Jay-Hague Site (#C828216) 485 Hague Street City of Rochester Monroe County, New York

Interim Remedial Measures Construction Completion Report

Prepared for:

Jay Hague Properties, LLC 12 Walnut Hill Drive Penfield, New York 14526

Prepared By:

Joseph C. Lu Engineering PC 339 East Avenue, Suite 200 Rochester, NY 14604

January 2023

Certification

I, Michael E. Hanscom, P.E., certify that I am currently a NYS registered professional engineer, I had primary direct responsibility for the implementation of the subject construction program, and I certify that the Interim Remedial Measure Work Plan was implemented and that all construction activities were completed in substantial conformance with the DER-approved work plan.

If the Interim Remedial Measure Work Plan identifies time frames to be achieved by the remedial program, the certification must include: The data submitted to DER demonstrates that the remediation requirements set forth in the Interim Remedial Measure Work Plan and all applicable statutes and regulations have been or will be achieved in accordance with the time frames, if any, are established in the work plan.

Signature

Dare 18, 2023

Table of Contents

Certification	
1.0 Introduction & Site Background	
1.1 Site Location	
1.2 Site History	
1.3 Previous Investigations	
2.0 Nature and Extent of Contamination	
3.0 Remedial Action Objectives	3
4.0 Description of the Selected Remedy	3
4.1 Governing Documents	
5.0 IRM Implementation	
5.1 Excavations	
5.2 Backfilling and Restoration	2
5.3 Disposal	
6.0 Deviations from the Work Plan	5
7.0 Conclusions	

Figures

Figure 1 – Site Location Map

Figure 2 – Site Plan

Figure 3 - Typical Cover System Detail

Tables

Table 1-1: VOC Soil Sample Analytical Results

Table 1-2: SVOC Soil Sample Analytical Results

Table 1-3: Metals, Pesticides, PCBs Soil Sample Analytical Results

Attachments

Attachment A CAMP Data
Attachment B Photographs

Attachment C Laboratory Analytical Reports

Attachment D Disposal Records

1.0 Introduction & Site Background

Lu Engineers has developed this Construction Completion Report (CCR) on behalf of Jay Hague Properties, LLC, for submission to the New York State Department of Environmental Conservation (NYSDEC) Region 8 Division of Environmental Remediation. The selected scope of work included limited surface soil excavation and installation of a soil cover system along portions of the eastern façade of existing buildings located at 485 Hague Street.

The Site is currently listed in the New York State Brownfield Cleanup Program (BCP) as Site #C828216. The cover system was installed to address elevated levels of polycyclic aromatic hydrocarbons (PAHs) in surface soils located within two (2) discrete greenspace areas along the eastern property line. The PAH impacts were identified as part of the Site Remedial Investigation (RI) and have generally been attributed to the urban setting of the Site and industrial history of the surrounding neighborhood.

All work described herein was performed in accordance with NYSDEC approved Interim Remedial Measures (IRM) Work Plan, dated June 2022. The IRM Work Plan has been prepared in accordance with NYSDEC procedures set forth in DER-10 'Technical Guidance for Site Investigation and Remediation,' dated May 2010, and complies with all applicable Federal, State, and local laws, regulations, and requirements.

1.1 Site Location

The Site is located at 485 Hague Street in the City of Rochester, New York, at the northwest corner of the intersection of Jay and Hague Streets. According to the City of Rochester Online Zoning Map, the Site is located within an urban area, and is comprised of approximately 1.36-acres of land zoned for industrial use. The Site is listed as parcel 105.80-1-13.001, which consists of 485 Hague Street and a rectangular portion of a parcel formerly listed as part of 1030 Jay Street (acquired in 2009) (Figure 2).

1.2 Site History

The Site has been occupied by Woerner Industries, LLC (formerly Woerner Industries Inc.), a furniture manufacturing company, since the 1970s. Records indicate the Site has historically been utilized as a machine shop, metal stamping and fabrication shop, tool manufacturing operation, and a furniture manufacturing facility.

Historical use of the Site is summarized below:

1892-1912:

The Site was developed with a residential dwelling

<u>1912-1950</u>:

The Site was developed with a residential dwelling, along with several lumber storage buildings.

1950-1970:

Developed with a dwelling, a woodworking shop (current Building 1), machine shop (current Building 2), including one (1) underground storage tank (UST).

1970-present:

Developed with a woodworking shop (current Building 1), and a machine shop (current Building 2).

1.3 Previous Investigations

From 1999 through 2017, a series of environmental assessments and investigations were conducted relative to the Site including:

- Phase I Environmental Site Assessment (ESA); February 1998 by C & O Technologies
- Phase II ESA; March 1998 by C & O Technologies
- Phase I ESA; December 1998 by C & O Technologies
- Phase I ESA (1030 Jay Street); February 2001 by Sear-Brown
- Phase II ESA (1030 Jay Street); February 2001 by Sear-Brown
- Remedial Activities Report (1030 Jay Street); January 2009 by Passero Associates
- Phase I ESA; September 2016 by LaBella Associates
- Phase II ESA; November 2016 by LaBella Associates
- Phase II Supplement; March 2017 by LaBella Associates
- Remedial Investigation; March 2021 by Lu Engineers

Brief descriptions of each of these investigations and assessments are provided in the Remedial Investigation Work Plan (RIWP) and Remedial Investigation Report (RIR).

2.0 Nature and Extent of Contamination

Surface soil samples were collected during the RI at two (2) bare/uncovered locations of the Site (SS-01 and SS-02), for analysis of:

- semi-volatile organic compounds (SVOCs) by United States Environmental Protection Agency (EPA) method 8270;
- volatile organic compounds (VOCs) by EPA method 8260;
- Resource Conservation and Recovery Act (RCRA) metals by EPA method 6010;
- pesticides/herbicides by EPA method 8081;
- polychlorinated biphenyls (PCBs) by EPA method 8082; and
- per/poly fluoroalkyl substances (PFAS) by EPA method 537.

Surface soils observed within the greenspace areas primarily consisted of topsoil (predominantly sand and silt). Analytical results for surface soil samples were compared to the NYSDEC Soil Cleanup Objectives (SCOs) presented in 6 New York Code Rules and Regulations (6 NYCRR) Part 375-6.8(a) and (b) (effective December 14, 2006).

Several SVOCs, specifically PAHs, were identified in exceedance of both Industrial Use SCOs and Protection of Groundwater Standards (PGSCOs). Surface soil analytical results for all other analyzed parameters (VOCs, PCBs, herbicides, and PFAS) were detected below Unrestricted Use SCOs. Sampling of additional environmental media (i.e., subsurface soil, groundwater, & soil vapor) during the RI did not identify conditions necessitating remedial action. Based on sampling and analytical results observed during the RI, IRM work discussed herein was limited to the greenspace areas to address PAH exceedances of Industrial Use criteria.

3.0 Remedial Action Objectives

Based on the results and findings of the RI, the following soil Remedial Action Objectives (RAOs) were identified:

- Prevent ingestion/direct contact with contaminated soil.
- Prevent inhalation of, or exposure to, contaminants volatilizing from contaminated soil.
- Prevent migration of contaminants that would result in groundwater or surface water contamination.

4.0 Description of the Selected Remedy

The following IRM scope of work was selected based on identified RAOs, the present and intended use of the Site, investigations conducted at the Site to date, and coordination with the NYSDEC:

- Pre-IRM utility stakeout
- Soft (pneumatic/vacuum) excavation of soil/fill exceeding the Industrial Use/Protection of Groundwater (POG) soil cleanup objectives (SCO) to a maximum depth of 1-foot below ground surface (bgs).
- Demarcation barrier placement (synthetic orange snow fencing material) overlain by 1-foot of clean fill (i.e., topsoil) over the entire landscape areas to prevent human exposure to remaining contaminated soil/fill remaining at the Site.
- Surface restoration (i.e. re-grading, re-seeding/mulching as necessary).
- Disposal of excavated soils in accordance with applicable regulatory criteria.

All IRM work was completed in accordance with Lu Engineers' IRM Work Plan dated June 2022.

4.1 Governing Documents

In accordance with the approved work plan, monitoring of the work area and screening of soils was conducted throughout the duration of field activities to ensure the safety of on-Site workers and the general public.

Health and Safety Plan

A copy of the Site-Specific Health and Safety Plan (HASP) is provided as Attachment A of the approved work plan. The HASP was reviewed by all employees visiting the Site before commencement of IRM work. Monitoring of the work area and screening of soil and groundwater was be conducted throughout the duration of IRM activities using a MiniRAE 3000® PID equipped with a 10.6 eV lamp, as necessary. All workers that took part in IRM activities possessed Occupational Health and Safety (OSHA) 40-Hazardous Waste Operations (HazWOPER) certifications.

Community Air Monitoring Plan

Continuous air monitoring was conducted at upwind and downwind locations during all ground intrusive activities during IRM work, consistent with the New York State Department of Health (NYSDOH) Generic Community Air Monitoring Plan (CAMP). Particulate and vapor monitoring of the work areas was conducted using a TSI Dust Trak[™] II aerosol monitors and PID, respectively.

A special requirements CAMP was also implemented due to the close proximity of the work zone to occupied Site structures. Based on observations and screening during IRM work, the use of engineering controls such as vapor/dust barriers or special ventilation devices was determined to not be necessary. Air monitoring data is included as Attachment A.

Quality Assurance Project Plan

Characterization testing of imported topsoil was performed by Eurofins TestAmerica Inc., an independent, NYSDOH ELAP approved laboratory. Sampling and equipment decontamination was conducted in accordance with the Quality Assurance Project Plan (QAPP), included as Attachment B of the approved work plan.

5.0 IRM Implementation

Sun Environmental Corp. (Sun) was contracted to conduct IRM field operations with oversight from Lu Engineers; prior to implementation, an Underground Facilities Protective Organization (UFPO) stakeout was called in to verify the presence and location of potential nearby subsurface utility lines.

Due to the proximity of the work area to the public right of way, perimeter fencing and signage was erected to facilitate Site control prior to any intrusive soil work. Photographs of IRM implementation are included as Attachment B.

5.1 Excavations

As discussed in the work plan, multiple healthy red maple and alder trees are situated within the areas subject to IRM work. Based on correspondence with the NYSDEC, the scope of work was designed to protect the health and quality of the trees. 'Soft-dig' methods (i.e., compressed air and vacuum extraction) were utilized for all IRM excavations to prevent unnecessary damage to the tree roots.

Sun mobilized to the Site on August 30, 2022, to commence soft excavation of surface soils within the IRM work areas. Prior to vacuum extraction, a pneumatic air spade was utilized to loosen soils and facilitate removal. Plywood sheets were placed over nearby windows and a safety cone was utilized on the end of the air spade as a shield to mitigate potential blowback of subsurface material. Once the soils were adequately loosened, a vacuum truck was used to extract soils from the work areas.

In accordance with the approved work plan, excavations were advanced up to a maximum depth of 1-foot bgs, as permitted by the network of tree roots. After attaining the maximum depth allowable by the trees and/or roots, a demarcation layer consisting of chemically inert polyethylene barrier fencing was placed within the excavation areas to serve as a visual indicator prior to backfilling.

5.2 Backfilling and Restoration

A total of 18-cubic yards of clean topsoil was imported from Syracusa Sand and Gravel Inc. to backfill the excavations and serve as the soil cover system. Prior to placement, imported materials were characterized in accordance with requirements outlined NYSDEC DER-10 *'Technical Guidance for Site Investigation and Remediation'* Table 5.4(e)10, as summarized below:

Contaminant:	VOCs	SVOCs, Metals, PCBs, Pesticides, Cyanide						
Soil Quantity (yd³)	Discrete Samples	Composite Samples	Note:					
0 - 50	1	1	3-5 discrete samples from different locations in the fill being provided will comprise a composite sample for analysis					

After collection, characterization samples were stored on ice and relinquished to Europhins TestAmerica Inc., NYSDOH ELAP approved laboratory. All sample analytical results were below Unrestricted Use criteria; refer to the attached tables. A copy of the laboratory analytical report is included as Attachment C.

Prior to and during placement, imported materials were inspected for evidence of contamination (visual, olfactory observations) and screened with a PID by qualified Lu Engineers personnel. After backfilling, soils were hand compacted to achieve a stable and homogeneous cover system that is free of stratifications, lenses, or voids.

IRM work areas were re-seeded with a lawn seed mix after final grading to stabilize the cover system and prevent potential future erosion. A typical cover system detail is included as Figure 3.

5.3 Disposal

Approximately 18-cubic yards of vacuum excavated soils were stockpiled on and covered by a double layer of polyethylene sheeting withing the fenced-in secured boundary of the Site. A non-hazardous waste profile was established with Republic Services Inc. using Site data generated during the RI. On December 02, 2022, Trec Environmental Inc. mobilized a wheeled loader to the Site to load the stockpiled soils into two (2) dump trucks for off-Site transport to an appropriately permitted receiving facility located in Niagara Falls, New York.

A total of 12.45-tons of soils were excavated and disposed of at Republic Service's facility located at 5600 Niagara Falls Boulevard (refer to Attachment D).

6.0 Deviations from the Work Plan

As described in Section 5.1, due to the presence of the trees and their associated roots, excavation and placement of 1-foot of cover system was not practicable across the entirety of the IRM work areas. After attaining the maximum permissible excavation depth as agreed upon by Lu Engineers and NYSDEC field personnel, the average soil cover system thickness was calculated to range between 6 and 12-inches. Based on observations made by Lu Engineers and NYSDEC field personnel, it was concluded that additional excavation would require the complete removal of all trees and roots within the work areas.

It was determined by project stakeholders that the proximity of the trees to Site buildings and overhead electrical power lines, as well as the potential for sidewalk uplift and damage to nearby gas lines during root extraction, would present hazards to Site workers that do not justify the added risk or additional associated costs. Additionally, removal of the trees would not conform with NYSDEC green remediation principles and objectives, as discussed in the RI Report.

7.0 Conclusions

The IRM efforts described herein have achieved RAOs outlined in Section 3.0. The Site remedy requires that an environmental easement be placed on the property to (1) implement, maintain and monitor the Engineering Controls; (2) prevent future exposure to remaining contamination by controlling disturbances of the subsurface contamination; and, (3) limit the use and development of the Site to commercial and industrial uses only.

Additionally, a Site Management Plan is being developed and will outline requirements for periodic monitoring and inspection of the Site and soil cover system.

