

January 30, 2008

Mr. Salvatore Priore, P.E. NYS Department of Environmental Conservation 625 Broadway Albany, New York 12233-7013

RE: RG&E – Canal Street, Rochester Former MGP Site Multi-Site VCA (MSVCA) Index # B8-0535-98-07

Site # V00594-8

Dear Mr. Priore:

Enclosed for your review are two copies of a report entitled *Site Characterization Report, Canal, Street Former MGP Site, Rochester, New York* (SC Report) dated January 2008 that was prepared by H&A on RG&E's behalf.

After you have reviewed the report please contact me so we can discuss the next steps. If you have any question, please contact me at (585) 771-4556.

Sincerely,

Steven Mullin

Lead Analyst

RG&E Environmental Compliance

Seven R. Multin

Enclosure

c: Robert W. Schick, P.E. - DEC, (w/o enclosure)

James Charles Esq., Esq. – DEC (one copy of report)

David Crosby, P.E. – DEC (w/o enclosure)

Julia Kenney – NYSDOH (one copy of report)

Joespeh Simone, P.E. – Manager of Environmental Compliance (w/o enclosure)

Thomas F. Walsh, Esq. - Hiscock & Barclay - Special Counsel to RG&E (one copy of report)

File

An equal opportunity employer

89 East Avenue | Rochester, NY 14649 **tel** (**585**) **546-2700** | fax (585) 724-8557 www.rge.com

SITE CHARACTERIZATION REPORT CANAL STREET FORMER MGP SITE ROCHESTER, NEW YORK

by

Haley & Aldrich of New York Rochester, New York

for

Rochester Gas & Electric Corp. Rochester, New York

File No. 33879-006 30 January 2008 30 January 2008 File No. 33879-003

Rochester Gas and Electric Corporation 89 East Avenue Rochester, New York 14649

Attention: Mr. Steve Mullin

Subject: Site Characterization Report

Canal Street Former MGP Site

Rochester, New York Site No. V00594-8

Index No. B8-0535-98-07

Dear Mr. Mullin:

Haley & Aldrich is pleased to present this Site Characterization Report for the Canal Street Former Manufactured Gas Plant (MGP) Site in Rochester, NY. The site characterization was performed according to the September 2006 Site Characterization Work Plan, approved by the New York State Department of Environmental Conservation. This report describes the site history, current site conditions, summarizes the findings of the site characterization activities and presents conclusions and recommendations.

If you have any questions, do not hesitate to contact us.

Sincerely yours,

HALEY & ALDRICH OF NEW YORK

Glenn M. White

Senior Scientist

Colin R. Sweeney

Vice President

Jonathan D. Babcock, P.E.

Jonathan D. Babrock

Project Manager

EXECUTIVE SUMMARY

Rochester Gas and Electric Corporation (RG&E) retained Haley & Aldrich of New York (Haley & Aldrich) to conduct this Site Characterization Investigation at the Canal Street Former Manufactured Gas Plant (MGP) Site (the Site). The Site is located on portions of two contiguous parcels with the postal addresses of 90 Canal Street, and 65 Trowbridge Street, Rochester, New York. This investigation was performed in accordance with the requirements of a Voluntary Cleanup Agreement (Index # B8-0535-98-07, February 20, 2003) (MSVCA) between RG&E and the New York State Department of Environmental Conservation (NYSDEC) and of the NYSDEC-approved Site Characterization Work Plan dated September 2006 (Work Plan), prepared by Blasland, Bouck, and Lee, Inc.

The MGP occupied approximately 1.6 acres of two parcels. A five story brick building now occupies much of the 0.6 acre 90 Canal Street parcel located on the southeast side of the Site. The basement, 1st, and 2nd floors of that brick building are commercial space and the 3rd, 4th, and 5th floors of the building are residential apartments. A paved parking lot is located immediately south of the brick building. The 1.8 acre 65 Trowbridge Street parcel is now primarily vacant, with the exception of two unused railroad tracks and one active track that traverse the northern portion of the parcel.

A detailed examination of land uses at the Site prior to the construction of the MGP has not been performed. However, some time before the MGP operations began, railroad tracks were already laid across the northern part of the Site between the location of the current five-story brick building and the former Erie Canal (which was located immediately north of the 65 Trowbridge Street parcel in the current foot print of Broad Street). The Site and adjacent areas were used as a rail loading and unloading area, including the transfer of petroleum products between rail cars and underground pipelines serving an off-site petroleum company.

The MGP used the carbureted water process to generate gas. The operational life of the MGP (10 years or less between 1880 and 1891) was cut short by an explosion of its gas holder. Since MGP operations ceased, the Site has been used for more than 115 years for various commercial and industrial uses including: railroad yard operations, a wholesale grocery business, Eastman Kodak Company, and, since 1967, by various tenants of the five-story building for businesses such as printing, light manufacturing, and administrative offices.

Field investigations under the Work Plan were conducted during November and December 2006 and October 2007. A comprehensive investigation program was conducted, consisting of 25 soil borings, of which seven were completed as groundwater monitoring wells. The soil and two rounds of groundwater samples collected were analyzed for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), metals, and cyanide.

The geology underlying the Site consists of dolostone bedrock overlain by unconsolidated materials ranging in depth from 7.5 to 15 feet below ground surface (bgs). The unconsolidated materials include urban fill and discontinuous layers of lacustrine soils, organic soils, and glacial till. The thickness of the urban fill ranged from approximately four to 15 feet bgs and contained varying amounts of concrete, brick, wood, ash, cinders, ceramic materials, and coal. In places, the fill extends to the top of bedrock, including in the area of the former gas holder, and suggests some re-working of the bedrock surface. Generally, the bedrock surface also slopes to the northeast.

i

Non-aqueous phase liquid (NAPL) was not encountered in any of the soil borings or monitoring wells, including in the area of the former gas holder. There were also no visual observations of coal tar or oil in the soil samples collected from the borings. Staining, possibly indicative of petroleum or coal tar constituents was noted in only three split spoon samples (from MW-2, MW-3, and SB-14), and each of those materials were subjected to laboratory analytical testing. Petroleum-like odors were reported at 10 boring locations, and possible naphthalene-like odors were reported at three locations. A "lime-like" material, possibly associated with former MGP purifier operations, was observed intermittently within the fill at two soil borings (SB-6 and MW-6) at disparate locations across the Site. All soil samples submitted to the laboratory were analyzed for cyanide, including one containing the "lime-like" material from SB-16. Cyanide was not detected above the Soil Cleanup Objectives (SCOs) referenced below in any of the samples.

For comparison purposes only, the analytical results of the soil samples were compared to New York State (NYS) Part 375 SCOs for both Restricted Residential and Restricted Commercial uses, as well as to the NYS Technical and Administrative Guidance Memorandum (TAGM) 4046 SCOs. Of the 25 soil boring locations only 9 locations had soil analytes at concentrations slightly above the Part 375 SCOs. None of the soil samples collected exhibited VOC concentrations in excess of the Part 375 SCOs. Only three VOCs exceeded the TAGM 4046 SCOs – acetone, methylene chloride, and total xylenes. Neither acetone nor methylene chloride are compounds associated with MGP wastes. The only SVOCs detected above the referenced SCOs were seven higher-molecular weight PAHs that were detected at relatively low concentrations. Metals that were found at concentrations greater than the Part 375 SCOs were arsenic, barium, cadmium, lead, manganese, and mercury, each found at four or fewer locations. The same metals were found to exceed the TAGM 4046 SCOs, with the addition of calcium, iron, copper, magnesium, nickel, selenium, and zinc. Of those metals, arsenic, calcium, iron, magnesium, mercury, and zinc exceeded the TAGM 4046 SCOs at ten or more locations.

Soil analytes detected at concentrations exceeding the referenced SCOs appeared randomly distributed throughout the Site and do not indicate the presence of a specific source on the Site. The origins of the impacts are not known; however, the nature and distribution of constituents in the Site soils are similar to typical urban background conditions.

Groundwater samples were collected from each of the seven newly installed monitoring wells in December 2006 and October 2007. NAPL was not observed in any of the groundwater monitoring wells and only two (MW-2 and MW-3) of the seven groundwater samples collected exhibited VOCs in excess of New York Ambient Water Quality Standards and Guidance (AWQS). Groundwater analyses from MW-2 detected benzene, toluene, ethylbenzene, total xylenes, and naphthalene at concentrations above the AWQS. The levels are relatively low and are not indicative of a significant nearby contaminant source. The Part 375 and TAGM 4046 SCOs were not exceeded for any of those analytes in the soil sample at MW-2. The groundwater sample from MW-3 exhibited benzene, ethylbenzene, total xylenes, and naphthalene at similarly low concentrations. The Part 375 and TAGM 4046 SCOs were not exceeded for any of those analytes in the soil sample at MW-3.

The groundwater sample from MW-3 also detected chlorinated VOCs unrelated to the MGP at concentrations greater than the AWQS. Trichloroethylene was detected above the AWQS in MW-3, as well as its degradation products cis-1,2-dichloroethene and vinyl chloride. For

comparison, none of the soil samples analyzed at the Site exhibited those compounds greater than the referenced SCOs.

Only three (MW-2, MW-3, and MW-5) of the seven groundwater samples taken in December 2006 exhibited SVOCs in excess of AWQS, with not one of the samples showing any exceedances for the previously noted seven higher molecular weight PAHs. Those three wells are located on the commercial-use 65 Trowbridge Street parcel. MW-2 is located immediately downgradient of the former gas holder. MW-5 is located cross-gradient to the east of and across the railroad tracks from the former gas holder. Pentachlorophenol (a common wood preservative) was detected at a trace concentration in MW-5. Naphthalene was detected in MW-2 and MW-3 in excess of the AWQS. Naphthalene, however, was not detected in soil samples at concentrations above the referenced SCOs at the Site.

Monitoring wells MW-4 and MW-7 are located hydraulically downgradient from MW-2 and MW-3. VOCs and SVOCs that were greater than the AWQS in MW-2 and MW-3 were not detected in MW-4 and MW-7, indicating that organic constituents are localized, not migrating, and/or are attenuating rapidly.

Metals were consistently detected in the monitoring wells at concentrations exceeding AWQS in both upgradient and downgradient wells, particularly for magnesium, manganese, iron, and sodium. Considering all seven wells, iron and magnesium were the only analytes that exceeded TAGM 4046 SCOs for soil and the AWQS for groundwater in the same well. These metals are consistent with natural groundwater conditions related to the dolostone bedrock and indigenous soils in the area. Lead was also detected in one of the seven monitoring wells (MW-5) at a concentration exceeding the AWQS. Additionally, in MW-5 only, arsenic (13 mg/L) exceeded the TAGM 4046 SCO for soil (12 mg/L) and the AWQS for groundwater. It is interesting to note that none of the soil samples collected from the depths consistent with the screened intervals of the seven monitoring wells exceeded Part 375 SCOs for the same analytes detected above the applicable AWQS. This is further evidence of the lack of a significant source to groundwater contamination.

In summary, the Site is located in an urban area with a long history of commercial/industrial use, including former railroad and petroleum operations unrelated to the former MGP. The MGP operations were conducted over a relatively brief period of approximately 10 years. The Site and surrounding area have been served by municipal water for more than 100 years and have had more than 115 years of commercial and industrial use since MGP operations ceased. VOCs were not detected in any soil samples above Part 375 SCOs applicable to the mixed commercial-residential use of the 90 Canal Street parcel and the commercial use of the 65 Trowbridge Street parcel. Most of the soil samples did not have detections of SVOCs above applicable Part 375 SCOs; and even where they did, those SVOCs were not observed above AWQS in the groundwater samples collected from the corresponding monitoring wells. The origin of the impacts that caused the exceedances of AWQS observed at two monitoring wells were organic compounds similar to those typically found in historical fill and in areas of historical industrial uses but are also similar to MGP-type uses and/or residuals. The only exceedances of referenced soil SCOs from the borings corresponding to these monitoring wells were relatively immobile higher-ring PAHs that were not detected in the groundwater from these wells. The presence of other constituents (chlorinated solvents, iron, magnesium, and manganese) unrelated to MGP operations in the two monitoring wells also suggest contribution from impacts other than the former MGP. Other monitoring wells located

relatively short distances downgradient did not detect organic constituents above the AWQS, indicating localized impacts and/or rapid attenuation.

No apparent on-site sources of groundwater contamination were identified. NAPL or coal tar was not encountered and there were only three visual observations of other petroleum or coal tar contamination such as staining. Overall, based on the data collected, the origin of the residual impacts observed could not be identified; however, the impacts observed do not appear to be indicative or representative of a single source or type of source, but rather the nature and distribution of constituents in the Site soils are similar to typical urban background and historical industrial conditions. As such, further characterization of site soils does not appear to be warranted.

To verify that organic constituents in the groundwater are either localized on-site and/or are not migrating or are attenuating, RG&E conducted a second round of groundwater sampling on 11 and 12 October 2007 (in a "seasonal low period") to compare to prior results. The results were consistent with the previous sampling round, which affirmed the conclusions drawn from the groundwater data collected in December 2006. Based on the data collected, further characterization of site groundwater does not appear to be warranted.

TABLE OF CONTENTS

				Page			
EXE	ECUTIV	E SUMM	ARY	i			
	г ог та			vii			
LIS	Γ OF FIG	GURES		vii			
1.	INT	INTRODUCTION					
	1.1	Purnos	e of Investigation	1			
	1.2			1			
	1.3		ary of Site History				
			MGP-Related Site History	2 2			
			Historical Information for Adjacent Properties	3			
2.	FIEL	D INVES	STIGATION	5			
	2.1	Geophy	ysical Survey	5			
		2.1.1	Objectives	5			
			Methodology	5			
		2.1.3	Results	5			
	2.2		vestigation	6			
			Objectives	6			
			Soil Borings	6			
			Soil Analyses	6			
	2.3		lwater Investigation	7			
			Objectives	8			
			Groundwater Monitoring Well Installation	8			
			Groundwater Sampling	8			
		2.3.4	Hydrogeology Assessment	9			
3.	WAS	TE MAN	JAGEMENT	10			
4.	FINI	INGS		11			
	4.1	Subsur	face Characterization	11			
		4.1.1	Regional Geology and Hydrogeology	11			
			Soil and Bedrock Conditions	12			
			Field Observations	14			
		4.1.4	Laboratory Analytical Results	14			
	4.2		ydrogeology	26			
		4.2.1	Groundwater Depth and Direction of Flow	26			
		4.2.2	Hydraulic Conductivity of Site Soils	26			
5 .	SUM	MARY A	AND CONCLUSIONS	27			
REF	ERENC	ES		30			

TABLE OF CONTENTS

(continued)

TABLES

FIGURES

APPENDIX A - Geophysical Report

APPENDIX B - Boring Logs and Well Installation Reports

APPENDIX C - Air Monitoring Documentation

APPENDIX D - Waste Disposal Documentation

APPENDIX E - Laboratory Analytical Reports and DUSRs

Page

LIST OF TABLES

Table No.	Title
1	Soil Volatile Organic Compound Results
2	Soil Semivolatile Organic Compound Results
3	Soil Inorganics Results
4	Soil Total Petroleum Hydrocarbon Results
5	Groundwater Volatile Organic Compound Results
6	Groundwater Semivolatile Organic Compound Results
7	Groundwater Inorganic Chemical Results
8	Groundwater Levels
9	Summary of Rising Head Hydraulic Conductivity Calculations

LIST OF FIGURES

Figure No.	Title
1	Site Locus
2	Site Plan
3	Investigation Plan
4	Subsurface Exploration Key for Soil
5A to 5G	Subsurface Profiles
6	Site Plan Showing Soil and Water Quality Exceedances
7A	Site Plan Showing Groundwater Elevations December 2006
7B	Site Plan Showing Groundwater Elevations October 2007
8	Site Plan Showing Bedrock Elevations

1. INTRODUCTION

Rochester Gas and Electric Corporation (RG&E) retained Haley & Aldrich of New York (Haley & Aldrich) to conduct this Site Characterization Investigation at the site of a former manufactured gas plant (MGP), the footprint of which is believed to have been located on portions of two contiguous parcels known as 90 Canal Street and 65 Trowbridge Street, Rochester, New York. The former MGP was operated by the Municipal Gas Light Company of the City of Rochester (New York), which was a predecessor company to RG&E. The Site is currently referred to as the Canal Street Former MGP Site (the Site). The 90 Canal Street and 65 Trowbridge Street parcels are not currently owned by RG&E and have had various property owners and uses since the MGP ceased operation in the early 1890's. The investigation was performed in accordance with the requirements of Multi-Site Voluntary Cleanup Agreement (Index # B8-0535-98-07, February 20, 2003) (MSVCA) between RG&E and the New York State Department of Environmental Conservation (NYSDEC), and of the NYSDEC-approved Site Characterization Work Plan dated September 2006 (Work Plan), prepared by Blasland, Bouck, and Lee, Inc. (BBL).

