparks/open flames/hot surfaces. No smoking.
P233	Keep container tightly closed.
P240	Ground/bond container and receiving equipment.
P241	Use explosion-proof electrical/ ventilating/ lighting/ equipment.
P242	Use only non-sparking tools.
P243	Take precautionary measures against static discharge.
P264	Wash skin thoroughly after handling.
P270	Do not eat, drink or smoke when using this product.
P280	Wear protective gloves/ protective clothing/ eye protection/ face protection.
P301 + P310 + P330	IF SWALLOWED: Immediately call a POISON CENTER/doctor. Rinse mouth.
P303 + P361 + P353	IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower.
P305 + P351 + P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P308 + P313	IF exposed or concerned: Get medical advice/ attention.
P332 + P313	If skin irritation occurs: Get medical advice/ attention.
P337 + P313	If eye irritation persists: Get medical advice/ attention.
P362	Take off contaminated clothing and wash before reuse.
P370 + P378	In case of fire: Use dry sand, dry chemical or alcohol-resistant foam to extinguish.
P403 + P235	Store in a well-ventilated place. Keep cool.
P405	Store locked up.
P501	Dispose of contents/ container to an approved waste disposal plant.

2.3 Hazards not otherwise classified (HNOC) or not covered by GHS

May form explosive peroxides.

3. COMPOSITION/INFORMATION ON INGREDIENTS

3.1 Substances

Synonyms : 1,1-Dichloroethylene

Vinylidene chloride

Formula : C₂H₂Cl₂

Molecular weight : 96.94 g/mol
CAS-No. : 75-35-4
EC-No. : 200-864-0
Index-No. : 602-025-00-8

Hazardous components

Component	Classification	Concentration
Vinylidene chloride		
	Flam. Liq. 1; Acute Tox. 3; Skin Irrit. 2; Eye Irrit. 2A; Carc. 2; H224, H301, H315, H319, H351	90 - 100 %

For the full text of the H-Statements mentioned in this Section, see Section 16.

4. FIRST AID MEASURES

4.1 Description of first aid measures

General advice

Consult a physician. Show this safety data sheet to the doctor in attendance. Move out of dangerous area.

If inhaled

If breathed in, move person into fresh air. If not breathing, give artificial respiration. Consult a physician.

Supelco - 48526 Page 2 of 9

In case of skin contact

Wash off with soap and plenty of water. Take victim immediately to hospital. Consult a physician.

In case of eye contact

Rinse thoroughly with plenty of water for at least 15 minutes and consult a physician.

If swallowed

Do NOT induce vomiting. Never give anything by mouth to an unconscious person. Rinse mouth with water. Consult a physician.

4.2 Most important symptoms and effects, both acute and delayed

The most important known symptoms and effects are described in the labelling (see section 2.2) and/or in section 11

4.3 Indication of any immediate medical attention and special treatment needed

No data available

5. FIREFIGHTING MEASURES

5.1 Extinguishing media

Suitable extinguishing media

Dry powder Dry sand

Unsuitable extinguishing media

Do NOT use water jet.

5.2 Special hazards arising from the substance or mixture

No data available

5.3 Advice for firefighters

Wear self-contained breathing apparatus for firefighting if necessary.

5.4 Further information

Use water spray to cool unopened containers.

6. ACCIDENTAL RELEASE MEASURES

6.1 Personal precautions, protective equipment and emergency procedures

Wear respiratory protection. Avoid breathing vapours, mist or gas. Ensure adequate ventilation. Remove all sources of ignition. Evacuate personnel to safe areas. Beware of vapours accumulating to form explosive concentrations. Vapours can accumulate in low areas.

For personal protection see section 8.

6.2 Environmental precautions

Prevent further leakage or spillage if safe to do so. Do not let product enter drains.

6.3 Methods and materials for containment and cleaning up

Contain spillage, and then collect with non-combustible absorbent material, (e.g. sand, earth, diatomaceous earth, vermiculite) and place in container for disposal according to local / national regulations (see section 13).

6.4 Reference to other sections

For disposal see section 13.

7. HANDLING AND STORAGE

7.1 Precautions for safe handling

Avoid contact with skin and eyes. Avoid inhalation of vapour or mist.

Use explosion-proof equipment. Keep away from sources of ignition - No smoking. Take measures to prevent the build up of electrostatic charge.

For precautions see section 2.2.

7.2 Conditions for safe storage, including any incompatibilities

Keep container tightly closed in a dry and well-ventilated place. Containers which are opened must be carefully resealed and kept upright to prevent leakage.

Air and moisture sensitive. Store under inert gas.

7.3 Specific end use(s)

Apart from the uses mentioned in section 1.2 no other specific uses are stipulated

Supelco - 48526 Page 3 of 9

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

8.1 Control parameters

Components with workplace control parameters

- Composition in the indicate Contract parameters					
Component	CAS-No.	Value	Control	Basis	
			parameters		
Vinylidene chloride	75-35-4	TWA	5.000000 ppm	USA. ACGIH Threshold Limit Values	
Viiryinderie eriieride	1.0.00	' ' ' '	o.ooooo pp		
				(TLV)	
	Remarks	Liver damage			
		Kidney damage			
		Not classifiable as a human carcinogen			
		Potential Occupational Carcinogen			
		See Appendix A			
		PEL	1 ppm	California permissible exposure	
			4 mg/m3	limits for chemical contaminants	
			3. 3	(Title 8, Article 107)	

8.2 Exposure controls

Appropriate engineering controls

Avoid contact with skin, eyes and clothing. Wash hands before breaks and immediately after handling the product.

Personal protective equipment

Eye/face protection

Face shield and safety glasses Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Skin protection

Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.

Full contact

Material: Fluorinated rubber Minimum layer thickness: 0.7 mm Break through time: 480 min

Material tested: Vitoject® (KCL 890 / Aldrich Z677698, Size M)

Splash contact Material: butyl-rubber

Minimum layer thickness: 0.3 mm Break through time: 30 min

Material tested:Butoject® (KCL 897 / Aldrich Z677647, Size M)

data source: KCL GmbH, D-36124 Eichenzell, phone +49 (0)6659 87300, e-mail sales@kcl.de, test method:

EN374

If used in solution, or mixed with other substances, and under conditions which differ from EN 374, contact the supplier of the CE approved gloves. This recommendation is advisory only and must be evaluated by an industrial hygienist and safety officer familiar with the specific situation of anticipated use by our customers. It should not be construed as offering an approval for any specific use scenario.

Body Protection

Complete suit protecting against chemicals, Flame retardant antistatic protective clothing., The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.

Respiratory protection

Where risk assessment shows air-purifying respirators are appropriate use a full-face respirator with multipurpose combination (US) or type AXBEK (EN 14387) respirator cartridges as a backup to engineering controls. If the respirator is the sole means of protection, use a full-face supplied air respirator. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).

Supelco - 48526 Page 4 of 9

Control of environmental exposure

Prevent further leakage or spillage if safe to do so. Do not let product enter drains.

9. PHYSICAL AND CHEMICAL PROPERTIES

9.1 Information on basic physical and chemical properties

a) Appearance Form: liquid, clear

Colour: colourless

b) Odourc) Odour ThresholdNo data available

d) pH No data available

e) Melting point/freezing

point

Melting point/range: -122 °C (-188 °F) - lit.

f) Initial boiling point and

boiling range

30 - 32 °C (86 - 90 °F) - lit.

g) Flash point -19 °C (-2 °F) - closed cup

h) Evaporation rate No data availablei) Flammability (solid, gas) No data available

j) Upper/lower Upper explosion limit: 15.5 %(V) flammability or explosive limits

k) Vapour pressure

658.6 hPa (494.0 mmHg)

667.3 hPa (500.5 mmHg) at 20.0 °C (68.0 °F) 2,137.4 hPa (1,603.2 mmHg) at 55.0 °C (131.0 °F)

I) Vapour density No data available

m) Relative density 1.213 g/cm3 at 20 °C (68 °F)

n) Water solubility 0.2 g/l at 20 °C (68 °F)

o) Partition coefficient: n-

octanol/water

No data available

p) Auto-ignition 520.0 °C (968.0 °F) temperature 580.0 °C (1,076.0 °F)

q) Decomposition temperature No data available

r) Viscosity No data available
 s) Explosive properties No data available
 t) Oxidizing properties No data available

9.2 Other safety information

No data available

10. STABILITY AND REACTIVITY

10.1 Reactivity

No data available

10.2 Chemical stability

Stable under recommended storage conditions.

10.3 Possibility of hazardous reactions

Vapours may form explosive mixture with air.

10.4 Conditions to avoid

Heat, flames and sparks.

Supelco - 48526 Page 5 of 9

10.5 Incompatible materials

Oxidizing agents, Copper, Aluminum, and its alloys, Peroxides, Strong bases, Oxygen

10.6 Hazardous decomposition products

Hazardous decomposition products formed under fire conditions. - Carbon oxides, Hydrogen chloride gas Other decomposition products - No data available

In the event of fire: see section 5

11. TOXICOLOGICAL INFORMATION

11.1 Information on toxicological effects

Acute toxicity

LD50 Oral - Rat - 200.0 mg/kg

Inhalation: Lung irritation
Dermal: No data available

No data available

Skin corrosion/irritation

No data available

Serious eye damage/eye irritation

No data available

Respiratory or skin sensitisation

No data available

Germ cell mutagenicity

Laboratory experiments have shown mutagenic effects.

Carcinogenicity

This product is or contains a component that has been reported to be possibly carcinogenic based on its IARC, ACGIH, NTP, or EPA classification.

Limited evidence of carcinogenicity in animal studies

IARC: No component of this product present at levels greater than or equal to 0.1% is identified as

probable, possible or confirmed human carcinogen by IARC.

NTP: No component of this product present at levels greater than or equal to 0.1% is identified as a

known or anticipated carcinogen by NTP.

OSHA: No component of this product present at levels greater than or equal to 0.1% is identified as a

carcinogen or potential carcinogen by OSHA.

Reproductive toxicity

No data available

No data available

Specific target organ toxicity - single exposure

No data available

Specific target organ toxicity - repeated exposure

No data available

Aspiration hazard

No data available

Additional Information

RTECS: KV9275000

Nausea, Headache, Vomiting, Dizziness, Drowsiness, Confusion., Incoordination., Central nervous system depression, To the best of our knowledge, the chemical, physical, and toxicological properties have not been thoroughly investigated.

Stomach - Irregularities - Based on Human Evidence

Supelco - 48526 Page 6 of 9

12. ECOLOGICAL INFORMATION

12.1 Toxicity

Toxicity to fish LC50 - Daphnia magna (Water flea) - 11.60 - 11.79 mg/l

LC50 - Pimephales promelas (fathead minnow) - 108.00 - 169.00 mg/l

LC50 - Lepomis macrochirus (Bluegill) - 74.00 - 220.00 mg/l

LC50 - Cyprinodon variegatus (sheepshead minnow) - 249.00 mg/l

LC50 - other fish - 250.00 mg/l LC50 - other fish - 224.00 mg/l

LC50 - Pimephales promelas (fathead minnow) - 108 mg/l - 96 h

NOEC - Cyprinodon variegatus (sheepshead minnow) - 80 mg/l - 96 h

Toxicity to daphnia and

LC50 - Daphnia magna (Water flea) - 11.6 mg/l - 48 h

other aquatic invertebrates

12.2 Persistence and degradability

No data available

12.3 Bioaccumulative potential

No data available

12.4 Mobility in soil

No data available

12.5 Results of PBT and vPvB assessment

PBT/vPvB assessment not available as chemical safety assessment not required/not conducted

12.6 Other adverse effects

No data available

13. DISPOSAL CONSIDERATIONS

13.1 Waste treatment methods

Product

Offer surplus and non-recyclable solutions to a licensed disposal company. Burn in a chemical incinerator equipped with an afterburner and scrubber but exert extra care in igniting as this material is highly flammable. Contact a licensed professional waste disposal service to dispose of this material.

Contaminated packaging

Dispose of as unused product.

14. TRANSPORT INFORMATION

DOT (US)

UN number: 1303 Class: 3 Packing group: I

Proper shipping name: Vinylidene chloride, stabilized

Reportable Quantity (RQ): 100 lbsReportable Quantity (RQ): 100 lbsMarine pollutant:yes

Poison Inhalation Hazard: No

IMDG

UN number: 1303 Class: 3 Packing group: I EMS-No: F-E, S-D

Proper shipping name: VINYLIDENE CHLORIDE, STABILIZED Marine pollutant: yes Marine pollutant: yes

IATA

UN number: 1303 Class: 3 Packing group: I

Proper shipping name: Vinylidene chloride, stabilized

Supelco - 48526 Page 7 of 9

15. REGULATORY INFORMATION

SARA 302 Components

No chemicals in this material are subject to the reporting requirements of SARA Title III, Section 302.

SARA 313 Components

The following components are subject to reporting levels established by SARA Title III, Section 313:

CAS-No. Revision Date Vinylidene chloride 75-35-4 2007-07-01

SARA 311/312 Hazards

Fire Hazard, Acute Health Hazard, Chronic Health Hazard

Reportable Quantity D029 lbs

Massachusetts Right To Know Components

Vinylidene chloride CAS-No. Revision Date 2007-07-01

Pennsylvania Right To Know Components

Vinylidene chloride CAS-No. Revision Date 2007-07-01

Vinylidene chloride CAS-No. Revision Date 2007-07-01

New Jersey Right To Know Components

Vinylidene chloride CAS-No. Revision Date 2007-07-01

California Prop. 65 Components

This product does not contain any chemicals known to State of California to cause cancer, birth defects, or any other reproductive harm.

16. OTHER INFORMATION

Full text of H-Statements referred to under sections 2 and 3.

Acute Tox. Acute toxicity
Carc. Carcinogenicity
Eye Irrit. Eye irritation
Flam. Liq. Flammable liquids

H224 Extremely flammable liquid and vapour.

H301 Toxic if swallowed. H315 Causes skin irritation.

H319 Causes serious eye irritation. H351 Suspected of causing cancer.

Skin Irrit. Skin irritation

HMIS Rating

Health hazard: 2
Chronic Health Hazard: *
Flammability: 4
Physical Hazard 2

NFPA Rating

Health hazard: 2
Fire Hazard: 4
Reactivity Hazard: 2

Supelco - 48526 Page 8 of 9

Further information

Copyright 2017 Sigma-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use only. The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. Sigma-Aldrich Corporation and its Affiliates shall not be held liable for any damage resulting from handling or from contact with the above product. See www.sigma-aldrich.com and/or the reverse side of invoice or packing slip for additional terms and conditions of sale.

Preparation Information

Sigma-Aldrich Corporation Product Safety – Americas Region 1-800-521-8956

Version: 4.12 Revision Date: 03/23/2017 Print Date: 05/16/2017

Supelco - 48526 Page 9 of 9

SAFETY DATA SHEET

Version 4.10 Revision Date 09/23/2016 Print Date 07/13/2017

1. PRODUCT AND COMPANY IDENTIFICATION

1.1 Product identifiers

Product name : 1.1.1-Trichloroethane

Product Number : 402877
Brand : Sigma-Aldrich
Index-No. : 602-013-00-2

CAS-No. : 71-55-6

1.2 Relevant identified uses of the substance or mixture and uses advised against

Identified uses : Laboratory chemicals, Synthesis of substances

1.3 Details of the supplier of the safety data sheet

Company : Sigma-Aldrich

3050 Spruce Street SAINT LOUIS MO 63103

USA

Telephone : +1 800-325-5832 Fax : +1 800-325-5052

1.4 Emergency telephone number

Emergency Phone # : +1-703-527-3887 (CHEMTREC)

2. HAZARDS IDENTIFICATION

2.1 Classification of the substance or mixture

GHS Classification in accordance with 29 CFR 1910 (OSHA HCS)

Acute toxicity, Inhalation (Category 4), H332

Skin irritation (Category 2), H315

For the full text of the H-Statements mentioned in this Section, see Section 16.

2.2 GHS Label elements, including precautionary statements

Pictogram

Signal word Warning

Hazard statement(s)

H315 Causes skin irritation. H332 Harmful if inhaled.

Precautionary statement(s)

P261 Avoid breathing dust/ fume/ gas/ mist/ vapours/ spray.

P264 Wash skin thoroughly after handling.

P271 Use only outdoors or in a well-ventilated area.

P280 Wear protective gloves.

P302 + P352 IF ON SKIN: Wash with plenty of soap and water.

P304 + P340 IF INHALED: Remove victim to fresh air and keep at rest in a position

comfortable for breathing.

P312 Call a POISON CENTER/doctor if you feel unwell.

Sigma-Aldrich - 402877 Page 1 of 9

P321 Specific treatment (see supplemental first aid instructions on this label).

P332 + P313 If skin irritation occurs: Get medical advice/ attention.

P362 Take off contaminated clothing and wash before reuse.

2.3 Hazards not otherwise classified (HNOC) or not covered by GHS - none

3. COMPOSITION/INFORMATION ON INGREDIENTS

3.1 Substances

Synonyms : 'Chlorothene'

Methylchloroform

Formula : C₂H₃Cl₃

Molecular weight : 133.40 g/mol
CAS-No. : 71-55-6

EC-No. : 200-756-3
Index-No. : 602-013-00-2

Hazardous components

Component	Classification	Concentration
1,1,1-Trichloroethane		
	Acute Tox. 4; Skin Irrit. 2; Eye Irrit. 2A; Ozone 1; H315, H319, H332	<= 100 %

For the full text of the H-Statements mentioned in this Section, see Section 16.

4. FIRST AID MEASURES

4.1 Description of first aid measures

General advice

Consult a physician. Show this safety data sheet to the doctor in attendance. Move out of dangerous area.

If inhaled

If breathed in, move person into fresh air. If not breathing, give artificial respiration. Consult a physician.

In case of skin contact

Wash off with soap and plenty of water. Consult a physician.

In case of eve contact

Rinse thoroughly with plenty of water for at least 15 minutes and consult a physician.

If swallowed

Never give anything by mouth to an unconscious person. Rinse mouth with water. Consult a physician.

4.2 Most important symptoms and effects, both acute and delayed

The most important known symptoms and effects are described in the labelling (see section 2.2) and/or in section 11

4.3 Indication of any immediate medical attention and special treatment needed

No data available

5. FIREFIGHTING MEASURES

5.1 Extinguishing media

Suitable extinguishing media

Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.

5.2 Special hazards arising from the substance or mixture

No data available

5.3 Advice for firefighters

Wear self-contained breathing apparatus for firefighting if necessary.

5.4 Further information

No data available

Sigma-Aldrich - 402877 Page 2 of 9

6. ACCIDENTAL RELEASE MEASURES

6.1 Personal precautions, protective equipment and emergency procedures

Use personal protective equipment. Avoid breathing vapours, mist or gas. Ensure adequate ventilation. For personal protection see section 8.

6.2 Environmental precautions

Do not let product enter drains.

6.3 Methods and materials for containment and cleaning up

Soak up with inert absorbent material and dispose of as hazardous waste. Keep in suitable, closed containers for disposal.

6.4 Reference to other sections

For disposal see section 13.

7. HANDLING AND STORAGE

7.1 Precautions for safe handling

Avoid contact with skin and eyes. Avoid inhalation of vapour or mist. For precautions see section 2.2.

7.2 Conditions for safe storage, including any incompatibilities

Keep container tightly closed in a dry and well-ventilated place. Containers which are opened must be carefully resealed and kept upright to prevent leakage.

7.3 Specific end use(s)

Apart from the uses mentioned in section 1.2 no other specific uses are stipulated

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

8.1 Control parameters

Components with workplace control parameters

Component	CAS-No.	Value	Control	Basis		
'			parameters			
1,1,1-	71-55-6	TWA	350.000000	USA. ACGIH Threshold Limit Values		
Trichloroethane			ppm	(TLV)		
	Remarks	Central Nervous System impairment				
		Liver damage Substances for which there is a Biological Exposure Index or Indices				
		(see BEI® section)				
		Not classifiable as a human carcinogen				
		STEL	450.000000	USA. ACGIH Threshold Limit Values		
			ppm	(TLV)		
		Central Nervous System impairment				
		Liver damage				
		Substances for which there is a Biological Exposure Index or Indices				
		(see BEI® section)				
		Not classifiable as a human carcinogen				
		С	350.000000	USA. NIOSH Recommended		
			ppm	Exposure Limits		
			1,900.000000			
			mg/m3			
		See Appendix C				
		15 minute ceiling value				
		TWA	350.000000	USA. Occupational Exposure Limits		
			ppm	(OSHA) - Table Z-1 Limits for Air		
			1,900.000000	Contaminants		
			mg/m3			
		The value in mg/m3 is approximate.				

Sigma-Aldrich - 402877 Page 3 of 9

PEL	350 ppm 1,900 mg/m3	California permissible exposure limits for chemical contaminants (Title 8, Article 107)
STEL	450 ppm 2,450 mg/m3	California permissible exposure limits for chemical contaminants (Title 8, Article 107)
С	800 ppm	California permissible exposure limits for chemical contaminants (Title 8, Article 107)

Biological occupational exposure limits

biological occupational exposure limits							
Component	CAS-No.	Parameters	Value	Biological specimen	Basis		
1,1,1- Trichloroethane	71-55-6	Methyl chloroform	40ppm	In end-exhaled air	ACGIH - Biological Exposure Indices (BEI)		
	Remarks	Prior to last sh	Prior to last shift of workweek				
		Trichloroaceti c acid	10.0000 mg/l	Urine	ACGIH - Biological Exposure Indices (BEI)		
		End of the workweek (After four or five consecutive working days with exposure)					
		Total trichloroethan ol	30.0000 mg/l	Urine	ACGIH - Biological Exposure Indices (BEI)		
		End of shift at	end of work	week			
		Total trichloroethan ol	1.0000 mg/l	In blood	ACGIH - Biological Exposure Indices (BEI)		
		End of shift at end of workweek					

8.2 Exposure controls

Appropriate engineering controls

Handle in accordance with good industrial hygiene and safety practice. Wash hands before breaks and at the end of workday.

Personal protective equipment

Eye/face protection

Face shield and safety glasses Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Skin protection

Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.

Full contact

Material: Fluorinated rubber Minimum layer thickness: 0.7 mm Break through time: 480 min

Material tested: Vitoject® (KCL 890 / Aldrich Z677698, Size M)

Splash contact

Material: Nitrile rubber

Minimum layer thickness: 0.4 mm Break through time: 60 min

Material tested:Camatril® (KCL 730 / Aldrich Z677442, Size M)

data source: KCL GmbH, D-36124 Eichenzell, phone +49 (0)6659 87300, e-mail sales@kcl.de, test method:

=N3/4

If used in solution, or mixed with other substances, and under conditions which differ from EN 374, contact the supplier of the CE approved gloves. This recommendation is advisory only and must be evaluated by an

Sigma-Aldrich - 402877 Page 4 of 9

industrial hygienist and safety officer familiar with the specific situation of anticipated use by our customers. It should not be construed as offering an approval for any specific use scenario.

Body Protection

Complete suit protecting against chemicals, The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.

Respiratory protection

Where risk assessment shows air-purifying respirators are appropriate use a full-face respirator with multipurpose combination (US) or type ABEK (EN 14387) respirator cartridges as a backup to engineering controls. If the respirator is the sole means of protection, use a full-face supplied air respirator. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).

Control of environmental exposure

Do not let product enter drains.

9. PHYSICAL AND CHEMICAL PROPERTIES

9.1 Information on basic physical and chemical properties

a) Appearance Form: liquid, clear

Colour: colourless

b) Odour No data available

c) Odour Threshold No data available

d) pH No data available

e) Melting point/freezing

point

-35.0 °C (-31.0 °F)

f) Initial boiling point and

boiling range

72.0 - 75.0 °C (161.6 - 167.0 °F)

g) Flash point No data availableh) Evaporation rate No data available

i) Flammability (solid, gas) No data available

j) Upper/lower flammability or Upper explosion limit: 15 %(V) Lower explosion limit: 7.5 %(V)

explosive limits
k) Vapour pressure

133.3 hPa (100.0 mmHg) at 20.0 °C (68.0 °F)

I) Vapour density No data available

m) Relative density 1.34 g/cm3

n) Water solubility 1.25 g/l at 23 °C (73 °F)

o) Partition coefficient: n-

octanol/water

log Pow: 2.49

p) Auto-ignition temperature

537.0 °C (998.6 °F)

q) Decomposition temperature

No data available

No data available

r) Viscosity No data availables) Explosive properties No data available

Other safety information

Oxidizing properties

No data available

9.2

Sigma-Aldrich - 402877 Page 5 of 9

10. STABILITY AND REACTIVITY

10.1 Reactivity

No data available

10.2 Chemical stability

Stable under recommended storage conditions.

Contains the following stabiliser(s):

Low alkyl epoxide (<=0.05 %)

10.3 Possibility of hazardous reactions

No data available

10.4 Conditions to avoid

No data available

10.5 Incompatible materials

Strong oxidizing agents, Potassium, Magnesium, Sodium/sodium oxides, Zinc, Strong bases

10.6 Hazardous decomposition products

Hazardous decomposition products formed under fire conditions. - Carbon oxides, Hydrogen chloride gas

Other decomposition products - No data available

In the event of fire: see section 5

11. TOXICOLOGICAL INFORMATION

11.1 Information on toxicological effects

Acute toxicity

LD50 Oral - Rat - 9,600 mg/kg

Remarks: Cardiac:Pulse rate. Nutritional and Gross Metabolic:Weight loss or decreased weight gain.

LD50 Oral - Mouse - 6,000 mg/kg

Remarks: Cardiac:Pulse rate. Nutritional and Gross Metabolic:Weight loss or decreased weight gain.

LC50 Inhalation - Mouse - 2 h - 3911 ppm

Remarks: Behavioral: Excitement.

Dermal: No data available

LD50 Intraperitoneal - Rat - 3,593 mg/kg

LD50 Intraperitoneal - Mouse - 2,568 mg/kg

LD50 Subcutaneous - Mouse - 16.0 mg/kg Remarks: Drowsiness Behavioral:Ataxia.

LD50 Intraperitoneal - Dog - 3,100 mg/kg Remarks: Liver:Liver function tests impaired.

Skin corrosion/irritation

Skin - Rabbit

Result: Skin irritation - 24 h

Serious eve damage/eve irritation

No data available

Respiratory or skin sensitisation

No data available

Germ cell mutagenicity

No data available

Carcinogenicity

IARC: 3 - Group 3: Not classifiable as to its carcinogenicity to humans (1,1,1-Trichloroethane)

NTP: No component of this product present at levels greater than or equal to 0.1% is identified as a

known or anticipated carcinogen by NTP.

OSHA: No component of this product present at levels greater than or equal to 0.1% is identified as a

Sigma-Aldrich - 402877 Page 6 of 9

carcinogen or potential carcinogen by OSHA.

Reproductive toxicity

No data available

No data available

Specific target organ toxicity - single exposure

No data available

Specific target organ toxicity - repeated exposure

No data available

Aspiration hazard

No data available

Additional Information

RTECS: Not available

burning sensation, Cough, wheezing, laryngitis, Shortness of breath, Headache, Nausea, Vomiting, Exposure to and/or consumption of alcohol may increase toxic effects., prolonged or repeated exposure can cause:, narcosis, Liver injury may occur., Kidney injury may occur.

12. ECOLOGICAL INFORMATION

12.1 Toxicity

Toxicity to fish LC50 - Pimephales promelas (fathead minnow) - 42.3 mg/l - 96 h

12.2 Persistence and degradability

No data available

12.3 Bioaccumulative potential

Bioaccumulation Lepomis macrochirus (Bluegill) - 28 d

- 0.0734 mg/l

Bioconcentration factor (BCF): 9

12.4 Mobility in soil

No data available

12.5 Results of PBT and vPvB assessment

PBT/vPvB assessment not available as chemical safety assessment not required/not conducted

12.6 Other adverse effects

No data available

13. DISPOSAL CONSIDERATIONS

13.1 Waste treatment methods

Product

Offer surplus and non-recyclable solutions to a licensed disposal company. Contact a licensed professional waste disposal service to dispose of this material.

Contaminated packaging

Dispose of as unused product.

14. TRANSPORT INFORMATION

DOT (US)

UN number: 2831 Class: 6.1 Packing group: III

Proper shipping name: 1,1,1-Trichloroethane

Reportable Quantity (RQ): 1000 lbs

Poison Inhalation Hazard: No

IMDG

Sigma-Aldrich - 402877 Page 7 of 9

UN number: 2831 Class: 6.1 Packing group: III EMS-No: F-A, S-A

Proper shipping name: 1,1,1-TRICHLOROETHANE

IATA

UN number: 2831 Class: 6.1 Packing group: III

Proper shipping name: 1,1,1-Trichloroethane

15. REGULATORY INFORMATION

SARA 302 Components

No chemicals in this material are subject to the reporting requirements of SARA Title III, Section 302.

SARA 313 Components

The following components are subject to reporting levels established by SARA Title III, Section 313:

CAS-No. Revision Date 71-55-6 2007-07-01

1,1,1-Trichloroethane

SARA 311/312 Hazards

Acute Health Hazard

Massachusetts Right To Know Components

CAS-No. Revision Date 1.1.1-Trichloroethane 71-55-6 2007-07-01

Pennsylvania Right To Know Components

CAS-No. Revision Date 1.1.1-Trichloroethane 71-55-6 2007-07-01

New Jersey Right To Know Components

CAS-No. Revision Date 1.1.1-Trichloroethane 71-55-6 2007-07-01

California Prop. 65 Components

This product does not contain any chemicals known to State of California to cause cancer, birth defects, or any other reproductive harm.

16. OTHER INFORMATION

Full text of H-Statements referred to under sections 2 and 3.

Acute Tox. Acute toxicity Eye Irrit. Eye irritation

H315 Causes skin irritation.

H319 Causes serious eye irritation.

H332 Harmful if inhaled.

Ozone Hazardous to the ozone layer

Skin Irrit. Skin irritation

HMIS Rating

Health hazard: 2
Chronic Health Hazard:
Flammability: 0
Physical Hazard 0

NFPA Rating

Health hazard: 2
Fire Hazard: 0
Reactivity Hazard: 0

Further information

Copyright 2016 Sigma-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use only. The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the

Sigma-Aldrich - 402877 Page 8 of 9

product. Sigma-Aldrich Corporation and its Affiliates shall not be held liable for any damage resulting from handling or from contact with the above product. See www.sigma-aldrich.com and/or the reverse side of invoice or packing slip for additional terms and conditions of sale.

Preparation Information

Sigma-Aldrich Corporation Product Safety – Americas Region 1-800-521-8956

Version: 4.10 Revision Date: 09/23/2016 Print Date: 07/13/2017

Sigma-Aldrich - 402877 Page 9 of 9

SAFETY DATA SHEET

Creation Date 28-Apr-2009 Revision Date 24-May-2017 Revision Number 3

1. Identification

Product Name Acetone

Cat No.: AC177170000; AC177170010; AC177170025; AC177170050;

AC177170100; AC177170250

Synonyms 2-Propanone

Recommended UseLaboratory chemicals.

Uses advised against Not for food, drug, pesticide or biocidal product use

Details of the supplier of the safety data sheet

Company

Fisher Scientific Acros Organics
One Reagent Lane One Reagent Lane
Fair Lawn, NJ 07410 Fair Lawn, NJ 07410

Tel: (201) 796-7100

Emergency Telephone Number

For information **US** call: 001-800-ACROS-01 / **Europe** call: +32 14 57 52 11 Emergency Number **US**:001-201-796-7100 / **Europe**: +32 14 57 52 99 **CHEMTREC** Tel. No.**US**:001-800-424-9300 / **Europe**:001-703-527-3887

2. Hazard(s) identification

Classification

This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200)

Flammable liquids Category 2
Serious Eye Damage/Eye Irritation Category 2
Specific target organ toxicity (single exposure) Category 3

Target Organs - Central nervous system (CNS).

Specific target organ toxicity - (repeated exposure) Category 2

Target Organs - Kidney, Liver, spleen, Blood.

Label Elements

Signal Word

Danger

Hazard Statements

Highly flammable liquid and vapor Causes serious eye irritation May cause drowsiness or dizziness

May cause damage to organs through prolonged or repeated exposure

Precautionary Statements

Prevention

Wash face, hands and any exposed skin thoroughly after handling

Do not breathe dust/fume/gas/mist/vapors/spray Use only outdoors or in a well-ventilated area

Keep away from heat/sparks/open flames/hot surfaces. - No smoking

Keep container tightly closed

Ground/bond container and receiving equipment

Use explosion-proof electrical/ventilating/lighting/equipment

Use only non-sparking tools

Take precautionary measures against static discharge

Wear protective gloves/protective clothing/eye protection/face protection

Keep cool

Response

Get medical attention/advice if you feel unwell

Inhalation

IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing

Call a POISON CENTER or doctor/physician if you feel unwell

Skir

IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower

Eyes

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing If eye irritation persists: Get medical advice/attention

Fire

In case of fire: Use CO2, dry chemical, or foam for extinction

Storage

Store in a well-ventilated place. Keep container tightly closed

Store locked up

Disposal

Dispose of contents/container to an approved waste disposal plant

Hazards not otherwise classified (HNOC)

Repeated exposure may cause skin dryness or cracking

3. Composition / information on ingredients

Component	CAS-No	Weight %
Acetone	67-64-1	>95

4. First-aid measures

Eye Contact Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes.

Obtain medical attention.

Skin Contact Wash off immediately with plenty of water for at least 15 minutes. Obtain medical attention.

Inhalation Move to fresh air. If breathing is difficult, give oxygen. Get medical attention immediately if

symptoms occur.

Ingestion Do not induce vomiting. Obtain medical attention.

Most important symptoms/effects

Breathing difficulties. Symptoms of overexposure may be headache, dizziness, tiredness,

nausea and vomiting: May cause pulmonary edema

Notes to Physician

Treat symptomatically

5. Fire-fighting measures

CO₂, dry chemical, dry sand, alcohol-resistant foam. Water spray. Cool closed containers **Suitable Extinguishing Media**

exposed to fire with water spray.

Unsuitable Extinguishing Media Water may be ineffective

-20 °C / -4 °F **Flash Point**

Method -Closed cup

Autoignition Temperature 465 °C / 869 °F

Explosion Limits

12.8 vol % Upper Lower 2.5 vol % **Oxidizing Properties** Not oxidising

Sensitivity to Mechanical Impact No information available Sensitivity to Static Discharge No information available

Specific Hazards Arising from the Chemical

Flammable. Risk of ignition. Containers may explode when heated. Vapors may form explosive mixtures with air. Vapors may travel to source of ignition and flash back.

Hazardous Combustion Products

Carbon monoxide (CO) Carbon dioxide (CO2) Formaldehyde Methanol

Protective Equipment and Precautions for Firefighters

As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear. Thermal decomposition can lead to release of irritating gases and vapors.

NFPA

Health	Flammability	Instability	Physical hazards
1	3	0	N/A

Accidental release measures

Personal Precautions

Use personal protective equipment. Ensure adequate ventilation. Remove all sources of ignition. Take precautionary measures against static discharges. Keep people away from and upwind of spill/leak. Avoid contact with skin, eyes and inhalation of vapors.

Environmental Precautions

Should not be released into the environment.

Methods for Containment and Clean Remove all sources of ignition. Take precautionary measures against static discharges. Up

Soak up with inert absorbent material. Keep in suitable, closed containers for disposal. Use spark-proof tools and explosion-proof equipment.

7. Handling and storage

Handling

Do not breathe vapors or spray mist. Do not get in eyes, on skin, or on clothing. Wear personal protective equipment. Ensure adequate ventilation. Keep away from open flames, hot surfaces and sources of ignition. Take precautionary measures against static discharges. Use only non-sparking tools. Use explosion-proof equipment. To avoid ignition of vapors by static electricity discharge, all metal parts of the equipment must be grounded.

Storage

Flammables area. Keep containers tightly closed in a dry, cool and well-ventilated place.

Keep away from heat and sources of ignition.

Revision Date 24-May-2017

Acetone

8. Exposure controls / personal protection

Exposure Guidelines

Component	ACGIH TLV	OSHA PEL	NIOSH IDLH	Mexico OEL (TWA)
Acetone	TWA: 250 ppm	(Vacated) TWA: 750 ppm	IDLH: 2500 ppm	TWA: 1000 ppm
	STEL: 500 ppm	(Vacated) TWA: 1800 mg/m ³	TWA: 250 ppm	TWA: 2400 mg/m ³
		(Vacated) STEL: 2400	TWA: 590 mg/m ³	STEL: 1260 ppm
		mg/m³		STEL: 3000 mg/m ³
		(Vacated) STEL: 1000 ppm		_
		TWA: 1000 ppm		
		TWA: 2400 mg/m ³		

Legend

ACGIH - American Conference of Governmental Industrial Hygienists

OSHA - Occupational Safety and Health Administration

NIOSH IDLH: The National Institute for Occupational Safety and Health Immediately Dangerous to Life or Health

Engineering Measures Ensure adequate ventilation, especially in confined areas. Ensure that eyewash stations

and safety showers are close to the workstation location. Use explosion-proof

electrical/ventilating/lighting/equipment.

Personal Protective Equipment

Eye/face Protection Wear appropriate protective eyeglasses or chemical safety goggles as described by

OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard

EN166.

Skin and body protectionWear appropriate protective gloves and clothing to prevent skin exposure.

Respiratory Protection Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European Standard

EN 149. Use a NIOSH/MSHA or European Standard EN 149 approved respirator if exposure limits are exceeded or if irritation or other symptoms are experienced.

Hygiene MeasuresHandle in accordance with good industrial hygiene and safety practice.

9. Physical and chemical properties

 Melting Point/Range
 -95 °C / -139 °F

 Boiling Point/Range
 56 °C / 132.8 °F

 Flash Point
 -20 °C / -4 °F

 Method Closed cup

Evaporation Rate 5.6 (Butyl Acetate = 1.0)

Flammability (solid,gas)

Not applicable

Flammability or explosive limits

 Upper
 12.8 vol %

 Lower
 2.5 vol %

Vapor Pressure 247 mbar @ 20 °C

Vapor Density 2.0 Specific Gravity 0.790

Solubility Soluble in water
Partition coefficient; n-octanol/water No data available
Autoignition Temperature 465 °C / 869 °F

Decomposition Temperature > 4°C

Viscosity 0.32 mPa.s @ 20 °C

Acetone

Molecular FormulaC3 H6 OMolecular Weight58.08Refractive index1.358 - 1.359

10. Stability and reactivity

Reactive Hazard None known, based on information available

Stability Stable under normal conditions.

Conditions to Avoid Heat, flames and sparks. Incompatible products. Keep away from open flames, hot

surfaces and sources of ignition.

Incompatible Materials Strong oxidizing agents, Strong reducing agents, Strong bases, Peroxides, Halogenated

compounds, Alkali metals, Amines

Hazardous Decomposition Products Carbon monoxide (CO), Carbon dioxide (CO2), Formaldehyde, Methanol

Hazardous Polymerization Hazardous polymerization does not occur.

Hazardous Reactions None under normal processing.

11. Toxicological information

Acute Toxicity

Product Information

Component Information

Component	LD50 Oral	LD50 Dermal	LC50 Inhalation
Acetone	5800 mg/kg (Rat)	> 15800 mg/kg (rabbit)	76 mg/l, 4 h, (rat)
		> 7400 mg/kg (rat)	

Toxicologically Synergistic Products

Carbon tetrachloride; Chloroform; Trichloroethylene; Bromodichloromethane; Dibromochloromethane; N-nitrosodimethylamine; 1,1,2-Trichloroethane; Styrene;

Acetonitrile, 2,5-Hexanedione; Ethanol; 1,2-Dichlorobenzene

Delayed and immediate effects as well as chronic effects from short and long-term exposure

Irritation Irritating to eyes and skin

Sensitization No information available

Carcinogenicity The table below indicates whether each agency has listed any ingredient as a carcinogen.

Component	CAS-No	IARC	NTP	ACGIH	OSHA	Mexico
Acetone	67-64-1	Not listed	Not listed	Not listed	Not listed	Not listed

Mutagenic Effects No information available

Reproductive Effects

No information available.

Developmental Effects

No information available.

Teratogenicity No information available.

STOT - single exposureSTOT - repeated exposure
Central nervous system (CNS)
Kidney Liver spleen Blood

Aspiration hazard No information available

Symptoms / effects,both acute and Symptoms of overexposure may be headache, dizziness, tiredness, nausea and vomiting:

delayed May cause pulmonary edema

Endocrine Disruptor Information No information available

Revision Date 24-May-2017

Acetone

Other Adverse Effects

The toxicological properties have not been fully investigated.

12. Ecological information

Ecotoxicity

.

Component	Freshwater Algae	Freshwater Fish	Microtox	Water Flea
Acetone	NOEC = 430 mg/l (algae; 96	Oncorhynchus mykiss: LC50	EC50 = 14500 mg/L/15 min	EC50 = 8800 mg/L/48h
	h)	= 5540 mg/l 96h		EC50 = 12700 mg/L/48h
	·	Alburnus alburnus: LC50 =		EC50 = 12600 mg/L/48h
		11000 mg/l 96h		
		Leuciscus idus: LC50 =		
		11300 mg/L/48h		
		Salmo gairdneri: LC50 =		
		6100 mg/L/24h		

Persistence and Degradability

Persistence is unlikely based on information available.

Bioaccumulation/ Accumulation

No information available.

Mobility

Will likely be mobile in the environment due to its volatility.

Component	log Pow
Acetone	-0.24

13. Disposal considerations

Waste Disposal Methods

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. Chemical waste generators must also consult local, regional, and national hazardous waste regulations to ensure complete and accurate classification.

Component	RCRA - U Series Wastes	RCRA - P Series Wastes	
Acetone - 67-64-1	U002	-	

14. Transport information

DOT

UN-No UN1090
Proper Shipping Name ACETONE

Hazard Class 3
Packing Group

TDG

UN-No UN1090
Proper Shipping Name ACETONE

Hazard Class 3
Packing Group ||

<u>IATA</u>

UN-No UN1090
Proper Shipping Name ACETONE

Hazard Class 3
Packing Group

IMDG/IMO

UN-No UN1090
Proper Shipping Name ACETONE

Hazard Class 3
Packing Group ||

15. Regulatory information

International Inventories

Component TSCA D	DSL NDSL EINECS	ELINCS NLP PICCS	ENCS AICS IE	ECSC KECL
------------------	-----------------	------------------	--------------	-----------

Acetone	Χ	Χ	-	200-662-2	-	Χ	Χ	Χ	Χ	Х

Legend:

- X Listed
- E Indicates a substance that is the subject of a Section 5(e) Consent order under TSCA.
- F Indicates a substance that is the subject of a Section 5(f) Rule under TSCA.
- N Indicates a polymeric substance containing no free-radical initiator in its inventory name but is considered to cover the designated polymer made with any free-radical initiator regardless of the amount used.
- P Indicates a commenced PMN substance
- R Indicates a substance that is the subject of a Section 6 risk management rule under TSCA.
- S Indicates a substance that is identified in a proposed or final Significant New Use Rule
- T Indicates a substance that is the subject of a Section 4 test rule under TSCA.
- XU Indicates a substance exempt from reporting under the Inventory Update Rule, i.e. Partial Updating of the TSCA Inventory Data Base Production and Site Reports (40 CFR 710(B).
- Y1 Indicates an exempt polymer that has a number-average molecular weight of 1,000 or greater.
- Y2 Indicates an exempt polymer that is a polyester and is made only from reactants included in a specified list of low concern reactants that comprises one of the eligibility criteria for the exemption rule.

U.S. Federal Regulations

TSCA 12(b) Not applicable

SARA 313 Not applicable

SARA 311/312 Hazard Categories

Acute Health Hazard Yes
Chronic Health Hazard Yes
Fire Hazard Yes
Sudden Release of Pressure Hazard No
Reactive Hazard No

CWA (Clean Water Act) Not applicable

Clean Air Act Not applicable

OSHA Occupational Safety and Health Administration

Not applicable

CERCLA

This material, as supplied, contains one or more substances regulated as a hazardous substance under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302)

Component	Hazardous Substances RQs	CERCLA EHS RQs
Acetone	5000 lb	-

California Proposition 65

This product does not contain any Proposition 65 chemicals

U.S. State Right-to-Know

Regulations

	Component	Massachusetts	New Jersey	Pennsylvania	Illinois	Rhode Island
I	Acetone	X	X	X	-	X

U.S. Department of Transportation

Reportable Quantity (RQ): Y
DOT Marine Pollutant N
DOT Severe Marine Pollutant N

U.S. Department of Homeland Security

This product contains the following DHS chemicals:

Component	DHS Chemical Facility Anti-Terrorism Standard
Acetone	2000 lb STQ

Other International Regulations

Revision Date 24-May-2017

Mexico - Grade Serious risk, Grade 3

16. Other information

Prepared By Regulatory Affairs

Thermo Fisher Scientific

Email: EMSDS.RA@thermofisher.com

 Creation Date
 28-Apr-2009

 Revision Date
 24-May-2017

 Print Date
 24-May-2017

Revision Summary This document has been updated to comply with the US OSHA HazCom 2012 Standard

replacing the current legislation under 29 CFR 1910.1200 to align with the Globally

Harmonized System of Classification and Labeling of Chemicals (GHS).

Disclaimer

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text

End of SDS

Safety Data Sheet Revision Date: 03/05/18

www.restek.com

2 Letter ISO country code/language code: US/EN

1. IDENTIFICATION

Catalog Number / Product Name: 32011 / Aroclor® 1254 Standard

Company:

Address:

110 Benner Circle
Bellefonte, Pa. 16823

Phone#:

814-353-1300

 Phone#:
 814-353-1300

 Fax#:
 814-353-1309

Emergency#: 800-424-9300 (CHEMTREC) 703-527-3887 (Outside the US)

Email: www.restek.com

Revision Number: 12

Intended use: For Laboratory use only

2. HAZARD(S)IDENTIFICATION

Emergency Overview:

GHS Hazard Symbols:

GHS Flammable Liquid Category 2
Classification: Skin Corrosion/Irritation Category 2

Specific Target Organ Systemic Toxicity (STOT) - Repeated Exposure Category 2

Hazardous to the aquatic environment - Chronic Category 2

Specific Target Organ Systemic Toxicity (STOT) - Single Exposure Category 3

GHS Signal Danger

Word:

GHS Hazard: Highly flammable liquid and vapour.

Causes skin irritation.

May cause drowsiness or dizziness.

May cause damage to organs through prolonged or repeated exposure.

Toxic to aquatic life with long lasting effects.

GHS

Precautions:

Safety Keep away from heat/sparks/open flames/hot surfaces. – No smoking.

Precautions: Ground/bond container and receiving equipment.

Use explosion-proof electrical/ventilation and lighting equipment.

Use only non-sparking tools.

Take precautionary measures against static discharge. Do not breathe dust/fume/gas/mist/vapours/spray. Wash hands and skin thoroughly after handling. Use only outdoors or in a well-ventilated area.

Avoid release to the environment.

Wear protective gloves/protective clothing/eye protection/face protection.

First Aid IF ON SKIN: Wash with plenty of soap and water.

Measures: IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower.

IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.

Call a POISON CENTER or doctor/physician if you feel unwell.

Specific treatment see section 4.

If skin irritation occurs: Get medical advice/attention.

Take off contaminated clothing and wash it before reuse.

In case of fire: Use extinguishing media in section 5 for extinction.

32011 / Aroclor 1254 Mix

Page 1 of 6

Collect spillage.

Storage: Store in a well-ventilated place. Keep container tightly closed.

Store in a well-ventilated place. Keep cool.

Store locked up.

Disposal: Dispose of contents/container according to section 13 of the SDS.

Single Exposure Specific target organ toxicity - Single exposure - STOT SE 3: H336 May cause drowsiness or dizziness.

Target Organs:

Repeated Specific target organ toxicity - Repeated exposure - STOT RE 2: H373 May cause damage to organs through prolonged or repeated exposure. (C >= 5 %; Minimum classification, No information to prove exclusion of certain

Target Organs: routes of exposure)

3. COMPOSITION / INFORMATION ON INGREDIENT

Chemical Name	CAS#	EINEC #	% Composition
hexane	110-54-3	203-777-6	99.9
aroclor® 1254	11097-69-1		0.1

4. FIRST-AID MEASURES

Inhalation: Remove to fresh air. If breathing is difficult, have a trained individual administer oxygen.

Eyes: Flush eyes with plenty of water for at least 20 minutes retracting eyelids often. Tilt the head to

prevent chemical from transferring to the uncontaminated eye. Get immediate medical

attention.

Skin Contact: Wash with soap and water. Remove contaminated clothing and launder. Get medical

attention if irritation develops or persists.

Ingestion: Do not induce vomiting and seek medical attention immediately. Drink two glasses of water

or milk to dilute. Provide medical care provider with this SDS.

5. FIRE- FIGHTING MEASURES

Extinguishing Media: Use alcohol resistant foam, carbon dioxide, or dry chemical extinguishing

agents. Water spray or fog may also be effective for extinguishing if swept across the base of the fire. Water can also be used to absorb heat

and keep exposed material from being damaged by fire.

Fire and/or Explosion Hazards: Vapors may be ignited by heat, sparks, flames or other sources of

ignition at or above the low flash point giving rise to a Class B fire. Vapors are heavier than air and may travel to a source of ignition and

flash back

Fire Fighting Methods and Protection: Do not enter fire area without proper protection including self-contained

toxic breathing apparatus and full protective equipment. Fight fire from a safe distance and a protected location due to the potential of hazardous vapors and decomposition products. Flammable component(s) of this material may be lighter than water and burn while floating on the surface. Use water spray/fog for cooling. Flammable component(s) of this

material may be lighter than water and burn while floating on the surface.

Hazardous Combustion Products: Carbon dioxide, Carbon monoxide

6. ACCIDENTAL RELEASE MEASURES

Personal Precautions and Equipment: Exposure to the spilled material may be irritating or harmful. Follow

personal protective equipment recommendations found in Section 8 of this SDS. Additional precautions may be necessary based on special circumstances created by the spill including; the material spilled, the quantity of the spill, the area in which the spill occurred. Also consider the

expertise of employees in the area responding to the spill.

Methods for Clean-up: Prevent the spread of any spill to minimize harm to human health and the

environment if safe to do so. Wear complete and proper personal protective equipment following the recommendation of Section 8 at a minimum. Dike with suitable absorbent material like granulated clay. Gather and store in a sealed container pending a waste disposal

evaluation.

7. HANDLING AND STORAGE

Handling Technical Measures and Precautions: Harmful or irritating material. Avoid contacting and avoid

breathing the material. Use only in a well ventilated area. Use

spark-proof tools and explosion-proof equipment

Storage Technical Measures and Conditions: Store in a cool dry ventilated location. Isolate from

incompatible materials and conditions. Keep container(s)

closed. Keep away from sources of ignition

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

United States: Chemical Name	CAS No.	IDLH	ACGIH STEL	ACGIH TLV-TWA	OSHA Exposure Limit
hexane	110-54-3	1100 ppm IDLH (10%	1000 ppm	50 ppm TWA	500 ppm TWA; 1800 mg/m3 TWA
aroclor® 1254	11097-69-1	LEL) 5 mg/m3 IDLH	None Known	0.5 mg/m3 TWA	0.5 mg/m3 TWA

Personal Protection:

Engineering Measures: Local exhaust ventilation is recommended when generating excessive levels of

vapours from handling or thermal processing.

Respiratory Protection: Respiratory protection may be required to avoid overexposure when handling this

product. General or local exhaust ventilation is the preferred means of protection.

Use a respirator if general room ventilation is not available or sufficient to

eliminate symptoms.

Eve Protection: Wear chemically resistant safety glasses with side shields when handling this

product. Do not wear contact lenses.

Wear protective gloves. Inspect gloves for chemical break-through and replace at Skin Protection:

regular intervals. Clean protective equipment regularly. Wash hands and other exposed areas with mild soap and water before eating, drinking, and when

leaving work

9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance, color: No data available

Odor: Mild **Physical State:** Liquid

Not applicable pH: Vapor Pressure: No data available Vapor Density: 2.97 (air = 1)**Boiling Point (°C):** 68.73 °C (HSDB) Melting Point (°C): -95 °C Melting Point

Flash Point (°F): -8

Flammability: Highly Flammable Extremely Flammable

Upper Flammable/Explosive Limit, % in air: No data available Lower Flammable/Explosive Limit, % in air: No data available Autoignition Temperature (°C): No data available deg C **Decomposition Temperature (°C):** No data available Specific Gravity: 0.672 g/cm3 at 15 °C **Evaporation Rate:** No data available **Odor Threshold:** No data available Solubility: Negligible: 0-1%

Partition Coefficient: n-octanol in water: No data available

VOC % by weight:

Molecular Weight: No data available

10. STABILITY AND REACTIVITY

Stability: Stable under normal conditions.

Conditions to Avoid: None known.

Materials to Avoid / Chemical Incompatiability: Strong oxidizing agents **Hazardous Decomposition Products:** No data available

11. TOXICOLOGICAL INFORMATION

Routes of Entry: Inhalation Contact Absorption Ingestion Target Organs Potentially Affected By Exposure: Eyes, Central nervous system stimulation,

32011 / Aroclor 1254 Mix Page 3 of 6 Respiratory Tract, Skin, Peripheral Nervous System

Chemical Interactions That Change Toxicity: None Known

Immediate (Acute) Health Effects by Route of Exposure:

Inhalation Irritation: Can cause severe respiratory irritation, dizziness, weakness, fatigue, nausea,

headache and possible unconsciousness.

Skin Contact: Can cause moderate skin irritation, defatting, and dermatitis. Not likely to cause

permanent damage.

Skin Absorption: May cause irritation and minor systemic damage. Harmful if absorbed through

the skin.

Eye Contact: Can cause moderate irritation, tearing and reddening, but not likely to

permanently injure eye tissue.

Ingestion Irritation: Irritating to mouth, throat, and stomach. Can cause abdominal discomfort,

nausea, vomiting and diarrhea. Harmful if swallowed.

Ingestion Toxicity: Toxic if swallowed. May cause target organ failure and/or death.

Long-Term (Chronic) Health Effects:

Carcinogenicity: No data.

Reproductive and Developmental Toxicity:No data available to indicate product or any components present at greater than 0.1% may cause birth defects.

Upon prolonged and/or repeated exposure, can cause

severe respiratory irritation, dizziness, weakness, fatigue,

nausea, headache and possible unconsciousness.
Upon prolonged or repeated contact, can cause

moderate skin irritation, defatting, and dermatitis. Not

likely to cause permanent damage.

Skin Absorption: Upon prolonged or repeated exposure, harmful if

absorbed through the skin. May cause minor systemic

damage.

Component Toxicological Data:

NIOSH:

Inhalation:

Skin Contact:

Chemical Name CAS No. LD50/LC50

Aroclor 1254 11097-69-1 Oral LD50 Rat 1010 mg/kg

n-Hexane 110-54-3 Dermal LD50 Rabbit 3000 mg/kg; Inhalation

LC50 Rat 48000 ppm 4 h; Oral LD50 Rat 25

Page 4 of 6

g/kg

Component Carcinogenic Data:

OSHA:

Chemical Name CAS No.

Aroclor 1254 11097-69-1 Present

ACGIH:

Chemical Name CAS No.

Chlorodiphenyl (54% chlorine) 11097-69-1 A3 - Confirmed Animal Carcinogen with

Unknown Relevance to Humans

NIOSH:

Chemical Name CAS No.

Chlorodiphenyl (54% chlorine) 11097-69-1 potential occupational carcinogen

NTP:

Chemical Name CAS No.

No data available

IARC:

Chemical Name CAS No. Group No.

12. ECOLOGICAL INFORMATION

Overview: Moderate ecological hazard. This product may be dangerous

to plants and/or wildlife.

Mobility:No dataPersistence:No dataBioaccumulation:No dataDegradability:No data

Ecological Toxicity Data: No data available

32011 / Aroclor 1254 Mix

13. DISPOSAL CONSIDERATIONS

Waste Description of Spent Product: Spent or discarded material is a hazardous waste. Mixing

spent or discarded material with other materials may render the mixture hazardous. Perform a hazardous

waste determination on mixtures.

Disposal Methods: Dispose of by incineration following Federal, State, Local,

or Provincial regulations.

Waste Disposal of Packaging: Comply with all Local, State, Federal, and Provincial

Environmental Regulations.

14. TRANSPORTATION INFORMATION

United States:

DOT Proper Shipping Name:
UN Number:
UN1208
Hazard Class:
Packing Group:
Hexanes
UN1208
II

International:

IATA Proper Shipping Name:HexanesUN Number:UN1208Hazard Class:3Packing Group:II

Marine Pollutant: Yes

Chemical Name	CAS#	Marine Pollutant	Severe Marine Pollutant
hexane	110-54-3	Υ	N

15. REGULATORY INFORMATION

United States: Chemical Name	CAS#	CERCLA	SARA 313	SARA EHS 313	TSCA
hexane	110-54-3	Χ	Χ	-	Χ
aroclor® 1254	11097-69-1	Χ	-	-	-

The following chemicals are listed on CA Prop 65:

State Right To Know Listing:

Chemical Name	CAS#	New Jersey	Massachusetts	Pennsylvania	California
hexane	110-54-3	X	Χ	X	
aroclor® 1254	11097-69-1	-	X	Χ	X

16. OTHER INFORMATION

Prior Version Date: 09/20/16

Other Information: Any changes to the SDS compared to previous versions are marked by a vertical

line in front of the concerned paragraph.

References: No data available

Disclaimer: Restek Corporation provides the descriptions, data and information contained

herein in good faith but makes no representation as to its comprehensiveness or accuracy. It is provided for your guidance only. Because many factors may affect processing or application/use, Restek Corporation recommends you perform an assessment to determine the suitability of a product for your particular purpose prior to use. No warranties of any kind, either expressed or implied, including fitness for a particular purpose, are made regarding products described, data or information set forth. In no case shall the descriptions, information, or data provided be considered a part of our terms and conditions of sale. Further, the descriptions, data and information furnished hereunder are given gratis. No obligation or liability for the description, data and information given are assumed. All such being given

and accepted at your risk.