Figure 1. Site Location Map Jay-Hague Site (#C828216) RAA Report 485 Hague Street, Rochester NY PROJECT #: 50380

DRAWN/CHECKED: BGS/GLA

DATA SOURCE: USGS Topo Basemap from ArcGIS Online

Figure 2. Site Plan

Project:

Jay-Hague Site (#C828216) IRM CCR

485 Hague Street

City of Rochester, Monroe County, NY

Legend

Site Boundary

Parcel Boundary

Former Paint Storage Building

Extraction Well

Monitoring Well Mini-well

1 inch=40 feet 20 40

80

Drawn/Checked By: BGS/GLA Lu Project Number: 50380

Date: January 2023

General:

- Coordinate System: NAD 1983 State Plane NY West FIPS 3103 Feet
 Orthoimagery (April 2021) downloaded from Pictometry
 Scale: 1:480 (original document size 11"x17")

Figure 3.Typical Soil Cover System Detail

Project: Jay-Hague Site (#C828216) IRM CCR

Location:
485 Hague Street
City of Rochester, Monroe County, NY

Drawn/Checked By: BGS/GLA
Lu Project Number: 50380
Date: January 2023
General:
- Refer to soil boring logs for stratigraphic changes

Jay-Hague Site (#C828216) Construction Completion Report Imported Topsoil Analytical Results

Table 1-1: VOC Soil Sample Analytical Results

	Unrestricted	Residential	Restricted-	Commoraid	Industrial	Protection	Sample ID:	Topsoil-01
Detected Parameters ¹	Use ²		Residential	Commercial 3	Industrial	of	Sample Depth:	
	Use	Use ³	Use ³	Use ³	Use ³	Groundwater ⁴	Sample Date:	8/19/2022
Volatile Organic Compounds (VOCs)	_		-	-		-	-	
1,1,1-Trichloroethane (TCA)	0.68	100	100	500	1,000	0.68	ppm	< 0.0065
1,1,2,2-Tetrachloroethane								< 0.0065
1,1,2-Trichloroethane								< 0.0065
1,1,2-Trichloro-1,2,2-trifluoroethane								< 0.0065
1,1-Dichloroethane (1,1-DCA)	0.27	19.0	26.0	240	480	0.27	ppm	< 0.0065
1,1-Dichloroethene (1,1-DCE)	0.33	100	100	500	1,000	0.33	ppm	< 0.0065
1,2,3-Trichlorobenzene								< 0.0065
1,2,4-Trichlorobenzene								< 0.0065
1,2-Dibromo-3-chloropropane (DBCP)								< 0.0065
1,2-Dibromoethane								< 0.0065
1,2-Dichlorobenzene	1.10	100	100	500	1,000	1.10	ppm	< 0.0065
1,2-Dichloroethane	0.02	2.30	3.10	30	60	0.02	ppm	< 0.0065
1,2-Dichloropropane								< 0.0065
1,3-Dichlorobenzene	2.40	17.0	49.0	280	560	2.40	ppm	< 0.0065
1,4-Dichlorobenzene	1.80	9.8	13.0	130	250	1.80	ppm	< 0.0065
1,4-Dioxane	0.10	9.8	13.0	130	250	0.10	ppm	< 0.0065
2-Butanone (MEK)	0.12	100	100	500	1,000	0.12	ppm	< 0.0330
2-Hexanone								< 0.0330
4-Methyl-2-pentanone								< 0.0330
Acetone	0.05	100	100	500	1,000	0.05	ppm	< 0.0330
Benzene	0.06	2.90	4.80	44.0	89.0	0.06	ppm	< 0.0065
Bromochloromethane								< 0.0065
Bromodichloromethane								< 0.0065
Bromoform								< 0.0065
Bromomethane								< 0.0065
Carbon Disulfide								< 0.0065
Carbon Tetrachloride	0.76	1.40	2.40	22.0	44.0	0.76	ppm	< 0.0065
Chlorobenzene	1.10	100	100	500	1,000	1.10	ppm	< 0.0065
Chloroethane								< 0.0065
Chloroform	0.37	10.0	49.0	350	700	0.37	ppm	0.0013
Chloromethane								< 0.0065
Cyclohexane								< 0.0065
Dibromochloromethane								< 0.0065
Dichlorodifluoromethane (CFC 12)								< 0.0065
Dichloromethane								< 0.0065
Ethylbenzene	1.00	30.0	41.0	390	780	1.00	ppm	< 0.0065
Isopropylbenzene (Cumene)								< 0.0065
Methyl Acetate								< 0.0330
Methyl tert-Butyl Ether	0.93	62.0	100	500	1,000	0.93	ppm	< 0.0065
Methylcyclohexane								< 0.0065
Styrene								< 0.0065
Tetrachloroethene (PCE)	1.30	10.0	21.0	150	300	1.30	ppm	< 0.0065
Toluene	0.70	100	100	500	1,000	0.70	ppm	< 0.0065
Trichloroethene (TCE)	0.47	10.0	21.0	200	400	0.47	ppm	< 0.0065
Trichlorofluoromethane (CFC 11)								< 0.0065
Vinyl Chloride	0.02	0.21	0.90	13.0	27.0	0.02	ppm	< 0.0065
cis-1,2-Dichloroethene	0.25	59	100	500	1,000	0.25	ppm	< 0.0065
cis-1,3-Dichloropropene								< 0.0065
m,p-Xylenes	0.26	100	100	500	1,000	1.60	ppm	< 0.0130
o-Xylene	0.26	100	100	500	1,000	1.60	ppm	< 0.0130
trans-1,2-Dichloroethene	0.19	100	100	500	1,000	0.19	ppm	< 0.0065
trans-1,3-Dichloropropene								< 0.0065

Notes

- 1 Results compared to '6 NYCRR Part 375 Environmental Remedial Programs' Soil Cleanup Objectives (SCOs)
- 2 Table 6.8(a) Unrestricted Use SCOs
- 3 Table 6.8(b) Restricted Use SCOs: Industrial Use
- 4 Table 6.8(b) Restricted Use SCOs: Protection of Groundwater

ppm: Parts per million

< : Results not detected above minimum laboratory quantitation limit

Results exceed Unrestricted Use SCOs
Results exceed Industrial Use SCOs
Results exceed Protection of Groundwater SCOs

Jay-Hague Site (#C828216) Construction Completion Report Imported Topsoil Analytical Results

Table 1-2. SVOC Soil Sample Analytical Results

Table 1-2. SVOC Soil Sample Analytical R Detected Parameters ¹	Unrestricted Use ²	Residential Use ³	Restricted- Residential	Commercial Use ³	Industrial Use ³	Protection of	Sample ID: Sample Depth:		soil-01
		use	Use ³	use	use	Groundwater ⁴	Sample Date:	8/19	9/2022
Semi-Volatile Organic Compounds (SVOC						I	I		0.000
1,2,4,5-Tetrachlorobenzene								<	0.220
1,4-Dioxane 2,3,4,6-Tetrachlorophenol								<	0.220
2,4,5-Trichlorophenol								<	0.220
2,4,6-Trichlorophenol								<	0.220
2,4-Dichlorophenol								<	0.220
2,4-Dimethylphenol								<	0.220
2,4-Dinitrophenol								<	0.220
2,4-Dinitrotoluene								<	0.220
2,6-Dinitrotoluene								<	0.220
2-Chloronaphthalene								<	0.220
2-Chlorophenol								<	0.220
2-Methylnaphthalene								<	0.220
2-Methylphenol								<	0.220
2-Nitroaniline				-	-			<	0.220
2-Nitrophenol								<	0.220
3,3'-Dichlorobenzidine								<	0.220
3- and 4-Methylphenol Coelution		-	-	-	-			<	0.220
3-Nitroaniline								<	0.220
4,6-Dinitro-2-methylphenol								<	0.220
4-Bromophenyl Phenyl Ether								<	0.220
4-Chloro-3-methylphenol								<	0.220
4-Chloroaniline								<	0.220
4-Chlorophenyl Phenyl Ether								<	0.220
4-Nitroaniline								<	0.220
4-Nitrophenol								<	0.220
Acenaphthene Acenaphthylene	20.0 100	100 100	100 100	500 500	1,000 1,000	98 107	ppm	<	0.220
Acetophenone				500			ppm 	<	0.220
Anthracene	100	100	100	500	1,000	1,000	ppm	<	0.220
Atrazine								<	0.220
Benz(a)anthracene	1.00	1.00	1.00	5.60	11.0	1.00	ppm		0.190 J
Benzaldehyde								<	0.220
Benzo(a)pyrene	1.00	1.00	1.00	1.00	1.10	22.0	ppm	<u> </u>	0.220
Benzo(b)fluoranthene	1.00	1.00	1.00	5.60	11.0	1.70	ppm		0.260
Benzo(g,h,i)perylene	100	100	100	500	1,000	1,000	ppm		0.140 J
Benzo(k)fluoranthene	0.80	1.00	3.90	56.0	110	1.70	ppm	1	0.140 J
Biphenyl								<	0.220
2,2'-Oxybis(1-chloropropane)								<	0.220
Bis(2-chloroethoxy)methane								<	0.220
Bis(2-chloroethyl) Ether								<	0.220
Bis(2-ethylhexyl) Phthalate								<	0.220
Butyl Benzyl Phthalate								<	0.220
Caprolactam								<	0.220
Carbazole								Ь—	0.028 J
Chrysene	1.00	1.00	3.90	56.0	110	1.00	ppm		0.250
Di-n-butyl Phthalate				-				<	0.220
Di-n-octyl Phthalate								<	0.220
Dibenz(a,h)anthracene	0.33	0.33	0.33	0.56	1.10	1,000	ppm 	_	0.047 J
Dibenzofuran Diethyl Phthalate								<	0.220
Dimethyl Phthalate		-						<	0.220
Fluoranthene	100	100	100	500	1,000	1,000	ppm	È	0.220
Fluorene	30.0	100	100	500	1,000	386	ppm	<	0.220
Hexachlorobenzene								<	0.220
Hexachlorobutadiene								<	0.220
Hexachlorocyclopentadiene								<	0.220
Hexachloroethane								<	0.220
Indeno(1,2,3-cd)pyrene	0.50	0.50	0.50	5.60	11.0	8.20	ppm		0.130 J
Isophorone		-	-	-	-			<	0.220
N-Nitrosodi-n-propylamine				-				<	0.220
N-Nitrosodiphenylamine								<	0.220
Naphthalene	12.0	100	100	500	1,000	12.0	ppm	<	0.220
Nitrobenzene								<	0.220
Pentachlorophenol (PCP)	0.80	2.40	6.70	6.70	55.0	0.80	ppm	<	0.220
Phenanthrene	100	100	100	500	1,000	1,000	ppm		0.280
Phenol Pyrene	0.33 100	100 100	100 100	500 500	1,000 1,000	3.30 1,000	ppm ppm	<	0.220 0.390

Note

- 1 Results compared to '6 NYCRR Part 375 Environmental Remedial Programs' Soil Cleanup Objectives (SCOs)
- 2 Table 6.8(a) Unrestricted Use SCOs
- $3- \mbox{Table 6.8(b)}$ Restricted Use SCOs: Industrial Use
- 4 Table 6.8(b) Restricted Use SCOs: Protection of Groundwater

ppm: Parts per million

< : Results not detected above minimum laboratory quantitation limit</p>

Results exceed Unrestricted Use SCOs
Results exceed Industrial Use SCOs

* Results exceed Protection of Groundwa

Results exceed Protection of Groundwater SCOs

J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Jay-Hague Site (#C828216) Construction Completion Report Imported Topsoil Analytical Results

Table 1-3. RCRA Metal, Pesticide, Herbicide & PCB Soil Sample Analytical Results

Detected Parameters ¹	Unrestricted	Residential	l Residential	Commercial	Industrial	Protection of	Sample ID: Sample Depth:	Topsoil-01
	Use ²	Use ³	Use ³	Use ³	Use ³	Groundwater ⁴	Sample Date:	8/19/2022
RCRA Metals				1	I		Jampie Pater	0, 10, 1011
Arsenic	13.0	16.0	16.0	16.0	16.0	16.0	ppm	4.90
Barium	350	350	400	400	10,000	820	ppm	64.5
Cadmium	2.50	2.50	4.30	9.30	60.0	7.50	ppm	0.30
Mercury	0.18	0.81	0.81	2.80	5.70	0.73	ppm	0.0490
Chromium ^X	1.00	22.0	110	400	800	19.0	ppm	15.1
Lead	63.0	400	400	1,000	3,900	450	ppm	19.3
Selenium	3.90	36.0	180	1,500	6,800	4.00	ppm	< 5.40
Silver	2.00	36.0	180	1,500	6,800	8.30	ppm	< 0.81
Pesticides				, , , , , , , , , , , , , , , , , , , ,			Įr r	
4,4'-DDD	0.0033	2.60	13.0	92.0	180	14.0	ppm	< 0.0021
4,4'-DDE	0.0033	1.80	8.90	62.0	120	17.0	ppm	0.0020 J
4,4'-DDT	0.0033	1.70	7.90	47.0	94.0	136	ppm	0.00081 J
Aldrin	0.005	0.019	0.097	0.68	1.40	0.19	ppm	< 0.0021
Chlordane								0.0016 J
Dieldrin	0.005	0.039	0.20	1.40	2.80	0.10	ppm	0.0023
Endosulfan I	2.40	4.80	24.0	200	920	102	ppm	< 0.0021
Endosulfan II	2.40	4.80	24.0	200	920	102	ppm	< 0.0021
Endosulfan Sulfate	2.40	4.80	24.0	200	920	1,000	ppm	< 0.0021
Endrin	0.01	2.20	11.0	89.0	410	0.06	ppm	< 0.0021
Endrin Aldehyde								< 0.0021
Endrin Ketone								< 0.0021
Heptachlor	0.042	0.42	2.10	15.0	29.0	0.38	ppm	< 0.0021
Heptachlor Epoxide								< 0.0021
Methoxychlor								< 0.0021
Mirex		-						< 0.0021
Toxaphene								< 0.0210
alpha-BHC	0.02	0.097	0.48	3.40	6.80	0.02	ppm	< 0.0021
alpha-Chlordane	0.094	0.91	4.20	24.0	47.0	2.90	ppm	0.0035
beta-BHC	0.036	0.072	0.36	3.00	14.0	0.09	ppm	< 0.0021
delta-BHC	0.04	100	100	500	1,000	0.25	ppm	< 0.0021
gamma-BHC (Lindane)	0.10	0.28	1.30	9.20	23.0	0.10	ppm	< 0.0021
gamma-Chlordane								< 0.0021
Polychlorinated Biphenyls								
Aroclor 1016	0.10	1.00	1.00	1.00	25.0	3.20	ppm	< 0.25
Aroclor 1221	0.10	1.00	1.00	1.00	25.0	3.20	ppm	< 0.25
Aroclor 1232	0.10	1.00	1.00	1.00	25.0	3.20	ppm	< 0.25
Aroclor 1242	0.10	1.00	1.00	1.00	25.0	3.20	ppm	< 0.25
Aroclor 1248	0.10	1.00	1.00	1.00	25.0	3.20	ppm	< 0.25
Aroclor 1254	0.10	1.00	1.00	1.00	25.0	3.20	ppm	< 0.25
Aroclor 1260	0.10	1.00	1.00	1.00	25.0	3.20	ppm	< 0.25

Notes

- $1-Results\ compared\ to\ '6\ NYCRR\ Part\ 375\ Environmental\ Remedial\ Programs'\ Soil\ Cleanup\ Objectives\ (SCOs)$
- 2 Table 6.8(a) Unrestricted Use SCOs
- 3 Table 6.8(b) Restricted Use SCOs: Industrial Use
- 4 Table 6.8(b) Restricted Use SCOs: Protection of Groundwater ppm: Parts per million
- < : Results not detected above minimum laboratory quantitation limit