1.1 Purpose of Investigation

The purpose of the investigation was to identify whether the Site was impacted by former MGP operations. The investigation addressed the following objectives, as stated in the Work Plan:

- 34 Determine if MGP-related and/or non-MGP-related chemical constituents are present in soil and/or groundwater at the Site;
- Identify the potential presence of MGP-related and/or non-MGP-related by-product residuals (such as coal tar, non-aqueous phase liquid, purifier wastes, petroleum, solvents, etc.) in soil and/or groundwater at the Site;
- Evaluate, to the extent practicable, whether groundwater flow may be a pathway for offsite migration of identified chemical constituents (if present);
- 34 Determine compliance with applicable NYSDEC standards, criteria, and guidance values (SCGs); and
- **Provide sufficient data to evaluate the necessity for further action.**

1.2 Site Setting

The footprint of the Canal Street Former MGP Site encompasses approximately 1.6 acres and is located on portions of two parcels in the City of Rochester, Monroe County, New York. As shown on Figure 1, the Site is located approximately 0.7 miles west of the Genesee River, which flows north towards Lake Ontario. Part of the former MGP Site is located at 90 Canal Street, which is an approximately 0.6 acre parcel that is currently owned by McGuire Properties, Inc. The other part of the former MGP Site extends north and east onto 65 Trowbridge Street, which is an approximately 1.8 acre parcel that is currently owned by Wm. B. Morse Lumber Co. (Morse Lumber). The Site is bordered by Canal Street to the west, a lumber yard to the south and east, a used car dealer/service garage to the north, and West Broad Street to the north. The layout of the Site and surrounding properties is shown on Figure 2. Much of the parcel located at 90 Canal Street is occupied by a five-story brick building. The basement and 1st and 2nd floors of the brick building are commercial space and the 3rd, 4th, and 5th floors of the building are residential apartments. The rest of 90 Canal

Street is occupied by a paved parking lot that is located immediately south of the brick building.

The 65 Trowbridge Street parcel is primarily vacant with the exception of two abandoned railroad tracks and one active track that traverse the northern portion of the parcel from east to west. Surface materials noted at the Site include railroad ballast, wood, slag and coal, trash (including wood, plastic containers, and tires), paving (brick and asphalt), grass, and unmaintained vegetation. The Site is generally flat with an elevation of approximately 512 feet above sea level and gently sloping to the northeast. Correspondingly, surface drainage flows to the northeast and ultimately to the Genesee River. West Broad Street is located approximately 300 feet north/northeast of the Site and was built in the footprint of the canal bed of the former Erie Canal. The former Genesee Valley Canal (which has been filled) is located immediately east of the Site. The City of Rochester receives its potable water supply from Lake Ontario and other surface water reservoirs located considerable distances from the Site. The Site and areas upgradient and downgradient have had water supply from the City of Rochester since the late 1800's.

1.3 Summary of Site History

This section discusses the historical use of the Site and adjacent properties, with emphasis on the former MGP operations. The Site has been used for commercial and industrial purposes for the 115 years since the MGP operations ceased. A summary of the site history prepared by Blasland, Bouck & Lee, Inc. (BBL) was presented in their "Site Characterization Work Plan" dated September 2006. To supplement that information Haley & Aldrich performed a review of local history reference and source material available at the Local History Department of the Central Library of Rochester and Monroe County. In addition to the review of newspaper articles from the 1880s and early 1890s, our library research included review of the 1935 plat map and listings for Canal Street, Trowbridge Street, and West Broad Street published in Rochester street directories from 1892 to 2002 (reviewed at intervals of approximately 5 years). A search of the library's catalog (including the digitized Rochester Images collection of historic photographs, drawings, and maps) was performed, and pertinent articles in the Rochester History pamphlet series were reviewed. Members of the library's local history department staff were consulted to determine what other potentially-relevant source material may be available. However, no other pertinent information was found in the materials identified by the library staff.

Copies of building permit records were obtained from the City of Rochester's property database for: 90 Canal Street; 65 Trowbridge Street; and 390 West Avenue (the adjacent W.B. Morse Lumber Company property). The historical information summarized in the following sections is based on written historical information collected by Haley & Aldrich and from the historical information reported in the Work Plan.

1.3.1 MGP-Related Site History

Gas manufacturing was performed by Municipal Gas Light Company gas works, which was in operation from 1880 to 1891. In the time period from 1877 to 1891, crude oil and refined petroleum products were loaded and unloaded in significant volumes along the rail lines that crossed the Site and at adjacent rail yards. Crude oil and petroleum products not related to the MGP's operation were apparently also transferred at or adjacent to the Site to an off-site petroleum company via an underground pipeline and/or by bulk delivery transportation.

During its operation, the MGP also received naphtha and other petroleum products by rail car as well as via an underground pipeline owned and operated by the off-site petroleum supplier.

This loading and unloading of petroleum tank cars to two underground pipelines is reported to have occurred from 1881 to 1883. The pipelines extended from the Buffalo, Rochester and Pittsburgh Railroad (BR&P RR) south along the bottom of the Genesee Valley Canal to Vacuum Oil Works, a refinery located approximately one mile south of the Site. After 1883, one pipeline was converted to function as a supply line for petroleum naphtha from Vacuum Oil Works to the MGP. Also, in approximately 1883, one of the two pipelines was extended west across the Site, crossing Canal Street and extending at least to Litchfield Street to reach the BR&P RR freight yards on adjacent properties to the east and west.

Beginning in 1883, the MGP used 500 to 1,000 gallons of naphtha (a petroleum distillate somewhat lighter than kerosene) per day in the gas manufacturing process. Naphtha was pumped from Vacuum Oil Works through a pipeline into two 10,000-gallon above ground tanks located at the junction of the Erie and Genesee Valley Canals.

Manufactured gas was stored at the Site during the 1880s until 1891, when an explosion ended the MGP operations. At the time of the explosion, the gas holder had been emptied and was under repair.

The MGP occupied the property from about 1880 until about 1895. From about 1915 until at least 1935, the Brewster Gordon & Co. wholesale grocery business was present at the Site. By 1938, an Eastman Kodak Company camera warehouse occupied the Site. Kodak sold its property to a real estate development company doing business as 90 Canal St. Inc. in 1967. The 90 Canal Street parcel is currently occupied by the five story brick building and parking lot as described in Section 1.2. The first floor of the building is currently leased by three companies: an injection molding company, a cooling tower and boiler water treatment chemical company, and a printing company. The 65 Trowbridge Street parcel is currently occupied by Morse Lumber operations and by railroad tracks. The portion of the 65 Trowbridge Street parcel between the existing five story building and Broad Street has been used for rail operations continually since the closing of the MGP. There is currently one active railroad track crossing the former Site.

In 2004, a petroleum spill was reported to NYSDEC (Spill No. 0408337) in connection with the car dealer/service garage located at the northern end of the Site. The Spill Incidents Data Base available on the NYSDEC web site indicates that the spill file was closed in February 2007; however, the exact actions taken to close this spill are unknown.

One map source suggested that Buckeye Partners, LP (Buckeye) may currently operate a petroleum pipeline on or adjacent to the Site. Haley & Aldrich contacted the Buckeye Right-of-Way department and confirmed that Buckeye had no pipelines crossing the Site. The nearest Buckeye pipeline is approximately two miles away

1.3.2 Historical Information for Adjacent Properties

South of the Site, the Morse Lumber yard has been present since prior to 1892, and from about 1892 until 1910, the Rock Asphalt Paving Company was also present. North of the Site, between Canal Street and Broad Street, a gas station appears on the 1935 Rochester Plat map and on Sanborn® maps beginning in 1950. The location is currently a small used car dealership and repair garage.

Northwest of the Site, from 1894 until about 1931, a coal company was present between the BR&P RR and the New York Central Railroad crossings. A coal storage area in this rail yard located about 200 feet northwest of the Site is shown on available maps from the period 1900 through 1971. Various industrial/commercial businesses were present along Canal Street to the west and southwest of the Site, including a macaroni factory, a shoe factory, and a carriage/car manufacturing company (Jas. Cunningham, Son & Co.). The Volunteers of America is currently a tenant of 89 Canal St., to the southwest of the Site. There is an open petroleum spill record at their location as a result of the discovery of gasoline in the building sump in 1993.

Southwest of the Site, beginning in 1850, Jas. Cunningham, Son & Co. purchased property between Litchfield and Canal Streets, and began carriage manufacturing. By the 1920s, they were producing a line of gasoline combustion automobiles. In 1928, they became Cunningham-Hall Aircraft Corporation, and manufactured single-engine cabin airplanes. During both World Wars I and II, Jas. Cunningham, Son & Co. manufactured goods for the war effort (i.e., tanks in WWI and aircraft parts in WWII). In 1961, the business moved to Honeoye Falls, New York.

The east side of the Site was bounded by the Genesee Valley Canal prior to and during the early operation of the MGP. Releases of oil and petroleum products from Vacuum Oil Works into the Genesee Valley Canal before the canal was abandoned in 1877 were reported in the historical documents and are a potential source of on-site residual petroleum impacts. During this same time, a municipal sewer line (a 45-inch wide tunnel) was present beneath the Genesee Valley Canal and ran along the same alignment.

In 1887, the petroleum naphtha pipeline from Vacuum Oil Works broke at a location about 0.4 miles south of the Site, as a result of a sewer construction project. The naphtha found its way into the municipal sewer system and thereby flowed north in the sewer line beneath the Genesee Valley Canal (potentially discharging into the canal) and ultimately flowing to the High Falls area, where several buildings were destroyed due to explosions and fires. Following this event, rail was used to deliver petroleum products to the MGP.

2. FIELD INVESTIGATION

Prior to the investigation activities, field personnel mobilized to the Site to verify existing conditions and stake (with flagging) the proposed exploration locations. Once the sample locations were marked, Dig Safely New York was contacted to identify and mark underground utilities present on the Site. Field investigations were conducted during November and December 2006 according to the Work Plan.

2.1 Geophysical Survey

Geomatrix was engaged by RG&E to perform a geophysical survey at the Site using ground penetrating radar (GPR) and electromagnetics (EM) to identify potential former MGP features as may be identified by subsurface geophysical or metallic anomalies. The geophysical survey was performed by Geomatrix on November 19, 2006. The geophysical survey and its results are discussed in more detail below (the geophysical survey report is included in Appendix A).

2.1.1 Objectives

The primary objective of the geophysical survey was to identify the location of the former gas holder. The secondary objective was to explore for any anomalies of potential environmental significance.

2.1.2 Methodology

A reference grid (approximately 3-feet-on-center) was established over the Site to facilitate data acquisition. The property was surveyed using a Geonics EM61, which detects metallic objects in the soil. A Geonics EM31 Terrain Conductivity meter was used to measure the ground conductivity and the in-phase component of the EM field. The EM31 was used primarily to provide coverage in the northern portion of the survey area where dense brush precluded the acquisition of EM61 data. GPR works on the principle of inducing high frequency radio waves into the earth and recording the energy that is reflected back from depth. See Appendix A for more detailed information on the methodology used for the geophysical survey.

2.1.3 Results

The results of the geophysical survey are summarized in Figures 1 through 7 of the report in Appendix A. With the exception of the southern parking lot area, numerous possible buried metal anomalies representative of urban fill were observed randomly scattered throughout the Site. Some linear patterns were observed but these are believed to be associated with the railroad tracks and/or utilities that run under the tracks. The former gas holder was not identified during the survey. None of the anomalies appear to correlate with former MGP features as depicted on historic Sanborn® maps.

The EM61 data are presented in Figures 1 and 2 of the report in Appendix A. The EM31 conductivity and in-phase data are presented in Figures 3 through 6 of the report in Appendix A. The quality of the EM31 data relative to the EM61 data is poor. An anomaly in the EM31 data set is the conductivity and in-phase high observed in the northern area; a response that is typical of a large buried object or an area of electrically conductive fill material. This

anomaly may be indicative of a layer of lime identified in soil boring SB-16 (see Section 4.0). A time slice of the GPR data is presented in Figure 7 of the report in Appendix A. No GPR anomalies that could be mapped were detected, with the exception of buried utilities detected in the southern parking lot. See Appendix A for a more detailed discussion of the results.

2.2 Soil Investigation

The objectives of the soil investigation and the general procedures for obtaining and analyzing subsurface soil samples are detailed below.

2.2.1 Objectives

The objectives for soil investigations were presented in Section 1.1. In addition, the subsurface information collected as part of this investigation was used to characterize the distribution, saturated thickness, and relative hydraulic conductivity of subsurface soils at the Site. The following sections describe the methods used to collect soils for characterization.

2.2.2 Soil Borings

Although a total of only 14 soil borings were proposed in the Work Plan, a total of 25 borings were drilled based on soil conditions encountered and consultation with RG&E and the NYSDEC. The soil boring locations are shown on Figure 2.

Soil borings were completed using 2¼-inch inside diameter hollow stem augers (HSA). Continuous soil sampling was conducted at the boring locations by advancing a 2-foot long, 2-inch outer diameter (OD) split-spoon sampling device ahead of the augers. Soil recovered from each sample interval was visually characterized for color, texture, and moisture content. If encountered, the presence of visible staining, non-aqueous phase liquid (NAPL), and obvious odors were noted. In addition, each split spoon sample was screened for volatile organic vapors using a MiniRAE 2000 photoionization detector (PID). PID readings were recorded on boring logs. Each boring was completed to a depth of refusal (Soil Boring Logs are included in Appendix B).

2.2.3 Soil Analyses

A minimum of one subsurface soil sample from each boring was analyzed for Target Compound List (TCL) volatile organic compounds (VOCs) by SW846 8260B, TCL semivolatile organic compounds (SVOCs) by SW846 8270C, Target Analyte List (TAL) metals by SW846 6010B and 7471A, and cyanide by SW846 9012A. In addition, some of the samples were analyzed for total petroleum hydrocarbons (TPHs) by EPA 310.1 and diesel range organics (DRO) and gasoline range organics (GRO) by SW846 8015B based on indications of petroleum-type odors observed in the field.

Samples were generally selected for laboratory analyses based on the judgment of the field geologist to meet the soil investigation objectives listed above, visual observation of MGP and/or non-MGP residual staining in the soil sample interval, and/or the sample interval with the highest PID reading. If no staining or PID readings were encountered at a boring location, the sample interval immediately above the groundwater table was selected for laboratory analysis. Analytical results are discussed in Section 4.1. Analytical results were compared to the NYS Part 375 Soil Cleanup Objectives (SCOs) for Restricted Residential

and/or Restricted Commercial Use and to the NYS Technical and Administrative Guidance Memorandum (TAGM) 4046 SCOs.

Air emissions in the worker breathing zone during drilling activities were monitored using a PID. Real-Time Aerosol Monitors (mini-RAMs) were used along with PIDs in accordance with the Community Air Monitoring Plan (CAMP) provided in the Work Plan. Air monitoring documentation is provided in Appendix C.