Safety Data Sheet Revision Date: 08/01/19

www.restek.com

2 Letter ISO country code/language code: US/EN

1. IDENTIFICATION

Catalog Number / Product Name: 31270 / Benzo(a)anthracene Standard

Company: Restek Corporation
Address: 110 Benner Circle
Bellefonte, Pa. 16823
Phone#: 814-353-1300

Fax#: 814-353-1309 Emergency#: 800-424-9300 (CHEMTREC) 703-527-3887 (Outside the US)

Email: www.restek.com

Revision Number: 12

Intended use: For Laboratory use only

2. HAZARD(S)IDENTIFICATION

Emergency Overview:

GHS Hazard Symbols:

Carcinogenicity Category 1B

Classification: Specific Target Organ Systemic Toxicity (STOT) - Single Exposure Category 1

Flammable Liquid Category 2

Hazardous to the aquatic environment - Acute Category 2 Hazardous to the aquatic environment - Chronic Category 2

Acute Toxicity - Dermal Category 3 Acute Toxicity - Oral Category 3

GHS Signal

Word:

GHS

Danger

GHS Hazard: Highly flammable liquid and vapour.

Toxic if swallowed or in contact with skin.

May cause cancer.

Causes damage to organs. Toxic to aquatic life..

Toxic to aquatic life with long lasting effects.

GHS

Precautions:

Safety Obtain special instructions before use.

Precautions: Do not handle until all safety precautions have been read and understood.

Keep away from heat/sparks/open flames/hot surfaces. – No smoking.

Keep container tightly closed.

Ground/bond container and receiving equipment.

Use explosion-proof electrical/ventilation and lighting equipment.

Use only non-sparking tools.

Take precautionary measures against static discharge. Do not breathe dust/fume/gas/mist/vapours/spray. Wash hands and skin thoroughly after handling. Do not eat, drink or smoke when using this product.

Avoid release to the environment.

Wear protective gloves/protective clothing/eye protection/face protection.

First Aid IF SWALLOWED: Immediately call a POISON CENTER/doctor/....

Measures: IF ON SKIN: Wash with plenty of soap and water.

IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower.

IF exposed: Call a POISON CENTER or doctor/physician. IF exposed or concerned: Get medical advice/attention.

Call a POISON CENTER or doctor/physician if you feel unwell.

Specific treatment see section 4.

Rinse mouth.

Take off immediately all contaminated clothing and wash it before reuse.

In case of fire: Use extinguishing media in section 5 for extinction.

Collect spillage.

Storage: Keep container tightly closed.

Store in a well-ventilated place. Keep cool.

Store locked up.

Disposal: Dispose of contents/container according to section 13 of the SDS.

Single Exposure Target Organs: Specific target organ toxicity - Single exposure - STOT SE 1: H370 Causes damage to organs. (C >= 10 %; No information to prove exclusion of certain routes of exposure); Specific target organ toxicity - Single exposure - STOT SE 2: H371 May cause damage to organs. (3 % <= C <10 %; Concentration limits for acute toxicity cannot

be translated into GHS from the DSD especially when minimum classifications are given)

Repeated

Exposure Target Organs:

3. COMPOSITION / INFORMATION ON INGREDIENT

No data available

Chemical Name	CAS#	EINEC #	% Composition
methanol	67-56-1	200-659-6	99.9
benz (a) anthracene	56-55-3	200-280-6	0.1

4. FIRST-AID MEASURES

Inhalation: Remove to fresh air. If breathing is difficult, have a trained individual administer oxygen. If not

breathing, give artificial respiration and have a trained individual administer oxygen. Get

medical attention immediately

Eyes: Flush eyes with plenty of water for at least 20 minutes retracting eyelids often. Tilt the head to

prevent chemical from transferring to the uncontaminated eye. Get immediate medical

attention.

Skin Contact: Wash with soap and water. Remove contaminated clothing and launder. Get medical

attention if irritation develops or persists.

Ingestion: Do not induce vomiting and seek medical attention immediately. Drink two glasses of water

or milk to dilute. Provide medical care provider with this SDS.

5. FIRE- FIGHTING MEASURES

Extinguishing Media: Use alcohol resistant foam, carbon dioxide, or dry chemical extinguishing

agents. Water may be ineffective but water spray can be used extinguish a fire if swept across the base of the flames. Water can absorb heat and

keep exposed material from being damaged by fire.

Fire and/or Explosion Hazards: Vapors may be ignited by sparks, flames or other sources of ignition if

material is above the flash point giving rise to a fire (Class B). Vapors are heavier than air and may travel to a source of ignition and flash back.

Fire Fighting Methods and Protection: Do not enter fire area without proper protection including self-contained

breathing apparatus and full protective equipment. Fight fire from a safe distance and a protected location due to the potential of hazardous vapors and decomposition products. Flammable component(s) of this material may be lighter than water and burn while floating on the surface.

Hazardous Combustion Products: Carbon dioxide, Carbon monoxide

6. ACCIDENTAL RELEASE MEASURES

Personal Precautions and Equipment:

Exposure to the spilled material may be severely irritating or toxic. Follow personal protective equipment recommendations found in Section 8 of this SDS. Personal protective equipment needs must be evaluated based on information provided on this sheet and the special circumstances created by the spill including; the material spilled, the quantity of the spill, the area in which the spill occurred, and the expertise of employees in the

area responding to the spill. Never exceed any occupational exposure

limits.

Methods for Clean-up: Prevent the spread of any spill to minimize harm to human health and the

environment if safe to do so. Wear complete and proper personal protective equipment following the recommendation of Section 8 at a minimum. Dike with suitable absorbent material like granulated clay. Gather and store in a sealed container pending a waste disposal

evaluation.

7. HANDLING AND STORAGE

Handling Technical Measures and Precautions: Toxic or severely irritating material. Avoid contacting and avoid

breathing the material. Use only in a well ventilated area. Use

spark-proof tools and explosion-proof equipment

Storage Technical Measures and Conditions: Store in a cool dry ventilated location. Isolate from

incompatible materials and conditions. Keep container(s)

closed. Keep away from sources of ignition

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

United States: Chemical Name	CAS No.	IDLH	ACGIH STEL	ACGIH TLV-TWA	OSHA Exposure Limit
methanol	67-56-1	6000 ppm IDLH	250 ppm STEL	200 ppm TWA	200 ppm TWA; 260 mg/m3 TWA
benz (a) anthracene	56-55-3	Not established	None Known	Not established	No data available

Personal Protection:

Engineering Measures: Local exhaust ventilation is recommended when generating excessive levels of

vapours from handling or thermal processing.

Respiratory Protection: Respiratory protection may be required to avoid overexposure when handling this

product. General or local exhaust ventilation is the preferred means of protection. Use a respirator if general room ventilation is not available or sufficient to eliminate symptoms. If an exposure limit is exceeded or if an operator is experiencing symptoms of inhalation overexposure as explained in Section 3,

provide respiratory protection.

Eve Protection: Wear chemically resistant safety glasses with side shields when handling this

product. Do not wear contact lenses.

Skin Protection: Wear protective gloves. Inspect gloves for chemical break-through and replace at

regular intervals. Clean protective equipment regularly. Wash hands and other exposed areas with mild soap and water before eating, drinking, and when

leaving work

9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance, color: No data available

Odor: Mild

Physical State: No data available pH: Not applicable **Vapor Pressure:** No data available Vapor Density: 1.1 (air = 1)

438 °C Boiling Point (at 1013.25 hPa) 64.7 °C at 760 **Boiling Point (°C):**

mmHg (HSDB)

-98 °C Melting Point (°C): Flash Point (°F): 52

Flammability: Highly Flammable

Upper Flammable/Explosive Limit, % in air: 36 Lower Flammable/Explosive Limit, % in air: 6

Autoignition Temperature (°C): 464 deg C **Decomposition Temperature (°C):** No data available

Specific Gravity: 0.791 - 0.792 g/cm3 at 20 °C

Evaporation Rate: No data available Odor Threshold: No data available Solubility: Moderate: 50-99%

Partition Coefficient: n-octanol in water: No data available

VOC % by weight: 99.9 **Molecular Weight:** 32.04

10. STABILITY AND REACTIVITY

Stability: Stable under normal conditions.

Conditions to Avoid: None known.

Materials to Avoid / Chemical Incompatiability: Strong oxidizing agents

Hazardous Decomposition Products: Carbon dioxide Carbon monoxide

11. TOXICOLOGICAL INFORMATION

Routes of Entry: Inhalation, Skin Contact, Eye Contact, Ingestion

Target Organs Potentially Affected By Exposure: Eyes, Central nervous system stimulation, Skin, GI

Tract, Respiratory Tract

Chemical Interactions That Change Toxicity: None Known

Immediate (Acute) Health Effects by Route of Exposure:

Inhalation Irritation: Can cause moderate respiratory irritation, dizziness, weakness, fatigue, nausea

and headache.

Inhalation Toxicity: Harmful! Can cause systemic damage (see "Target Organs)Methanol can cause

central nervous system depression and overexposure can cause damage to the

optic nerve resulting in visual impairment or blindness.

Skin Contact: Can cause moderate skin irritation, defatting, and dermatitis. Not likely to cause

permanent damage.

Eye Contact: Can cause moderate irritation, tearing and reddening, but not likely to

permanently injure eye tissue.

Ingestion Irritation: Irritating to mouth, throat, and stomach. Can cause abdominal discomfort,

nausea, vomiting and diarrhea. Highly toxic and may be fatal if swallowed.

Ingestion Toxicity: Toxic if swallowed. May cause target organ failure and/or death. May be fatal if

swallowed.

Long-Term (Chronic) Health Effects:

Carcinogenicity: Contains a probable or known human carcinogen.

Reproductive and Developmental Toxicity:No data available to indicate product or any components present at greater than 0.1% may cause birth defects.

Upon prolonged and/or repeated exposure, can cause moderate respiratory irritation, dizziness, weakness, fatigue,

nausea and headache.Harmful! Can cause systemic damage upon prolonged and/or repeated exposure (see

"Target Organs)

Skin Contact: Upon prolonged or repeated contact, can cause

moderate skin irritation, defatting, and dermatitis. Not

likely to cause permanent damage.

Ingestion: Toxic if swallowed. May cause target organ failure

and/or death.

Component Toxicological Data:

NIOSH:

Inhalation:

Chemical Name CAS No. LD50/LC50

Methanol 67-56-1 Inhalation LC50 Rat 22500 ppm 8 h

Component Carcinogenic Data:

OSHA:

Chemical Name CAS No.

Benz[a]anthracene 56-55-3 Present

ACGIH:

Chemical Name CAS No.

Benz[a]anthracene 56-55-3 A2 - Suspected Human Carcinogen

NIOSH:

Chemical Name CAS No.

No data available

NTP:

Chemical Name CAS No.

No data available

IARC:

Chemical Name CAS No. Group No.

Monograph 92 [2010]; 56-55-3

Supplement 7 [1987]; Monograph

32 [1983]

Group 2B

12. ECOLOGICAL INFORMATION

Overview: Moderate ecological hazard. This product may be dangerous

to plants and/or wildlife.

Mobility:No dataPersistence:No dataBioaccumulation:No data

Degradability:Biodegrades slowly.Ecological Toxicity Data:No data available

13. DISPOSAL CONSIDERATIONS

Waste Description of Spent Product: Spent or discarded material is a hazardous waste. Mixing

spent or discarded material with other materials may render the mixture hazardous. Perform a hazardous

waste determination on mixtures.

Dispose of by incineration following Federal, State, Local,

or Provincial regulations.

Waste Disposal of Packaging: Comply with all Local, State, Federal, and Provincial

Environmental Regulations.

14. TRANSPORTATION INFORMATION

United States:

Disposal Methods:

DOT Proper Shipping Name:
UN Number:
Hazard Class:
Packing Group:

Methanol
UN1230
3
II

International:

IATA Proper Shipping Name:MethanolUN Number:UN1230Hazard Class:3(6.1)Packing Group:II

Marine Pollutant: No

Chemical Name	CAS#	Marine Pollutant	Severe Marine Pollutant
No data available			

15. REGULATORY INFORMATION

United States: Chemical Name	CAS#	CERCLA	SARA 313	SARA EHS 313	TSCA
methanol	67-56-1	Χ	Χ	-	X
benz (a) anthracene	56-55-3	Χ	Χ	-	Χ

The following chemicals are listed on CA Prop 65:

The femaling enemies are necessary extrap eet				
Chemical Name	CAS#	Regulation		
Benz[a]anthracene	56-55-3	Prop 65 Cancer		
Methanol	67-56-1	Prop 65 Devolop Tox		

State Right To Know Listing:

Chemical Name	CAS#	New Jersey	Massachusetts	Pennsylvania	California
methanol	67-56-1	Χ	Х	Х	Χ
benz (a) anthracene	56-55-3	X	Х	Χ	Χ

16. OTHER INFORMATION

Prior Version Date: 08/13/18

Other Information: Any changes to the SDS compared to previous versions are marked by a vertical

line in front of the concerned paragraph.

References: Disclaimer:

No data available

and accepted at your risk.

Restek Corporation provides the descriptions, data and information contained herein in good faith but makes no representation as to its comprehensiveness or accuracy. It is provided for your guidance only. Because many factors may affect processing or application/use, Restek Corporation recommends you perform an assessment to determine the suitability of a product for your particular purpose prior to use. No warranties of any kind, either expressed or implied, including fitness for a particular purpose, are made regarding products described, data or information set forth. In no case shall the descriptions, information, or data provided be considered a part of our terms and conditions of sale. Further, the descriptions, data and information furnished hereunder are given gratis. No obligation or liability

for the description, data and information given are assumed. All such being given

SAFETY DATA SHEET

Benzo[a]pyrene

According to Regulation (EC) No 1907/2006, Annex II, as amended. Commission Regulation (EU) No 2015/830 of 28 May 2015.

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1. Product identifier

Product name Benzo[a]pyrene

Product number FB18224

Synonyms; trade names Benzo[a]pyrene, 3,4-Benz[a]pyrene, 3,4-Benzopyrene

CAS number 50-32-8

EU index number 601-032-00-3

EC number 200-028-5

1.2. Relevant identified uses of the substance or mixture and uses advised against

Identified usesLaboratory reagent. Manufacture of substances. Research and development.

1.3. Details of the supplier of the safety data sheet

Supplier Carbosynth Ltd

8&9 Old Station Business Park

Compton Berkshire RG20 6NE

UK

+44 1635 578444 +44 1635 579444 info@carbosynth.com

1.4. Emergency telephone number

Emergency telephone +44 7887 998634

SECTION 2: Hazards identification

2.1. Classification of the substance or mixture

Classification (EC 1272/2008)

Physical hazards Not Classified

Health hazards Skin Sens. 1 - H317 Muta. 1B - H340 Carc. 1B - H350 Repr. 1B - H360

Environmental hazards Aquatic Acute 1 - H400 Aquatic Chronic 1 - H410

2.2. Label elements

EC number 200-028-5

Pictogram

Benzo[a]pyrene

Signal word Danger

Hazard statements H317 May cause an allergic skin reaction.

H340 May cause genetic defects.

H350 May cause cancer.

H360 May damage fertility or the unborn child.

H410 Very toxic to aquatic life with long lasting effects.

Precautionary statements P201 Obtain special instructions before use.

P261 Avoid breathing dust.

P273 Avoid release to the environment.

P280 Wear protective gloves/ protective clothing/ eye protection/ face protection.

P302+P352 IF ON SKIN: Wash with plenty of water.

P308+P313 IF exposed or concerned: Get medical advice/ attention.
P333+P313 If skin irritation or rash occurs: Get medical advice/ attention.

2.3. Other hazards

No data available.

SECTION 3: Composition/information on ingredients

3.1. Substances

Product name Benzo[a]pyrene

EU index number 601-032-00-3

CAS number 50-32-8 **EC number** 200-028-5

Chemical formula C₂₀H₁₂

SECTION 4: First aid measures

4.1. Description of first aid measures

General information Get medical advice/attention if you feel unwell.

Inhalation Remove person to fresh air and keep comfortable for breathing. If breathing stops, provide

artificial respiration. When breathing is difficult, properly trained personnel may assist affected person by administering oxygen. Get medical attention if symptoms are severe or persist.

Ingestion Never give anything by mouth to an unconscious person. Rinse mouth thoroughly with water.

Give plenty of water to drink. Get medical attention if symptoms are severe or persist.

Skin contact Remove contaminated clothing. Rinse with water. Continue to rinse for at least 15 minutes.

Wash contaminated clothing before reuse. Get medical attention if symptoms are severe or

persist.

Eye contact Rinse immediately with plenty of water. Continue to rinse for at least 15 minutes. Get medical

attention if symptoms are severe or persist.

4.2. Most important symptoms and effects, both acute and delayed

General information See Section 11 for additional information on health hazards.

4.3. Indication of any immediate medical attention and special treatment needed

SECTION 5: Firefighting measures

5.1. Extinguishing media

Benzo[a]pyrene

Suitable extinguishing media Extinguish with alcohol-resistant foam, carbon dioxide, dry powder or water fog. Use fire-

extinguishing media suitable for the surrounding fire.

5.2. Special hazards arising from the substance or mixture

Specific hazards None known.

Hazardous combustion

products

Thermal decomposition or combustion products may include the following substances: Oxides

of carbon.

5.3. Advice for firefighters

Special protective equipment

for firefighters

Wear positive-pressure self-contained breathing apparatus (SCBA) and appropriate protective clothing. Firefighter's clothing conforming to European standard EN469 (including helmets, protective boots and gloves) will provide a basic level of protection for chemical incidents. Use protective equipment appropriate for surrounding materials.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Personal precautions Wear protective clothing as described in Section 8 of this safety data sheet. No action shall be

> taken without appropriate training or involving any personal risk. Do not touch or walk into spilled material. Avoid inhalation of dust and vapours. Provide adequate ventilation. Keep

unnecessary and unprotected personnel away from the spillage.

6.2. Environmental precautions

Environmental precautions Avoid discharge into drains or watercourses or onto the ground.

6.3. Methods and material for containment and cleaning up

Methods for cleaning up Wear protective clothing as described in Section 8 of this safety data sheet. Collect powder

> using special dust vacuum cleaner with particle filter or carefully sweep into suitable waste disposal containers and seal securely. Clear up spills immediately and dispose of waste safely. Flush contaminated area with plenty of water. Wash thoroughly after dealing with a

spillage. For waste disposal, see Section 13.

6.4. Reference to other sections

Reference to other sections For personal protection, see Section 8. See Section 11 for additional information on health

hazards. See Section 12 for additional information on ecological hazards. For waste disposal,

see Section 13.

SECTION 7: Handling and storage

7.1. Precautions for safe handling

Usage precautions Wear protective clothing as described in Section 8 of this safety data sheet. Avoid exposure -

> obtain special instructions before use. Wash hands thoroughly after handling. Provide adequate ventilation. Avoid generation and spreading of dust. Avoid contact with skin and

eyes. Avoid inhalation of dust and vapours.

7.2. Conditions for safe storage, including any incompatibilities

Storage precautions Keep container tightly closed. Store in a cool and well-ventilated place. Store away from

incompatible materials (see Section 10). Protect from light. Store at room temperature.

7.3. Specific end use(s)

Specific end use(s) The identified uses for this product are detailed in Section 1.2.

SECTION 8: Exposure Controls/personal protection

8.1. Control parameters

Occupational exposure limits

Benzo[a]pyrene

Long-term exposure limit (8-hour TWA): OSHA 0.2 mg/m3 OSHA = Occupational Safety and Health Administration.

8.2. Exposure controls

Appropriate engineering

controls

Provide adequate ventilation. Observe any occupational exposure limits for the product or

ingredients.

Eye/face protectionUnless the assessment indicates a higher degree of protection is required, the following

protection should be worn: Tight-fitting safety glasses. Personal protective equipment for eye

and face protection should comply with European Standard EN166.

Hand protection Wear protective gloves. To protect hands from chemicals, gloves should comply with

European Standard EN374.

Other skin and body

protection

Wear appropriate clothing to prevent repeated or prolonged skin contact.

Respiratory protection Respiratory protection complying with an approved standard should be worn if a risk

assessment indicates inhalation of contaminants is possible. Ensure all respiratory protective equipment is suitable for its intended use and is 'CE'-marked. Particulate filters should comply with European Standard EN143. Full face mask respirators with replaceable filter cartridges should comply with European Standard EN136. Half mask and quarter mask respirators with

replaceable filter cartridges should comply with European Standard EN140.

Environmental exposure

controls

Keep container tightly sealed when not in use.

SECTION 9: Physical and Chemical Properties

9.1. Information on basic physical and chemical properties

Appearance Solid.

Colour Light (or pale). Yellow. to Green-yellow.

Odour Mo data available.

Odour threshold No data available.

pH No data available.

Melting point No data available.

Initial boiling point and range No data available.

Flash point No data available.

Evaporation rate No data available.

Flammability (solid, gas) No data available.

Upper/lower flammability or

explosive limits

No data available.

Vapour pressure >133 Pa @ 20°C

Vapour density 8.7

Relative density 1.35 g/cm³

Solubility(ies) Insoluble in water. Soluble in the following materials: Ether. Benzene. Toluene Xylene. Almost

insoluble in the following materials: Alcohols.

Partition coefficient log Pow: 5.97

Benzo[a]pyrene

Auto-ignition temperatureNo data available.Decomposition TemperatureNo data available.ViscosityNo data available.Explosive propertiesNo data available.

9.2. Other information

Oxidising properties

Molecular weight 252.31

SECTION 10: Stability and reactivity

10.1. Reactivity

Reactivity No data available.

10.2. Chemical stability

Stability Stable under the prescribed storage conditions.

No data available.

10.3. Possibility of hazardous reactions

Possibility of hazardous

reactions

No data available.

10.4. Conditions to avoid

Conditions to avoid No data available.

10.5. Incompatible materials

Materials to avoid Oxidising agents.

10.6. Hazardous decomposition products

Hazardous decomposition

Oxides of carbon.

products

SECTION 11: Toxicological information

11.1. Information on toxicological effects

Acute toxicity - oral

Notes (oral LD50) Based on available data the classification criteria are not met.

Acute toxicity - dermal

Notes (dermal LD50) Based on available data the classification criteria are not met.

Acute toxicity - inhalation

Notes (inhalation LC₅₀) Based on available data the classification criteria are not met.

Skin corrosion/irritation

Animal data Based on available data the classification criteria are not met.

Serious eye damage/irritation

Serious eye damage/irritation Based on available data the classification criteria are not met.

Respiratory sensitisation

Respiratory sensitisation Based on available data the classification criteria are not met.

Skin sensitisation

Skin sensitisation May cause skin sensitisation or allergic reactions in sensitive individuals.

Benzo[a]pyrene

Germ cell mutagenicity

Genotoxicity - in vitro May cause genetic defects.

Carcinogenicity

Carcinogenicity May cause cancer.

IARC carcinogenicity IARC Group 1 Carcinogenic to humans.

Reproductive toxicity

Reproductive toxicity - fertility May damage fertility.

Reproductive toxicity -

development

May damage the unborn child.

Specific target organ toxicity - single exposure

STOT - single exposureNot classified as a specific target organ toxicant after a single exposure.

Specific target organ toxicity - repeated exposure

STOT - repeated exposure Not classified as a specific target organ toxicant after repeated exposure.

Aspiration hazard

Aspiration hazard Not relevant. Solid.

General information Avoid contact during pregnancy/while nursing. May damage fertility. May cause cancer after

repeated exposure. Risk of cancer depends on duration and level of exposure. May cause genetic defects. Dust may irritate the eyes and the respiratory system. The severity of the symptoms described will vary dependent on the concentration and the length of exposure.

Inhalation Dust may irritate the respiratory system. Frequent inhalation of dust over a long period of time

increases the risk of developing lung diseases.

Ingestion May cause sensitisation or allergic reactions in sensitive individuals.

Skin contact May cause skin sensitisation or allergic reactions in sensitive individuals. Prolonged contact

may cause dryness of the skin.

Eye contact Dust may cause slight irritation.

Route of exposure Ingestion Inhalation Skin and/or eye contact

Target organs No specific target organs known.

Medical considerations Skin disorders and allergies.

RTECS # DJ3675000

SECTION 12: Ecological Information

Ecotoxicity Very toxic to aquatic life with long lasting effects.

12.1. Toxicity

Acute aquatic toxicity

LE(C)₅₀ $0.1 < L(E)C50 \le 1$

Acute toxicity - aquatic

invertebrates

EC₅₀, 48 hour: 0.25 mg/l, Daphnia magna

Acute toxicity - aquatic plants EC₅₀, 72 hour: 0.02 mg/l, Pseudokirchneriella subcapitata

EC₅₀, 72 hour: 0.015 mg/l, Selenastrum capricornutum

Chronic aquatic toxicity

Benzo[a]pyrene

NOEC 0.01 < NOEC ≤ 0.1

Degradability Non-rapidly degradable

12.2. Persistence and degradability

Persistence and degradability The degradability of the product is not known.

12.3. Bioaccumulative potential

Bioaccumulative potential No data available on bioaccumulation.

Partition coefficient log Pow: 5.97

12.4. Mobility in soil

Mobility No data available.

12.5. Results of PBT and vPvB assessment

Results of PBT and vPvB

assessment

This product contains substances classified as PBT. This product contains substances

classified as vPvB.

12.6. Other adverse effects

Other adverse effects Very toxic to aquatic life with long lasting effects.

SECTION 13: Disposal considerations

13.1. Waste treatment methods

General information Dispose of waste to licensed waste disposal site in accordance with the requirements of the

local Waste Disposal Authority. This material and its container must be disposed of in a safe way. When handling waste, the safety precautions applying to handling of the product should

be considered.

SECTION 14: Transport information

14.1. UN number

UN No. (ADR/RID) 3077

UN No. (IMDG) 3077

UN No. (ICAO) 3077

UN No. (ADN) 3077

14.2. UN proper shipping name

Proper shipping name

ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (Benzo[a]pyrene)

(ADR/RID)

Proper shipping name (IMDG) ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (Benzo[a]pyrene)

Proper shipping name (ICAO) ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (Benzo[a]pyrene)

Proper shipping name (ADN) ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S. (Benzo[a]pyrene)

14.3. Transport hazard class(es)

ADR/RID class 9

ADR/RID classification code M7

ADR/RID label 9

IMDG class 9

Benzo[a]pyrene

ICAO class/division 9

ADN class 9

Transport labels

14.4. Packing group

ADR/RID packing group III

IMDG packing group III

ADN packing group III

ICAO packing group III

14.5. Environmental hazards

Environmentally hazardous substance/marine pollutant

14.6. Special precautions for user

EmS F-A, S-F

ADR transport category 3

Emergency Action Code 2Z

Hazard Identification Number 90

(ADR/RID)

14.7. Transport in bulk according to Annex II of MARPOL and the IBC Code

SECTION 15: Regulatory information

15.1. Safety, health and environmental regulations/legislation specific for the substance or mixture

National regulations Health and Safety at Work etc. Act 1974 (as amended).

The Carriage of Dangerous Goods and Use of Transportable Pressure Equipment

Regulations 2009 (SI 2009 No. 1348) (as amended) ["CDG 2009"].

EH40/2005 Workplace exposure limits.

EU legislation Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18

December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of

Chemicals (REACH) (as amended).

Commission Regulation (EU) No 2015/830 of 28 May 2015.

Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures (as

amended).

15.2. Chemical safety assessment

No chemical safety assessment has been carried out.

Inventories

US - TSCA

Present.

Benzo[a]pyrene

SECTION 16: Other information

Abbreviations and acronyms used in the safety data sheet

ADR: European Agreement concerning the International Carriage of Dangerous Goods by

Road.

ADN: European Agreement concerning the International Carriage of Dangerous Goods by

Inland Waterways.

RID: European Agreement concerning the International Carriage of Dangerous Goods by

Rail.

IATA: International Air Transport Association.

ICAO: Technical Instructions for the Safe Transport of Dangerous Goods by Air.

IMDG: International Maritime Dangerous Goods.

CAS: Chemical Abstracts Service. ATE: Acute Toxicity Estimate.

LC₅o: Lethal Concentration to 50 % of a test population.

LD₅o: Lethal Dose to 50% of a test population (Median Lethal Dose).

EC₅: 50% of maximal Effective Concentration.

PBT: Persistent, Bioaccumulative and Toxic substance.

vPvB: Very Persistent and Very Bioaccumulative.

Training advice Only trained personnel should use this material.

Revision date 06/11/2017

Revision 1

SDS number 144926

Hazard statements in full H317 May cause an allergic skin reaction.

H340 May cause genetic defects.

H350 May cause cancer.

H360 May damage fertility or the unborn child.

H400 Very toxic to aquatic life.

H410 Very toxic to aquatic life with long lasting effects.

This information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process. Such information is, to the best of the company's knowledge and belief, accurate and reliable as of the date indicated. However, no warranty, guarantee or representation is made to its accuracy, reliability or completeness. It is the user's responsibility to satisfy himself as to the suitability of such information for his own particular use.

Safety Data Sheet Revision Date: 07/31/19

www.restek.com

2 Letter ISO country code/language code: US/EN

1. IDENTIFICATION

Catalog Number / Product Name: 31272 / Benzo(b)fluoranthene Standard

Company:

Address:

110 Benner Circle
Bellefonte, Pa. 16823

Phone#:

814-353-1300

 Phone#:
 814-353-1300

 Fax#:
 814-353-1309

Emergency#: 800-424-9300 (CHEMTREC) 703-527-3887 (Outside the US)

Email: www.restek.com

Revision Number: 11

Intended use: For Laboratory use only

2. HAZARD(S)IDENTIFICATION

Emergency Overview:

GHS Hazard Symbols:

GHS Carcinogenicity Category 1B Classification: Flammable Liquid Category 2

Serious Eye Damage/Eye Irritation Category 2

Specific Target Organ Systemic Toxicity (STOT) - Single Exposure Category 3

GHS Signal

Word:

GHS Hazard: Highly flammable liquid and vapour.

Danger

Causes serious eye irritation. May cause drowsiness or dizziness.

May cause cancer.

GHS

Precautions:

Safety Obtain special instructions before use.

Precautions: Do not handle until all safety precautions have been read and understood.

Keep away from heat/sparks/open flames/hot surfaces. - No smoking.

Ground/bond container and receiving equipment.

Use explosion-proof electrical/ventilation and lighting equipment.

Use only non-sparking tools.

Take precautionary measures against static discharge. Avoid breathing dust/fume/gas/mist/vapours/spray. Wash hands and skin thoroughly after handling. Use only outdoors or in a well-ventilated area.

Wear protective gloves/protective clothing/eye protection/face protection.

First Aid Measures:

IF ON SKIN (or hair): Remove/Take off immediately all contaminated clothing. Rinse skin with water/shower.

IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do.

Continue rinsing.

IF exposed or concerned: Get medical advice/attention.

Call a POISON CENTER or doctor/physician if you feel unwell.

If eye irritation persists: Get medical advice/attention.

In case of fire: Use extinguishing media in section 5 for extinction.

Storage: Store in a well-ventilated place. Keep container tightly closed.

Store in a well-ventilated place. Keep cool.

Store locked up.

Disposal: Dispose of contents/container according to section 13 of the SDS.

Single Exposure Specific target organ toxicity - Single exposure - STOT SE 3: H336 May cause drowsiness or dizziness.

Exposure
Target Organs:

opening target organ toxicity - dirigite exposure - 0101 GE of 11000 May budge drows in ess or dizziness.

Repeated

No data available

Exposure Target Organs:

3. COMPOSITION / INFORMATION ON INGREDIENT

Chemical Name	CAS#	EINEC #	% Composition
Acetone	67-64-1	200-662-2	99.9
benzo (b) fluoranthene	205-99-2	205-911-9	0.1

4. FIRST-AID MEASURES

Inhalation: Remove to fresh air. If breathing is difficult, have a trained individual administer oxygen. If not

breathing, give artificial respiration and have a trained individual administer oxygen. Get

medical attention immediately

Eyes: Flush eyes with plenty of water for at least 20 minutes retracting eyelids often. Tilt the head to

prevent chemical from transferring to the uncontaminated eye. Get immediate medical

attention.

Skin Contact: Wash with soap and water. Remove contaminated clothing and launder. Get medical

attention if irritation develops or persists.

Ingestion: Do not induce vomiting and seek medical attention immediately. Drink two glasses of water

or milk to dilute. Provide medical care provider with this SDS.

5. FIRE- FIGHTING MEASURES

Extinguishing Media: Use alcohol resistant foam, carbon dioxide, or dry chemical extinguishing

agents. Water spray or fog may also be effective for extinguishing if swept across the base of the fire. Water can also be used to absorb heat and keep exposed material from being damaged by fire. Flammable component(s) of this material may be lighter than water and burn while

floating on the surface.

Fire and/or Explosion Hazards: Vapors may be ignited by heat, sparks, flames or other sources of

ignition at or above the low flash point giving rise to a Class B fire. Vapors are heavier than air and may travel to a source of ignition and

flash back

Fire Fighting Methods and Protection: Do not enter fire area without proper protection including self-contained

toxic breathing apparatus and full protective equipment. Fight fire from a safe distance and a protected location due to the potential of hazardous vapors and decomposition products. Flammable component(s) of this material may be lighter than water and burn while floating on the surface. Use water spray/fog for cooling. Flammable component(s) of this

material may be lighter than water and burn while floating on the surface.

Hazardous Combustion Products: Carbon dioxide, Carbon monoxide

6. ACCIDENTAL RELEASE MEASURES

Personal Precautions and Equipment: Exposure to the spilled material may be irritating or harmful. Follow

personal protective equipment recommendations found in Section 8 of this SDS. Additional precautions may be necessary based on special circumstances created by the spill including; the material spilled, the quantity of the spill, the area in which the spill occurred. Also consider the

expertise of employees in the area responding to the spill.

Methods for Clean-up: Prevent the spread of any spill to minimize harm to human health and the

environment if safe to do so. Wear complete and proper personal protective equipment following the recommendation of Section 8 at a minimum. Dike with suitable absorbent material like granulated clay. Gather and store in a sealed container pending a waste disposal

7. HANDLING AND STORAGE

Handling Technical Measures and Precautions: Harmful or irritating material. Avoid contacting and avoid

breathing the material. Use only in a well ventilated area. Use

spark-proof tools and explosion-proof equipment

Storage Technical Measures and Conditions: Store in a cool dry ventilated location. Isolate from

incompatible materials and conditions. Keep container(s)

closed. Keep away from sources of ignition

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

United States: Chemical Name	CAS No.	IDLH	ACGIH STEL	ACGIH TLV-TWA	OSHA Exposure Limit
Acetone	67-64-1	2500 ppm IDLH (10% LEL)	750 ppm STEL; 1782 mg/m3 STEL	500 ppm TWA; 1188 mg/m3 TWA	1000 ppm TWA; 2400 mg/m3 TWA
benzo (b) fluoranthene	205-99-2	Not established	None Known	Not established	No data available

Personal Protection:

Engineering Measures: Local exhaust ventilation is recommended when generating excessive levels of

vapours from handling or thermal processing.

Respiratory Protection: No respiratory protection required under normal conditions of use. Provide

general room exhaust ventilation if symptoms of overexposure occur as explained

Section 3. A respirator is not normally required.

Eye Protection: Wear chemically resistant safety glasses with side shields when handling this

product. Do not wear contact lenses.

Skin Protection: Wear protective gloves. Inspect gloves for chemical break-through and replace at

regular intervals. Clean protective equipment regularly. Wash hands and other exposed areas with mild soap and water before eating, drinking, and when

leaving work

Medical Conditions Aggravated By Exposure: Respiratory disease including asthma and bronchitis

9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance, color: Depends upon product selection

Odor: Strong

Physical State:
 No data available
 Not applicable
 Vapor Pressure:
 No data available
 No data available
 Vapor Density:
 2.0 (air = 1)

Boiling Point (°C): 56.05 °C at 1013.25 hPa **Melting Point (°C):** -95.4 °C Melting Point

Flash Point (°F):

Flammability: Highly Flammable
Upper Flammable/Explosive Limit, % in air: No data available
Lower Flammable/Explosive Limit, % in air: No data available
Autoignition Temperature (°C): 465 deg C
Decomposition Temperature (°C): No data available
Specific Gravity: 0.7845 g/cm3 at 25 °C
Evaporation Rate: No data available

Odor Threshold: ND

Solubility: Complete; 100% Partition Coefficient: n-octanol in water: No data available

VOC % by weight: 99.9 Molecular Weight: 58.08

10. STABILITY AND REACTIVITY

Stability: Stable under normal conditions.

Conditions to Avoid: None known.

Materials to Avoid / Chemical Incompatiability:Strong oxidizing agents Strong acidsHazardous Decomposition Products:Carbon dioxide Carbon monoxide

11. TOXICOLOGICAL INFORMATION

Routes of Entry: Inhalation, Skin Contact, Eye Contact, Ingestion

Target Organs Potentially Affected By Exposure: Eyes, Central nervous system stimulation,

Respiratory Tract, Skin

Chemical Interactions That Change Toxicity: None Known

Immediate (Acute) Health Effects by Route of Exposure:

Inhalation Irritation: Can cause minor respiratory irritation, dizziness, weakness, fatigue, nausea,

and headache.

Skin Contact: Can cause minor skin irritation, defatting, and dermatitis. **Eye Contact:** Can cause minor irritation, tearing and reddening.

Ingestion Irritation: May be harmful if swallowed.

Ingestion Toxicity: Harmful if swallowed. May cause systemic poisoning.

Long-Term (Chronic) Health Effects:

Carcinogenicity: Contains a probable or known human carcinogen.

Reproductive and Developmental Toxicity:No data available to indicate product or any components present at greater than 0.1% may cause birth defects.

Inhalation:Upon prolonged and/or repeated exposure, can cause minor respiratory irritation, dizziness, weakness, fatigue,

nausea, and headache.

Skin Contact: Upon prolonged or repeated contact, can cause minor

skin irritation, defatting, and dermatitis.

Component Toxicological Data:

NIOSH:

Chemical Name CAS No. LD50/LC50

Acetone 67-64-1 Dermal LD50 Rabbit >15700 mg/kg; Inhalation

LC50 Rat 50100 mg/m3 8 h; Oral LD50 Rat

5800 mg/kg

Component Carcinogenic Data:

OSHA:

Chemical Name CAS No.

Benzo(b)fluoranthene 205-99-2 Present

ACGIH:

Chemical Name CAS No.

Benzo[b]fluoranthene 205-99-2 A2 - Suspected Human Carcinogen

Acetone 67-64-1 A4 - Not Classifiable as a Human Carcinogen

NIOSH:

Chemical Name CAS No.

No data available

NTP:

Chemical Name CAS No.

No data available

IARC:

 Chemical Name
 CAS No.
 Group No.

 Monograph 92 [2010]:
 205-99-2
 Group 2B

Supplement 7 [1987]; Monograph

32 [1983]

12. ECOLOGICAL INFORMATION

Overview: This material is not expected to be harmful to the ecology.

Mobility:No dataPersistence:No dataBioaccumulation:No dataDegradability:No data

Ecological Toxicity Data: No data available

13. DISPOSAL CONSIDERATIONS

Waste Description of Spent Product: Spent or discarded material is a hazardous waste. Mixing

spent or discarded material with other materials may render the mixture hazardous. Perform a hazardous

waste determination on mixtures.

Disposal Methods: Dispose of by incineration following Federal, State, Local,

or Provincial regulations.

Waste Disposal of Packaging: Comply with all Local, State, Federal, and Provincial

Environmental Regulations.

14. TRANSPORTATION INFORMATION

United States:

DOT Proper Shipping Name:
UN Number:
UN1090
Hazard Class:
Packing Group:

Acetone
UN1090
II

International:

IATA Proper Shipping Name:AcetoneUN Number:UN1090Hazard Class:3Packing Group:II

Marine Pollutant: No

Chemical Name	CAS#	Marine Pollutant	Severe Marine Pollutant
No data available			

15. REGULATORY INFORMATION

United States: Chemical Name	CAS#	CERCLA	SARA 313	SARA EHS 313	TSCA
Acetone	67-64-1	Χ	-	-	X
benzo (b) fluoranthene	205-99-2	Χ	X	-	-

The following chemicals are listed on CA Prop 65:

Chemical Name	CAS#	Regulation
Benzo[b]fluoranthene	205-99-2	Prop 65 Cancer

State Right To Know Listing:

Chemical Name	CAS#	New Jersey	Massachusetts	Pennsylvania	California
Acetone	67-64-1	Х	X	Χ	X
benzo (b) fluoranthene	205-99-2	X	X	Χ	Χ

16. OTHER INFORMATION

Prior Version Date: 08/13/18

Other Information: Any changes to the SDS compared to previous versions are marked by a vertical

line in front of the concerned paragraph.

References: No data available

Disclaimer: Restek Corporation provides the descriptions, data and information contained

herein in good faith but makes no representation as to its comprehensiveness or accuracy. It is provided for your guidance only. Because many factors may affect processing or application/use, Restek Corporation recommends you perform an assessment to determine the suitability of a product for your particular purpose prior to use. No warranties of any kind, either expressed or implied, including fitness for a particular purpose, are made regarding products described, data or information set forth. In no case shall the descriptions, information, or data provided be considered a part of our terms and conditions of sale. Further, the descriptions, data and information furnished hereunder are given gratis. No obligation or liability for the description, data and information given are assumed. All such being given

and accepted at your risk.

Page 1 of 8

SAFETY DATA SHEET

Version 4.4 Revision Date 12/01/2015 Print Date 07/13/2017

1. PRODUCT AND COMPANY IDENTIFICATION

1.1 Product identifiers

Product name : cis-Dichloroethylene

Product Number : 48597
Brand : Supelco
Index-No. : 602-026-00-3

CAS-No. : 156-59-2

1.2 Relevant identified uses of the substance or mixture and uses advised against

Identified uses : Laboratory chemicals, Synthesis of substances

1.3 Details of the supplier of the safety data sheet

Company : Sigma-Aldrich

3050 Spruce Street SAINT LOUIS MO 63103

USA

Telephone : +1 800-325-5832 Fax : +1 800-325-5052

1.4 Emergency telephone number

Emergency Phone # : +1-703-527-3887 (CHEMTREC)

2. HAZARDS IDENTIFICATION

2.1 Classification of the substance or mixture

GHS Classification in accordance with 29 CFR 1910 (OSHA HCS)

Flammable liquids (Category 2), H225 Acute toxicity, Inhalation (Category 4), H332 Acute aquatic toxicity (Category 3), H402 Chronic aquatic toxicity (Category 3), H412

For the full text of the H-Statements mentioned in this Section, see Section 16.

2.2 GHS Label elements, including precautionary statements

Pictogram

Signal word Danger

Hazard statement(s)

H225 Highly flammable liquid and vapour.

H332 Harmful if inhaled.

H412 Harmful to aquatic life with long lasting effects.

Precautionary statement(s)

P210 Keep away from heat/sparks/open flames/hot surfaces. No smoking.

P233 Keep container tightly closed.

P240 Ground/bond container and receiving equipment.

P241 Use explosion-proof electrical/ ventilating/ lighting/ equipment.

P242 Use only non-sparking tools.

Supelco - 48597

P243 Take precautionary measures against static discharge.
P261 Avoid breathing dust/ fume/ gas/ mist/ vapours/ spray.

P271 Use only outdoors or in a well-ventilated area.

P273 Avoid release to the environment.

P280 Wear protective gloves/ protective clothing/ eye protection/ face

protection.

P303 + P361 + P353 IF ON SKIN (or hair): Remove/ Take off immediately all contaminated

clothing. Rinse skin with water/ shower.

P304 + P340 IF INHALED: Remove victim to fresh air and keep at rest in a position

comfortable for breathing.

P312 Call a POISON CENTER or doctor/ physician if you feel unwell.

P370 + P378 In case of fire: Use dry sand, dry chemical or alcohol-resistant foam for

extinction.

P403 + P235 Store in a well-ventilated place. Keep cool.

P501 Dispose of contents/ container to an approved waste disposal plant.

2.3 Hazards not otherwise classified (HNOC) or not covered by GHS - none

3. COMPOSITION/INFORMATION ON INGREDIENTS

3.1 Substances

Formula : C2H2Cl2

Molecular weight : 96.94 g/mol

CAS-No. : 156-59-2

EC-No. : 205-859-7

Index-No. : 602-026-00-3

Hazardous components

Component	Classification	Concentration			
cis-Dichloroethylene					
	Flam. Liq. 2; Acute Tox. 4; Aquatic Acute 3; Aquatic	<= 100 %			
	Chronic 3; H225, H332, H412				

For the full text of the H-Statements mentioned in this Section, see Section 16.

4. FIRST AID MEASURES

4.1 Description of first aid measures

General advice

Consult a physician. Show this safety data sheet to the doctor in attendance. Move out of dangerous area.

If inhaled

If breathed in, move person into fresh air. If not breathing, give artificial respiration. Consult a physician.

In case of skin contact

Wash off with soap and plenty of water. Consult a physician.

In case of eye contact

Flush eyes with water as a precaution.

If swallowed

Do NOT induce vomiting. Never give anything by mouth to an unconscious person. Rinse mouth with water. Consult a physician.

4.2 Most important symptoms and effects, both acute and delayed

The most important known symptoms and effects are described in the labelling (see section 2.2) and/or in section 11

4.3 Indication of any immediate medical attention and special treatment needed

No data available

Supelco - 48597 Page 2 of 8

5. FIREFIGHTING MEASURES

5.1 Extinguishing media

Suitable extinguishing media

Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.

5.2 Special hazards arising from the substance or mixture

Carbon oxides, Hydrogen chloride gas

5.3 Advice for firefighters

Wear self-contained breathing apparatus for firefighting if necessary.

5.4 Further information

Use water spray to cool unopened containers.

6. ACCIDENTAL RELEASE MEASURES

6.1 Personal precautions, protective equipment and emergency procedures

Use personal protective equipment. Avoid breathing vapours, mist or gas. Ensure adequate ventilation. Remove all sources of ignition. Evacuate personnel to safe areas. Beware of vapours accumulating to form explosive concentrations. Vapours can accumulate in low areas.

For personal protection see section 8.

6.2 Environmental precautions

Prevent further leakage or spillage if safe to do so. Do not let product enter drains. Discharge into the environment must be avoided.

6.3 Methods and materials for containment and cleaning up

Contain spillage, and then collect with an electrically protected vacuum cleaner or by wet-brushing and place in container for disposal according to local regulations (see section 13).

6.4 Reference to other sections

For disposal see section 13.

7. HANDLING AND STORAGE

7.1 Precautions for safe handling

Avoid contact with skin and eyes. Avoid inhalation of vapour or mist.

Use explosion-proof equipment. Keep away from sources of ignition - No smoking. Take measures to prevent the build up of electrostatic charge.

For precautions see section 2.2.

7.2 Conditions for safe storage, including any incompatibilities

Keep container tightly closed in a dry and well-ventilated place. Containers which are opened must be carefully resealed and kept upright to prevent leakage.

Recommended storage temperature 2 - 8 °C

Handle and store under inert gas. Air and moisture sensitive. Light sensitive.

7.3 Specific end use(s)

Apart from the uses mentioned in section 1.2 no other specific uses are stipulated

8. EXPOSURE CONTROLS/PERSONAL PROTECTION

8.1 Control parameters

Components with workplace control parameters

Component	CAS-No.	Value	Control	Basis
			parameters	
cis-Dichloroethylene	156-59-2	TWA	200 ppm	USA. ACGIH Threshold Limit Values (TLV)
	Remarks	Central Nervous System impairment Eye irritation		

Supelco - 48597 Page 3 of 8

8.2 **Exposure controls**

Appropriate engineering controls

Handle in accordance with good industrial hygiene and safety practice. Wash hands before breaks and at the end of workday.

Personal protective equipment

Eve/face protection

Face shield and safety glasses Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Skin protection

Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique (without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands.

Body Protection

Complete suit protecting against chemicals. Flame retardant antistatic protective clothing. The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace.

Respiratory protection

Where risk assessment shows air-purifying respirators are appropriate use a full-face respirator with multipurpose combination (US) or type AXBEK (EN 14387) respirator cartridges as a backup to engineering controls. If the respirator is the sole means of protection, use a full-face supplied air respirator. Use respirators and components tested and approved under appropriate government standards such as NIOSH (US) or CEN (EU).

Control of environmental exposure

Prevent further leakage or spillage if safe to do so. Do not let product enter drains. Discharge into the environment must be avoided

9. PHYSICAL AND CHEMICAL PROPERTIES

9.1 Information on basic physical and chemical properties

	_	
a)	Appearance	Form: liquid

Colour: light yellow

Odour No data available Odour Threshold No data available d) No data available e) Melting point/freezing

point

-80.0 °C (-112.0 °F)

Initial boiling point and boiling range

60.0 - 61.0 °C (140.0 - 141.8 °F)

g) Flash point

6.0 °C (42.8 °F) - closed cup

No data available h) Evaporation rate Flammability (solid, gas) No data available Upper/lower

flammability or explosive limits No data available

No data available k) Vapour pressure No data available Vapour density

m) Relative density 1.28 g/cm3

n) Water solubility No data available Partition coefficient: n-No data available octanol/water

Supelco - 48597 Page 4 of 8 Auto-ignition No data available temperature

. "\ Danamanitia

q) Decomposition No data available temperature

r) Viscosity No data available
 s) Explosive properties No data available
 t) Oxidizing properties No data available

9.2 Other safety information

No data available

10. STABILITY AND REACTIVITY

10.1 Reactivity

No data available

10.2 Chemical stability

Stable under recommended storage conditions.

10.3 Possibility of hazardous reactions

Vapours may form explosive mixture with air.

10.4 Conditions to avoid

Heat, flames and sparks. Extremes of temperature and direct sunlight.

10.5 Incompatible materials

Oxidizing agents

10.6 Hazardous decomposition products

Other decomposition products - No data available

In the event of fire: see section 5

11. TOXICOLOGICAL INFORMATION

11.1 Information on toxicological effects

Acute toxicity

LC50 Inhalation - Rat - 13700 ppm

Remarks: Behavioral:Somnolence (general depressed activity). Liver:Fatty liver degeneration.

Dermal: No data available

No data available

Skin corrosion/irritation

No data available

Serious eye damage/eye irritation

No data available

Respiratory or skin sensitisation

No data available

Germ cell mutagenicity

No data available

Carcinogenicity

IARC: No component of this product present at levels greater than or equal to 0.1% is identified as

probable, possible or confirmed human carcinogen by IARC.

NTP: No component of this product present at levels greater than or equal to 0.1% is identified as a

known or anticipated carcinogen by NTP.

OSHA: No component of this product present at levels greater than or equal to 0.1% is identified as a

carcinogen or potential carcinogen by OSHA.

Supelco - 48597 Page 5 of 8

Reproductive toxicity

No data available

No data available

Specific target organ toxicity - single exposure

No data available

Specific target organ toxicity - repeated exposure

No data available

Aspiration hazard

No data available

Additional Information

RTECS: KV9420000

narcosis, To the best of our knowledge, the chemical, physical, and toxicological properties have not been thoroughly investigated.

12. ECOLOGICAL INFORMATION

12.1 Toxicity

No data available

12.2 Persistence and degradability

No data available

12.3 Bioaccumulative potential

No data available

12.4 Mobility in soil

No data available

12.5 Results of PBT and vPvB assessment

PBT/vPvB assessment not available as chemical safety assessment not required/not conducted

12.6 Other adverse effects

An environmental hazard cannot be excluded in the event of unprofessional handling or disposal. Harmful to aquatic life.

13. DISPOSAL CONSIDERATIONS

13.1 Waste treatment methods

Product

Burn in a chemical incinerator equipped with an afterburner and scrubber but exert extra care in igniting as this material is highly flammable. Offer surplus and non-recyclable solutions to a licensed disposal company. Contact a licensed professional waste disposal service to dispose of this material.

Contaminated packaging

Dispose of as unused product.

14. TRANSPORT INFORMATION

DOT (US)

UN number: 1150 Class: 3 Packing group: II

Proper shipping name: 1,2-Dichloroethylene

Poison Inhalation Hazard: No

IMDG

UN number: 1150 Class: 3 Packing group: II EMS-No: F-E, S-D

Proper shipping name: 1,2-DICHLOROETHYLENE

IATA

UN number: 1150 Class: 3 Packing group: II

Proper shipping name: 1,2-Dichloroethylene

Supelco - 48597 Page 6 of 8

15. REGULATORY INFORMATION

SARA 302 Components

No chemicals in this material are subject to the reporting requirements of SARA Title III, Section 302.

SARA 313 Components

This material does not contain any chemical components with known CAS numbers that exceed the threshold (De Minimis) reporting levels established by SARA Title III, Section 313.

SARA 311/312 Hazards

Fire Hazard

Massachusetts Right To Know Components

	CAS-No.	Revision Date
cis-Dichloroethylene	156-59-2	1993-04-24

Pennsylvania Right To Know Components

CAS-No. Revision Date cis-Dichloroethylene 156-59-2 1993-04-24

New Jersey Right To Know Components

CAS-No. Revision Date cis-Dichloroethylene 156-59-2 1993-04-24

California Prop. 65 Components

This product does not contain any chemicals known to State of California to cause cancer, birth defects, or any other reproductive harm.

16. OTHER INFORMATION

Full text of H-Statements referred to under sections 2 and 3.

Acute Tox. Acute toxicity

Aquatic Acute Acute aquatic toxicity
Aquatic Chronic Chronic aquatic toxicity
Flam. Lig. Flammable liquids

H225 Highly flammable liquid and vapour.

H332 Harmful if inhaled. H402 Harmful to aquatic life.

HMIS Rating

Health hazard: 1
Chronic Health Hazard: *
Flammability: 3
Physical Hazard 1

NFPA Rating

Health hazard: 2
Fire Hazard: 3
Reactivity Hazard: 0

Further information

Copyright 2015 Sigma-Aldrich Co. LLC. License granted to make unlimited paper copies for internal use only. The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. Sigma-Aldrich Corporation and its Affiliates shall not be held liable for any damage resulting from handling or from contact with the above product. See www.sigma-aldrich.com and/or the reverse side of invoice or packing slip for additional terms and conditions of sale.

Supelco - 48597 Page 7 of 8

Preparation Information Sigma-Aldrich Corporation Product Safety – Americas Region 1-800-521-8956

Version: 4.4 Revision Date: 12/01/2015 Print Date: 07/13/2017

Supelco - 48597 Page 8 of 8

SAFETY DATA SHEET

Creation Date 08-Nov-2010 Revision Date 16-Jan-2019 Revision Number 6

1. Identification

Product Name Fluoranthene

Cat No.: AC119170000; AC119170250; AC119171000; AC119175000

CAS-No 206-44-0

Synonyms Benzo[j,k]fluorene

Recommended Use Laboratory chemicals.

Uses advised against Food, drug, pesticide or biocidal product use

Details of the supplier of the safety data sheet

Company

Fisher Scientific Acros Organics
One Reagent Lane One Reagent Lane
Fair Lawn, NJ 07410 Fair Lawn, NJ 07410

Tel: (201) 796-7100

Emergency Telephone Number

For information **US** call: 001-800-ACROS-01 / **Europe** call: +32 14 57 52 11 Emergency Number **US**:001-201-796-7100 / **Europe**: +32 14 57 52 99 **CHEMTREC** Tel. No.**US**:001-800-424-9300 / **Europe**:001-703-527-3887

2. Hazard(s) identification

Classification

This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200)

Acute oral toxicity Category 4

Label Elements

Signal Word

Warning

Hazard Statements

Harmful if swallowed

Precautionary Statements

Prevention

Wash face, hands and any exposed skin thoroughly after handling

Do not eat, drink or smoke when using this product

Ingestion

IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell

Rinse mouth **Disposal**

Dispose of contents/container to an approved waste disposal plant

Hazards not otherwise classified (HNOC)

Very toxic to aquatic life with long lasting effects

3. Composition/Information on Ingredients

Component	CAS-No	Weight %
Fluoranthene	206-44-0	>95

4. First-aid measures

General Advice If symptoms persist, call a physician.

Eye Contact Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes. Get

medical attention.

Skin Contact Wash off immediately with plenty of water for at least 15 minutes. If skin irritation persists,

call a physician.

Inhalation Move to fresh air. If not breathing, give artificial respiration. Get medical attention if

symptoms occur.

Ingestion Clean mouth with water and drink afterwards plenty of water. Get medical attention if

symptoms occur.

Most important symptoms and

effects

None reasonably foreseeable.

Notes to Physician Treat symptomatically

5. Fire-fighting measures

Suitable Extinguishing Media Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.

Unsuitable Extinguishing Media No information available

Flash Point Not applicable

Method - No information available

Autoignition Temperature

Explosion Limits

No information available

Upper No data available
Lower No data available
Sensitivity to Mechanical Impact No information available
Sensitivity to Static Discharge No information available

Specific Hazards Arising from the Chemical

Keep product and empty container away from heat and sources of ignition.

Hazardous Combustion Products

Revision Date 16-Jan-2019 **Fluoranthene**

Carbon monoxide (CO) Carbon dioxide (CO2)

Protective Equipment and Precautions for Firefighters

As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear.

NFPA

Health **Flammability** Instability Physical hazards N/A 2 0

6. Accidental release measures

Personal Precautions Environmental Precautions Ensure adequate ventilation. Use personal protective equipment. Avoid dust formation.

Should not be released into the environment.

Methods for Containment and Clean Sweep up or vacuum up spillage and collect in suitable container for disposal. Keep in

suitable, closed containers for disposal.

7. Handling and storage

Ensure adequate ventilation. Wear personal protective equipment. Avoid dust formation. Do Handling

not get in eyes, on skin, or on clothing. Avoid ingestion and inhalation.

Storage Keep in a dry, cool and well-ventilated place. Keep container tightly closed.

8. Exposure controls / personal protection

Exposure Guidelines

This product does not contain any hazardous materials with occupational exposure

limitsestablished by the region specific regulatory bodies.

Engineering Measures Ensure adequate ventilation, especially in confined areas. Ensure that eyewash stations

and safety showers are close to the workstation location.