Results exceed Unrestricted Use SCOs
Results exceed Industrial Use SCOs

* Results exceed Protection of Groundwater SCOs

J: Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Attachment A

CAMP Data

Instrument Name	DustTrak II
Model Number	8530
Serial Number	8530113802
Firmware Version	3.9
Calibration Date	7/12/2022
Test Name	MANUAL_001
Test Start Time	10:26:46 AM
Test Start Date	9/2/2022
Test Length [D:H:M]	0:05:09
Test Interval [M:S]	15:00
Mass Average [mg/m3]	0.011
Mass Minimum [mg/m3]	0.0085
Mass Maximum [mg/m3]	0.0155
Mass TWA [mg/m3]	0.011
Photometric User Cal	1
Flow User Cal	0
Errors	
Number of Samples	20

Mass [mg/m3]	Alarms	Errors
0.0155		
0.013		
0.0125		
0.012		
0.014		
0.0095		
0.0095		
0.0095		
0.01		
0.012		
0.0105		
0.0085		
0.0085		
0.0085		
0.0085		
0.0125		
0.01		
0.0085		
0.0085		
0.009		
	0.0155 0.013 0.0125 0.012 0.014 0.0095 0.0095 0.0095 0.012 0.0105 0.0085 0.0085 0.0085 0.0085 0.0125 0.01 0.0125 0.0105	0.0155 0.013 0.0125 0.012 0.014 0.0095 0.0095 0.0095 0.01 0.012 0.0105 0.0085 0.0085 0.0085 0.0085 0.0085 0.0085 0.0085 0.0085 0.0085 0.0085 0.0085

Instrument Name	DustTrak II
Model Number	8530
Serial Number	8530120703
Firmware Version	3.9
Calibration Date	5/27/2022
Test Name	MANUAL_001
Test Start Time	10:24:13 AM
Test Start Date	9/2/2022
Test Length [D:H:M]	0:05:17
Test Interval [M:S]	15:00
Mass Average [mg/m3]	0.023
Mass Minimum [mg/m3]	0.0105
Mass Maximum [mg/m3]	0.042
Mass TWA [mg/m3]	0.023
Photometric User Cal	1
Flow User Cal	0
Errors	
Number of Samples	21

Elapsed Time [s]	Mass [mg/m3]	Alarms	Errors
900	0.034		
1800	0.033		
2700	0.036		
3600	0.042		
4500	0.03		
5400	0.0245		
6300	0.024		
7200	0.024		
8100	0.022		
9000	0.0215		
9900	0.0195		
10800	0.0165		
11700	0.017		
12600	0.0205		
13500	0.02		
14400	0.0195		
15300	0.021		
16200	0.0135		
17100	0.012		
18000	0.0105		
18900	0.0135		

Attachment B

Photographs

Jay Hague IRM Construction Completion Report

Photo No. 1 Mobilization to the IRM Work Areas

Photo No. 2 Vac Truck Mobilization

Photo No. 3 Vacuum Extraction of Surface Soils

Photo No. 4 Tree Root System Exposed

Photo No. 5 Stockpiling Topsoil Prior to Disposal

Photo No. 6 Placement of Imported Topsoil Over Demarcation Barrier

Site Photographs

Jay Hague IRM Construction Completion Report

Photo No. 7 Imported Topsoil Prior to Grading

Photo No. 8 Raked and Graded Cover System

Attachment C

Laboratory Analytical Reports

Environment Testing America

ANALYTICAL REPORT

Eurofins Buffalo 10 Hazelwood Drive Amherst, NY 14228-2298 Tel: (716)691-2600

Laboratory Job ID: 480-200909-1 Client Project/Site: Jay Hague #50380

For:

Joseph C. Lu Eng & Land Surveying PC 339 East Avenue Suite 200 Rochester, New York 14604

Attn: Mr. Ben Seifert

J.

Authorized for release by: 8/29/2022 12:53:33 PM Rebecca Jones, Project Management Assistant I (716)504-9884

Rebecca.Jones@et.eurofinsus.com

Designee for

Brian Fischer, Manager of Project Management (716)504-9835

Brian.Fischer@et.eurofinsus.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

LINKS

Review your project results through

Have a Question?

Visit us at: www.eurofinsus.com/Env

2

Table of Contents

Cover Page	1
Table of Contents	2
Definitions/Glossary	3
Case Narrative	4
Detection Summary	5
Client Sample Results	6
Surrogate Summary	10
QC Sample Results	12
QC Association Summary	22
Lab Chronicle	24
Certification Summary	25
Method Summary	26
Sample Summary	27
Chain of Custody	28
Receipt Checklists	29

6

9

10

12

4

Definitions/Glossary

Client: Joseph C. Lu Eng & Land Surveying PC

Project/Site: Jay Hague #50380

Job ID: 480-200909-1

3

Qualifiers

GC/MS VOA

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

vs Reported analyte concentrations are below 200 ug/kg and may be biased low due to the sample not being collected according to 5035A-L

low-level specifications.

GC/MS Semi VOA

Qualifier Qualifier Description

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

GC Semi VOA

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Metals

B Compound was found in the blank and sample.

J Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Eisted under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery
CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Buffalo

8/29/2022

Page 3 of 29

Case Narrative

Client: Joseph C. Lu Eng & Land Surveying PC

Project/Site: Jay Hague #50380

Job ID: 480-200909-1

Job ID: 480-200909-1

Laboratory: Eurofins Buffalo

Narrative

Job Narrative 480-200909-1

Comments

No additional comments.

Receipt

The sample was received on 8/22/2022 9:10 AM. Unless otherwise noted below, the sample arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 3.4° C.

GC/MS VOA

Method 8260C: The continuing calibration verification (CCV) associated with batch 480-638753 recovered above the upper control limit for Cyclohexane, Methylcyclohexane, Trichlorofluoromethane and Vinyl chloride. The sample(s) associated with this CCV were non-detects above the reporting limit for the affected analytes; therefore, the data have been reported. The associated sample is impacted: Topsoil - 01 (480-200909-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

GC/MS Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

GC Semi VOA

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Organic Prep

Method 3550C: The following sample required a Florisil clean-up, via EPA Method 3620C, to reduce matrix interferences: Topsoil - 01 (480-200909-1).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

5

6

9

4 4

12

Detection Summary

Client: Joseph C. Lu Eng & Land Surveying PC

Project/Site: Jay Hague #50380

Client Sample ID: Topsoil - 01

Lab Sample ID: 480-200909-1

Job ID: 480-200909-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Chloroform	1.3	J vs	6.5	0.40	ug/Kg	1	✡	8260C	Total/NA
Benzo[a]anthracene	190	J	220	22	ug/Kg	1	₩	8270D	Total/NA
Benzo[a]pyrene	220		220	33	ug/Kg	1	₩	8270D	Total/NA
Benzo[b]fluoranthene	260		220	35	ug/Kg	1	₩	8270D	Total/NA
Benzo[g,h,i]perylene	140	J	220	24	ug/Kg	1	₩	8270D	Total/NA
Benzo[k]fluoranthene	140	J	220	29	ug/Kg	1	₩	8270D	Total/NA
Carbazole	28	J	220	26	ug/Kg	1	₩	8270D	Total/NA
Chrysene	250		220	50	ug/Kg	1	₩	8270D	Total/NA
Dibenz(a,h)anthracene	47	J	220	39	ug/Kg	1	₩	8270D	Total/NA
Fluoranthene	520		220	24	ug/Kg	1	₩	8270D	Total/NA
Indeno[1,2,3-cd]pyrene	130	J	220	27	ug/Kg	1	₩	8270D	Total/NA
Phenanthrene	280		220	33	ug/Kg	1	₩	8270D	Total/NA
Pyrene	390		220	26	ug/Kg	1	⊅	8270D	Total/NA
4,4'-DDE	2.0	J	2.1	0.45	ug/Kg	1	₩	8081B	Total/NA
4,4'-DDT	0.81	J	2.1	0.50	ug/Kg	1	₩	8081B	Total/NA
cis-Chlordane	3.5		2.1	1.1	ug/Kg	1	₩	8081B	Total/NA
Dieldrin	2.3		2.1	0.51	ug/Kg	1	₩	8081B	Total/NA
trans-Chlordane	1.6	J	2.1	0.68	ug/Kg	1	₩	8081B	Total/NA
Arsenic	4.9	В	2.7	0.54	mg/Kg	1	₩	6010C	Total/NA
Barium	64.5		0.68	0.15	mg/Kg	1	₩	6010C	Total/NA
Cadmium	0.30		0.27	0.041	mg/Kg	1	₩	6010C	Total/NA
Chromium	15.1		0.68	0.27	mg/Kg	1	₩	6010C	Total/NA
Lead	19.3		1.4	0.32	mg/Kg	1	₽	6010C	Total/NA
Mercury	0.049		0.027	0.0061	mg/Kg	1	₩	7471B	Total/NA

This Detection Summary does not include radiochemical test results.

9

4

6

8

3

11

12

. .

Client: Joseph C. Lu Eng & Land Surveying PC

Project/Site: Jay Hague #50380

Client Sample ID: Topsoil - 01

Date Collected: 08/19/22 14:05 Date Received: 08/22/22 09:10 Lab Sample ID: 480-200909-1

Matrix: Solid

Percent Solids: 76.0

Job ID: 480-200909-1

Method: 8260C - Volatile Orgar Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND		6.5			— <u>-</u>	08/23/22 17:50		1
1,1,2,2-Tetrachloroethane	ND	VS	6.5		ug/Kg	₽		08/24/22 04:31	1
1,1,2-Trichloroethane	ND	VS	6.5		ug/Kg	₽	08/23/22 17:50	08/24/22 04:31	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	VS	6.5		ug/Kg		08/23/22 17:50	08/24/22 04:31	1
1,1-Dichloroethane	ND		6.5		ug/Kg	₩		08/24/22 04:31	1
1,1-Dichloroethene	ND		6.5		ug/Kg	Ö		08/24/22 04:31	1
1,2,4-Trichlorobenzene	ND		6.5		ug/Kg			08/24/22 04:31	1
1,2-Dibromo-3-Chloropropane	ND		6.5		ug/Kg	₩		08/24/22 04:31	1
1,2-Dichlorobenzene	ND		6.5		ug/Kg	₩		08/24/22 04:31	1
1,2-Dichloroethane	ND		6.5		ug/Kg		08/23/22 17:50		1
1,2-Dichloropropane	ND		6.5		ug/Kg	₩		08/24/22 04:31	1
1,3-Dichlorobenzene	ND		6.5		ug/Kg	Ť.		08/24/22 04:31	1
1,4-Dichlorobenzene	ND		6.5		ug/Kg		08/23/22 17:50		· · · · · · · · · · · · · · · · · · ·
2-Butanone (MEK)	ND		33		ug/Kg			08/24/22 04:31	1
2-Hexanone	ND		33		ug/Kg	Ť.		08/24/22 04:31	1
4-Methyl-2-pentanone (MIBK)	ND		33		ug/Kg	 ☆	08/23/22 17:50		······································
Acetone	ND		33		ug/Kg	Ť		08/24/22 04:31	1
Benzene	ND		6.5		ug/Kg	**		08/24/22 04:31	1
Bromodichloromethane	ND		6.5		ug/Kg	· · · · · · · · · · · · · · · · · · ·		08/24/22 04:31	1
Bromoform	ND	vs	6.5		ug/Kg			08/24/22 04:31	1
Bromomethane	ND	vs	6.5		ug/Kg			08/24/22 04:31	1
Carbon disulfide	ND	VS	6.5		ug/Kg	. .		08/24/22 04:31	
Carbon tetrachloride	ND ND	VS	6.5		ug/Kg ug/Kg	₩		08/24/22 04:31	1
Carbon tetracilionde Chlorobenzene	ND ND	vs vs	6.5		ug/Kg ug/Kg	¥ \$		08/24/22 04:31	1
Dibromochloromethane	ND	VS	6.5		ug/Kg	 . ☆		08/24/22 04:31	
Chloroethane	ND ND		6.5			¥ \$		08/24/22 04:31	1
			6.5		ug/Kg	¥ \$		08/24/22 04:31	1
Chloromoth and	1.3	Jvs			ug/Kg				
Chloromethane	ND		6.5		ug/Kg	‡		08/24/22 04:31	1
cis-1,2-Dichloroethene	ND		6.5		ug/Kg	‡		08/24/22 04:31	1
cis-1,3-Dichloropropene	ND		6.5		ug/Kg	.		08/24/22 04:31	1
Cyclohexane	ND		6.5		ug/Kg	*	08/23/22 17:50		1
Dichlorodifluoromethane	ND		6.5		ug/Kg	₩		08/24/22 04:31	1
Ethylbenzene	ND		6.5		ug/Kg	· · · · · ·		08/24/22 04:31	1
1,2-Dibromoethane	ND		6.5		ug/Kg	*	08/23/22 17:50		1
Isopropylbenzene	ND	VS	6.5		ug/Kg	‡	08/23/22 17:50		1
Methyl acetate	ND		33		ug/Kg	. .	08/23/22 17:50		1
Methyl tert-butyl ether	ND		6.5		ug/Kg	₿	08/23/22 17:50		1
Methylcyclohexane	ND		6.5		ug/Kg	☼		08/24/22 04:31	1
Methylene Chloride	ND		6.5		ug/Kg			08/24/22 04:31	1
Styrene	ND		6.5		ug/Kg	₩	08/23/22 17:50		1
Tetrachloroethene	ND		6.5		ug/Kg	≎		08/24/22 04:31	1
Toluene	ND		6.5		ug/Kg		08/23/22 17:50		1
trans-1,2-Dichloroethene	ND		6.5		ug/Kg	₩	08/23/22 17:50		1
trans-1,3-Dichloropropene	ND		6.5		ug/Kg	₩		08/24/22 04:31	1
Trichloroethene	ND		6.5		ug/Kg		08/23/22 17:50		1
Trichlorofluoromethane	ND	VS	6.5		ug/Kg	≎	08/23/22 17:50		1
Vinyl chloride	ND	VS	6.5	0.80	ug/Kg	₩	08/23/22 17:50	08/24/22 04:31	1
Xylenes, Total	ND	VS	13	1.1	ug/Kg	☆	08/23/22 17:50	08/24/22 04:31	1

Eurofins Buffalo

8/29/2022

2

6

8

10

12

14

Client: Joseph C. Lu Eng & Land Surveying PC

Project/Site: Jay Hague #50380

Client Sample ID: Topsoil - 01

Date Collected: 08/19/22 14:05 Date Received: 08/22/22 09:10 Lab Sample ID: 480-200909-1

Matrix: Solid

Job ID: 480-200909-1

Percent Solids: 76.0

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	105	71 - 125	08/23/22 17:50	08/24/22 04:31	1
1,2-Dichloroethane-d4 (Surr)	105	64 - 126	08/23/22 17:50	08/24/22 04:31	1
4-Bromofluorobenzene (Surr)	84	72 - 126	08/23/22 17:50	08/24/22 04:31	1
Dibromofluoromethane (Surr)	103	60 - 140	08/23/22 17:50	08/24/22 04:31	1