According to the CAMP, work activities needed to be temporarily halted if the ambient air concentration of organic vapors at the downwind perimeter of the work area exceeded 5 parts per million (ppm) above background for a 15-minute time weighted average. This is the short term exposure limit (STEL). Activities needed to be shut down if the organic vapor STEL exceeded 25 ppm above background. On 28 November 2007, the STEL exceeded 25 ppm after the first 50 minutes of data logging in the downwind PID. However, at that time, there was no activity being performed that would have created high concentrations of organic vapors. This was confirmed by the instrument being used within the working area. The downwind PID was re-calibrated and set up again. After the re-calibration, the organic vapor STEL levels were much lower (below 5 ppm). On 1 December 2006, the STEL exceeded 25 ppm at the downwind PID again for approximately 45 minutes. Similar to the situation on 28 November 2007, there was no evidence in the working area that high concentrations of organic vapors were being generated. Work was completed within the 45 minute period of elevated readings in the downwind PID. The weather on this day was very windy and rainy, which may have contributed to the apparently incorrect high readings in the downwind PID.

According to the CAMP, if the downwind particulate level was 100 ug/m³ greater than background at the upwind perimeter for a 15 minute period, then dust suppression techniques needed to be employed. On 27 November 2007, the rock core at MW-3 was drilled without using water. This created a dust cloud that lasted for approximately ten minutes. From that time on, water was used for rock core drilling. The particulate level at the downwind perimeter was not 100 ug/m³ greater than background at any other time during the field activity. On days with precipitation, dust monitoring was not performed due to dampness of the soil.

Subsequent to the soil sampling activities, a New York State licensed surveyor field surveyed the soil sampling locations and other pertinent site features. For each soil boring, the surveyor determined its location and the ground surface elevation relative to a fixed site-specific datum (see Figure 2).

For equipment decontamination, non-disposable equipment, including drilling tools and equipment were decontaminated prior to first use on site, between each investigation location, and prior to demobilization. The integrity of the decontamination procedures were checked periodically with equipment rinse blanks, as required by the quality assurance project plan (QAPP).

2.3 Groundwater Investigation

The groundwater investigation objectives and the general procedures used to obtain and analyze groundwater samples are detailed below.

2.3.1 Objectives

The objectives of the groundwater investigation were presented in section 1.1. The following sections describe monitoring well installation, groundwater sample collection, and hydrogeology assessment.

2.3.2 Groundwater Monitoring Well Installation

Seven overburden monitoring wells were installed at the locations shown on Figure 2. The number and placement of monitoring wells were selected in accordance with the Work Plan, consideration of subsurface conditions encountered during borehole drilling, and in consultation with RG&E and the NYSDEC. Monitoring wells were positioned to characterize groundwater quality and determine groundwater flow direction in the overburden soils.

At each monitoring well location, a soil boring was first completed using the methodology described in Section 2.2.2 to refusal at bedrock. The borings were then over-drilled using 4¼-inch inside diameter HSAs for the monitoring well installation. Following completion of the borings, monitoring wells were installed and screened to span the water table surface. Surface mount completions were installed at each location except MW-3 and MW-4 which were completed as stick-ups in the only grass-covered areas of the Site which are not likely to receive vehicle traffic. The monitoring wells were constructed using 2-inch diameter Schedule 40 polyvinyl chloride (PVC) pipe and were completed to the top of rock with 0.01-slot well screen. Due to the relatively shallow bedrock, the well screen lengths had to be adjusted to provide adequate thickness of the seals at the ground surface. Each well was installed with a 2-foot sump that was drilled and grouted into the bedrock, in accordance with the NYSDEC-approved Work Plan. Monitoring well installation reports are provided in Appendix B.

Following installation (and immediately prior to development as discussed below), each monitoring well was checked for the presence of NAPL Each well was then developed by pumping water from the well until the water was visibly clear or at least 10 well volumes were removed. For wells MW-1, MW-2, MW-4, MW-5, and MW-7, ten well volumes were removed during development. For well MW-3, 14 well volumes were pumped out, and for well MW-6, 20 well volumes were pumped out. Water generated by monitoring well development and equipment decontamination was securely stored in steel 55-gallon drums prior to being transported for off-site disposal by RG&E.

A New York State licensed surveyor field surveyed the monitoring well locations to determine the location, ground-surface elevation, and measuring-point elevation (defined as the top of the inner casing).

2.3.3 Groundwater Sampling

Two rounds of groundwater sampling were completed during the Site Characterization activities. One complete round of groundwater sampling was completed during 26-28 December 2006, two weeks following well development. The wells were purged using low-flow methods. Each well was checked for the presence of NAPL prior to purging and monitored for NAPL during the purging process.

Following purging, one groundwater sample was collected from each monitoring well using low-flow sampling methods. The samples were properly preserved in ice-filled coolers and transported to Severn Trent Laboratories-Buffalo (STL-Buffalo), a New York State

Department of Health (NYSDOH) accredited laboratory certified for the selected analyses, including: TCL VOCs by SW846 8260B, TCL SVOCs by SW846 8270C, TAL metals by SW846 6010B and 7470A, and cyanide by SW846 9012A. Groundwater quality was compared to the New York State Ambient Water Quality Standards for Class GA groundwater (AWQS). Analytical results are presented in Section 4.1.4.3.

The second round of groundwater sampling was conducted at the Site during 11 -12 October 2007. Static groundwater levels ranged from 0.2 feet to 2.11 feet lower during this event, when compared to the December 2006 sampling event. Each well was monitored for the presence of Non-Aqueous Phase Liquid (NAPL) prior to and during the purging process, as noted in the project Work Plan. NAPL was not observed in any of the monitoring wells.

In accordance with the Work Plan, low-flow purging and sampling was completed at MW-2 and MW-3. A low-flow purge was attempted at MW-1, MW-4, MW-5, MW-6, and MW-7 but could not be completed due to drawdown limitations and slow to immeasurable well recharge. Specifically, due to the low groundwater condition and slow recharge rates in these wells, low-flow sampling was discontinued where drawdown in the well could not be maintained at less than 0.3 feet at the lowest pump flow rate. Therefore, an alternative method was necessary to obtain the water samples. As an alternative to low flow sampling, these wells were purged to dryness using a peristaltic pump and allowed to recover for 24-hours prior to sampling. As MW-7 remained dry after the 24-hour recovery period, a groundwater sample was not collected. Samples from MW-1, MW-4, MW-5, and MW-6 were collected using one new disposable bailer per well. Monitoring well purge records are included in Appendix E.

Where it was necessary to use the alternative purging and sampling method describes above, suspended soil particles were entrained in the groundwater samples.

2.3.4 Hydrogeology Assessment

Water level readings were taken on 18 December 2006 and 11 October 2007 using a Heron Dipper-T water level meter, measuring from the top of the well casing. The water level measurements are reported in Section 4.2.

Slug tests were performed during 29 December 2006 and 2 January 2007 on the monitoring wells to calculate the hydraulic conductivity of site soils. To complete each slug test, a Solinst Levelogger LT water level data logger was calibrated to current barometric pressure and placed into the well. When the data logger read-out stabilized, a 1.5-inch diameter plastic slug was introduced into the well, initially raising the water level, which subsequently subsided to approximately the pre-test level. The slug was quickly removed, resulting in an initial drop in the water level, which subsequently returned to nearly the pre-test level. This was repeated three times for each well. There was insufficient water volume in MW-4 to conduct a slug test. The slug testing results are reported in Section 4.2.

3. WASTE MANAGEMENT

Investigation-derived waste (IDW) including soil cuttings from monitoring well installations, decontamination water, drilling water, and well development/purge water was containerized in 55-gallon drums. Drums were appropriately labeled with the contents, generator, location, and date. The drums were sampled in accordance with waste profiling requirements provided by the disposal facility and the drums were disposed of by Clean-Harbors Environmental Services, Inc. Personal protective equipment (PPE) was placed in plastic garbage bags and disposed of with municipal trash. Waste disposal documentation is included in Appendix D.

4. FINDINGS

The following sections present findings based on the information collected during subsurface explorations performed at the Site during November and December 2006.

4.1 Subsurface Characterization

The following sections provide a detailed description of the Site's subsurface components including soils, bedrock, and groundwater.

4.1.1 Regional Geology and Hydrogeology

The **Site** is located in the Ontario Lowlands, which is characterized by generally low relief and productive farmlands. **The** Soil Conservation Service **classifies** the soil at the **Site as** urban land, **consisting** of areas that have been altered or obscured by urban works and structures to the extent that identification of the soil is not feasible. The urban land designated areas are mainly in the closely built-up parts of the City of Rochester. The surficial geology is described as generally laminated clay and silt deposited in proglacial lakes, generally calcareous, with potential land instability. Overburden thickness is variable (up to 50 meters).

Glacial deposits overlie the bedrock in this area. Fluvial and lacustrine silts and sands overlie till of variable thickness over the bedrock. The bedrock beneath the Site is the Middle Silurian Lockport Group consisting of the Oak Orchard and Penfield Dolostones, both replaced eastwardly by the Sconondoa Formation limestone and dolostone. The Penfield Member is a sandy dolomite of medium gray to dusky yellowish brown, mottled, fine to medium grained, with a saccharoidal texture; minor quartz sand and coral fragments (calcareous); and numerous thin, tight fractures. The Oak Orchard Member Dolomite is medium dark gray to dusky yellowish brown, highly mottled, fine to medium grained, with a saccharoidal texture; scattered fossil detritus; and highly porous.

The average depth to groundwater in Monroe County, New York is 5.4 feet below ground surface (bgs). There are also local seasonal fluctuations in the water table depth. The water levels tend to be highest in the spring snowmelt period and lowest during midsummer.

Based on the topography, the shallow groundwater flow direction in the vicinity of the Site on a macro scale is expected to be generally north and east toward the Genesee River. The Genesee River, located east of the Site (Figure 1), has a watershed area which encompasses the drainage for much of the Rochester area and points south and west. In the upland areas, the water table slopes gently toward the northeast. Within the river valley, the groundwater gradient is nearly flat, with a northward, down-valley slope toward Lake Ontario.

Approximately 300 feet north/northeast of the Site, West Broad Street and the abandoned subway are present in the area of the former Erie Canal. Immediately east of the Site is the location of the former Genesee Canal. Dependent on the depth to water in the area and nature of the fill materials in the former canal beds, these **structures** may affect local groundwater flow patterns and potentially act as either a groundwater flow barrier or a preferential flow pathway. (Site Characterization Work Plan, Canal Street Former MGP Site, Rochester, NY, Blasland, Bouck & Lee, 2006).

4.1.2 Soil and Bedrock Conditions

Explorations at the Site revealed the following soil and rock strata, in order of occurrence from ground surface downward, although one or more strata may be absent at a specific boring location. Actual soil conditions may differ from these typical descriptions. Refer to the test boring logs (Appendix B) for specific descriptions of soil and rock samples obtained from the borings.

- ¾ Fill
- 34 Organic Deposit
- 34 Lacustrine
- 34 Glacial Till
- 34 Dolostone (Weathered Bedrock and Bedrock)

Figures 5A through 5G depict the subsurface profiles generated from the test borings. Note that the stratification lines designating the interface between soil and/or rock types represent approximate boundaries.

Descriptions of the soil conditions encountered during the subsurface exploration program conducted at the Site are provided below. These descriptions are based on the data obtained from the subsurface explorations. The nature and extent of variations between explorations is unknown, as indicated by the many cases where a soil stratum exists at one boring but does not exist at an adjacent boring.

<u>Fill:</u> Below approximately 0 to 0.5 ft of topsoil or pavement, the observed fill consisted of silty SAND (SM), poorly-graded SAND (SP), poorly-graded SAND with silt (SP-SM), clayey SAND (SC), poorly-graded GRAVEL (GP), and sandy SILT (ML) with varying amounts of coal, concrete, bricks, wood, ash, and ceramic particles.

The observed coloration includes brown, light brown, dark brown, gray, black, and yellow-brown. The apparent density of the fill, as indicated from the Standard Penetration Test (SPT) results (N values), ranged from very loose to dense for coarse-grained soils (sand) and medium stiff for fines (silt).

The fill was observed in all test borings. The top of fill was observed between approximately El. 515 to El. 511. The fill ranged in thickness from 3.9 to 14.8 ft. The fill was fully penetrated in all test borings.

Organic Deposit: Where encountered, the organic deposit consisted of ORGANIC SOIL (OL/OH) and SILT (ML) with varying amounts of sand, fibers and clam shells. The observed coloration was dark brown and black. The apparent density of the organic deposit, as indicated from the SPT results (N values), ranged from soft to medium stiff.

The organic deposit was observed and fully penetrated in 5 of the 25 test borings. The top of the organic deposit was observed between approximately El. 509 to El. 504 and the thickness ranged from 1.1 to 2.1 ft.

<u>Lacustrine</u>: Where encountered, the lacustrine consisted of silty SAND (SM), clayey SAND (SC), poorly-graded SAND with silt (SP-SM) and SILT (ML) with varying amounts of sand, gravel, wood, and clam shells. The observed coloration included gray-brown, light brown, brown, tan, and yellow-brown. The apparent density of the lacustrine, as indicated from the

SPT results (N values), ranged from very loose to very dense for coarse-grained soils (sand) and soft to very stiff for fines (silt).

The lacustrine was observed at 14 of the 25 test boring locations. The lacustrine was fully penetrated in most test boring locations, however at some locations the test borings were terminated upon split spoon or auger refusal (anticipated top of rock) and is the presumed extent of the lacustrine layer. The top of the lacustrine was observed between approximately El. 508 and El. 501. The thickness of the lacustrine ranged from 1.5 to 4.7 ft.

Glacial Till: Where encountered, the observed glacial till consisted of silty SAND (SM) with varying amounts of gravel, silty GRAVEL (GM) and poorly-graded GRAVEL (GP) with varying amounts of sand, cobbles, and boulders. The observed coloration included brown, light brown, gray-brown, and yellow-brown. The apparent density of the glacial till, as indicated from the SPT results (N values), ranged from loose to very dense.

The glacial till was observed in 5 of the 25 test borings. At the test boring locations where the glacial till was not fully penetrated, the borings were terminated upon split spoon or auger refusal (anticipated top of bedrock) and is the presumed extent of the till layer. The top of glacial till was observed between approximately El. 506 and El. 502; the thickness of the glacial till ranged from 1.3 to 4.6 ft.

Weathered Bedrock/Bedrock: The observed weathered bedrock and bedrock consists of varying amounts of rock fragments (weathered bedrock) and hard, highly to slightly weathered gray fine-grained DOLOSTONE. The bedrock was noted to have horizontal to low angle bedding.

Bedrock cores (two feet deep) were completed in 8 of the 25 soil borings including MW-1 through MW-7 and SB-15. In the remainder of the borings the top of bedrock was assumed based on split spoon and/or auger refusal. The top of weathered bedrock/bedrock was observed between approximately 7.5 and 16.6 ft below ground surface (bgs). Figure 8 shows the estimated top of bedrock elevations for each boring location and generalized top of bedrock contours. The top of bedrock generally slopes from southeast to northwest across the Site. The bedrock elevation at SB-2 is 4.2 feet higher than at MW-4 which is about 315 ft northwest from SB-2. As can be seen on Figure 8, the bedrock elevations at borings SB-1 and MW-1 do not fit this general pattern, as the elevations there are 3.7 to 4.8 ft higher than the bedrock elevation at SB-2 which is approximately 50 ft to the east.

Based on historical maps identifying the location of the former gas holder, SB-3, SB-4 and SB-15 were presumed to have been installed inside of the gas holder. Equipment refusal was encountered at SB-3 and SB-4. Subsequent to refusal at SB-15, a bedrock core was completed at boring to confirm the hypothesis that the gas holder concrete floor was constructed directly on the bedrock. The core boring report indicates that approximately 0.7 ft of concrete was placed directly on the bedrock at this location. There is evidence that bedrock was excavated to construct the foundation and floor of the gas holder. As can be seen on Figure 5F, a line of relatively uniform slope representing the "inferred" top of bedrock can be drawn from MW-1 to MW-4, through SB-1, SB-5, and MW-7. The bedrock found in SB-15, which is believed to be within the gas holder perimeter, is about 2 ft lower than the line. The approximate location of the perimeter and floor of the gas holder is shown on Figure 5F. The floor elevation shown for the gas holder was based on borings SB-3, SB-4 and SB-15, and assumes that the floor was flat and horizontal.