Personal Protective Equipment

Eye/face Protection Wear appropriate protective eveglasses or chemical safety goggles as described by

OSHA's eve and face protection regulations in 29 CFR 1910.133 or European Standard

FN166.

Long sleeved clothing. Skin and body protection

Respiratory Protection Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European Standard

> EN 149. Use a NIOSH/MSHA or European Standard EN 149 approved respirator if exposure limits are exceeded or if irritation or other symptoms are experienced.

Hygiene Measures Handle in accordance with good industrial hygiene and safety practice.

9. Physical and chemical properties

Physical State Powder Solid **Appearance** Light green Odorless Odor

Odor Threshold No information available

Not applicable pН

Melting Point/Range 109 - 111 °C / 228.2 - 231.8 °F

Boiling Point/Range 384 °C / 723.2 °F Flash Point Not applicable

Evaporation Rate No information available Flammability (solid, gas) No information available

Flammability or explosive limits

UpperNo data availableLowerNo data availableVapor PressureNo information availableVapor DensityNo information availableSpecific GravityNo information available

Solubility insoluble

Partition coefficient; n-octanol/water No data available

Autoignition TemperatureNo information availableDecomposition TemperatureNo information availableViscosityNo information available

Molecular FormulaC16 H10Molecular Weight202.25

10. Stability and reactivity

Reactive Hazard None known, based on information available

Stability Stable under normal conditions.

Conditions to Avoid Incompatible products.

Incompatible Materials Strong oxidizing agents

Hazardous Decomposition Products Carbon monoxide (CO), Carbon dioxide (CO2)

Hazardous Polymerization Hazardous polymerization does not occur.

Hazardous Reactions None under normal processing.

11. Toxicological information

Acute Toxicity

Product Information No acute toxicity information is available for this product

Component Information

Component	LD50 Oral	LD50 Dermal	LC50 Inhalation
Fluoranthene	LD50 = 2 g/kg(Rat)	LD50 = 3180 mg/kg(Rabbit)	Not listed
ridordificiono	EBOO 2 g/kg (Nat)	EBOO O 100 mg/kg (Kabbit)	140t listed

Toxicologically Synergistic No information available

Products

Delayed and immediate effects as well as chronic effects from short and long-term exposure

Irritation No information available

Sensitization No information available

Carcinogenicity The table below indicates whether each agency has listed any ingredient as a carcinogen.

Component	CAS-No	IARC	NTP	ACGIH	OSHA	Mexico
Fluoranthene	206-44-0	Not listed	Not listed	Not listed	Not listed	Not listed

Mutagenic Effects No information available

Reproductive Effects

No information available.

Developmental Effects

No information available.

Teratogenicity No information available.

STOT - single exposure None known STOT - repeated exposure None known

Aspiration hazard No information available

Symptoms / effects,both acute and No information available

delayed

Endocrine Disruptor Information No information available

Other Adverse Effects The toxicological properties have not been fully investigated. See actual entry in RTECS for

complete information.

12. Ecological information

Ecotoxicity

Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Component	Freshwater Algae	Freshwater Fish	Microtox	Water Flea
Fluoranthene	Not listed	Oncorhynchus mykiss:	Not listed	EC50: 0.78 mg/L 20h
		LC50=0.0077 mg/L 96h		

Persistence and Degradability

No information available

Bioaccumulation/ Accumulation No information available.

Mobility .

Component	log Pow
Fluoranthene	5.1

13. Disposal considerations

Waste Disposal Methods

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. Chemical waste generators must also consult local, regional, and national hazardous waste regulations to ensure complete and accurate classification.

Component	RCRA - U Series Wastes	RCRA - P Series Wastes
Fluoranthene - 206-44-0	U120	-

14. Transport information

DOT

UN-No UN3077

Proper Shipping Name ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.

Proper technical name Fluoranthene

Hazard Class 9
Packing Group III

TDG

UN-No UN3077

Proper Shipping Name ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.

Hazard Class 9
Packing Group III

<u>IATA</u>

UN-No UN3077

Proper Shipping Name ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.

Hazard Class 9
Packing Group III

IMDG/IMO

UN-No UN3077

Proper Shipping Name ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.

Hazard Class 9
Packing Group III

15. Regulatory information

All of the components in the product are on the following Inventory lists: The product is classified and labeled according to EC directives or corresponding national laws The product is classified and labeled in accordance with Directive 1999/45/EC Europe China Canada TSCA Japan X = listed Australia U.S.A. (TSCA) Canada (DSL/NDSL) Europe (EINECS/ELINCS/NLP) Australia (AICS) Korea (ECL) China (IECSC) Japan (ENCS) Philippines (PICCS) Complete Regulatory Information contained in following SDS's

International Inventories

Component	TSCA	DSL	NDSL	EINECS	ELINCS	NLP	PICCS	ENCS	AICS	IECSC	KECL
Fluoranthene	Χ	-	Χ	205-912-4	-		-	Χ	Χ	Х	-

Legend:

- X Listed
- E Indicates a substance that is the subject of a Section 5(e) Consent order under TSCA.
- F Indicates a substance that is the subject of a Section 5(f) Rule under TSCA.
- N Indicates a polymeric substance containing no free-radical initiator in its inventory name but is considered to cover the designated polymer made with any free-radical initiator regardless of the amount used.
- P Indicates a commenced PMN substance
- R Indicates a substance that is the subject of a Section 6 risk management rule under TSCA.
- S Indicates a substance that is identified in a proposed or final Significant New Use Rule
- T Indicates a substance that is the subject of a Section 4 test rule under TSCA.
- XU Indicates a substance exempt from reporting under the Inventory Update Rule, i.e. Partial Updating of the TSCA Inventory Data Base Production and Site Reports (40 CFR 710(B).
- Y1 Indicates an exempt polymer that has a number-average molecular weight of 1,000 or greater.
- Y2 Indicates an exempt polymer that is a polyester and is made only from reactants included in a specified list of low concern reactants that comprises one of the eligibility criteria for the exemption rule.

U.S. Federal Regulations

TSCA 12(b)

Not applicable

SARA 313

Component	CAS-No	Weight %	SARA 313 - Threshold Values %
Fluoranthene	206-44-0	>95	1.0 0.1

SARA 311/312 Hazard Categories

See section 2 for more information

CWA (Clean Water Act)

Component	CWA - Hazardous Substances	CWA - Reportable Quantities	CWA - Toxic Pollutants	CWA - Priority Pollutants
Fluoranthene	-	-	X	X

Clean Air Act

Not applicable

OSHA Occupational Safety and Health Administration

Not applicable

CERCLA

This material, as supplied, contains one or more substances regulated as a hazardous substance under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302)

Component	Hazardous Substances RQs	CERCLA EHS RQs
Fluoranthene	100 lb	-

California Proposition 65

This product does not contain any Proposition 65 chemicals

U.S. State Right-to-Know

Regulations

Component	Massachusetts	New Jersey	Pennsylvania	Illinois	Rhode Island
Fluoranthene	X	Х	X	-	-

U.S. Department of Transportation

Reportable Quantity (RQ): N
DOT Marine Pollutant N
DOT Severe Marine Pollutant N

U.S. Department of Homeland Security

This product does not contain any DHS chemicals.

Other International Regulations

Mexico - Grade No information available

16. Other information	
-----------------------	--

Prepared By Regulatory Affairs

Thermo Fisher Scientific

Email: EMSDS.RA@thermofisher.com

 Creation Date
 08-Nov-2010

 Revision Date
 16-Jan-2019

 Print Date
 16-Jan-2019

Revision Summary This document has been updated to comply with the US OSHA HazCom 2012 Standard

replacing the current legislation under 29 CFR 1910.1200 to align with the Globally

Harmonized System of Classification and Labeling of Chemicals (GHS).

Disclaimer

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text

End of SDS

SAFETY DATA SHEET

Revision Date 17-Jan-2018 Revision Number 3

1. Identification

Product Name 1,1,2-Trichloro-1,2,2-trifluoroethane

Cat No.: T178-1; T178-4

Synonyms Fluorocarbon 113; Freon 113; 1,1,2-Trichlorotrifluoroethane

Recommended Use Laboratory chemicals.

Uses advised against Not for food, drug, pesticide or biocidal product use

Details of the supplier of the safety data sheet

Company

Fisher Scientific One Reagent Lane Fair Lawn, NJ 07410 Tel: (201) 796-7100

Emergency Telephone Number

CHEMTREC®, Inside the USA: 800-424-9300 CHEMTREC®, Outside the USA: 001-703-527-3887

2. Hazard(s) identification

Classification

Classification under 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200)

Based on available data, the classification criteria are not met

Label Elements

None required

Hazards not otherwise classified (HNOC)

None identified

3. Composition/Information on Ingredients

Component	CAS-No	Weight %
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	99

4. First-aid measures

Eye Contact Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes.

Skin Contact Wash off immediately with plenty of water for at least 15 minutes.

1,1,2-Trichloro-1,2,2-trifluoroethane

Inhalation Move to fresh air.

Ingestion Do not induce vomiting.

Most important symptoms and

effects

No information available.

Notes to Physician Treat symptomatically

5. Fire-fighting measures

Unsuitable Extinguishing Media No information available

Flash Point No information available Method - No information available

Autoignition Temperature

Explosion Limits

770 °C

Upper No data available
Lower No data available
Sensitivity to Mechanical Impact No information available
Sensitivity to Static Discharge No information available

Specific Hazards Arising from the Chemical

Keep product and empty container away from heat and sources of ignition.

Hazardous Combustion Products

No information available

Protective Equipment and Precautions for Firefighters

As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear.

NFPA

Health	Flammability	Instability	Physical hazards
1	0	0	N/A

6. Accidental release measures

Personal Precautions Ensure adequate ventilation. Use personal protective equipment.

Environmental Precautions See Section 12 for additional ecological information.

Methods for Containment and Clean No information available.

Up

7. Handling and storage

Handling Ensure adequate ventilation.

Storage Keep containers tightly closed in a dry, cool and well-ventilated place.

8. Exposure controls / personal protection

Exposure Guidelines This product does not contain any hazardous materials with occupational exposure

limitsestablished by the region specific regulatory bodies.

Component	ACGIH TLV	OSHA PEL	NIOSH IDLH	Mexico OEL (TWA)
1,1,2-Trichloro-1,2,2-trifluoro	TWA: 1000 ppm	(Vacated) TWA: 1000 ppm	IDLH: 2000 ppm	TWA: 1000 ppm
ethane	STEL: 1250 ppm	(Vacated) TWA: 7600 mg/m ³	TWA: 1000 ppm	TWA: 1600 mg/m ³
		(Vacated) STEL: 1250 ppm	TWA: 7600 mg/m ³	STEL: 1250 ppm
		(Vacated) STEL: 9500	STEL: 1250 ppm	STEL: 9500 mg/m ³
		mg/m³	STEL: 9500 mg/m ³	
		TWA: 1000 ppm		
		TWA: 7600 mg/m ³		

Legend

ACGIH - American Conference of Governmental Industrial Hygienists

OSHA - Occupational Safety and Health Administration

NIOSH IDLH: The National Institute for Occupational Safety and Health Immediately Dangerous to Life or Health

Ensure adequate ventilation, especially in confined areas. **Engineering Measures**

Personal Protective Equipment

Eye/face Protection Wear appropriate protective eyeglasses or chemical safety goggles as described by

OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard

EN166.

Wear appropriate protective gloves and clothing to prevent skin exposure. Skin and body protection

Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European Standard **Respiratory Protection**

EN 149. Use a NIOSH/MSHA or European Standard EN 149 approved respirator if exposure limits are exceeded or if irritation or other symptoms are experienced.

Hygiene Measures Handle in accordance with good industrial hygiene and safety practice.

9. Physical and chemical properties

Liquid **Physical State** Clear **Appearance** Odor aromatic

Odor Threshold No information available No information available Hq

-36 °C Melting Point/Range

48 °C **Boiling Point/Range** Flash Point No information available > 1.0 (Ether = 1.0) **Evaporation Rate** Flammability (solid, gas) No information available

Flammability or explosive limits

No data available Upper Lower No data available **Vapor Pressure** 363 hPa @ 20 °C 6.5 (Air = 1.0)**Vapor Density** 1.47 @ 21°C **Specific Gravity** Solubility Insoluble in water

Partition coefficient; n-octanol/water No data available

770 °C **Autoignition Temperature Decomposition Temperature**

No information available **Viscosity** No information available

Molecular Formula C2CI3F3 **Molecular Weight** 187.38

10. Stability and reactivity

Reactive Hazard None known, based on information available

1,1,2-Trichloro-1,2,2-trifluoroethane

Stability Stable under normal conditions.

Conditions to Avoid Incompatible products.

Incompatible Materials Strong acids, Powdered metals

Hazardous Decomposition Products No information available

Hazardous Polymerization Hazardous polymerization does not occur.

Hazardous Reactions None under normal processing.

11. Toxicological information

Acute Toxicity

Component Information

Component	LD50 Oral	LD50 Dermal	LC50 Inhalation
1,1,2-Trichloro-1,2,2-trifluoroethane	LD50 = 43 g/kg (Rat)	Not listed	LC50 = 38000 ppm (Rat)4 h LC50 = 38500 mg/kg (Rat)4 h

Toxicologically Synergistic

Products

No information available

Delayed and immediate effects as well as chronic effects from short and long-term exposure

No information available Irritation

No information available Sensitization

Carcinogenicity The table below indicates whether each agency has listed any ingredient as a carcinogen.

Component	CAS-No	IARC	NTP	ACGIH	OSHA	Mexico
1,1,2-Trichloro-1,2,2-tri	76-13-1	Not listed	Not listed	Not listed	Not listed	Not listed
fluoroethane						

Mutagenic Effects No information available

No information available. **Reproductive Effects**

No information available. **Developmental Effects**

No information available. **Teratogenicity**

STOT - single exposure None known STOT - repeated exposure None known

No information available **Aspiration hazard**

Symptoms / effects,both acute and No information available

delayed

Endocrine Disruptor Information No information available

Other Adverse Effects The toxicological properties have not been fully investigated.

12. Ecological information

Ecotoxicity

Do not empty into drains. Chlorotrifluoromethane (CFC-13) is a Class I ozone-depleting chlorofluorocarbon. It is stable in the atmosphere. The half-life for degradation by reaction with photochemically-produced hydroxyl radicals is about 62 years. Following gradual diffusion into the stratosphere above the ozone layer, it slowly degrades (est. half-life of 180-450 years) due to direct photolysis and contributes to the catalytic removal of atmosphere ozone.

Component	Freshwater Algae	Freshwater Fish	Microtox	Water Flea
1,1,2-Trichloro-1,2,2-trifluoro ethane	Not listed	LC50: 7 - 14 mg/L, 96h static (Brachydanio rerio) LC50: = 1250 mg/L, 96h (Pimephales promelas) LC50: = 6240 mg/L, 96h (Oryzias latipes)	Not listed	EC50: = 71 mg/L, 48h (Daphnia magna)

Persistence and Degradability No information available

Bioaccumulation/ Accumulation No information available.

Mobility No information available.

13. Disposal considerations

Waste Disposal Methods Chemical waste generators must determine whether a discarded chemical is classified as a

hazardous waste. Chemical waste generators must also consult local, regional, and national hazardous waste regulations to ensure complete and accurate classification.

	14. Transport information			
DOT	Not regulated			
DOT TDG IATA	Not regulated			
IATA	Not regulated			
IMDG/IMO	Not regulated			
15. Regulatory information				

International Inventories

Component	TSCA	DSL	NDSL	EINECS	ELINCS	NLP	PICCS	ENCS	AICS	IECSC	KECL
1,1,2-Trichloro-1,2,2-trifluoro	Х	Х	-	200-936-1	-		Х	Χ	Х	Х	Χ
ethane											

Legend:

- X Listed
- E Indicates a substance that is the subject of a Section 5(e) Consent order under TSCA.
- F Indicates a substance that is the subject of a Section 5(f) Rule under TSCA.
- N Indicates a polymeric substance containing no free-radical initiator in its inventory name but is considered to cover the designated polymer made with any free-radical initiator regardless of the amount used.
- P Indicates a commenced PMN substance
- R Indicates a substance that is the subject of a Section 6 risk management rule under TSCA.
- S Indicates a substance that is identified in a proposed or final Significant New Use Rule
- T Indicates a substance that is the subject of a Section 4 test rule under TSCA.
- XU Indicates a substance exempt from reporting under the Inventory Update Rule, i.e. Partial Updating of the TSCA Inventory Data Base Production and Site Reports (40 CFR 710(B).
- Y1 Indicates an exempt polymer that has a number-average molecular weight of 1,000 or greater.
- Y2 Indicates an exempt polymer that is a polyester and is made only from reactants included in a specified list of low concern reactants that comprises one of the eligibility criteria for the exemption rule.

U.S. Federal Regulations

TSCA 12(b) Not applicable

SARA 313 Not applicable

0, 11 1, 1	110t applicat	710		
	Component	CAS-No	Weight %	SARA 313 - Threshold
	•			Values %
	1.1.2-Trichloro-1.2.2-trifluoroethane	76-13-1	99	1.0

SARA 311/312 Hazard Categories See section 2 for more information

CWA (Clean Water Act) Not applicable

1,1,2-Trichloro-1,2,2-trifluoroethane

Clean Air Act Not applicable

Component	HAPS Data	Class 1 Ozone Depletors	Class 2 Ozone Depletors
1,1,2-Trichloro-1,2,2-trifluoroethane	-	X	-

OSHA Occupational Safety and Health Administration

Not applicable

CERCLA Not applicable

Component	Hazardous Substances RQs	CERCLA EHS RQs
1,1,2-Trichloro-1,2,2-trifluoroethane	5000 lb	-

California Proposition 65

This product does not contain any Proposition 65 chemicals

U.S. State Right-to-Know

Regulations

Not applicable

Component	Massachusetts	New Jersey	Pennsylvania	Illinois	Rhode Island
1,1,2-Trichloro-1,2,2-triflu	Χ	X	X	-	X
oroethane					

U.S. Department of Transportation

Reportable Quantity (RQ): N
DOT Marine Pollutant N
DOT Severe Marine Pollutant N

U.S. Department of Homeland Security

This product does not contain any DHS chemicals.

Other International Regulations

Mexico - Grade No information available

16. Other information

Prepared By Regulatory Affairs

Thermo Fisher Scientific

Email: EMSDS.RA@thermofisher.com

Revision Date 17-Jan-2018 Print Date 17-Jan-2018

Revision Summary This document has been updated to comply with the US OSHA HazCom 2012 Standard

replacing the current legislation under 29 CFR 1910.1200 to align with the Globally

Harmonized System of Classification and Labeling of Chemicals (GHS).

Disclaimer

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text

End of SDS

Safety Data Sheet Revision Date: 06/04/19

www.restek.com

2 Letter ISO country code/language code: US/EN

1. IDENTIFICATION

Catalog Number / Product Name: 31279 / Indeno(1,2,3-c,d)pyrene Standard

Company: **Restek Corporation** Address: 110 Benner Circle Bellefonte, Pa. 16823 Phone#: 814-353-1300

Fax#: 814-353-1309

Emergency#: 800-424-9300 (CHEMTREC) 703-527-3887 (Outside the ÚS)

Email: www.restek.com

Revision Number: 11

Intended use: For Laboratory use only

2. HAZARD(S)IDENTIFICATION

Emergency Overview:

GHS Hazard Symbols:

GHS Carcinogenicity Category 2

Classification:

GHS Signal Warning

Word:

GHS Hazard: Suspected of causing cancer.

GHS

Precautions:

Safety Obtain special instructions before use.

Precautions: Do not handle until all safety precautions have been read and understood. Wear protective gloves/protective clothing/eye protection/face protection.

First Aid IF exposed or concerned: Get medical advice/attention.

Measures:

Storage: Store locked up.

Disposal: Dispose of contents/container according to section 13 of the SDS.

No data available Single

Exposure **Target Organs:**

Repeated No data available

Exposure

Target Organs:

3. COMPOSITION / INFORMATION ON INGREDIENT

Chemical Name	CAS#	EINEC #	% Composition
Dichloromethane	75-09-2	200-838-9	99.9
indeno (1,2,3-c,d) pyrene	193-39-5	205-893-2	0.1

4. FIRST-AID MEASURES

Inhalation: Remove to fresh air. If breathing is difficult, have a trained individual administer oxygen. If not

breathing, give artificial respiration and have a trained individual administer oxygen. Get

medical attention immediately

Eyes: Immediately flush eyes with plenty of water for at least 20 minutes retracting eyelids often.

Tilt the head to prevent chemical from transferring to the uncontaminated eye. Get immediate medical attention and monitor the eye daily as advised by your physician. Serious harm (damage) may result if treatment is delayed. Continue to flush eyes while awaiting medical

attention

Skin Contact: Wash with soap and water. Remove contaminated clothing, launder immediately, and discard

contaminated leather goods. Get medical attention immediately.

Ingestion: Do not induce vomiting and seek medical attention immediately. Drink two glasses of water

or milk to dilute. Provide medical care provider with this SDS. Never give anything by mouth

to an unconscious person

5. FIRE- FIGHTING MEASURES

Extinguishing Media: Use alcohol resistant foam, carbon dioxide, or dry chemical when fighting

fires. Water or foam may cause frothing if liquid is burning but it still may be a useful extinguishing agent if carefully applied to the surface of the fire. Do Not direct a stream of water into the hot burning liquid. Use

methods suitable to fight surrounding fire.

Fire and/or Explosion Hazards: No data.

Fire Fighting Methods and Protection:
Hazardous Combustion Products:

Use methods for the surrounding fire. Carbon dioxide, Carbon monoxide

6. ACCIDENTAL RELEASE MEASURES

Personal Precautions and Equipment: Exposure to the spilled material may be severely irritating or toxic. Follow

personal protective equipment recommendations found in Section 8 of this SDS. Personal protective equipment needs must be evaluated based on information provided on this sheet and the special circumstances created by the spill including; the material spilled, the quantity of the spill, the area in which the spill occurred, and the expertise of employees in the area responding to the spill. Never exceed any occupational exposure

limits.

Methods for Clean-up: Prevent the spread of any spill to minimize harm to human health and the

environment if safe to do so. Wear complete and proper personal protective equipment following the recommendation of Section 8 at a minimum. Dike with suitable absorbent material like granulated clay. Gather and store in a sealed container pending a waste disposal

evaluation.

7. HANDLING AND STORAGE

Handling Technical Measures and Precautions: Toxic or severely irritating material. Avoid contacting and avoid

breathing the material. Use only in a well ventilated area. As with all chemicals, good industrial hygiene practices should be

followed when handling this material.

Storage Technical Measures and Conditions: Store in a cool dry place. Isolate from incompatible materials.

Keep container closed when not in use

8. EXPOSURE CONTROLS / PERSONAL PROTECTION

United States: Chemical Name	CAS No.	IDLH	ACGIH STEL	ACGIH TLV-TWA	OSHA Exposure Limit
Dichloromethane	75-09-2	2300 ppm IDLH	None Known	50 ppm TWA	25 ppm TWA; 125 ppm STEL (15 min. TWA)
indeno (1,2,3-c,d) pyrene	193-39-5	Not established	None Known	Not established	No data available

Personal Protection:

Engineering Measures: Local exhaust ventilation or other engineering controls are normally required

when handling or using this product to avoid overexposure.

Respiratory Protection: Respiratory protection may be required to avoid overexposure when handling this

product. General or local exhaust ventilation is the preferred means of protection.

Use a respirator if general room ventilation is not available or sufficient to

eliminate symptoms.

Eye Protection: Wear chemically resistant safety glasses with side shields when handling this

product. Wear additional eye protection such as chemical splash goggles and/or face shield when the possibility exists for eye contact with splashing or spraying liquid, or airborne material. Do not wear contact lenses. Have an eye wash

station available.

Skin Protection: Avoid skin contact by wearing chemically resistant gloves, an apron and other

protective equipment depending upon conditions of use. Inspect gloves for chemical break-through and replace at regular intervals. Clean protective equipment regularly. Wash hands and other exposed areas with mild soap and

water before eating, drinking, and when leaving work.

Medical Conditions Aggravated By Exposure: Eye disease Skin disease including eczema and sensitization Respiratory

disease including asthma and bronchitis

9. PHYSICAL AND CHEMICAL PROPERTIES

Appearance, color: Colorless Odor: Strong

Physical State:

pH:

Vapor Pressure:

Vapor Density:

Boiling Point (°C):

Melting Point (°C):

No data available

2.93 (air = 1)

530 °C

96.7 °C

Flash Point (°F):

Upper Flammable/Explosive Limit, % in air:

Lower Flammable/Explosive Limit, % in air:

Autoignition Temperature (°C):

Decomposition Temperature (°C):

No data available

556 deg C

No data available

Specific Gravity: 1.3254 - 1.3258 g/cm3 at 20 °C

Evaporation Rate:No data available

Odor Threshold: ND

Solubility: Moderate; 50-99% Partition Coefficient: n-octanol in water: No data available

VOC % by weight: 99.9

Molecular Weight: No data available

10. STABILITY AND REACTIVITY

Stability: Stable under normal conditions.

Conditions to Avoid:

Materials to Avoid / Chemical Incompatiability:

Hazardous Decomposition Products:

None known.Contamination High temperatures
Strong oxidizing agents Caustics (bases)
Carbon dioxide Carbon monoxide

11. TOXICOLOGICAL INFORMATION

Routes of Entry: Inhalation Absorption Ingestion Skin contact Eye

contact

Target Organs Potentially Affected By Exposure: Skin, Cardiovascular System, Eyes, Liver

Chemical Interactions That Change Toxicity: None Known

Immediate (Acute) Health Effects by Route of Exposure:

Inhalation Irritation: Can cause moderate respiratory irritation, dizziness, weakness, fatigue, nausea

and headache.

Inhalation Toxicity: Harmful! Can cause systemic damage (see "Target Organs)Inhalation may

cause severe central nervous system depression (including unconsciousness).

Skin Contact: Contact causes severe skin irritation and possible burns.

Skin Absorption: Harmful if absorbed through the skin. May cause severe irritation and systemic

damage.

Eye Contact: Contact with the eyes may cause moderate to severe eye injury. Eye contact

may result in tearing and reddening, but not likely to permanently injure eye tissue. Temporary vision impairment (cloudy or blurred vision) is possible.

Ingestion Irritation: Irritating to mouth, throat, and stomach. Can cause abdominal discomfort,

nausea, vomiting and diarrhea.

Ingestion Toxicity: Harmful if swallowed. May cause systemic poisoning.

Long-Term (Chronic) Health Effects:

Carcinogenicity: Contains a probable or known human carcinogen.

Reproductive and Developmental Toxicity: No data available to indicate product or any components

present at greater than 0.1% may cause birth defects.

Inhalation:

Upon prolonged and/or repeated exposure, can cause

Upon prolonged and/or repeated exposure, can cause moderate respiratory irritation, dizziness, weakness, fatigue,

nausea and headache.Harmful! Can cause systemic damage upon prolonged and/or repeated exposure (see

"Target Organs)

Skin Absorption: Upon prolonged or repeated exposure, harmful if

absorbed through the skin. May cause severe irritation

and systemic damage

Component Toxicological Data:

NIOSH:

Chemical Name CAS No. LD50/LC50

Methane, dichloro- 75-09-2 Inhalation LC50 Rat 53 mg/L 6 h

Component Carcinogenic Data:

OSHA:

Chemical Name CAS No. Indeno[1,2,3-cd]pyrene 193-39-5

Indeno[1,2,3-cd]pyrene 193-39-5 Present
Methylene chloride 75-09-2 25 ppm TWA (8 hr.); 125 ppm STEL (15 min.);

12.5 ppm Action Level (see 29 CFR 1910.1051); effective date for respiratory protection for certain employers to acheive the 8-hour TWA PEL is August 31, 1998; the start up date to install engineering controls is December 10, 1998.; {OSHA - 29 CFR 1910

Specifically Regulate

ACGIH:

Chemical Name CAS No.

Dichloromethane 75-09-2 A3 - Confirmed Animal Carcinogen with

Unknown Relevance to Humans

NIOSH:

Chemical Name CAS No.

Methylene chloride 75-09-2 potential occupational carcinogen

NTP:

Chemical Name CAS No.

No data available

IARC:

Chemical NameCAS No.Group No.Monograph 110 [in preparation];75-09-2Group 2A

Monograph 71 [1999]

Monograph 92 [2010]; 193-39-5 Group 2B

Supplement 7 [1987]; Monograph

32 [1983]

12. ECOLOGICAL INFORMATION

Overview: Moderate ecological hazard. This product may be dangerous

to plants and/or wildlife. Keep out of waterways.

Mobility: No data
Persistence: No data
Bioaccumulation: No data
Degradability: No data

Ecological Toxicity Data: No data available

13. DISPOSAL CONSIDERATIONS

Waste Description of Spent Product: Spent or discarded material is a hazardous waste. Mixing

spent or discarded material with other materials may render the mixture hazardous. Perform a hazardous

waste determination on mixtures.

Disposal Methods: Incinerate spent or discarded material a permitted

hazardous waste facility.

Waste Disposal of Packaging: Comply with all Local, State, Federal, and Provincial

14. TRANSPORTATION INFORMATION

United States:

DOT Proper Shipping Name: Dichloromethane

UN Number: UN1593
Hazard Class: 6.1
Packing Group: III

International:

IATA Proper Shipping Name: Dichloromethane

UN Number: UN1593
Hazard Class: 6.1
Packing Group: III

Marine Pollutant: No

Chemical Name	CAS#	Marine Pollutant	Severe Marine Pollutant
No data available			

15. REGULATORY INFORMATION

United States: Chemical Name	CAS#	CERCLA	SARA 313	SARA EHS 313	TSCA
Dichloromethane	75-09-2	Χ	Χ	-	Χ
indeno (1,2,3-c,d) pyrene	193-39-5	X	Х	-	X

The following chemicals are listed on CA Prop 65:

Chemical Name	CAS#	Regulation
Indeno[1,2,3-cd]pyrene	193-39-5	Prop 65 Cancer
Dichloromethane	75-09-2	Prop 65 Cancer
Dichloromethane (Methylene chloride)		

State Right To Know Listing:

Chemical Name CAS#		New Jersey	New Jersey Massachusetts		California	
Dichloromethane	75-09-2	Х	Х	X	X	
indeno (1,2,3-c,d)	193-39-5	X	Х	X	X	
pvrene						

16. OTHER INFORMATION

Prior Version Date: 03/22/18

Other Information: Any changes to the SDS compared to previous versions are marked by a vertical

line in front of the concerned paragraph.

References: No data available

Disclaimer: Restek Corporation provides the descriptions, data and information contained

herein in good faith but makes no representation as to its comprehensiveness or accuracy. It is provided for your guidance only. Because many factors may affect processing or application/use, Restek Corporation recommends you perform an assessment to determine the suitability of a product for your particular purpose prior to use. No warranties of any kind, either expressed or implied, including fitness for a particular purpose, are made regarding products described, data or information set forth. In no case shall the descriptions, information, or data provided be considered a part of our terms and conditions of sale. Further, the descriptions, data and information furnished hereunder are given gratis. No obligation or liability for the description, data and information given are assumed. All such being given

and accepted at your risk.

SAFETY DATA SHEET

Creation Date 20-Aug-2014 Revision Date 17-Jan-2018 Revision Number 3

1. Identification

Product Name Mercury (Certified ACS)

Cat No. : M141-1LB; M141-6LB

Synonyms Colloidal mercury; Hydrargyrum; Metallic mercury

Recommended Use Laboratory chemicals.

Uses advised against Not for food, drug, pesticide or biocidal product use

Details of the supplier of the safety data sheet

Company

Fisher Scientific One Reagent Lane Fair Lawn, NJ 07410 Tel: (201) 796-7100

Emergency Telephone Number

CHEMTREC®, Inside the USA: 800-424-9300 CHEMTREC®, Outside the USA: 001-703-527-3887

2. Hazard(s) identification

Classification

This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200)

Corrosive to metals

Acute Inhalation Toxicity - Vapors

Reproductive Toxicity

Specific target organ toxicity - (repeated exposure)

Category 1

Category 1

Category 1

Target Organs - Central nervous system (CNS), Kidney.

Label Elements

Signal Word

Danger

Hazard Statements

May be corrosive to metals

Fatal if inhaled

May damage the unborn child

Causes damage to organs through prolonged or repeated exposure

Precautionary Statements

Prevention

Obtain special instructions before use

Do not handle until all safety precautions have been read and understood

Use personal protective equipment as required

Do not get in eyes, on skin, or on clothing

Wash face, hands and any exposed skin thoroughly after handling

Do not eat, drink or smoke when using this product

Do not breathe dust/fume/gas/mist/vapors/spray

Use only outdoors or in a well-ventilated area

Wear respiratory protection

Response

IF exposed or concerned: Get medical attention/advice

Inhalation

IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing

Immediately call a POISON CENTER or doctor/physician

Skin

Immediately call a POISON CENTER or doctor/physician

IF ON SKIN: Gently wash with plenty of soap and water

Remove/Take off immediately all contaminated clothing

Wash contaminated clothing before reuse

Storage

Store locked up

Store in a well-ventilated place. Keep container tightly closed

Disposal

Dispose of contents/container to an approved waste disposal plant

Hazards not otherwise classified (HNOC)

Very toxic to aquatic life with long lasting effects

WARNING. Reproductive Harm - https://www.p65warnings.ca.gov/.

3. Composition/Information on Ingredients

Component	CAS-No	Weight %
Mercury	7439-97-6	100

4. First-aid measures

Eye Contact Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes.

Immediate medical attention is required.

Skin Contact Wash off immediately with soap and plenty of water while removing all contaminated

clothes and shoes. Immediate medical attention is required.

Inhalation Move to fresh air. If breathing is difficult, give oxygen. Do not use mouth-to-mouth method if

victim ingested or inhaled the substance; give artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device. Immediate

medical attention is required.

Ingestion Do not induce vomiting. Call a physician or Poison Control Center immediately.

Most important symptoms and

effects

Notes to Physician Treat symptomatically

Fire-fighting measures

Substance is nonflammable; use agent most appropriate to extinguish surrounding fire. **Suitable Extinguishing Media**

Unsuitable Extinguishing Media No information available

Flash Point No information available Method -No information available

Autoignition Temperature

Explosion Limits

No information available

No information available.

No data available Upper No data available Lower Sensitivity to Mechanical Impact No information available Sensitivity to Static Discharge No information available

Specific Hazards Arising from the Chemical

Very toxic. Non-combustible, substance itself does not burn but may decompose upon heating to produce corrosive and/or toxic fumes. Keep product and empty container away from heat and sources of ignition.

Hazardous Combustion Products

Mercury oxide Highly toxic fumes

Protective Equipment and Precautions for Firefighters

As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear.

NFPA

Health	Flammability	Instability	Physical hazards
4	0	0	N/A

6. Accidental release measures

Personal Precautions

Wear self-contained breathing apparatus and protective suit. Evacuate personnel to safe areas. Ensure adequate ventilation. Do not get in eyes, on skin, or on clothing. Should not be released into the environment. See Section 12 for additional ecological information.

Environmental Precautions

Methods for Containment and Clean Wear self-contained breathing apparatus and protective suit. Soak up with inert absorbent material. Keep in suitable, closed containers for disposal.

7. Handling and storage

Handling

Use only under a chemical fume hood. Wear personal protective equipment. Do not get in eyes, on skin, or on clothing. Do not breathe vapors or spray mist. Do not ingest.

Storage

Up

Keep containers tightly closed in a dry, cool and well-ventilated place. Corrosives area.

8. Exposure controls / personal protection

Exposure Guidelines

Component	ACGIH TLV	OSHA PEL	NIOSH IDLH	Mexico OEL (TWA)
Mercury	TWA: 0.025 mg/m ³	(Vacated) TWA: 0.05 mg/m ³	IDLH: 10 mg/m ³	TWA: 0.05 mg/m ³
	Skin	Ceiling: 0.1 mg/m ³	TWA: 0.05 mg/m ³	_
		(Vacated) STEL: 0.03 mg/m ³	Ceiling: 0.1 mg/m ³	
		Skin		
		(Vacated) Ceiling: 0.1 mg/m ³		

Revision Date 17-Jan-2018

Mercury (Certified ACS)

Legend

ACGIH - American Conference of Governmental Industrial Hygienists

OSHA - Occupational Safety and Health Administration

NIOSH IDLH: The National Institute for Occupational Safety and Health Immediately Dangerous to Life or Health

Engineering Measures Use only under a chemical fume hood. Ensure adequate ventilation, especially in confined

areas. Ensure that eyewash stations and safety showers are close to the workstation

location.

Personal Protective Equipment

Eye/face ProtectionWear appropriate protective eyeglasses or chemical safety goggles as described by

OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard

EN166.

Skin and body protection Wear appropriate protective gloves and clothing to prevent skin exposure.

Respiratory Protection Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European Standard

EN 149. Use a NIOSH/MSHA or European Standard EN 149 approved respirator if exposure limits are exceeded or if irritation or other symptoms are experienced.

No information available

Hygiene Measures Handle in accordance with good industrial hygiene and safety practice.

9. Physical and chemical properties

Physical StateLiquidAppearanceSilverOdorOdorless

Odor Threshold
pHNo information available
No information availableMelting Point/Range-38.87 °C / -38 °FBoiling Point/Range356.72 °C / 674.1 °FFlash PointNo information availableEvaporation RateNo information available

Flammability (solid,gas)
Flammability or explosive limits

UpperNo data availableLowerNo data availableVapor Pressure0.002 mmHg @ 25 °C

Vapor Density 7.0

Specific Gravity13.59 (H2O=1)SolubilityInsoluble in waterPartition coefficient; n-octanol/waterNo data available

Autoignition TemperatureNo information availableDecomposition TemperatureNo information availableViscosityNo information available

Molecular FormulaHgMolecular Weight200.59

10. Stability and reactivity

Reactive Hazard None known, based on information available

Stability Stable under normal conditions.

Conditions to Avoid Incompatible products. Excess heat.

Incompatible Materials Strong oxidizing agents, Ammonia, Metals, Halogens

Revision Date 17-Jan-2018

Hazardous Decomposition Products Mercury oxide, Highly toxic fumes

Hazardous Polymerization Hazardous polymerization does not occur.

Hazardous Reactions None under normal processing.

Toxicological information

Acute Toxicity

Product Information

No acute toxicity information is available for this product

Component Information Toxicologically Synergistic

No information available

Products

Delayed and immediate effects as well as chronic effects from short and long-term exposure

Irritation No information available

Sensitization No information available

Carcinogenicity The table below indicates whether each agency has listed any ingredient as a carcinogen.

Component	Component CAS-No		IARC NTP		OSHA	Mexico	
Mercury	7100 07 0		Not listed	Not listed Not listed		Not listed	

Mutagenic Effects No information available

Reproductive Effects No information available.

Developmental Effects May cause harm to the unborn child.

Teratogenicity No information available.

STOT - single exposure

None known

STOT - repeated exposure Central nervous system (CNS) Kidney

Aspiration hazard No information available

Symptoms / effects,both acute and No information available

delayed

Endocrine Disruptor Information No information available

The toxicological properties have not been fully investigated. Other Adverse Effects

12. Ecological information

Ecotoxicity

This product contains the following substance(s) which are hazardous for the environment.

Component	Freshwater Algae	Freshwater Fish	Microtox	Water Flea
Mercury	Not listed	0.9 mg/L LC50 96h	Not listed	EC50: = 5.0 μg/L, 96h
•		0.18 mg/L LC50 96h		(water flea)
		0.16 mg/L LC50 96h		, ,
		0.5 mg/L LC50 96h		

Persistence and Degradability No information available

Bioaccumulation/ Accumulation No information available.

No information available. Mobility

13. Disposal considerations

Revision Date 17-Jan-2018

Waste Disposal Methods

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. Chemical waste generators must also consult local, regional, and national hazardous waste regulations to ensure complete and accurate classification.

Component	RCRA - U Series Wastes	RCRA - P Series Wastes		
Mercury - 7439-97-6	U151	-		

14. Transport information

DOT

UN-No UN2809 Proper Shipping Name MERCURY

Hazard Class 8
Subsidiary Hazard Class 6.1
Packing Group III

<u>TDG</u>

UN-No UN2809
Proper Shipping Name MERCURY

Hazard Class 8
Subsidiary Hazard Class 6.1
Packing Group III

IATA

UN-No UN2809
Proper Shipping Name MERCURY

Hazard Class 8
Subsidiary Hazard Class 6.1
Packing Group III

IMDG/IMO

UN-No UN2809
Proper Shipping Name MERCURY

Hazard Class 8
Subsidiary Hazard Class 6.1
Packing Group III

15. Regulatory information

International Inventories

	Component	TSCA	DSL	NDSL	EINECS	ELINCS	NLP	PICCS	ENCS	AICS	IECSC	KECL
ı	Mercury	Х	Χ	-	231-106-7	-		Х	-	Х	Х	Χ

Legend:

- X Listed
- E Indicates a substance that is the subject of a Section 5(e) Consent order under TSCA.
- F Indicates a substance that is the subject of a Section 5(f) Rule under TSCA.
- N Indicates a polymeric substance containing no free-radical initiator in its inventory name but is considered to cover the designated polymer made with any free-radical initiator regardless of the amount used.
- P Indicates a commenced PMN substance
- R Indicates a substance that is the subject of a Section 6 risk management rule under TSCA.
- S Indicates a substance that is identified in a proposed or final Significant New Use Rule
- T Indicates a substance that is the subject of a Section 4 test rule under TSCA.
- XU Indicates a substance exempt from reporting under the Inventory Update Rule, i.e. Partial Updating of the TSCA Inventory Data Base Production and Site Reports (40 CFR 710(B).
- Y1 Indicates an exempt polymer that has a number-average molecular weight of 1,000 or greater.
- Y2 Indicates an exempt polymer that is a polyester and is made only from reactants included in a specified list of low concern reactants that comprises one of the eligibility criteria for the exemption rule.

U.S. Federal Regulations

TSCA 12(b)

Component	TSCA 12(b)
Mercury	Section 5

SARA 313

Component	CAS-No	Weight %	SARA 313 - Threshold Values %
Mercury	7439-97-6	100	1.0

SARA 311/312 Hazard Categories See section 2 for more information

CWA (Clean Water Act)

Component	CWA - Hazardous CWA - Reportable Substances Quantities		CWA - Toxic Pollutants	CWA - Priority Pollutants
Mercury	-	-	X	X

Clean Air Act

Component	Component HAPS Data		Class 2 Ozone Depletors	
Mercury X			-	

OSHA Occupational Safety and Health Administration Not applicable

CERCLA

This material, as supplied, contains one or more substances regulated as a hazardous substance under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302)

Component	Hazardous Substances RQs	CERCLA EHS RQs	
Mercury	1 lb	-	

California Proposition 65

This product contains the following proposition 65 chemicals

Component	CAS-No California Prop. 65		Prop 65 NSRL	Category	
Mercury	7439-97-6	//34_4/_6 I		Developmental	

U.S. State Right-to-Know

Regulations

	Component	Massachusetts	New Jersey	Pennsylvania	Illinois	Rhode Island
Ī	Mercury	X	X	Χ	X	X

U.S. Department of Transportation

Reportable Quantity (RQ): N
DOT Marine Pollutant N
DOT Severe Marine Pollutant N

U.S. Department of Homeland Security

This product does not contain any DHS chemicals.

Other International Regulations

Mexico - Grade No information available

	16. Other information
_	 D 11 Aff :

Prepared By Regulatory Affairs

Thermo Fisher Scientific

Email: EMSDS.RA@thermofisher.com

 Creation Date
 20-Aug-2014

 Revision Date
 17-Jan-2018

 Print Date
 17-Jan-2018

Revision Summary

This document has been updated to comply with the US OSHA HazCom 2012 Standard

replacing the current legislation under 29 CFR 1910.1200 to align with the Globally

Harmonized System of Classification and Labeling of Chemicals (GHS).

Revision Date 17-Jan-2018

Disclaimer

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text

End of SDS

SAFETY DATA SHEET

Creation Date 27-Jan-2010 Revision Date 24-May-2017 Revision Number 5

1. Identification

Product Name Methylene chloride

Cat No.: D37-1; D37-4; D37-20; D37-200; D37-200LC; D37-500; D37FB-19;

D37FB-50; D37FB-115; D37FB-200; D37POP-19; D37POPB-50; D37POPB-200; D37RB-19; D37RB-50; D37RB-115; D37RB-200; D37RS-19; D37RS-28; D37RS-50; D37RS-115; D37RS-200; D37SK-4;

D37SK-4LC; D37SS-28; D37SS-50; D37SS-115; D37SS-200;

D37SS-1350

Synonyms Dichloromethane; DCM

Recommended Use Laboratory chemicals.

Uses advised against Not for food, drug, pesticide or biocidal product use

Details of the supplier of the safety data sheet

Company

Fisher Scientific One Reagent Lane Fair Lawn, NJ 07410 Tel: (201) 796-7100

Emergency Telephone Number

CHEMTREC®, Inside the USA: 800-424-9300 CHEMTREC®, Outside the USA: 001-703-527-3887

2. Hazard(s) identification

Classification

This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200)

Skin Corrosion/irritationCategory 2Serious Eye Damage/Eye IrritationCategory 2CarcinogenicityCategory 1BSpecific target organ toxicity (single exposure)Category 3

Target Organs - Central nervous system (CNS).

Label Elements

Signal Word

Danger

Hazard Statements

Causes skin irritation
Causes serious eye irritation
May cause drowsiness or dizziness
May cause cancer

Precautionary Statements

Prevention

Obtain special instructions before use

Do not handle until all safety precautions have been read and understood

Use personal protective equipment as required

Wash face, hands and any exposed skin thoroughly after handling

Wear eye/face protection

Do not breathe dust/fume/gas/mist/vapors/spray Use only outdoors or in a well-ventilated area

Response

IF exposed or concerned: Get medical attention/advice

Inhalation

IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing

Skin

IF ON SKIN: Wash with plenty of soap and water If skin irritation occurs: Get medical advice/attention Take off contaminated clothing and wash before reuse

Eyes

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing If eye irritation persists: Get medical advice/attention

Storage

Store locked up

Store in a well-ventilated place. Keep container tightly closed

Disposal

Dispose of contents/container to an approved waste disposal plant

Hazards not otherwise classified (HNOC)

WARNING! This product contains a chemical known in the State of California to cause cancer.

3. Composition / information on ingredients

Component	CAS-No	Weight %
Methylene chloride	75-09-2	>99.5

4. First-aid measures

General Advice If symptoms persist, call a physician.

Eye Contact Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes.

Obtain medical attention.

Skin Contact Wash off immediately with plenty of water for at least 15 minutes. Obtain medical attention.

Inhalation Move to fresh air. If breathing is difficult, give oxygen. Obtain medical attention.

Ingestion Do not induce vomiting. Call a physician or Poison Control Center immediately.

Most important symptoms/effects Breathing difficulties. Inhalation of high vapor concentrations may cause symptoms like

headache, dizziness, tiredness, nausea and vomiting

Notes to Physician Treat symptomatically

5. Fire-fighting measures

Suitable Extinguishing Media Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.

Unsuitable Extinguishing Media No information available

Flash Point No information available Method - No information available

Autoignition Temperature 556 °C / 1032.8 °F

Explosion Limits

Upper 23 vol % **Lower** 13 vol %

Sensitivity to Mechanical Impact No information available Sensitivity to Static Discharge No information available

Specific Hazards Arising from the Chemical

Thermal decomposition can lead to release of irritating gases and vapors. Keep product and empty container away from heat and sources of ignition.

Hazardous Combustion Products

Carbon monoxide (CO) Carbon dioxide (CO2) Hydrogen chloride gas Phosgene

Protective Equipment and Precautions for Firefighters

As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear.

NFPA

Health	Flammability	Instability	Physical hazards
2	1	0	N/A

Accidental release measures

Personal Precautions Use personal protective equipment. Ensure adequate ventilation. Avoid contact with skin,

eyes and clothing. Keep people away from and upwind of spill/leak.

Environmental Precautions Should not be released into the environment. See Section 12 for additional ecological

information.

Methods for Containment and Clean Soak up with inert absorbent material. Keep in suitable, closed containers for disposal. **Up**

7. Handling and storage

Handling Wear personal protective equipment. Do not get in eyes, on skin, or on clothing. Avoid

ingestion and inhalation. Use only under a chemical fume hood.

Storage Keep containers tightly closed in a dry, cool and well-ventilated place.

8. Exposure controls / personal protection

Exposure Guidelines

Component	ACGIH TLV	OSHA PEL	NIOSH IDLH	Mexico OEL (TWA)
Methylene chloride	TWA: 50 ppm	(Vacated) TWA: 500 ppm	IDLH: 2300 ppm	TWA: 100 ppm
		(Vacated) STEL: 2000 ppm		TWA: 330 mg/m ³
		(Vacated) Ceiling: 1000 ppm		STEL: 500 ppm
		TWA: 25 ppm		STEL: 1740 mg/m ³
		STEL: 125 ppm		

Legend

Methylene chloride

ACGIH - American Conference of Governmental Industrial Hygienists

OSHA - Occupational Safety and Health Administration

NIOSH IDLH: The National Institute for Occupational Safety and Health Immediately Dangerous to Life or Health

Engineering Measures Use only under a chemical fume hood. Ensure that eyewash stations and safety showers

are close to the workstation location.

Personal Protective Equipment

Eye/face Protection Wear appropriate protective eyeglasses or chemical safety goggles as described by

OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard

EN166.

Skin and body protectionWear appropriate protective gloves and clothing to prevent skin exposure.

Respiratory Protection Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European Standard

EN 149. Use a NIOSH/MSHA or European Standard EN 149 approved respirator if exposure limits are exceeded or if irritation or other symptoms are experienced.

Hygiene Measures Handle in accordance with good industrial hygiene and safety practice.

9. Physical and chemical properties

Physical StateLiquidAppearanceColorlessOdorsweet

Odor Threshold No information available

pH Not applicable

Melting Point/Range-97 °C / -142.6 °FBoiling Point/Range39 °C / 102.2 °FFlash PointNo information availableEvaporation RateNo information available

Flammability (solid,gas) Not applicable

Flammability or explosive limits

 Upper
 23 vol %

 Lower
 13 vol %

 Vapor Pressure
 350 mbar @ 20°C

 Vapor Density
 2.93 (Air = 1.0)

Specific Gravity 1.33

SolubilityNo information availablePartition coefficient; n-octanol/waterNo data availableAutoignition Temperature556 °C / 1032.8 °FDecomposition TemperatureNo information available

Viscosity

No information available
C H2 Cl2

Molecular Formula C H2 Cl Molecular Weight 84.93

10. Stability and reactivity

Reactive Hazard None known, based on information available

Stability Stable under normal conditions.

Conditions to Avoid Incompatible products. Excess heat.

Incompatible Materials Strong oxidizing agents, Strong acids, Amines

Hazardous Decomposition Products Carbon monoxide (CO), Carbon dioxide (CO2), Hydrogen chloride gas, Phosgene

Hazardous Polymerization Hazardous polymerization does not occur.

Methylene chloride

Hazardous Reactions

None under normal processing.

11. Toxicological information

Acute Toxicity

Product Information

Component Information

Component	Component LD50 Oral		LC50 Inhalation	
Methylene chloride > 2000 mg/kg (Rat)		> 2000 mg/kg (Rat)	53 mg/L (Rat) 6 h	
			76000 mg/m³ (Rat) 4 h	

Toxicologically Synergistic

Products

No information available

Delayed and immediate effects as well as chronic effects from short and long-term exposure

Irritation Irritating to eyes and skin

Sensitization No information available

Carcinogenicity The table below indicates whether each agency has listed any ingredient as a carcinogen.

Component	CAS-No	IARC	NTP	ACGIH	OSHA	Mexico
Methylene chloride	75-09-2	Group 2A	Reasonably	A3	X	A3
1		1	Anticipated			

IARC: (International Agency for Research on Cancer)

NTP: (National Toxicity Program)

IARC: (International Agency for Research on Cancer)

Group 1 - Carcinogenic to Humans

Group 2A - Probably Carcinogenic to Humans Group 2B - Possibly Carcinogenic to Humans

NTP: (National Toxicity Program)

Known - Known Carcinogen

Reasonably Anticipated - Reasonably Anticipated to be a Human

Carcinogen

ACGIH: (American Conference of Governmental Industrial

Hygienists)

A1 - Known Human Carcinogen

A2 - Suspected Human Carcinogen

A3 - Animal Carcinogen

ACGIH: (American Conference of Governmental Industrial Hygienists) Mexico - Occupational Exposure Limits - Carcinogens

Mexico - Occupational Exposure Limits - Carcinogens

A1 - Confirmed Human Carcinogen A2 - Suspected Human Carcinogen A3 - Confirmed Animal Carcinogen

A4 - Not Classifiable as a Human Carcinogen A5 - Not Suspected as a Human Carcinogen

Mutagenic Effects Mutagenic effects have occured in microorganisms.

Experiments have shown reproductive toxicity effects on laboratory animals. **Reproductive Effects**

Developmental Effects Developmental effects have occurred in experimental animals.

No information available. **Teratogenicity**

STOT - single exposure Central nervous system (CNS)

STOT - repeated exposure None known

No information available **Aspiration hazard**

delayed

Symptoms / effects,both acute and Inhalation of high vapor concentrations may cause symptoms like headache, dizziness,

tiredness, nausea and vomiting

Endocrine Disruptor Information No information available

Other Adverse Effects Tumorigenic effects have been reported in experimental animals. See actual entry in

RTECS for complete information.

Revision Date 24-May-2017 Methylene chloride

12. Ecological information

Ecotoxicity

Component	Freshwater Algae	Freshwater Fish	Microtox	Water Flea
Methylene chloride	EC50:>660 mg/L/96h	Pimephales promelas:	EC50: 1 mg/L/24 h	EC50: 140 mg/L/48h
	_	LC50:193 mg/L/96h	EC50: 2.88 mg/L/15 min	_

Persistence and Degradability Persistence is unlikely based on information available.

Bioaccumulation/ Accumulation No information available.

Mobility Will likely be mobile in the environment due to its volatility.

Component	log Pow	
Methylene chloride	1.25	

13. Disposal considerations

Waste Disposal Methods

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. Chemical waste generators must also consult local, regional, and national hazardous waste regulations to ensure complete and accurate classification.

Component	RCRA - U Series Wastes	RCRA - P Series Wastes
Methylene chloride - 75-09-2	U080	-

14. Transport information

DOT

UN-No UN1593

Proper Shipping Name DICHLOROMETHANE

Hazard Class 6.1 **Packing Group** Ш

TDG

UN-No UN1593

Proper Shipping Name DICHLOROMETHANE

Hazard Class 6.1 **Packing Group** Ш

UN-No UN1593

Proper Shipping Name Dichloromethane

Hazard Class 6.1 **Packing Group** Ш IMDG/IMO

UN-No

UN1593 Dichloromethane **Proper Shipping Name**

Hazard Class 6.1

Packing Group Ш

Regulatory information

All of the components in the product are on the following Inventory lists: X = listed

International Inventories

Component	TSCA	DSL	NDSL	EINECS	ELINCS	NLP	PICCS	ENCS	AICS	IECSC	KECL
Methylene chloride	Х	Χ	-	200-838-9	-		Χ	Χ	Χ	Х	Χ

Legend:

X - Listed

- E Indicates a substance that is the subject of a Section 5(e) Consent order under TSCA.
- F Indicates a substance that is the subject of a Section 5(f) Rule under TSCA.
- N Indicates a polymeric substance containing no free-radical initiator in its inventory name but is considered to cover the designated

polymer made with any free-radical initiator regardless of the amount used.

- P Indicates a commenced PMN substance
- R Indicates a substance that is the subject of a Section 6 risk management rule under TSCA.
- S Indicates a substance that is identified in a proposed or final Significant New Use Rule
- T Indicates a substance that is the subject of a Section 4 test rule under TSCA.
- XU Indicates a substance exempt from reporting under the Inventory Update Rule, i.e. Partial Updating of the TSCA Inventory Data Base Production and Site Reports (40 CFR 710(B).
- Y1 Indicates an exempt polymer that has a number-average molecular weight of 1,000 or greater.
- Y2 Indicates an exempt polymer that is a polyester and is made only from reactants included in a specified list of low concern reactants that comprises one of the eligibility criteria for the exemption rule.

U.S. Federal Regulations

TSCA 12(b)

SARA 313

Component	CAS-No	Weight %	SARA 313 - Threshold Values %
Methylene chloride	75-09-2	>99.5	0.1

SARA 311/312 Hazard Categories

Acute Health Hazard	Yes
Chronic Health Hazard	Yes
Fire Hazard	No
Sudden Release of Pressure Hazard	No
Reactive Hazard	No

CWA (Clean Water Act)

Component	CWA - Hazardous Substances	CWA - Reportable Quantities	CWA - Toxic Pollutants	CWA - Priority Pollutants
Methylene chloride	-	-	X	X

Clean Air Act

Component	HAPS Data	Class 1 Ozone Depletors	Class 2 Ozone Depletors
Methylene chloride	X		-

OSHA Occupational Safety and Health Administration

Component	Specifically Regulated Chemicals	Highly Hazardous Chemicals
Methylene chloride	125 ppm STEL 12.5 ppm Action Level	-
	25 ppm TWA	

CERCLA

This material, as supplied, contains one or more substances regulated as a hazardous substance under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302)

	Component	Hazardous Substances RQs	CERCLA EHS RQs
Ī	Methylene chloride	1000 lb 1 lb	-

California Proposition 65

This product contains the following proposition 65 chemicals

Component	CAS-No	California Prop. 65	Prop 65 NSRL	Category
Methylene chloride	75-09-2	Carcinogen	200 μg/day 50 μg/day	Carcinogen

U.S. State Right-to-Know

Regulations

Component	Massachusetts	New Jersey	Pennsylvania	Illinois	Rhode Island
Methylene chloride	X	X	X	X	X

U.S. Department of Transportation

Methylene chloride

Reportable Quantity (RQ): Y
DOT Marine Pollutant N
DOT Severe Marine Pollutant N

U.S. Department of Homeland Security

This product does not contain any DHS chemicals.