- Control of the cont	100		(00/140)				00/20/22 11:00	00/21/22 01:01	,
Method: 8270D - Semivolati Analyte		mpounds Qualifier	(GC/MS) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		220	33	ug/Kg	<u></u>	08/24/22 16:01		1
bis (2-chloroisopropyl) ether	ND		220	44	ug/Kg	₩	08/24/22 16:01	08/25/22 22:01	1
2,4,5-Trichlorophenol	ND		220			₽	08/24/22 16:01	08/25/22 22:01	1
2,4,6-Trichlorophenol	ND		220	44	ug/Kg		08/24/22 16:01	08/25/22 22:01	1
2,4-Dichlorophenol	ND		220		ug/Kg	₽	08/24/22 16:01	08/25/22 22:01	1
2,4-Dimethylphenol	ND		220	54	ug/Kg	₩	08/24/22 16:01	08/25/22 22:01	1
2,4-Dinitrophenol	ND		2200	1000			08/24/22 16:01	08/25/22 22:01	1
2,4-Dinitrotoluene	ND		220	46		₩	08/24/22 16:01	08/25/22 22:01	1
2,6-Dinitrotoluene	ND		220		ug/Kg	₩	08/24/22 16:01	08/25/22 22:01	1
2-Chloronaphthalene	ND		220	37			08/24/22 16:01	08/25/22 22:01	1
2-Chlorophenol	ND		430	41		₩	08/24/22 16:01	08/25/22 22:01	1
2-Methylphenol	ND		220	26		₩	08/24/22 16:01	08/25/22 22:01	1
2-Methylnaphthalene	ND		220	44	ug/Kg		08/24/22 16:01	08/25/22 22:01	1
2-Nitroaniline	ND		430	33		₩	08/24/22 16:01	08/25/22 22:01	1
2-Nitrophenol	ND		220	63	ug/Kg	₩	08/24/22 16:01	08/25/22 22:01	1
3,3'-Dichlorobenzidine	ND		430	260			08/24/22 16:01	08/25/22 22:01	1
3-Nitroaniline	ND		430	61	ug/Kg	.⇔	08/24/22 16:01		1
4,6-Dinitro-2-methylphenol	ND		430	220	ug/Kg	:¤	08/24/22 16:01		1
4-Bromophenyl phenyl ether	ND		220	31			08/24/22 16:01		1
4-Chloro-3-methylphenol	ND		220			₩.	08/24/22 16:01		1
4-Chloroaniline	ND		220	55		₩.	08/24/22 16:01		1
4-Chlorophenyl phenyl ether	ND		220				08/24/22 16:01		1
4-Methylphenol	ND		430	26	ug/Kg	₩	08/24/22 16:01	08/25/22 22:01	1
4-Nitroaniline	ND		430	120	ug/Kg	.⇔	08/24/22 16:01		1
4-Nitrophenol	ND		430	160	ug/Kg		08/24/22 16:01		
Acenaphthene	ND		220	33	ug/Kg	₩.	08/24/22 16:01		1
Acenaphthylene	ND		220	29	ug/Kg	₩.	08/24/22 16:01		1
Acetophenone	ND		220	30			08/24/22 16:01		1
Anthracene	ND		220	55		.⇔	08/24/22 16:01		1
Atrazine	ND		220	77		.⇔		08/25/22 22:01	1
Benzaldehyde	ND		220	180			08/24/22 16:01		1
Benzo[a]anthracene	190	Л	220		ug/Kg		08/24/22 16:01		1
Benzo[a]pyrene	220		220		ug/Kg	- #	08/24/22 16:01		1
Benzo[b]fluoranthene	260		220		ug/Kg		08/24/22 16:01		
Benzo[g,h,i]perylene	140	J.	220		ug/Kg	.⇔	08/24/22 16:01		1
Benzo[k]fluoranthene	140		220		ug/Kg		08/24/22 16:01		1
Bis(2-chloroethoxy)methane	ND		220		ug/Kg		08/24/22 16:01		
Bis(2-chloroethyl)ether	ND		220			₩	08/24/22 16:01		1
Bis(2-ethylhexyl) phthalate	ND		220		ug/Kg	≎	08/24/22 16:01		1
Butyl benzyl phthalate	ND		220		ug/Kg		08/24/22 16:01		
Caprolactam	ND ND		220		ug/Kg	₩	08/24/22 16:01		1
Carbazole	28	Л	220		ug/Kg	₩	08/24/22 16:01		1
	250		220		ug/Kg			08/25/22 22:01	
Chrysene	250		220	50	ug/ixg	34t	00124122 10.01	00123122 22.0 I	'

Eurofins Buffalo

Page 7 of 29

2

5

5

7

Q

10

12

14

Client: Joseph C. Lu Eng & Land Surveying PC

Project/Site: Jay Hague #50380

Client Sample ID: Topsoil - 01

Date Collected: 08/19/22 14:05 Date Received: 08/22/22 09:10

2,4,6-Tribromophenol (Surr)

2-Fluorobiphenyl (Surr)

2-Fluorophenol (Surr)

Lab Sample ID: 480-200909-1

08/24/22 16:01 08/25/22 22:01

08/24/22 16:01 08/25/22 22:01

08/24/22 16:01 08/25/22 22:01

Matrix: Solid

Job ID: 480-200909-1

Percent Solids: 76.0

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dibenz(a,h)anthracene	47	J	220	39	ug/Kg	-	08/24/22 16:01	08/25/22 22:01	1
Di-n-butyl phthalate	ND		220	38	ug/Kg	☼	08/24/22 16:01	08/25/22 22:01	1
Di-n-octyl phthalate	ND		220	26	ug/Kg	₽	08/24/22 16:01	08/25/22 22:01	1
Dibenzofuran	ND		220	26	ug/Kg	₽	08/24/22 16:01	08/25/22 22:01	1
Diethyl phthalate	ND		220	29	ug/Kg	₽	08/24/22 16:01	08/25/22 22:01	1
Dimethyl phthalate	ND		220	26	ug/Kg	₽	08/24/22 16:01	08/25/22 22:01	1
Fluoranthene	520		220	24	ug/Kg	₽	08/24/22 16:01	08/25/22 22:01	1
Fluorene	ND		220	26	ug/Kg	☼	08/24/22 16:01	08/25/22 22:01	1
Hexachlorobenzene	ND		220	30	ug/Kg	≎	08/24/22 16:01	08/25/22 22:01	1
Hexachlorobutadiene	ND		220	33	ug/Kg	≎	08/24/22 16:01	08/25/22 22:01	1
Hexachlorocyclopentadiene	ND		220	30	ug/Kg	☼	08/24/22 16:01	08/25/22 22:01	1
Hexachloroethane	ND		220	29	ug/Kg	≎	08/24/22 16:01	08/25/22 22:01	1
Indeno[1,2,3-cd]pyrene	130	J	220	27	ug/Kg	₽	08/24/22 16:01	08/25/22 22:01	1
Isophorone	ND		220	47	ug/Kg	≎	08/24/22 16:01	08/25/22 22:01	1
N-Nitrosodi-n-propylamine	ND		220	38	ug/Kg	≎	08/24/22 16:01	08/25/22 22:01	1
N-Nitrosodiphenylamine	ND		220	180	ug/Kg	☼	08/24/22 16:01	08/25/22 22:01	1
Naphthalene	ND		220	29	ug/Kg	☼	08/24/22 16:01	08/25/22 22:01	1
Nitrobenzene	ND		220	25	ug/Kg	₽	08/24/22 16:01	08/25/22 22:01	1
Pentachlorophenol	ND		430	220	ug/Kg	☼	08/24/22 16:01	08/25/22 22:01	1
Phenanthrene	280		220	33	ug/Kg	≎	08/24/22 16:01	08/25/22 22:01	1
Phenol	ND		220	34	ug/Kg	₩	08/24/22 16:01	08/25/22 22:01	1
Pyrene	390		220	26	ug/Kg	₩	08/24/22 16:01	08/25/22 22:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	80		53 - 120				08/24/22 16:01	08/25/22 22:01	1
Phenol-d5 (Surr)	84		54 - 120				08/24/22 16:01	08/25/22 22:01	1
p-Terphenyl-d14 (Surr)	104		79 - 130				08/24/22 16:01	08/25/22 22:01	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		2.1	0.42	ug/Kg	<u></u>	08/23/22 15:40	08/24/22 10:43	1
4,4'-DDE	2.0	J	2.1	0.45	ug/Kg	☼	08/23/22 15:40	08/24/22 10:43	1
4,4'-DDT	0.81	J	2.1	0.50	ug/Kg	☼	08/23/22 15:40	08/24/22 10:43	1
Aldrin	ND		2.1	0.53	ug/Kg	₽	08/23/22 15:40	08/24/22 10:43	1
alpha-BHC	ND		2.1	0.39	ug/Kg	☼	08/23/22 15:40	08/24/22 10:43	1
cis-Chlordane	3.5		2.1	1.1	ug/Kg	₩	08/23/22 15:40	08/24/22 10:43	1
beta-BHC	ND		2.1	0.39	ug/Kg	₽	08/23/22 15:40	08/24/22 10:43	1
delta-BHC	ND		2.1	0.40	ug/Kg	₽	08/23/22 15:40	08/24/22 10:43	1
Dieldrin	2.3		2.1	0.51	ug/Kg	₩	08/23/22 15:40	08/24/22 10:43	1
Endosulfan I	ND		2.1	0.41	ug/Kg	₽	08/23/22 15:40	08/24/22 10:43	1
Endosulfan II	ND		2.1	0.39	ug/Kg	₽	08/23/22 15:40	08/24/22 10:43	1
Endosulfan sulfate	ND		2.1	0.40	ug/Kg	₽	08/23/22 15:40	08/24/22 10:43	1
Endrin	ND		2.1	0.42	ug/Kg	≎	08/23/22 15:40	08/24/22 10:43	1
Endrin aldehyde	ND		2.1	0.55	ug/Kg	₽	08/23/22 15:40	08/24/22 10:43	1
Endrin ketone	ND		2.1	0.53	ug/Kg	₽	08/23/22 15:40	08/24/22 10:43	1
gamma-BHC (Lindane)	ND		2.1	0.39	ug/Kg	≎	08/23/22 15:40	08/24/22 10:43	1
trans-Chlordane	1.6	J	2.1	0.68	ug/Kg	₩	08/23/22 15:40	08/24/22 10:43	1

54 - 120

60 - 120

52 - 120

103

89

80

Page 8 of 29

Client: Joseph C. Lu Eng & Land Surveying PC

Project/Site: Jay Hague #50380

Client Sample ID: Topsoil - 01

Date Collected: 08/19/22 14:05 Date Received: 08/22/22 09:10

Lab Sample ID: 480-200909-1

Matrix: Solid

Percent Solids: 76.0

Job ID: 480-200909-1

Method: 8081B - Organoc Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Heptachlor	ND		2.1	0.46	ug/Kg	— <u>=</u> ⇔	08/23/22 15:40		1
Heptachlor epoxide	ND		2.1	0.55	ug/Kg	₩	08/23/22 15:40	08/24/22 10:43	1
Methoxychlor	ND		2.1	0.44	ug/Kg	☆	08/23/22 15:40	08/24/22 10:43	1
Toxaphene	ND		21	12	ug/Kg	₩	08/23/22 15:40	08/24/22 10:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
DCB Decachlorobiphenyl	55		45 - 120				08/23/22 15:40	08/24/22 10:43	1
DCB Decachlorobiphenyl	67		45 - 120				08/23/22 15:40	08/24/22 10:43	1
Tetrachloro-m-xylene	53		30 - 124				08/23/22 15:40	08/24/22 10:43	1
Tetrachloro-m-xylene	42		30 - 124				08/23/22 15:40	08/24/22 10:43	1

Method: 8082A - Poly	chlorinated Biphenyls (PCBs)	by Gas Chro	omatogra	aphy				
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND ND	0.25	0.049	mg/Kg	<u></u>	08/23/22 15:51	08/24/22 21:48	1
PCB-1221	ND	0.25	0.049	mg/Kg	☼	08/23/22 15:51	08/24/22 21:48	1
PCB-1232	ND	0.25	0.049	mg/Kg	₽	08/23/22 15:51	08/24/22 21:48	1
PCB-1242	ND	0.25	0.049	mg/Kg	₽	08/23/22 15:51	08/24/22 21:48	1
PCB-1248	ND	0.25	0.049	mg/Kg	☼	08/23/22 15:51	08/24/22 21:48	1
PCB-1254	ND	0.25	0.12	mg/Kg	☼	08/23/22 15:51	08/24/22 21:48	1
PCB-1260	ND	0.25	0.12	mg/Kg	₽	08/23/22 15:51	08/24/22 21:48	1

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	Tetrachloro-m-xylene	102		60 - 154	08/23/22 15:51	08/24/22 21:48	1
	Tetrachloro-m-xylene	124		60 - 154	08/23/22 15:51	08/24/22 21:48	1
	DCB Decachlorobiphenyl	102		65 - 174	08/23/22 15:51	08/24/22 21:48	1
١	DCB Decachlorobiphenyl	137		65 - 174	08/23/22 15:51	08/24/22 21:48	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	4.9	В	2.7	0.54	mg/Kg		08/24/22 12:15	08/26/22 01:45	1
Barium	64.5		0.68	0.15	mg/Kg	☼	08/24/22 12:15	08/26/22 01:45	1
Cadmium	0.30		0.27	0.041	mg/Kg	☼	08/24/22 12:15	08/26/22 01:45	1
Chromium	15.1		0.68	0.27	mg/Kg	₩	08/24/22 12:15	08/26/22 01:45	1
Lead	19.3		1.4	0.32	mg/Kg	☼	08/24/22 12:15	08/26/22 01:45	1
Selenium	ND		5.4	0.54	mg/Kg	☼	08/24/22 12:15	08/26/22 01:45	1
Silver	ND		0.81	0.27	mg/Kg	₩	08/24/22 12:15	08/26/22 01:45	1

Method: 7471B - Mercury (CVAA))								
Analyte	Result (Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.049		0.027	0.0061	mg/Kg	<u></u>	08/24/22 09:48	08/24/22 12:43	1

Client: Joseph C. Lu Eng & Land Surveying PC

Project/Site: Jay Hague #50380

Method: 8260C - Volatile Organic Compounds by GC/MS

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surre	ogate Reco
		TOL	DCA	BFB	DBFM
Lab Sample ID	Client Sample ID	(71-125)	(64-126)	(72-126)	(60-140)
480-200909-1	Topsoil - 01	105	105	84	103
LCS 480-638751/1-A	Lab Control Sample	100	104	97	102
MB 480-638751/2-A	Method Blank	96	107	99	103
Surrogate Legend					
TOL = Toluene-d8 (Su	ırr)				

DCA = 1,2-Dichloroethane-d4 (Surr)

BFB = 4-Bromofluorobenzene (Surr)

DBFM = Dibromofluoromethane (Surr)

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Prep Type: Total/NA **Matrix: Solid**

		Percent Surrogate Recovery (Acceptance Limits)								
		NBZ	PHL	TPHd14	TBP	FBP	2FP			
Lab Sample ID	Client Sample ID	(53-120)	(54-120)	(79-130)	(54-120)	(60-120)	(52-120)			
480-200909-1	Topsoil - 01	80	84	104	103	89	80			
LCS 480-638955/2-A	Lab Control Sample	82	81	98	93	87	77			
MB 480-638955/1-A	Method Blank	89	88	100	82	91	87			
Surrogato Logond										

Surrogate Legend

NBZ = Nitrobenzene-d5 (Surr)

PHL = Phenol-d5 (Surr)

TPHd14 = p-Terphenyl-d14 (Surr)

TBP = 2,4,6-Tribromophenol (Surr)

FBP = 2-Fluorobiphenyl (Surr)

2FP = 2-Fluorophenol (Surr)

Method: 8081B - Organochlorine Pesticides (GC)