The bedrock is hypothesized to have been excavated at MW-2 to a depth approximately 7 ft lower than the pre-existing top of bedrock, based on evidence from the soil boring. MW-2 is outside the limits of what is believed to be the perimeter of the gas holder. The boring log for MW-2 shows fill materials (no native soils) from the ground surface to approximately 15.0 ft below ground surface and concrete from 15.0 to 16.6 ft below ground surface, where weathered bedrock was encountered.

4.1.3 Field Observations

Fill was observed throughout the Site ranging from 3.9 to 14.8 ft and contains varying amounts of coal, concrete, bricks, wood (including probable railroad ties), ash, clinker, and ceramic materials.

NAPL was not encountered in any of the soil borings or monitoring wells. There were also no visual observations of coal tar or oil in the soil samples collected from the borings. Staining, possibly indicative of petroleum or coal tar constituents, was noted in only three split spoon samples (from borings MW-2, MW-3, and SB-14). Petroleum-like odors were reported at 10 of the 25 boring locations, and possible naphthalene odors were reported at three (3) locations. In most cases, elevated PID readings were recorded corresponding with the observations of these odors.

Locations of Noted Petroleum Odors				eum	Locations of Noted Naphthalene-like Odors	
3/4	SB-2	3/4	SB-13	3/4	SB-17	3/4 MW-2
3/4	SB-9	3/4	SB-14	3/4	SB-19	3/4 MW-3
3/4	SB-10	3/4	SB-16	3/4	MW-5	3/4 SB-8
3/4	SB-12					

Boring SB-15 was completed between borings SB-3 and SB-4 at a location believed to be within the former gas holder. Rock coring was performed through approximately 0.7 ft of concrete at the bottom of the boring and was extended two additional feet directly into bedrock. It appears that the concrete had been placed directly on the bedrock. No staining was observed at the concrete to bedrock interface.

A "lime-like" material, possibly associated with former MGP purifier operations, was observed intermittently within the fill at two soil boring locations. At boring SB-16 in the northern portion of the Site, a light blue tint was observed in the "lime-like" material found in the soil collected from the first five feet bgs. At boring MW-6 in the southern portion of the Site, similar blue-tinted "lime-like" material was found in the soil collected from the first four feet bgs. A sample of the material from SB-16 was submitted for chemical analysis.

In general, soil samples were selected for chemical analyses based on consideration of visual, odor, and PID field observations in order to represent expected worst-case conditions. The results of chemical analyses for the soil samples are presented in Section 4.1.4.1.

4.1.4 Laboratory Analytical Results

Soil and groundwater samples were analyzed by Severn Trent Laboratories-Buffalo (STL-Buffalo), a New York State Department of Health (NYSDOH) accredited laboratory certified for the selected analyses. Analytical methods, sample handling, and laboratory protocols are outlined in the QAPP (see Work Plan, Appendix B).

4.1.4.1 Data Usability

Sample analyses followed the NYSDEC Analytical Services Protocol (ASP), and included quality assurance/quality control (QC/QC) samples at a frequency indicated in the QAPP. Analytical results for analysis of soil and groundwater samples were reported using NYSDEC ASP Category B data deliverables and are provided in Appendix E, along with the data usability summary reports (DUSRs). The analytical data were validated and determined to be usable for the purposes of this report, with the exception of some of the groundwater results from the October 2007 sampling event.

The October 2007 field sampling logs noted high turbidity in the samples for MW-1, MW-4, MW-5, and MW-6. The analytical laboratory indicated that the extraction procedure used in the analysis of SVOCs and metals would capture constituents from any suspended soil particles as well as from the groundwater. As a result, results for SVOCs and metals results from those wells are most likely overstated and are not likely representative of true groundwater quality at the four sampling locations and the October 2007 results should be viewed in light of the sampling conditions. As the extraction procedure is not used in the analysis for VOCs, suspended soil particles in the sample did not affect the results or detection limits of the VOCs.

However, inspection of the analytical results for SVOCs shows that for the most part, only a few individual SVOCs were detected in both the October 2007 and December 2006 monitoring rounds, and the sample detection limits were approximately the same for both rounds (except for MW-1), even with the suspended soil particles in the October 2007 samples. Therefore it was concluded that the SVOC results for October 2007 could be used for comparison to the December 2006 SVOC results for MW-2, MW-3, MW-4, MW-5, and MW-6.

The following sections summarize the laboratory analytical results. Site specific soil cleanup objectives are not identified in the MSVCA; therefore, for comparison purposes, soil analytical results were compared to the NYCRR Part 375 Soil Cleanup Objectives (SCOs) for Restricted Residential Use and Restricted Commercial Use, as well as to the TAGM 4046 SCOs. Groundwater analytical results were compared to the NYS Ambient Water Quality Standards for Class GA Groundwater (AWQS).

4.1.4.2 Soil Analytical Results

A description of the soil analytical results is presented below and the results are summarized in Tables 1 through 4. Figure 6 depicts the soil analytical results in excess of the Part 375 Restricted Residential and Restricted Commercial Use SCOs.

Volatile Organic Compounds (VOCs)

VOCs were not detected in any of the soil samples at concentrations exceeding the Part 375 Restricted Residential SCOs (see Table 1). Only three VOCs exceeded the TAGM 4046 SCOs – acetone, methylene chloride, and total xylenes. Neither acetone nor methylene chloride are compounds associated with MGP wastes. As shown on Table A, those exceedances occurred at only five locations.

Table A.

Locations of VOC Exceedances of Soil Cleanup Objectives and Water Quality Standards

Constituent	Location of Exceedance					
	Part 375 Residential	TAGM 4046 Soil Cleanup	NYSDEC TOGS 1.1.1			
	or Commercial Soil	Objectives or Eastern U.S.	Class GA Water			
	Cleanup Objectives	Background for Metals)	Quality Standards (1)			
Acetone		MW-5				
Benzene			MW-2, MW-3			
Cis-1,2-Dichloroethene			MW-3			
Ethylbenzene			MW-2, MW-3			
Isopropylbenzene			MW-3			
Methylene Chloride		SB-9, SB-11, SB-14				
Toluene			MW-2			
Total Xylenes		SB-13, SB-14	MW-2, MW-3			
Trans-1,2-			MW-3			
Dichloroethene						
Trichloroethene			MW-3			
Vinyl chloride			MW-3			

(1) Listed wells had detected analytes in excess of AWQS.

Semi-Volatile Organic Compounds (SVOCs)

Samples from only seven (7) of the 25 boring locations had SVOCs in excess of the Part 375 SCOs for Restricted Residential Use. The SVOCs detected above the Part 375 SCO for Restricted Residential Use were the following five higher-molecular weight PAHs that were detected at relatively low concentrations: benzo(a)anthracene, benzo(b)fluoranthene, indeno(1,2,3-cd)pyrene, benzo(a)pyrene, and dibenzo(a,h)anthracene (see Table 2). According to Table 2, the same compounds were found to exceed the TAGM 4046 SCOs, with the addition of benzo(k) fluoranthene and chrysene. Table B shows the locations where SVOCs were found at concentrations in excess of the referenced SCOs.

Table B.

Locations of Exceedances of SVOC Soil Cleanup Objectives and Water Quality Standards

Constituent			Location of Exceedance	•
	Part 375	Part 375	TAGM 4046 Soil Cleanup	NYSDEC TOGS
	Residential	Commercial	Objectives (and/or Eastern U.S.	1.1.1 Class GA
	Soil Cleanup	Soil Cleanup	Background for Metals)	Water Quality
	Objectives	Objectives		Standards (1)
Benzo(a)anthracene	SB-10, SB-12,		Same locations as Part 375	
	SB-16, SB-17,		Residential, plus SB-2, SB-4, SB-5,	
	SB-19, MW-2		SB-9, ,SB-13, MW-6	
Benzo(a)pyrene	SB-10, SB-12,	SB-10, SB-12,	Same locations at Part 375	
	SB-16, SB-17,	SB-16, SB-17,	Residential, plus SB-1, SB-2, SB-3,	
	SB-19, MW-2	SB-19, MW-2	SB-4, SB-5, SB-7, SB-8, SB-9, SB-	
			13, MW-1, MW-6	
Benzo(b)fluoranthene	SB-10, SB-12,		Same locations as Part 375	
	SB-16, SB-17,		Residential	
	SB-19, MW-			
	2, MW-6			
Benzo(k)fluoranthene			SB-17	
Chrysene			SB-2, SB-10, SB-12, SB-16, SB-17,	
			SB-19, MW-2, MW-6	
Dibenzo(a,h)anthracene	SB-10, SB-12,	SB-12, SB-17,	Same locations as Part 375	
	SB-17, MW-	MW-6	Residential, plus SB-1, SB-2, SB-3,	
	2, MW-6		SB-4, SB-5, SB-7, SB-8, SB-9, SB-	
			16, SB-19, MW-1	
Indeno(1,2,3-cd)pyrene	SB-10, SB-12,		SB-17	
	SB-16, SB-17,			
	SB-19, MW-			
	2, MW-6			
Naphthalene				MW-2, MW-3
Pentachlorophenol				MW-5

(1) Listed wells had detected analytes in excess of AWQS.

Concentrations of only two SVOCs in soil (benzo(a)pyrene and dibenzo(a,h)anthracene) exceeded the Part 375 SCOs for Restricted Commercial Use at the previously listed seven locations. Naphthalene, a commonly observed contaminant found at MGP sites, was not detected in soil samples at concentrations above any of the referenced SCOs.

SVOCs detected at concentrations exceeding referenced SCOs appear randomly distributed throughout the Site and study area and do not appear to correlate to any specific source. According to the information given in Table A and presented in Figure 6, no areas of the Site had observed concentrations of SVOCs significantly higher than another. Comparison of the observed SVOC concentrations to published data indicates that they are typical of urban fill.

Metals

Table C shows the locations where metals were found at concentrations in excess of the referenced SCOs. Arsenic, barium, and lead were detected above the referenced SCOs at a limited number of locations. As presented in Table A and Table 3, samples from only six (6) of the 25 boring locations had metals detected at concentrations in excess of the Part 375 SCOs for Restricted Residential Use. The metals were arsenic (four locations), barium (one

location), cadmium (one location), and, at two locations each, lead, manganese, and mercury. The same metals were found to exceed the TAGM 4046 SCOs, with the addition of calcium, copper, iron, magnesium, nickel, selenium, and zinc.

Table C.
Locations of Metal Exceedances of Soil Cleanup Objectives and Water Quality Standards

Constituent	Location of Exceedance							
	Part 375	Part 375	TAGM 4046 Soil Cleanup Objectives	NYSDEC TOGS 1.1.1				
	Residential Soil	Commercial Soil	(and/or Eastern U.S. Background	Class GA Water				
	Cleanup	Cleanup Objectives	for Metals	Quality Standards (1)(2)				
	Objectives							
Metals								
Arsenic	SB-9, SB-10, SB-	SB-9, SB-10, SB-17,	Same locations at Part 375 Residential,					
	17, MW-2	MW-2	plus MW-5					
Barium	SB-9	SB-9	SB-9					
Cadmium	SB-9		SB-9					
Calcium			SB-2, SB-6, SB-8, SB-12, SB-13, SB-					
			16, SB-17, MW-2, MW-5, MW-6,					
Copper			SB-1, SB-2, SB-12, SB-17, MW-1,					
Iron			All locations	MW-1, MW-2, MW-3,				
				MW-4, MW-5, MW-7				
Lead	SB-12	SB-12	SB-2, SB-12	MW-5				
Magnesium			SB-2, SB-4, SB-6, SB-7, SB-8, SB-10,	MW-2, MW-4, MW-5,				
Ü			SB-12, SB-13, SB-16, SB-16, SB-17,	MW-6				
			SB-19, MW-1, MW-2, MW-3, MW-5,					
			MW-6, MW-7					
Manganese	SB-9, SB-17	SB-9	SB-9	MW-1, MW-2, MW-3,				
				MW-4, MW-5, MW-7				
Mercury	SB-12, SB-17		Same locations at Part 375 Residential,					
			plus SB-1, SB-2, SB-3, SB-4, SB-7,					
			SB-10, SB-16, SB-19, MW-1, MW-5,					
			MW-6					
Nickel			SB-9					
Selenium			SB-9					
Sodium				MW-1, MW-2, MW-6				
Zinc			SB-1, SB-2, SB-3, SB-4, SB-7, SB-9,					
			SB-10, SB-12, SB-16, SB-17, SB-19,					
			MW-1, MW-2, MW-3, MW-5, MW-6					

- (1) Listed wells had detected analytes in excess of AWQS.
- (2) Analytical results from October 2007 were excluded. See Section 4.1.4.1.

The soil sample SB-9 did not exceed the Part 375 SCO for Restricted Commercial Use for cadmium. The soil sample for SB-2 did not exceed the Part 375 SCO for Restricted Commercial Use for lead. All other soil samples that exceeded the Part 375 SCOs for Restricted Residential Use also exceeded the Part 375 SCOs for Restricted Commercial Use.

Metals were detected above the TAGM 4046 SCOs at most locations. Barium, cadmium, and manganese concentrations exceeded the TAGM 4046 SCOs at only one location each. Arsenic, copper, lead, manganese, nickel, and selenium concentrations exceeded the TAGM 4046 SCOs at five (5) or fewer locations. Calcium, iron, zinc, magnesium, and mercury concentrations exceeded the TAGM 4046 SCOs at eleven (11) or more locations.

The samples where metals were detected above the referenced SCOs were generally collected from the fill. As shown on Table C and in Figure 6, they appear randomly distributed across the Site and study area and do not appear to correlate to any specific source. With the exception of one isolated sample at SB-12 (8-10 feet bgs), no areas of the Site had concentrations of metals significantly higher than another. The origins of the impacts are not known, however the nature and distribution of constituents in the Site soils are similar to typical urban background conditions.

Cyanide

As noted in Section 4.1.3, a "lime-like" material (lime), possibly associated with former MGP purifier operations, was observed intermittently within the fill at two soil borings at disparate locations. The lime was most notable in SB-16, located in the northern portion of the Site, where a light blue tint was observed in the "lime-like" material found in the soil collected from the first five feet bgs. This sample was submitted for analysis that confirmed the presence of lime. This sample was also analyzed for cyanide which was detected at a concentration of 11.5 mg/kg which is below the Part 375 SCO for Restricted Residential (and Restricted Commercial) Use (27 mg/kg). There is no SCO for total cyanide given in TAGM 4046, which notes that the SCO for cyanide, if needed, should be established as appropriate for the site being investigated.

All the other soil samples collected during this investigation were also analyzed for cyanide. None of the samples were above the Part 375 SCO for Restricted Residential or Restricted Commercial Use.

Petroleum Hydrocarbon Analysis Results (TPH & DRO/GRO)

Total petroleum hydrocarbon analysis by EPA 310.1 and diesel range organics (DRO) and gasoline range organics (GRO) by SW846 8015B was performed based on field observations of petroleum-type odors and corresponding PID readings in borings SB-10, SB-13, and SB-14. These locations were in the area of the Site historically and currently used for railroad operations (refer to Section 1.3). Analytical results confirmed the presence of petroleum-type constituents in each sample (see Table 4). The concentrations of petroleum constituents detected were not indicative of an on-site source or area of the Site with particularly high concentrations of petroleum-related compounds and were also not suggestive of a particular petroleum product.

4.1.4.3 Groundwater Analytical Results

A description of the groundwater analytical results is presented below and the results are summarized in Tables 5 through 7. Figure 6 provides a summary of groundwater analytical results that exceed the Ambient Water Quality Standards (AWQS). For each analyte that exceeded the AWQS, the concentration of the analyte in the soil at the same location is listed. Tables A, B, and C present the locations where exceedances of the AWQS were observed.