Other International Regulations

Mexico - Grade No information available

Prepared By Regulatory Affairs

Thermo Fisher Scientific

Email: EMSDS.RA@thermofisher.com

 Creation Date
 27-Jan-2010

 Revision Date
 24-May-2017

 Print Date
 24-May-2017

Revision Summary This document has been updated to comply with the US OSHA HazCom 2012 Standard

replacing the current legislation under 29 CFR 1910.1200 to align with the Globally

Harmonized System of Classification and Labeling of Chemicals (GHS).

Disclaimer

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text

End of SDS

SAFETY DATA SHEET

Creation Date 10-Dec-2009 Revision Date 26-May-2017 Revision Number 4

1. Identification

Product Name Tetrachloroethylene

Cat No.: AC445690000; ACR445690010; AC445690025; AC445691000

Synonyms Perchloroethylene

Recommended Use Laboratory chemicals.

Uses advised against Not for food, drug, pesticide or biocidal product use

Details of the supplier of the safety data sheet

Company

Fisher Scientific Acros Organics
One Reagent Lane One Reagent Lane
Fair Lawn, NJ 07410 Fair Lawn, NJ 07410

Tel: (201) 796-7100

Emergency Telephone Number

For information **US** call: 001-800-ACROS-01 / **Europe** call: +32 14 57 52 11 Emergency Number **US**:001-201-796-7100 / **Europe**: +32 14 57 52 99 **CHEMTREC** Tel. No.**US**:001-800-424-9300 / **Europe**:001-703-527-3887

2. Hazard(s) identification

Classification

This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200)

Skin Corrosion/irritation

Serious Eye Damage/Eye Irritation

Skin Sensitization

Carcinogenicity

Specific target organ toxicity (single exposure)

Category 3

Category 3

Target Organs - Central nervous system (CNS).

Specific target organ toxicity - (repeated exposure) Category 2

Target Organs - Kidney, Liver, Blood.

Label Elements

Signal Word

Danger

Hazard Statements

Causes skin irritation

Causes serious eye irritation

May cause an allergic skin reaction

May cause drowsiness or dizziness

May cause cancer

May cause damage to organs through prolonged or repeated exposure

Precautionary Statements

Prevention

Obtain special instructions before use

Do not handle until all safety precautions have been read and understood

Use personal protective equipment as required

Wash face, hands and any exposed skin thoroughly after handling

Contaminated work clothing should not be allowed out of the workplace

Do not breathe dust/fume/gas/mist/vapors/spray Use only outdoors or in a well-ventilated area

Wear protective gloves/protective clothing/eye protection/face protection

Response

IF exposed or concerned: Get medical attention/advice

Inhalation

IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing

Skin

IF ON SKIN: Wash with plenty of soap and water

Take off contaminated clothing and wash before reuse

If skin irritation or rash occurs: Get medical advice/attention

Eyes

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing If eye irritation persists: Get medical advice/attention

Storage

Store locked up

Store in a well-ventilated place. Keep container tightly closed

Disposal

Dispose of contents/container to an approved waste disposal plant

Hazards not otherwise classified (HNOC)

Toxic to aquatic life with long lasting effects

WARNING! This product contains a chemical known in the State of California to cause cancer.

3. Composition / information on ingredients

Component	CAS-No	Weight %	
Tetrachloroethylene	127-18-4	>95	

4. First-aid measures

General Advice If symptoms persist, call a physician.

Eye Contact Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes.

Obtain medical attention.

Skin Contact Wash off immediately with plenty of water for at least 15 minutes. If skin irritation persists,

call a physician.

Inhalation Move to fresh air. If not breathing, give artificial respiration. Get medical attention if

symptoms occur.

Ingestion Clean mouth with water and drink afterwards plenty of water.

Tetrachloroethylene

Most important symptoms/effects

None reasonably foreseeable. May cause allergic skin reaction. Inhalation of high vapor concentrations may cause symptoms like headache, dizziness, tiredness, nausea and vomiting: Symptoms of allergic reaction may include rash, itching, swelling, trouble breathing, tingling of the hands and feet, dizziness, lightheadedness, chest pain, muscle

pain or flushing

Notes to Physician

Treat symptomatically

5. Fire-fighting measures

Suitable Extinguishing Media Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.

Unsuitable Extinguishing Media No information available

Flash Point No information available Method - No information available

Autoignition Temperature

Explosion Limits

No information available

Upper No data available
Lower No data available
Sensitivity to Mechanical Impact No information available
Sensitivity to Static Discharge No information available

Specific Hazards Arising from the Chemical

Thermal decomposition can lead to release of irritating gases and vapors. Containers may explode when heated.

Hazardous Combustion Products

Chlorine Hydrogen chloride gas Phosgene

Protective Equipment and Precautions for Firefighters

As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear.

NFPA

Health	Flammability	Instability	Physical hazards
2	0	0	N/A

6. Accidental release measures

Personal Precautions Use personal protective equipment. Ensure adequate ventilation.

Environmental Precautions Do not flush into surface water or sanitary sewer system.

Methods for Containment and Clean Soak up with inert absorbent material. Keep in suitable, closed containers for disposal. **Up**

7. Handling and storage

Handling Wear personal protective equipment. Do not get in eyes, on skin, or on clothing. Ensure

adequate ventilation. Avoid ingestion and inhalation.

Storage Keep containers tightly closed in a dry, cool and well-ventilated place. Protect from sunlight.

8. Exposure controls / personal protection

Exposure Guidelines

Component	ACGIH TLV	OSHA PEL	NIOSH IDLH	Mexico OEL (TWA)
Tetrachloroethylene	TWA: 25 ppm	(Vacated) TWA: 25 ppm	IDLH: 150 ppm	TWA: 100 ppm
	STEL: 100 ppm	(Vacated) TWA: 170 mg/m ³		TWA: 670 mg/m ³
		Ceiling: 200 ppm		TWA: 200 ppm
		TWA: 100 ppm		TWA: 1250 mg/m ³
				STEL: 200 ppm
				STEL: 1340 mg/m ³

Tetrachloroethylene

Legend

ACGIH - American Conference of Governmental Industrial Hygienists

OSHA - Occupational Safety and Health Administration

NIOSH IDLH: The National Institute for Occupational Safety and Health Immediately Dangerous to Life or Health

Engineering Measures Use only under a chemical fume hood. Ensure adequate ventilation, especially in confined

areas. Ensure that eyewash stations and safety showers are close to the workstation

location.

Personal Protective Equipment

Eye/face Protection Wear appropriate protective eyeglasses or chemical safety goggles as described by

OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard

EN166.

Skin and body protection Long sleeved clothing.

Respiratory Protection Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European Standard

EN 149. Use a NIOSH/MSHA or European Standard EN 149 approved respirator if exposure limits are exceeded or if irritation or other symptoms are experienced.

Hygiene Measures Handle in accordance with good industrial hygiene and safety practice.

9. Physical and chemical properties

Physical State Liquid

Appearance Colorless

OdorCharacteristic, sweetOdor ThresholdNo information available

pH No information available Melting Point/Range No information available -22 °C / -7.6 °F

Boiling Point/Range 120 - 122 °C / 248 - 251.6 °F @ 760 mmHg

Flash Point No information available

Evaporation Rate 6.0 (Ether = 1.0)
Flammability (solid,gas) Not applicable

Flammability or explosive limits

UpperNo data availableLowerNo data availableVapor Pressure18 mbar @ 20 °CVapor DensityNo information available

Density 1.619

Specific Gravity 1.625

Solubility0.15 g/L water (20°C)Partition coefficient; n-octanol/waterNo data available

Autoignition Temperature

No information available

Decomposition Temperature > 150°C

Viscosity 0.89 mPa s at 20 °C

Molecular FormulaC2 Cl4Molecular Weight165.83

10. Stability and reactivity

Reactive Hazard None known, based on information available

Stability Stable under normal conditions.

Conditions to Avoid Incompatible products. Excess heat. Exposure to moist air or water.

Incompatible Materials

Strong acids, Strong oxidizing agents, Strong bases, Metals, Zinc, Amines, Aluminium

Hazardous Decomposition Products Chlorine, Hydrogen chloride gas, Phosgene

Hazardous Polymerization Hazardous polymerization does not occur.

Hazardous Reactions None under normal processing.

11. Toxicological information

Acute Toxicity

Product Information Component Information

LD50 Dermal LD50 Oral LC50 Inhalation Component Tetrachloroethylene LD50 > 10000 mg/kg (Rat) LD50 = 2629 mg/kg (Rat) LC50 = 27.8 mg/L (Rat) 4 h

Toxicologically Synergistic

No information available

Products

Delayed and immediate effects as well as chronic effects from short and long-term exposure

Irritation Irritating to eyes and skin

Sensitization No information available

Carcinogenicity

The table below indicates whether each agency has listed any ingredient as a carcinogen.

Component	CAS-No	IARC	NTP	ACGIH	OSHA	Mexico
Tetrachloroethylene	127-18-4	Group 2A	Reasonably	A3	X	A3
			Anticipated			

IARC: (International Agency for Research on Cancer)

NTP: (National Toxicity Program)

IARC: (International Agency for Research on Cancer)

Group 1 - Carcinogenic to Humans

Group 2A - Probably Carcinogenic to Humans Group 2B - Possibly Carcinogenic to Humans

NTP: (National Toxicity Program)

Known - Known Carcinogen

Reasonably Anticipated - Reasonably Anticipated to be a Human

Carcinogen

ACGIH: (American Conference of Governmental Industrial

Mexico - Occupational Exposure Limits - Carcinogens

Hygienists)

A1 - Known Human Carcinogen A2 - Suspected Human Carcinogen

A3 - Animal Carcinogen

ACGIH: (American Conference of Governmental Industrial Hygienists)

Mexico - Occupational Exposure Limits - Carcinogens

A1 - Confirmed Human Carcinogen

A2 - Suspected Human Carcinogen

A3 - Confirmed Animal Carcinogen

A4 - Not Classifiable as a Human Carcinogen A5 - Not Suspected as a Human Carcinogen

Mutagenic Effects No information available

Reproductive Effects No information available.

Developmental Effects No information available.

Teratogenicity No information available.

STOT - single exposure Central nervous system (CNS)

Kidney Liver Blood STOT - repeated exposure

No information available **Aspiration hazard**

delayed

Symptoms / effects,both acute and Inhalation of high vapor concentrations may cause symptoms like headache, dizziness, tiredness, nausea and vomiting: Symptoms of allergic reaction may include rash, itching, swelling, trouble breathing, tingling of the hands and feet, dizziness, lightheadedness, chest

Tetrachloroethylene

pain, muscle pain or flushing

Endocrine Disruptor Information

Component	Component EU - Endocrine Disrupters Candidate List		Japan - Endocrine Disruptor Information	
Tetrachloroethylene	Tetrachloroethylene Group II Chemical		Not applicable	

Other Adverse Effects

Tumorigenic effects have been reported in experimental animals.

12. Ecological information

Ecotoxicity

Toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. The product contains following substances which are hazardous for the environment.

Component	Freshwater Algae	Freshwater Fish	Microtox	Water Flea
Tetrachloroethylene	EC50: > 500 mg/L, 96h	LC50: 4.73 - 5.27 mg/L, 96h	EC50 = 100 mg/L 24 h	EC50: 6.1 - 9.0 mg/L, 48h
	(Pseudokirchneriella	flow-through (Oncorhynchus	EC50 = 112 mg/L 24 h	Static (Daphnia magna)
	subcapitata)	mykiss)	EC50 = 120.0 mg/L 30 min	
		LC50: 11.0 - 15.0 mg/L, 96h	_	
		static (Lepomis macrochirus)		
		LC50: 8.6 - 13.5 mg/L, 96h		
		static (Pimephales		
		promelas)		
		LC50: 12.4 - 14.4 mg/L, 96h		
		flow-through (Pimephales		
		promelas)		

Persistence and Degradability

Insoluble in water Persistence is unlikely based on information available.

Bioaccumulation/ Accumulation

No information available.

Mobility

. Is not likely mobile in the environment due its low water solubility. Will likely be mobile in the environment due to its volatility.

Component	log Pow
Tetrachloroethylene	2.88

13. Disposal considerations

Waste Disposal Methods

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. Chemical waste generators must also consult local, regional, and national hazardous waste regulations to ensure complete and accurate classification.

Component	RCRA - U Series Wastes	RCRA - P Series Wastes		
Tetrachloroethylene - 127-18-4	U210	-		

14. Transport information

DOT

UN-No UN1897

Proper Shipping Name TETRACHLOROETHYLENE

Hazard Class 6.1 Packing Group

TDG

UN-No UN1897

Proper Shipping Name TETRACHLOROETHYLENE

Hazard Class 6.1 Packing Group III

<u>IATA</u>

UN-No UN1897

Proper Shipping Name TETRACHLOROETHYLENE

Hazard Class 6.1

Tetrachloroethylene

Packing Group III

IMDG/IMO

UN-No UN1897

Proper Shipping Name TETRACHLOROETHYLENE

Hazard Class 6. Subsidiary Hazard Class P
Packing Group III

15. Regulatory information

All of the components in the product are on the following Inventory lists: X = listed

International Inventories

Component	TSCA	DSL	NDSL	EINECS	ELINCS	NLP	PICCS	ENCS	AICS	IECSC	KECL
Tetrachloroethylene	Х	Χ	-	204-825-9	-		Χ	Χ	Χ	Χ	Χ

Legend:

- X Listed
- E Indicates a substance that is the subject of a Section 5(e) Consent order under TSCA.
- F Indicates a substance that is the subject of a Section 5(f) Rule under TSCA.
- N Indicates a polymeric substance containing no free-radical initiator in its inventory name but is considered to cover the designated polymer made with any free-radical initiator regardless of the amount used.
- P Indicates a commenced PMN substance
- R Indicates a substance that is the subject of a Section 6 risk management rule under TSCA.
- S Indicates a substance that is identified in a proposed or final Significant New Use Rule
- T Indicates a substance that is the subject of a Section 4 test rule under TSCA.
- XU Indicates a substance exempt from reporting under the Inventory Update Rule, i.e. Partial Updating of the TSCA Inventory Data Base Production and Site Reports (40 CFR 710(B).
- Y1 Indicates an exempt polymer that has a number-average molecular weight of 1,000 or greater.
- Y2 Indicates an exempt polymer that is a polyester and is made only from reactants included in a specified list of low concern reactants that comprises one of the eligibility criteria for the exemption rule.

U.S. Federal Regulations

TSCA 12(b) Not applicable

SARA 313

	Component	CAS-No	Weight %	SARA 313 - Threshold Values %
Tetrachloroethylene		127-18-4	>95	0.1

SARA 311/312 Hazard Categories

Acute Health Hazard Yes
Chronic Health Hazard Yes
Fire Hazard No
Sudden Release of Pressure Hazard No
Reactive Hazard No

CWA (Clean Water Act)

31171 (318411 Trate: 7181)				
Component	CWA - Hazardous Substances	CWA - Reportable Quantities	CWA - Toxic Pollutants	CWA - Priority Pollutants
Tetrachloroethylene	-	-	X	X

Clean Air Act

Component	HAPS Data	Class 1 Ozone Depletors	Class 2 Ozone Depletors
Tetrachloroethylene	X		-

OSHA Occupational Safety and Health Administration Not applicable

CERCLA

This material, as supplied, contains one or more substances regulated as a hazardous substance under the Comprehensive

Tetrachloroethylene

Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302)

Component	Hazardous Substances RQs	CERCLA EHS RQs		
Tetrachloroethylene	100 lb 1 lb	-		

California Proposition 65

This product contains the following proposition 65 chemicals

Component	CAS-No	California Prop. 65	Prop 65 NSRL	Category
Tetrachloroethylene	127-18-4	Carcinogen	14 μg/day	Carcinogen

U.S. State Right-to-Know

Regulations

Component	Massachusetts	New Jersey	Pennsylvania	Illinois	Rhode Island
Tetrachloroethylene	X	X	X	X	Х

U.S. Department of Transportation

Reportable Quantity (RQ): Y
DOT Marine Pollutant Y
DOT Severe Marine Pollutant N

U.S. Department of Homeland Security

This product does not contain any DHS chemicals.

Other International Regulations

Mexico - Grade No information available

|--|

Prepared By Regulatory Affairs

Thermo Fisher Scientific

Email: EMSDS.RA@thermofisher.com

 Creation Date
 10-Dec-2009

 Revision Date
 26-May-2017

 Print Date
 26-May-2017

Revision Summary

This document has been updated to comply with the US OSHA HazCom 2012 Standard

replacing the current legislation under 29 CFR 1910.1200 to align with the Globally

Harmonized System of Classification and Labeling of Chemicals (GHS).

Disclaimer

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text

End of SDS

SAFETY DATA SHEET

Creation Date 01-May-2012 Revision Date 16-Jan-2019 Revision Number 2

1. Identification

Product Name Phenanthrene

Cat No. : A19646

CAS-No 85-01-8

Synonyms No information available

Recommended Use Laboratory chemicals.

Uses advised against Food, drug, pesticide or biocidal product use

Details of the supplier of the safety data sheet

Company

Alfa Aesar

Thermo Fisher Scientific Chemicals, Inc.

30 Bond Street

Ward Hill, MA 01835-8099 Tel: 800-343-0660

Fax: 800-322-4757
Email: tech@alfa.com

www.alfa.com

Emergency Telephone Number

During normal business hours (Monday-Friday, 8am-7pm EST), call (800) 343-0660.

After normal business hours, call Carechem 24 at (866) 928-0789.

2. Hazard(s) identification

Classification

This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200)

Acute oral toxicity Category 4

Label Elements

Signal Word

Warning

Hazard Statements

Harmful if swallowed

Precautionary Statements

Prevention

Wash face, hands and any exposed skin thoroughly after handling

Do not eat, drink or smoke when using this product

Ingestion

IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell

Rinse mouth

Disposal

Dispose of contents/container to an approved waste disposal plant

Hazards not otherwise classified (HNOC)

Very toxic to aquatic life with long lasting effects

3. Composition/Information on Ingredients

Component	CAS-No	Weight %		
Phenanthrene	85-01-8	>95		

4. First-aid measures

General Advice If symptoms persist, call a physician.

Eye Contact Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes. Get

medical attention.

Skin ContactObtain medical attention. Wash off immediately with plenty of water for at least 15 minutes.

Inhalation Move to fresh air. Obtain medical attention. If not breathing, give artificial respiration.

Ingestion Clean mouth with water and drink afterwards plenty of water. Get medical attention if

symptoms occur.

Most important symptoms and

effects

None reasonably foreseeable.

Notes to Physician Treat symptomatically

5. Fire-fighting measures

Suitable Extinguishing Media Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.

Unsuitable Extinguishing Media No information available

Flash Point No information available Method - No information available

Autoignition Temperature

Explosion Limits

Upper No data available
Lower No data available
Sensitivity to Mechanical Impact No information available

Sensitivity to Static Discharge No information available

Specific Hazards Arising from the Chemical

Do not allow run-off from fire fighting to enter drains or water courses.

Hazardous Combustion Products

Carbon monoxide (CO) Carbon dioxide (CO2)

Protective Equipment and Precautions for Firefighters

As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear.

NFPA

HealthFlammabilityInstabilityPhysical hazards110N/A

6. Accidental release measures

Personal Precautions
Environmental Precautions

Ensure adequate ventilation. Use personal protective equipment. Avoid dust formation. Do not flush into surface water or sanitary sewer system. Do not allow material to contaminate ground water system. Prevent product from entering drains. Local authorities should be advised if significant spillages cannot be contained.

Methods for Containment and Clean Sweep up or vacuum up spillage and collect in suitable container for disposal. Keep in suitable, closed containers for disposal.

7. Handling and storage

Handling Wear personal protective equipment. Ensure adequate ventilation. Do not get in eyes, on

skin, or on clothing. Avoid ingestion and inhalation. Avoid dust formation.

Storage Keep containers tightly closed in a dry, cool and well-ventilated place.

8. Exposure controls / personal protection

Exposure Guidelines

This product does not contain any hazardous materials with occupational exposure limits established by the region specific regulatory bodies.

Component	ACGIH TLV	OSHA PEL	NIOSH IDLH	Mexico OEL (TWA)
Phenanthrene		TWA: 0.2 mg/m ³		

Engineering Measures Ensure adequate ventilation, especially in confined areas.

Personal Protective Equipment

Eye/face Protection Wear appropriate protective eyeglasses or chemical safety goggles as described by

OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard

EN166.

Skin and body protection Long sleeved clothing.

Respiratory Protection Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European Standard

EN 149. Use a NIOSH/MSHA or European Standard EN 149 approved respirator if exposure limits are exceeded or if irritation or other symptoms are experienced.

Hygiene Measures Handle in accordance with good industrial hygiene and safety practice.

9. Physical and chemical properties

Physical State Solid Appearance Beige

Revision Date 16-Jan-2019 **Phenanthrene**

Odor Odorless

Odor Threshold No information available рΗ No information available

95 - 101 °C / 203 - 213.8 °F Melting Point/Range

336 °C / 636.8 °F **Boiling Point/Range** No information available Flash Point **Evaporation Rate** Not applicable

Flammability (solid,gas) No information available

Flammability or explosive limits

No data available Upper Lower No data available **Vapor Pressure** 1 mmHg @ 116 °C Vapor Density Not applicable **Specific Gravity** 1.063

Solubility

Insoluble in water Partition coefficient; n-octanol/water No data available

Autoignition Temperature No information available

Decomposition Temperature Viscosity Not applicable

C14 H10 **Molecular Formula Molecular Weight** 178.23

10. Stability and reactivity

Reactive Hazard None known, based on information available

Stability Stable under normal conditions.

Conditions to Avoid Incompatible products. Excess heat. Avoid dust formation.

Strong oxidizing agents **Incompatible Materials**

Hazardous Decomposition Products Carbon monoxide (CO), Carbon dioxide (CO2)

Hazardous polymerization does not occur. **Hazardous Polymerization**

Hazardous Reactions None under normal processing.

11. Toxicological information

Acute Toxicity

Product Information

Component Information

Component	LD50 Oral	LD50 Dermal	LC50 Inhalation	
Phenanthrene	1.8 g/kg (Rat)	Not listed	Not listed	

No information available **Toxicologically Synergistic**

Products

Delayed and immediate effects as well as chronic effects from short and long-term exposure

Irritation No information available

Sensitization No information available

Carcinogenicity The table below indicates whether each agency has listed any ingredient as a carcinogen.

Component	CAS-No	IARC	NTP	ACGIH	OSHA	Mexico	
Phenanthrene	85-01-8	Not listed	Not listed	Not listed	Not listed	Not listed	

No information available **Mutagenic Effects**

Reproductive Effects No information available.

Developmental Effects No information available.

Teratogenicity No information available.

STOT - single exposureSTOT - repeated exposure
None known

Aspiration hazard No information available

Symptoms / effects,both acute and No information available

delayed

Endocrine Disruptor Information No information available

Other Adverse Effects The toxicological properties have not been fully investigated.

12. Ecological information

Ecotoxicity

Very toxic to aquatic organisms, may cause long-term adverse effects in the aquatic environment. The product contains following substances which are hazardous for the environment.

	Component	Freshwater Algae	Freshwater Fish	Microtox	Water Flea
Ī	Phenanthrene	Not listed	LC50 = 3.2 mg/L 96h	Not listed	LC50 = 0.35 mg/L 48h

Persistence and Degradability May persist

Bioaccumulation/ Accumulation No information available.

Mobility . Is not likely mobile in the environment due its low water solubility.

Component	log Pow
Phenanthrene	4.5

13. Disposal considerations

Waste Disposal Methods

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. Chemical waste generators must also consult local, regional, and national hazardous waste regulations to ensure complete and accurate classification.

14. Transport information

DOT

UN-No UN3077

Proper Shipping Name ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.

Hazard Class 9
Packing Group III

TDG

UN-No UN3077

Proper Shipping Name ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.

Hazard Class 9
Packing Group III

IATA

UN-No UN3077

Proper Shipping Name ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.*

Hazard Class 9
Packing Group III

IMDG/IMO

UN-No UN3077

Proper Shipping Name ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.

Hazard Class 9
Packing Group III

15. Regulatory information

All of the components in the product are on the following Inventory lists: X = listed

International Inventories

Component	TSCA	DSL	NDSL	EINECS	ELINCS	NLP	PICCS	ENCS	AICS	IECSC	KECL
Phenanthrene	Χ	Χ	-	201-581-5	-		Х	Χ	Χ	Х	KE-2820
											2

Legend:

- X Listed
- E Indicates a substance that is the subject of a Section 5(e) Consent order under TSCA.
- F Indicates a substance that is the subject of a Section 5(f) Rule under TSCA.
- N Indicates a polymeric substance containing no free-radical initiator in its inventory name but is considered to cover the designated polymer made with any free-radical initiator regardless of the amount used.
- P Indicates a commenced PMN substance
- R Indicates a substance that is the subject of a Section 6 risk management rule under TSCA.
- S Indicates a substance that is identified in a proposed or final Significant New Use Rule
- T Indicates a substance that is the subject of a Section 4 test rule under TSCA.
- XU Indicates a substance exempt from reporting under the Inventory Update Rule, i.e. Partial Updating of the TSCA Inventory Data Base Production and Site Reports (40 CFR 710(B).
- Y1 Indicates an exempt polymer that has a number-average molecular weight of 1,000 or greater.
- Y2 Indicates an exempt polymer that is a polyester and is made only from reactants included in a specified list of low concern reactants that comprises one of the eligibility criteria for the exemption rule.

U.S. Federal Regulations

TSCA 12(b)

Not applicable

SARA 313

Component	CAS-No	Weight %	SARA 313 - Threshold Values %
Phenanthrene	85-01-8	>95	1.0

SARA 311/312 Hazard Categories

See section 2 for more information

CWA (Clean Water Act)

STIA (Sicali Water Act)				
Component	CWA - Hazardous Substances	CWA - Reportable Quantities	CWA - Toxic Pollutants	CWA - Priority Pollutants
Phenanthrene	-	-	-	X

Clean Air Act

Not applicable

OSHA Occupational Safety and Health Administration

Not applicable

CERCLA

This material, as supplied, contains one or more substances regulated as a hazardous substance under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302)

Component	Hazardous Substances RQs	CERCLA EHS RQs
Phenanthrene	5000 lb	-

California Proposition 65

This product does not contain any Proposition 65 chemicals

U.S. State Right-to-Know

Regulations

	Component	Massachusetts	New Jersey	Pennsylvania	Illinois	Rhode Island
Γ	Phenanthrene	X	X	X	-	-

U.S. Department of Transportation

Reportable Quantity (RQ): N
DOT Marine Pollutant N
DOT Severe Marine Pollutant N

U.S. Department of Homeland Security

This product does not contain any DHS chemicals.

Other International Regulations

Mexico - Grade No information available

16. Other information

Prepared By Health, Safety and Environmental Department

Email: tech@alfa.com

www.alfa.com

 Creation Date
 01-May-2012

 Revision Date
 16-Jan-2019

 Print Date
 16-Jan-2019

Revision Summary SDS authoring systems update, replaces ChemGes SDS No. 85-01-8/3.

Disclaimer

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text

End of SDS

SAFETY DATA SHEET

Creation Date 03-Feb-2010 Revision Date 14-Jul-2016 Revision Number 2

1. Identification

Product Name Trichloroethylene

Cat No.: T340-4; T341-4; T341-20; T341-500; T403-4

Synonyms Trichloroethene (Stabilized/Technical/Electronic/Certified ACS)

Recommended Use Laboratory chemicals.

Uses advised against

Details of the supplier of the safety data sheet

Company

Fisher Scientific One Reagent Lane Fair Lawn, NJ 07410 Tel: (201) 796-7100

Emergency Telephone Number

CHEMTREC®, Inside the USA: 800-424-9300 CHEMTREC®, Outside the USA: 001-703-527-3887

2. Hazard(s) identification

Classification

This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200)

Skin Corrosion/irritation

Serious Eye Damage/Eye Irritation

Skin Sensitization

Germ Cell Mutagenicity

Category 2

Category 1

Category 2

Category 1

Category 2

Category 1

Category 2

Category 1

Category 2

Category 1A

Specific target organ toxicity (single exposure)

Target Organs - Central nervous system (CNS).

Specific target organ toxicity - (repeated exposure) Category 2

Target Organs - Kidney, Liver, Heart, spleen, Blood.

Label Elements

Signal Word

Danger

Hazard Statements

Causes skin irritation
Causes serious eye irritation
May cause an allergic skin reaction
May cause drowsiness or dizziness
Suspected of causing genetic defects

May cause cancer

May cause damage to organs through prolonged or repeated exposure

Precautionary Statements

Prevention

Obtain special instructions before use

Do not handle until all safety precautions have been read and understood

Use personal protective equipment as required

Wash face, hands and any exposed skin thoroughly after handling

Contaminated work clothing should not be allowed out of the workplace

Do not breathe dust/fume/gas/mist/vapors/spray

Use only outdoors or in a well-ventilated area

Wear protective gloves/protective clothing/eye protection/face protection

Response

IF exposed or concerned: Get medical attention/advice

Inhalation

IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing

Skin

IF ON SKIN: Wash with plenty of soap and water

Take off contaminated clothing and wash before reuse

If skin irritation or rash occurs: Get medical advice/attention

Eyes

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing If eye irritation persists: Get medical advice/attention

Storage

Store locked up

Store in a well-ventilated place. Keep container tightly closed

Disposal

Dispose of contents/container to an approved waste disposal plant

Hazards not otherwise classified (HNOC)

Harmful to aquatic life with long lasting effects

WARNING! This product contains a chemical known in the State of California to cause cancer, birth defects or other reproductive harm.

3. Composition / information on ingredients

Component	CAS-No	Weight %
Trichloroethylene	79-01-6	100

4. First-aid measures

General Advice Show this safety data sheet to the doctor in attendance. Immediate medical attention is

required.

Eye Contact Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes. In

the case of contact with eyes, rinse immediately with plenty of water and seek medical

advice.

Skin Contact Wash off immediately with plenty of water for at least 15 minutes. Immediate medical

attention is required.

Inhalation Move to fresh air. If not breathing, give artificial respiration. Do not use mouth-to-mouth

method if victim ingested or inhaled the substance; give artificial respiration with the aid of a

pocket mask equipped with a one-way valve or other proper respiratory medical device.

Immediate medical attention is required.

Ingestion Do not induce vomiting. Call a physician or Poison Control Center immediately.

Most important symptoms/effects None reasonably foreseeable. May cause allergic skin reaction. Inhalation of high vapor

concentrations may cause symptoms like headache, dizziness, tiredness, nausea and vomiting: Symptoms of allergic reaction may include rash, itching, swelling, trouble breathing, tingling of the hands and feet, dizziness, lightheadedness, chest pain, muscle

pain or flushing

Notes to Physician Treat symptomatically

5. Fire-fighting measures

Suitable Extinguishing Media Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide.

Unsuitable Extinguishing Media No information available

Flash Point No information available Method - No information available

Autoignition Temperature 410 °C / 770 °F

Explosion Limits

Upper 10.5 vol % Lower 8 vol %
Oxidizing Properties Not oxidising

Sensitivity to Mechanical Impact No information available Sensitivity to Static Discharge No information available

Specific Hazards Arising from the Chemical

Thermal decomposition can lead to release of irritating gases and vapors. Containers may explode when heated. Keep product and empty container away from heat and sources of ignition.

Hazardous Combustion Products

Hydrogen chloride gas Chlorine Phosgene Carbon monoxide (CO) Carbon dioxide (CO2)

Protective Equipment and Precautions for Firefighters

As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear. Thermal decomposition can lead to release of irritating gases and vapors.

NFPA

Health	Flammability	Instability	Physical hazards
2	1	0	N/A

6. Accidental release measures

Personal Precautions Ensure adequate ventilation. Use personal protective equipment. Keep people away from

and upwind of spill/leak. Evacuate personnel to safe areas.

Environmental Precautions Should not be released into the environment. Do not flush into surface water or sanitary

sewer system.

Methods for Containment and Clean Soak up with inert absorbent material. Keep in suitable, closed containers for disposal. **Up**

	7. Handling and storage
Handling	Wear personal protective equipment. Do not get in eyes, on skin, or on clothing. Use only under a chemical fume hood. Do not breathe vapors or spray mist. Do not ingest.
Storage	Keep containers tightly closed in a dry, cool and well-ventilated place. Protect from light. Do not store in aluminum containers.

8. Exposure controls / personal protection

Exposure Guidelines

Component	ACGIH TLV	OSHA PEL	NIOSH IDLH	Mexico OEL (TWA)
Trichloroethylene	TWA: 10 ppm	(Vacated) TWA: 50 ppm	IDLH: 1000 ppm	TWA: 100 ppm
-	STEL: 25 ppm	(Vacated) TWA: 270 mg/m ³		TWA: 535 mg/m ³
	1	Ceiling: 200 ppm		STEL: 200 ppm
		(Vacated) STEL: 200 ppm		STEL: 1080 mg/m ³
		(Vacated) STEL: 1080		
		mg/m³		
		TWA: 100 ppm		

Legend

ACGIH - American Conference of Governmental Industrial Hygienists

OSHA - Occupational Safety and Health Administration

NIOSH IDLH: The National Institute for Occupational Safety and Health Immediately Dangerous to Life or Health

Engineering Measures Use only under a chemical fume hood. Ensure adequate ventilation, especially in confined

areas. Ensure that eyewash stations and safety showers are close to the workstation

location.

Personal Protective Equipment

Eye/face Protection Wear appropriate protective eyeglasses or chemical safety goggles as described by

OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard

EN166.

Skin and body protection Long sleeved clothing.

Respiratory Protection Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European Standard

EN 149. Use a NIOSH/MSHA or European Standard EN 149 approved respirator if exposure limits are exceeded or if irritation or other symptoms are experienced.

Hygiene Measures Handle in accordance with good industrial hygiene and safety practice.

9. Physical and chemical properties

Physical StateLiquidAppearanceColorlessOdorCharacteristic

Odor Threshold No information available

pH No information available **Melting Point/Range** -85 $^{\circ}$ C / -121 $^{\circ}$ F

Boiling Point/Range 87 °C / 188.6 °F
Flash Point No information available

Evaporation Rate 0.69 (Carbon Tetrachloride = 1.0)

Flammability (solid,gas) Not applicable

Flammability or explosive limits

 Upper
 10.5 vol %

 Lower
 8 vol %

 Vapor Pressure
 77.3 mbar @ 20 °C

 Vapor Density
 4.5 (Air = 1.0)

Specific Gravity 1.460

SolubilitySlightly soluble in waterPartition coefficient; n-octanol/waterNo data availableAutoignition Temperature410 °C / 770 °F

Decomposition Temperature > 120°C

Viscosity 0.55 mPa.s (25°C)

Molecular FormulaC2 H Cl3Molecular Weight131.39

10. Stability and reactivity

Reactive Hazard None known, based on information available

Stability Light sensitive.

Conditions to Avoid Incompatible products. Excess heat. Exposure to light. Exposure to moist air or water.

Incompatible Materials Strong oxidizing agents, Strong bases, Amines, Alkali metals, Metals,

Hazardous Decomposition Products Hydrogen chloride gas, Chlorine, Phosgene, Carbon monoxide (CO), Carbon dioxide (CO2)

Hazardous Polymerization Hazardous polymerization does not occur.

Hazardous Reactions None under normal processing.

11. Toxicological information

Acute Toxicity

Product Information

Component Information

	Component	LD50 Oral	LD50 Dermal	LC50 Inhalation
-	Trichloroethylene	LD50 = 4290 mg/kg(Rat) LD50 = 4920 mg/kg(Rat)	LD50 > 20 g/kg (Rabbit) LD50 = 29000 mg/kg (Rabbit)	LC50 = 26 mg/L (Rat)4 h

Toxicologically Synergistic No information available

Products

Delayed and immediate effects as well as chronic effects from short and long-term exposure

 Irritation
 Irritating to eyes and skin

 Sensitization
 No information available

Carcinogenicity The table below indicates whether each agency has listed any ingredient as a carcinogen.

Component	CAS-No	IARC	NTP	ACGIH	OSHA	Mexico
Trichloroethylene	79-01-6	Group 1	Reasonably	A2	Х	Not listed
1		· ·	Anticipated			

IARC: (International Agency for Research on Cancer) IARC: (International Agency for Research on Cancer)

Group 1 - Carcinogenic to Humans

Group 2A - Probably Carcinogenic to Humans Group 2B - Possibly Carcinogenic to Humans

NTP: (National Toxicity Program)

NTP: (National Toxicity Program)

Known - Known Carcinogen

Reasonably Anticipated - Reasonably Anticipated to be a Human

Carcinogen

ACGIH: (American Conference of Governmental Industrial

Hygienists)

A1 - Known Human Carcinogen
A2 - Suspected Human Carcinogen

A3 - Animal Carcinogen

ACGIH: (American Conference of Governmental Industrial Hygienists)

Mutagenic Effects Mutagenic effects have occurred in humans.

Reproductive Effects

No information available.

Developmental Effects

No information available.

Teratogenicity

No information available.

Revision Date 14-Jul-2016 **Trichloroethylene**

STOT - single exposure Central nervous system (CNS) STOT - repeated exposure Kidney Liver Heart spleen Blood

No information available **Aspiration hazard**

delayed

Symptoms / effects,both acute and Inhalation of high vapor concentrations may cause symptoms like headache, dizziness, tiredness, nausea and vomiting: Symptoms of allergic reaction may include rash, itching, swelling, trouble breathing, tingling of the hands and feet, dizziness, lightheadedness, chest

pain, muscle pain or flushing

No information available **Endocrine Disruptor Information**

Other Adverse Effects The toxicological properties have not been fully investigated.

12. Ecological information

Ecotoxicity

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. Do not empty into drains. The product contains following substances which are hazardous for the environment. Contains a substance which is:. Harmful to aquatic organisms. Toxic to aquatic organisms.

Component	Freshwater Algae	Freshwater Fish	Microtox	Water Flea
Trichloroethylene	EC50: = 175 mg/L, 96h	LC50: 39 - 54 mg/L, 96h	EC50 = 0.81 mg/L 24 h	EC50: = 2.2 mg/L, 48h
	(Pseudokirchneriella	static (Lepomis macrochirus)	EC50 = 115 mg/L 10 min	(Daphnia magna)
	subcapitata)	LC50: 31.4 - 71.8 mg/L, 96h	EC50 = 190 mg/L 15 min	
	EC50: = 450 mg/L, 96h	flow-through (Pimephales	EC50 = 235 mg/L 24 h	
	(Desmodesmus	promelas)	EC50 = 410 mg/L 24 h	
	subspicatus)		EC50 = 975 mg/L 5 min	
			_	

Persistence and Degradability Persistence is unlikely based on information available.

Bioaccumulation/ Accumulation No information available.

Mobility Will likely be mobile in the environment due to its volatility.

Component	log Pow
Trichloroethylene	2.4

13. Disposal considerations

Waste Disposal Methods

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. Chemical waste generators must also consult local, regional, and national hazardous waste regulations to ensure complete and accurate classification.

Component	RCRA - U Series Wastes	RCRA - P Series Wastes
Trichloroethylene - 79-01-6	U228	-

14. Transport information

DOT

UN1710 **UN-No**

Proper Shipping Name TRICHLOROETHYLENE

Hazard Class 6.1 **Packing Group** Ш

TDG

UN-No UN1710

Proper Shipping Name TRICHLOROETHYLENE

Hazard Class 6.1 **Packing Group** Ш

IATA

UN-No UN1710

Proper Shipping Name TRICHLOROETHYLENE

Hazard Class 6.1
Packing Group

IMDG/IMO

UN-No UN1710

Proper Shipping Name TRICHLOROETHYLENE

Hazard Class 6.1
Packing Group

15. Regulatory information

All of the components in the product are on the following Inventory lists: X = listed

International Inventories

Component	TSCA	DSL	NDSL	EINECS	ELINCS	NLP	PICCS	ENCS	AICS	IECSC	KECL
Trichloroethylene	Х	Χ	•	201-167-4	ı		Χ	Χ	Χ	Х	Χ

Legend:

- X Listed
- E Indicates a substance that is the subject of a Section 5(e) Consent order under TSCA.
- F Indicates a substance that is the subject of a Section 5(f) Rule under TSCA.
- N Indicates a polymeric substance containing no free-radical initiator in its inventory name but is considered to cover the designated polymer made with any free-radical initiator regardless of the amount used.
- P Indicates a commenced PMN substance
- R Indicates a substance that is the subject of a Section 6 risk management rule under TSCA.
- S Indicates a substance that is identified in a proposed or final Significant New Use Rule
- T Indicates a substance that is the subject of a Section 4 test rule under TSCA.
- XU Indicates a substance exempt from reporting under the Inventory Update Rule, i.e. Partial Updating of the TSCA Inventory Data Base Production and Site Reports (40 CFR 710(B).
- Y1 Indicates an exempt polymer that has a number-average molecular weight of 1,000 or greater.
- Y2 Indicates an exempt polymer that is a polyester and is made only from reactants included in a specified list of low concern reactants that comprises one of the eligibility criteria for the exemption rule.

U.S. Federal Regulations

TSCA 12(b) Not applicable

Component	TSCA 12(b)
Trichloroethylene	Section 5
SARA 313	

SANA 313			
Component	CAS-No	Weight %	SARA 313 - Threshold Values %
Trichloroethylene	79-01-6	100	0.1

SARA 311/312 Hazard Categories

Acute Health Hazard Yes
Chronic Health Hazard Yes
Fire Hazard No
Sudden Release of Pressure Hazard No
Reactive Hazard No

CWA (Clean Water Act)

Component	CWA - Hazardous Substances	CWA - Reportable Quantities	CWA - Toxic Pollutants	CWA - Priority Pollutants
Trichloroethylene	X	100 lb	X	X

Clean Air Act

Component	HAPS Data	Class 1 Ozone Depletors	Class 2 Ozone Depletors
Trichloroethylene	X		-

OSHA Occupational Safety and Health Administration Not applicable

CERCLA

This material, as supplied, contains one or more substances regulated as a hazardous substance under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302)

Component	Hazardous Substances RQs	CERCLA EHS RQs
Trichloroethylene	100 lb 1 lb	-

California Proposition 65

This product contains the following proposition 65 chemicals

Component	CAS-No	California Prop. 65	Prop 65 NSRL	Category
Trichloroethylene	79-01-6	Carcinogen	14 μg/day	Developmental
		Developmental	50 μg/day	Carcinogen
		Male Reproductive	, ,	

U.S. State Right-to-Know

Regulations

Component	Massachusetts	New Jersey	Pennsylvania	Illinois	Rhode Island
Trichloroethylene	X	X	X	X	X

U.S. Department of Transportation

Reportable Quantity (RQ): Y
DOT Marine Pollutant N
DOT Severe Marine Pollutant N

U.S. Department of Homeland Security

This product does not contain any DHS chemicals.

Other International Regulations

Mexico - Grade No information available

Prepared By Regulatory Affairs

Thermo Fisher Scientific

Email: EMSDS.RA@thermofisher.com

 Creation Date
 03-Feb-2010

 Revision Date
 14-Jul-2016

 Print Date
 14-Jul-2016

Revision Summary

This document has been updated to comply with the US OSHA HazCom 2012 Standard

replacing the current legislation under 29 CFR 1910.1200 to align with the Globally

Harmonized System of Classification and Labeling of Chemicals (GHS).

Disclaimer

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text

End of SDS

SAFETY DATA SHEET

Creation Date 11-Jun-2009 Revision Date 24-May-2017 Revision Number 3

1. Identification

Product Name Toluene

Cat No.: T326F-1GAL; T326P-4; T326S-20; T326S-20LC

Synonyms Tol; Methylbenzene

Recommended Use Laboratory chemicals.

Uses advised against Not for food, drug, pesticide or biocidal product use

Details of the supplier of the safety data sheet

Company

Fisher Scientific One Reagent Lane Fair Lawn, NJ 07410 Tel: (201) 796-7100

Emergency Telephone Number

CHEMTREC®, Inside the USA: 800-424-9300 CHEMTREC®, Outside the USA: 001-703-527-3887

2. Hazard(s) identification

Classification

This chemical is considered hazardous by the 2012 OSHA Hazard Communication Standard (29 CFR 1910.1200)

Flammable liquids Category 2 Skin Corrosion/irritation Category 2 Serious Eye Damage/Eye Irritation Category 2 Reproductive Toxicity Category 2 Specific target organ toxicity (single exposure) Category 3 Target Organs - Respiratory system, Central nervous system (CNS). Specific target organ toxicity - (repeated exposure) Category 2 Target Organs - Kidney, Liver, spleen, Blood. Aspiration Toxicity Category 1

Label Elements

Signal Word

Danger

Hazard Statements

Highly flammable liquid and vapor May be fatal if swallowed and enters airways Causes skin irritation Causes serious eye irritation

May cause respiratory irritation

May cause drowsiness or dizziness

Suspected of damaging the unborn child

Causes damage to organs through prolonged or repeated exposure

Precautionary Statements

Prevention

Obtain special instructions before use

Do not handle until all safety precautions have been read and understood

Use personal protective equipment as required

Wash face, hands and any exposed skin thoroughly after handling

Wear eye/face protection

Do not breathe dust/fume/gas/mist/vapors/spray

Do not eat, drink or smoke when using this product

Use only outdoors or in a well-ventilated area

Keep away from heat/sparks/open flames/hot surfaces. - No smoking

Keep container tightly closed

Ground/bond container and receiving equipment

Use explosion-proof electrical/ventilating/lighting/equipment

Use only non-sparking tools

Take precautionary measures against static discharge

Keep cool

Response

IF exposed or concerned: Get medical attention/advice

Inhalation

IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing

Skin

If skin irritation occurs: Get medical advice/attention

IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower

Wash contaminated clothing before reuse

Eyes

IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing If eye irritation persists: Get medical advice/attention

Ingestion

IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician

Do NOT induce vomiting

Fire

In case of fire: Use CO2, dry chemical, or foam for extinction

Storage

Store locked up

Store in a well-ventilated place. Keep container tightly closed

Disposal

Dispose of contents/container to an approved waste disposal plant

Hazards not otherwise classified (HNOC)

WARNING! This product contains a chemical known in the State of California to cause birth defects or other reproductive harm.

3. Composition / information on ingredients

Component	CAS-No	Weight %
Toluene	108-88-3	>95

4. First-aid measures

Toluene

General Advice If symptoms persist, call a physician.

Eye Contact Rinse immediately with plenty of water, also under the eyelids, for at least 15 minutes.

Obtain medical attention.

Skin Contact Wash off immediately with plenty of water for at least 15 minutes. If skin irritation persists,

call a physician.

Inhalation Move to fresh air. If not breathing, give artificial respiration. Get medical attention if

symptoms occur. Risk of serious damage to the lungs.

Ingestion Clean mouth with water and drink afterwards plenty of water. Do not induce vomiting. Call a

physician or Poison Control Center immediately. If vomiting occurs naturally, have victim

lean forward.

concentrations may cause symptoms like headache, dizziness, tiredness, nausea and

vomiting

Notes to Physician Treat symptomatically

5. Fire-fighting measures

Suitable Extinguishing Media Use water spray, alcohol-resistant foam, dry chemical or carbon dioxide. Cool closed

containers exposed to fire with water spray.

Unsuitable Extinguishing Media No information available

Flash Point 4 °C / 39.2 °F

Method - No information available

Autoignition Temperature 535 °C / 995 °F

Explosion Limits

Upper 7.1 vol %
Lower 1.1 vol %
Oxidizing Properties Not oxidising

Sensitivity to Mechanical Impact No information available Sensitivity to Static Discharge No information available

Specific Hazards Arising from the Chemical

Flammable. Containers may explode when heated. Vapors may form explosive mixtures with air. Vapors may travel to source of ignition and flash back.

Hazardous Combustion Products

Carbon monoxide (CO) Carbon dioxide (CO2)

Protective Equipment and Precautions for Firefighters

As in any fire, wear self-contained breathing apparatus pressure-demand, MSHA/NIOSH (approved or equivalent) and full protective gear.

NFPA

HealthFlammabilityInstabilityPhysical hazards330N/A

6. Accidental release measures

Personal Precautions Use personal protective equipment. Ensure adequate ventilation. Remove all sources of

ignition. Take precautionary measures against static discharges.

Environmental Precautions Should not be released into the environment. Do not flush into surface water or sanitary

sewer system.

Toluene

Methods for Containment and Clean Soak up with inert absorbent material. Keep in suitable, closed containers for disposal. **Up** Remove all sources of ignition. Use spark-proof tools and explosion-proof equipment.

7. Handling and storage

Handling

Wear personal protective equipment. Do not get in eyes, on skin, or on clothing. Avoid ingestion and inhalation. Ensure adequate ventilation. Keep away from open flames, hot surfaces and sources of ignition. Use only non-sparking tools. To avoid ignition of vapors by static electricity discharge, all metal parts of the equipment must be grounded. Take

precautionary measures against static discharges.

Storage

Keep containers tightly closed in a dry, cool and well-ventilated place. Flammables area.

Keep away from heat and sources of ignition.

8. Exposure controls / personal protection

Exposure Guidelines

Component	ACGIH TLV	OSHA PEL	NIOSH IDLH	Mexico OEL (TWA)
Toluene	TWA: 20 ppm	(Vacated) TWA: 100 ppm	IDLH: 500 ppm	TWA: 50 ppm
		(Vacated) TWA: 375 mg/m ³	TWA: 100 ppm	TWA: 188 mg/m ³
		Ceiling: 300 ppm	TWA: 375 mg/m ³	_
		(Vacated) STEL: 150 ppm	STEL: 150 ppm	
		(Vacated) STEL: 560 mg/m ³	STEL: 560 mg/m ³	
		TWA: 200 ppm	_	

Legend

ACGIH - American Conference of Governmental Industrial Hygienists

OSHA - Occupational Safety and Health Administration

NIOSH IDLH: The National Institute for Occupational Safety and Health Immediately Dangerous to Life or Health

Engineering Measures Ensure that eyewash stations and safety showers are close to the workstation location. Use

explosion-proof electrical/ventilating/lighting/equipment. Ensure adequate ventilation,

especially in confined areas.

Personal Protective Equipment

Eye/face Protection Wear appropriate protective eyeglasses or chemical safety goggles as described by

OSHA's eye and face protection regulations in 29 CFR 1910.133 or European Standard

EN166.

Skin and body protection Long sleeved clothing.

Respiratory Protection Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European Standard

EN 149. Use a NIOSH/MSHA or European Standard EN 149 approved respirator if exposure limits are exceeded or if irritation or other symptoms are experienced.

Hygiene Measures Handle in accordance with good industrial hygiene and safety practice.

9. Physical and chemical properties

Physical State
Appearance
Odor
Odor Threshold
pH
Liquid
Colorless
aromatic
1.74 ppm
Not applicable

pH Not applicable
Melting Point/Range -95 °C / -139 °F

Boiling Point/Range 111 °C / 231.8 °F @ 760 mmHg

Flash Point 4 °C / 39.2 °F

Toluene

Not applicable

Evaporation Rate 2.4 (Butyl acetate = 1.0)

Flammability (solid,gas)

Flammability or explosive limits

 Upper
 7.1 vol %

 Lower
 1.1 vol %

Vapor Pressure 29 mbar @ 20 °C

Vapor Density3.1Specific Gravity0.866

SolubilityInsoluble in waterPartition coefficient; n-octanol/waterNo data availableAutoignition Temperature535 °C / 995 °FDecomposition TemperatureNo information availableViscosity0.6 mPa.s @ 20 °C

Molecular FormulaC7 H8Molecular Weight92.14

10. Stability and reactivity

Reactive Hazard None known, based on information available

Stability Stable under normal conditions.

Conditions to Avoid Incompatible products. Excess heat. Keep away from open flames, hot surfaces and

sources of ignition.

Incompatible Materials Strong oxidizing agents, Strong acids, Strong bases, Halogenated compounds

Hazardous Decomposition Products Carbon monoxide (CO), Carbon dioxide (CO2)

Hazardous Polymerization Hazardous polymerization does not occur.

Hazardous Reactions None under normal processing.

11. Toxicological information

Acute Toxicity

Product Information Component Information

Component	LD50 Oral	LD50 Dermal	LC50 Inhalation
Toluene	> 5000 mg/kg (Rat)	LD50 = 12000 mg/kg(Rabbit)	26700 ppm (Rat)1 h

Toxicologically Synergistic No information available

Products

Delayed and immediate effects as well as chronic effects from short and long-term exposure

Irritation Irritating to eyes, respiratory system and skin

Sensitization No information available

Carcinogenicity The table below indicates whether each agency has listed any ingredient as a carcinogen.

Component	CAS-No	IARC	NTP	ACGIH	OSHA	Mexico
Toluene	108-88-3	Not listed	Not listed	Not listed	Not listed	Not listed

Mutagenic Effects Not mutagenic in AMES Test

Reproductive Effects Experiments have shown reproductive toxicity effects on laboratory animals.

Developmental EffectsDevelopmental effects have occurred in experimental animals.

Teratogenicity Possible risk of harm to the unborn child.

delayed

STOT - single exposure Respiratory system Central nervous system (CNS)

STOT - repeated exposure Kidney Liver spleen Blood

Aspiration hazard No information available

Symptoms / effects,both acute and Causes central nervous system depression: Inhalation of high vapor concentrations may

cause symptoms like headache, dizziness, tiredness, nausea and vomiting

Endocrine Disruptor Information No information available

Other Adverse Effects The toxicological properties have not been fully investigated.

12. Ecological information

Ecotoxicity

Contains a substance which is:. The product contains following substances which are hazardous for the environment.

Component	Freshwater Algae	Freshwater Fish	Microtox	Water Flea
Toluene	EC50: = 12.5 mg/L, 72h	50-70 mg/L LC50 96 h	EC50 = 19.7 mg/L 30 min	EC50: = 11.5 mg/L, 48h
	static (Pseudokirchneriella	5-7 mg/L LC50 96 h	_	(Daphnia magna)
	subcapitata)	15-19 mg/L LC50 96 h		EC50: 5.46 - 9.83 mg/L, 48h
	EC50: > 433 mg/L, 96h	28 mg/L LC50 96 h		Static (Daphnia magna)
	(Pseudokirchneriella	12 mg/L LC50 96 h		
	subcapitata)			

Persistence and Degradability

Soluble in water Persistence is unlikely based on information available.

Bioaccumulation/ Accumulation

No information available.

Mobility

. Will likely be mobile in the environment due to its water solubility.

Component	log Pow	
Toluene	2.7	

13. Disposal considerations

Waste Disposal Methods

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. Chemical waste generators must also consult local, regional, and national hazardous waste regulations to ensure complete and accurate classification.

Component	RCRA - U Series Wastes	RCRA - P Series Wastes
Toluene - 108-88-3	U220	-

14. Transport information

DOT

UN-No UN1294 **TOLUENE Proper Shipping Name Hazard Class** 3 **Packing Group** Ш

TDG

UN-No UN1294 **Proper Shipping Name TOLUENE**

Hazard Class 3 **Packing Group** Ш

IATA

UN-No UN1294 **Proper Shipping Name TOLUENE**

Hazard Class 3 **Packing Group** Ш

IMDG/IMO

UN-No UN1294
Proper Shipping Name TOLUENE
Hazard Class 3

Packing Group

15. Regulatory information

All of the components in the product are on the following Inventory lists: X = listed

International Inventories

Component	TSCA	DSL	NDSL	EINECS	ELINCS	NLP	PICCS	ENCS	AICS	IECSC	KECL
Toluene	Х	Χ	-	203-625-9	-		Χ	Χ	Χ	Х	Х

Legend:

X - Listed

- E Indicates a substance that is the subject of a Section 5(e) Consent order under TSCA.
- F Indicates a substance that is the subject of a Section 5(f) Rule under TSCA.
- N Indicates a polymeric substance containing no free-radical initiator in its inventory name but is considered to cover the designated polymer made with any free-radical initiator regardless of the amount used.
- P Indicates a commenced PMN substance
- R Indicates a substance that is the subject of a Section 6 risk management rule under TSCA.
- S Indicates a substance that is identified in a proposed or final Significant New Use Rule
- T Indicates a substance that is the subject of a Section 4 test rule under TSCA.
- XU Indicates a substance exempt from reporting under the Inventory Update Rule, i.e. Partial Updating of the TSCA Inventory Data Base Production and Site Reports (40 CFR 710(B).
- Y1 Indicates an exempt polymer that has a number-average molecular weight of 1,000 or greater.
- Y2 Indicates an exempt polymer that is a polyester and is made only from reactants included in a specified list of low concern reactants that comprises one of the eligibility criteria for the exemption rule.

U.S. Federal Regulations

TSCA 12(b) Not applicable

SARA 313

Component	CAS-No	Weight %	SARA 313 - Threshold Values %
Toluene	108-88-3	>95	1.0

SARA 311/312 Hazard Categories

Acute Health Hazard Yes
Chronic Health Hazard Yes
Fire Hazard Yes
Sudden Release of Pressure Hazard No
Reactive Hazard No

CWA (Clean Water Act)

Component	CWA - Hazardous Substances	CWA - Reportable Quantities	CWA - Toxic Pollutants	CWA - Priority Pollutants
Toluene	X	1000 lb	X	X

Clean Air Act

Component	HAPS Data	Class 1 Ozone Depletors	Class 2 Ozone Depletors
Toluene	Х		-

OSHA Occupational Safety and Health Administration Not applicable

CERCLA

This material, as supplied, contains one or more substances regulated as a hazardous substance under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) (40 CFR 302)

Component	Hazardous Substances RQs	CERCLA EHS RQs
Component	Tideardodo Odbolarioco Mao	OLITOLA LITO ITAS

To	oluene	1000 lb 1 lb	-

California Proposition 65

This product contains the following proposition 65 chemicals

Component	CAS-No	California Prop. 65	Prop 65 NSRL	Category
Toluene	108-88-3	Developmental	1	Developmental

U.S. State Right-to-Know

Regulations

Component	Massachusetts	New Jersey	Pennsylvania	Illinois	Rhode Island
Toluene	X	X	X	X	X

U.S. Department of Transportation

Reportable Quantity (RQ): Y
DOT Marine Pollutant N
DOT Severe Marine Pollutant N

U.S. Department of Homeland Security

This product does not contain any DHS chemicals.