Matrix: Solid Prep Type: Total/NA

			Pe	ercent Surre	ogate Recovery	(Acceptance Li
		DCBP1	DCBP2	TCX1	TCX2	
Lab Sample ID	Client Sample ID	(45-120)	(45-120)	(30-124)	(30-124)	
480-200909-1	Topsoil - 01	55	67	53	42	
LCS 480-638733/2-A	Lab Control Sample	59	66	59	46	
LCSD 480-638733/3-A	Lab Control Sample Dup	62	70	63	48	
MB 480-638733/1-A	Method Blank	71	78	70	54	

Surrogate Legend

DCBP = DCB Decachlorobiphenyl

TCX = Tetrachloro-m-xylene

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Matrix: Solid Prep Type: Total/NA

		Percent Surrogate Recovery (Acceptance Limits)					
		TCX1	TCX2	DCBP1	DCBP2		
Lab Sample ID	Client Sample ID	(60-154)	(60-154)	(65-174)	(65-174)		
480-200909-1	Topsoil - 01	102	124	102	137		
LCS 480-638737/2-A	Lab Control Sample	109	133	112	151		
MB 480-638737/1-A	Method Blank	95	112	100	137		

Eurofins Buffalo

Job ID: 480-200909-1

Page 10 of 29 8/29/2022

Surrogate Summary

Client: Joseph C. Lu Eng & Land Surveying PC

Project/Site: Jay Hague #50380

Surrogate Legend

TCX = Tetrachloro-m-xylene
DCBP = DCB Decachlorobiphenyl

Job ID: 480-200909-1

3

А

4

6

<u>'</u>

9

10

12

4 /

QC Sample Results

Client: Joseph C. Lu Eng & Land Surveying PC

Project/Site: Jay Hague #50380

Job ID: 480-200909-1

Method: 8260C - Volatile Organic Compounds by GC/MS

Lab Sample ID: MB 480-638751/2-A

Matrix: Solid

Analysis Batch: 638753

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 638751

Analyte	MB MB Result Quali	fier RL	MDL	Unit D	Dropared	Analyzed	Dil Fac
1,1,1-Trichloroethane	ND Result Quali	5.0 Example 5.0		ug/Kg	Prepared 08/23/22 17:50		1 Dil Fac
1,1,2,2-Tetrachloroethane	ND	5.0		ug/Kg	08/23/22 17:50		1
1,1,2-Trichloroethane	ND	5.0		ug/Kg		08/23/22 21:31	1
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	5.0		ug/Kg		08/23/22 21:31	· · 1
1,1-Dichloroethane	ND	5.0		ug/Kg		08/23/22 21:31	1
1,1-Dichloroethene	ND	5.0		ug/Kg		08/23/22 21:31	1
1,2,4-Trichlorobenzene	ND	5.0		ug/Kg		08/23/22 21:31	· · · · · · · · · · · · · · · · · · ·
1,2-Dibromo-3-Chloropropane	ND	5.0		ug/Kg		08/23/22 21:31	1
1,2-Dichlorobenzene	ND	5.0		ug/Kg		08/23/22 21:31	1
1,2-Dichloroethane	ND	5.0		ug/Kg		08/23/22 21:31	
1,2-Dichloropropane	ND	5.0		ug/Kg		08/23/22 21:31	1
1,3-Dichlorobenzene	ND	5.0		ug/Kg		08/23/22 21:31	1
1,4-Dichlorobenzene	ND	5.0		ug/Kg		08/23/22 21:31	
•	ND ND	25				08/23/22 21:31	
2-Butanone (MEK) 2-Hexanone	ND ND	25 25		ug/Kg		08/23/22 21:31	1 1
				ug/Kg			
4-Methyl-2-pentanone (MIBK)	ND ND	25 25		ug/Kg		08/23/22 21:31	1
Acetone				ug/Kg		08/23/22 21:31	1
Benzene	ND	5.0		ug/Kg		08/23/22 21:31	
Bromodichloromethane	ND	5.0		ug/Kg		08/23/22 21:31	1
Bromoform	ND	5.0		ug/Kg		08/23/22 21:31	1
Bromomethane	ND	5.0		ug/Kg		08/23/22 21:31	1
Carbon disulfide	ND	5.0		ug/Kg		08/23/22 21:31	1
Carbon tetrachloride	ND	5.0		ug/Kg		08/23/22 21:31	1
Chlorobenzene	ND	5.0		ug/Kg		08/23/22 21:31	1
Dibromochloromethane	ND	5.0		ug/Kg		08/23/22 21:31	1
Chloroethane	ND	5.0		ug/Kg		08/23/22 21:31	1
Chloroform	ND	5.0		ug/Kg		08/23/22 21:31	
Chloromethane	ND	5.0		ug/Kg		08/23/22 21:31	1
cis-1,2-Dichloroethene	ND	5.0		ug/Kg		08/23/22 21:31	1
cis-1,3-Dichloropropene	ND	5.0		ug/Kg		08/23/22 21:31	1
Cyclohexane	ND	5.0		ug/Kg		08/23/22 21:31	1
Dichlorodifluoromethane	ND	5.0		ug/Kg		08/23/22 21:31	1
Ethylbenzene	ND	5.0		ug/Kg		08/23/22 21:31	1
1,2-Dibromoethane	ND	5.0		ug/Kg		08/23/22 21:31	1
Isopropylbenzene	ND	5.0		ug/Kg		08/23/22 21:31	1
Methyl acetate	ND	25		ug/Kg		08/23/22 21:31	1
Methyl tert-butyl ether	ND	5.0		ug/Kg		08/23/22 21:31	1
Methylcyclohexane	ND	5.0		ug/Kg		08/23/22 21:31	1
Methylene Chloride	ND	5.0		ug/Kg		08/23/22 21:31	1
Styrene	ND	5.0		ug/Kg		08/23/22 21:31	1
Tetrachloroethene	ND	5.0		ug/Kg	08/23/22 17:50		1
Toluene	ND	5.0		ug/Kg	08/23/22 17:50		1
trans-1,2-Dichloroethene	ND	5.0		ug/Kg	08/23/22 17:50		1
trans-1,3-Dichloropropene	ND	5.0		ug/Kg		08/23/22 21:31	1
Trichloroethene	ND	5.0		ug/Kg		08/23/22 21:31	1
Trichlorofluoromethane	ND	5.0		ug/Kg		08/23/22 21:31	1
Vinyl chloride	ND	5.0		ug/Kg		08/23/22 21:31	1
Xylenes, Total	ND	10	0.84	ug/Kg	08/23/22 17:50	08/23/22 21:31	1

Eurofins Buffalo

3

4

6

8

10

11

13

QC Sample Results

Client: Joseph C. Lu Eng & Land Surveying PC

Project/Site: Jay Hague #50380

Job ID: 480-200909-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

MR MR

Lab Sample ID: MB 480-638751/2-A

Matrix: Solid

Analysis Batch: 638753

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 638751

	טואו טואו				
Surrogate	%Recovery Quali	ifier Limits	Prepared	Analyzed	Dil Fac
Toluene-d8 (Surr)	96	71 - 125	08/23/22 17:50	08/23/22 21:31	1
1,2-Dichloroethane-d4 (Surr)	107	64 - 126	08/23/22 17:50	08/23/22 21:31	1
4-Bromofluorobenzene (Surr)	99	72 - 126	08/23/22 17:50	08/23/22 21:31	1
Dibromofluoromethane (Surr)	103	60 - 140	08/23/22 17:50	08/23/22 21:31	1

Lab Sample ID: LCS 480-638751/1-A

Matrix: Solid

Client	Sample	ID:	Lab	Control	Sa	mple

Prep Type: Total/NA

Pren Ratch: 638751

Analysis Batch: 638753							Prep Batch: 63875
	Spike	LCS					%Rec
Analyte	Added		Qualifier	Unit	_ D	%Rec	Limits
1,1,1-Trichloroethane	50.0	49.9		ug/Kg		100	77 - 121
1,1,2,2-Tetrachloroethane	50.0	47.3		ug/Kg		95	80 - 120
1,1,2-Trichloroethane	50.0	46.7		ug/Kg		93	78 - 122
1,1,2-Trichloro-1,2,2-trifluoroetha	50.0	45.5		ug/Kg		91	60 - 140
ne 1,1-Dichloroethane	50.0	48.9		ug/Kg		98	73 - 126
1,1-Dichloroethene	50.0	48.6		ug/Kg ug/Kg		97	59 ₋ 125
1,2,4-Trichlorobenzene	50.0	42.4		ug/Kg		85	64 - 120
1,2-Dibromo-3-Chloropropane	50.0	47.9		ug/Kg		96	63 - 124
1,2-Dichlorobenzene	50.0	46.5		ug/Kg		93	75 - 120
1,2-Dichloroethane	50.0	48.4		ug/Kg		97	77 - 122
1,2-Dichloropropane	50.0	48.9		ug/Kg		98	75 - 124
1,3-Dichlorobenzene	50.0	47.2		ug/Kg		94	74 - 120
1,4-Dichlorobenzene	50.0	45.9		ug/Kg		92	73 - 120
2-Butanone (MEK)	250	253		ug/Kg		101	70 - 134
2-Hexanone	250	257		ug/Kg		103	59 - 130
4-Methyl-2-pentanone (MIBK)	250	258		ug/Kg		103	65 - 133
Acetone	250	245		ug/Kg		98	61 - 137
Benzene	50.0	47.9		ug/Kg		96	79 - 127
Bromodichloromethane	50.0	48.5		ug/Kg		97	80 - 122
Bromoform	50.0	46.6		ug/Kg		93	68 - 126
Bromomethane	50.0	57.1		ug/Kg		114	37 - 149
Carbon disulfide	50.0	47.4		ug/Kg		95	64 - 131
Carbon tetrachloride	50.0	51.4		ug/Kg		103	75 - 135
Chlorobenzene	50.0	45.6		ug/Kg		91	76 - 124
Dibromochloromethane	50.0	48.0		ug/Kg		96	76 - 125
Chloroethane	50.0	57.7		ug/Kg		115	69 - 135
Chloroform	50.0	47.6		ug/Kg		95	80 - 120
Chloromethane	50.0	51.8		ug/Kg		104	63 - 127
cis-1,2-Dichloroethene	50.0	47.5		ug/Kg		95	81 - 120
cis-1,3-Dichloropropene	50.0	50.0		ug/Kg		100	80 - 120
Cyclohexane	50.0	53.2		ug/Kg		106	65 - 120
Dichlorodifluoromethane	50.0	54.2		ug/Kg		108	57 - 142
Ethylbenzene	50.0	48.1		ug/Kg		96	80 - 120
1,2-Dibromoethane	50.0	45.4		ug/Kg		91	78 - 120
Isopropylbenzene	50.0	50.6		ug/Kg		101	72 - 120
Methyl acetate	100	99.9		ug/Kg		100	55 - 136
Methyl tert-butyl ether	50.0	47.5		ug/Kg		95	63 - 125
Methylcyclohexane	50.0	52.0		ug/Kg		104	60 - 140

Eurofins Buffalo

Page 13 of 29

Client: Joseph C. Lu Eng & Land Surveying PC

Project/Site: Jay Hague #50380

Job ID: 480-200909-1

Method: 8260C - Volatile Organic Compounds by GC/MS (Continued)

Lab Sample ID: LCS 480-638751/1-A

Matrix: Solid

Analysis Batch: 638753

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 638751

Spike	LUS	LCS				%Rec	
Added	Result	Qualifier	Unit	D	%Rec	Limits	
50.0	49.3		ug/Kg		99	61 - 127	
50.0	47.1		ug/Kg		94	80 - 120	
50.0	47.7		ug/Kg		95	74 - 122	
50.0	47.1		ug/Kg		94	74 - 128	
50.0	47.9		ug/Kg		96	78 - 126	
50.0	47.9		ug/Kg		96	73 - 123	
50.0	48.6		ug/Kg		97	77 - 129	
50.0	56.3		ug/Kg		113	65 - 146	
50.0	52.7		ug/Kg		105	61 - 133	
	50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0	Added Result 50.0 49.3 50.0 47.1 50.0 47.7 50.0 47.1 50.0 47.9 50.0 47.9 50.0 48.6 50.0 56.3	Added Result Qualifier 50.0 49.3 50.0 47.1 50.0 47.7 50.0 47.1 50.0 47.9 50.0 47.9 50.0 48.6 50.0 56.3	Added Result Qualifier Unit 50.0 49.3 ug/Kg 50.0 47.1 ug/Kg 50.0 47.7 ug/Kg 50.0 47.1 ug/Kg 50.0 47.9 ug/Kg 50.0 47.9 ug/Kg 50.0 48.6 ug/Kg 50.0 56.3 ug/Kg	Added Result Qualifier Unit D 50.0 49.3 ug/Kg ug/Kg 50.0 47.1 ug/Kg ug/Kg 50.0 47.1 ug/Kg ug/Kg 50.0 47.9 ug/Kg ug/Kg 50.0 47.9 ug/Kg ug/Kg 50.0 48.6 ug/Kg 50.0 56.3 ug/Kg	Added Result Qualifier Unit D %Rec 50.0 49.3 ug/Kg 99 50.0 47.1 ug/Kg 94 50.0 47.7 ug/Kg 95 50.0 47.1 ug/Kg 94 50.0 47.9 ug/Kg 96 50.0 47.9 ug/Kg 96 50.0 48.6 ug/Kg 97 50.0 56.3 ug/Kg 113	Added Result Qualifier Unit D %Rec Limits 50.0 49.3 ug/Kg 99 61 - 127 50.0 47.1 ug/Kg 94 80 - 120 50.0 47.7 ug/Kg 95 74 - 122 50.0 47.1 ug/Kg 94 74 - 128 50.0 47.9 ug/Kg 96 78 - 126 50.0 47.9 ug/Kg 96 73 - 123 50.0 48.6 ug/Kg 97 77 - 129 50.0 56.3 ug/Kg 113 65 - 146

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Toluene-d8 (Surr)	100		71 - 125
1,2-Dichloroethane-d4 (Surr)	104		64 - 126
4-Bromofluorobenzene (Surr)	97		72 - 126
Dibromofluoromethane (Surr)	102		60 - 140

Method: 8270D - Semivolatile Organic Compounds (GC/MS)

Lab Sample ID: MB 480-638955/1-A

Matrix: Solid

Analysis Batch: 639118

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 638955

Analysis Baton, 600 mg								i icp Batcii.	000000
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Biphenyl	ND		170	25	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
bis (2-chloroisopropyl) ether	ND		170	34	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
2,4,5-Trichlorophenol	ND		170	45	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
2,4,6-Trichlorophenol	ND		170	34	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
2,4-Dichlorophenol	ND		170	18	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
2,4-Dimethylphenol	ND		170	40	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
2,4-Dinitrophenol	ND		1600	770	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
2,4-Dinitrotoluene	ND		170	35	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
2,6-Dinitrotoluene	ND		170	20	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
2-Chloronaphthalene	ND		170	28	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
2-Chlorophenol	ND		330	31	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
2-Methylphenol	ND		170	20	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
2-Methylnaphthalene	ND		170	34	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
2-Nitroaniline	ND		330	25	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
2-Nitrophenol	ND		170	47	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
3,3'-Dichlorobenzidine	ND		330	200	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
3-Nitroaniline	ND		330	46	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
4,6-Dinitro-2-methylphenol	ND		330	170	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
4-Bromophenyl phenyl ether	ND		170	24	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
4-Chloro-3-methylphenol	ND		170	41	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
4-Chloroaniline	ND		170	41	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
4-Chlorophenyl phenyl ether	ND		170	21	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
4-Methylphenol	ND		330	20	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
4-Nitroaniline	ND		330	88	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
4-Nitrophenol	ND		330	120	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Acenaphthene	ND		170	25	ug/Kg		08/24/22 16:01	08/25/22 16:20	1