VOCs

Only MW-2 and MW-3 exhibited groundwater quality having VOCs in excess of AWQS (see Table 5). In December 2006, VOCs were not detected above laboratory detection limits in MW-1 (upgradient), MW-4, MW-6, and MW-7 (with the exception of a detection of trichloroethene below the AWQS in upgradient monitoring well MW-6). This remained true

in October 2007, with the exceptions of methyl cyclohexane and toluene in MW-4, carbon disulfide and methyl acetate in MW-5 and trans-1,2-dichloroethene and trichloroethene in MW-6, were all below the AWQS.

MW-2 is located immediately downgradient of the former gas holder. Groundwater analyses of December 2006 samples collected from MW-2 detected benzene (52 ug/l), toluene (18 ug/l), ethylbenzene (6.6 ug/l) and total xylenes (13 ug/l) at concentrations above their respective AWQS. MW-3 is also located proximate to the former gas holder. The December 2006 groundwater sample from MW-3 exhibited concentrations of benzene (1.6 ug/l), ethylbenzene (38 ug/l), and total xylenes (25 ug/l) above the AWQS.

In October 2007, benzene was the only VOC detected in MW-2 in exceedance of the AWQS, and cis-1,2-dichloroethene and trichloroethene (TCE) were the only VOCs detected in MW-3 in exceedance of their respective AWQSs. The October 2007 data set indicated a slight reduction in VOC concentrations and frequency of VOCs detected above laboratory detection limits as compared to the results of the December 2006 sampling event. VOCs were not detected in exceedance of the AWQS in downgradient well MW-4. A comparison of the VOCs that exceeded the AWQS at MW-2 and MW-3 during the two sampling rounds is presented in Table D. A summary of all groundwater analytical results for VOCs is shown in Table 5.

Table D. Comparison of VOC Exceedances

Table D. Comparison of VOC Externances						
Sample ID	NYSDEC TOGS 1.1.1 Class GA Water	MW-2	MW-2	MW-2-FD	MW-3	MW-3
Lab Sample ID	Quality	A6F46702	A7B81401	A7B81402	A6F49503	A7B81407
Date Sampled	Standards (ug/L)	12/26/2006	10/12/2007	10/12/2007	12/27/2006	10/11/2007
Benzene	1	52	24	23	1.6 J	5 U
cis-1,2- Dichloroethene	5	1.1	5 U	5 U	96	22
Ethylbenzene	5	6.6	1.8 J	1.6 J	38	5 U
Isopropylbenzene	5	0.5 J	5 U	5 U	12	5 U
Total Xylenes	5 ⁽¹⁾	13 J	2.4 J	1.3 J	25	15 U
trans-1,2- Dichloroethene	5	5 U	5 U	5 U	5.1	0.82 J
Trichloroethene	5	5 U	5 U	5 U	57	38
Vinyl chloride	2	5 U	5 U	5 U	5.9	5 U

⁽¹⁾ Applies to o-, m-, and p-xylene separately.

The relatively low concentrations of the VOCs detected in the groundwater at MW-2 and MW-3 are not indicative of a nearby significant contaminant source. That is, typically when NAPL is present in the subsurface, aromatic VOCs in the groundwater proximate to such a source exceed 1,000 ug/L. This is consistent with the lack of visual and soil analytical findings and suggests a significant source of contamination to groundwater is not present at the Site. Further, BTEX concentrations did not exceed the referenced SCOs in soil samples taken from MW-2 and MW-3. The BTEX compounds detected in MW-2 and MW-3 may be related to other historic petroleum-related activities conducted at or near the Site.

Chlorinated VOCs, including the common industrial solvent trichloroethene (TCE) and its related breakdown products, including cis-1,2- dichloroethene and trans-1,2-dichloroethene,

and vinyl chloride, were detected at concentrations exceeding AWQS in MW-3. TCE may also be associated with the common dry cleaning solvent tetrachloroethene (PCE), as PCE naturally breaks down into TCE. However, chlorinated compounds (other than methylene chloride) were not detected in soil samples above the referenced SCOs. Chlorinated VOCs were not detected in soil samples from MW-3 except for cis-1,2- dichloroethene at 9.0 ug/kg, which is below the Part 375 Restricted Residential SCO. Chlorinated solvents are not associated with former MGP operations.

Monitoring wells MW-4 and MW-7 are located hydraulically downgradient of MW-2 and MW-3. Groundwater samples detected from MW-4 and MW-7 did not detect VOCs above the AWQS. This indicates that the BTEX and chlorinated VOCs detected in MW-2 and MW-3 are localized and/or not migrating or they are attenuating rapidly.

SVOCs

In December 2006, three monitoring wells (MW-2, MW-3, and MW-5) exhibited groundwater quality having SVOCs in excess of AWQS. SVOCs were not detected above laboratory detection limits in samples collected from upgradient monitoring wells MW-1 and MW-6, or in samples collected from monitoring wells MW-4 and MW-7 (see Table 6).

The only SVOCs detected in groundwater samples collected in October 2007 at concentrations exceeding the AWQS were from MW-2 and MW-6 (see Table 6). All of these concentrations were qualified by the laboratory as estimated values. Benzo(a)anthracene was the only SVOC detected in MW-2 in exceedance of the AWQS. Benzo(a)anthracene, benzo(b)fluoranthene, and indeno(1,2,3-cd)pyrene were the only SVOCs detected in MW-6 in exceedance of their respective AWQS. As noted, the groundwater from upgradient monitoring well MW-6 contained soil particles suspended in the sample, which may account for the estimated concentrations of these heavy molecular weight PAHs. These PAHs are indicative of the surrounding soil conditions and the overall urban nature of the fill.

The October 2007 data set shows a notable reduction in the naphthalene concentrations in MW-2 and MW-3, as compared with the December 2006 sampling event. SVOCs were not detected in exceedance of the AWQS in downgradient well MW-4. A comparison of the SVOCs that exceeded the AWQS during the two sampling rounds is presented in Table E. A summary of all groundwater analytical results is shown in Table 6. Based on the data usability evaluation, the October 2007 SVOC results for MW-1, MW-4, MW-5, and MW-6 may not be representative of the groundwater quality at those locations at the time of sampling.

Table E. Comparison of SVOC Exceedances

Sample ID	Class GA	MW-1	MW-1	MW-2	MW-2	MW-2-FD
Lab Sample ID	Water Quality	A6F46701	A7B81404	A6F46702	A7B81401	A7B81402
_	Standards					
Date Sampled	(ug/L)	12/26/2006	10/12/2007 ⁽³⁾	12/26/2006	10/12/2007	10/12/2007
Benzo(a)anthracene	0.002(1)	9 U	10 J	9 U	0.2 J	0.2 J
Benzo(b)fluoranthene	0.002(1)	9 U	17 J	9 U	10 U	9 U
Chrysene	0.002(1)	9 U	8 J	9 U	10 U	9 U
Indeno(1,2,3-	0.002(1)	9 U	7 J	9 U	10 U	9 U
cd)pyrene	0.002	30	7 3	30	10 0	90
Naphthalene	10 ⁽¹⁾	9 U	200 U	68	4 J	2 J
Pentachlorophenol	1 ⁽²⁾	47 U	980 U	47 U	49 U	47 U

- (1) Guidance per AWQS.
- (2) Standard per AWQS.
- (3) SVOC laboratory results for MW-1, MW-4, MW-5, and MW-6 may not be representative of the groundwater condition at that location due to suspended soil particles in the samples.

Table E. Comparison of SVOC Exceedances, continued

Sample ID	Class GA	MW-3	MW-3	MW-5	MW-5
Lab Sample ID	Water Quality	A6F49503	A7B81407	A6F49502	A7B81406
Date Sampled	Standards (ug/L)	12/27/2006	10/11/2007	12/27/2006	10/12/2007
Benzo(a)anthracene	0.002(1)	10 U	10 UJ	9 U	10 U
Benzo(b)fluoranthene	0.002(1)	10 U	10 UJ	9 U	10 U
Chrysene	0.002(1)	10 U	10 UJ	9 U	10 U
Indeno(1,2,3-cd)pyrene	0.002(1)	10 U	10 UJ	9 U	10 U
Naphthalene	10 ⁽¹⁾	33	10 UJ	1 J	10 U
Pentachlorophenol	1 ⁽²⁾	50 U	50 UJ	7 J	48 U

- (1) Guidance per AWQS.
- (2) Standard per AWQS.
- (3) SVOC laboratory results for MW-1, MW-4, MW-5, and MW-6 may not be representative of the groundwater condition at that location due to suspended soil particles in the samples.

Table E. Comparison of SVOC Exceedances, continued

Sample ID	NYSDEC TOGS 1.1.1	MW-6	MW-6-FD	MW-6
Lab Sample ID	Class GA Water Quality	A6F53001	A6F53004	A7B81405
Date Sampled	Standards (ug/L) ⁽¹⁾	12/28/2006	12/28/2006	10/12/2007
Benzo(a)anthracene	0.002(1)	10 U	10 U	0.3 J
Benzo(b)fluoranthene	0.002(1)	10 U	10 U	0.2 J
Chrysene	0.002(1)	10 U	10 U	10 U
Indeno(1,2,3-cd)pyrene	0.002(1)	10 U	10 U	0.2 J
Naphthalene	10 ⁽¹⁾	10 U	10 U	10 U
Pentachlorophenol	1 ⁽²⁾	48 U	48 U	49 U

- (1) Guidance per AWQS.
- (2) Standard per AWQS.
- (3) SVOC laboratory results for MW-1, MW-4, MW-5, and MW-6 may not be representative of the groundwater condition at that location due to suspended soil particles in the samples.

Pentachlorophenol (a common wood preservative) was detected in the groundwater above the AWQS in the December 2006 groundwater sample collected from MW-5 at a trace concentration (7 ug/L). The AWQS for pentachlorophenol is 1.0 ug/L. Pentachlorophenol is not an MGP-related constituent, was not detected in soils from any location above laboratory detection limits, and was not detected in any other groundwater samples.

Naphthalene was detected in MW-2 at 68 ug/L and in MW-3 at 33 ug/L in December 2006. In October 2007, naphthalene was detected in MW-2 at an estimated concentration of 4 ug/L and was not detected in MW-3. The AWQS for naphthalene is 10 ug/L. Naphthalene is common to both coal tar and most petroleum-related products. Consistent with the VOC findings, the relatively low concentrations of these compounds detected in the groundwater at MW-2 and MW-3 are not indicative of a significant nearby contaminant source. Naphthalene was not detected in any soil samples at concentrations above the Part 375 SCO for Restricted Use or the TAGM 4046 SCO for Protection of Groundwater, including the soil samples collected from the depths consistent with the screened intervals associated with MW-2 and MW-3. This is consistent with the VOC findings and suggests that a significant source of SVOC constituents to groundwater is not present at the Site.

Moreover, monitoring wells MW-4 and MW-7 are located hydraulically downgradient of MW-2 and MW-3. VOCs and SVOCs (including naphthalene) that were greater than the AWQS in MW-2 and MW-3 were not detected in MW-4 and MW-7, indicating that organic constituents are localized and/or not migrating or they are attenuating rapidly.

Metals

Metals were consistently detected at concentrations exceeding AWQS in both upgradient and downgradient wells, including magnesium, manganese, iron, and sodium (see Table 7). Considering all seven wells, iron and magnesium were the only analytes that exceeded TAGM 4046 SCOs for soil and the AWQS for groundwater in the same well. These metals are consistent with natural groundwater conditions related to the dolostone bedrock and indigenous soils in the area. To a lesser extent, these metals may also be attributable to the lime observed in the soils at the Site.

Lead was also detected in one of the seven monitoring wells (MW-5) at concentrations exceeding the AWQS. Additionally, in MW-5 only, arsenic exceeded the AWQS for groundwater and the TAGM 4046 SCO for soil (at 13 mg/L vs. the SCO of 12 mg/L). It is interesting to note that none of the soil samples collected from the depths consistent with the screened intervals of the seven monitoring wells exceeded Part 375 SCOs for the same analytes detected above the applicable AWQS. This is further evidence of the lack of a significant source to groundwater contamination.

Based on the data usability evaluation, the October 2007 metals results for MW-1, MW-4, MW-5, and MW-6 may not be representative of the groundwater condition at that location due to suspended soil particles in the samples (see Section 4.1.4.1). In MW-2 and MW-3, only four metals were detected in groundwater samples collected in October 2007 at concentrations exceeding the AWQS (see Table 7). Iron, magnesium, manganese, and sodium were the only metals detected in MW-2 in exceedance of the AWQS. Iron was the only metal detected in MW-3 in exceedance of its AWQS.

The October 2007 data set shows lower concentrations of metals in MW-2 and MW-3, as compared with the December 2006 sampling event, with the exception of sodium in MW-2, which was higher in October 2007 compared to December 2006. A comparison of the metals that exceeded the AWQS during the two sampling rounds is presented in Table F. A summary of all groundwater analytical results is shown in Table 7.

Table F. Comparison of Metals Exceedances

Sample ID	Class GA	MW-1	MW-1	MW-2	MW-2	MW-2-FD
Lab Sample ID	Water Quality	A6F46701	A7B81404	A6F46702	A7B81401	A7B81402
Date Sampled	Standards (ug/L)	12/26/2006	10/12/2007(1)	12/26/2006	10/12/2007(1)	10/12/2007(1)
Arsenic - Total	25	10 U	120	10 U	10 U	10 U
Iron - Total	300	11800	246000	8850	7830	7770
Lead - Total	25	12.2	3940	16.2	11.8	12.1
Magnesium - Total	35000	24100	165000	38200	35800	37500
Manganese - Total	300	382	4080	740	604	604
Sodium - Total	20000	58900	44700	49700	65600	70100

⁽¹⁾ Laboratory results for metals in MW-1, MW-4, MW-5, and MW-6 are may not be representative of the groundwater condition at that location due to suspended soil particles in the samples.

Table F. Comparison of Metals Exceedances, continued

	,					
Sample ID	NYSDEC TOGS 1.1.1	MW-3	MW-3	MW-4	MW-4	
Lab Sample ID	Class GA Water Quality	A6F49503	A7B81407	A6F53003	A7B81403	
Date Sampled	Standards (ug/L)	12/27/2006	10/11/2007	12/28/2006	10/12/2007(1)	
Arsenic - Total	25	10 U	10 U	10 U	14.5	
Iron - Total	300	547	433	1960	45100	
Lead - Total	25	3 U	3 U	6.6	89.8	
Magnesium - Total	35000	33300	24400	184000	82800	
Manganese - Total	300	667	15 U	490	2590	
Sodium - Total	20000	11700	9840	7110	9570	

⁽¹⁾ Laboratory results for metals in MW-1, MW-4, MW-5, and MW-6 are may not be representative of the groundwater condition at that location due to suspended soil particles in the samples.

Table F. Comparison of Metals Exceedances, continued

Sample ID	Class GA	MW-5	MW-5	MW-6	MW-6-FD	MW-6
Lab Sample ID	Water Quality	A6F49502	A7B81406	A6F53001	A6F53004	A7B81405
Date Sampled	Standards (ug/L)	12/27/2006	10/12/2007(1)	12/28/2006	12/28/2006	10/12/2007(1)
Arsenic - Total	25	23.3	44.5	10 U	10 U	10 U
Iron - Total	300	39500	47700	100 U	100 U	9920
Lead - Total	25	44.8	112	3 U	3 U	23.7
Magnesium - Total	35000	103000	124000	221000	219000	218000
Manganese - Total	300	1400	1540	22.1	22.5	172
Sodium - Total	20000	17500	22100	61800	61800	75500

⁽¹⁾ Laboratory results for metals in MW-1, MW-4, MW-5, and MW-6 may not be representative of the groundwater condition at that location due to suspended soil particles in the samples.