Other International Regulations

Mexico - Grade Serious risk, Grade 3

16. Other information
 5

Prepared By Regulatory Affairs

Thermo Fisher Scientific

Email: EMSDS.RA@thermofisher.com

 Creation Date
 11-Jun-2009

 Revision Date
 24-May-2017

 Print Date
 24-May-2017

Revision Summary This document has been updated to comply with the US OSHA HazCom 2012 Standard

replacing the current legislation under 29 CFR 1910.1200 to align with the Globally

Harmonized System of Classification and Labeling of Chemicals (GHS).

Disclaimer

The information provided in this Safety Data Sheet is correct to the best of our knowledge, information and belief at the date of its publication. The information given is designed only as a guidance for safe handling, use, processing, storage, transportation, disposal and release and is not to be considered a warranty or quality specification. The information relates only to the specific material designated and may not be valid for such material used in combination with any other materials or in any process, unless specified in the text

End of SDS

HEALTH AND SAFETY PLAN
SITE MANAGEMENT PLAN
820 LINDEN AVE BROWNFIELD CLEANUP PROGRAM SITE #C828200
820 LINDEN AVENUE
PITTSFORD, MONROE COUNTY, NEW YOR

APPENDIX C Onsite Safety Meeting Forms

Field Level Risk Assessment (RMS2)

Person Responsible

Proje	ct Number:	Project Number	Date: Dat	e						JOB SAFETY ANA	ALYSIS (JSA)
-	ct Name:	Project Name							Basic Job Steps	Describe Energy	Controls
Proje	ct Location:	Project Location							<u> </u>	Hazard	
Descr	ription of Work:	Description									
		HASP/RMS1 revie	wed with staff on s	site	Yes			1			
		Review of STOP Work Authorit	y with staff and su	ıbs	Yes						
		Emergency plan adequat	e and communicat	ted	Yes						
		Tools and appropriate PPE	inspected before ι	use	Yes						
		Last Minute Risk Assessme	ent process review	ved	Yes			2			
	If the answer to	o any of the above questions is not "Y	ES" stop work and c	ontact	your sup	ervisor					
		Field crews have certifications o	n site Yes		N/A						
		Utility locates on site and under	stood Yes		N/A						
		Working alone plan in	place Yes		N/A			3			
		Work permits comp	oleted Yes		N/A						
	Client s	ite safety meeting conducted/atte	ended Yes		N/A		- 1				
IISKS		Working at Heights Traffic Control	life, Insects and Vegetation Mobile an Equipr	ment	Environme water o	or ice		4			
CRITICAL RISKS		Yes Yes Frgonomic Hazards and Manual Handling Afterior Hazards and Environments Ha:	Yes Control of cardous Energy Hot W	Yes	Confined			5			
	☐ Yes Thermal: 0 (including pl surfaces, lic	-		Yes		Yes		6			
ENERGY HAZARD	carcinogens corrosives, deficient atroccurring gr	Flammable vapors, reactive hazards, sor other toxic compounds, pyrophorics, combustibles, oxygen mospheres, fumes, dusts, naturally asses Animals, bacteria, viruses, insects, pathogens (needles), poisonous and ints, contaminated water, human	Motion: Vehicles (car, truck, A bicycles, transit, mobile equiprepeple (lifting, pushing, pulling power tools, body position, wabranches Mechanical: Rotating equipme shalts), compressed springs, emotors	ment, traile g, carrying, alking), flow ent (augers	er), workers ar use of hand a ving water, sp s, pulleys, driv	nd other and rung /e		7			
ENERG	onlookers) Radiation: Occurring R Densomete Radioactive Noise: Stati	Welding, NORMs (Naturally kadioactive Material), X rays, Nuclear rs, Lasers, Microwaves, Solar, e waste and sources inonary or mobile equipment, impact pressure release, impact of noise on	Electrical: Power and commu buried), static charge, lightning batteries, GFCI cords/plugs, lig tools, wet environment Pressure: pressure piping, co extinguisher, calibration gas, p. tanks, hoses, pneumatic and f	g, energize ghting leve impressed propane), c	ed equipment, els, double ins cylinders (fire control lines, v	wiring, ulated		8			

Last Updated: June 2019 Page 1 of 2

Field Level Risk Assessment (RMS2)

Review / Sign-off

Pre-Start Time: Date: Weather: Toolbox Discussion Leader Name: Toolbox Leader Signature Notes: Mid-Day Time: Toolbox Discussion Leader Name: Toolbox Leader Signature Notes: Find of Day Time: Weather: Toolbox Discussion Leader Name: Toolbox Leader Signature Notes: Notes:		Toolbox Meeting	
Notes: Mid-Day Time: Weather: Toolbox Discussion Leader Name: Toolbox Leader Signature Notes: End of Day Time: Weather: Toolbox Discussion Leader Name: Toolbox Leader Signature	Pre-Start Time:	Date:	
Mid-Day Time: Weather: Toolbox Discussion Leader Name: Toolbox Leader Signature Notes: End of Day Time: Weather: Toolbox Discussion Leader Name: Toolbox Leader Signature	Weather:	Toolbox Discussion Leader Name:	Toolbox Leader Signature
Weather: Toolbox Discussion Leader Name: Toolbox Leader Signature Notes: End of Day Time: Weather: Toolbox Discussion Leader Name: Toolbox Leader Signature	Notes:		
Weather: Toolbox Discussion Leader Name: Toolbox Leader Signature Notes: End of Day Time: Weather: Toolbox Discussion Leader Name: Toolbox Leader Signature			
Notes: End of Day Time: Weather: Toolbox Discussion Leader Name: Toolbox Leader Signature	Mid-Day Time:		
End of Day Time: Weather: Toolbox Discussion Leader Name: Toolbox Leader Signature	Weather:	Toolbox Discussion Leader Name:	Toolbox Leader Signature
Weather: Toolbox Discussion Leader Name: Toolbox Leader Signature	Notes:	,	
Weather: Toolbox Discussion Leader Name: Toolbox Leader Signature			
Notes:	Weather:	Toolbox Discussion Leader Name:	Toolbox Leader Signature
	Notes:	<u>'</u>	l

Company Name	Print your Name	Pre-Start	Mid-Day	End of Da
		F:	F:	F:
		AP:	AP:	AP:
		F:	F:	F:
		AP:	AP:	AP:
		F:	F:	F:
		AP:	AP:	AP:
		F:	F:	F:
		AP:	AP:	AP:
		F:	F:	F:
		AP:	AP:	AP:
		F:	F:	F:
		AP:	AP:	AP:
		F:	F:	F:
		AP:	AP:	AP:
		F:	F:	F:
		AP:	AP:	AP:
		F:	F:	F:
		AP:	AP:	AP:
		F:	F:	F:
		AP:	AP:	AP:

For work-related symptoms or injuries, and to speak to a medical professional for guidance and treatment options contact:

Work Care

(24-hour service)
1-888-449-7787

Workers' Compensation Claims
Coordinator (Canada)
Ph: 905-944-6854; c: 416-951-5663
Workers' Compensation Claims
Coordinator (US)
C: 513-720-3706

Last Updated: June 2019 Page 2 of 2

This form is intended for projects of up to 7 consecutive days on one site. If work will last longer than the days provided on this form, please start a new RMS2 to refresh hazard awareness.

		Project	Number:	Project Numb	oer		Date:	Date
Project Name:	Project Name							
Project Location:	Project Location	on						
Description of Work:	Description							
		Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7
HASP/RMS1 reviewed v	with staff on site	Yes □	Yes □	Yes □	Yes □	Yes □	Yes □	Yes □
Review of STOP Wo with	rk Authority staff & subs	Yes □	Yes □	Yes □	Yes □	Yes □	Yes □	Yes □
	nmunicated	Yes □	Yes □	Yes □	Yes □	Yes □	Yes □	Yes □
	before use	Yes □	Yes □	Yes □	Yes □	Yes □	Yes □	Yes □
Last Minute Risk A	assessment ss reviewed	Yes □	Yes □	Yes □	Yes □	Yes □	Yes □	Yes □
If the answ	ver to any of th	e question	s above is	not "Yes" St	op work and co	ontact you	ır supervisor.	
		Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7
Field crews have certi	fications on site	Yes □ N/A □	Yes □ N/A □	Yes □ N/A □	Yes □ N/A □	Yes □ N/A □	Yes □ N/A □	Yes □ N/A □
Utility locates	on site and understood	Yes □ N/A □	Yes □ N/A □	Yes □ N/A □	Yes □ N/A □	Yes □ N/A □	Yes □ N/A □	Yes □ N/A □
Working alone p	olan in place	Yes □ N/A □	Yes □ N/A □	Yes □ N/A □	Yes □ N/A □	Yes □ N/A □	Yes □ N/A □	Yes □ N/A □
Work permit	s completed	Yes □ N/A □	Yes □ N/A □	Yes □ N/A □	Yes □ N/A □	Yes □ N/A □	Yes □ N/A □	Yes □ N/A □
Client site sat	ety meeting ed/attended	Yes □ N/A □	Yes □ N/A □	Yes □ N/A □	Yes □ N/A □	Yes □ N/A □	Yes □ N/A □	Yes □ N/A □
Are there additional of JSA tasks or energy yes, update of communicate	hazards? If the JSA and		Yes □ N/A □	Yes □ N/A □	Yes □ N/A □	Yes □ N/A □	Yes □ N/A □	Yes □ N/A □
For work-related symedical professional					LAST-MINUTE ASSESSMENT		1 STOP AND THINK 2 LOOK AROUND Is the work area safe? Will my work endanger others?	(
	WorkCa (24-hour service	e)			STOP AND THIN	A REAL PROPERTY OF THE PARTY OF	Will other people/tasks create h 3 ASSESS RISK Do I clearly understand the task's Will lifting or manual handling be Potential for slips, trips, or falls? Are there driving or vehicle conoc Have I considered all undergroum Moving or pressurized equipmer What could go wrong?	required? erns? dd services?
Workers' Comp	1-888-449-7 ensation Claims C 5-944-6854; cell 41	oordinator (C	Canada)		Are you ready to work Always remember you		(4) CONTROL RISK What can I do to control hazards Do I have the right tools? Is the SWP (Safe Work Practice) Do I have the appropriate PPE? Are emergency plans in place?	
	npensation Claims cell: 513-720-37	Coordinator	(US)		Stop Work Authority. Stantec		S BEGIN/RESUME WORK If you're unsure, talk to your super hase@stantec.com	

		JOB SAFETY ANA	ALYSIS (JSA)	
	Basic Job Steps	Describe Energy Hazard	Controls	Person Responsible
1				
2				
3				
4				
5				
6				
7				
8				

RISKS	Driv		Working at Heights	Traffic Control	Wildlife, Insects and Vegetation	Mobile and Heavy Equipment	Environments with water or ice					
CRITICAL RISKS	Ground Di	Yes sturbance Yes	Ergonomic Hazards and Manual Handling	Hazardous Materials and Environments	S Control of Hazardous Energy	Hot Work Yes	Confined Spaces					
	A	(including surfaces,	Open flame, electric igni phones and friction), hot liquids or gasses, weathe humidity levels and snow	or cold er conditions /	Gravity: Falling falling	g objects, collapsing objec	ets, slipping, tripping or					
ARD	Д	carcinoge corrosives	l: Flammable vapors, rea ns or other toxic compou s, pyrophorics, combustib atmospheres, fumes, dus gases	nds, les, oxygen	bicycles, transi people (lifting,	es (car, truck, ATV, ARGO t, mobile equipment, traile pushing, pulling, carrying, sition, walking), flowing wa	er), workers and other use of hand and power					
ENERGY HAZARD		blood born noxious p	al: Animals, bacteria, viru ne pathogens (needles), lants, contaminated wate (protesters, concerned o)	poisonous and r, human		Mechanical: Rotating equipment (augers, pulleys, drive shafts), compressed springs, drive belts, conveyors and motors						
	4	Occurring Densome	n: Welding, NORMs (Natu Radioactive Material), X ters, Lasers, Microwaves we waste and sources	rays, Nuclear	buried), static of	wer and communication lir charge, lightning, energize I cords/plugs, lighting lever ronment	ed equipment, wiring,					
	□»)		ationary or mobile equipr h pressure release, impa cation		extinguisher, c	ssure piping, compressed alibration gas, propane), coneumatic and hydraulic e	control lines, vessels,					
				Meeting	details							
Day 1		1										
Date:		Wea										
Notes	start time:		am / pm									
Mid-c	day time:		am / pm									
Notes	3:											
End o	of day time:		am / pm									
Notes	3:											
Toolb	ox Discuss	sion Leade	r Name:		Toolbox Leader Sign	ature:						

Day 2		
Date:	Weather:	
Pre-start time:	am / pm	
Notes:		
Mid-day time:	am / pm	
Notes:		
End of day time:	am / pm	
Notes:		
Toolbox Discussion Leade	er Name:	Toolbox Leader Signature:
Day 3		
Date:	Weather:	
Pre-start time:	am / pm	
Notes:		
Mid-day time:	am / pm	
Notes:		
End of day time:	am / pm	
Notes:		
Toolbox Discussion Leade	er Name:	Toolbox Leader Signature:
Day 4		
Date: Wea	ither:	
Pre-start time:	am / pm	
Notes:		
Mid-day time:	am / pm	
Notes:		
End of day time:	am / pm	
Notes:		
Toolbox Discussion Leade	er Name:	Toolbox Leader Signature:
	Meeting	g details
Day 5		

Date:	Weather:	
Pre-start time:	am / pm	
Notes:		
Mid-day time:	am / pm	
Notes:		
End of day time:	am / pm	
Notes:		
Toolbox Discussion Leader	Name:	Toolbox Leader Signature:
Day 6		
Date:	Weather:	
Pre-start time:	am / pm	
Notes:		
Mid-day time:	am / pm	
Notes:		
End of day time:	am / pm	
Notes:		
Toolbox Discussion Leader	Name:	Toolbox Leader Signature:
Day 7		
Date: Weat	her:	
Pre-start time:	am / pm	
Notes:		
Mid-day time:	am / pm	
Notes:		
End of day time:	am / pm	
Notes:		
Toolbox Discussion Leader	Name:	Toolbox Leader Signature:

Review/Sign-off

Print the company that you work for, your name and indicate which fitness level you are under the corresponding time column:

Fit for Duty = F Alternate Plan = AP

		Date:			Date:			Date:			Date:		
Company name	Print your name	Time:	Time:	Time:	Time:	Time:	Time:	Time:	Time:	Time:	Time:	Time:	Time:
		F:	F:	F:	F:	F:	F:	F:	F:	F:	F:	F:	F:
		AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:
		F:	F:	F:	F:	F:	F:	F:	F:	F:	F:	F:	F:
		AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:
		F:	F:	F:	F:	F:	F:	F:	F:	F:	F:	F:	F:
		AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:
		F:	F:	F:	F:	F:	F:	F:	F:	F:	F:	F:	F:
		AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:
		F:	F:	F:	F:	F:	F:	F:	F:	F:	F:	F:	F:
		AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:
		F:	F:	F:	F:	F:	F:	F:	F:	F:	F:	F:	F:
		AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:
		F:	F:	F:	F:	F:	F:	F:	F:	F:	F:	F:	F:
		AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:
		F:	F:	F:	F:	F:	F:	F:	F:	F:	F:	F:	F:
		AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:
		F:	F:	F:	F:	F:	F:	F:	F:	F:	F:	F:	F:
		AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:
		F:	F:	F:	F:	F:	F:	F:	F:	F:	F:	F:	F:
		AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:

Review / Sign-off

Print the company that you work for, your name and indicate which fitness level you are under the corresponding time column:

Fit for Duty = F Alternate Plan = AP

		Date:			Date:			Date:		
Company name	Print your name	Time:	Time:	Time:	Time:	Time:	Time:	Time:	Time:	Time:
		F:	F:	F:	F:	F:	F:	F:	F:	F:
		AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:
		F:	F:	F:	F:	F:	F:	F:	F:	F:
		AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:
		F:	F:	F:	F:	F:	F:	F:	F:	F:
		AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:
		F:	F:	F:	F:	F:	F:	F:	F:	F:
		AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:
		F:	F:	F:	F:	F:	F:	F:	F:	F:
		AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:
		F:	F:	F:	F:	F:	F:	F:	F:	F:
		AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:
		F:	F:	F:	F:	F:	F:	F:	F:	F:
		AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:
		F:	F:	F:	F:	F:	F:	F:	F:	F:
		AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:
		F:	F:	F:	F:	F:	F:	F:	F:	F:
		AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:
		F:	F:	F:	F:	F:	F:	F:	F:	F:
		AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:	AP:

HEALTH AND SAFETY PLAN
SITE MANAGEMENT PLAN
820 LINDEN AVE BROWNFIELD CLEANUP PROGRAM SITE #C828200
820 LINDEN AVENUE
PITTSFORD, MONROE COUNTY, NEW YOR

APPENDIX D Incident Reporting

Incident Reporting Protocol - US

Health, Safety, Security, & Environment

IMMEDIATE ACTIONS FOR ALL INJURIES, and SERIOUS or SIGNIFICANT INCIDENTS (see HSSE Program Manual s.14 for definitions)

- Keeping safety in mind, care for injured people (if applicable) and stabilize the scene.
- For life threatening injuries, immediately contact 911. Accompany the injured employee to the medical facility whenever possible.
- Call WorkCare (24-hour service): 1-888-449-7787 for work-related symptoms or injuries and speak to a medical professional for guidance and treatment options.
- Make voice contact with your supervisor within 1 hour or less of the incident occurring. Leaving a voicemail does not count. If you cannot contact your supervisor and project manager, contact the HSSE Manager or HSSE Advisor for your region.
- Supervisors must immediately contact their HSSE Manager or HSSE Advisor by phone to discuss incident severity and determine if further notifications (internal or external) are required.
- When an employee is guided by WorkCare to obtain medical assistance, or the employee requests medical attention for a non-life threatening injury, and after alerting the supervisor; the employee must immediately call Melissa Helton, Stantec's US WC Claims Coordinator at 513-720-3706 for assistance.
- In most cases, WorkCare will provide guidance about which clinic is available and provide directions. Some job sites already have prescribed clinics. Here is a link accessing additional clinic locations: Clinic Search link.
- Additional notifications may be required based on the client requirements.

Contacts		Landline	Cell
HSSE Manager – North Central	Wes Cline	615-885-1144	916-281-7459
HSSE Manager – Southeast	Randy Jones	615-499-7161	907-707-9305
HSSE Manager – Northeast	Fred Miller	610-235-7315	610-235-7315
HSSE Manager – Gulf	Mark Maynard	615-238-2730	615-238-2730
HSSE Manager – Pacific	Tony Wong	805-250-2860	805-234-6227
HSSE Manager – Mountain	Mike Doherty	503-220-5434	503-220-5434
HSSE Manager – NA Export	Kev Metcalfe	780-917-7023	780-231-2185
Director HSSE Operations - US	Keith Kuhlmann	740-816-6170	740-816-6170
HSSE Senior Vice President	Jon Lessard	713-548-5700	281-513-5538
Your OSEC or HSSE Advisor Master HSSE Representative Listing			

Region	WC Claims Coordinator	Landline	Cell
US (All Regions)	Melissa Helton	513-720-3706	513-720-3706

REPORTING

- Within 24 hours of the incident, an HSSE Event Report (RMS3) must be completed with as much information as possible and emailed to hsse@stantec.com.
- Do not delay submitting the report to wait for signatures. Follow-up with signatures when possible.
- Complete the balance of the RMS3 within 5 business days, including signatures. Include information and corrective actions determined during the investigation/ Incident Causation Analysis (ICA), as coordinated by HSSE Advisor and/or HSSE Manager.
- Other protocols dictated by a client or project agreement, or internal practice may also need to be completed. See HSSE Program Manual s.14 for Incident Notification.

Last Updated: June 29, 2020 Document Owner: Corporate HSSE Page 1 of 1

HSSE EVENT REPORT – RMS3

Incidents involving injury, potential injury, or report of pain, soreness, or discomfort must be reported immediately (within one hour) to a supervisor. Supervisors will then immediately contact their HSSE manager/advisor to discuss incident severity and determine further notification. This form must be completed and submitted within 24 hours of any incident. Do not delay submission waiting for signatures. Email to hsse@stantec.com or fax unsigned report to (780) 969-2030 and file locally in compliance with the corporate records retention policy and practices once all signatures have been obtained.

This document contains privileged and confidential information prepared at the request of Stantec's Legal Counsel. The contents of this report are restricted to HSSE, HR personnel, Risk Management Representatives, Project Manager and BC Leader, and Stantec's Insurer, Adjuster and Legal Counsel. Information collected will be used solely for the purpose of meeting the requirements of Stantec's HSSE and insurance programs, complying with applicable legislation, and will be used in accordance with any governing privacy legislation. The information collected will be maintained electronically and may be included in **required** reports.

SECTION 1: GENERAL INFORMA	TION		
Office location:		BC number:	
Location of incident:		•	·
Incident date:		Incident time	e:
Incident reported-date:		Incident repo	orted-time:
Project name:		Project numb	per:
Client name:		•	·
Person in charge:		Person in cha	arge phone:
-		*	•
SECTION 2: INVOLVED STANTEC	EMPLOYEE INFORMATION (if more	than one identify extras in incident de	tails below)
Name:		Phone:	
Job position:		Group name:	
Time employee began work:		Job experience (in years)	
Type of employment:	Full Time ☐ ; Visitor ☐ ; Contro	act 🗌 ; Volunteer 🗌 ; Seasonal 🗌	
Supervisor:		Supervisor phone:	
SECTION 3: INCIDENT DETAILS			
Type of Incident:	*incident types marked Lens for a list of <u>Incident</u>		ions 1, 2 and 3 and sign below. See The
	Lens for a list of <u>incident</u>	Type Delinillons	
Incident Severity (0-4 Serious):		Incident Likelihood: (1-4 Very Likely)	
		·	<u> </u>
*Report Only	First Aid	☐ Motor Vehicle Incident	3 rd Party Incident (i.e., Public)
*Report Only *Hazard Identification	First Aid Medical Aid – No Lost Time	☐ Motor Vehicle Incident ☐ Property Damage - Vehicle	3 rd Party Incident (i.e., Public) Spill or Release
*Report Only *Hazard Identification *Near Miss	First Aid Medical Aid – No Lost Time Restricted Work	☐ Motor Vehicle Incident☐ Property Damage - Vehicle☐ Property Damage - Other	☐ 3 rd Party Incident (i.e., Public) ☐ Spill or Release ☐ Utility Strike
*Report Only *Hazard Identification *Near Miss *Safety Opportunity	First Aid Medical Aid – No Lost Time Restricted Work Lost Time	 Motor Vehicle Incident Property Damage - Vehicle Property Damage - Other Security 	3 rd Party Incident (i.e., Public) Spill or Release Utility Strike Fire/Explosion/Flood
*Report Only *Hazard Identification *Near Miss *Safety Opportunity Critical Risk?	First Aid Medical Aid – No Lost Time Restricted Work Lost Time Fatality	 Motor Vehicle Incident □ Property Damage - Vehicle □ Property Damage - Other □ Security □ Contractor Recordable Incident 	3 rd Party Incident (i.e., Public) Spill or Release Utility Strike Fire/Explosion/Flood Stop Work Authority
*Report Only *Hazard Identification *Near Miss *Safety Opportunity	First Aid Medical Aid – No Lost Time Restricted Work Lost Time	 Motor Vehicle Incident Property Damage - Vehicle Property Damage - Other Security 	3 rd Party Incident (i.e., Public) Spill or Release Utility Strike Fire/Explosion/Flood
*Report Only *Hazard Identification *Near Miss *Safety Opportunity Critical Risk? High Potential Incident?	First Aid Medical Aid – No Lost Time Restricted Work Lost Time Fatality Violence or Harassment	 Motor Vehicle Incident □ Property Damage - Vehicle □ Property Damage - Other □ Security □ Contractor Recordable Incident 	☐ 3 rd Party Incident (i.e., Public) ☐ Spill or Release ☐ Utility Strike ☐ Fire/Explosion/Flood ☐ Stop Work Authority ☐ Work Refusal
*Report Only *Hazard Identification *Near Miss *Safety Opportunity Critical Risk? High Potential Incident?	First Aid Medical Aid – No Lost Time Restricted Work Lost Time Fatality Violence or Harassment	Motor Vehicle Incident Property Damage - Vehicle Property Damage - Other Security Contractor Recordable Incident Non-compliance	☐ 3 rd Party Incident (i.e., Public) ☐ Spill or Release ☐ Utility Strike ☐ Fire/Explosion/Flood ☐ Stop Work Authority ☐ Work Refusal
*Report Only *Hazard Identification *Near Miss *Safety Opportunity Critical Risk? High Potential Incident?	First Aid Medical Aid – No Lost Time Restricted Work Lost Time Fatality Violence or Harassment	Motor Vehicle Incident Property Damage - Vehicle Property Damage - Other Security Contractor Recordable Incident Non-compliance	☐ 3 rd Party Incident (i.e., Public) ☐ Spill or Release ☐ Utility Strike ☐ Fire/Explosion/Flood ☐ Stop Work Authority ☐ Work Refusal
*Report Only *Hazard Identification *Near Miss *Safety Opportunity Critical Risk? High Potential Incident? Describe incident in detail:	First Aid Medical Aid – No Lost Time Restricted Work Lost Time Fatality Violence or Harassment (include any issues related to p	Motor Vehicle Incident Property Damage - Vehicle Property Damage - Other Security Contractor Recordable Incident Non-compliance	☐ 3 rd Party Incident (i.e., Public) ☐ Spill or Release ☐ Utility Strike ☐ Fire/Explosion/Flood ☐ Stop Work Authority ☐ Work Refusal
*Report Only *Hazard Identification *Near Miss *Safety Opportunity Critical Risk? High Potential Incident?	First Aid Medical Aid – No Lost Time Restricted Work Lost Time Fatality Violence or Harassment (include any issues related to p	Motor Vehicle Incident Property Damage - Vehicle Property Damage - Other Security Contractor Recordable Incident Non-compliance	☐ 3 rd Party Incident (i.e., Public) ☐ Spill or Release ☐ Utility Strike ☐ Fire/Explosion/Flood ☐ Stop Work Authority ☐ Work Refusal
*Report Only *Hazard Identification *Near Miss *Safety Opportunity Critical Risk? High Potential Incident? Describe incident in detail:	First Aid Medical Aid – No Lost Time Restricted Work Lost Time Fatality Violence or Harassment (include any issues related to p	Motor Vehicle Incident Property Damage - Vehicle Property Damage - Other Security Contractor Recordable Incident Non-compliance	☐ 3 rd Party Incident (i.e., Public) ☐ Spill or Release ☐ Utility Strike ☐ Fire/Explosion/Flood ☐ Stop Work Authority ☐ Work Refusal
*Report Only *Hazard Identification *Near Miss *Safety Opportunity Critical Risk? High Potential Incident? Describe incident in detail:	First Aid Medical Aid – No Lost Time Restricted Work Lost Time Fatality Violence or Harassment (include any issues related to p	Motor Vehicle Incident Property Damage - Vehicle Property Damage - Other Security Contractor Recordable Incident Non-compliance	☐ 3 rd Party Incident (i.e., Public) ☐ Spill or Release ☐ Utility Strike ☐ Fire/Explosion/Flood ☐ Stop Work Authority ☐ Work Refusal
*Report Only *Hazard Identification *Near Miss *Safety Opportunity Critical Risk? High Potential Incident? Describe incident in detail:	First Aid Medical Aid – No Lost Time Restricted Work Lost Time Fatality Violence or Harassment (include any issues related to points taken:	Motor Vehicle Incident Property Damage - Vehicle Property Damage - Other Security Contractor Recordable Incident Non-compliance	☐ 3 rd Party Incident (i.e., Public) ☐ Spill or Release ☐ Utility Strike ☐ Fire/Explosion/Flood ☐ Stop Work Authority ☐ Work Refusal

Atlantic – Kyle Ferguson (902-240-3847); Alberta North – Ruth O'Haire (780-231-5290); Alberta South & British Columbia – Shawna Robichaud (587-894-2635); Ontario East & Ontario West – Jared Memory (647-969-3709); Quebec – Claudine Tremblay (514-668-4820); Prairies & Territories – Nikki Boudreau (639-994-1843); Northeast – Fred Miller (610-235-7315); Southeast – Randy Jones (615-499-7161); Gulf – Mark Maynard (615-238-2730); North Central – Wes Cline (916-281-7459); Mountain – Mike Doherty (415-307-2920); Pacific – Tony Wong (805-234-6227); NA Export – Kev Metcalfe (780-231-2185); UK, Australia & New Zealand – Chris Sutton (+44 (0) 7990 534941)

Last Updated: July 14, 2020 Document Owner: HSSE

HSSE EVENT REPORT - RMS3

SECTION 4: MEDICAL INFORMATION	
Name of first aid attendant:	Injury recorded in first aid log? Yes No N/A
Description of first aid or medical treatment administered:	
Clinic/hospital sent to:	
Attending physician/paramedic (if known):	
Area of Injury – Please check all that apply:	
Head Teeth Upper back Left Face Neck Lower back Should Eye(s) Chest Abdomen Arm Ear(s) Pelvis Elbow Other Specify	☐ ☐ Hand ☐ ☐ Thigh ☐ ☐ Foot ☐ ☐ V ☐ ☐ Finger(s) ☐ ☐ Knee ☐ ☐ Toe(s) ☐
Has the injured employee had a	previous similar injury or disability? Yes \to \to \to \to \to
SECTION 5: PROPERTY OR VEHICLE DAMAGE: STANTEC	
Ownership Details (choose one):	al agreement) Stantec Owned Personal (employee vehicle)
Year, Make, and Model of Vehicle:	Vehicle ID # (VIN)
Nature of damage:	Estimated cost of damage: \$
Description of damaged property:	
Attending police officer (if known):	Badge #:
Copy of police report received Yes No If yes, f	file number: (attach copy of police report)
PROPERTY OR VEHICLE DAMAGE: 3RD PARTY	
Name of owner and contact number:	
Year, Make, and Model of Vehicle:	License Plate Number:
Insurer and Policy Number:	
Injured parties? Yes No I If yes, describe Inju	ries:
Diagram or photographs attached? Yes No	
WITNESS INFORMATION - #1	
Name:	Phone Number:
Witness statement provided? Yes (attached) No]
WITNESS INFORMATION - #2	
Name:	Phone Number:
Witness statement provided? Yes (attached) ☐ No ☐	
SECTION 6: SPILL OR RELEASE	
Substance:	
Quantity: Employee(s)	exposed via: Inhalation Contact Ingestion n/a
· · · · · · · · · · · · · · · · · · ·	If yes, describe:
Name of regulatory agencies contacted:	
Contact name number date and time of call:	

Last Updated: July 14, 2020

HSSE EVENT REPORT - RMS3

SEC	SECTION 7: ANALYSIS							
	DIRECT CAUSES							
A.	ACTIONS TO IMPROVE (check off or	ıs many as necessary)						
	Operating equipment without authority Lack of warning Did not secure Operating at improper speed Disabling/removing safety devices Using defective/improper equipment Using equipment improperly	Did not use personal protective equipment (PPE) Improper loading Improper placement Improper lifting or handling Improper position for a task Servicing equipment in operation Horseplay Procedure, policy, or practice, not followed	☐ Inatter☐ Commimprov☐ Influen suspec☐ Did no	nunication/coordination needs vement nce of alcohol or drugs				
В.	CONDITIONS TO IMPROVE (check of	off as many as necessary)						
	Inadequate guards/barriers Improper/inadequate PPE Defective tools or equipment Congested work area Inadequate warning system Fire and explosion hazards Poor housekeeping; disorder Noise exposure	Radiation exposure Temperature extremes Inadequate or excess illumination Inadequate ventilation Presence of harmful materials or environment Instructions/procedures need improvement	Prepar improv Oppor suppor Road a Weath Comm	quate information/data ration/planning needs vement rtunity to improve rt/assistance conditions her conditions nunications need vement (hardware/software)				
		ROOT CAUSES						
C.	PERSONAL FACTORS (check off as	many as necessary)						
	Physical Capability Physical Stress Mental Stress	☐ Lack of Skill ☐ Lack of Knowledge ☐ Improper Motivation	=	or Misuse II/Psychological Capability				
D.	JOB FACTORS (check off as many	as necessary)						
	Leadership or supervision Engineering Purchasing	 Maintenance (scheduled or preventative) Tools or equipment Work standards 	Comm	ive wear and tear nunications Specify				
SEC	CTION 8: FOLLOW-UP							
	ort-term: Corrective Action	Assigned To	Target Date	Completion Date				
Lor	ng-term: Corrective Action	Assigned To	Target Date	Completion Date				

Last Updated: July 14, 2020

Printed copy uncontrolled—current version on The Lens

HSSE EVENT REPORT - RMS3

REVIEW COMMENTS					
Involved Employee Comments:					
Signature:	Print Name:	Date:			
Job Title:					
Supervisor/Project Manager:					
Signature:	Print Name:	Date:			
Job Title:					
HSSE Representative (OSEC/JH&S Cor	mmittee/HSSE Manager/HSS	E Advisor):			
Ciana atura	Drink Name o	Data			
Signature: Job Title:	Print Name:	Date:			
	applicable)				
management keview. (nor c	upplicable)				
Signature:	Print Name:	Date:			
Job Title:					
Additional Comments:					

Atlantic – Kyle Ferguson (902-240-3847); Alberta North – Ruth O'Haire (780-231-5290); Alberta South & British Columbia – Shawna Robichaud (587-894-2635); Ontario East & Ontario West – Jared Memory (647-969-3709); Quebec – Claudine Tremblay (514-668-4820); Prairies & Territories – Nikki Boudreau (639-994-1843); Northeast – Fred Miller (610-235-7315); Southeast – Randy Jones (615-499-7161); Gulf – Mark Maynard (615-238-2730); North Central – Wes Cline (916-281-7459); Mountain – Mike Doherty (415-307-2920); Pacific – Tony Wong (805-234-6227); NA Export – Kev Metcalfe (780-231-2185); UK, Australia & New Zealand – Chris Sutton (+44 (0) 7990 534941)

Last Updated: July 14, 2020 Document Owner: HSSE

Appendix F

Community Air Monitoring Plan

Appendix 1A New York State Department of Health Generic Community Air Monitoring Plan

Overview

A Community Air Monitoring Plan (CAMP) requires real-time monitoring for volatile organic compounds (VOCs) and particulates (i.e., dust) at the downwind perimeter of each designated work area when certain activities are in progress at contaminated sites. The CAMP is not intended for use in establishing action levels for worker respiratory protection. Rather, its intent is to provide a measure of protection for the downwind community (i.e., off-site receptors including residences and businesses and on-site workers not directly involved with the subject work activities) from potential airborne contaminant releases as a direct result of investigative and remedial work activities. The action levels specified herein require increased monitoring, corrective actions to abate emissions, and/or work shutdown. Additionally, the CAMP helps to confirm that work activities did not spread contamination off-site through the air.

The generic CAMP presented below will be sufficient to cover many, if not most, sites. Specific requirements should be reviewed for each situation in consultation with NYSDOH to ensure proper applicability. In some cases, a separate site-specific CAMP or supplement may be required. Depending upon the nature of contamination, chemical- specific monitoring with appropriately-sensitive methods may be required. Depending upon the proximity of potentially exposed individuals, more stringent monitoring or response levels than those presented below may be required. Special requirements will be necessary for work within 20 feet of potentially exposed individuals or structures and for indoor work with co-located residences or facilities. These requirements should be determined in consultation with NYSDOH.

Reliance on the CAMP should not preclude simple, common-sense measures to keep VOCs, dust, and odors at a minimum around the work areas.

Community Air Monitoring Plan

Depending upon the nature of known or potential contaminants at each site, real-time air monitoring for VOCs and/or particulate levels at the perimeter of the exclusion zone or work area will be necessary. Most sites will involve VOC and particulate monitoring; sites known to be contaminated with heavy metals alone may only require particulate monitoring. If radiological contamination is a concern, additional monitoring requirements may be necessary per consultation with appropriate DEC/NYSDOH staff.

Continuous monitoring will be required for all <u>ground intrusive</u> activities and during the demolition of contaminated or potentially contaminated structures. Ground intrusive activities include, but are not limited to, soil/waste excavation and handling, test pitting or trenching, and the installation of soil borings or monitoring wells.

Periodic monitoring for VOCs will be required during <u>non-intrusive</u> activities such as the collection of soil and sediment samples or the collection of groundwater samples from existing monitoring wells. "Periodic" monitoring during sample collection might reasonably consist of taking a reading upon arrival at a sample location, monitoring while opening a well cap or

Final DER-10 Page 204 of 226

overturning soil, monitoring during well baling/purging, and taking a reading prior to leaving a sample location. In some instances, depending upon the proximity of potentially exposed individuals, continuous monitoring may be required during sampling activities. Examples of such situations include groundwater sampling at wells on the curb of a busy urban street, in the midst of a public park, or adjacent to a school or residence.

VOC Monitoring, Response Levels, and Actions

Volatile organic compounds (VOCs) must be monitored at the downwind perimeter of the immediate work area (i.e., the exclusion zone) on a continuous basis or as otherwise specified. Upwind concentrations should be measured at the start of each workday and periodically thereafter to establish background conditions, particularly if wind direction changes. The monitoring work should be performed using equipment appropriate to measure the types of contaminants known or suspected to be present. The equipment should be calibrated at least daily for the contaminant(s) of concern or for an appropriate surrogate. The equipment should be capable of calculating 15-minute running average concentrations, which will be compared to the levels specified below.

- 1. If the ambient air concentration of total organic vapors at the downwind perimeter of the work area or exclusion zone exceeds 5 parts per million (ppm) above background for the 15-minute average, work activities must be temporarily halted and monitoring continued. If the total organic vapor level readily decreases (per instantaneous readings) below 5 ppm over background, work activities can resume with continued monitoring.
- 2. If total organic vapor levels at the downwind perimeter of the work area or exclusion zone persist at levels in excess of 5 ppm over background but less than 25 ppm, work activities must be halted, the source of vapors identified, corrective actions taken to abate emissions, and monitoring continued. After these steps, work activities can resume provided that the total organic vapor level 200 feet downwind of the exclusion zone or half the distance to the nearest potential receptor or residential/commercial structure, whichever is less but in no case less than 20 feet, is below 5 ppm over background for the 15-minute average.
- 3. If the organic vapor level is above 25 ppm at the perimeter of the work area, activities must be shutdown.
- 4. All 15-minute readings must be recorded and be available for State (DEC and NYSDOH) personnel to review. Instantaneous readings, if any, used for decision purposes should also be recorded.

Particulate Monitoring, Response Levels, and Actions

Particulate concentrations should be monitored continuously at the upwind and downwind perimeters of the exclusion zone at temporary particulate monitoring stations. The particulate monitoring should be performed using real-time monitoring equipment capable of measuring particulate matter less than 10 micrometers in size (PM-10) and capable of integrating over a period of 15 minutes (or less) for comparison to the airborne particulate action level. The equipment must be equipped with an audible alarm to indicate exceedance of the action level. In addition, fugitive dust migration should be visually assessed during all work activities.

Final DER-10 Page 205 of 226

- 1. If the downwind PM-10 particulate level is 100 micrograms per cubic meter (mcg/m³) greater than background (upwind perimeter) for the 15-minute period or if airborne dust is observed leaving the work area, then dust suppression techniques must be employed. Work may continue with dust suppression techniques provided that downwind PM-10 particulate levels do not exceed 150 mcg/m³ above the upwind level and provided that no visible dust is migrating from the work area.
- 2. If, after implementation of dust suppression techniques, downwind PM-10 particulate levels are greater than 150 mcg/m³ above the upwind level, work must be stopped and a re-evaluation of activities initiated. Work can resume provided that dust suppression measures and other controls are successful in reducing the downwind PM-10 particulate concentration to within 150 mcg/m³ of the upwind level and in preventing visible dust migration.
- 3. All readings must be recorded and be available for State (DEC and NYSDOH) and County Health personnel to review.

December 2009

Final DER-10 Page 206 of 226

Appendix 1B **Fugitive Dust and Particulate Monitoring**

A program for suppressing fugitive dust and particulate matter monitoring at hazardous waste sites is a responsibility on the remedial party performing the work. These procedures must be incorporated into appropriate intrusive work plans. The following fugitive dust suppression and particulate monitoring program should be employed at sites during construction and other intrusive activities which warrant its use:

- Reasonable fugitive dust suppression techniques must be employed during all site activities which may generate fugitive dust.
- Particulate monitoring must be employed during the handling of waste or contaminated soil or when activities on site may generate fugitive dust from exposed waste or contaminated soil. Remedial activities may also include the excavation, grading, or placement of clean fill. These control measures should not be considered necessary for these activities.
- Particulate monitoring must be performed using real-time particulate monitors and shall monitor particulate matter less than ten microns (PM10) with the following minimum performance standards:
 - (a) Objects to be measured: Dust, mists or aerosols;
 - (b) Measurement Ranges: 0.001 to 400 mg/m3 (1 to 400,000 :ug/m3);
- (c) Precision (2-sigma) at constant temperature: +/- 10 :g/m3 for one second averaging; and +/- 1.5 g/m3 for sixty second averaging;
 - (d) Accuracy: +/- 5% of reading +/- precision (Referred to gravimetric calibration with SAE fine test dust (mmd= 2 to 3:m, g= 2.5, as aerosolized);
 - (e) Resolution: 0.1% of reading or 1g/m3, whichever is larger;
 - (f) Particle Size Range of Maximum Response: 0.1-10;
 - (g) Total Number of Data Points in Memory: 10,000;
- (h) Logged Data: Each data point with average concentration, time/date and data point number
- (i) Run Summary: overall average, maximum concentrations, time/date of maximum, total number of logged points, start time/date, total elapsed time (run duration), STEL concentration and time/date occurrence, averaging (logging) period, calibration factor, and tag number;
- Alarm Averaging Time (user selectable): real-time (1-60 seconds) or STEL (15 minutes), alarms required;
 - (k) Operating Time: 48 hours (fully charged NiCd battery); continuously with charger;
 - (1) Operating Temperature: -10 to 50° C (14 to 122° F);
- (m) Particulate levels will be monitored upwind and immediately downwind at the working site and integrated over a period not to exceed 15 minutes.
- In order to ensure the validity of the fugitive dust measurements performed, there must be appropriate Quality Assurance/Quality Control (QA/QC). It is the responsibility of the remedial party to adequately supplement QA/QC Plans to include the following critical features: periodic instrument calibration, operator training, daily instrument performance (span) checks, and a record keeping plan.
 - The action level will be established at 150 ug/m3 (15 minutes average). While conservative, 5.

this short-term interval will provide a real-time assessment of on-site air quality to assure both health and safety. If particulate levels are detected in excess of 150 ug/m3, the upwind background level must be confirmed immediately. If the working site particulate measurement is greater than 100 ug/m3 above the background level, additional dust suppression techniques must be implemented to reduce the generation of fugitive dust and corrective action taken to protect site personnel and reduce the potential for contaminant migration. Corrective measures may include increasing the level of personal protection for on-site personnel and implementing additional dust suppression techniques (see paragraph 7). Should the action level of 150 ug/m3 continue to be exceeded work must stop and DER must be notified as provided in the site design or remedial work plan. The notification shall include a description of the control measures implemented to prevent further exceedances.

- 6. It must be recognized that the generation of dust from waste or contaminated soil that migrates off-site, has the potential for transporting contaminants off-site. There may be situations when dust is being generated and leaving the site and the monitoring equipment does not measure PM10 at or above the action level. Since this situation has the potential to allow for the migration of contaminants off-site, it is unacceptable. While it is not practical to quantify total suspended particulates on a real-time basis, it is appropriate to rely on visual observation. If dust is observed leaving the working site, additional dust suppression techniques must be employed. Activities that have a high dusting potentialsuch as solidification and treatment involving materials like kiln dust and lime--will require the need for special measures to be considered.
- The following techniques have been shown to be effective for the controlling of the generation and migration of dust during construction activities:
 - (a) Applying water on haul roads:
 - (b) Wetting equipment and excavation faces;
 - (c) Spraying water on buckets during excavation and dumping;
 - (d) Hauling materials in properly tarped or watertight containers;
 - (e) Restricting vehicle speeds to 10 mph;
 - (f) Covering excavated areas and material after excavation activity ceases; and
 - (g) Reducing the excavation size and/or number of excavations.

Experience has shown that the chance of exceeding the 150ug/m3 action level is remote when the above-mentioned techniques are used. When techniques involving water application are used, care must be taken not to use excess water, which can result in unacceptably wet conditions. Using atomizing sprays will prevent overly wet conditions, conserve water, and provide an effective means of suppressing the fugitive dust.

The evaluation of weather conditions is necessary for proper fugitive dust control. When extreme wind conditions make dust control ineffective, as a last resort remedial actions may need to be suspended. There may be situations that require fugitive dust suppression and particulate monitoring requirements with action levels more stringent than those provided above. Under some circumstances, the contaminant concentration and/or toxicity may require additional monitoring to protect site personnel and the public. Additional integrated sampling and chemical analysis of the dust may also be in order. This must be evaluated when a health and safety plan is developed and when appropriate suppression and monitoring requirements are established for protection of health and the environment.

Final DER-10 Page 208 of 226 May 2010

Based on NYSDEC's comments on the Remedial Investigation Work Plan (RIWP) for this Site, supplemental CAMP requirements must be followed for work performed near the building when occupied by workers and/or inside the building. The special requirements required by NYSDEC, as listed in the RIWP comment letter dated May 21, 2018, are transcribed as follows:

If/when completing field work inside the building or tight to the building, the following Community Air Monitoring Plan (CAMP) requirements must be followed:

Special Requirements for Work Within 20 Feet of Potentially Exposed Individuals or Structures

When work areas are within 20 feet of potentially exposed populations or occupied structures, the continuous monitoring locations for VOCs and particulates must reflect the nearest potentially exposed individuals and the location of ventilation system intakes for nearby structures. The use of engineering controls such as vapor/dust barriers, temporary negative-pressure enclosures, or special ventilation devices should be considered to prevent exposures related to the work activities and to control dust and odors. Consideration should be given to implementing the planned activities when potentially exposed populations are at a minimum, such as during weekends or evening hours in non-residential settings.

- If total VOC concentrations opposite the walls of occupied structures or next to intake vents
 exceed 1 ppm, monitoring should occur within the occupied structure(s). Background readings in
 the occupied spaces must be taken prior to commencement of the planned work. Any unusual
 background readings should be discussed with NYSDOH prior to commencement of the work.
- If total particulate concentrations opposite the walls of occupied structures or next to intake vents
 exceed 150 mcg/m3, work activities should be suspended until controls are implemented and are
 successful in reducing the total particulate concentration to 150 mcg/m3 or less at the monitoring
 point.
- Depending upon the nature of contamination and remedial activities, other parameters (e.g., explosivity, oxygen, hydrogen sulfide, carbon monoxide) may also need to be monitored.
 Response levels and actions should be pre-determined, as necessary, for each site.

Special Requirements for Indoor Work with Co-Located Residences or Facilities

Unless a self-contained, negative-pressure enclosure with proper emission controls will encompass the work area, all individuals not directly involved with the planned work must be absent from the room in which the work will occur. Monitoring requirements shall be as stated above under "Special Requirements for Work Within 20 Feet of Potentially Exposed Individuals or Structures" except that in this instance "nearby/occupied structures" would be adjacent occupied rooms. Additionally, the location of all exhaust vents in the room and their discharge points, as well as potential vapor pathways (openings, conduits, etc.) relative to adjoining rooms, should be understood and the monitoring locations established accordingly. In these situations, it is strongly recommended that exhaust fans or other engineering controls be used to create negative air pressure within the work area during remedial activities. Additionally, it is strongly recommended that the planned work be implemented during hours (e.g. weekends or evenings) when building occupancy is at a minimum.

Appendix G

SSDS OM&M Manual

Appendix G
Sub-Slab Depressurization System
Operation, Monitoring &
Maintenance Manual

820 Linden Ave Site Pittsford, New York BCP Site # C828200

April 2020, rev. August 2020

Prepared for:

New York State Department of Environmental Conservation 6274 East Avon-Lima Road Avon, New York 14414

Prepared on Behalf of:

Ridgecrest Associates, L.P. 135 Orchard Park Boulevard Rochester, NY 14609

Prepared by:

Stantec Consulting Services Inc. 61 Commercial Street Suite 100 Rochester NY 14614-1009

Revision	Description	Author		Quality Check		Independent Review	
0	Agency	A. Kelly	4/2020	D. Harrienger	4/6/2020	S. Reynolds	4/9/2020
	Review Draft					Smith	
1	Revision to reporting protocol	S. Reynolds- Smith	8/2020	D. Harrienger	8/30/2020	A. Kelly	8/31/2020

Certification

I, Dwight A. Harrienger, certify that I am currently a NYS registered professional engineer and that this Sub-Slab Depressurization System Operation, Monitoring & Maintenance Manual was prepared in accordance with all applicable statutes and regulations and in substantial conformance with the DER Technical Guidance for Site Investigation and Remediation (DER-10).

SUB-SLAB DEPRESSURIZATION SYSTEM OPERATION, MONITORING & MAINTENANCE MANUAL 820 LINDEN AVENUE SITE BROWNFIELD CLEANUP PROGRAM SITE #C828200

Table of Contents

ABB	BREVIATIONS	
1.0	INTRODUCTION AND SITE DESCRIPTION	1.1
1.1		
1.2	SUMMARY OF PERTINENT ENVIRONMENTAL FINDINGS	1.1
2.0	SUB-SLAB DEPRESSURIZATION SYSTEM (SSDS) DESC	RIPTION2.2
2.1		
2.2		
	2.2.1 Zones 1-7	
	2.2.2 Zone 8	2.4
3.0	OPERATION, MONITORING AND MAINTENANCE	3.6
3.1	MONTHLY MONITORING	3.6
3.2	ANNUAL MONITORING & REPORTING	3.7
3.3		
	3.3.1 SSDS Startup	
	3.3.2 SSDS Shutdown	3.7
4.0	SYSTEM OPTIMIZATION	4.8
5.0	SYSTEM DECOMMISSIONING	5.8
6.0	ENGINEER OF RECORD CONTACT INFORMATION	6.8
7.0	REFERENCES	7.10

LIST OF FIGURES

FIGURE 1 – 820 Linden Avenue Site Layout

SUB-SLAB DEPRESSURIZATION SYSTEM OPERATION, MONITORING & MAINTENANCE MANUAL 820 LINDEN AVENUE SITE BROWNFIELD CLEANUP PROGRAM SITE #C828200

LIST OF APPENDICES

APPEI	NDIX A RECORD DRAWINGS	A.1
A.1	ENV-100 – Sub-Slab Depressurization System Coverage Plan (Zone 1-7)	
	(Southern Tenant Space)	A.1
A.2	ENV-100A – Sub-Slab Depressurization System Coverage Plan (Zone 8)	
	(Southern Tenant Space)	A.1
A.3	ÈNV-101 – Sub-Slab Depressurization System Sub-Slab Pressure Monitoring	
	Results (Southern Tenant Space)	A.1
A.4	ENV-102– Sub-Slab Depressurization System Discharge and Exhaust Locations	
	(Southern Tenant Space)	
A.5	ENV-300 - Sub-Slab Depressurization System Section (Southern Tenant Space)	A.1
A.6	ENV-500 – Sub-Slab Depressurization System Interior Details (Southern Tenant	
	Space)	A.1
A.7	ENV-501 – Sub-Slab Depressurization System Exterior Details (Southern Tenant	
	Space)	A.1
A.8	ENV-502 – Sub-Slab Depressurization System Process & Instrumentation	
	Diagram (Southern Tenant Space)	A.1
APPE	NDIX B 820 LINDEN AVENUE SUB-SLAB DEPRESSURIZATION SYSTEM	
	MONTHLY MONITORING LOG	B.1
ΔΡΡΕΙ	NDIX C 820 LINDEN AVENUE SUB-SLAB DEPRESSURIZATION SYSTEM	
AI I L	ANNUAL MONITORING LOG	C.1
	,	•
APPEI	NDIX D SSDS COMPONENTS CUT SHEETS, MANUFACTURER	
	RECOMMENDATIONS AND WARRANTIES	D.1

SUB-SLAB DEPRESSURIZATION SYSTEM OPERATION, MONITORING & MAINTENANCE MANUAL 820 LINDEN AVENUE SITE BROWNFIELD CLEANUP PROGRAM SITE #C828200

Abbreviations

BCP Brownfield Cleanup Program

CVOC Chlorinated Volatile Organic Compounds

DER-10 Division of Environmental Remediation Technical Guidance for Site

Investigation and Remediation, May 2010

ESA Environmental Site Assessment

IRM Interim Remedial Measure

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

OM&M Operation, Monitoring and Maintenance

PCE Tetrachloroethene

PSG Passive Soil Gas

PVC Polyvinyl Chloride

RI Remedial Investigation

SGVs Standards and Guidance Values

SSDS Sub-Slab Depressurization System

SVI Soil Vapor Intrusion

TCE Trichloroethene

VOC Volatile Organic Compound

1,1,1-TCA 1,1,1-trichloroethane

Introduction and Site Description

1.0 INTRODUCTION AND SITE DESCRIPTION

This Sub-Slab Depressurization System (SSDS) Operation, Monitoring and Maintenance (OM&M) Manual has been developed on behalf of Ridgecrest Associates, L.P for the 820 Linden Avenue Site (New York State Department of Environmental Conservation (NYSDEC) Brownfield Cleanup Program (BCP) Site #C828200), located at 820 Linden Avenue in the Pittsford, Monroe County, New York (the "Site").

From December 2018 through February 2019, a SSDS was installed in the majority of the southern tenant space in the existing building onsite at 820 Linden Avenue, as depicted on Drawing ENV-100 in Appendix A. This construction phase is referred to as Zones 1 through 7 of the SSDS. The SSDS installation was performed concurrently with the Remedial Investigation (RI) as an Interim Remedial Measure #1 (IRM#1) in the NYSDEC BCP, with approval of the NYSDEC and the New York State Department of Health (NYSDOH) (Stantec, 2018).

From December 2019 to January 2020, a SSDS was installed in the 1954 Building Footprint of the southern tenant space in the existing building onsite at 820 Linden Avenue, as depicted on Drawing ENV-100A in Appendix A. This construction phase is referred to as Zone 8 of the SSDS. The SSDS installation was performed concurrently with the RI as an Interim Remedial Measure #3 (IRM#3) in the NYSDEC BCP, with approval of the NYSDEC and NYSDOH (Stantec, 2019).

1.1 SITE DESCRIPTION

The Site consists of an approximately 7.97-acre property improved with an approximately 108,400 square foot slab-on-grade building (Figure 1). The southern tenant space in this building is approximately 70,200 square feet and is currently occupied by JML Optical (JML). The northern tenant space is approximately 38,200 square feet and is currently occupied by Newport Corporation (Newport). Both current tenants are optics manufacturing facilities. Based on building permit records, the building was reportedly constructed in six phases. The first building permit was issued in 1954, with subsequent additions permitted for the rear and west sides of the building in 1956, 1958, and 1959. A large addition immediately north of the original building was permitted in 1966. Each of the first five construction phases now comprise the current southern tenant space. The final construction phase, which now comprises the northern tenant space, was permitted in 1967. Construction phases are delineated on design drawings provided in Appendix A.

1.2 SUMMARY OF PERTINENT ENVIRONMENTAL FINDINGS

2004 Phase II ESA

A Phase II Environmental Site Assessment (ESA) was completed by Environmental Resources Management for Thermo Electron Corporation in 2004 (ERM, 2004). This investigation included a passive soil gas (PSG) survey with 60 sampling locations across the northern portion of the Site. The survey showed that chlorinated volatile organic compounds (CVOCs) such as tetrachloroethene (PCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1-TCA) were present in soil vapor beneath the building footprint and toluene (a petroleum-related volatile organic compound (VOC)) was present in exterior soil vapor across the northern portion of the Site.

Sub-Slab Depressurization System (SSDS) Description

2005 Phase II ESA

A Phase II ESA was completed by Labella Associates, P.C. for JML Optical in 2005 (Labella, 2005). This investigation included a PSG survey with 31 sampling locations, mostly across the southern portion of the Site. The constituent detected at the highest concentration was PCE, with lesser amounts of TCE, 1,1,1-TCA, and 2- butanone reported. The highest CVOC concentrations were detected under the central portion of the building near a former hazardous waste storage area. Toluene was also detected in about two-thirds of the locations.

2016-2017 Limited Phase II ESA

Stantec conducted a Limited Phase II ESA in April 2016 through January 2017 for Ridgecrest Associates to further evaluate impacts to the Site (Stantec, 2017a). In April 2016 Stantec began its investigation of the Site by conducting an updated soil vapor intrusion (SVI) investigation in accordance with the NYSDOH's Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York (NYSDOH, 2006). The Limited Phase II ESA work scope included two SVI Investigation events. The first event was conducted in April 2016 and included twelve sampling locations total spread throughout both tenant spaces. The second event was conducted in January 2017 and included three sampling locations in the northern tenant space. The limited Phase II ESA work scope also included an interior and exterior soil and groundwater investigation.

Based on the NYSDOH guidance for CVOCs, within the southern tenant space, results from four of the six locations indicated the need for mitigation of potential SVI impacts based on the 1,1-dichloroethene (1,1-DCE), cis-1,2-dichloroethene (cis-1,2-DCE), TCE or PCE results. Within the northern tenant space, one location suggested the need for monitoring during one sampling round and for mitigation during another sampling round based on TCE results. This location is adjacent to the southern tenant space. None of these CVOCs were reported to be used or stored by the current tenants.

The Limited Phase II ESA did not identify the source(s) of the CVOC contamination in sub-slab vapor. The absence of detections in soil and groundwater near (and downgradient from) the highest sub-slab vapor concentrations appeared to indicate the absence of a major CVOC issue in Site soil and groundwater.