Eurofins Buffalo

Page 14 of 29

8/29/2022

Client: Joseph C. Lu Eng & Land Surveying PC

Project/Site: Jay Hague #50380

Job ID: 480-200909-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

MB MB

Lab Sample ID: MB 480-638955/1-A

Matrix: Solid

Analysis Batch: 639118

Client Sample ID: Method Blank

	p Type: Total/NA
Pre	p Batch: 638955

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Acenaphthylene	ND	170	22	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Acetophenone	ND	170	23	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Anthracene	ND	170	41	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Atrazine	ND	170	58	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Benzaldehyde	ND	170	130	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Benzo[a]anthracene	ND	170	17	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Benzo[a]pyrene	ND	170	25	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Benzo[b]fluoranthene	ND	170	27	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Benzo[g,h,i]perylene	ND	170	18	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Benzo[k]fluoranthene	ND	170	22	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Bis(2-chloroethoxy)methane	ND	170	36	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Bis(2-chloroethyl)ether	ND	170	22	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Bis(2-ethylhexyl) phthalate	ND	170		ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Butyl benzyl phthalate	ND	170	28	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Caprolactam	ND	170	50	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Carbazole	ND	170	20	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Chrysene	ND	170	38	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Dibenz(a,h)anthracene	ND	170	30	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Di-n-butyl phthalate	ND	170	29	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Di-n-octyl phthalate	ND	170	20	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Dibenzofuran	ND	170	20	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Diethyl phthalate	ND	170	22	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Dimethyl phthalate	ND	170	20	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Fluoranthene	ND	170	18	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Fluorene	ND	170	20	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Hexachlorobenzene	ND	170	23	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Hexachlorobutadiene	ND	170	25	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Hexachlorocyclopentadiene	ND	170	23	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Hexachloroethane	ND	170	22	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Indeno[1,2,3-cd]pyrene	ND	170	21	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Isophorone	ND	170	36	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
N-Nitrosodi-n-propylamine	ND	170	29	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
N-Nitrosodiphenylamine	ND	170	140	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Naphthalene	ND	170	22	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Nitrobenzene	ND	170	19	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Pentachlorophenol	ND	330	170	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Phenanthrene	ND	170	25	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Phenol	ND	170	26	ug/Kg		08/24/22 16:01	08/25/22 16:20	1
Pyrene	ND	170	20	ug/Kg		08/24/22 16:01	08/25/22 16:20	1

	440
WB	IVIB

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
Nitrobenzene-d5 (Surr)	89	53 - 120	08/24/22 16:01	08/25/22 16:20	1
Phenol-d5 (Surr)	88	54 - 120	08/24/22 16:01	08/25/22 16:20	1
p-Terphenyl-d14 (Surr)	100	79 - 130	08/24/22 16:01	08/25/22 16:20	1
2,4,6-Tribromophenol (Surr)	82	54 - 120	08/24/22 16:01	08/25/22 16:20	1
2-Fluorobiphenyl (Surr)	91	60 - 120	08/24/22 16:01	08/25/22 16:20	1
2-Fluorophenol (Surr)	87	52 - 120	08/24/22 16:01	08/25/22 16:20	1

Eurofins Buffalo

4

6

8

10

12

Client: Joseph C. Lu Eng & Land Surveying PC

Project/Site: Jay Hague #50380

Job ID: 480-200909-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-638955/2-A	Lab	Sami	ple I	D: I	LCS	480	-638	955/2	-A
-----------------------------------	-----	------	-------	------	-----	-----	------	-------	----

Matrix: Solid

Client Sample ID: Lab Control Sample
Prep Type: Total/NA
Prop Ratch: 638955

Analysis Batch: 639118						Prep Batch: 6389
	Spike		LCS			%Rec
Analyte	Added		Qualifier	Unit	D %Rec	Limits
Biphenyl	1630	1420		ug/Kg	87	59 - 120
bis (2-chloroisopropyl) ether	1630	1210		ug/Kg	74	44 - 120
2,4,5-Trichlorophenol	1630	1560		ug/Kg	96	59 - 126
2,4,6-Trichlorophenol	1630	1550		ug/Kg	95	59 - 123
2,4-Dichlorophenol	1630	1470		ug/Kg	90	61 - 120
2,4-Dimethylphenol	1630	1460		ug/Kg	89	59 - 120
2,4-Dinitrophenol	3260	2750		ug/Kg	84	41 - 146
2,4-Dinitrotoluene	1630	1580		ug/Kg	97	63 - 120
2,6-Dinitrotoluene	1630	1620		ug/Kg	99	66 - 120
2-Chloronaphthalene	1630	1440		ug/Kg	88	57 - 120
2-Chlorophenol	1630	1310		ug/Kg	80	53 - 120
2-Methylphenol	1630	1320		ug/Kg	81	54 - 120
2-Methylnaphthalene	1630	1290		ug/Kg	79	59 - 120
2-Nitroaniline	1630	1560		ug/Kg	96	61 - 120
2-Nitrophenol	1630	1340		ug/Kg	82	56 - 120
3,3'-Dichlorobenzidine	3260	2800		ug/Kg	86	54 - 120
3-Nitroaniline	1630	1430		ug/Kg	88	48 - 120
4,6-Dinitro-2-methylphenol	3260	2980		ug/Kg	91	49 - 122
4-Bromophenyl phenyl ether	1630	1560		ug/Kg	95	58 - 120
4-Chloro-3-methylphenol	1630	1540		ug/Kg	94	61 - 120
4-Chloroaniline	1630	1260		ug/Kg	77	38 - 120
4-Chlorophenyl phenyl ether	1630	1500		ug/Kg ug/Kg	92	63 - 124
	1630	1380		ug/Kg ug/Kg	84	55 - 120
4-Methylphenol 4-Nitroaniline						
	1630	1500		ug/Kg	92	56 - 120
4-Nitrophenol	3260	3350		ug/Kg	103	43 - 147
Acenaphthene	1630	1460		ug/Kg	89	62 - 120
Acenaphthylene	1630	1450		ug/Kg	89	58 - 121
Acetophenone	1630	1290		ug/Kg	79	54 - 120
Anthracene	1630	1520		ug/Kg	93	62 - 120
Atrazine	3260	3130		ug/Kg	96	60 - 127
Benzaldehyde	3260	2500		ug/Kg	76	10 - 150
Benzo[a]anthracene	1630	1530		ug/Kg	94	65 - 120
Benzo[a]pyrene	1630	1610		ug/Kg	99	64 - 120
Benzo[b]fluoranthene	1630	1530		ug/Kg	93	64 - 120
Benzo[g,h,i]perylene	1630	1530		ug/Kg	94	45 - 145
Benzo[k]fluoranthene	1630	1690		ug/Kg	103	65 - 120
Bis(2-chloroethoxy)methane	1630	1370		ug/Kg	84	55 - 120
Bis(2-chloroethyl)ether	1630	1270		ug/Kg	78	45 - 120
Bis(2-ethylhexyl) phthalate	1630	1520		ug/Kg	93	61 - 133
Butyl benzyl phthalate	1630	1550		ug/Kg	95	61 - 129
Caprolactam	3260	3090		ug/Kg	95	47 - 120
Carbazole	1630	1610		ug/Kg	99	65 - 120
Chrysene	1630	1540		ug/Kg	94	64 - 120
Dibenz(a,h)anthracene	1630	1600		ug/Kg	98	54 - 132
Di-n-butyl phthalate	1630	1560		ug/Kg ug/Kg	96	58 - 130
Di-n-octyl phthalate	1630	1530		ug/Kg ug/Kg	94	57 - 133
Dibenzofuran	1630	1450				63 - 120
				ug/Kg	89	
Diethyl phthalate	1630	1540		ug/Kg	94	66 - 120

Eurofins Buffalo

0

10

12

13

Client: Joseph C. Lu Eng & Land Surveying PC

Project/Site: Jay Hague #50380

Job ID: 480-200909-1

Method: 8270D - Semivolatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 480-638955/2-A

Matrix: Solid

Analysis Batch: 639118

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 638955

•	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Dimethyl phthalate	1630	1520		ug/Kg		93	65 - 124	
Fluoranthene	1630	1560		ug/Kg		96	62 - 120	
Fluorene	1630	1500		ug/Kg		92	63 - 120	
Hexachlorobenzene	1630	1580		ug/Kg		97	60 - 120	
Hexachlorobutadiene	1630	1320		ug/Kg		81	45 - 120	
Hexachlorocyclopentadiene	1630	1180		ug/Kg		72	47 - 120	
Hexachloroethane	1630	1160		ug/Kg		71	41 - 120	
Indeno[1,2,3-cd]pyrene	1630	1540		ug/Kg		94	56 - 134	
Isophorone	1630	1350		ug/Kg		83	56 - 120	
N-Nitrosodi-n-propylamine	1630	1320		ug/Kg		81	52 - 120	
N-Nitrosodiphenylamine	1630	1550		ug/Kg		95	51 - 128	
Naphthalene	1630	1320		ug/Kg		81	55 - 120	
Nitrobenzene	1630	1340		ug/Kg		82	54 - 120	
Pentachlorophenol	3260	2790		ug/Kg		85	51 - 120	
Phenanthrene	1630	1520		ug/Kg		93	60 - 120	
Phenol	1630	1360		ug/Kg		83	53 - 120	
Pyrene	1630	1590		ug/Kg		98	61 - 133	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Nitrobenzene-d5 (Surr)	82		53 - 120
Phenol-d5 (Surr)	81		54 - 120
p-Terphenyl-d14 (Surr)	98		79 - 130
2,4,6-Tribromophenol (Surr)	93		54 - 120
2-Fluorobiphenyl (Surr)	87		60 - 120
2-Fluorophenol (Surr)	77		52 - 120

Method: 8081B - Organochlorine Pesticides (GC)

Lab Sample ID: MB 480-638733/1-A

Matrix: Solid

Analysis Batch: 638776

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 638733

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
4,4'-DDD	ND		1.6	0.32	ug/Kg		08/23/22 15:40	08/24/22 09:24	1
4,4'-DDE	ND		1.6	0.34	ug/Kg		08/23/22 15:40	08/24/22 09:24	1
4,4'-DDT	ND		1.6	0.38	ug/Kg		08/23/22 15:40	08/24/22 09:24	1
Aldrin	ND		1.6	0.40	ug/Kg		08/23/22 15:40	08/24/22 09:24	1
alpha-BHC	ND		1.6	0.29	ug/Kg		08/23/22 15:40	08/24/22 09:24	1
cis-Chlordane	ND		1.6	0.81	ug/Kg		08/23/22 15:40	08/24/22 09:24	1
beta-BHC	ND		1.6	0.29	ug/Kg		08/23/22 15:40	08/24/22 09:24	1
delta-BHC	ND		1.6	0.30	ug/Kg		08/23/22 15:40	08/24/22 09:24	1
Dieldrin	ND		1.6	0.39	ug/Kg		08/23/22 15:40	08/24/22 09:24	1
Endosulfan I	ND		1.6	0.31	ug/Kg		08/23/22 15:40	08/24/22 09:24	1
Endosulfan II	ND		1.6	0.29	ug/Kg		08/23/22 15:40	08/24/22 09:24	1
Endosulfan sulfate	ND		1.6	0.30	ug/Kg		08/23/22 15:40	08/24/22 09:24	1
Endrin	ND		1.6	0.32	ug/Kg		08/23/22 15:40	08/24/22 09:24	1
Endrin aldehyde	ND		1.6	0.41	ug/Kg		08/23/22 15:40	08/24/22 09:24	1
Endrin ketone	ND		1.6	0.40	ug/Kg		08/23/22 15:40	08/24/22 09:24	1
gamma-BHC (Lindane)	ND		1.6	0.30	ug/Kg		08/23/22 15:40	08/24/22 09:24	1

Eurofins Buffalo

Page 17 of 29

Client: Joseph C. Lu Eng & Land Surveying PC

Project/Site: Jay Hague #50380

Job ID: 480-200909-1

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: MB 480-638733/1-A

Matrix: Solid

Analysis Batch: 638776

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 638733

	INIR INIR							
Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
trans-Chlordane	ND ND	1.6	0.52	ug/Kg		08/23/22 15:40	08/24/22 09:24	1
Heptachlor	ND	1.6	0.35	ug/Kg		08/23/22 15:40	08/24/22 09:24	1
Heptachlor epoxide	ND	1.6	0.42	ug/Kg		08/23/22 15:40	08/24/22 09:24	1
Methoxychlor	ND	1.6	0.33	ug/Kg		08/23/22 15:40	08/24/22 09:24	1
Toxaphene	ND	16	9.4	ug/Kg		08/23/22 15:40	08/24/22 09:24	1

MB MB

	10.0						
Surrogate	%Recovery (Qualifier	Limits	Prepared	Analyzed	Dil Fac	
DCB Decachlorobiphenyl	71		45 - 120	08/23/22 15:40	08/24/22 09:24	1	
DCB Decachlorobiphenyl	78		45 - 120	08/23/22 15:40	08/24/22 09:24	1	
Tetrachloro-m-xylene	70		30 - 124	08/23/22 15:40	08/24/22 09:24	1	
Tetrachloro-m-xylene	54		30 - 124	08/23/22 15:40	08/24/22 09:24	1	

Lab Sample ID: LCS 480-638733/2-A

Client Sample ID: Lab Control Sample

733

Matrix: Solid							Prep Type: Total/N
Analysis Batch: 638776							Prep Batch: 63873
	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
4,4'-DDD	16.4	10.3		ug/Kg		63	56 - 120
4.41.000	40.4	0.50					44 400

	Spike	LUS	LUS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
4,4'-DDD	16.4	10.3		ug/Kg		63	56 - 120	
4,4'-DDE	16.4	9.59		ug/Kg		59	44 - 120	
4,4'-DDT	16.4	9.87		ug/Kg		60	38 - 120	
Aldrin	16.4	8.73		ug/Kg		53	38 - 120	
alpha-BHC	16.4	8.52		ug/Kg		52	39 - 120	
cis-Chlordane	16.4	9.50		ug/Kg		58	47 - 120	
beta-BHC	16.4	9.83		ug/Kg		60	40 - 120	
delta-BHC	16.4	8.96		ug/Kg		55	45 - 120	
Dieldrin	16.4	9.62		ug/Kg		59	58 - 120	
Endosulfan I	16.4	10.5		ug/Kg		64	49 - 120	
Endosulfan II	16.4	9.94		ug/Kg		61	55 - 120	
Endosulfan sulfate	16.4	9.74		ug/Kg		60	49 - 124	
Endrin	16.4	9.96		ug/Kg		61	58 - 120	
Endrin aldehyde	16.4	8.96		ug/Kg		55	37 - 121	
Endrin ketone	16.4	10.0		ug/Kg		61	46 - 123	
gamma-BHC (Lindane)	16.4	8.53		ug/Kg		52	50 - 120	
trans-Chlordane	16.4	9.65		ug/Kg		59	48 - 120	
Heptachlor	16.4	9.50		ug/Kg		58	50 - 120	
Heptachlor epoxide	16.4	10.0		ug/Kg		61	50 - 120	
Methoxychlor	16.4	10.3		ug/Kg		63	58 - 133	
				_				