As shown in Table F, metals were consistently detected at concentrations exceeding AWQS in both upgradient and downgradient wells for magnesium, manganese, iron, and sodium. These metals are consistent with natural groundwater conditions related to the dolostone bedrock and indigenous soils in the area.

Cyanide

Cyanide was not detected above laboratory detection limits in any wells except MW-6, where it was detected at a concentration 25.5 ug/L in December 2006, well below the AWQS of 200 ug/L. In October 2007, cyanide was not detected in the groundwater sample from MW-6. As noted in Section 4.1.3.1, none of the soil samples detected cyanide at concentrations above the Part 375 SCO for Restricted Residential Use.

4.2 Site Hydrogeology

The following sections describe groundwater depth and direction of flow and information regarding the hydraulic conductivity of site soils.

4.2.1 Groundwater Depth and Direction of Flow

Table 8 presents the groundwater level measurements in terms of depth below ground surface (bgs) and elevation for December 2006 and October 2007. Figures 7A and 7B show groundwater elevations and generalized groundwater contours for December 2006 and October 2007, respectively. In December 2006, groundwater was found between 5.5 and 13.3 feet bgs at the Site, generally shallower at the southern end and deeper at the northern end of the Site. The saturated thickness of overburden soils ranged from zero to 6.4 feet above bedrock, with the downgradient (northwestern) wells MW-7 and MW-4 exhibiting the least thick saturated zones. The direction of groundwater flow is generally to the northwest; however, there is a groundwater high in the vicinity of MW-1, which results in local deviation from this general pattern. The groundwater high is apparently associated with high bedrock at the same location.

The direction of groundwater flow and the groundwater high in the vicinity of MW-1 for October 2007 were similar to those for December 2006. However, the depth to groundwater was found to be between 6.9 and 15.8 feet bgs, generally deeper (e.g., at a lower elevation) than December 2006. This drop in groundwater elevation was consistent with the relatively dry preceding summer months.

4.2.2 Hydraulic Conductivity of Site Soils

The site fill, lacustrine deposits, and glacial deposits are all generally sandy in character, which suggests that the soils have a relatively high hydraulic conductivity. This was confirmed by the analysis of the rising head slug test data using the Bouwer Rice method. The calculated hydraulic conductivities ranged from 1.5×10^{-3} to 3.1×10^{-2} cm/sec, which is consistent with those commonly reported for sand. Results of the analysis are presented in Table 9.

5. SUMMARY AND CONCLUSIONS

Based on the results of the site characterization investigation, we conclude the following:

- The Site is located in an urban area with a long history of commercial and industrial use, including former railroad and petroleum operations unrelated to the former MGP. The MGP operations were conducted over a relatively brief period of approximately 10 years. The Site and surrounding area has had more than 115 years of commercial and industrial use since MGP operations ceased.
- The geology consists of dolostone bedrock overlain by unconsolidated materials ranging in depth from approximately 7.5 to 15 feet bgs. The unconsolidated soils include urban fill and discontinuous layers of lacustrine soils, organic soils, and glacial till. In many places, the fill extends to the top of bedrock. Generally, the bedrock surface slopes to the northeast. The static groundwater level was approximately 5.5 to 13.3 feet below ground surface. Groundwater in the unconsolidated materials flows to the northwest.
- Organic MGP-related products or by-products were not observed. NAPL, such as coal tar and petroleum, was not encountered. In fact, only three soil samples had apparent staining possibly indicative of petroleum or coal tar constituents.
- The nature and extent of soil contamination is limited.
 - Samples from only nine (9) of the 25 boring locations had soil analytes in excess of the Part 375 SCOs. Only eleven (11) of the more than 135 soil constituents analyzed were found to exceed the Part 375 SCOs. VOCs were not detected at concentrations above the Part 375 SCOs for Restricted Residential Use. Only seven (7) of the 25 soil boring locations have SVOCs in excess of the Part 375 SCOs for Restricted Residential Use at relatively low concentrations. Naphthalene was not detected in any soil samples at concentrations above Part 375 SCOs.
 - Only six (6) of the 25 boring locations had metals detected at concentrations in excess of the Part 375 SCOs for Restricted Residential Use, including at locations upgradient to the former MGP operational area.
 - Lime was observed at two locations within the fill and may have been associated with former MGP purifier operations. Cyanide was not detected above the Part 375 SCOs for Restricted Residential Use in the lime or any soil samples.
 - Soil analytes detected at concentrations exceeding SCOs appear randomly distributed throughout the Site and do not indicate the presence of a specific source on the Site. The nature and distribution of constituents in the Site soils are similar to typical urban background conditions.

- The nature and extent of groundwater contamination is limited.
 - Only three (3) of the seven (7) monitoring wells exhibited groundwater having VOCs or SVOCs in excess of AWQS. Only 16 of more than 135 groundwater constituents analyzed were found to exceed the AWQS.
 - Two (2) of these wells contained BTEX and naphthalene in excess of the AWQS and which could be related to historic MGP operations or other industrial activities, including on-site petroleum handling by the railroad and an off-site upgradient oil spill. However, soil samples collected on site did not exhibit BTEX or naphthalene in concentrations in excess of the Part 375 SCOs for Restricted Residential use. Although other non-MGP related constituents (e.g., chlorinated compounds) were observed in two of these monitoring wells, no chlorinated VOCs were detected above the Part 375 SCOs for Restricted Residential in any of the 25 soil borings.
 - On-site monitoring wells located hydraulically downgradient did not detect VOCs or SVOCs above the AWQS, indicating that organic constituents are localized and/or not migrating or they attenuate rapidly.
 - Metals were consistently detected at concentrations exceeding AWQS in both upgradient and downgradient wells for magnesium, manganese, iron, and sodium. These metals are consistent with natural groundwater conditions related to the dolostone bedrock and indigenous soils in the area. Lead was detected in only one (1) of the seven monitoring wells at a concentration exceeding the AWQS.

Study results indicate that the Site is comprised of reworked fill material typical of urban fill in old industrial and urban settings and that further soil investigation would likely do nothing more than affirm the random and sporadic distribution of soil analytes both above and below referenced SCOs across the Site. No VOCs were detected in any soil samples above Part 375 SCOs applicable to the mixed commercial-residential use of the 90 Canal Street parcel and the commercial use of the 65 Trowbridge Street parcel. (Only acetone, methylene chloride, and/or xylenes were detected in soil samples at concentrations exceeding the TAGM 4046 SCOs, and those exceedances occurred at only five locations). Most of the boring locations did not detect SVOCs in soil samples above referenced SCOs, and even when they did, those few SVOCs were not observed above AWQS in the related groundwater quality monitoring wells. NAPL was not encountered and there were only three visual observations of staining possibly indicative of petroleum or coal tar contamination.

Overall, the nature and distribution of constituents in the Site soils are similar to typical urban background conditions; however, their origins could not be determined. NAPL and/or signs of coal tar were not encountered and staining was only observed in three soil samples. The data do not indicate that a specific source of impact is present at the Site. This is affirmed by the lack of possible MGP-related constituents at downgradient monitoring wells MW-4 and MW-7. Further characterization of site soils does not appear to be warranted.

To verify that organic constituents in the groundwater are either localized on-site or are attenuated prior to leaving the site, RG&E conducted a second round of groundwater sampling on 11 and 12 October 2007 (in a "seasonal low period") to compare to prior results. The results were consistent with the previous sampling round, which affirmed the conclusions drawn from the groundwater data collected in December 2006. Based on the data collected, further characterization of site groundwater does not appear to be warranted.

REFERENCES

- 1. Site Characterization Work Plan. Blasland, Bouck, and Lee, Inc. Canal Street, Rochester Former MGP Site. Rochester Gas & Electric Corp. Rochester, New York. September 2006.
- 2. Geophysical Survey Report. Geomatrix. Canal Street Former MGP Site. Rochester, New York. November 2006.
- 3. Rochester Union & Advertiser articles from the following dates;
 - a. March 31, 1880
 - b. August 5, 1880
 - c. September 10, 1880
 - d. December 27, 1880
 - e. January 11, 1881
 - f. December 22-24, 1887
 - g. December 26-31, 1887
 - h. January 5, 1888
 - i. January 7, 1888
 - j. March 16, 1888
 - k. July 15, 1891
 - l. July 18, 1891
- 4. Rochester Democrat & Chronicle articles from the following dates:
 - a. December 28, 1887
 - b. December 29, 1887

G:\Projects\33879\003 Report w DUSR\Jan 2008 Draft\2008-0129-JDB-Canal St MGP SCR w 2nd GW-F.doc

DRAFT Table 1 **Soil Volatile Organic Compound Results** Canal Street, Rochester, New York Page 1 of 3

Sample ID	NYSDEC	NYSDEC	NYSDEC	SB-1, S2	SB-2, S3	SB-3, S5	SB-4, S5	SB-5, S5	SB-6, S3	SB-7, S6	SB-8, S4	SB-9, S6	SB-10, S2	SB-10, S6	SB-11, S6	SB-12, S2
Sample Depth (ft)	TAGM #4046	Part 375	Part 375	(2.0-4.0)	(4.0-6.0)	(8.0-10)	(8.0-10)	(8.0-9.5)	(6.0-8.0)	(10-12)	(6.0-8.0)	(10-12)	(4.0-6.0)	(12-13.2)	(10-12)	(2.0-4.0)
Lab Sample ID	Soil Cleanup	Restricted	Restricted	A6E53502	A6E53503	A6E21901	A6E21902	A6E21903	A6E42505	A6E42504	A6E42503	A6E37701	A6E27408	A6E27401	A6E37702	A6E27402
Date Sampled	Objectives	Residential	Commercial	12/1/2006	12/1/2006	11/27/2006	11/27/2006	11/27/2006	11/30/2006	11/30/2006	11/30/2006	11/29/2006	11/28/2006	11/28/2006	11/29/2006	11/28/2006
TCL VOCs (ug/kg)																
1,1,1-Trichloroethane	800	100000	500000	6 L	J 6 l	J 6	U 6	U 6 L	J 6 L	J 6 l	J 6 L	J 160 L	J 6 U	150 U	29 L	J 6 U
1,1,2,2-Tetrachloroethane	600	N/A	N/A	6 L	J 6 l	J 6	U 6	U 6 L	J 6 L	J 6 L	J 6 L	J 160 L	J 6 U	150 U	29 L	J 6 U
1,1,2-Trichloro-1,2,2-trifluoroethane	6000	N/A	N/A	6 L	J 6 l	J 6	U 6	U 6 L	J 6 L	J 6 L	J 6 L	J 160 L	J 6 U	150 U	29 L	J 6 U
1,1,2-Trichloroethane	N/A	N/A	N/A	6 L	J 6 l	J 6	U 6	U 6 L	J 6 L	J 6 l	J 6 L	J 160 L	J 6 U		29 L	J 6 U
1,1-Dichloroethane	200	26000	240000	6 L	J 6 l	J 6	U 6	U 6 L	J 6 L	J 6 l	J 6 L	J 160 L	J 6 U.	J 150 U	29 L	J 6 U
1,1-Dichloroethene	400	100000	500000	6 L	J 6 l	J 6	U 6	U 6 L	J 6 L	J 6 l	J 6 L	J 160 L	J 6 U	150 U	29 L	J 6 U
1,2,4-Trichlorobenzene	3400	N/A	N/A	6 L	J 6 L	J 6	U 6	U 6 L	J 6 L	J 6 L	J 6 L	J 160 L	J 6 U	150 U	29 L	J 6 U
1,2-Dibromo-3-chloropropane	N/A	N/A	N/A	6 L	J 6 l	J 6	U 6	U 6 L	J 6 L	J 6 l	J 6 L	J 160 L	J 6 U	150 U	29 L	J 6 U
1,2-Dibromoethane	N/A	N/A	N/A	6 L	J 6 l	J 6	U 6	U 6 L	J 6 L	J 6 l	J 6 L	J 160 L	J 6 U	150 U	29 L	J 6 U
1,2-Dichlorobenzene	7900	100000	500000	6 L	J 6 l	J 6	U 6	U 6 L	J 6 L	J 6 l	J 6 L	J 160 L	J 6 U	150 U	29 L	J 6 U
1,2-Dichloroethane	100	3100	30000	6 L	J 6 l	J 6	U 6	U 6 L	J 6 L	J 6 l	J 6 L	J 160 U	J 6 U	150 U	29 L	J 6 U
1,2-Dichloropropane	N/A	N/A	N/A	6 L	J 6 l	J 6	U 6	U 6 L	J 6 L	J 6 l	J 6 L	J 160 L	J 6 U	150 U	29 L	J 6 U
1,3-Dichlorobenzene	1600	49000	280000	6 L	J 6 l	J 6	U 6	U 6 L	J 6 L	J 6 l	J 6 L	J 160 L	J 6 U	150 U	29 L	J 6 U
1,4-Dichlorobenzene	8500	13000	130000	6 L	J 6 l	J 6	U 6	U 6 L	J 6 L	J 6 l	J 6 L	J 160 L	J 6 U	150 U	29 L	J 6 U
2-Butanone	300	N/A	N/A	12 L	J 12 l	J 12	U 12	U 11 L	J 12 l	J 27	11 L	J 320 L	J 12	310 U	59 L	
2-Hexanone	N/A	N/A	N/A	12 L	J 12 l	J 12	U 12	U 11 L	J 12 l	J 12 l	J 11 L	J 320 L	J 12 U	310 U	59 L	J 12 U
4-Methyl-2-pentanone	1000	N/A	N/A	12 L	J 12 l	J 12	U 12	U 11 L	J 12 L	J 12 l	J 11 L	J 320 L	J 12 U	310 U	59 L	J 12 U
Acetone	200	100000	500000	25 L	J 23 l	J 25	UJ 9	J 23 U	J 10 .	J 100	11 J	J 650 L	J 38 J	610 U	120 L	J 20 J
Benzene	60	4800	44000	6 L	J 6 l	J 6	U 6	U 6 L	J 6 L	J 2 .	J 6 L	J 160 U	J 6 U	150 U	29 L	J 6 U
Bromodichloromethane	N/A	N/A	N/A	6 L	J 6 l	J 6	U 6	U 6 L	J 6 L	J 6 l	J 6 L	J 160 L	J 6 U	150 U	29 L	J 6 U
Bromoform	N/A	N/A	N/A	6 L	J 6 l	J 6	U 6	U 6 L	J 6 L	J 6 l	J 6 L	J 160 L	J 6 U	150 U	29 L	J 6 U
Bromomethane	N/A	N/A	N/A	6 U	J 6 L	JJ 6	R 6	R 6 F	R 6 F	R 6 F	R 6 F	R 160 R	R 6 R	150 UJ	J 29 R	R 6 U
Carbon Disulfide	2700	N/A	N/A	12 L	J 12 l	J 12	U 12	U 11 L	J 12 L	J 12 l	J 11 L	J 320 L	J 12 U	310 U	59 L	J 12 U
Carbon Tetrachloride	600	2400	22000	6 L	J 6 l	J 6	U 6	U 6 L	J 6 U	JJ 6 l	J 6 L	J 160 L	J 6 U	150 U	29 U	J 6 U
Chlorobenzene	1700	100000	500000	6 L	J 6 l	J 6	U 6	U 6 L	J 6 L	J 6 l	J 6 L	J 160 L	J 6 U	150 U	29 L	J 6 U
Chloroethane	1900	N/A	N/A	6 L	J 6 l	J 6	U 6	U 6 L	J 6 L	J 6 l	J 6 L	J 160 L	J 6 U	150 U	29 L	J 6 U
Chloroform	300	49000	350000	6 L	J 6 l	J 6	U 6	U 6 L	J 6 L	J 6 l	J 6 L	J 160 L	J 6 U	150 U	29 L	J 6 U
Chloromethane	N/A	N/A	N/A	6 L	J 6 l	J 6	U 6	U 6 L	J 6 L	J 6 l	J 6 L	J 160 L	J 6 U	150 U	29 L	J 6 U
cis-1,2-Dichloroethene	N/A	100000	500000	6 L	J 6 l	J 1	J 6	U 6 L	J 6 L	J 6 l	J 6 L	J 160 L	J 6 U	150 U	29 L	J 6 U
cis-1,3-Dichloropropene	N/A	N/A	N/A	6 L	J 6 l	J 6	U 6	U 6 L	J 6 L	J 6 l	J 6 L	J 160 L	J 6 U	150 U	29 L	J 6 U
Cyclohexane	N/A	N/A	N/A	12 L	J 12 l	J 12	U 12	U 11 L	J 12 l	J 12 l	J 11 L	J 320 L	J 12 U	310 U	59 L	J 12 U
Dibromochloromethane	N/A	N/A	N/A	6 L	J 6 l	J 6	U 6	U 6 L	J 6 L	J 6 L	J 6 L	J 160 L	J 6 U	150 U	29 L	J 6 U
Dichlorodifluoromethane	N/A	N/A	N/A	6 L	J 6 l	J 6	U 6	U 6 L	J 6 L	J 6 l	J 6 L	J 160 L	J 6 U	150 U	29 L	J 6 U
Ethylbenzene	5500	41000	390000	6 L	J 6 l	J 6	U 6	U 6 L	J 6 L	J 6 l	J 6 L	J 500	1 J	1200	29 L	J 6 U
Isopropylbenzene	N/A	N/A	N/A	6 L	J 6 l	J 6	U 6	U 6 L	J 6 L	J 6 l	J 6 L	J 510	8	1000	29 L	J 6 U
Methyl acetate	N/A	N/A	N/A	12 L	J 12 l	J 12	UJ 12	UJ 11 U	J 12 l	J 12 l	J 11 L	J 320 U	J 12 U.	J 310 U	59 L	J 12 U
Methyl-t-Butyl Ether (MTBE)	N/A	100000	500000	12 L	J 12 l	J 12	U 12	U 11 L	J 12 l	J 12 U	IJ 11 U	J 320 L	J 12 U	310 U	59 L	J 12 U
Methylcyclohexane	N/A	N/A	N/A	12 L	J 12 l	J 12	U 12	U 11 L	J 12 l	J 12 l	J 11 L	J 3800	18	2400	6 J	12 U
Methylene chloride	100	100000	500000	14 L	J 12 l	J 6	U 6	U 7 L	J 13 L	J 12 l	J 10 L	J 170	14 U	150 U	130 J	10 J
Styrene	N/A	N/A	N/A	6 L	J 6 l	J 6	U 6	U 6 L	J 6 L	J 6 l	J 6 L	J 160 L	J 6 U	150 U	29 L	J 6 U
Tetrachloroethene	1400	19000	150000	6 L	J 6 l		U 6	U 6 L		J 6 l	J 6 L					
Toluene	1500	100000	500000	6 L	J 6 l	J 6	U 6	U 6 L			J 6 L	J 160 L	J 6 U	150 U	29 L	J 6 U
Total Xylenes	1200	100000	500000	18 L	J 18 l	J 19	U 17	U 17 L	J 17 L	J 19 l	J 17 L	J 730	3 J	790	88 L	J 18 U
trans-1,2-Dichloroethene	300	100000	500000	6 L	J 6 l	J 6	U 6	U 6 L	J 6 U	JJ 6 U	IJ 6 U	J 160 L	J 6 U	150 U	29 U	J 6 U
trans-1,3-Dichloropropene	N/A	N/A	N/A	6 L	J 6 L	J 6	U 6	U 6 L					J 6 U			
Trichloroethene	700	21000	200000	6	6 l	J 6	U 6	U 6 L	J 6 L	J 6 l	J 6 L		J 6 U	150 U	29 L	J 6 U
Trichlorofluoromethane	N/A	N/A	N/A	6 U	J 6 L	JJ 6	U 6	U 6 L			J 6 L		J 6 U			
Vinyl chloride	200	900	13000	6 L			U 6	U 6 L		J 6 l			J 6 U			
Total VOC	10000			6	ND	1	9	ND ND	10	129	ND I	5710	80	5390	136	30
			I .						1 1			- '-				