To address the acetone in soil and groundwater and CVOCs detected during the SVI investigation, the Limited Phase II ESA recommended that the Site owners apply for entry into the NYSDEC BCP. Based on the SVI CVOC results, installation of a SSDS to address the potential for CVOC SVI to occur onsite was recommended.

2.0 SUB-SLAB DEPRESSURIZATION SYSTEM (SSDS) DESCRIPTION

SVI is the migration of volatile organic compounds (VOCs) or semi volatile organic compounds (SVOCs) chemicals from contaminated groundwater and soil into overlying buildings. SSDSs are designed to mitigate the migration of subsurface vapors into the interior of a structure by collecting and extracting vapors from beneath an interior, occupied space, safely routing the vapors around or through the interior, occupied space and discharging them above the roof line in a manner that does not lead to their recirculation in the building's HVAC operations.

Sub-Slab Depressurization System (SSDS) Description

In order to mitigate potential vapor intrusion in the building located on the 820 Linden Avenue Site, a SSDS was designed and constructed in accordance with the Final NYSDOH Guidance for Evaluating Soil Vapor Intrusion in the State of New York, dated October 2006.

2.1 OBJECTIVES

The primary objectives of this SSDS OM&M Manual are:

- Facilitate the understanding of the site owner and designated tenant representatives of the system's operation, maintenance and monitoring;
- Define system components and operation;
- Specify maintenance activities, as required, to ensure continuous and effective operation of the system;
- Define monthly monitoring requirements to be completed by the building operator; and
- Describe annual monitoring and reporting requirements to be completed by a qualified professional (Engineer).

2.2 EQUIPMENT AND MATERIAL DETAILS - THE SSDS IRM

Stantec designed an active SSDS in a series of two phases. Phase One (IRM#1) consisted of a network 19 suction cavities which penetrated the existing floor slab. Phase Two (IRM#3) consisted of a network of 4 suction cavities, which also penetrated the existing floor slab. The locations of these 23 suction cavities were based on radii of influence observed during sub-slab communication testing performed in August and September 2017, as well as the spatial restrictions of the existing tenant in the southern portion of the building.

2.2.1 **Zones 1-7**

To construct suction cavities, a hole was cut through the existing concrete floor to allow a suction cavity of approximately 1 cubic foot to be excavated. Clean, washed #2 rounded gravel with minimal fines was placed in the suction cavity. In general, suction cavities located near an existing structural support column had limited space to install sub-slab piping due to the top of the footer for the structural support column being located approximately 4 inches from the bottom of the existing finished floor concrete slab. For suction cavities located near an existing structural support column, 3-inch diameter perforated schedule 40 polyvinyl chloride (PVC) pipe was installed to a depth of approximately 12 inches below the bottom of the floor slab and encased with clean, washed #2 rounded gravel. The 3-inch PVC transitioned to a 4" schedule 40 PVC riser pipe just prior to becoming exposed above the finished floor. Generally, each fan is connected to three (3) individual suction cavities (some systems such as SSDS Zone 7 are connected only to two (2) suction cavities). Refer to Drawing ENV-100 for SSDS piping layouts. Six-inch schedule 40 PVC distribution headers connect individual suction cavities in ceiling systems of the building. These 6" schedule 40 PVC distribution headers leave the building via exterior walls where they transition to 6" schedule 80 PVC and connect to the exhaust fans on the roof.

The system is depressurized by way of seven (7) Radonaway model RP265 roof-mounted inline fans, each connected to the suction cavity network by two or three respective 4" SCH40 PVC risers running from below the first-

Sub-Slab Depressurization System (SSDS) Description

floor slab to the roof. Each fan exhausts the removed vapor vertically through a rain cap made out of a 6" schedule 80 PVC tee with ½" by ½" hot dipped galvanized mesh covering both ends of the tee to prevent foreign objects from entering the depressurization piping.

The system is monitored by way of seven (7) Radonaway Checkpoint IIa low pressure switches and seven (7) Magnehelic® manometers. Five (5) Magnehelic® manometers are located in the central portion of the southern tenant space and housed in two (2) separate lockable cabinets (collectively referred to as Monitoring Panel B, reference Drawing ENV-100 in Appendix A), while the remaining two (2) Magnehelic® manometers are located in a lockable cabinet in the northwest portion of the southern tenant space (Monitoring Panel A, reference Drawing ENV-100 in Appendix A).

Radonaway Checkpoint IIa low-pressure switches have two (2) pilot lights. If the system is operating correctly, a green light (the light on the right side if facing the instrument) should be illuminated. The low-pressure switches also have an audible warning alarm. The low-pressure switches are connected to the SSDS extraction piping just before it exits the interior space of the building via ¼-in. clear vinyl tubing installed above the drop ceiling (for SSDS zones 6 and 7) or in the webbing of the roof (for the remainder of the SSDS zones). The goal of the low-pressure switches is to monitor the vacuum being produced by the roof-mounted fans. When the fans are creating greater than 0.25 inches of water column pressure differential, the audible/visual alarm will not be activated, and the green pilot light will be illuminated. If the pressure differential in the SSDS piping drops below 0.25 inches of water column pressure differential, the audible alarm will be activated, and the red pilot light will become illuminated.

Additionally, each of the 19 suction cavity risers have Dwyer manometers mounted on them as well as separate monitoring ports.

The system is designed to exhaust sub-slab vapor at a total rate of no more than 300 cfm per fan. Each fan is sized to operate at approximately 2 inches of water column (+/- 0.5 inches of water column, SSDS zone 7 will be slightly higher that this range since there are only 2 suction cavities on this system), resulting in a pressure extension field capable of depressurizing the majority of the sub-slab void spaces.

Fourteen (14) permanent sub-slab pressure monitoring ports were also installed throughout the southern tenant space finished floor to monitor sub-slab vacuum. The locations of the PMPs are provided on Drawing ENV-101 in Appendix A, and details on their construction are provided on Drawing ENV-500, Detail 3 in Appendix A.

In order to avoid accidental damage to the SSDS that could disturb its function, labels containing the following message: "THIS IS A COMPONENT OF A SUB-SLAB DEPRESSURIZATION SYSTEM. DO NOT ALTER OR DISCONNECT." were placed on accessible/visible portions of the riser pipes and distribution pipes.

2.2.2 Zone 8

To construct suction cavities, a hole was cut through the existing concrete floor to allow a suction cavity of approximately 1 cubic foot to be excavated. Clean #2 rounded gravel with minimal fines was placed in the suction cavity. Suction cavities were located near existing structural support columns or in room corners to remain as unobtrusive as possible. For Zone 8 suction cavities, a 4-inch diameter perforated schedule 40 PVC pipe was installed to a depth of approximately 12 inches below the bottom of the floor slab and encased with clean #2 rounded gravel. For each of the four risers, the 4-inch PVC riser pipe was installed vertically into the drop ceiling where the

Sub-Slab Depressurization System (SSDS) Description

horizontal network was installed. One six-inch schedule 40 PVC distribution header connects the individual suction cavities in Zone 8. This 6" schedule 40 PVC distribution header leaves the building via the same exterior wall used for F4 and F7 of the first phase of the SSD System. Once the header penetrated the exterior wall, it transitioned to a 6" schedule 80 PVC and connected to one set of two Fantech RN-4 fans in series. Refer to Drawing ENV-100A for SSDS piping layouts.

The system is depressurized by way of two (2) Fantech RN-4 roof mounted fans in series. The Zone 8 fans exhaust the removed vapor vertically through a rain cap constructed out of a 6" schedule 80 PVC tee with ½" by ½" hot dipped galvanized mesh covering both ends of the tee to prevent foreign objects from entering the depressurization piping.

The system is monitored by way of one (1) Radonaway Checkpoint IIa low pressure switch and one (1) Magnehelic® manometer encased in an Attabox ® lockable cabinets. The Zone 8 monitoring enclosure, also referenced as Monitoring Panel C, is located in the sprinkler room of the 1954 building footprint (reference Drawing ENV-100A in Appendix A).

The Radonaway Checkpoint IIa low-pressure switch has two (2) pilot lights. If the system is operating correctly, a green light (the light on the right side if facing the instrument) should be illuminated. The low-pressure switches also have an audible warning alarm. The low-pressure switches are connected to the Zone 8 SSDS extraction piping just before it enters the production area of the building via ¼-in. clear vinyl tubing installed above the drop ceiling. The goal of the low-pressure switches is to monitor the vacuum being produced by the roof-mounted fans. When the fans are creating greater than 4.8 inches of water column pressure differential, the audible/visual alarm will not be activated, and the green pilot light will be illuminated. If the pressure differential in the SSDS piping drops below 4.8 inches of water column pressure differential, the audible alarm will be activated, and the red pilot light will become illuminated.

Additionally, each of the 4 suction cavity risers have Dwyer manometers mounted on them as well as separate monitoring ports.

The system is designed to exhaust sub-slab vapor at a total rate of approximately 80 cfm. Both fans in series are sized to operate at approximately 5 inches of water column (+/- 0.5 inches of water column), resulting in a pressure extension field capable of depressurizing the majority of the sub-slab void spaces.

Five (5) vapor pins were installed as permanent sub-slab pressure monitoring ports throughout 1954 building footprint of the southern tenant space finished floor to monitor sub-slab vacuum. The locations of the PMPs are provided in Drawing ENV-101 in Appendix A, and details on their construction are provided on Drawing ENV-500, Detail 4 in Appendix A.

In order to avoid accidental damage to the SSDS that could disturb its function, labels containing the following message: "THIS IS A COMPONENT OF A SUB-SLAB DEPRESSURIZATION SYSTEM. DO NOT ALTER OR DISCONNECT." were placed on accessible/visible portions of the riser pipes and distribution pipes.

Operation, Monitoring and Maintenance

3.0 OPERATION, MONITORING AND MAINTENANCE

Specific monitoring tasks need to be completed by the building operator on a monthly basis. In addition, annual monitoring and certification of the system must be performed by a qualified professional. System start-up and shut down procedures are described below. Depending on whether a monitoring event is considered monthly or annually, SSDS monitoring data will be recorded on either the 820 Linden Avenue Sub-Slab Depressurization System Monthly Monitoring Log or the 820 Linden Avenue Sub-Slab Depressurization System Annual Monitoring Log; sample sheets are included in Appendix B and Appendix C. Under normal operating conditions, regular maintenance of the system is not required unless monitoring results indicate a significant change from normal operating conditions.

3.1 MONTHLY MONITORING

The following monitoring tasks will be completed by the owner or building operator on a monthly basis:

- Collect vacuum readings from the eight (8) Magnehelic® manometer gauges (labeled by fan number)
 located in the monitoring panels described in Section 2.2. Locations are provided on Drawings ENV—100
 and -100A in Appendix A. Record the readings on the 820 Linden Avenue Sub-Slab Depressurization
 System Monthly Monitoring Log provided in Appendix B;
 - a. For fans in Zones 1-7 (Fans #1-7), if the manometer needle rests all the way to the left on the zero bar and/or the low-pressure switch audible warning alarm is activated/the pilot light is red, confirm operation (either visually or audibly) of the corresponding fan at the roof level and notify the owner and Engineer immediately in order to initiate necessary corrective measures;
 - b. For fans in Zone 8 (Fans #8 and #9), if the manometer needle sits below 4.8 in H₂O and/or the low-pressure switch audible warning alarm is activated/the pilot light is red, confirm operation (either visually or audibly) of the corresponding fan at the roof level and notify the owner and Engineer immediately in order to initiate necessary corrective measures;
- Indicate on the log sheet if the instrument panel pilot lights are green or red to verify that fans are operating correctly. If any of the pilot lights are off, notify the owner and Engineer immediately in order to initiate necessary corrective measures;
- 3. Maintain panelboard schedules in the electrical panels that contain circuit breakers for SSDS roof-mounted fans;
- 4. With the assistance of a trained electrician, shut off the corresponding circuit breakers for the SSDS roof-mounted fans to confirm that the low-pressure switches both provide an audible warning and a visual warning via the pilot light changing from green to red. If any low-pressure switches do not work correctly, notify the owner and Engineer immediately to initiate corrective measures. Once the test has been completed, ensure that corresponding circuit breakers have been turned back on;
- 5. Note any observed abnormalities, visual or auditory, with respect to normal system operating conditions on the log sheet.

Operation, Monitoring and Maintenance

3.2 ANNUAL MONITORING & REPORTING

A complete system evaluation will be performed on an annual basis by the Engineer retained by the owner/operator of the building. The following tasks will be completed as part of this evaluation:

- Complete the monthly monitoring tasks outlined in section 3.1 above, recording on the 820 Linden Avenue Sub-Slab Depressurization System Annual Monitoring Log provided in Appendix C;
- 2. Obtain vacuum readings using a micromanometer from the 23 sub-slab pressure monitoring points (refer to Drawing ENV-101 in Appendix A for the locations of the sub-slab pressure monitoring points). Ensure that the micromanometer has been calibrated by the manufacturer within one (1) year of its use. If any of the sub-slab pressure monitoring points or well boxes are damaged, take measures for corrective action;
- 3. Inspect the entire finished floor slab for cracks, new penetrations or other potential leaks. Perform smoke testing as necessary to assess the leakage potential of suspect locations;
- 4. Inspect the fans and low-pressure switches (audible warning/visual pilot light alarms) and note any abnormal conditions such as hot fan housings, vibrations or unusual noise; and
- 5. If the roof is accessible and safe to be on (e.g. not snow/ice covered), make note of any condensation occurring on the SSDS exhaust piping. Visually inspect the ½" by ½" hot dipped galvanized mesh on the exhaust stacks to verify there are no obstructions to exhaust flow.

The results of the annual evaluation shall be presented in the Periodic Review Report (PRR), which will be prepared in accordance with the Site Management Plan (SMP). Per Section 4.6 of the October 2006 NYSDOH SVI Guidance Document, the reporting on the annual OM&M will be signed by a professional engineer or environmental professional. The PRR will be submitted for approval to the NYSDEC and NYSDOH on behalf of the owner.

3.3 SYSTEM STARTUP AND SHUTDOWN PROCEDURES

3.3.1 SSDS Startup

To turn the system on:

- 1. Ensure that the appropriate breakers in the electrical panel boxes are ON with the help of a person qualified to open the electrical panels on-site.
- 2. Ensure the motor starter switches are in the ON position. These are located on the roof near each fan.
- 3. Confirm proper SSDS operation by applying the appropriate monitoring tasks outlined in sections 3.1 and 3.2 above.

3.3.2 SSDS Shutdown

To turn the system off:

System optimization

- 1. Put the motor starter switches in the OFF position. These are located on the roof and are mounted on the metal support structure for each of the exhaust fans;
- 2. Place the appropriate circuit breakers in the OFF position with the assistance of a person qualified to open the electrical panels on-site.

4.0 SYSTEM OPTIMIZATION

If vacuum is not detected greater than or equal to 0.002 inches of water column at all permanent sub-slab pressure monitoring points depicted on Drawing ENV-101 (see Appendix A), the SSDS may need to be adjusted or optimized due to changing subsurface conditions or other factors. System optimization can be completed by the following:

- Collect vacuum readings at all pressure monitoring points (PMPs) to determine which area(s) within zones
 may have excess vacuum. Identify risers associated with the excess vacuum and throttle the ball valves for
 identified risers down accordingly. Recheck all PMPs to determine if sufficient vacuum is present at each
 location.
- If Option 1 does not yield acceptable vacuum throughout the system, system optimization may be accomplished by selecting new fans for one or several of the eight SSDS piping networks.

Should any of the above situations arise, contact the owner and the Engineer immediately.

5.0 SYSTEM DECOMMISSIONING

The SSDS system will remain in operation until its decommissioning is approved by NYSDOH, NYSDEC and Monroe County DOH. However, it is likely that the SSDS system will need to be operated for an extended period of time. Decommissioning of the system will be contingent on natural attenuation or treatment of the VOC soil vapor located below the building and/or the results of indoor air sampling. Decommissioning of the system may include:

- Removal of the SSDS fans and instrument panel and proper decommissioning of associated electrical connections by a qualified electrician;
- · Grouting of the sub-slab piping and permanent sub-slab pressure monitoring points; and
- Capping (or removal, if required by owner) of the solid PVC risers installed from the first floor to the roof.

6.0 ENGINEER OF RECORD CONTACT INFORMATION

The contact information for the NYS-licensed Professional Engineer of Record for the design of this SSDS is presented below, in the event the Owner and/or Tenants have questions or concerns regarding the SSDS operation, performance, monitoring or maintenance.

Engineer of Record Contact Information

Dwight Harrienger, P.E. LEED BD + C

Senior Associate

Direct: 585 413-5273 Fax: 585 272-1814

dwight.harrienger@stantec.com

Stantec

61 Commercial Street Suite 100 Rochester NY 14614-1009

7.0 REFERENCES

- Environmental Resources Management, 2004 Results of Phase II Site Assessment Activities Spectronic Facility, 820 Linden Avenue, Pittsford, New York. January 13, 2004.
- Labella, 2005 Phase II Environmental Site Assessment: Supplemental Passive Soil Gas Survey, 820 Linden Avenue, Pittsford, New York. June 2005.
- NYSDEC, 1998 Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations, Division of Water Technical and Operational Guidance Series (TOGS) 1.1.1. June 1998 (April 2000 and June 2004 addenda).
- NYSDEC, 2006 6NYCRR Part 375 Environmental Remediation Programs. December 14, 2006.
- NYSDEC, 2010a NYSDEC's DER-10, Technical Guidance for Site Investigation and Remediation. May 3, 2010.
- NYSDEC, 2010b NYSDEC's Commissioner Policy CP-51 Soil Cleanup Guidance. October 21, 2010.
- NYSDOH, 2006 Final Guidance for Evaluating Soil Vapor Intrusion in the State of New York. October 2006.
- NYSDOH, 2017 Soil Vapor Intrusion Updates, May 2017: Updates to Soil Vapor/Indoor Air Decision Matrices. Website: https://health.ny.gov/environmental/indoors/vapor_intrusion/update.htm, accessed 7/26/2017.
- Stantec, 2017a Limited Phase II Environmental Site Assessment for 820 Linden Avenue, Pittsford, New York. August 2017.
- Stantec, 2017b Phase I Environmental Site Assessment, 820 Linden Avenue, Town of Pittsford, Monroe County, New York. August 2017.
- Stantec, 2018 IRM Work Plan, 820 Linden Avenue, Pittsford, New York. Submitted July 2018. Approved by NYSDEC and NYSDOH on September 19, 2018.
- Stantec, 2019 IRM Work Plan #3, 820 Linden Avenue, Pittsford, New York. Submitted August 2019. Approved by NYSDEC and NYSDOH on October 1, 2019.

References

FIGURE 1 – 820 LINDEN AVENUE SITE LAYOUT

Legend

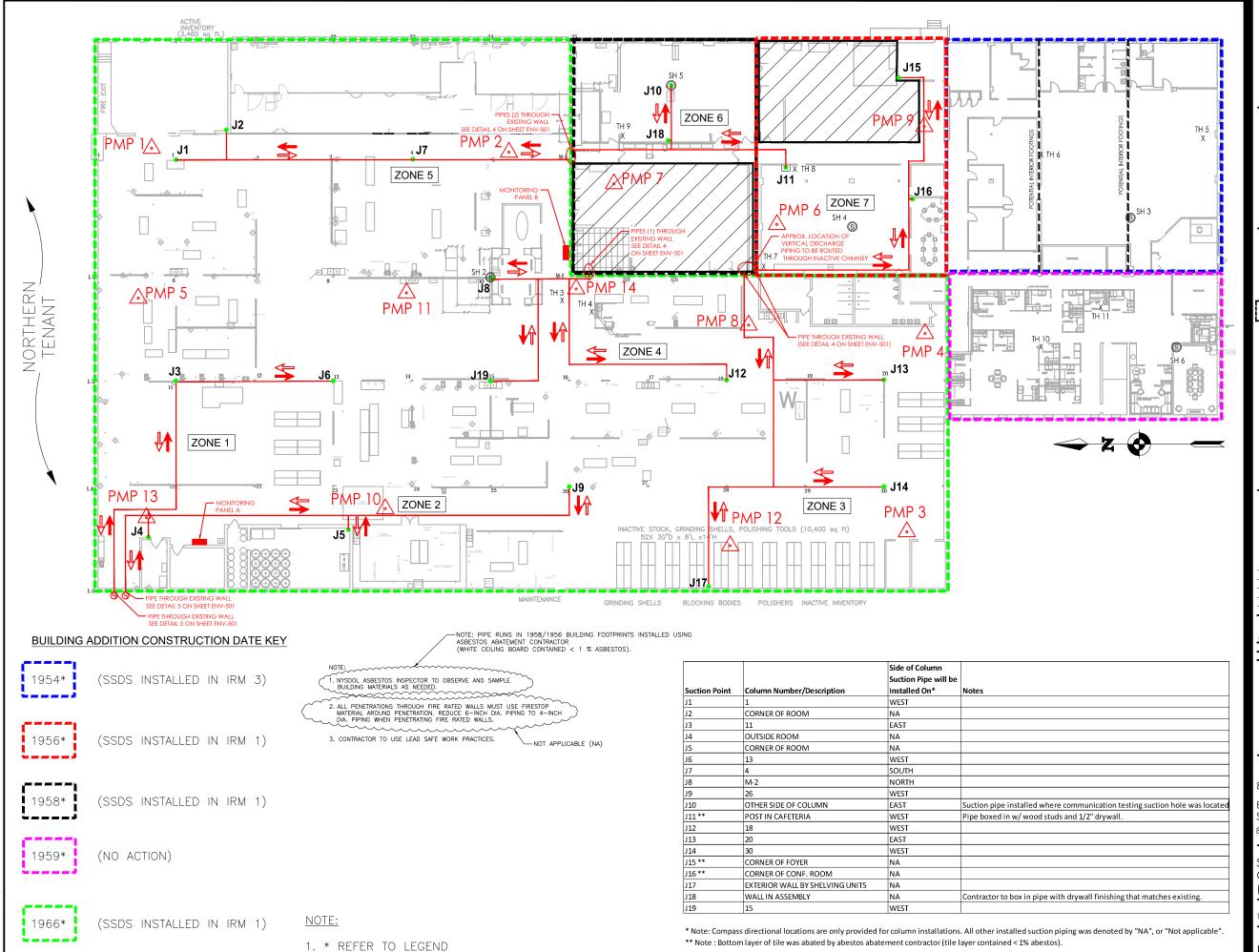
- Site Property Outline
- Nearby Parcel Boundaries
- Building Tenant Spaces
- JML Optical
- Newport

- 1. Coordinate System: NAD 1983 StatePlane New York West FIPS 3103 Feet
 2. Orthoimagery (2015) downloaded from gis.ny.gov.
 3. Site building is occupied by two tenants: JML Optical in the southern building section and Newport in the northern building section.

Project Location: 820 Linden Avenue Pittsford, Monroe Co., NY

Prepared by MB on 2018-07-06 Technical Review by SRS on 2018-07-06 Independent Review by MPS on 2018-07-06

820 Linden Avenue Site


Interim Remedial Measure Work Plan Brownfield Cleanup Program Site #C828200

Client/Project

820 Linden Avenue Site Layout

Appendix A RECORD DRAWINGS

- A.1 ENV-100 SUB-SLAB DEPRESSURIZATION SYSTEM COVERAGE PLAN (ZONE 1-7) (SOUTHERN TENANT SPACE)
- A.2 ENV-100A SUB-SLAB DEPRESSURIZATION SYSTEM COVERAGE PLAN (ZONE 8) (SOUTHERN TENANT SPACE)
- A.3 ENV-101 SUB-SLAB DEPRESSURIZATION SYSTEM SUB-SLAB PRESSURE MONITORING RESULTS (SOUTHERN TENANT SPACE)
- A.4 ENV-102- SUB-SLAB DEPRESSURIZATION SYSTEM DISCHARGE AND EXHAUST LOCATIONS (SOUTHERN TENANT SPACE)
- A.5 ENV-300 SUB-SLAB DEPRESSURIZATION SYSTEM SECTION (SOUTHERN TENANT SPACE)
- A.6 ENV-500 SUB-SLAB DEPRESSURIZATION SYSTEM INTERIOR DETAILS (SOUTHERN TENANT SPACE)
- A.7 ENV-501 SUB-SLAB DEPRESSURIZATION SYSTEM EXTERIOR DETAILS (SOUTHERN TENANT SPACE)
- A.8 ENV-502 SUB-SLAB DEPRESSURIZATION SYSTEM PROCESS & INSTRUMENTATION DIAGRAM (SOUTHERN TENANT SPACE)

61 Commercial Street, Suite 100 Rochester, New York USA 14614 585.475.1440

It is a violation of the NYS Education Law for any person, unless under the direction of a Licensed Professional Engineer, to other this document in any way, Alterations must have the latering Engineer's seed affixed to the document and the notation "Altered By" doing with a description of the directions of the afteration, date of the attention and the Professional Engineer's signature

These documents contain potentially sensitive information and shall only be used for their intended purpose. Once the intended purpose has ceased, the documents shall be destroyed in a secure manner.

Record Drawing

Legend

APPROXIMATE LOCATION OF TEST SUCTION HOLES

TH 3 APPROXIMATE LOCATION OF TEST EXTENSION HOLES

EXISTING BUILDING COLUMN AND COLUMN NUMBER

1954

SUCTION HOLE LOCATION

NO ENTRY DUE TO TENANT MANUFACTURING PROCESS

VERTICAL DISCHARGE PIPING

SUCTION PIPE ALIGNMENT (PVC) MONITORING PANEL WITH DIFFERENTIAL PRESSURE GAUGES AND WARNING LIGHTS

CONDENSATE FLOW DIRECTION / PIPE SLOPE VACUUM FLOW DIRECTION

SUB-SLAB PRESSURE MONITORING POINT LOCATION

Notes

. FIGURE DEVELOPED USING BASE BUILDING PLAN PROVIDED BY SOUTHERN TENANT.

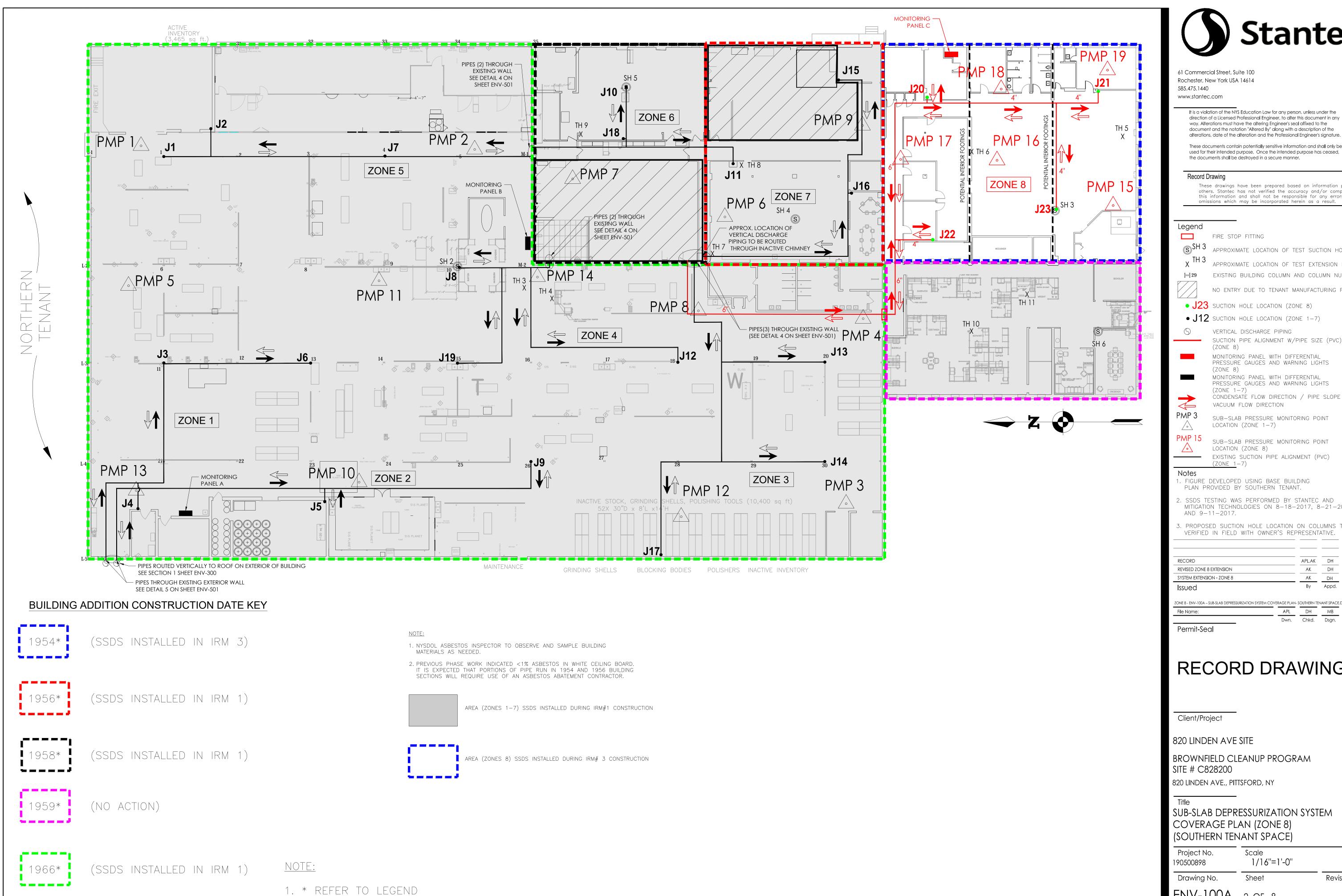
2. SSDS TESTING WAS PERFORMED BY STANTEC AND MITIGATION TECHNOLOGIES ON 8-18-2017, 8-21-2017, AND 9-11-2017.

3. PROPOSED SUCTION HOLE LOCATION ON COLUMNS TO BE VERIFIED IN FIELD WITH OWNER'S REPRESENTATIVE.

ECORD	APL	AK.DH	20.04.16
ssued	Ву	Appd.	YY.MM.DD

RECORD DRAWING

Client/Project


820 LINDEN AVE SITE

BROWNFIELD CLEANUP PROGRAM SITE # C828200

820 LINDEN AVE., PITTSFORD, NY

SUB-SLAB DEPRESSURIZATION SYSTEM COVERAGE PLAN (ZONE 1-7) (SOUTHERN TENANT SPACE)

Project No. 190500898	Scale 1/16"=1'-0"	
Drawing No.	Sheet	Revision
ENIV 100		

61 Commercial Street, Suite 100 Rochester, New York USA 14614 585.475.1440

> It is a violation of the NYS Education Law for any person, unless under the direction of a Licensed Professional Engineer, to alter this document in any way. Alterations must have the altering Engineer's seal affixed to the document and the notation "Altered By" along with a description of the

These documents contain potentially sensitive information and shall only be used for their intended purpose. Once the intended purpose has ceased, the documents shall be destroyed in a secure manner.

Record Drawing

These drawings have been prepared based on information provided by others. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

FIRE STOP FITTING

APPROXIMATE LOCATION OF TEST SUCTION HOLES

APPROXIMATE LOCATION OF TEST EXTENSION HOLES

EXISTING BUILDING COLUMN AND COLUMN NUMBER NO ENTRY DUE TO TENANT MANUFACTURING PROCESS

• J23 SUCTION HOLE LOCATION (ZONE 8)

• J12 SUCTION HOLE LOCATION (ZONE 1-7) VERTICAL DISCHARGE PIPING

SUCTION PIPE ALIGNMENT W/PIPE SIZE (PVC) MONITORING PANEL WITH DIFFERENTIAL PRESSURE GAUGES AND WARNING LIGHTS

> MONITORING PANEL WITH DIFFERENTIAL PRESSURE GAUGES AND WARNING LIGHTS

CONDENSATE FLOW DIRECTION / PIPE SLOPE

SUB-SLAB PRESSURE MONITORING POINT LOCATION (ZONE 1-7)

VACUUM FLOW DIRECTION

SUB-SLAB PRESSURE MONITORING POINT LOCATION (ZONE 8) EXISTING SUCTION PIPE ALIGNMENT (PVC)

. FIGURE DEVELOPED USING BASE BUILDING PLAN PROVIDED BY SOUTHERN TENANT.

2. SSDS TESTING WAS PERFORMED BY STANTEC AND MITIGATION TECHNOLOGIES ON 8-18-2017, 8-21-2017, AND 9-11-2017.

PROPOSED SUCTION HOLE LOCATION ON COLUMNS TO BE VERIFIED IN FIELD WITH OWNER'S REPRESENTATIVE.

RECORD	APL.AK	DH	20.04.16
REVISED ZONE 8 EXTENSION	AK	DH	19.11.14
SYSTEM EXTENSION - ZONE 8	AK	DH	19.07.30
Issued	Ву	Appd.	YY.MM.DD

 APL
 DH
 MB
 18.07.31

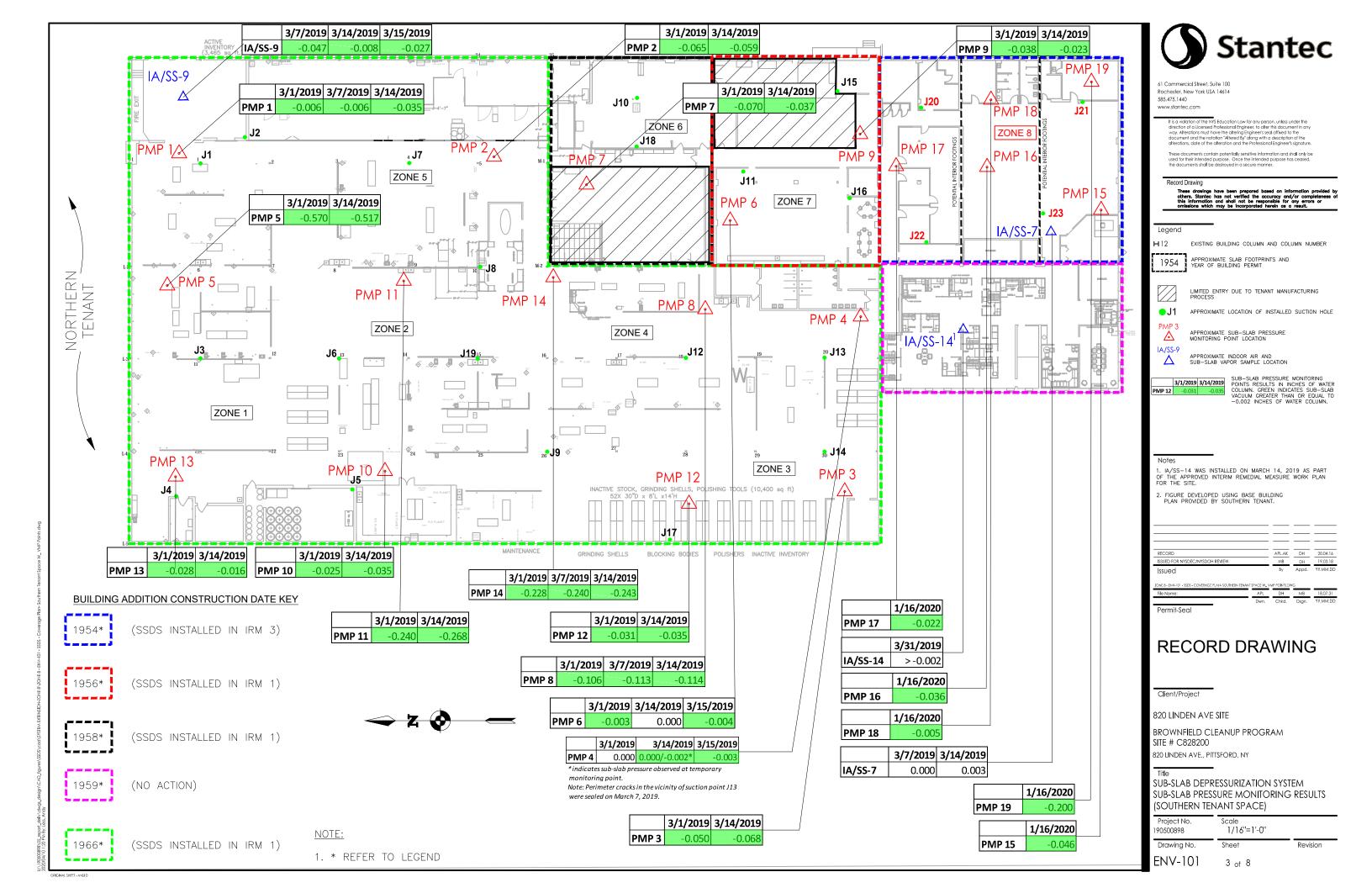
 Dwn.
 Chkd.
 Dsgn.
 YY.MM.DD

Permit-Seal

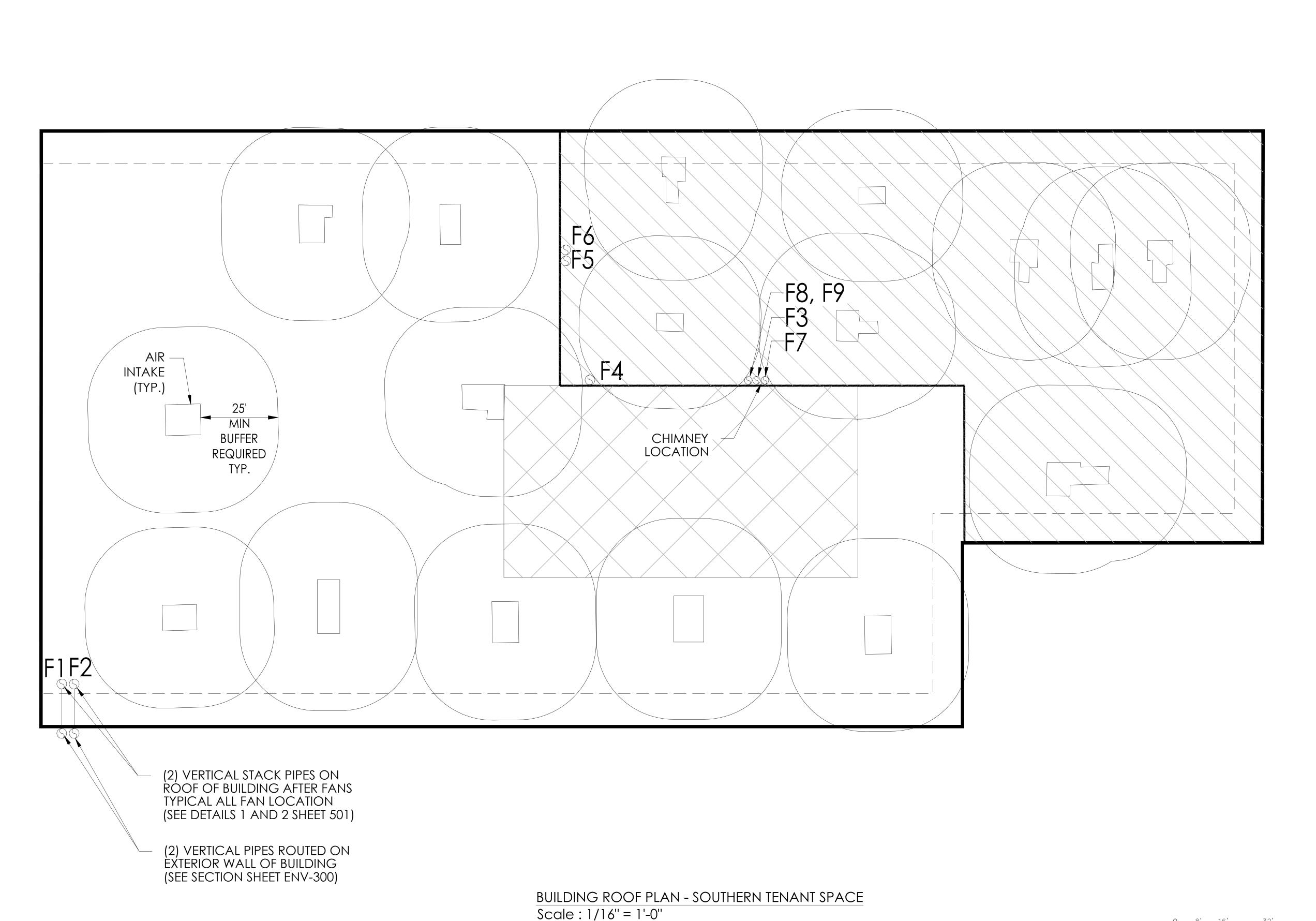
RECORD DRAWING

Client/Project

820 LINDEN AVE SITE


BROWNFIELD CLEANUP PROGRAM SITE # C828200

820 LINDEN AVE., PITTSFORD, NY


SUB-SLAB DEPRESSURIZATION SYSTEM COVERAGE PLAN (ZONE 8) (SOUTHERN TENANT SPACE)

Scale Project No. 1/16''=1'-0'' Sheet Revision

ENV-100A 2 OF 8

Stantec 61 COMMERCIAL STREET SUITE 100 ROCHESTER, NY 14614 P. 585.475.1440

It is a violation of the NYS Education Law for any person, unless under the direction of a Licensed Professional Engineer, to alter this document in any way. Alterations must have the altering Engineer's seal affixed to the document and the notation "Altered By" along with a description of the alterations, date of the alteration and the Professional Engineer's signature.

These documents contain potentially sensitive information and shall only be used for their intended purpose. Once the intended purpose has ceased, the documents shall be destroyed in a secure manner.

Record Drawing

These drawings have been prepared based on information provided by others. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

Consultants

ROOF MOUNTED SOLAR PANELS

AIR INTAKE BUFFER

(AREA WITHIN 25 FEET OF OF AIR INTAKE EQUIPMENT)

EXISTING ROOF TOP SUCTION PIPING (PVC) LOCATION

OSHA FALL PROTECTION BOUNDARY

(10 FOOT OFFSET FROM BUILDING EDGE)

S F1-F7 EXHAUST FAN AND VERTICAL PIPE STACK DISCHARGE LOCATION (ZONE 1-7)

S F8-F9 EXHAUST FAN AND VERTICAL PIPE STACK DISCHARGE LOCATION (ZONE 8)

Notes

1. FIGURE DEVELOPED USING BASE BUILDING PLAN PROVIDED BY JML OPTICAL.

2. SSDS TESTING WAS PERFORMED BY STANTEC AND MITIGATION TECHNOLOGIES ON 8-18-2017, 8-21-2017, AND 9-11-2017.

vision	Ву	Appd.	YY.MM.D

RECORD	APL.AK	DH	20.04.
SYSTEM EXTENSION-ZONE 8		AK.DH	19.07.
			2007 1 411 4

ZONE 8 - ENV-102- SSDS - Discharge and Exhaust Locations - Southern Tenant Space.dwg

File Name:
APL DH MB 18.07.31

Dwn. Chkd. Dsgn. YY.MM.DD

Permit-Seal

RECORD DRAWING

Client/Project

820 LINDEN AVE SITE

BROWNFIELD CLEANUP PROGRAM SITE # C828200

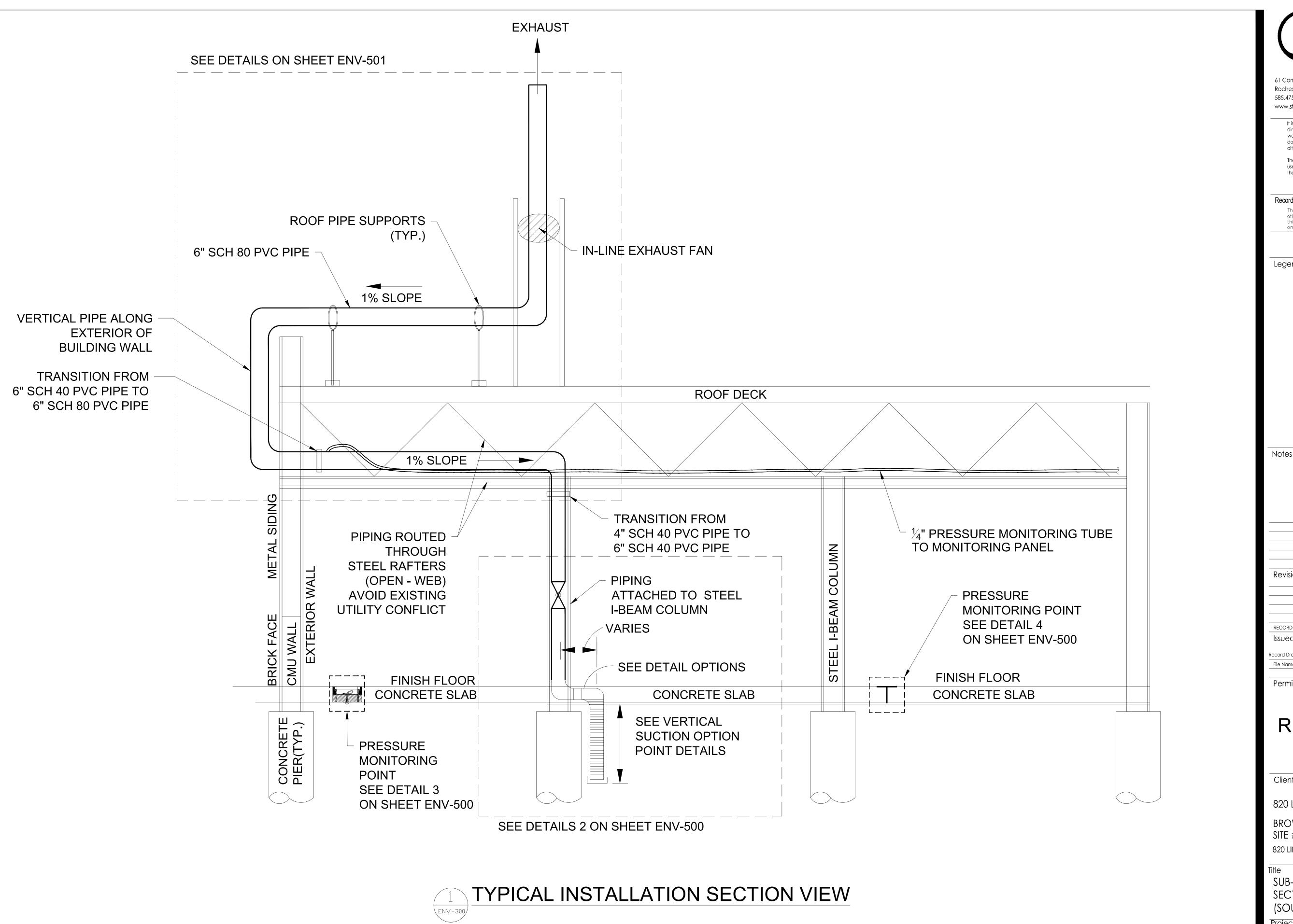
820 LINDEN AVE., PITTSFORD, NY

Title

SUB-SLAB DEPRESSURIZATION SYSTEM DISCHARGE AND EXHAUST LOCATION (SOUTHERN TENANT SPACE)

Project No.

190500898


Drawing No.

Scale

1/16"=1'-0"

Revision

ENV-102 4 OF 8

61 Commercial Street, Suite 100 Rochester, New York USA 14614 585.475.1440 www.stantec.com

> It is a violation of the NYS Education Law for any person, unless under the direction of a Licensed Professional Engineer, to alter this document in any way. Alterations must have the altering Engineer's seal affixed to the document and the notation "Altered By" along with a description of the alterations, date of the alteration and the Professional Engineer's signature.

These documents contain potentially sensitive information and shall only be used for their intended purpose. Once the intended purpose has ceased, the documents shall be destroyed in a secure manner.

Record Drawing

These drawings have been prepared based on information provided by others. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

	Appd.	YY.MM.DI
APL.AK		20.04.16 YY.MM.DI
	APL.AK By	

RECORD DRAWING

Client/Project

820 LINDEN AVE SITE

BROWNFIELD CLEANUP PROGRAM SITE # C828200

820 LINDEN AVE., PITTSFORD, NY

SUB-SLAB DEPRESSURIZATION SYSTEM

Sheet

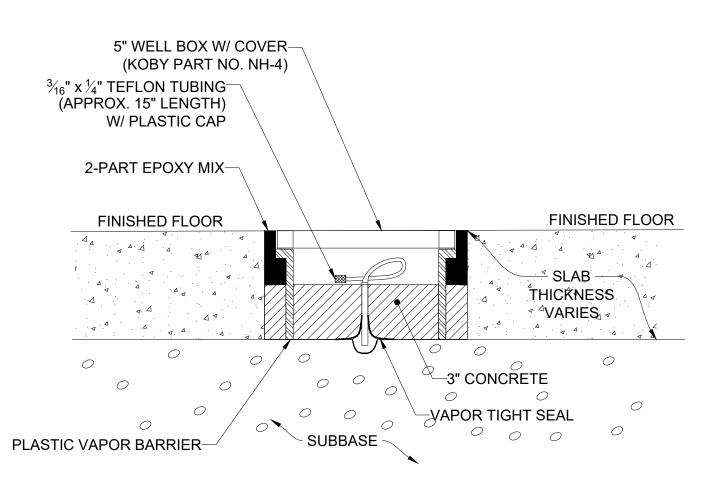
(SOUTHERN TENANT SPACE)

Project No.

Drawing No.

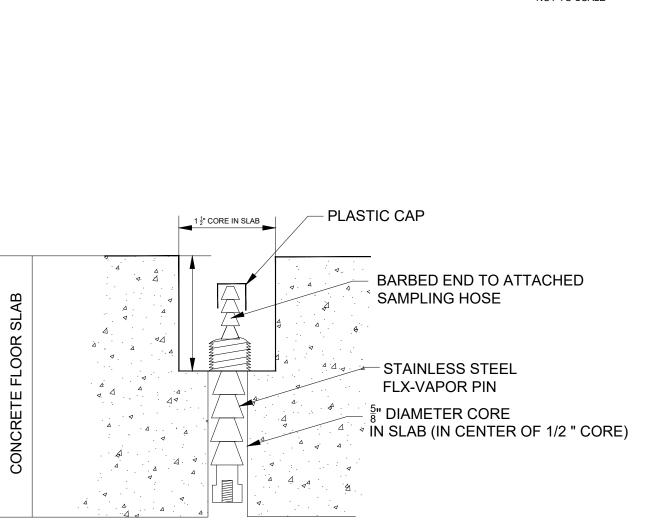
NOT TO SCALE

Revision

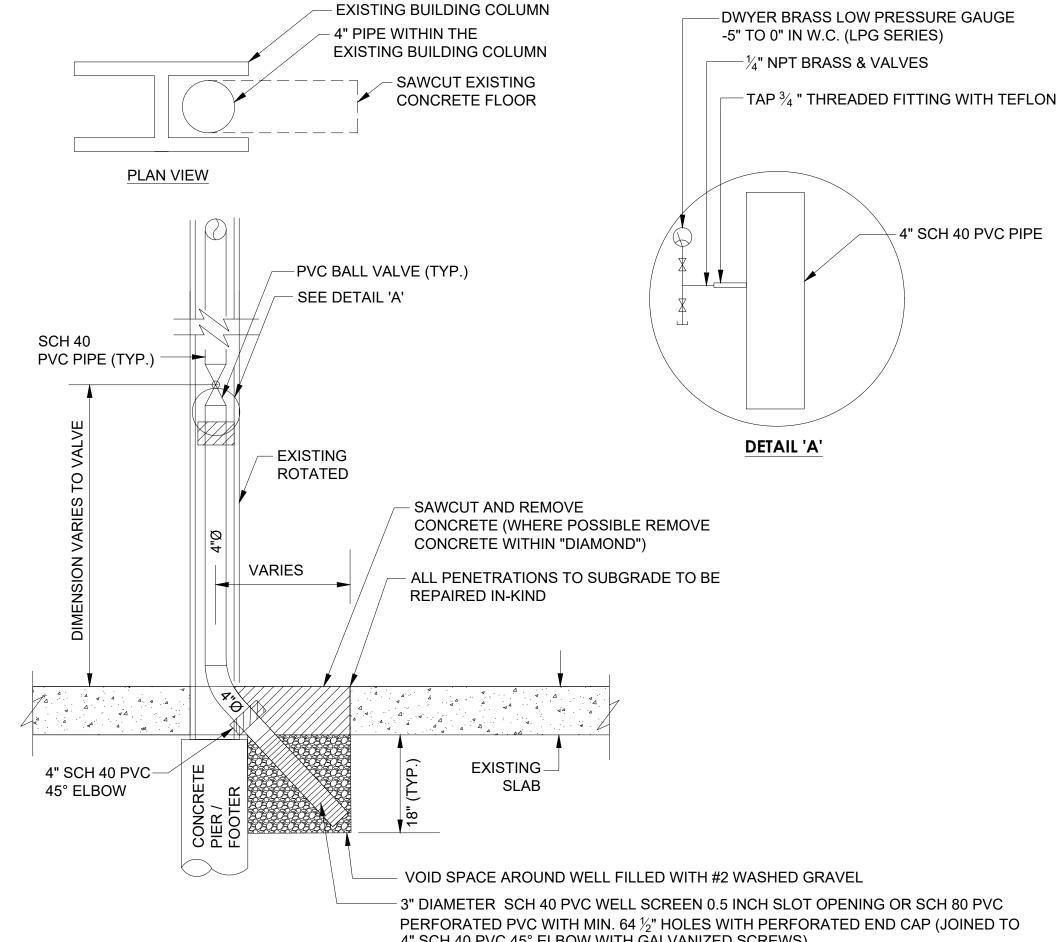

ENV-300

5 OF 8

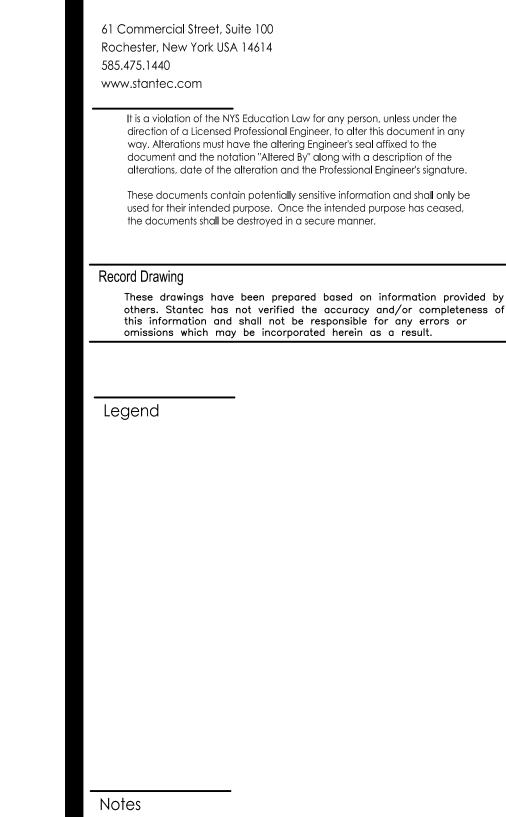
NOTES :


- 1.) 1/4" TUBING NOT TO BE RUN THROUGH DUCT WORK
- 2.) $\frac{1}{4}$ " Tubing shall be polyethylene (PE) or approved equal
- 3.) CHECK POINT IIa LOW PRESSURE SWITCH MODEL (0.25" W.C. FACTORY PRESET)

TYPICAL WALL-MOUNTED INSTRUMENT PANEL INSTALLATION DETAIL NO SCALE


1) ALL SOIL/FILL MATERIAL REMOVED FROM PRESSURE MONITORING POINT CAVITIES WAS STORED IN 55 GALLON DOT-APPROVED DRUMS, AND DISPOSED OF PROPERLY OFFSITE.

SUB-SLAB PRESSURE MONITORING POINTS (ZONE 1 - 7)



4" SCH 40 PVC 45° ELBOW WITH GALVANIZED SCREWS)

1.) NO RECORD DRAWINGS OF SUB-SLAB CONDITIONS WERE AVAILABLE DURING DESIGN. 2.) HEIGHT TO PVC BALL VALVE VARIABLE. OFFICE AREA SUCTION POINTS HEIGHT APPROX. 8 FEET,

TYPICAL VERTICAL SUCTION

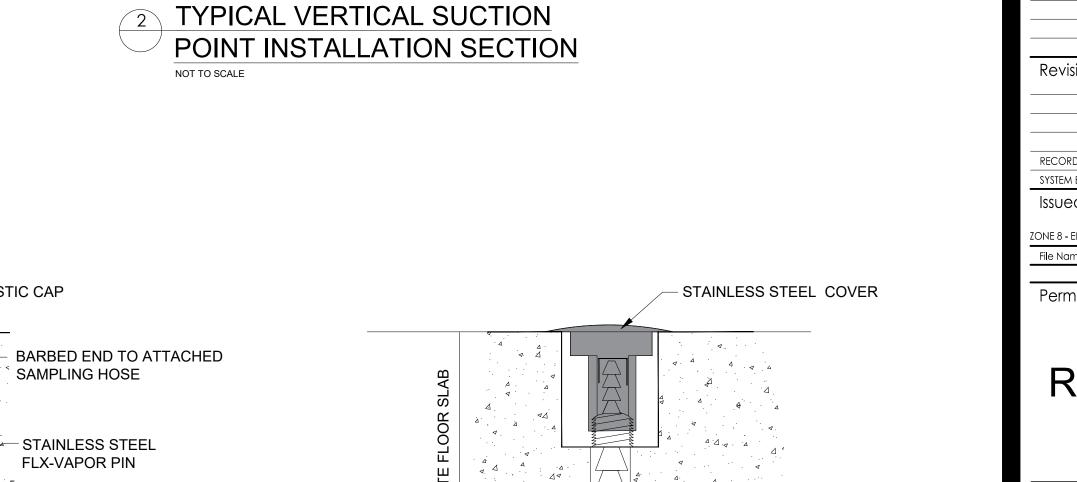
PRODUCTION FLOOR SUCTION POINTS APPROX. 15 FEET.