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	59		45 - 120
DCB Decachlorobiphenyl	66		45 - 120
Tetrachloro-m-xylene	59		30 - 124
Tetrachloro-m-xvlene	46		30 - 124

8/29/2022

Client: Joseph C. Lu Eng & Land Surveying PC

Project/Site: Jay Hague #50380

Job ID: 480-200909-1

Method: 8081B - Organochlorine Pesticides (GC) (Continued)

Lab Sample ID: LCSD 480-638733/3-A

Matrix: Solid

Analysis Batch: 638776

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 638733

, ,								
	Spike	LCSD	LCSD			%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D %Rec	Limits	RPD	Limit
4,4'-DDD	16.2	11.1		ug/Kg	68	56 - 120	7	18
4,4'-DDE	16.2	10.3		ug/Kg	63	44 - 120	7	16
4,4'-DDT	16.2	10.7		ug/Kg	66	38 - 120	8	17
Aldrin	16.2	9.24		ug/Kg	57	38 - 120	6	24
alpha-BHC	16.2	9.19		ug/Kg	57	39 - 120	8	19
cis-Chlordane	16.2	10.0		ug/Kg	62	47 - 120	5	13
beta-BHC	16.2	10.6		ug/Kg	65	40 - 120	8	17
delta-BHC	16.2	9.73		ug/Kg	60	45 - 120	8	14
Dieldrin	16.2	10.6		ug/Kg	65	58 - 120	10	13
Endosulfan I	16.2	11.2		ug/Kg	69	49 - 120	6	16
Endosulfan II	16.2	10.7		ug/Kg	66	55 - 120	7	17
Endosulfan sulfate	16.2	10.8		ug/Kg	66	49 - 124	10	14
Endrin	16.2	10.7		ug/Kg	66	58 - 120	7	19
Endrin aldehyde	16.2	10.0		ug/Kg	62	37 - 121	11	23
Endrin ketone	16.2	10.8		ug/Kg	67	46 - 123	8	14
gamma-BHC (Lindane)	16.2	9.13		ug/Kg	56	50 - 120	7	20
trans-Chlordane	16.2	10.2		ug/Kg	63	48 - 120	5	14
Heptachlor	16.2	10.1		ug/Kg	62	50 - 120	6	16
Heptachlor epoxide	16.2	10.6		ug/Kg	66	50 - 120	6	17
Methoxychlor	16.2	11.2		ug/Kg	69	58 - 133	9	14

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
DCB Decachlorobiphenyl	62		45 - 120
DCB Decachlorobiphenyl	70		45 - 120
Tetrachloro-m-xylene	63		30 - 124
Tetrachloro-m-xylene	48		30 - 124

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography

Lab Sample ID: MB 480-638737/1-A

Matrix: Solid

Analysis Batch: 638934

Client Sample ID: Method Blank **Prep Type: Total/NA** Prep Batch: 638737

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
PCB-1016	ND		0.22	0.043	mg/Kg		08/23/22 15:51	08/24/22 16:53	1
PCB-1221	ND		0.22	0.043	mg/Kg		08/23/22 15:51	08/24/22 16:53	1
PCB-1232	ND		0.22	0.043	mg/Kg		08/23/22 15:51	08/24/22 16:53	1
PCB-1242	ND		0.22	0.043	mg/Kg		08/23/22 15:51	08/24/22 16:53	1
PCB-1248	ND		0.22	0.043	mg/Kg		08/23/22 15:51	08/24/22 16:53	1
PCB-1254	ND		0.22	0.10	mg/Kg		08/23/22 15:51	08/24/22 16:53	1
PCB-1260	ND		0.22	0.10	mg/Kg		08/23/22 15:51	08/24/22 16:53	1

Surrogate	%Recovery Qu	ualifier Limits	Prepared	Analyzed	Dil Fac
Tetrachloro-m-xylene	95	60 - 154	08/23/22 15:51	08/24/22 16:53	1
Tetrachloro-m-xylene	112	60 - 154	08/23/22 15:51	08/24/22 16:53	1
DCB Decachlorobiphenyl	100	65 - 174	08/23/22 15:51	08/24/22 16:53	1
DCB Decachlorobiphenyl	137	65 - 174	08/23/22 15:51	08/24/22 16:53	1

Eurofins Buffalo

Page 19 of 29

Client: Joseph C. Lu Eng & Land Surveying PC

Project/Site: Jay Hague #50380

Job ID: 480-200909-1

Method: 8082A - Polychlorinated Biphenyls (PCBs) by Gas Chromatography (Continued)

Lab Sample ID: LCS 480-638737/2-A

Matrix: Solid

Analysis Batch: 638934

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 638737

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
PCB-1016	1.85	2.17		mg/Kg	_	117	51 - 185	
PCB-1260	1.85	1.96		mg/Kg		106	61 - 184	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
Tetrachloro-m-xylene	109		60 - 154
Tetrachloro-m-xylene	133		60 - 154
DCB Decachlorobiphenyl	112		65 - 174
DCB Decachlorobiphenyl	151		65 - 174

Method: 6010C - Metals (ICP)

Lab Sample ID: MB 480-638872/1-A

Analysis Batch: 639272

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 638872

Matrix: Solid

MD MD

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Arsenic	0.411	J	2.0	0.40	mg/Kg		08/24/22 12:15	08/26/22 01:10	1
Barium	ND		0.50	0.11	mg/Kg		08/24/22 12:15	08/26/22 01:10	1
Cadmium	ND		0.20	0.030	mg/Kg		08/24/22 12:15	08/26/22 01:10	1
Chromium	ND		0.50	0.20	mg/Kg		08/24/22 12:15	08/26/22 01:10	1
Lead	ND		1.0	0.24	mg/Kg		08/24/22 12:15	08/26/22 01:10	1
Selenium	ND		4.0	0.40	mg/Kg		08/24/22 12:15	08/26/22 01:10	1
Silver	ND		0.60	0.20	mg/Kg		08/24/22 12:15	08/26/22 01:10	1

Lab Sample ID: LCSSRM 480-638872/2-A

Matrix: Solid

Analysis Batch: 639272

Client \$	Sample ID:	Lab	Control	Sample
		—	. 🖚	E - 4 - 1/8 L A

Prep Type: Total/NA Prep Batch: 638872

	Spike	LCSSRM	LCSSRM				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Arsenic	84.5	70.16		mg/Kg		83.0	70.1 - 130. 2	
Barium	249	201.2		mg/Kg		80.8	75.1 ₋ 124. 9	
Cadmium	99.0	75.54		mg/Kg		76.3	74.9 - 125. 3	
Chromium	122	103.1		mg/Kg		84.5	70.2 - 130. 3	
Lead	123	115.4		mg/Kg		93.8	71.8 - 128. 5	
Selenium	121	98.62		mg/Kg		81.5	66.4 - 133. 9	
Silver	33.6	33.85		mg/Kg		100.7	68.5 - 131.	

Client: Joseph C. Lu Eng & Land Surveying PC

Project/Site: Jay Hague #50380

Job ID: 480-200909-1

Method: 7471B - Mercury (CVAA)

Lab Sample ID: MB 480-638806/1-A

Matrix: Solid

Analysis Batch: 638905

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 638806

Prep Batch: 638806

Prep Type: Total/NA **Prep Batch: 638806**

MB MB

Analyte Result Qualifier RL **MDL** Unit Analyzed Dil Fac **Prepared** 0.020 08/24/22 09:48 08/24/22 12:39 Mercury ND 0.0047 mg/Kg

Lab Sample ID: LCSSRM 480-638806/2-A ^10 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Solid

Analyte

Mercury

Analysis Batch: 638905

Spike Added 18.9

0.428

Spike

Added

0.442

LCSSRM LCSSRM Result Qualifier 17.13

Unit

mg/Kg

D %Rec Limits 59.8 - 139. 90.6

Client Sample ID: Topsoil - 01

%Rec

%Rec

Lab Sample ID: 480-200909-1 MS

Matrix: Solid

Analysis Batch: 638905

Analyte

Sample Sample Result Qualifier

Mercury 0.049 Lab Sample ID: 480-200909-1 MSD

Matrix: Solid Analysis Batch: 638905

Sample Sample Analyte

Result Qualifier 0.049 Mercury

MS MS Spike Added

Result Qualifier 0.469

MSD MSD

0.484

Result Qualifier

Unit mg/Kg

Unit

mg/Kg

₩

Limits D %Rec 98 80 - 120

%Rec

98

D

<u>~</u>

Client Sample ID: Topsoil - 01 Prep Type: Total/NA **Prep Batch: 638806**

%Rec **RPD** Limits RPD Limit 80 - 120 3 20

Eurofins Buffalo

QC Association Summary

Client: Joseph C. Lu Eng & Land Surveying PC

Project/Site: Jay Hague #50380

GC/MS VOA

Prei	p Batc	h: 63	8751
1 10	p Date	00	

Lab	Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480	-200909-1	Topsoil - 01	Total/NA	Solid	5035A_L	
MB	480-638751/2-A	Method Blank	Total/NA	Solid	5035A_L	
LCS	S 480-638751/1-A	Lab Control Sample	Total/NA	Solid	5035A_L	

Analysis Batch: 638753

Lab Sample ID 480-200909-1	Client Sample ID Topsoil - 01	Prep Type Total/NA	Matrix Solid	Method 8260C	Prep Batch 638751
MB 480-638751/2	-A Method Blank	Total/NA	Solid	8260C	638751
LCS 480-638751/	1-A Lab Control Sample	Total/NA	Solid	8260C	638751

GC/MS Semi VOA

Prep Batch: 638955

Lab Sample ID 480-200909-1	Client Sample ID Topsoil - 01	Prep Type Total/NA	Matrix Solid	Method 3550C	Prep Batch
MB 480-638955/1-A	Method Blank	Total/NA	Solid	3550C	
LCS 480-638955/2-A	Lab Control Sample	Total/NA	Solid	3550C	

Analysis Batch: 639118

Lab Sample ID 480-200909-1	Client Sample ID Topsoil - 01	Prep Type Total/NA	Matrix Solid	Method 8270D	Prep Batch 638955
MB 480-638955/1-A	Method Blank	Total/NA	Solid	8270D	638955
LCS 480-638955/2-A	Lab Control Sample	Total/NA	Solid	8270D	638955

GC Semi VOA

Prep Batch: 638733

Lab Sample ID 480-200909-1	Client Sample ID Topsoil - 01	Prep Type Total/NA	Matrix Solid	Method 3550C	Prep Batch
MB 480-638733/1-A	Method Blank	Total/NA	Solid	3550C	
LCS 480-638733/2-A	Lab Control Sample	Total/NA	Solid	3550C	
LCSD 480-638733/3-A	Lab Control Sample Dup	Total/NA	Solid	3550C	

Prep Batch: 638737

Lab Sample ID 480-200909-1	Client Sample ID Topsoil - 01	Prep Type Total/NA	Matrix Solid	Method 3550C	Prep Batch
MB 480-638737/1-A	Method Blank	Total/NA	Solid	3550C	
LCS 480-638737/2-A	Lab Control Sample	Total/NA	Solid	3550C	

Analysis Batch: 638776

Lab Sample ID 480-200909-1	Client Sample ID Topsoil - 01	Prep Type Total/NA	Matrix Solid	Method 8081B	Prep Batch 638733
MB 480-638733/1-A	Method Blank	Total/NA	Solid	8081B	638733
LCS 480-638733/2-A	Lab Control Sample	Total/NA	Solid	8081B	638733
LCSD 480-638733/3-A	Lab Control Sample Dup	Total/NA	Solid	8081B	638733

Analysis Batch: 638934

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-200909-1	Topsoil - 01	Total/NA	Solid	8082A	638737
MB 480-638737/1-A	Method Blank	Total/NA	Solid	8082A	638737
LCS 480-638737/2-A	Lab Control Sample	Total/NA	Solid	8082A	638737

Eurofins Buffalo

Page 22 of 29 8/29/2022

Job ID: 480-200909-1

QC Association Summary

Client: Joseph C. Lu Eng & Land Surveying PC

Project/Site: Jay Hague #50380

Job ID: 480-200909-1

Metals

Prep Batch: 638806

Lab Sample ID 480-200909-1	Client Sample ID Topsoil - 01	Prep Type Total/NA	Matrix Solid	Method 7471B	Prep Batch
MB 480-638806/1-A	Method Blank	Total/NA	Solid	7471B	
LCSSRM 480-638806/2-A ^1	Lab Control Sample	Total/NA	Solid	7471B	
480-200909-1 MS	Topsoil - 01	Total/NA	Solid	7471B	
480-200909-1 MSD	Topsoil - 01	Total/NA	Solid	7471B	

Prep Batch: 638872

Lab Sample ID 480-200909-1	Client Sample ID Topsoil - 01	Prep Type Total/NA	Matrix Solid	Method 3050B	Prep Batch
MB 480-638872/1-A	Method Blank	Total/NA	Solid	3050B	
LCSSRM 480-638872/2-A	Lab Control Sample	Total/NA	Solid	3050B	

Analysis Batch: 638905

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-200909-1	Topsoil - 01	Total/NA	Solid	7471B	638806
MB 480-638806/1-A	Method Blank	Total/NA	Solid	7471B	638806
LCSSRM 480-638806/2-A ^1	Lab Control Sample	Total/NA	Solid	7471B	638806
480-200909-1 MS	Topsoil - 01	Total/NA	Solid	7471B	638806
480-200909-1 MSD	Topsoil - 01	Total/NA	Solid	7471B	638806

Analysis Batch: 639272

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-200909-1	Topsoil - 01	Total/NA	Solid	6010C	638872
MB 480-638872/1-A	Method Blank	Total/NA	Solid	6010C	638872
LCSSRM 480-638872/2-A	Lab Control Sample	Total/NA	Solid	6010C	638872

General Chemistry

Analysis Batch: 638745

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
480-200909-1	Topsoil - 01	Total/NA	Solid	Moisture	·

Eurofins Buffalo

Lab Chronicle

Client: Joseph C. Lu Eng & Land Surveying PC

Project/Site: Jay Hague #50380

Client Sample ID: Topsoil - 01

Date Collected: 08/19/22 14:05 Date Received: 08/22/22 09:10

Lab Sample ID: 480-200909-1

Matrix: Solid

Job ID: 480-200909-1

Batch Batch Dilution Batch Prepared **Prep Type** Method Run **Factor** Number Analyst or Analyzed Type Lab 08/23/22 16:18 Total/NA Analysis Moisture 638745 JMM EET BUF

Client Sample ID: Topsoil - 01

Lab Sample ID: 480-200909-1

Matrix: Solid

Date Collected: 08/19/22 14:05 Date Received: 08/22/22 09:10 Percent Solids: 76.0