- Notes:
 Compounds with concentrations greater than Part 375 Restricted
- Residential soil cleanup objectives are shaded gray.
 Compounds with concentrations greater than TAGM #4046 soil cleanup objectives are bolded.

- <u>Data Qualifiers:</u> U = Nondetected Result
- J = Estimated Result
- UJ = Estimated Nondetect Result
- R = Rejected Result

- Acronyms

 ND = All analytes in this sample are nondetect.
- N/A = Data Not Available.

DRAFT Table 1 **Soil Volatile Organic Compound Results** Canal Street, Rochester, New York Page 2 of 3

						(DUP of SB-13, S	33)						D	up of SB-16, S1													
Sample ID	NYSDEC	NYSDEC	NYSDEC	SB-12, S5		DUP-112806		3-13, S3		SB-14, S4		SB-14, S6		DUP120506		SB-16, S1		SB-16, S7		SB-17, S1	5	B-17, S6	,	SB-19, S	2	SB-19, S	5
Sample Depth (ft)	TAGM #4046	Part 375	Part 375	(8.0-10)			(4	1.0-6.0)		(6.0-8.0)		(10-12)				(0.0-2.0)		(12-14)		(0.0-2.0)		(10-12)		(2.0-4.0)		(8.0-10)	
Lab Sample ID	Soil Cleanup	Restricted	Restricted	A6E27403		A6E27406	A6	E27404		A6E37703		A6E37704		A6E62904		A6E62902		A6E62903		A6E53513	A	A6E53510		A6E5350	4	A6E5350	5
Date Sampled	Objectives	Residential	Commercial	11/28/2006		11/28/2006	11/	28/2006		11/29/2006		11/29/2006		12/5/2006		12/5/2006		12/5/2006		12/4/2006	1	2/4/2006		12/1/2006	<u>i</u>	12/1/2006	ز
TCL VOCs (ug/kg)																											
1,1,1-Trichloroethane	800	100000	500000	6	U	280		140	U	1100	U	6 L	_	6	U		U	6	U	6	U	6	U	6	U	6	U
1,1,2,2-Tetrachloroethane	600	N/A	N/A	6	U	280	U	140	U	1100	U	6 L		6	U	6	U	6	U	6	U	6	U	6	U	6	U
1,1,2-Trichloro-1,2,2-trifluoroethane	6000	N/A	N/A	6	U	280	U	140	U	1100	U	6 L	_	6	כ		U	6	U	6	U	6	U	6	U	6	U
1,1,2-Trichloroethane	N/A	N/A	N/A	6	U	280	U	140	U	1100	U	6 L	-	6	U		U	6	U	6	U	6	U	6	U	6	U
1,1-Dichloroethane	200	26000	240000	6	U	280	U	140	U	1100	U	6 L	_	6	U	-	U	6	U	6	U	6	U	6	U	6	U
1,1-Dichloroethene	400	100000	500000	6	U	280	U	140	U	1100	U	6 L	_	6	U		U	6	U	6	U	6	U	6	U	6	U
1,2,4-Trichlorobenzene	3400	N/A	N/A	6	U	280	U	140	U	1100	U	6 L	-	6	U		U	6	U	6	U	6	U	6	U	6	U
1,2-Dibromo-3-chloropropane	N/A	N/A	N/A	6	U	280	U	140	U	1100	U	6 L	_	6	U		U	6	U	6	U	6	U	6	U	6	U
1,2-Dibromoethane	N/A	N/A	N/A	6	U	280	U	140	U	1100	U	6 L	_	6	U		U	6	U	6	U	6	U	6	U	6	U
1,2-Dichlorobenzene	7900	100000	500000	6	U	280	U	140	U	1100	U	6 L	-	6	U		U	6	U	6	U	6	U	6	U	6	U
1,2-Dichloroethane	100	3100	30000	6	U	280	U	140	U	1100	U	6 L	_	6	U		U	6	U	6	U	6	U	6	U	6	U
1,2-Dichloropropane	N/A	N/A	N/A	6	U	280	U	140	U	1100	U	6 L	_	6	U		U	6	U	6	U	6	U	6	U	6	U
1,3-Dichlorobenzene	1600	49000	280000	6	U	280	U	140	U	1100	U	6 L		6	U		U	6	U	6	U	6	U	6	U	6	U
1,4-Dichlorobenzene	8500	13000	130000	6	U	280	U	140	U	1100	U	6 L	J	6	U		U	6	U	6	U	6	U	6	U	6	U
2-Butanone	300	N/A	N/A	13	U	550	U	290	U	2300	U	6 .	J	13	U		U	11	U	11	U	7	J	11	J	12	U
2-Hexanone	N/A	N/A	N/A	13	U	550	U	290	U	2300	U	11 L		13	U:		U	11	U	11	U	13	U	12	U	12	U
4-Methyl-2-pentanone	1000	N/A	N/A	13	U	550	U	290	U	2300	U	11 L		13	U:		U	11	U	11	U	13	U	12	U	12	U
Acetone	200	100000	500000	7	U	1100	U	580	U	4600	U	17	_	25	U:		U	10	J	23	U	28		50	+	24	U
Benzene	60	4800	44000	6	U	280	U	140	U	1100	U	6 L		6	U:		U	6	U	10	L	6	U	3	J	6	U
Bromodichloromethane	N/A	N/A	N/A	6	U	280	U	140	U	1100	U	6 L	_	6	U:		U	6	U	6	U	6	U	6	U	6	U
Bromoform	N/A	N/A	N/A	6	U	280	U	140	U	1100	U	6 L	_	6) C		U	6	U	6	U	6	U	6	U	6	U
Bromomethane	N/A	N/A	N/A	6	U	280	UJ	140	R	1100	U	6 F		6	R		R	6	R	6	UJ	6	UJ	6	UJ	6	UJ
Carbon Disulfide	2700	N/A	N/A	13	U	550	U	290	U	2300		11 L	_	13	U		U	11	U	11	U	13	U	1]	12	U
Carbon Tetrachloride	600	2400	22000	6	U	280	U	140	U	1100	U	6 L	_		J :		UJ	6	UJ	6	U	6	U	6	U	6	U
Chlorobenzene	1700	100000	500000	6	U	280	U	140	U	1100	U	6 L	_	6	U	_	U	6	U	6	UJ	6	IJ	6	U	6	U
Chloroethane	1900	N/A	N/A	6	U	280		140	U	1100	U II	6 L	_	6	U		U	6	U	6	U	6		6	U	6	U
Chloroform	300	49000	350000	6	U	280	U	140	U	1100	U	6 L	-	6	U		U	6	U	6	U	<u> </u>	U	6	U	6	U
Chloromethane	N/A N/A	N/A 100000	N/A 500000	6	U	280 280	U	140	U	1100	II		_	6 6	U		U	6 6	U	6	U	<u> </u>	U	<u> </u>	U	6	U
cis-1,2-Dichloroethene cis-1,3-Dichloropropene	N/A N/A	N/A		6	U	280	U		U	1100 1100	쓔	6 L	-	6	U		U	6	U	6 6	U	6	U	6	U	6	U
	N/A N/A	N/A N/A	N/A	1		5100	U	140 430	U	3100	ᄴ	11 (_	<u> </u>		-	U		U	11		2	U	12	U		U
Cyclohexane Dibromochloromethane	N/A N/A	N/A N/A	N/A N/A	6	J	280	U	140	U	1100	\dashv	6 1	_	13 6	U		U	11 6	U	6	U	<u> </u>	IJ	6	U	12 6	U
Dichlorodifluoromethane	N/A	N/A	N/A	6	U	280	U	140	U	1100	H	6 1	-	6	U		U	6	U	6	U	6	U II	6	U	6	U
Ethylbenzene	5500	41000	390000	6	Ü	270	1	140	Ü	750	\vdash	6 1	_	6	U		U	6	U	6	U	7	U	5	++	6	Ü
Isopropylbenzene	N/A	N/A	N/A	6	Ü	540	J	120	J	1500	 +	6 1	_	6	U		U	6	Ü	6	U	6	U	3	+	6	U
Methyl acetate	N/A	N/A	N/A	13	U	550	U	290	UJ	2300	\rightarrow	11 (-	•	UJ		UJ	11	UJ	11	U	13	IJ	12	U	12	U
Methyl-t-Butyl Ether (MTBE)	N/A	100000	500000	13	U	550	U	290	U	2300	册	11 U	_	13	U		U	11	U	11	U	13	U	12	U	12	U
Methylcyclohexane	N/A	N/A	N/A	3	J.	34000		6400	-	16000	. —	19	,,,	13	U		U	11	U	11	U	13	-	12	Ü	12	U
Methylene chloride	100	100000	500000	7	Ü	280	U	98	J	790	$\overline{}$	11 L	+	9	U	ł – – – – – – – – – – – – – – – – – – –	U	10	Ü	12	U	16	Ü	13	Ü		Ü
Styrene	N/A	N/A	N/A	6	Ü	280		140	Ü	1100	U	6 (_	6	U		U	6	Ü	6	U	6	U	2	J		Ü
Tetrachloroethene	1400	19000	150000	1	J	280	Ü	140	Ü	1100	U	6 1	_	6	U		U	6	U	6	U	6	U	6	U	_	U
Toluene	1500	100000	500000	6	Ü	280		140	Ü	1100	U	6 (_	6	U		U	6	Ü	6	U	6	U	9	+	6	U
Total Xylenes	1200	100000	500000	19	U	4400		610	+ -	1400	J	3 .	_	_	U	-	U	16	U	17	U	8	J	13	J		U
trans-1.2-Dichloroethene	300	100000	500000	6	U	280		140	U	1100	U	6 U	_		UJ		UJ		UJ	6	U	6	U	6	U		U
trans-1,3-Dichloropropene	N/A	N/A	N/A	6	Ü	280		140	Ü	1100	U	6 L	_	6	U		U	6	U	6	U	6	U	6	Ü		U
Trichloroethene	700	21000	200000	6	Ü	280	U	140	Ü	1100	U	6 1	_	6	U		U	6	U	6	U	6	U	6	U		U
Trichlorofluoromethane	N/A	N/A	N/A	6	U	280		140	Ü	1100	U	6 1	_	6	U		U	6	U	6	UJ	6	UJ	6	UJ	-	UJ
Vinyl chloride	200	900	13000	6	Ü	280		140	Ü	1100	U	6 1	_	6	U		U	6	U	6	U	6	U	6	U		U
Total VOC	10000	300	15000	5	1	44310		7658	-	23540	/ 	45	+	ND ND		ND ND		10	-	10		59		97	+	ND	+
7 Old 7 O O	10000	l	l		1	77310		, 000	<u> </u>	20070		+∪		שויו		שויו		10		10	<u> </u>	00		31		שויו	لسل

Notes:
- Compounds with concentrations greater than Part 375 Restricted Residential soil cleanup objectives are shaded gray.
- Compounds with concentrations greater than TAGM #4046

soil cleanup objectives are bolded.

<u>Data Qualifiers:</u> U = Nondetected Result J = Estimated Result

UJ = Estimated Nondetect Result

R = Rejected Result

- Acronyms
 ND = All analytes in this sample are nondetect.
- N/A = Data Not Available.