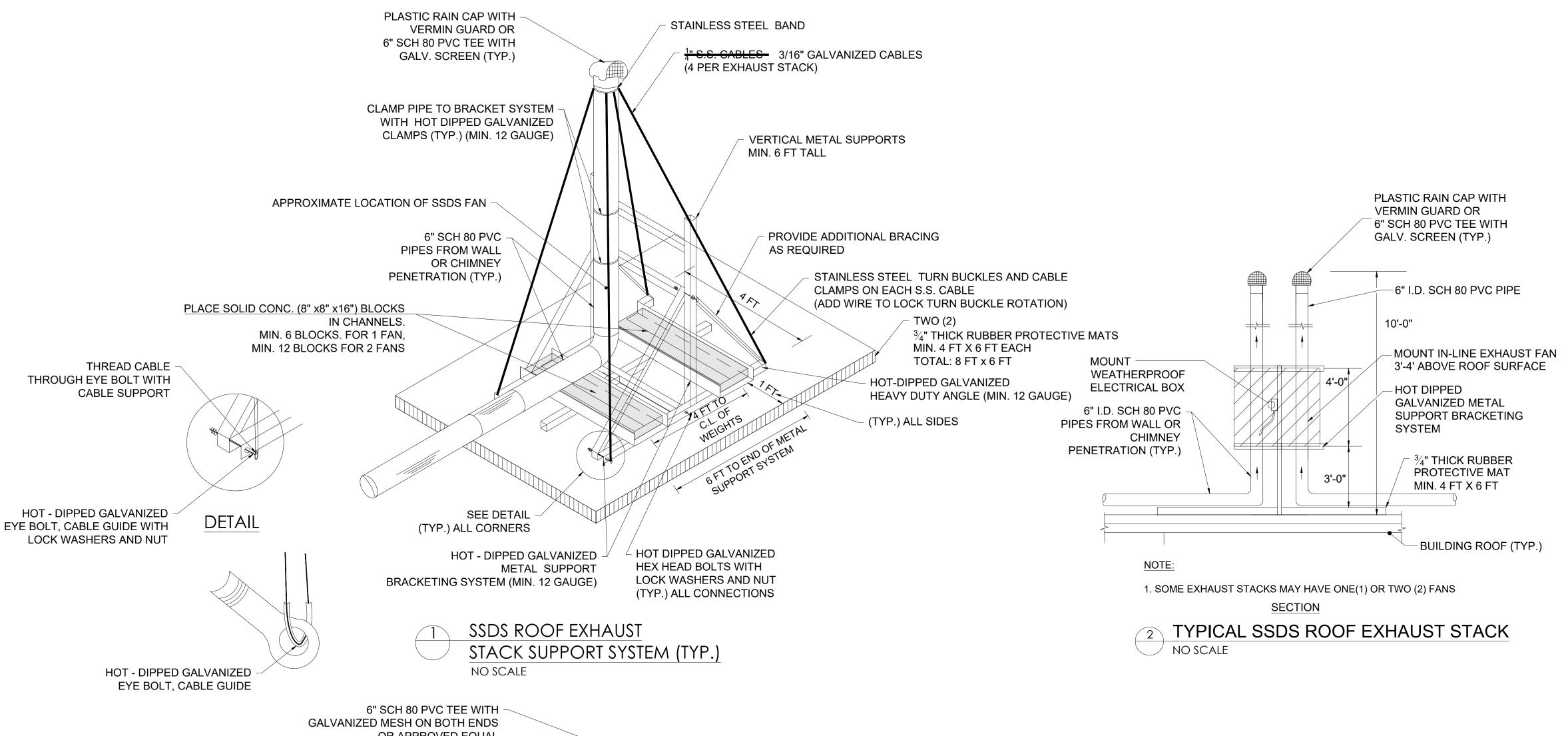
By Appd. YY.MM.DD Revision RECORD APL.AK DH 20.04.16 AK.DH 19.07.30 Appd. YY.MM.DD Issued APL DH MB 18.07.31 File Name: Dwn. Chkd. Dsgn. YY.MM.DD Permit-Seal

RECORD DRAWING

Client/Project

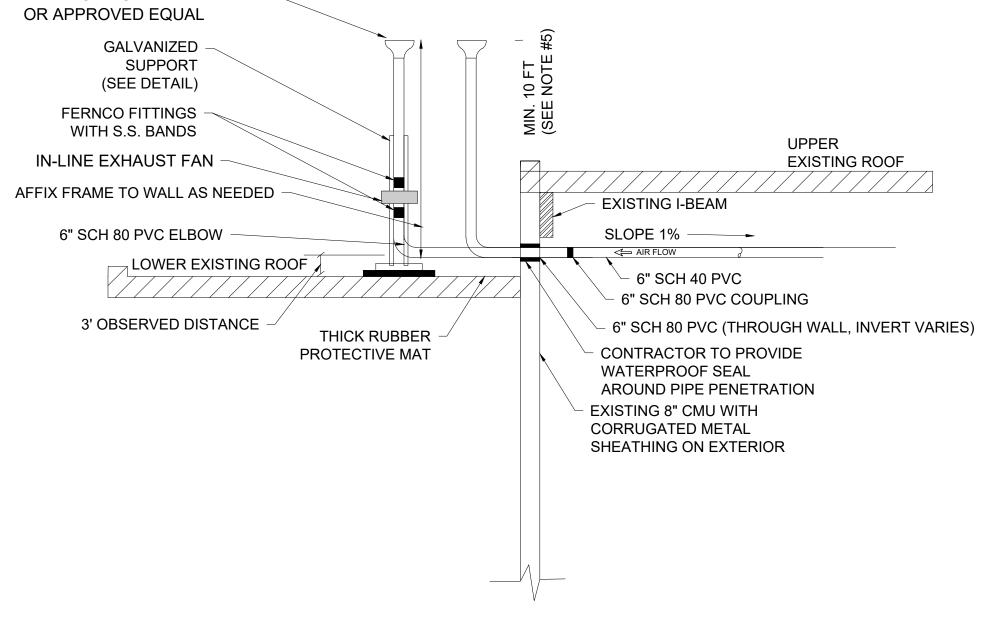
820 LINDEN AVE SITE


BROWNFIELD CLEANUP PROGRAM SITE # C828200


820 LINDEN AVE., PITTSFORD, NY


SUB-SLAB DEPRESSURIZATION SYSTEM INTERIOR DETAILS (SOUTHERN TENANT SPACE)

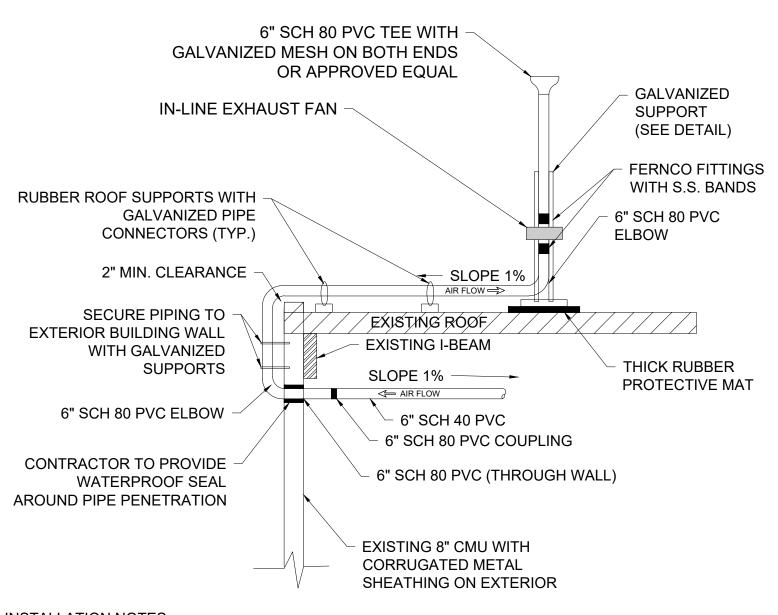
NOT TO SCALE 190500898 Revision Sheet Drawing No.


6 OF 8

3 TYPICAL CHIMNEY PENETRATION DETAIL NO SCALE

INSTALLATION NOTES:

1. NYSDOL LICENSED ASBESTOS INSPECTOR TO OBSERVE / SAMPLE BUILDING MATERIALS AS NEEDED.


2. CONTRACTOR TO USE LEAD SAFE WORK PRACTICES.

3. EXISTING ROOF MEMBRANE SHALL NOT BE DAMAGED.

4. ALL GALVANIZED METAL SHALL BE HOT-DIPPED.
5. TERMINATE STACK MIN. 10 FT FROM INVERT. ON FANS MOUNTED NEXT TO EACH OTHER TERMINATE STACK AT SAME ELEVATION AS OTHER STACK, MAINTAINING MIN. 10 FT. FROM INVERT.

6. ALL IN-LINE EXHAUST FANS TO BE INSTALLED WITH CONDENSATE BYPASS PER MANUFACTURER.

4 TYPICAL PENETRATION TO LOWER ROOF DETAIL NO SCALE

INSTALLATION NOTES:

1. NYSDOL LICENSED ASBESTOS INSPECTOR TO OBSERVE / SAMPLE BUILDING MATERIALS AS NEEDED.

2. CONTRACTOR TO USE LEAD SAFE WORK PRACTICES.

3. EXISTING ROOF MEMBRANE SHALL NOT BE DAMAGED.

4. ALL GALVANIZED METAL SHALL BE HOT-DIPPED.

5. ALL IN-LINE EXHAUST FANS TO BE INSTALLED WITH CONDENSATE BYPASS PER MANUFACTURER.

5 TYPICAL WALL PENETRATION DETAIL NO SCALE

61 Commercial Street, Suite 100 Rochester, New York USA 14614 585.475.1440 www.stantec.com

It is a violation of the NYS Education Law for any person, unless under the direction of a Licensed Professional Engineer, to alter this document in any way. Alterations must have the altering Engineer's seal affixed to the document and the notation "Altered By" along with a description of the alterations, date of the alteration and the Professional Engineer's signature.

These documents contain potentially sensitive information and shall only be used for their intended purpose. Once the intended purpose has ceased, the documents shall be destroyed in a secure manner.

Record Drawing

These drawings have been prepared based on information provided by others. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

Legend

Notes

Revision		By	Appd.
RECORD		APL.AK	
RFI REPONSE - 2-1-2019		MB/AL By	DH Appd.
Issued ecord Drawing ENV-501 – Exterior Details - Re	ev 2019.02.01.dv APL	Ву	
File Name:		Chkd.	

RECORD DRAWING

Client/Project

820 LINDEN AVE SITE

BROWNFIELD CLEANUP PROGRAM SITE # C828200

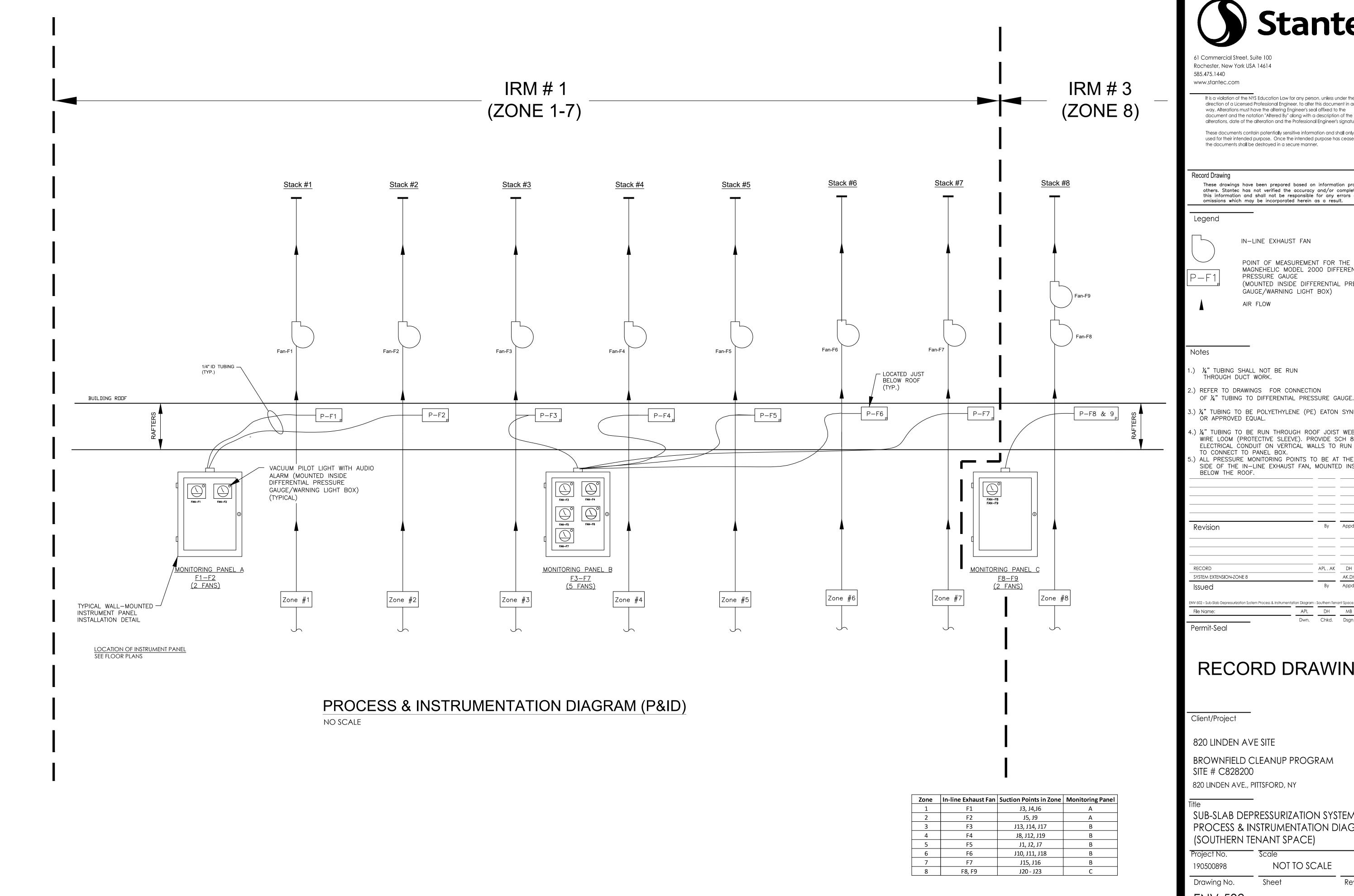
820 LINDEN AVE., PITTSFORD, NY

Title

SUB-SLAB DEPRESSURIZATION SYSTEM EXTERIOR DETAILS (SOUTHERN TENANT SPACE)

Project No.

190500898


Drawing No.

Scale

NOT TO SCALE

Revision

ENV-501 7 OF 8

It is a violation of the NYS Education Law for any person, unless under the direction of a Licensed Professional Engineer, to alter this document in any way. Alterations must have the altering Engineer's seal affixed to the document and the notation "Altered By" along with a description of the alterations, date of the alteration and the Professional Engineer's signature.

These documents contain potentially sensitive information and shall only be used for their intended purpose. Once the intended purpose has ceased, the documents shall be destroyed in a secure manner.

These drawings have been prepared based on information provided by others. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result.

POINT OF MEASUREMENT FOR THE MAGNEHELIC MODEL 2000 DIFFERENTIAL PRESSURE GAUGE (MOUNTED INSIDE DIFFERENTIAL PRESSURE

- 2.) REFER TO DRAWINGS FOR CONNECTION
- .) ¼" TUBING TO BE POLYETHYLENE (PE) EATON SYNFLEX 1219FR
- 4.) ¼" TUBING TO BE RUN THROUGH ROOF JOIST WEBBING IN A WIRE LOOM (PROTECTIVE SLEEVE). PROVIDE SCH 80 PVC ELECTRICAL CONDUIT ON VERTICAL WALLS TO RUN TUBING IN
- ALL PRESSURE MONITORING POINTS TO BE AT THE SUCTION SIDE OF THE IN-LINE EXHAUST FAN, MOUNTED INSIDE, JUST

Revision		Ву	Appd.	YY.MM.DD
RECORD		APL . AK	DH	20.04.16
SYSTEM EXTENSION-ZONE 8			AK.DH	19.07.30
Issued	Diameter Diameter	Ву	Appd.	YY.MM.DD
ENV-502 – Sub-Slab Depressurization System Process & Instrumentation File Name:	APL	DH	MB	18.07.31

Dwn. Chkd. Dsgn. YY.MM.DD

RECORD DRAWING

BROWNFIELD CLEANUP PROGRAM

SUB-SLAB DEPRESSURIZATION SYSTEM PROCESS & INSTRUMENTATION DIAGRAM

Revision

NOT TO SCALE

8 OF 8

Appendix B 820 Linden Avenue Sub-Slab Depressurization System Monthly Monitoring Log

Appendix B 820 LINDEN AVENUE SUB-SLAB DEPRESSURIZATION SYSTEM MONTHLY MONITORING LOG

820 Linden Avenue Site (BCP Site #C828200) Town of Pittsford, NY SSDS Inspection Form

MONTHLY MONITORING LOG		
	Stantec	

Date	
Name	
Company	
Position	

Complete?	Task	Notes
SSDS Inspec		
	Visual inspection of the equipment and piping	
	Identification and subsequent repair of any leaks	
	Inspection of exhaust points to verify that no air intakes have been located nearby	
	Audible operational status check of vent fans	
	Documentation of manifold settings and vacuum at each fan	
	Damper adjustments as required to balance parallel branches of system	
	Maintenance activities conducted	
	Any modifications to the system, are electrical panel schedules related to the SSDS fans up to date and accurate?	
Cover Syster	m (Concrete Floor Slab) Inspection	
	Visual inspection of the hard surface cover for evidence of deep cracks, potholes, cuts, depressions, and deterioration of joint seals and penetration seals	
	Identification of any areas where there is evidence of excessive settlement relative to the surrounding areas	
	Listening for audible indications of cracks in the cover system	

820 Linden Avenue Site (BCP Site #C828200)

Town of Pittsford, NY

SSDS Pressure Monitoring Form

Fan	Date	Approximate Time	Differential Pressure (inches of water column)
F1			
F2			
F3			
F4			
F5			
F6			
F7			
F8 & F9			

Weather conditions:	
Is an air supply/heating	g system on:
Name and Position:	
Company:	

MONTHLY MONITORING LOG

Appendix C 820 Linden Avenue Sub-Slab Depressurization System Annual Monitoring Log

Appendix C 820 LINDEN AVENUE SUB-SLAB DEPRESSURIZATION SYSTEM ANNUAL MONITORING LOG

820 Linden Avenue Site (BCP Site #C828200) Town of Pittsford, NY

ANNUAL MONITORING LOGS Stantec

SSDS Inspection Form

Complete?	Task	Notes
SSDS Inspec	ction	
	Visual inspection of the equipment and piping	
	Identification and subsequent repair of any leaks	
	Inspection of exhaust points to verify that no air intakes have been located nearby	
	Audible operational status check of vent fans	
	Documentation of manifold settings and vacuum at each fan (7 total) and extraction point (19 total)	
	Documentation of sub-slab pressure at each permanent sub-slab pressure monitoring point (14 total)	
	Damper adjustments as required to balance parallel branches of system	
	Maintenance activities conducted	
	Any modifications to the system	
Cover System	m (Concrete Floor Slab) Inspection	
	Visual inspection of the hard surface cover for evidence of deep cracks, potholes, cuts, depressions, and deterioration of joint seals and penetration seals	
	Identification of any areas where there is evidence of excessive settlement relative to the surrounding areas	
	Listening for audible indications of cracks in the cover system	

820 Linden Avenue Site (BCP Site #C828200)

Town of Pittsford, NY

SSDS Pressure Monitoring Log

ANNUAL MONITORING LOG

PMP	Date	Approximate Time	Differential Pressure (inches of water column)	Manometer Zeroed?
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				

Fan	SSDS Zone	Date	Approximate Time	Differential Pressure (inches of water column)
F1	1			
F2	2			
F3	3			
F4	4			
F5	5			
F6	6			
F7	7			
F8 & F9	8			

Suction Point (Riser)	SSDS Zone	Date	Approximate Time	Differential Pressure (inches of water column)	Manometer Zeroed?
J1	1				
J2	5				
J3	4				
J4	2				
J5	6				
J6	6				
J7	4				
J8	3				
J9	3				
J10	7				
J11	7				
J12	3				
J13	6				
J14	4				
J15	7				
J16	7				
J17	3				
J18	6				
J19	4				
J20	7				
J21	7				
J22	3				
J23	6				

Weather conditions:		
ls an air supply/heating sy	estem on:	
Name and Position:		
Company:		

Notes:

1) All sub-slab pressure readings are shown as differential pressure readings between the indoor air and the sub-slab void space. Values shown as negative values indicate that sub-slab pressure is lower than indoor air pressure.

Appendix D SSDS Components Cut Sheets, Manufacturer Recommendations and Warranties

Appendix D SSDS COMPONENTS CUT SHEETS, MANUFACTURER RECOMMENDATIONS AND WARRANTIES

Home → RP265 Radon Fan Pro Series

RP265 Radon Fan Pro Series

SKU: 28463

Be the first to review this product

We have just enhanced the performance of our popular RadonAway RP265 Pro Series radon fan (see below for details). The RP265 Pro Series fan installs white and stays white. It has a 6" duct and is chosen most often by radon professionals when there is a need for quiet >efficiency coupled with more power and higher air flow. Made in the USA with U.S. and imported parts.

NOTE: New RP265 performance curves are shown below.

NOTICE

Log In to Purchase

RadonAway is a B2B business only. You must be an approved RadonAway customer to purchase products through this website. If you are an existing RadonAway customer and need a website login, click here. If you are a professional and would like to become a RadonAway customer, click here.

< Share

Details Additional Info Reviews Conditions of Sale

RP265 Radon Fan Features:

Stay-White™ housing
Five-year limited warranty
Quiet and attractive (Installs white, stays white)

Product Categories Radon Fans

HRVs / ERVs

Radon System +
Components

+

+

+

+

+

Mitigation Tools & +
Diagnostic Aids

Sealing Products +

Crawlspace Moisture and Radon Control

Sump Pumps & +
Accessories

Pipe Accessories

Radon System
Accessories

Radon in Water Removal Systems

Radon Testing

Spruce Inline Ventilation

Canada Fulfillment

Air Purifiers

New Products New

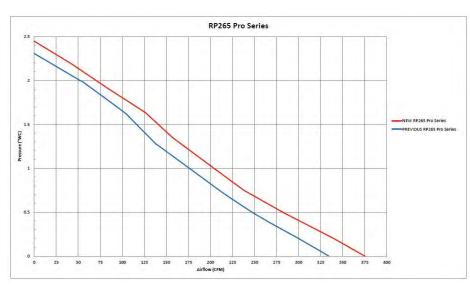
Best Sellers

1-2 day shipping in most of US Read more...

Five year manufacturer's warranty on RadonAway fans

Free technical support for our customers

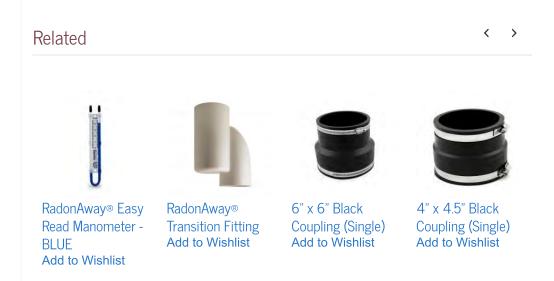
Contact Us


Thermally protected
Water-hardened motorized impeller
Seams sealed to inhibit radon leakage
ETL Listed - for indoor or outdoor use
Meets all electrical code requirements
Rated for commercial and residential use

Additional Radon Fan Information:

Downloadable Fan Specifications/Sales Sheet (PDF format) Downloadable Fan Installation Instructions (PDF format) Calculate your estimated annual electrical cost.

Also available through our Canadian distribution location.



Energy Recommended		Typical CFM vs. Static Pressure WC									
Model	P/N	Star® Rated	Fan Duct Diameter	Watts	Max Operating Pressure "WC	0"	.5"	1.0"	1.5"	2.0"	RRNC Type1
RP140 Pro Series	28460	Yes	4"	15-21	0.7	135	70	-	-	-	RF1
RP145 Pro Series	28461	-	4"	41-72	1.7	166	126	82	41	3	RF1, RF2
RP260 Pro Series	28462	-	6"	47-65	1.3	251	157	70	-	-	-
RP265 Pro Series	28463	-	6"	95- 139	2.3	375	282	204	140	70	-

		Energy Star®	Fan Duct		Recommended Max Operating	Typic WC	al CFM	vs. Sta	itic Pre	ssure	RRNC
Model	P/N	Rated	Diameter	Watts	Pressure "WC	0"	.5"	1.0"	1.5"	2.0"	Type1
RP380 Pro Series	28208	-	8"	96- 138	2.0	531	415	268	139	41	-

¹ Suitable as designated by the new Reducing Radon in New Construction Standard, RRNC 2.0. Click here for details.

Dimensions Model Α В С RP140 9.7" 8.5" 4.5" Pro RP145 9.7" 8.5" 4.5" Pro 6" **RP260** 11.75" 8.6" Pro **RP265** 11.75" 8.6" 6" Pro RP380 13.41" 10.53" 8" Pro

Installation and Operation Manual Manuel d'installation et d'opération

Rn2EC / Rn4EC

Inline EC Radon Fan • Ventilateur pour radon en ligne EC

PARTS IN THE BOX (Rn2EC)

Inline Radon Fan Rn, 1 pc Operation and Installation Manual, 1 pc

PIÈCES DANS LA BOÎTE (Rn2EC)

Ventilateur pour radon en ligne Rn, 1 pc Manuel d'installation, 1 pc

PARTS IN THE BOX (Rn4EC)

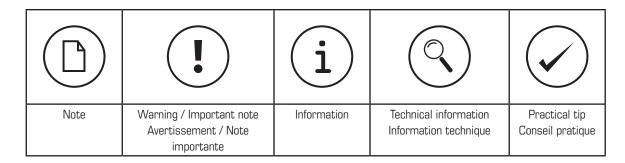
Inline Radon Fan Rn, 1 pc LDVI™ Couplings, 2 pcs Operation and Installation Manual, 1 pc

PIÈCES DANS LA BOÎTE (Rn4EC)

Ventilateur pour radon en ligne Rn, 1 pc Couplages LDVI™, 2 pcs Manuel d'installation, 1 pc

REGISTER* THIS PRODUCT TO INCREASE YOUR PRODUCT WARRANTY BY AN EXTRA YEAR

registration.fantech.app



* in USA only

Support technique et service à la clientèle

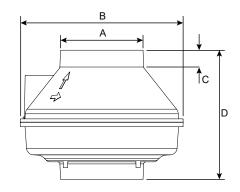
United States Tel.: 800.747.1762 **Canada** Tel.: 800.565.3548

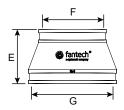
DO NOT CONNECT POWER SUPPLY until fan is completely installed.

Make sure electrical service to the fan is in the locked "OFF" position.

1. Fantech recommends installation of this product by a trained, licensed, certified mitigation professional. Incorrect installation will void any and all product warranties or liability. Verification of safe/acceptable radon levels after installation is required.

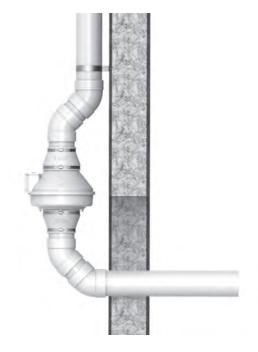
Check your local code restrictions for additional safety measures that may be needed for proper code compliant installation.


- 2. This fan has rotating parts and safety precaution should be exercised during installation, operation and maintenance.
- 3. WARNING! TO REDUCE THE RISK OF FIRE, ELECTRIC SHOCK, OR INJURY TO PERSONS OBSERVE THE FOLLOWING:
 - a. Use this unit in the manner intended by the manufacturer. If you have any questions, contact your manufacturer's representative or contact us directly.
 - b. CAUTION: Before installation, servicing or cleaning unit, switch power off at service panel and lock the service disconnection means to prevent power from being switched on accidentally. When the service disconnection means cannot be locked, securely fasten a prominent warning device, such as tag, to the panel.
 - c. Installation work and electrical wiring must be done by qualified person(s) in accordance with all applicable codes and standards, including firerated construction.
 - d. The combustion airflow needed for safe operation of fuel burning equipment may be affected by this unit's operation. Follow the heating equipment manufacturer's guidelines and safety standards such as those published by the National Fire Protection Association (NFPA), the American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) and the local code authorities.
 - e. When cutting or drilling into wall and ceiling, do not damage electrical wiring and other hidden utilities.
 - f. Ducted fans must always be vented to the outdoors.
- 4. WARNING! Check voltage at the fan to see if it corresponds to the motor name plate.
- 5. For radon mitigation use only. DO NOT use to exhaust hazardous or explosive materials and vapors.
- 6. Do not use this fan with any solid state speed control device.


GUARDS MUST BE INSTALLED WHEN FAN IS WITHIN REACH OF PERSONNEL OR WITHIN SEVEN (7) FEET OF WORKING LEVEL OR WHEN DEEMED ADVISABLE FOR SAFETY.

The ducting from this fan to the outside of the building has a strong effect on the air flow, noise and energy use of the fan. Use the shortest, straightest duct routing possible for best performance, and avoid installing the fan with smaller ducts than recommended. Insulation around the ducts can reduce energy loss and inhibit mold growth. Fans installed with existing ducts may not achieve their rated air flow.

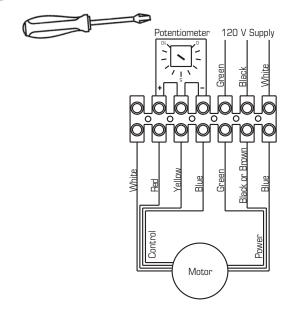
DIMENSIONS


Model/ Modèle	А	В	С	D	Е	F	G
Rn2EC	4 15/32 (114)	10 (254)	1 1/4 (32)	9 1/4 (235)	-	-	-
Rn4EC-3	5 ⁷ / ₈ (149)	11 ¹ / ₂ (292)	1 ¹ / ₄ (32)	9 ¹ / ₄ (235)	4 (102)	3 ¹ / ₂ (89)	6 (152)
Rn4EC-4	5 ⁷ / ₈ (149)	11 ¹ / ₂ (292)	1 ¹ / ₄ (32)	9 ¹ / ₄ (235)	4 (102)	4 ¹ / ₂ (114)	6 (152)

Dimensions in inches (mm). Dimensions en pouces (mm)

INSTALLATION

Rn2EC-3 & Rn4EC-3 are designed for use with 3" schedule 40 PVC pipe. Rn2EC-4 & Rn4EC-4 are designed for use with 4" schedule 40 PVC pipe.


Prior to installation, the suction pipe should be terminated at the exterior wall. The suction pipe should be installed with slight incline to drain water from the fan.

WIRING DIAGRAM

To reduce fan speed use a small screwdriver and turn potentiometer knob counter clockwise

DO NOT connect fan directly to building structure

WARRANTY

Five (5) Year Warranty

This warranty supersedes all prior warranties

DURING ENTIRE WARRANTY PERIOD:

Fantech will repair or replace any part which has a factory defect in workmanship or material. Product may need to be returned to the Fantech factory, together with a copy of the bill of sale and identified with RMA number.

FOR FACTORY RETURN YOU MUST:

- Have a Return Materials Authorization (RMA) number. This may be obtained by calling Fantech either in the USA at 1.800.747.1762 or in CANADA at 1.800.565.3548. Please have bill of sale available.
- The RMA number must be clearly written on the outside of the carton, or the carton will be refused.
- All parts and/or product will be repaired/replaced and shipped back to buyer; no credit will be issued.

OR

The Distributor may place an order for the warranty part and/or product and is invoiced. The Distributor will receive a credit equal to the invoice only after product is returned prepaid and verified to be defective.

FANTECH WARRANTY TERMS DO NOT PROVIDE FOR REPLACEMENT WITHOUT CHARGE PRIOR TO INSPECTION FOR A DEFECT.
REPLACEMENTS ISSUED IN ADVANCE OF DEFECT INSPECTION ARE INVOICED, AND CREDIT IS PENDING INSPECTION OF RETURNED MATERIAL. DEFECTIVE MATERIAL RETURNED BY END USERS SHOULD NOT BE REPLACED BY THE DISTRIBUTOR WITHOUT CHARGE TO THE

END USER, AS CREDIT TO DISTRIBUTOR'S ACCOUNT WILL BE PENDING INSPECTION AND VERIFICATION OF ACTUAL DEFECT BY FANTECH.

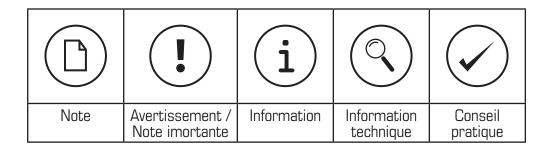
THE FOLLOWING WARRANTIES DO NOT APPLY:

- Damages from shipping, either concealed or visible. Claim must be filed with freight company.
- Damages resulting from improper wiring or installation.
- Damages or failure caused by acts of God, or resulting from improper consumer procedures, such as:
 - 1. Improper maintenance
 - 2. Misuse, abuse, abnormal use, or accident, and
 - 3. Incorrect electrical voltage or current.
- Removal or any alteration made on the Fantech label control number or date of manufacture.
- Any other warranty, expressed, implied or written, and to any consequential or incidental damages, loss or property, revenues, or profit, or costs of removal, installation or reinstallation, for any breach of warranty.

WARRANTY VALIDATION

- The user must keep a copy of the bill of sale to verify purchase date.
- These warranties give you specific legal rights, and are subject to an applicable consumer protection legislation. You may have additional rights which vary from state to state.

Limitation of Warranty and Liability


This warranty does not apply to any Fantech product or part which has failed as a result of faulty installation or abuse, incorrect electrical connections or alterations made by others, or use under abnormal operating conditions or misapplication of the product or parts. We will not approve for payment any repair not made by us or our authorized agent without prior written consent. The foregoing shall constitute our sole and exclusive warranty and our sole exclusive liability, and is in lieu of any other warranties, whether written, oral, implied or statutory. There are no warranties which extend beyond the description on the page hereof. In no event, whether as a result of breach of contract, or warranty or alleged

negligence, defect incorrect advice or other causes, shall Fantech be liable for special or consequential damages, including, but not limited to, loss of profits or revenue, loss of use of equipment or any other associated equipment, cost of capital, cost of substitute equipment, facilities or services, downtime costs, or claims of customers of purchase for such damages. Fantech neither assumes or authorizes any person to assume for it any other liability in connection with the sale of product(s) or part(s). Some jurisdictions do not allow the exclusion or limitation of incidental or consequential damages so the above limitations and exclusions may not apply to you.

Warning

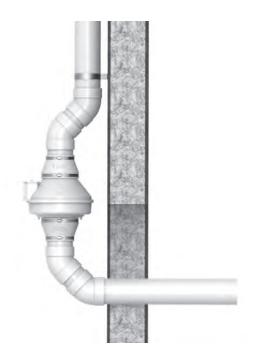
Fantech products are designed and manufactured to provide reliable performance, but they are not guaranteed to be 100% free from defects. Even reliable products will experience occasional failures and this possibility should be recognized by the user. If these products are used in a life support ventilation system where failure could result in loss or injury, the user should provide adequate backup ventilation, supplementary natural ventilation, failure alarm system, or acknowledge willingness to accept the risk of such loss or injury.

NE PAS BRANCHER À L'ALIMENTATION ÉLECTRIQUE avant l'installation complète du ventilateur.

Assurez-vous que l'alimentation électrique du ventilateur est en position hors tension verrouillée (OFF).

- 1. Fantech recommande l'installation de ce produit par un professionnel de l'atténuation formé, agréé et certifié. Une installation incorrecte entraînera l'annulation de toutes les garanties ou responsabilités du produit. La vérification des niveaux de radon sécuritaires / acceptables après l'installation est requise.
 - Vérifiez les restrictions de votre code local pour les mesures de sécurité supplémentaires qui peuvent être nécessaires pour une installation conforme au code approprié.
- 2. Ce ventilateur comporte des pièces rotatives; il est essentiel de faire preuve de prudence pendant l'installation, le fonctionnement et l'entretien.
- 3. AVERTISSEMENT! POUR RÉDUIRE LE RISQUE D'INCENDIE, D'ÉLECTROCUTION OU DE BLESSURES, VEUILLEZ RESPECTER LES RÈGLES SUIVANTES :
 - a. Utilisez cet appareil de la manière prévue par le fabricant. Si vous avez des questions, communiquez avec le représentant du fabricant ou directement avec nous.
 - b. MISE EN GARDE : Avant d'installer, de réparer ou de nettoyer l'appareil, coupez l'alimentation électrique au panneau de service et bloquez les dispositifs de sectionnement pour éviter que l'alimentation ne soit rétablie par accident. Si les dispositifs de sectionnement ne peuvent pas être bloqués, apposez une note d'avertissement bien visible, comme une étiquette, sur le panneau de service.
 - c. Tous les travaux relatifs à l'installation et aux fils électriques devraient être effectués par un technicien qualifié, conformément aux normes et aux règlements en viqueur, y compris les travaux de construction classés résistants au feu.
 - d. Le fonctionnement de cet appareil pourrait modifier la circulation d'air de combustion nécessaire au fonctionnement sécuritaire des appareils de combustion. Suivez les consignes du fabricant pour les appareils de chauffage et respectez les normes de sécurité comme celles établies par la National Fire Protection Association (NFPA), la American Society for Heating, Refrigeration and Air Conditioning Engineers (ASHRAE) ainsi que les codes des autorités locales.
 - e. Lorsque vous coupez ou percez un mur ou un plafond pour l'installation de l'appareil, assurez-vous de ne pas endommager le câblage électrique et les autres services publics cachés.
 - f. Les conduits d'air des ventilateurs doivent toujours être éventés à l'extérieur.
- 4. AVERTISSEMENT! Vérifiez la tension du ventilateur pour confirmer qu'elle correspond à celle inscrite sur la plaque signalétique du moteur.
- 5. Uniquement pour la mise en oeuvre de mesures d'atténuation du radon. NE PAS utiliser pour évacuer des vapeurs ou des substances dangereuses ou explosives.
- 6. Ne pas utiliser cet appareil avec une commande de vitesse à semiconducteurs.

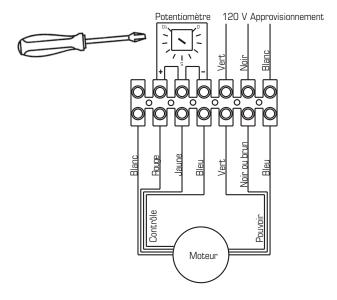
DES DISPOSITIFS PROTECTEURS DOIVENT ÊTRE INSTALLÉS SI LE VENTILATEUR SE TROUVE À PORTÉE DE MEMBRES DU PERSONNEL OU À SEPT (7) PIEDS OU MOINS DU NIVEAU DE FONCTIONNEMENT OU LORSQU'ILS SONT JUGÉS NÉCESSAIRES POUR DES RAISONS DE SÉCURITÉ


Le conduit de raccordement de ce ventilateur avec l'extérieur de l'immeuble a un effet important sur le débit d'air, le bruit et la consommation d'énergie du ventilateur. Veuillez utiliser le conduit le plus court et le plus droit possible pour obtenir un rendement optimal, et évitez d'installer des conduits plus petits que ceux recommandés pour le ventilateur. L'isolation autour des conduits peut réduire les pertes d'énergie et empêcher la moisissure. Les ventilateurs installés avec des conduits existants pourraient ne pas offrir le débit d'air nominal.

INSTALLATION

Le modèle Rn2EC-3 & Rn4EC-3 est conçu pour un usage avec des conduits de PVC de série 40 de 3 po. Le modèle Rn2EC-4 & Rn4EC-4 est conçu pour un usage avec des conduits de PVC de série 40 de 4 po.

Avant l'installation, il faut prévoir une sortie pour le tuyau d'aspiration sur un mur extérieur. Le tuyau d'aspiration devrait être installé avec une pente légère pour drainer l'eau du ventilateur.



(!)

NE PAS attacher le ventilateur directement dans la structure du bâtiment.

SCHÉMA ÉLECTRIQUE

Pour réduire la vitesse du ventilateur, utilisez un petit tournevis et tournez le bouton du potentiomètre dans le sens inverse des aiguilles d'une montre.

GARANTIE

Garantie de 5 ans

Cette garantie remplace toutes les garanties précédentes.

DURANT TOUTE LA PÉRIODE DE GARANTIE:

Fantech s'engage à réparer ou à remplacer toute pièce présentant un défaut d'usine en matière de qualité d'exécution ou de matériau. Il sera peut être nécessaire de retourner le produit à l'usine Fantech, accompagné d'une copie du contrat de vente et du numéro d'autorisation de retour.

POUR RETOURNER UN PRODUIT À L'USINE, VOUS DEVEZ:

- Obtenir un numéro d'autorisation de retour; pour ce faire, communiquer avec Fantech aux États-Unis au numéro 1.800.747.1762, ou au Canada, au numéro 1.800.565.3548. Veuillez avoir votre contrat de vente à portée de la main.
- S'assurer que le numéro d'autorisation de retour est lisible sur l'extérieur de la boîte, sinon la boîte sera refusée.
- Toutes les pièces et/ou le produit seront réparés ou remplacés puis retournés à l'acheteur. Aucun crédit ne sera accordé.

OU

Le Distributeur peut commander une pièce ou un produit couvert par la garantie; la facture lui sera envoyée. Le distributeur ne sera crédité du montant de sa facture qu'après que le produit a été retourné port payé et qu'il a été trouvé défectueux.

LES TERMES DE LA GARANTIE DE Fantech NE PRÉVOIENT PAS DE REMPLACEMENT SANS FRAIS AVANT QUE LA PIÈCE OU LE PRODUIT DÉFECTUEUX AIT ÉTÉ INSPECTÉ. LES PRODUITS OU PIÈCES REMPLACÉS AVANT L'INSPECTION DE LA DÉFECTUOSITÉ SERONT FACTURÉS ET LE MONTANT DU CRÉDIT EST FONCTION DE L'INSPECTION DE LA PIÈCE OU DU PRODUIT RETOURNÉ. LE DISTRIBUTEUR NE DOIT PAS REMPLACER SANS FRAIS POUR

L'UTILISATEUR FINAL L'ÉQUIPEMENT DÉFECTUEUX RETOURNÉ PAR L'UTILISATEUR FINAL, CAR LE COMPTE DU DISTRIBUTEUR NE SERA CRÉDITÉ QU'APRÈS L'INSPECTION ET LA VÉRIFICATION PAR FANTECH DE LA DÉFECTUOSITÉ.

LES GARANTIES NE S'APPLIQUENT PAS DANS LES CAS SUIVANTS:

- Dommages dus au transport (dissimulés ou visibles). Les réclamations doivent être faites à la compagnie de fret.
- Dommages dus au mauvais câblage ou à l'installation inappropriée.
- Dommages ou défectuosité causés par une calamité naturelle ou résultant d'une procédure irrégulière de l'acheteur, notamment :
- 1. Entretien irrégulier
- 2. Mauvais usage, usage abusif, usage anormal ou accident
- 3. Tension ou courant électrique incorrect
- Enlèvement ou toute modification du numéro de contrôle ou de la date de fabrication de l'étiquette Fantech
- Toute autre garantie expresse, écrite ou implicite, pour les dommages accidentels ou indirects, perte de biens, de recettes, manque à gagner ou coûts relatifs à la dépose, à l'installation ou à la réinstallation, en cas de violation de garantie.

CERTIFICATION DE LA GARANTIE:

- L'utilisateur doit conserver une copie du contrat de vente pour confirmer la date d'achat.
- Les présentes garanties vous donnent des droits spécifiques reconnus par la loi et sont régies par les lois sur la protection du consommateur appropriées. Il est possible que différents états offrent d'autres droits.

Limites de garanties et de responsabilités

Cette garantie ne s'applique à aucun produit de Fantech ou à aucune pièce détachée dont la défectuosité relève d'une erreur d'installation ou d'abus ou de mauvaise installation électrique ou dut à des modifications extérieures ou utilisées dans des conditions anormales ou encore une mauvaise installation du produit ou des pièces détachées. Nous n'approuverons aucun remboursement pour des réparations qui ne sont pas effectuées par un agent américain ou un agent autorisé sans un accord écrit. Ce dernier constituera notre seule et exclusive garantie et notre seule exclusive responsabilité et tient lieu de toute autre garantie ou bien écrite ou orale implicite ou statuaire. Aucune garantie ne s'appliquera au-delà des descriptions faites de la page ci-dessus. En aucun cas, que ce soit pour une rupture de contrat ou de garanties ou

des dommages dut à la négligence ou a des conseils incorrects ou autres causes, Fantech ne pourra être tenu pour responsable des dommages particuliers ou consécutifs, incluant mais pas limités aux pertes et profits ou bénéfices perte de matériel ou autres matériels associés. Coût du capital, coût des équipements de remplacement, matériels ou services, coût de temps d'arrêt ou les réclamations des clients pour de tels dommages. Fantech ne délègue ou autorise aucune personne d'assumer sa responsabilité sur la vente du produit ou des pièces détachées. Certaines juridictions ne permettent pas l'exclusion de la limitation des dommages accidentels ou consécutifs ainsi ces limitations cidessus et les exclusions ne s'appliquent pas à vous.

Avertissement

Les produits de Fantech sont conçus et fabriqués pour produire des performances fiables, mais il n'y a aucune garantie qu'ils soient 100% sans défaut. Les plus produits les plus fiables ont occasionnellement des défectuosités et cette possibilité devraient être reconnu par les usagers. Si ces produits sont utilisés comme une source de ventilation ou leur panne risque de mettre en danger des vies humaines ou entraîner des blessures, les usagers devront avoir une source de ventilation de secours en addition à une ventilation naturelle, le défaut de système d'alarme ou la connaissance de ces conditions entraînent sa responsabilité envers de telles pertes ou blessures.

Fantech reserves the right to make technical changes. For updated documentation please refer to www.fantech.net

Fantech se réserve le droit de faire des changements techniques. Pour de la documentation à jour, s'il vous plaît se référer au www.fantech.net

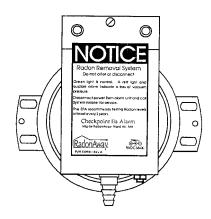
Fantech®

INSTALLATION & OPERATING INSTRUCTIONS Instruction P/N IN015 Rev E FOR CHECKPOINT IIa TM P/N 28001-2 & 28001-3 RADON SYSTEM ALARM

INSTALLATION INSTRUCTIONS (WALL MOUNTING)

Select a suitable wall location near a vertical section of the suction pipe. The unit should be mounted about four or five feet above the floor and as close to the suction pipe as possible. Keep in mind that with the plug-in transformer provided, the unit must also be within six feet of a 120V receptacle. NOTE: The Checkpoint IIa is calibrated for vertical mounting, horizontal mounting will affect switchpoint calibration.

Drill two 1/4" holes 4" apart horizontally where the unit is to be mounted.


Install the two 1/4" wall anchors provided.

Hang the CHECKPOINT IIa from the two mouting holes located on the mounting bracket. Tighten the mounting screws so the unit

fits snugly and securely against the wall.

Drill a 5/16" hole into the side of the vent pipe about 6" higher than the top of the unit.

Insert the vinyl tubing provided about 1" inside the suction pipe.

Cut a suitable length of vinyl tubing and attach it to the pressure switch connector on the CHECKPOINT IIa.

CALIBRATION AND OPERATION.

The CHECKPOINT IIa units are calibrated and sealed at the factory to alarm when the vacuum pressure falls below the factory setting and should not normally require field calibration. Factory Settings are:

28001-2 -.25" WC Vacuum 28001-3 -.10" WC Vacuum

To Verify Operation:

With the exhaust fan off or the pressure tubing disconnected and the CHECKPOINT IIa plugged in, both the red indicator light and the audible alarm should be on.

Turn the fan system on or connect the pressure tubing to the fan piping. The red light and the audible alarm should go off. The green light should come on.

Now turn the fan off. The red light and audible alarm should come on in about two or three seconds and the green light should go out.

WARRANTY INFORMATION

Subject to applicable consumer protection legislation, RadonAway warrants that the CHECKPOINT IIa will be free from defective material and workmanship for a period of (1) year from the date of purchase. Warranty is contingent on installation in accordance with the instructions provided. This warranty does not apply where repairs or alterations have been made or attempted by others; or the unit has been abused or misused. Warranty does not include damage in shipment unless the damage is due to the negligence of RadonAway. All other warranties, expressed or written, are not valid. To make a claim under these limited warranties, you must return the defective item to RadonAway with a copy of the purchase receipt. RadonAway is not responsible for installation or removal cost associated with this warranty. In no case is RadonAway liable beyond the repair or replacement of the defective product FOB RadonAway.

THERE ARE NO WARRANTIES WHICH EXTEND BEYOND THE DESCRIPTION ON THE FACE HEREOF. THERE IS NO WARRANTY OF MERCHANTIBILITY. ALL OTHER WARRANTIES, EXPRESSED OR WRITTEN, ARE NOT VALID.

For service under these warranties, contact RadonAway for a Return Material Authorization (RMA) number and shipping information. **No returns can be accepted without an RMA.** If factory return is required, the customer assumes all shipping costs to and from factory.

Manufactured by: RadonAway Ward Hill, MA (978)-521-3703

INSTALLS WHITE, STAYS WHITE

Radon Mitigation Fan

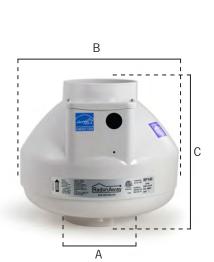
All RadonAway® fans are specifically designed for radon mitigation. RP Series Fans provide superb performance, run ultra-quiet and are attractive. They are ideal for most sub-slab radon mitigation systems.

Features

- NEW Stay-White[™] housing
- · Energy efficient
- RP140 ENERGY STAR Most Efficient 2018
- Ultra-quiet operation
- Meets all electrical code requirements
- Water-hardened motorized impeller
- Seams sealed to inhibit radon leakage (RP140 & RP145 double snap sealed)
- ETL Listed for indoor or outdoor use
- Thermally protected motor
- · Rated for commercial and residential use

MODEL	D/N	FAN DUCT	WATTE	RECOM. MAX. OP.	TYPICA	AL CFM v	s. STATIC	PRESSU	RE WC
MODEL	P/N	DIAMETER	WATTS	PRESSURE "WC	0"	.5"	1.0"	1.5"	2.0"
RP140	28460	4"	15-21	0.7	135	70	-	-	-
RP145	28461	4"	41-72	1.7	166	126	82	41	3
RP260	28462	6"	47-65	1.3	251	157	70	-	-
RP265	28463	6"	95-139	2.3	375	282	204	140	70
RP380*	28208	8"	96-138	2.0	531	415	268	139	41

^{*}Currently not stay-white material.


with U.S. and imported parts.

All RadonAway® inline radon fans are covered by our 5-year, hassle-free warranty.

Model	Α	В	С
RP140	4.5"	9.7"	8.5"
RP145	4.5"	9.7"	8.5"
RP260	6"	11.75"	8.6"
RP265	6"	11.75"	8.6"
RP380	8"	13.41"	10.53"

For Further Information, Contact Your Radon Professional

© 2018 RadonAway Rev B 0618

P/N 02051

Appendix H

Quality Assurance Project Plan

Quality Assurance Project Plan Site Management Plan 820 Linden Ave Brownfield Cleanup Program Site #C828200 820 Linden Avenue Pittsford, Monroe County, New York

Prepared for:

New York State Department of Environmental Conservation 6274 Avon-Lima Road Avon, New York 14414

Prepared on behalf of:

Ridgecrest Associates 135 Orchard Park BV Rochester, New York 14609

Prepared by:

Stantec Consulting Services Inc. 61 Commercial Street, Suite 100 Rochester, New York 14614

September 2020

Table of Contents

1.0	INTRODUCTION	1.1
2.0	PROJECT DESCRIPTION	2.2
3.0	PROJECT ORGANIZATION AND RESPONSBILLTY	3.2
4.0	QA OBJECTIVES FOR DATA MEASUREMENT	4.4
4.1	KEY CONSIDERATIONS	4.4
4.2	GOALS	4.5
5.0	SAMPLING PROCEDURES	5.5
5.1	SAMPLING PROGRAM	5.5
5.2	FIELD QUALITY CONTROL SAMPLES	5.5
	5.2.1 Trip Blanks	5.6
	5.2.2 Rinsate Blanks	5.6
	5.2.3 Field Duplicates	
	5.2.4 Matrix Spike/Matrix Spike Duplicates	
	5.2.5 Laboratory Quality Control Checks	
5.3	SAMPLE CONTAINERS	
5.4	DECONTAMINATION	5.6
5.5	LEVELS OF PROTECTION/SITE SAFETY	5.7
6.0	SAMPLE CUSTODY	6.7
6.1	CHAIN-OF-CUSTODY	6.8
	6.1.1 Sample Labels	
	6.1.2 Custody Seals	
	6.1.3 Chain-Of-Custody Record	
	6.1.4 Field Custody Procedures	
6.2	DOCUMENTATION	
	6.2.1 Sample Identification	
	6.2.2 Daily Logs	
6.3	SAMPLE HANDLING, PACKAGING, AND SHIPPING	6.10
7.0	CALIBRATION PROCEDURES AND FREQUENCY	
7.1	FIELD INSTRUMENTS	
7.2	LABORATORY INSTRUMENTS	7.11
8.0	ANALYTICAL PROCEDURES	8.11
8.1	FIELD	8.11
8.2	LABORATORY	8.11
9.0	DATA REDUCTION AND REPORTING	9.12
10.0	INTERNAL QUALITY CONTROL CHECKS	10.12

11.0	PERFORMANCE AND SYSTEM AUDITS	11.13
11.1	FIELD AUDITS	11.13
11.2	LABORATORY AUDITS	11.13
12.0	PREVENTIVE MAINTENANCE	
12.1	FIELD	12.13
12.2	LABORATORY	12.14
13.0	DATA ASSESSMENT PROCEDURE	13.14
13.1	PRECISION	13.14
13.2	ACCURACY	13.15
13.3	COMPLETENESS	13.15
13.4	REPRESENTATIVENESS	13.15
14.0	QUALITY ASSURANCE REPORTS	14.16
15.0	CORRECTIVE ACTION	15.16

List of Figures

Figure 1 Site Location Map

List of Tables

Table 1 Required Sample Containers, Volumes, Preservation, and Holding Times

Table 2 Summary of Field Quality Control Checks

List of Appendices

Appendix A Laboratory Detection and Reporting Limits

Abbreviations

APR air purifying respirators

ASP Analytical Services Protocol

ASTM American Society for Testing and Materials

CLP Contract Laboratory Program

DUSR Data Usability Summary Report

EDD electronic data deliverable

ELAP Environmental Laboratory Accreditation Program

GC gas chromatography

GC-MS gas chromatography-mass spectrometry

MS/MSD Matrix Spike/Matrix Spike Duplicates

NIST National Institute of Standards and Technology

NYSDEC New York State Department of Environmental Conservation

NYSDOH New York State Department of Health

PM Project Manager

PRR Periodic Review Report

QA Quality Assurance
QC Quality Control

QA/QC Quality Assurance/Quality Control
QAPP Quality Assurance Project Plan
RPD relative percent difference

SMP Site Management Plan

USDOT United States Department of Transportation

USEPA United States Environmental Protection Agency

iii

Introduction

1.0 INTRODUCTION

This Quality Assurance Project Plan (QAPP) is to be used in conjunction with the Site Management Plan (SMP) for 820 Linden Avenue in Pittsford, Monroe County, New York (the "Site"; see Figure 1). This QAPP presents the policies, organization, objectives, functional activities, and specific quality assurance and quality control activities to ensure the validity of data generated in the completion of the investigation. The purpose of this QAPP program is to ensure that technical data generated are both accurate and representative.

Quality assurance (QA) is a management system for ensuring that information, data, and decisions resulting from investigation and environmental monitoring programs are technically sound, and properly documented. Quality control (QC) is the functional mechanism through which quality assurance achieves its goals. Quality control programs, for example, define the frequency and methods of checks, audits, and reviews necessary to identify problems and dictate corrective actions to resolve these problems, thus ensuring high quality data. As such, a quality assurance and quality control program pertains to data collection, evaluation, and review activities which are part of the investigation.

Quality assurance and quality control (QA/QC) procedures will be in accordance with applicable professional technical standards, government regulations and guidelines, and specific project goals and requirements. This QAPP has been prepared in accordance with New York State Department of Environmental Conservation (NYSDEC) and United States Environmental Protection Agency (USEPA) Region II guidance documents.

The QAPP incorporates the following activities:

- Sample collection, control, chain-of-custody, and analysis;
- Document control;
- Laboratory instrumentation, analysis, and control; and
- Review of project reports.

Laboratory analysis of project samples will be performed by a laboratory with the experience and certifications appropriate to the analyses to be performed. Analyses will be performed by laboratories accredited pursuant to the New York State Department of Health (NYSDOH) Environmental Laboratory Accreditation Program (ELAP) for the category of parameters to be analyzed by the laboratory. Eurofins TestAmerica Laboratories, Inc. (TestAmerica) was utilized for the investigation and remedial work performed by Stantec, and is anticipated to be used, as needed, in the future. However, another lab may be used as long as they are NYSDOH ELAP-accredited.

Project Description

Duplicates, replicates, and spiked samples will be used to identify the quality of the analytical data. Field audits may be conducted to verify that proper sampling techniques and chain-of-custody procedures are followed. Field data compilation, tabulation, and analysis will be checked for accuracy. Calculations and other post-field tasks will be reviewed by senior project personnel. Equipment used to take field measurements will be maintained and calibrated in accordance with established procedures. Records of calibration and maintenance will be kept by assigned personnel. Field testing and data acquisition will be performed following guidelines as described herein.

Document control procedures will be used to coordinate the distribution, coding, storage, retrieval, and review of data collected during sampling tasks.

A Data Usability Summary Report (DUSR) will be prepared for analytical results from each sampling and/or monitoring activity, with the exception of sampling data utilized for screening, waste characterization, and survey purposes only. The DUSR will be prepared by an independent consultant with the required experience, in accordance with NYSDEC's "Guidance for the Development of Data Usability Summary Reports," revised 1997 and NYSDEC's DER-10 "Technical Guidance for Site Investigation and Remediation," May 2010 (DER-10).