-	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035A_L			638751	CDC	EET BUF	08/23/22 17:50
Total/NA	Analysis	8260C		1	638753	CDC	EET BUF	08/24/22 04:31
Total/NA	Prep	3550C			638955	SJM	EET BUF	08/24/22 16:01
Total/NA	Analysis	8270D		1	639118	PJQ	EET BUF	08/25/22 22:01
Total/NA	Prep	3550C			638733	SJM	EET BUF	08/23/22 15:40
Total/NA	Analysis	8081B		1	638776	JLS	EET BUF	08/24/22 10:43
Total/NA	Prep	3550C			638737	SJM	EET BUF	08/23/22 15:51
Total/NA	Analysis	8082A		1	638934	NC	EET BUF	08/24/22 21:48
Total/NA	Prep	3050B			638872	NZG	EET BUF	08/24/22 12:15
Total/NA	Analysis	6010C		1	639272	BMB	EET BUF	08/26/22 01:45
Total/NA	Prep	7471B			638806	NVK	EET BUF	08/24/22 09:48
Total/NA	Analysis	7471B		1	638905	NVK	EET BUF	08/24/22 12:43

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Eurofins Buffalo

Accreditation/Certification Summary

Client: Joseph C. Lu Eng & Land Surveying PC

Project/Site: Jay Hague #50380

Job ID: 480-200909-1

Laboratory: Eurofins Buffalo

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pre	ogram	Identification Number	Expiration Date
New York	NE	ELAP	10026	03-31-23
The following analyte	s are included in this reno	ort but the laboratory is r	not certified by the governing authority.	This list may include analytes for which
the agency does not	•	ort, but the laboratory is i	ior certified by the governing authority.	This list may include analytes for which
0 ,	•	Matrix	Analyte	This list may include analytes for which
the agency does not o	offer certification.	,	, , ,	This list may include analytes for which

Eurofins Buffalo

Page 25 of 29

Method Summary

Client: Joseph C. Lu Eng & Land Surveying PC

Project/Site: Jay Hague #50380

Method	Method Description	Protocol	Laboratory
3260C	Volatile Organic Compounds by GC/MS	SW846	EET BUF
3270D	Semivolatile Organic Compounds (GC/MS)	SW846	EET BUF
3081B	Organochlorine Pesticides (GC)	SW846	EET BUF
3082A	Polychlorinated Biphenyls (PCBs) by Gas Chromatography	SW846	EET BUF
6010C	Metals (ICP)	SW846	EET BUF
7471B	Mercury (CVAA)	SW846	EET BUF
Moisture	Percent Moisture	EPA	EET BUF
3050B	Preparation, Metals	SW846	EET BUF
3550C	Ultrasonic Extraction	SW846	EET BUF
5035A_L	Closed System Purge and Trap	SW846	EET BUF
7471B	Preparation, Mercury	SW846	EET BUF

Protocol References:

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET BUF = Eurofins Buffalo, 10 Hazelwood Drive, Amherst, NY 14228-2298, TEL (716)691-2600

Job ID: 480-200909-1

3

4

6

0

9

10

12

4 /

Sample Summary

Client: Joseph C. Lu Eng & Land Surveying PC

Project/Site: Jay Hague #50380

 Lab Sample ID
 Client Sample ID
 Matrix
 Collected
 Received

 480-200909-1
 Topsoil - 01
 Solid
 08/19/22 14:05
 08/22/22 09:10

Job ID: 480-200909-1

eurofins Environment Testing America

Chain of Custody Record

3 N - None
O - AsNaO2
P - Na2O4S
Q - Na2SO3
R - Na2SO3
S - H2SO4
T - TSP Dodecatydrate Vote: Since laboratory accreditations are subject to change, Eurofins Environment Testing North Central, LLC places the ownership of method, analyte & accreditation compliance upon out subcontract laboratory or other instructions will be provided. Any changes to aboratory does not currently maintain accreditation in the State of Origin listed above for analysis/lests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing North Central, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to Eurofins Environment Testing North Central, LLC. Special Instructions/Note: Ver: 06/08/2021 Z - other (specify) くれる Company Months U - Acetone W - pH 4-5 V - MCAA Y - Trizma Sample Disposal (A fee may be assessed if samples are retained longer than 1 month)

Return To Client Disposal By Lab Archive For Mon voc ent, all reservation Codes: A - HCL
B - NaOH
C - Zn Acetate
C - Zn Acetate
D - Nitric Acid
E - NaHSO4
F - MeOH
G - Amchlor
H - Ascorbic Acid 016 I - Ice J - DI Water K - EDTA L - EDA Archive For COC No age Total Number of containers C-CK-Y EDD Date/Time Method of Shipme NYSDEC Carrier Tracking No(s) State of Ongin **Analysis Requested** Cooler Temperature(s) 2 and Other Remarks Special Instructions/QC Requirements: 480-200909 Chain of Custody MAMIS RESA > Accreditations Required (See note) Return To Client 2808 2829 > 35 Pest 1808 1 Received by: Received by 2005 4128 (N/B) > 701 0928 7 Perform MS/MSD (Yes or No) ime Lab PM. E-Mail: pasible BT-Tissue, A-AH 中以 (Wewater, Sesolid, Oewastefoll, Preservation Code: Matrix L 3 Company standerd. Prelim results 7 (C=Comp, G=grab) Sample 9/5 Type S. E. Due Date Requested: OB/21/22 01:60 بالما : دعمم 585-385-7417 Primary Deliverable Rank: 2 50:41 50380-01 Sample Time Date 22/22/80 TAT Requested (days): N Sample Date 62/80 27/61/80 Date/Time roject # SSOW# # OM 200 Uncommerce
Deliverable Requested: I, II, III, IV, Other (specify) Client Information (Sub Contract Lab) Seiler Chenjuer on Custody Seal No. Sample Identification - Client ID (Lab ID) 585-385-7417 Ben Seich 339 Eart Are Lu Ensinces 3 Possible Hazard Identification Jay Hague schaster Empty Kit Relinquished by ଚ 50380 Custody Seals Intact:

Δ Yes Δ No 1460Y 10ps.:1ondoished by **Jnconfirmed** linquished by nquished by State, Zip:

Login Sample Receipt Checklist

Client: Joseph C. Lu Eng & Land Surveying PC

Job Number: 480-200909-1

Login Number: 200909 List Source: Eurofins Buffalo

List Number: 1

Creator: Sabuda, Brendan D

Creator. Sabuda, Brendan D		
Question	Answer	Comment
Radioactivity either was not measured or, if measured, is at or below background	True	
The cooler's custody seal, if present, is intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	2.4 #1 ice
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the sample IDs on the containers and the COC.	d True	
Samples are received within Holding Time (Excluding tests with immediate HTs)	e True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
VOA sample vials do not have headspace or bubble is <6mm (1/4") in diameter.	True	
If necessary, staff have been informed of any short hold time or quick TAT needs	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Sampling Company provided.	True	
Samples received within 48 hours of sampling.	False	
Samples requiring field filtration have been filtered in the field.	True	
Chlorine Residual checked.	True	

6

8

10

12

10

15

Attachment D

Disposal Records

				5.D	1.00	8845			
	FALLS LANDFILL 716-282			SITE 5B TIC	KET#	.0045	CELL		
5600 Niag	gara Falls Blvd -Niaga	ra Falls, NY 14304		WEIGHMASTI	Albe	rt S.			
20011									
CUSTOMER 39211			\vdash	DATE/TIME IN	12/2/22 1	1:54 am	DATE/TIME 6	2/22	12:35 pm
	GINEERS				TRIPI102				
	EIFERT			VEHICLE	TRIPIIUZ		CONTAINER		-
	STER, NY 14604								
	42152214736			REFERENCE					
Generator	:Jay Hague Properties	LLC		BILL OF LAD	ING				
				BILL OF LAD	iiva		_		
	ALE IN GROSS WEIGHT	41,980 NET TONS	6.1	6				NBOUNI	
SCA	LE OUT TARE WEIGHT	29,660 NET WEIGHT	12,32	0			I	NVOICE	ŝ
7									
			GIALDERS PROSERVE		ace (Company of the				
QTY12.00 UNITD	Tracking QTY	DESCRIPTION			RATE	EXTENSION	ON .	TAX	TOTAL
6.16 tn	SW-CONT SOIL	Origin:NY-MONROE 100%							
1.00	ENVIRONMENTAL FEE 1	/##W	Q.						
		//2017							
			T WA						
		16.00	1 80						
		A TOTAL STATE	require y						
Have a nice da	ay. Thank you for your business!								
Trave a filos de	y. Thank you for your business:							4	NET AMOUNT
								(ATS.)	NET AMOUNT
									TENDERED
		t on behalf of Customer acknowledges tha			d understands the	terms and con	ditions		CHANGE
on the rever	se side and that he or she has the aut	thority to sign this document on behalf of the	he custon	ner.					
DO 50401100 (0444	0.				10				CHECK#
RS-F042UPR (04/19	9)	SIGNAT	TURE	1				_	
						*			
						*			

i

A	NON-HAZARDOUS WASTE MANIFEST	1. Generator ID Number	2. Page 1 of	3. Emergency Respon	se Phone	4. Waste T	racking Num	ber
	5. Generator's Name and Mailin	ng Address	: 50	Generator's Site Addre	ess (if different t	han mailing addr	ess)	
	Generator's Phone:	Jay Hague Properties. LLJ 339 East Ave Suite 200 Rochester, NY 14604	ina, sed	485 Hague 9/ Rochester M	7 1450E			
	6. Transporter 1 Company Nan	ne		The street of the		U.S. EPA ID	Number	
	7. Transporter 2 Company Nan	Tripi Transportation				U.S. EPA ID	Number	
	7. Transporter 2 Company Nan	,					ramoo	
	8. Designated Facility Name ar	nd Site Address				U.S. EPA ID	Number	***************************************
		Republic Services 5600 Niagara Fall 6tw Niagara Falls, NY 143	1			1		
	Facility's Phone: 6-285-33	άΔ		10 Cor	ntainers	44 T-1-1	10.11-11	
	9. Waste Shipping Nam	e and Description		No.	Type	11. Total Quantity	12. Unit Wt./Vol.	
1	1.		2 3	4				
GENERATOR	Non - Haz Soll			001	1.1.	20	T	
VER.								
GEN	2.							
					-			
	3.		1				1	
	4.							
	40.0 : 111	I A DEED TO THE STATE OF THE ST						
	13. Special Handling Instruction	ns and Additional Information						e e complement
	42152214736 /	02						
1								
	14. GENERATOR'S/OFFERO	R'S CERTIFICATION: I hereby declare that	the contents of this consignment a	are fully and accurately	described above	e by the proper s	hipping name	e, and are classified, packaged,
	marked and labeled/placare Generator's/Offeror's Printed/T	ded, and are in all respects in proper conditi		cable international and r	national governi	mental regulation	S.	Month Day Voor
V	Ben Se Feet) 	gnature	5	-		Month Day Year
7.	15. International Shipments	Import to U.S.	Export from	II C Dest of		- American	Things were the second	12 02 22
INT'L	Transporter Signature (for expe		Export from		entry/exit: eaving U.S.:			
ER	16. Transporter Acknowledgme				7	, a series	2	1
TRANSPORTER	Transporter 1 Printed/Typed N	ame		gnature	and the same	Survey Brands	Shell to the same of the same	Month Day Year
NSP	Transporter 2 Printed/Typed N	ame	Sic	gnature				Month Day Year
TRA	Transporter Et miliou Types 1	and the proof of the second se		gridion				Day real
A	17. Discrepancy						***************************************	
IT	17a. Discrepancy Indication Sp	Dace Quantity	√ Type	Residue	***************************************	Partial R	eiection	Full Rejection
			, , , ,			- Turdari	ojouton	Las i dii riejection
	17b. Alternate Facility (or Gene	prator)		Manifest Reference	ce Number:	110 551	2 No	
F	17b. Alternate Facility (of Gene	erator)				U.S. EPA II) Number	
-ACI	Facility's Phone:					I		
ED	17c. Signature of Alternate Fac	cility (or Generator)	***************************************		100		***************************************	Month Day Year
DESIGNATED FACILITY								
SIG								6
- DE								
	18 Designated Facility Owner	or Operator: Çertification of receipt of mater	ials covered by the manifest	nt as noted in Herm 47-	<u> </u>	7		
	Printed/Typed Name	or operator, definication of receipt of mater		gnature 7	7.0	- A	1/1	Month Day Year
*	F	1 Kmoth		4	////	h &	X	1/3/3/20

SCALE OUR WARD CHESCHE						WEIGHMASTER Albert S. DATE/TIME IN 12/2/22 11:10 am DATE/TIME 66/22 12:02 pm VEHICLE TRIPI113 CONTAINER REFERENCE BILL OF LADING 5.29 INBOUND INVOICE					
QTY20.00 UNI	VD Trac	king QTY	DESCRI	PTION			RATE	EXTENSI	ON I	TAX	TOTAL
1.00	ENVI	ONT SOIL RONMENTAL FEE 1 . you for your business!		NY-MONROE 100%	2 1/1/11						
The unde	rsigned individ	dual signing this documen that he or she has the aut	t on behalf of Cu thority to sign this	stomer acknowledges tha s document on behalf of	t he or she	as read and	understande the	terms and con	ditions		NET AMOUNT TENDERED CHANGE
RS-F042UPR (04/19) SIGNATO											CHECK#
	,										

1. Generator ID Number 2. Page 1 of | 3. Emergency Response Phone 4. Waste Tracking Number **NON-HAZARDOUS** WASTE MANIFEST 5. Generator's Name and Mailing Address Generator's Site Address (if different than mailing address) Jay Hague Properties, LLC 339 East Ave Suite 200 Generator's Phone: Rochester, My 14604 6. Transporter 1 Company Name U.S. EPA ID Number 7. Transporter 2 Company Name 10 Transportation U.S. EPA ID Number 8. Designated Facility Name and Site Address U.S. EPA ID Number Republic Services 5600 Niagara Pall Blvd Niagara Palls, NY 14304 Facility's Phone: 10 Containers 11. Total 12. Unit 9. Waste Shipping Name and Description Wt./Vol. No. Type Quantity GENERATOR Non-Har Soll 001 100 2. 13. Special Handling Instructions and Additional Information Fro L. La 50% W2752274736 14. GENERATOR'S/OFFEROR'S CERTIFICATION: I hereby declare that the contents of this consignment are fully and accurately described above by the proper shipping name, and are classified, packaged, marked and labeled/placarded, and are in all respects in proper condition for transport according to applicable international and national governmental regulations. Generator's/Offeror's Printed/Typed Name Signature Month Day Year Saile + Engineer 15. International Shipments Import to U.S. Export from U.S. Port of entry/exit: Transporter Signature (for exports only): Date leaving U.S 16. Transporter Acknowledgment of Receipt of Materials Transporter 1 Printed/Typed Name Signature Month Day Year Transporter 2 Printed/Typed Name Signature Month Day Year 17. Discrepancy 17a. Discrepancy Indication Space Туре Quantity Partial Rejection Full Rejection Residue Manifest Reference Number: 17b. Alternate Facility (or Generator) U.S. EPA ID Number DESIGNATED FACILITY Facility's Phone: 17c. Signature of Alternate Facility (or Generator) Month Day Year 18. Designated Facility Owner or Operator; Certification of receipt of materials covered by the manifest except as noted in Item 17a Printed/Typed Name Signature Month Year

169-BLC-O 5 11977 (Rev. 9/09)

TRANSPORTER #1