2.0 PROJECT DESCRIPTION

This QAPP pertains to the completion of field activities and subsequent laboratory and data analysis associated with Site Management of 820 Linden Avenue in Pittsford, NY. A description of the Site is presented in the SMP to which this QAPP is attached as an appendix. The SMP also describes the previous environmental investigations performed at the Site.

3.0 PROJECT ORGANIZATION AND RESPONSBIILITY

This QAPP provides for designated qualified personnel to review products and provide guidance on QA matters. This QAPP also outlines the approach to be followed to ensure that products of sufficient quality are obtained. This structure will provide for direct and constant operational responsibility, clear lines of authority, and the integration of QA activities. The QA-related functions of the project positions are as follows:

<u>Project Manager</u>

The project manager (PM) will have overall responsibility for ensuring that the project meets the objectives and quality standards as presented in the SMP and this QAPP. The PM will be responsible for implementing the project and will have the authority to commit the resources necessary to meet project objectives and requirements. The PM's primary function is to ensure

Project Organization and Responsbiility

that technical, financial, and scheduling objectives are achieved successfully. The project manager will provide the major point of contact and control for matters concerning the project. In addition, the PM will be responsible for technical quality control and project oversight.

<u>Team Leaders</u>

The project manager will be supported by a team leader or leaders who will be responsible for leading and coordinating the day-to-day activities of the various resource specialists under their supervision. The team leader is a highly experienced environmental professional who will report directly to the project manager.

Technical Staff

The technical staff (team members) for this project will be drawn from corporate resources and appropriately qualified subcontractors. The technical staff will be used to gather and analyze data, and to prepare various task reports and support materials. The designated team members will be experienced professionals who possess the degree of specialization and technical competence required to effectively and efficiently perform the required work.

Project QA Director

The Project QA Director will be responsible for maintaining QA for the project.

Laboratory Director

The laboratory director will be responsible for analytical work and works in conjunction with the QA unit. The laboratory director maintains liaison with the QA officer regarding QA and custody requirements.

<u>Laboratory Manager</u>

The laboratory manager will maintain liaison with the laboratory director regarding QA elements of specific sample analyses tasks. The laboratory manager will report to the laboratory director and work in conjunction with the laboratory QA unit.

Laboratory QA Coordinator

The laboratory QA coordinator will be responsible for overseeing the QA program within the laboratory and for maintaining QC documentation. The laboratory QA coordinator reports directly to the laboratory director.

Laboratory Staff

Each member of the laboratory staff will perform an assigned QA or analytical function that is pertinent to and within the scope of his or her knowledge, experience, training, and aptitude.

QA Objectives for Data Measurement

An individual will be assigned the responsibility for checking, reviewing, or otherwise verifying that a sample analysis activity has been correctly performed.

Laboratory Facilities

Laboratory work will be performed in accordance with guidelines established by NYSDEC, NYSDOH, USEPA, and/or the American Society for Testing and Materials (ASTM). In case of conflict, these guidelines and protocols will be considered in the order shown (i.e., NYSDEC criteria is of primary precedence). In addition, QA/QC programs will be maintained for the instruments and the analytical procedures used. TestAmerica is a NYSDOH ELAP certified laboratory capable of providing NYSDEC Analytical Services Protocol (ASP) Category B deliverables and is anticipated to provide laboratory services for this project. However, any lab accredited pursuant to NYSDOH ELAP is eligible.

With the exception of data collected solely for screening, waste characterization, and survey purposes, data will be reported with a NYSDEC ASP Category B deliverable. Laboratory preventative maintenance procedures are provided and outlined in their Laboratory Quality Assurance Manual (available upon request).

4.0 QA OBJECTIVES FOR DATA MEASUREMENT

Measurements will be made to ensure that analytical results are representative of the media and conditions measured. Unless otherwise specified, data will be calculated and reported in units consistent with other organizations who report similar data to allow comparability of databases among organizations.

4.1 KEY CONSIDERATIONS

The key considerations for the QA assessment of generated data are accuracy, precision, completeness, representativeness, and comparability. These characteristics are defined below:

<u>Accuracy</u>: Accuracy is the degree of agreement of a measurement or average of measurements with an accepted reference or "true" value and is a measure of bias in the system.

<u>Precision</u>: Precision is the degree of mutual agreement among individual measurements of a given parameter.

<u>Completeness</u>: Completeness is a measure of the amount of valid data obtained from a measurement system compared to the amount expected to be obtained under correct normal conditions.

Sampling Procedures

<u>Representativeness</u>: Representativeness expresses the degree to which data accurately and precisely represent a characteristic of a population, parameter variations at a sampling point, a process condition, or an environmental condition.

<u>Comparability</u>: Comparability expresses the confidence with which one data set can be compared to another.

Refer to Section 13.0 for additional detail regarding the metrics listed above.

4.2 GOALS

The QA/QC goals will focus on controlling measurement error within the limits established and will ultimately provide a database for estimating the actual uncertainty in the measurement data.

Target values for detection limit, percent spike recovery and percent "true" value of known check standards, and relative percent difference (RPD) of duplicates/replicates are provided in the referenced analytical procedures. It should be noted that target values are not always attainable. Instances may arise where high sample concentrations, non-homogeneity of samples, or matrix interferences preclude achievement of target detection limits or other quality control criteria. In such instances, the laboratory will report reasons for deviations from these detection limits or noncompliance with quality control criteria.

5.0 SAMPLING PROCEDURES

The sampling of various environmental media may be completed as part of Site Management activities, as described in the SMP.

5.1 SAMPLING PROGRAM

The sample containers, preservation, and holding times that will be used are identified in Table 1. The sample containers will be labeled in accordance with Section 6.2. Sample handling, packaging and shipping procedures are presented in Section 6.3.

5.2 FIELD QUALITY CONTROL SAMPLES

Field quality control samples will consist of trip blanks, rinsate blanks, field duplicates, matrix spikes/matrix spike duplicates (MS/MSD), as shown on Table 2.

Sampling Procedures

5.2.1 Trip Blanks

Trip blanks will be used to assess whether groundwater samples have been exposed to volatile constituents during sample storage and transport. The trip blanks will consist of a container filled by the laboratory with analyte-free water. The trip blanks will remain unopened throughout the sampling event and will only be analyzed for volatile organics. The trip blanks will be collected as shown in Table 2.

5.2.2 Rinsate Blanks

Rinsate blanks will be used to assess decontamination procedures for non-dedicated equipment. Rinsate blanks will be collected as shown in Table 2.

5.2.3 Field Duplicates

Field quality control samples will be collected to verify reproducibility of the sampling and analytical methods. Field duplicates will be obtained at a rate of one per 20 original field samples, as shown in Table 2.

5.2.4 Matrix Spike/Matrix Spike Duplicates

MS/MSDs will be obtained to determine if the matrix is interfering with the sample analysis. MS/MSDs will be collected at a rate of one per 20 original field samples, as shown on Table 2.

5.2.5 Laboratory Quality Control Checks

Internal laboratory quality control checks will be used to monitor data integrity. These checks include method (equipment) blanks, spike blanks, internal standards, surrogate samples, calibration standards, and reference standards.

5.3 SAMPLE CONTAINERS

The volumes and containers required for the sampling activities are included in Table 1. Prewashed sample containers will be provided by the laboratory. All bottles are to be prepared in accordance with USEPA bottle washing procedures.

5.4 DECONTAMINATION

Dedicated and/or disposable sampling equipment will be used to the extent possible to minimize decontamination requirements and the possibility of cross-contamination.

Sample Custody

Split spoon samplers, shovels, hand augers, and sediment samplers are examples of sampling equipment that could be used at more than one location. The water level indicator will be decontaminated between locations by using the following decontamination procedures:

- Initial cleaning of any foreign matter with paper towels, if needed;
- Low-phosphate detergent wash; and
- Distilled water rinse:

The non-dedicated samplers used for drilling and soil sampling in test borings will be decontaminated with a bucket wash consisting of a low-phosphate detergent wash followed by potable water rinse. During monitoring well installation, the drill rig, augers, rods, and other related downhole equipment will be decontaminated using high-pressure steam prior to initiating the soil boring program and between drilling locations. During test pit excavating, the excavator will be decontaminated using high-pressure steam. Steam cleaning will be performed in a designated onsite decontamination area. Throughout and after the cleaning processes, direct contact between the equipment and the ground surface will not be permitted. Decontamination waste water will be containerized for later characterization and disposal. The drill rig and associated equipment will also be cleaned upon completion of the investigation prior to departure from the site using the following methods:

- Initial cleaning of foreign matter; and
- Wash down with high-pressure wash.

5.5 LEVELS OF PROTECTION/SITE SAFETY

Sampling will be conducted under a written Health and Safety Plan (HASP). On the basis of air monitoring, the level of protection may be downgraded or upgraded at the discretion of the Site safety officer. Work will initially be conducted in Level D (refer to HASP, Appendix E of the SMP). Air purifying respirators (APRs) will be available if monitoring indicates an upgrade to Level C is appropriate. Crew members will stand upwind of open boreholes or wellheads during the collection of samples, when possible.

6.0 SAMPLE CUSTODY

This section describes standard operating procedures for sample identification and chain-of-custody to be used for field activities. The purpose of these procedures is to ensure that the quality of the samples is maintained during collection, transportation, storage, and analysis. Chain-of-custody requirements comply with standard operating procedures indicated in USEPA and NYSDEC sample-handling protocol.

Sample Custody

Sample identification documents must be carefully prepared so that sample identification and chain-of-custody can be maintained and sample disposition controlled. Sample identification documents include:

- Field sampling records (field notebook and/or field logs);
- Sample labels;
- Custody seals; and
- Chain-of-custody records.

6.1 CHAIN-OF-CUSTODY

The primary objective of the chain-of-custody procedures is to provide an accurate written or computerized record that can be used to trace the possession and handling of a sample from collection to completion of required analyses.

6.1.1 Sample Labels

Sample labels attached to, or affixed around, the sample container must be used to properly identify samples collected in the field. To the extent possible, the sample labels are to be placed on the bottles so as not to obscure any QA/QC lot numbers on the bottles. Sample information must be printed in a legible manner using waterproof ink. Field identification must be sufficient to enable cross-reference with the field sampling records or sample logbook. For chain-of-custody purposes, QC samples are subject to the same custodial procedures and documentation as original or parent samples.

6.1.2 Custody Seals

Custody seals are pre-printed adhesive-backed seals often with security slots which are designed to break if the seals are disturbed. Sample shipping containers (coolers, cardboard boxes, etc., as appropriate) are sealed in as many places as necessary to ensure security. Seals must be signed and dated before use. On receipt at the laboratory, the custodian must check (and certify, by completing logbook entries) that seals on shipping containers are intact. Strapping tape should be placed over the seals to ensure that seals on shipping containers are not accidentally broken during shipment.

6.1.3 Chain-Of-Custody Record

The chain-of-custody record must be completed at least in duplicate by the field personnel designated by the PM as being responsible for sample shipment to the appropriate laboratory for analysis. In addition, if samples are known to require rapid turnaround in the laboratory because of project time constraints or analytical concerns (e.g., extraction time or sample retention period limitations, etc.), the person completing the chain-of-custody record should

Sample Custody

note these constraints in the designated section of the custody record. The field personnel who shipped the samples will review the sample log-in information sent by the lab to confirm sample ID, sample date, sample time, required analyses, and turnaround time. If any discrepancies are identified, the individual will contact the laboratory to correct those inconsistencies.

6.1.4 Field Custody Procedures

The following field custody procedures will be implemented:

- As few parties as possible should handle samples.
- Sample bottles will be obtained pre-cleaned by the laboratory and shipped to the sampling personnel in charge of the field activities. Coolers or boxes containing cleaned bottles should be sealed with a custody tape seal during transport to the field or while in storage prior to use.
- The sample collector is responsible for the care and custody of samples collected until
 they are transferred to another person or dispatched properly under chain-of-custody
 rules.
- The sample collector will record sample data in a controlled field notebook and/or on appropriate field sampling records.
- The Site team leader will determine whether proper custody procedures were followed during the fieldwork and decide if additional samples are required.

6.2 DOCUMENTATION

6.2.1 Sample Identification

Collected samples will be identified using the following format on a label or tag fixed to the sample container:

LIN-xxxx-Z, where:

- "LIN" This shorthand indicates the project located at 820 Linden Avenue in Pittsford, NY.
- "xxxx" These characters (alpha-numeric) will be individual sample-specific. The number
 of characters may vary depending on the sample location and type. Sample
 identifications and locations will be recorded on the sampling record. Field duplicates,
 field blanks and rinsate blanks will be assigned unique sample numbers.
- "Z" This initial will identify the sample matrix in accordance with the following abbreviations:

Sample Custody

- W Water Sample
- S Soil Sample

Each sample will be labeled, chemically preserved, if required, and sealed immediately after collection. To minimize handling of sample containers, labels will be filled out prior to sample collection to the extent possible. The sample label will be filled out using waterproof ink and will be firmly affixed to the sample containers. The sample label will give the following information:

- Name or initials of sampler;
- Date and time of collection;
- Sample identification;
- Intended analysis; and
- Preservation.

6.2.2 Daily Logs

Daily log entries in the dedicated field notebook and field data log forms are necessary to provide sufficient data and observations to enable participants to reconstruct events that occurred during the project. Daily logs will be kept in a project-dedicated notebook, with the pages/entries consecutively numbered. Entries will be made in waterproof ink, dated, and signed. Sampling data will be recorded in the sampling records (may be separate field logs). Information will be completed in waterproof ink. Corrections will be made using a single strike-through with the editor's initials.

6.3 SAMPLE HANDLING, PACKAGING, AND SHIPPING

The transportation and handling of samples must be accomplished in a manner that not only protects the integrity of the sample, but also prevents any detrimental effects due to the possible hazardous nature of samples. Regulations for packaging, marking, labeling, and shipping hazardous materials are promulgated by the United States Department of Transportation (USDOT) in the Code of Federal Regulations, 49 CFR 171 through 177.

All chain-of-custody requirements must comply with standard operating procedures in the NYSDEC and USEPA sample handling protocol. Field personnel will make arrangements for transportation of samples to the laboratory. When custody is relinquished to a shipper, field personnel will ensure that the laboratory custodian or project manager is aware of the expected time of arrival of the sample shipment and of any time constraints on sample analysis(es). Samples will be delivered to the laboratory in a timely manner to help ensure that holding times are followed.

Calibration Procedures and Frequency

7.0 CALIBRATION PROCEDURES AND FREQUENCY

Instruments and equipment used during sampling and analysis will be operated, calibrated, and maintained according to the manufacturer's guidelines and recommendations as well as criteria set forth in the applicable analytical methodology references.

7.1 FIELD INSTRUMENTS

A calibration program will be implemented to ensure that routine calibration is performed on field instruments. Calibration will typically be performed on a daily basis unless manufacturer's instructions indicate differently. More frequent calibrations may be performed as necessary to maintain analytical integrity. Field personnel familiar with the calibration and operations of the equipment will maintain proficiency and perform the prescribed calibration procedures outlined in the operation manuals accompanying the respective instruments. Calibration records for each field instrument used on the project will be maintained in the project files.

7.2 LABORATORY INSTRUMENTS

Laboratory calibration procedures are addressed in detail in the laboratory Quality Assurance Manual which is available upon request. Calibration procedures will be consistent with the method used for analysis.

8.0 ANALYTICAL PROCEDURES

8.1 FIELD

Onsite procedures for analysis of total organic vapor and other field parameters are addressed in the SMP, if applicable.

8.2 LABORATORY

Specific analytical methods for constituents of interest in soil and groundwater are listed in Table 1. The laboratory will maintain and have available for the appropriate operators Standard Operating Procedures relating to sample preparation and analysis according to the methods stipulated in Table 1. Laboratory SOPs are available upon request. Laboratory target reporting and detection limits for soil and groundwater analyses are provided in Appendix A.

Data Reduction and Reporting

9.0 DATA REDUCTION AND REPORTING

QA/QC requirements will be strictly adhered to during sampling and analytical work. Data generated will be reviewed by comparing and interpreting results from chromatograms (responses, stability of retention times), accuracy (mean percent recovery of spiked samples), and precision (reproducibility of results).

Data storage and documentation will be maintained using logbooks and data sheets that will be kept on file. Analytical QC will be documented and included in the analytical testing report. A central file will be maintained for the sampling and analytical effort after the final laboratory report is issued.

Calculations and data manipulations are included in the appropriate methodology references. Control charts and calibration curves will be used to review the data and identify outlying results. Prior to the submission of the report to the client, data will be evaluated for precision, accuracy, and completeness. Sections 4.0, and 13.0 of this document include some of the QC criteria to be used in the data evaluation process.

Laboratory reports will be reviewed by the laboratory supervisor, the project QA director, laboratory manager and/or director, and the PM. Analytical reports will contain a data tabulation of results. Supporting QC information will also be provided in the laboratory reports. Raw data will be available for later inspection, if required, and maintained in the control job file. With the exception of data collected solely for screening, waste characterization, and survey purposes, data will be reported in NYSDEC ASP Category B deliverable format.

Finalized data will be provided to NYSDEC in an electronic data deliverable (EDD) format, in accordance with DER-10 and NYSDEC's "Electronic Data Deliverable Manual" (v.3, April 2013). The EDD will reflect DUSR-related modifications, as appropriate.

10.0 INTERNAL QUALITY CONTROL CHECKS

QC data are necessary to determine precision and accuracy and to demonstrate the absence of interferences and/or contamination of glassware and reagents. The procedures to be followed for internal quality control checks are consistent with NYSDEC ASP protocols.

Performance and System Audits

11.0 PERFORMANCE AND SYSTEM AUDITS

11.1 FIELD AUDITS

The Project QA Director may conduct episodic audits of the operations at the Site to ensure that work is being performed in accordance with the work plan and associated standard operating practice. The audit will cover, but not necessarily be limited to, such areas as:

- Conformance to standard operating procedures;
- Completeness and accuracy of documentation;
- Chain-of-custody procedures; and
- Construction specifications.

11.2 LABORATORY AUDITS

In addition to any audits required by the NYSDEC, the Project QA Director may choose to audit the laboratory. These additional audits may take the form of performance evaluation samples or onsite inspections of the laboratory. Performance evaluation samples may be either blind samples or samples of known origin to the laboratory. Reasonable notice will be provided if the audit is to include an on-site inspection of the laboratory.

12.0 PREVENTIVE MAINTENANCE

12.1 FIELD

Field personnel assigned to complete the work will be responsible for preventative maintenance of field instruments. The field sampling personnel will protect the field instruments by placing them in portable boxes and/or protective cases, and by minimizing their exposure to precipitation to the extent practicable.

Field equipment will be subject to a routine maintenance program, prior to and after each use. The routine maintenance program for each piece of equipment will be in accordance with the manufacturer's operations and maintenance manual. Equipment will be cleaned and checked for integrity after each use. Necessary repairs will be performed immediately after any defects are observed, and before the item of equipment is used again. Equipment parts with a limited life (such as batteries, membranes, sensors and some electronic components) will be periodically checked and replaced or recharged as necessary according to the manufacturer's specifications.

Data Assessment Procedure

12.2 LABORATORY

The laboratory's preventative maintenance procedures are provided in the laboratory Quality Assurance Manual (available upon request).

13.0 DATA ASSESSMENT PROCEDURE

Performance of the following calculations will be completed to evaluate the accuracy, precision and completeness of collected measurement data.

13.1 PRECISION

Precision of a particular analysis is measured by assessing its performance with duplicate or replicate samples. Duplicate samples are pairs of samples taken in the field and transported to the laboratory as distinct samples. Their identity as duplicates is sometimes not known to the laboratory and usually not known to bench analysts, so their usefulness for monitoring analytical precision at bench level is limited. For most purposes, precision is determined by the analysis of replicate pairs (i.e., two samples prepared at the laboratory from one original sample). Often in replicate analysis the sample chosen for replication does not contain target analytes so that quantification of precision is impossible. Replicate pairs of spiked samples, known as MS/MSDs, are used for precision studies. This has the advantage that two real positive values for a target analyte can be compared.

Precision is calculated in terms of relative percent difference (RPD), which is expressed as follows:

$$RPD = \frac{(x_1 - x_2) \times 100}{(x_1 + x_2)/2}$$

where X_1 and X_2 represent the individual values found for the target analyte in the two replicate analyses or in the MS/MSD analyses.

RPDs must be compared to the method RPD for the analysis. The analyst or analyst supervisor must investigate the cause of RPDs outside stated acceptance limits. This may include a visual inspection of the sample for non-homogeneity, analysis of check samples, etc. Follow-up action may include sample re-analysis or flagging of the data as suspect if problems cannot be resolved.

Data Assessment Procedure

13.2 ACCURACY

Accuracy of a particular analysis is measured by assessing its performance with "known" samples. These "knowns" can take the form of USEPA or National Institute of Standards and Technology (NIST) traceable standards (usually spiked into a pure water matrix); or laboratory prepared solutions of target analytes into a pure water or sample matrix; or, in the case of gas chromatography (GC) or gas chromatography-mass spectrometry (GC-MS) analyses, solutions of surrogate compounds which can be spiked into every sample and are designed to mimic the behavior of target analytes without interfering with their determination.

In each case the recovery of the analyte is measured as a percentage, corrected for analytes known to be present in the original sample if necessary, as in the case of a matrix spike analysis. For USEPA or NIST supplied known solutions, this recovery is compared to the published data that accompany the solution. For prepared solutions, the recovery is compared to USEPA-developed data or historical data as available. For surrogate compounds, recoveries are compared to USEPA Contract Laboratory Program (CLP) acceptable recovery tables. If recoveries do not meet required criteria, then the analytical data for the batch (or, in the case of surrogate compounds, for the individual sample) are considered potentially inaccurate.

For highly contaminated samples, recovery of matrix spike may depend on sample homogeneity. As a rule, analyses are not corrected for recovery of matrix spike or surrogate compounds.

13.3 COMPLETENESS

Completeness is a measure of the amount of valid data obtained from a measurement system compared to the total amount expected to be obtained under normal conditions.

Completeness for each parameter is calculated as:

$$Completeness = \frac{Number\ of\ Successful\ Analyses\ \times 100}{Number\ of\ Requested\ Analyses}$$

Target value for completeness for parameters is 100%. A completeness value of 95% will be considered acceptable. Incomplete results will be reported to the PM.

13.4 REPRESENTATIVENESS

The characteristic of representativeness is not quantifiable. Subjective factors to consider include:

• The degree of homogeneity of the Site;

Quality Assurance Reports

- The degree of homogeneity of a sample taken from one point in a Site; and
- The available information on which a sampling plan is based.

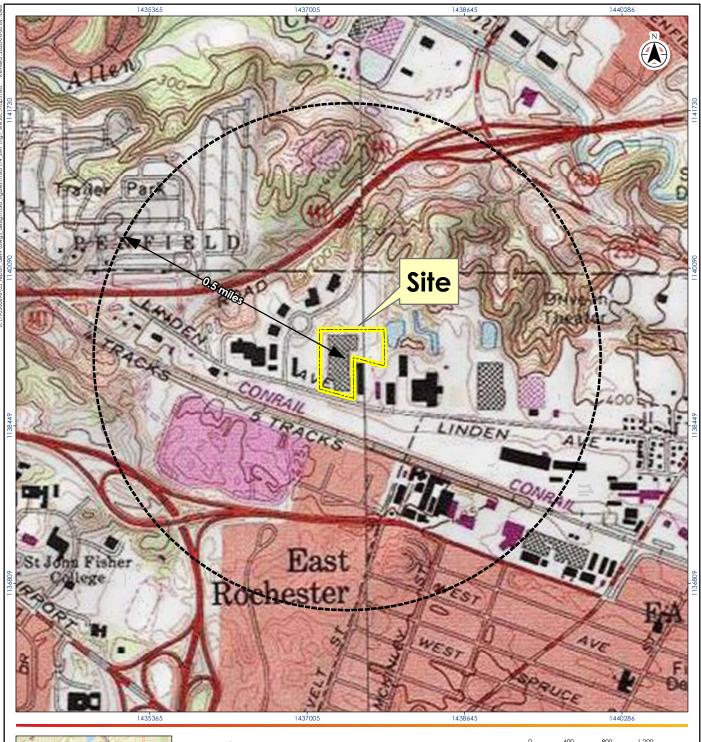
To maximize representativeness of results, sampling techniques and sample locations will be carefully chosen so that they provide laboratory samples representative of the Site and the specific area sampled.

14.0 QUALITY ASSURANCE REPORTS

Upon completion of a sampling event, with the exception of sampling efforts conducted solely for screening, waste characterization, and survey purposes, analytical and QC data will be included in a DUSR that summarizes the work and provides a data evaluation. A discussion of the usability of the results in the context of QA/QC procedures will be prepared for the Periodic Review Report (PRR), and will also include a summary of the QA/QC activity. The DUSR will be performed in accordance with the DEC's "Guidance for the Development of Data Usability Summary Reports," revised 1997, and DER-10.

As described in the following section, serious analytical problems will be reported, and appropriate corrective measures taken.

15.0 CORRECTIVE ACTION


Corrective actions can be initiated as a result of performance and system audits, laboratory and inter-field comparison studies, data validation, and/or a QA program audit. They may also be required as a result of a request from project representatives. Corrective action necessary to resolve analytical problems will be implemented.

Time and type of corrective action, if needed, will depend on the severity of the problem and relative overall project importance. Corrective actions may include altering procedures in the field, conducting subsequent audits, or modifying project/laboratory protocol. Corrective action will be implemented after notification of project representatives. The PM is responsible for initiating corrective action and the team leader is responsible for its implementation in the correction of field non-conformance corrective actions. Success or failure of corrective actions will be reported to project representatives, and addressed within the PRR, including an estimate of effect on data quality, if any.

FIGURES

Legend

- Notes

 1. Coordinate System: NAD 1983 StatePlane New York
 West FIPS 3103 Feet
 2. ArcGIS Bosemaps: USA Topo Maps (main frame) and
 World Street Map (key map).

Disclaimer: Stantec assumes no responsibility for data supplied in electronic format. The recipient accepts full responsibility for verifying the accuracy and completeness of the data. The recipient releases Stantee, its officers, employees, consultants and agents, from any and all claims arising in any way from the content or provision of the data.

820 Linden Avenue Prepared by LB on 2020-06-30 Pittsford, Monroe Co., NY Technical Review by SRS on 2020-07-xx Independent Review by MPS/KI on 2020-07-xx

Client/Project 820 Linden Ave Site BCP Site #C828200 Site Management Plan

DRAFT

Site Location Map

TABLES

Table 1

Required Sample Containers, Volumes, Sample Preservation, and Holding Times

Quality Assurance Project Plan 820 Linden Ave BCP Site #C828200 820 Linden Avenue, Pittsford, NY

Media	Type of Analysis	Method	Required Container	Preferred Sample Volume	Preservation	Maximum Holding Time
	TCL plus CP-51 VOCs + TICs	EPA 8260C	2 oz. cwm	2 oz.	Cool 4°C	14 days
	TCL SVOCs + TICs	EPA 8270D				
Soil	TCL Pesticides	EPA 8081B	4 oz. cwm	n 8 oz.	Cool 4°C	7 days
3011	TCL PCBs	EPA 8082A				
	TAL Metals	EPA 6010C/7000 Series	4 oz. cwm	4 oz.	Cool 4°C	6 months; 28 days for mercury
	Cyanide	EPA 9012B	4 oz. cwm	4 oz.	Cool 4°C	14 days
	TCL plus CP-51 VOCs +TICs	EPA 8260C	(3) 40 ml glass vials	120 ml	pH < 2, HCl	14 days if acidified with HCl
	TCL SVOCs + TICs	EPA 8270D	(2) 250 ml amber glass jars	500 ml	Cool 4°C	7 day/40 day ^A
Canada al carta a	TCL Pesticides	EPA 8081B	(2) 250 ml amber glass jars	500 ml	Cool 4°C	7 day/40 day ^A
Groundwater	TCL PCBs	EPA 8082A	(2) 250 ml amber glass jars	500 ml	Cool 4°C	10 day/40 day ^B
	TAL Metals	EPA 6010C/7000 Series	(1) 250 ml plastic jar	500 ml	pH < 2, HNO ₃	6 months; 28 days for mercury
	Cyanide	EPA 9012B	(1) 250 ml plastic jar	250 ml	NaOH	14 days
Sub-Slab Soil Vapor/Indoor Air/Outdoor Air	TCL VOCs	TO-15	6L Summa canister	6L		30 days

ĸ	•	.,	•
r	c	y	•

CP-51 NYSDEC Commissioner Policy (CP)-51

cwm clear wide mouth jar

EPA U.S. Environmental Protection Agency

HCI hydrochloric acid

ml milliliter
HNO3 nitric acid
L liter

PCBs Polychlorinated biphenyls

PFAS per- and polyfluoroalkyl substances

SIM selective ion monitoring

SVOCs semivolatile organic compounds
TAL USEPA's Target Analyte List
TCL USEPA's Target Compound List
TIC tentatively identified compound
VOCs volatile organic compounds

oz ounces

Notes:

^A Holding time is 7 days from collection to extraction and 40 days from extraction to analysis.

^B Holding time is 10 days from collection to extraction and 40 days from extraction to analysis.

Table 2 Summary of Field Quality Control Checks

Quality Assurance Project Plan 820 Linden Ave BCP Site #C828200 820 Linden Avenue, Pittsford, NY

	Analysis Method			QA/QC	Samples		Total
Analysis Parameters	(USEPA SW846 method number)	Estimated Number of Site Samples	Field Duplicates ²	Trip Blanks ³	Rinsate Blanks ⁴	MS/MSD⁵	Number of Samples
Soil Sampling ¹							
TCL + CP-51 VOCs, plus up to 10 TICs	8260C	0	0	0	0	0/0	0
TCL SVOCs, plus up to 20 TICs	8270D	0	0	0	0	0/0	0
TCL PCBs	8082A	0	0	0	0	0/0	0
TCL Pesticides	8081B	0	0	0	0	0/0	0
TAL Metals	6010C/7000 series	0	0	0	0	0/0	0
Cyanide	9012B	0	0	0	0	0/0	0
Groundwater Sampling ¹							
TCL + CP-51 VOCs, plus up to 10 TICs	8260C	0	0	0	0	0/0	0
TCL SVOCs, plus up to 20 TICs	8270D	0	0	0	0	0/0	0
TCL PCBs	8082A	0	0	0	0	0/0	0
TCL Pesticides	8081B	0	0	0	0	0/0	0
TAL Metals	6010C/7000 series	0	0	0	0	0/0	0
Cyanide	9012B	0	0	0	0	0/0	0
Air Sampling ¹	•		•			•	•
TCL VOCs	TO-15	0	0	0	0	0/0	0

Key:

MS/MSD Matrix Spike/Matrix Spike Duplicate

PCBs polychlorinated biphenyls

QA/QC Quality Assurance/Quality Control
SVOCs semivolatile organic compounds
TAL USEPA's Target Analyte List
TCL USEPA's Target Compound List
TICs tentatively identified compounds

USEPA United States Environmental Protection Agency

VOCs volatile organic compounds

Notes:

- ¹ At the time this SMP was prepared, no routine sampling with laboratory analyses was proposed. The number of required QA/QC samples will be accordingly adjusted should sampling become warranted and required.
- ² Field duplicates will be collected at a frequency of 1 per 20 samples for each sample medium, including soil vapor/indoor air/outdoor air.
- 3 Trip blanks will be collected at a frequency of 1 per cooler containing aqueous samples to be analyzed for VOCs.
- ⁴ Rinsate blanks will be collected at a frequency of 1 per mobilization for each sampling method using non-dedicated equipment.
- 5 MS/MSDs will be collected at a frequency of 1 per 20 samples for each sample medium, excluding soil vapor/indoor air.

APPENDICES

ethod Description	Analyte	Laboratory MDL	Laboratory R
	Soil (mg/Kg)		
	1,1,1-Trichloroethane	0.0004	0.005
	1,1,2,2-Tetrachloroethane	0.0008	0.005
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.0011	0.005
	1,1,2-Trichloroethane	0.0007	0.005
	1,1-Dichloroethane	0.0006	0.005
	1,1-Dichloroethene	0.0006	0.005
	1,2,4-Trichlorobenzene	0.0003	0.005
	1,2,4-Trimethylbenzene	0.0010	0.005
	1,2-Dibromo-3-Chloropropane	0.0025	0.005
	1,2-Dibromoethane	0.0006	0.005
	1,2-Dichlorobenzene	0.0004	0.005
	1,2-Dichloroethane	0.0003	0.005
	1,2-Dichloropropane	0.0025	0.005
	1,3,5-Trimethylbenzene	0.0003	0.005
	1,3-Dichlorobenzene	0.0003	0.005
	1.4-Dichlorobenzene	0.0007	0.005
	2-Butanone (MEK)	0.0018	0.025
	2-Hexanone	0.0025	0.025
	4-Isopropyltoluene	0.0004	0.005
	4-Methyl-2-pentanone (MIBK)	0.0016	0.025
	Acetone	0.0042	0.025
	Benzene	0.0002	0.005
	Bromodichloromethane	0.0002	0.005
	Bromoform	0.0025	0.005
	Bromomethane	0.0025	0.005
	Carbon disulfide	0.0005	0.005
	Carbon districte Carbon tetrachloride	0.0025	0.005
	Chlorobenzene	0.0003	0.005
Volatile Organic Compounds	Chloroethane	0.0007	0.005
(8260C)	Chloroform	0.0003	0.005
(0200C)	Chloromethane	0.0003	0.005
	cis-1,2-Dichloroethene	0.0003	0.005
	cis-1,3-Dichloropropene	0.0008	0.005
	Cyclohexane	0.0007	0.005
	Dibromochloromethane	0.0007	0.005
		0.0006	
	Dichlorodifluoromethane		0.005
	Ethylbenzene	0.0003	0.005
	Isopropylbenzene	0.0008	0.005
	m,p-Xylene	0.0008	0.01
	Methyl acetate	0.0030	0.025
	Methyl tert-butyl ether	0.0005	0.005
	Methylcyclohexane	0.0008	0.005
	Methylene Chloride	0.0023	0.005
	Naphthalene	0.0007	0.005
	n-Butylbenzene	0.0004	0.005
	N-Propylbenzene	0.0004	0.005
	o-Xylene	0.0007	0.005
	sec-Butylbenzene	0.0004	0.005
	Styrene	0.0003	0.005
	tert-Butylbenzene	0.0005	0.005
	Tetrachloroethene	0.0007	0.005
	Toluene	0.0004	0.005
	trans-1,2-Dichloroethene	0.0005	0.005
	trans-1,3-Dichloropropene	0.0022	0.005
	Trichloroethene	0.0011	0.005
	Trichlorofluoromethane	0.0005	0.005
	Vinyl chloride	0.0006	0.005
	Xylenes, Total	0.0008	0.01

hod Description	Analyte	Laboratory MDL	Laboratory RI
	2,2'-oxybis[1-chloropropane]	0.0340	0.17
	2,4,5-Trichlorophenol	0.0460	0.17
	2,4,6-Trichlorophenol	0.0340	0.17
	2,4-Dichlorophenol	0.0180	0.17
	2,4-Dimethylphenol	0.0410	0.17
		0.7840	0.33
	2,4-Dinitrophenol		
	2,4-Dinitrotoluene	0.0350	0.17
	2,6-Dinitrotoluene	0.0200	0.17
	2-Chloronaphthalene	0.0280	0.17
	2-Chlorophenol	0.0310	0.17
	2-Methylnaphthalene	0.0340	0.17
	2-Methylphenol	0.0200	0.17
	2-Nitroaniline	0.0250	0.33
	2-Nitrophenol	0.0480	0.17
	3,3'-Dichlorobenzidine	0.2000	0.17
	3-Nitroaniline	0.0470	0.33
	4,6-Dinitro-2-methylphenol	0.1700	0.33
	4-Bromophenyl phenyl ether	0.0240	0.17
	4-Chloro-3-methylphenol	0.0420	0.17
	4-Chloroaniline	0.0420	0.17
	4-Chlorophenyl phenyl ether	0.0210	0.17
	4-Methylphenol	0.0200	0.33
	4-Nitroaniline	0.0200	0.33
	4-Nitrophenol	0.1190	0.33
	Acenaphthene	0.0250	0.17
	Acenaphthylene	0.0220	0.17
	Acetophenone	0.0230	0.17
	Anthracene	0.0420	0.17
	Atrazine	0.0590	0.17
	Benzaldehyde	0.1350	0.17
	Benzo[a]anthracene	0.0170	0.17
		0.0250	0.17
Semivolatile Organic Compounds	Benzo[a]pyrene		
(8270D)	Benzo[b]fluoranthene	0.0270	0.17
(==: ==)	Benzo[g,h,i]perylene	0.0180	0.17
	Benzo[k]fluoranthene	0.0220	0.17
	Biphenyl	0.0250	0.17
	Bis(2-chloroethoxy)methane	0.0360	0.17
	Bis(2-chloroethyl)ether	0.0220	0.17
	Bis(2-ethylhexyl) phthalate	0.0580	0.17
	Butyl benzyl phthalate	0.0280	0.17
		0.0510	0.17
	Caprolactam		
	Carbazole	0.0200	0.17
	Chrysene	0.0380	0.17
	Dibenz(a,h)anthracene	0.0300	0.17
	Dibenzofuran	0.0200	0.17
	Diethyl phthalate	0.0220	0.17
	Dimethyl phthalate	0.0200	0.17
	Di-n-butyl phthalate	0.0290	0.17
	Di-n-octyl phthalate	0.0200	0.17
	Fluoranthene	0.0180	0.17
	Fluorene	0.0200	0.17
	Hexachlorobenzene	0.0230	0.17
	Hexachlorobutadiene	0.0250	0.17
	Hexachlorocyclopentadiene	0.0230	0.17
	Hexachloroethane	0.0220	0.17
	Indeno[1,2,3-cd]pyrene	0.0210	0.17
	Isophorone	0.0360	0.17
	Naphthalene	0.0220	0.17
	Nitrobenzene	0.0190	0.17
	N-Nitrosodi-n-propylamine	0.0290	0.17
	N-Nitrosodiphenylamine	0.1380	0.17
	Pentachlorophenol	0.1700	0.33
	Phenanthrene	0.0250	0.17
	Phenol	0.0260	0.17

ethod Description	Analyte	Laboratory MDL	Laboratory R
	4,4'-DDD	0.0003	0.00167
	4,4'-DDE	0.0004	0.00167
	4,4'-DDT	0.0004	0.00167
	Aldrin	0.0004	0.00167
	alpha-BHC	0.0003	0.00167
	alpha-Chlordane	0.0008	0.00167
	beta-BHC	0.0003	0.00167
	delta-BHC	0.0003	0.00167
	Dieldrin	0.0004	0.00167
Dastisidas	Endosulfan I	0.0003	0.00167
Pesticides	Endosulfan II	0.0003	0.00167
(8081B)	Endosulfan sulfate	0.0003	0.00167
	Endrin	0.0003	0.00167
	Endrin aldehyde	0.0004	0.00167
	Endrin ketone	0.0004	0.00167
	gamma-BHC (Lindane)	0.0003	0.00167
	gamma-Chlordane	0.0005	0.00167
	Heptachlor	0.0004	0.00167
	Heptachlor epoxide	0.0004	0.00167
	Methoxychlor	0.0003	0.00167
	Toxaphene	0.0097	0.0167
	PCB-1016	0.0489	0.0167
	PCB-1221	0.0489	0.0167
	PCB-1232	0.0489	0.0167
	PCB-1242	0.0489	0.0167
PCBs	PCB-1248	0.0489	0.0167
(8082A)	PCB-1254	0.0467	0.0167
	PCB-1254 PCB-1260	0.1170	0.0167
	PCB-1260 PCB-1262	0.1170	0.0167
	PCB-1262 PCB-1268	0.1170	0.0167
	Aluminum	4.40	10.0
		0.400	
	Antimony	0.400	15.0
	Arsenic	0.400	2.00
	Barium		0.500
	Beryllium	0.0280	0.200
	Cadmium	0.0300	0.200
	Calcium	3.30	50.0
	Chromium	0.200	0.500
	Cobalt	0.0500	0.500
	Copper	0.210	1.00
Metals	Iron	3.50	10.0
(6010C/7000 Series)	Lead	0.240	1.00
(00.100,7000 00.103)	Magnesium	0.927	20.0
	Manganese	0.0320	0.200
	Nickel	0.230	5.00
	Potassium	20.0	30.0
	Selenium	0.400	4.00
	Silver	0.200	0.500
	Sodium	13.0	140
	Thallium	0.300	6.00
	Vanadium	0.110	0.500
	Zinc	0.640	2.00
	Mercury	0.00810	0.0200
Cyanide, Total andor Amenable			
(9012B)	Cyanide, Total	0.483	1.00

ethod Description	Analyte	Laboratory MDL	Laboratory RI
	Water (µg/L)		
	1,1,1-Trichloroethane	0.820	1.00
	1,1,2,2-Tetrachloroethane	0.210	1.00
	1,1,2-Trichloro-1,2,2-trifluoroethane	0.310	1.00
	1,1,2-Trichloroethane	0.230	1.00
	1,1-Dichloroethane	0.380	1.00
	1,1-Dichloroethene	0.290	1.00
	1,2,4-Trichlorobenzene	0.410	1.00
	1,2,4-Trimethylbenzene	0.750	1.00
	1,2-Dibromo-3-Chloropropane	0.390	1.00
	1,2-Dibromoethane	0.730	1.00
	1,2-Dichlorobenzene	0.790	1.00
	1,2-Dichloroethane	0.210	1.00
	1,2-Dichloropropane	0.720	1.00
	1,3,5-Trimethylbenzene	0.770	1.00
	1,3-Dichlorobenzene	0.780	1.00
	1,4-Dichlorobenzene	0.840	1.00
	2-Butanone (MEK)	1.32	10.0
	2-Hexanone 4-Isopropyltoluene	1.24 0.310	5.00 1.00
	4-isopropyiroidene 4-Methyl-2-pentanone (MIBK)	2.10	5.00
	Acetone	3.00	10.0
	Benzene	0.410	1.00
	Bromodichloromethane	0.390	1.00
	Bromoform	0.260	1.00
	Bromomethane	0.690	1.00
	Carbon disulfide	0.190	1.00
	Carbon tetrachloride	0.270	1.00
	Chlorobenzene	0.750	1.00
	Chloroethane	0.320	1.00
Volatile Organic Compounds	Chloroform	0.340	1.00
(8260C)	Chloromethane	0.350	1.00
	cis-1,2-Dichloroethene	0.810	1.00
	cis-1,3-Dichloropropene	0.360	1.00
	Cyclohexane	0.180	1.00
	Dibromochloromethane	0.320	1.00
	Dichlorodifluoromethane	0.680	1.00
	Ethylbenzene	0.740	1.00
	Isopropylbenzene	0.790	1.00
	m,p-Xylene	0.660	2.00
	Methyl acetate	1.30	2.50
	Methyl tert-butyl ether	0.160	1.00
	Methylcyclohexane	0.160	1.00
	Methylene Chloride	0.440	1.00
	Naphthalene	0.430	1.00
	n-Butylbenzene	0.640	1.00
	N-Propylbenzene	0.690	1.00
	o-Xylene	0.760	1.00
	sec-Butylbenzene	0.750	1.00
	Styrene	0.730	1.00
	Tentatively Identified Compound	0.010	1.00
	tert-Butylbenzene	0.810	1.00
	Tetrachloroethene	0.360	1.00
	Toluene	0.510	1.00
	trans-1,2-Dichloroethene	0.900	1.00
	trans-1,3-Dichloropropene	0.370	1.00
	Trichloroethene	0.460	1.00
	Trichlorofluoromethane	0.880	1.00
	Vinyl chloride	0.900	1.00
	Xylenes, Total	0.660	2.00

ethod Description	Anglyte	Laboratory MDL	Laboratory RI
	2,4,5-Trichlorophenol	0.480	5.00
	2,4,6-Trichlorophenol	0.610	5.00
	2,4-Dichlorophenol	0.510	5.00
	2,4-Dimethylphenol	0.500	5.00
	2,4-Dinitrophenol	2.22	10.0
	2,4-Dinitrofoluene	0.447	
	,		5.00
	2,6-Dinitrotoluene	0.400	5.00
	2-Chloronaphthalene	0.460	5.00
	2-Chlorophenol	0.530	5.00
	2-Methylnaphthalene	0.600	5.00
	2-Methylphenol	0.400	5.00
	2-Nitroaniline	0.420	10.0
	2-Nitrophenol	0.480	5.00
	3,3'-Dichlorobenzidine	0.400	5.00
	3-Nitroaniline	0.480	10.0
	4,6-Dinitro-2-methylphenol	2.20	10.0
	4-Bromophenyl phenyl ether	0.450	5.00
	4-Chloro-3-methylphenol	0.450	5.00
	4-Chloroaniline	0.590	5.00
	4-Chlorophenyl phenyl ether	0.350	5.00
	4-Methylphenol	0.360	10.0
	4-Nitroaniline	0.250	10.0
		1.52	10.0
	4-Nitrophenol		
	Acenaphthene	0.410	5.00
	Acenaphthylene	0.380	5.00
	Acetophenone	0.540	5.00
	Anthracene	0.280	5.00
	Atrazine	0.460	5.00
	Benzaldehyde	0.267	5.00
	Benzo[a]anthracene	0.360	5.00
	Benzo[a]pyrene	0.470	5.00
Semivolatile Organic Compounds	Benzo[b]fluoranthene	0.340	5.00
(8270D)	Benzo[g,h,i]perylene	0.350	5.00
(02,05)	Benzo[k]fluoranthene	0.730	5.00
	Biphenyl	0.653	5.00
	bis (2-chloroisopropyl) ether	0.520	5.00
	Bis(2-chloroethoxy)methane	0.350	5.00
	Bis(2-chloroethyl)ether	0.400	5.00
	Bis(2-ethylhexyl) phthalate	2.20	5.00
	Butyl benzyl phthalate	1.00	5.00
	Caprolactam	2.20	5.00
	Carbazole	0.300	5.00
	Chrysene	0.330	5.00
	Dibenz(a,h)anthracene	0.420	5.00
	Dibenzofuran	0.510	10.0
	Diethyl phthalate	0.220	5.00
	Dimethyl phthalate	0.360	5.00
	Di-n-butyl phthalate		
	, ,	0.310	5.00
	Di-n-octyl phthalate	0.470	5.00
	Fluoranthene	0.400	5.00
	Fluorene	0.360	5.00
	Hexachlorobenzene	0.510	5.00
	Hexachlorobutadiene	0.680	5.00
	Hexachlorocyclopentadiene	0.590	5.00
	Hexachloroethane	0.590	5.00
	Indeno[1,2,3-cd]pyrene	0.470	5.00
	Isophorone	0.430	5.00
	Naphthalene	0.760	5.00
	Nitrobenzene	0.290	5.00
	N-Nitrosodi-n-propylamine	0.540	5.00
	N-Nitrosodiphenylamine	0.510	5.00
	Pentachlorophenol	2.20	10.0
	· ·		5.00
	Phenanthrene	0.440	
	Phenol	0.390	5.00
	Pyrene	0.340	5.00

ethod Description	Analyte	Laboratory MDL	Laboratory R
	4,4'-DDD	0.00920	0.0500
	4,4'-DDE	0.0116	0.0500
	4,4'-DDT	0.0110	0.0500
	Aldrin	0.00810	0.0500
	alpha-BHC	0.00770	0.0500
	beta-BHC	0.0248	0.0500
	delta-BHC	0.0100	0.0500
	Dieldrin	0.00980	0.0500
Pesticides	Endosulfan I	0.0110	0.0500
(8081B)	Endosulfan II	0.0120	0.0500
()	Endosulfan sulfate	0.0157	0.0500
	Endrin	0.0138	0.0500
	Endrin aldehyde	0.0163	0.0500
	gamma-BHC (Lindane)	0.00800	0.0500
	Heptachlor	0.00850	0.0500
	Heptachlor epoxide	0.00740	0.0500
	Methoxychlor	0.0141	0.0500
	Toxaphene	0.120	0.500
	PCB-1016	0.176	0.500
	PCB-1221	0.176	0.500
	PCB-1232	0.176	0.500
PCBs	PCB-1242	0.176	0.500
(8082A)	PCB-1248	0.176	0.500
	PCB-1254	0.178	0.500
	PCB-1260	0.250	0.500
	Aluminum	60	200
	Antimony	6.79	200
	Arsenic	5.55	10
	Barium	0.7	2
	Beryllium	0.3	2
	Cadmium		1
	Calcium	100	500
	Chromium	1	4
	Cobalt	0.63	4
	Copper	1.6	10
Metals	Iron	19.3	50
(6010C/7000 Series)	Lead	3	5
(55.55). 555 5555	Magnesium	43.4	200
	Manganese	0.4	3
	Nickel	1.26	10
	Potassium	100	500
	Selenium	8.7	15
	Silver	1.7	3
	Sodium	324	1000
	Thallium	10.2	20
	Vanadium	1.5	5
	Zinc	1.5	10
	Mercury	0.12	0.2
Hexavalent Chromium			
(7196A)	Chromium, Hexavalent	5	10
Cyanide, Total andor Amenable			
(9012B)	Cyanide, Total	5	10

Notes:

1. The limits summarized in this table were obtained from Eurofins TestAmerica Laboratories, Inc. for this project.

Appendix I

Site Management Forms

List of Site Management Forms

- 1. Annual Site-wide Inspection Form
- 2. SSDS Inspection Form: Monthly Monitoring Log
- 3. SSDS Inspection Form: Annual Monitoring Log
- 4. Summary of Green Remediation Metrics for Site Management

Annual Site-wide Inspection Form

820 Linden Ave Site Brownfield Cleanup Program Site # C828200 820 Linden Avenue Pittsford, Monroe County, New York

In	spection Date(s):					
Ti	me Period Inspection Covers:					
In	nspector(s):					
W	eather:					
1.	Describe the Site usage:					
	Is the Site still Commercial/Industrial (circle one)? If no, what is the current use?					
2.	Describe general Site conditions (surface/floor condition, evidence of erosion or recent construction activities, standing water, other notable observations, etc.)					
	Exterior:					
	Interior:					
	interior.					
3.	Is the Site currently undergoing development (circle one)?					
	If so, describe					
4.	Has some or all of the Site property been sold, subdivided, merged, or undergone a tax map amendment during the Reporting Period (circle one)? Y N					
5.	Is the Site being used for vegetable gardening or farming (circle one)? Y N					

Annual Site-wide Inspection Form 820 Linden Ave Site Page 2 of 2

6.	Management Plan (SMP) (circle one)? Y N N/A
7.	Is groundwater being used on-site (circle one)?
	If yes, has the use been approved by NYSDEC and is it being rendered safe for its intended use? Describe.
8.	How many buildings are on-site and what type?
	*Are any of the listed buildings new (circle one)? Y N N/A
9.	Has the potential for soil vapor intrusion been evaluated or has a sub-slab depressurization system (SSDS) been installed? Y
	*If any of the buildings are new, please comment on the evaluation of potential for SVI been evaluated and/or future SSDS installation.
10.	Are soil covers in place for the areas defined in the SMP (circle one)? Y
	If not, describe.
11.	Describe vegetation in place on the soil cover
12.	Have any activities been conducted since the last inspection that necessitated site management activities be conducted, such as excavation in covered areas (circle one)?
	Y N
	If so, describe
13.	Have any federal, state, and/or local permits (e.g. building, discharge) been issued for or at the property during this Reporting Period (circle one)?
	If so, describe
14.	Are all ICs/ECs in place and functioning as designed (circle one)? Y
lf n	not describe

820 Linden Avenue Site (BCP Site #C828200) Town of Pittsford, NY SSDS Inspection Form

MONTHLY MONITORING LOG				
	Stantec			

Date	
Name	
Company	
Position	

Complete?	Task	Notes
SSDS Inspec		
	Visual inspection of the equipment and piping	
	Identification and subsequent repair of any leaks	
	Inspection of exhaust points to verify that no air intakes have been located nearby	
	Audible operational status check of vent fans	
	Documentation of manifold settings and vacuum at each fan	
	Damper adjustments as required to balance parallel branches of system	
	Maintenance activities conducted	
	Any modifications to the system, are electrical panel schedules related to the SSDS fans up to date and accurate?	
Cover Syster	n (Concrete Floor Slab) Inspection	
	Visual inspection of the hard surface cover for evidence of deep cracks, potholes, cuts, depressions, and deterioration of joint seals and penetration seals	
	Identification of any areas where there is evidence of excessive settlement relative to the surrounding areas	
	Listening for audible indications of cracks in the cover system	

820 Linden Avenue Site (BCP Site #C828200)

Town of Pittsford, NY

SSDS Pressure Monitoring Form

Fan	Date	Approximate Time	Differential Pressure (inches of water column)
F1			
F2			
F3			
F4			
F5			
F6			
F7			
F8 & F9			

Weather conditions:	
Is an air supply/heating	ı system on:
Name and Position:	
Company:	

MONTHLY MONITORING LOG

820 Linden Avenue Site (BCP Site #C828200) Town of Pittsford, NY SSDS Inspection Form

ANNUAL MONITORING LOGS				
Stantec				

Date	
Name	
Company	
Position	

Complete? Task SSDS Inspection Visual inspection of the equipment and piping Identification and subsequent repair of any leaks Inspection of exhaust points to verify that no air intakes have been located nearby Audible operational status check of vent fans	
Identification and subsequent repair of any leaks Inspection of exhaust points to verify that no air intakes have been located nearby	
Inspection of exhaust points to verify that no air intakes have been located nearby	
Inspection of exhaust points to verify that no air intakes have been located nearby	
Inspection of exhaust points to verify that no air intakes have been located nearby	
Audible operational status check of vent fans	
I Aliginie operational status check of Vent tans	
Addible operational statue shock of volt fails	
Documentation of manifold settings and vacuum at each fan (7 total) and extraction point (19 total)	
(10 total)	
Documentation of sub-slab pressure at each permanent sub-slab pressure monitoring	
point (14 total)	
Damper adjustments as required to balance parallel branches of system	
Maintenance activities conducted	
iviaintenance activities conducted	
Any modifications to the system	
Cover System (Concrete Floor Slab) Inspection	
Sover System (Solicite Filosi Glas) inspection	
Visual inspection of the hard surface cover for evidence of deep cracks, potholes, cuts,	
depressions, and deterioration of joint seals and penetration seals	
Identification of any areas where there is evidence of excessive settlement relative to the	
surrounding areas	
Listening for audible indications of cracks in the cover system	

820 Linden Avenue Site (BCP Site #C828200)

Town of Pittsford, NY

SSDS Pressure Monitoring Log

ANNUAL MONITORING LOG

PMP	Date	Approximate Time	Differential Pressure (inches of water column)	Manometer Zeroed?
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				

Fan	SSDS Zone	Date	Approximate Time	Differential Pressure (inches of water column)
F1	1			
F2	2			
F3	3			
F4	4			
F5	5			
F6	6			
F7	7			
F8 & F9	8			

Suction Point (Riser)	SSDS Zone	Date	Approximate Time	Differential Pressure (inches of water column)	Manometer Zeroed?
J1	1				
J2	5				
J3	4				
J4	2				
J5	6				
J6	6				
J7	4				
J8	3				
J9	3				
J10	7				
J11	7				
J12	3				
J13	6				
J14	4				
J15	7				
J16	7				
J17	3				
J18	6				
J19	4				
J20	7				
J21	7				
J22	3				
J23	6				

Weather conditions:	
s an air supply/heating system on:	
Name and Position:	
Company:	

Notes:

1) All sub-slab pressure readings are shown as differential pressure readings between the indoor air and the sub-slab void space. Values shown as negative values indicate that sub-slab pressure is lower than indoor air pressure.

Summary of Green Remediation Metrics for Site Management

Site Name:		Site Code:
		City:
State:		County:
Initial Report Period (Start Date:	_	covered by the Initial Report submittal)
Current Reporting Perio	d	
Reporting Period From:		To:
Contact Information		
		Phone No.:
Preparer's Affiliation:		

I. Energy Usage: Quantify the amount of energy used directly on-site and the portion of that derived from renewable energy sources.

	Current Reporting Period	Total to Date
Fuel Type 1 (e.g. natural gas (cf))		
Fuel Type 2 (e.g. fuel oil, propane (gals))		
Electricity (kWh)		
Of that Electric usage, provide quantity:		
Derived from renewable sources (e.g. solar, wind)		
Other energy sources (e.g. geothermal, solar		
thermal (Btu))		

Provide a description of all energy usage reduction programs for the site in the space provided on Page 3.

II. Solid Waste Generation: Quantify the management of solid waste generated on-site.

	Current Reporting Period (tons)	Total (tons)	to	Date
Total waste generated on-site				
OM&M generated waste				
Of that total amount, provide quantity:				
Transported off-site to landfills				
Transported off-site to other disposal facilities				
Transported off-site for recycling/reuse				
Reused on-site			•	·

Provide a description of any implemented waste reduction programs for the site in the space provided on Page 3.

III.	Transportation/Shipping:	Quantify	the	distances	travelled	for	delivery	of	supplies,
shippin	ng of laboratory samples, and	the remov	val o	f waste.					

	Current Reporting Period (miles)	Total (miles)	to	Date
Standby Engineer/Contractor				
Laboratory Courier/Delivery Service				
Waste Removal/Hauling				

Provide a description of all mileage reduction programs for the site in the space provided on Page 3. Include specifically any local vendor/services utilized that are within 50 miles of the site.

IV. Water Usage: Quantify the volume of water used on-site from various sources.

	Current Reporting Period (gallons)	Total to Date (gallons)
Total quantity of water used on-site		
Of that total amount, provide quantity:		
Public potable water supply usage		
Surface water usage		
On-site groundwater usage		
Collected or diverted storm water usage		

Provide a description of any implemented water consumption reduction programs for the site in the space provided on Page 3.

V. Land Use and Ecosystems: Quantify the amount of land and/or ecosystems disturbed and the area of land and/or ecosystems restored to a pre-development condition (i.e. Green Infrastructure).

	Current Reporting Period (acres)	Total to Date (acres)
Land disturbed		
Land restored		

Provide a description of any implemented land restoration/green infrastructure programs for the site in the space provided on Page 3.