DRAFT Table 1 **Soil Volatile Organic Compound Results** Canal Street, Rochester, New York Page 3 of 3

Sample ID Sample Depth (ft) Lab Sample ID Date Sampled TCL VOCs (ug/kg)	NYSDEC TAGM #4046 Soil Cleanup Objectives	NYSDEC Part 375 Restricted Residential	NYSDEC Part 375 Restricted Commercial	MW-1, S2 (2.0-4.0) A6E53501 12/1/2006		MW-2, S8 (14-15) A6E27405 11/28/2006		MW-3, S5 (8.0-10) A6E21904 11/27/2006		MW-4, S5 (8.0-10) A6E37705 11/29/2006		MW-5, S5 (8.0-10) A6E42501 11/30/2006		MW-5, S7 (12-13.5) A6E42502 11/30/2006		MW-6, S2 (2.0-4.0) A6E62901 12/5/2006		MW-7, S4 (6.0-8.0) A6E53508 12/4/2006	3
1,1,1-Trichloroethane	800	100000	500000	6	U	6	U	6	U	6	U	8	U	6	U	6	U	6	U
1,1,2,2-Tetrachloroethane	600	N/A	N/A	6	Ü		Ū	6	Ū	6	Ū	8	Ū	6	Ū	6	Ū	6	Ü
1,1,2-Trichloro-1,2,2-trifluoroethane	6000	N/A	N/A	6	Ü		U	6	Ū	6	Ü	8	Ü	6	Ü	6	Ü	6	Ü
1,1,2-Trichloroethane	N/A	N/A	N/A	6	Ü		Ū	6	Ū	6	Ū	8	Ū	6	Ū	6	Ū	6	Ü
1,1-Dichloroethane	200	26000	240000	6	Ü		Ū		Ū	6	Ū	8	Ū	6	Ū	6	Ū	6	Ü
1,1-Dichloroethene	400	100000	500000	6	Ü		Ū	6	Ū	6	Ū	8	Ū	6	Ū	6	Ū	6	Ü
1,2,4-Trichlorobenzene	3400	N/A	N/A	6	Ū		Ū	6	Ū	6	Ū	8	Ū	6	Ū	6	Ū	6	Ū
1,2-Dibromo-3-chloropropane	N/A	N/A	N/A	6	U	6	U	6	U	6	U	8	U	6	U	6	U	6	U
1,2-Dibromoethane	N/A	N/A	N/A	6	Ū		U	6	U	6	Ū	8	Ū	6	Ū	6	Ū	6	U
1,2-Dichlorobenzene	7900	100000	500000	6	Ū		Ū	6	Ū	6	Ū	8	Ū	6	Ū	6	Ū	6	U
1,2-Dichloroethane	100	3100	30000	6	Ū	6	Ū	6	Ū	6	Ū	8	Ū	6	Ū	6	Ū	6	U
1,2-Dichloropropane	N/A	N/A	N/A	6	Ū		Ū	6	Ū	6	Ū	8	Ū	6	Ū	6	Ū	6	U
1,3-Dichlorobenzene	1600	49000	280000	6	Ū		Ū		U	6	Ū	8	Ū	6	Ū	6	Ū	6	U
1,4-Dichlorobenzene	8500	13000	130000	6	Ü		Ū	6	Ū	6	Ū	8	Ū	6	Ū	6	Ū	6	Ü
2-Butanone	300	N/A	N/A	12	Ü		٦	11	Ū	11	Ū	66		11	Ū	13	Ū	11	Ü
2-Hexanone	N/A	N/A	N/A	12	Ü		Ū		Ū	11	Ü	16	U	11	Ū	13	Ü	11	Ü
4-Methyl-2-pentanone	1000	N/A	N/A	12	Ü		Ū	11	Ū	11	Ū	16	Ū	11	Ū	13	Ū	11	Ü
Acetone	200	100000	500000	24	Ü		٦	13	J	7	J	240	_	16	J	26	Ū	23	Ü
Benzene	60	4800	44000	6	Ü	37	•	6	Ū	6	Ŭ	8	U	6	Ŭ	6	Ū	6	Ü
Bromodichloromethane	N/A	N/A	N/A	6	Ü		U	6	Ū	6	Ū	8	Ū	6	Ū	6	Ū	6	U
Bromoform	N/A	N/A	N/A	6	Ü		U	6	Ū	6	Ü	8	Ü	6	Ü	6	Ū	6	Ü
Bromomethane	N/A	N/A	N/A	6	UJ		Ū	6	R	6	R	8	R	6	R	6	R	6	UJ
Carbon Disulfide	2700	N/A	N/A	12	U		Ū	_	U	11	Ü	16	Ü	11	U	13	U	11	U
Carbon Tetrachloride	600	2400	22000	6	Ü		Ū	6	Ū	6	Ū	8	Ū	6	Ū	6	UJ	6	Ü
Chlorobenzene	1700	100000	500000	6	Ū		U	6	Ū	6	Ū	8	Ū	6	Ū	6	U	6	Ū
Chloroethane	1900	N/A	N/A	6	Ū		Ū		U	6	Ū	8	Ū	6	Ū	6	Ū	6	U
Chloroform	300	49000	350000	6	U		U	6	U	6	U	8	U	6	U	6	U	6	U
Chloromethane	N/A	N/A	N/A	6	U		U	6	U	6	U	8	U	6	U	6	U	6	U
cis-1,2-Dichloroethene	N/A	100000	500000	6	U		U	9		6	U	8	U	6	U	6	U	6	U
cis-1,3-Dichloropropene	N/A	N/A	N/A	6	U		U	6	U	6	U	8	U	6	U	6	U	6	U
Cyclohexane	N/A	N/A	N/A	12	U		J	11	U	11	U	16	U	11	U	13	U	11	U
Dibromochloromethane	N/A	N/A	N/A	6	Ū		Ū	6	Ū	6	Ū	8	Ū	6	Ū	6	Ū	6	U
Dichlorodifluoromethane	N/A	N/A	N/A	6	U	6	U	6	U	6	U	8	U	6	U	6	U	6	U
Ethylbenzene	5500	41000	390000	6	U	210		23		6	U	8	U	6	U	6	U	6	U
Isopropylbenzene	N/A	N/A	N/A	6	U	23		7		6	U	8	U	6	U	6	U	6	U
Methyl acetate	N/A	N/A	N/A	12	U		U	11	UJ	11	U	16	U	11	U	13	UJ	11	U
Methyl-t-Butyl Ether (MTBE)	N/A	100000	500000	12	U		U	11	U	11	UJ	16	UJ	11	UJ	13	U	11	U
Methylcyclohexane	N/A	N/A	N/A	12	U	63		2	J	11	U	3	J	11	U	13	U	11	U
Methylene chloride	100	100000	500000	16	U	10	J	7	U	18	U	14	U	10	U	12	U	13	U
Styrene	N/A	N/A	N/A	6	U		U	6	U	6	U	8	U	6	U	6	U	6	U
Tetrachloroethene	1400	19000	150000	6	U		U		U	6	U	8	U	6	U	6	U	6	U
Toluene	1500	100000	500000	6	U	45		6	U	6	U	8	U	6	U	6	U	6	U
Total Xylenes	1200	100000	500000	18	U	190		10	J	17	U	24	U	17	U	20	U	17	U
trans-1,2-Dichloroethene	300	100000	500000	6	U		U		U	6	UJ		UJ	6	UJ		UJ	6	U
trans-1,3-Dichloropropene	N/A	N/A	N/A	6	U		U		U	6	U	8	U	6	U	6	U	6	U
Trichloroethene	700	21000	200000	6	Ü		Ū		Ū	6	Ū	8	Ū	6	Ū	6	Ū	6	U
Trichlorofluoromethane	N/A	N/A	N/A	6	UJ		Ū		Ū	6	Ū	8	Ū	6	Ū	6	Ū	6	UJ
Vinyl chloride	200	900	13000	6	U		U		Ū	6	Ū	8	Ū	6	Ū	6	Ū	6	U
Total VOC	10000			ND	Ť	614	_	64	Ē	7	Ť	309	Ť	16	Ť	ND		ND	Ħ

- Notes:
 Compounds with concentrations greater than Part 375 Restricted
- Residential soil cleanup objectives are shaded gray.
 Compounds with concentrations greater than TAGM #4046 soil cleanup objectives are bolded.

<u>Data Qualifiers:</u>U = Nondetected ResultJ = Estimated Result UJ = Estimated Nondetect Result

R = Rejected Result

- Acronyms
 ND = All analytes in this sample are nondetect.
- N/A = Data Not Available.

DRAFT Table 2 Soil Semivolatile Organic Compound Results Canal Street, Rochester, New York Page 1 of 8

Sample ID Sample Depth (ft) Lab Sample ID Date Sampled TCL SVOCs (ug/kg)	NYSDEC TAGM #4046 Soil Cleanup Objectives	NYSDEC Part 375 Restricted Residential	NYSDEC Part 375 Restricted Commercial	SB-1, S2 (2.0-4.0) A6E53502 12/1/2006		SB-2, S3 (4.0-6.0) A6E53503 12/1/2006		SB-3, S5 (8.0-10) A6E21901 11/27/2006		SB-4, S5 (8.0-10) A6E21902 11/27/2006		SB-5, S5 (8.0-9.5) A6E21903 11/27/2006		SB-6, S3 (6.0-8.0) A6E42505 11/30/2006		SB-7, S6 (10-12) A6E42504 11/30/2006		SB-8, S4 (6.0-8.0) A6E42503 11/30/2006		SB-9, S6 (10-12) A6E37701 11/29/2006		SB-10, S2 (4.0-6.0) A6E27408 11/28/2006	
· · · · · · · · · · · · · · · · · · ·	N/A	N/A	N/A	390	11	2200	Lii	410	Ттт	200	111	400		370	11	420	ш	380	ш	440	111	2000	
2,2'-Oxybis(1-Chloropropane)	100	N/A N/A	N/A N/A	390 390	U	2200	U	410 410	U	390 390	U	400 400	U		U	420 420	U		U	440 440	U	2000	U
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	N/A	N/A N/A	N/A N/A	390	U	2200	U	410	U	390	U	400	U		U	420	U		U	440	U	2000	U
2,4-Dichlorophenol	400	N/A	N/A	390	U	2200	U	410	U	390	U	400	U		U	420 420	U		U	440	U	2000	U
2,4-Dimethylphenol	N/A	N/A	N/A	390	U	2200	U	410	Ü	390	U	400	U		U	420	U		Ü	440	U	2000	U
2,4-Dinitrophenol	200 or MDL	N/A	N/A	2000	U	11000	Ü	2100	UJ	2000	UJ	2000	UJ		UJ	2200	U		Ü		UJ		UJ
2,4-Dinitrotoluene	N/A	N/A	N/A	390	U	2200	Ü	410	U	390	U	400	U		U	420	U		Ü	440	U	2000	U
2,6-Dinitrotoluene	1000	N/A	N/A	390	U	2200	Ü	410	Ü	390	U	400	U		Ü	420	Ü		Ü	440	Ü	2000	U
2-Chloronaphthalene	N/A	N/A	N/A	390	U	2200	Ü	410	Ü	390	U	400	U		Ü	420	U		Ü	440	Ü	2000	U
2-Chlorophenol	800	N/A	N/A	390	U	2200	Ü	410	Ū	390	U	400	U		Ū	420	Ü		Ü	440	Ū	2000	Ü
2-Methylnaphthalene	36400	N/A	N/A	390	U	2200	Ü	410	Ū	390	U	21	J		Ū	420	Ü	29	J	3000		340	J
2-Methylphenol	100 or MDL	N/A	N/A	390	U	2200	Ū	410	Ū	390	Ū	400	Ū		Ŭ	420	Ū		Ŭ	440	U	2000	Ū
2-Nitroaniline	430 or MDL	N/A	N/A	2000	Ū	11000	Ū	2100	Ū	2000	Ū	2000	Ū		Ū	2200	Ū		Ū	2300	Ū	10000	U
2-Nitrophenol	330 or MDL	N/A	N/A	390	U	2200	Ū	410	Ū	390	Ū	400	Ū		U	420	U		Ū	440	Ū	2000	U
3,3'-Dichlorobenzidine	N/A	N/A	N/A	1900	U	11000	U	2000	U	1900	U	1900	U		U	2000	U		U	2100	U	9500	U
3-Nitroaniline	500 or MDL	N/A	N/A	2000	U	11000	U	2100	U	2000	U	2000	U		U	2200	U		U	2300	U	10000	U
4,6-Dinitro-2-methylphenol	N/A	N/A	N/A	2000	U	11000	U	2100	U	2000	U	2000	U		U	2200	U		U	2300	U	10000	U
4-Bromophenyl phenyl ether	N/A	N/A	N/A	390	U	2200	U	410	U	390	U	400	U	370	U	420	U	380	U	440	U	2000	U
4-Chloro-3-methylphenol	240 or MDL	N/A	N/A	390	U	2200	U	410	U	390	U	400	U	370	U	420	U	380	U	440	U	2000	U
4-Chloroaniline	220 or MDL	N/A	N/A	390	U	2200	U	410	U	390	U	400	U	370	U	420	U	380	U	440	U	2000	U
4-Chlorophenyl phenyl ether	N/A	N/A	N/A	390	U	2200	U	410	U	390	U	400	U	370	U	420	U	380	U	440	U	2000	U
4-Methylphenol	900	N/A	N/A	390	U	2200	U	410	U	390	U	400	U	370	U	420	U	380	U	440	U	2000	U
4-Nitroaniline	N/A	N/A	N/A	2000	U	11000	U	2100	U	2000	U	2000	U	1900	U	2200	U	2000	U	2300	U	10000	U
4-Nitrophenol	100 or MDL	N/A	N/A	2000	U	11000	U	2100	U	2000	U	2000	U	1900	U	2200	U	2000	U	2300	U	10000	U
Acenaphthene	50000	100000	500000	15	J	84	J	410	U	390	U	87	J	370	С	420	U	59	J	960		100	J
Acenaphthylene	41000	100000	500000	390	U	2200	U	26	J	390	U	400	U		U	420	U	140	J	110	J	870	J
Acetophenone	N/A	N/A	N/A	390	U	2200	U	410	U	390	U	400	U		U	420	U	380	U	250	J	2000	U
Anthracene	50000	100000	500000	40	J	190	J	65	J	52	J	150	J		U	88	J	81	J	560		610	J
Atrazine	N/A	N/A	N/A	390	U	2200	U	410	U	390	U	400	U		U	420	U		U	440	U	2000	U
Benzaldehyde	N/A	N/A	N/A	390	UJ	2200	UJ	410	U	390	U	400	U		U	420	U		U	440	U	2000	U
Benzo(a)anthracene	224 or MDL	1000	5600	120	J	460	J	210	J	230	J	260	J		J	140	J		J	330	J	2100	
Benzo(a)pyrene	61 or MDL	1000	1000	120	J	410	J	220	J	260	J	190	J	8	J	100	J		J	300	J	2400	
Benzo(b)fluoranthene	1100	1000	5600	140	J	560	J	240	J	290	J	210	J	11	J	160	J	200	J	260	J	4800	
Benzo(ghi)perylene	50000	100000	500000	80	J	260	J	210	J	280	J	110	J		U	63	J	200	J	120	J	1600	J
Benzo(k)fluoranthene	1100	3900	56000	61	J	160	J	88	J	110	J	77	J		U	420	U		U	440	U	2000	U
Biphenyl	N/A	N/A	N/A	390	U	2200	U	410	U	390	U	400	U		U	420	U	48	J	760		130	J
Bis(2-chloroethoxy) methane	N/A	N/A	N/A	390	U	2200	U	410	U	390	U	400	U		U	420	U		U		U	2000	U
Bis(2-chloroethyl) ether	N/A	N/A	N/A	390	U	2200	U	410	U	390	U	400	U		U	420	U		U		UJ	2000	U
Bis(2-ethylhexyl) phthalate	50000	N/A	N/A	81	J	2200	U	410	U	390	U	400	U		U	420	U	150	J		U	2000	U
Butyl benzyl phthalate	50000	N/A	N/A	390	U	2200	U	410	U	390	U	400	U		U	420	U		U		U	2000	U
Caprolactam	N/A	N/A	N/A	2000	U	11000	U	2100	U	2000	U	2000	U		U	2200	U		U		U	10000	U
Carbazole	N/A	N/A	N/A	12	J	55	J	410	U	25	J	64	J		U	47	J		U	440	U	160	J
Chrysene	400	3900	56000	110	J	410	J	210	J	230	J	210	J	10	J	130	J	170	J	330	J	2300	<u> </u>
Di-n-butyl phthalate	8100	N/A	N/A	390	U	2200	U	410	U	390	U	400	U	370	U	420	U	380	U	440	U	2000	U

DRAFT Table 2 Soil Semivolatile Organic Compound Results Canal Street, Rochester, New York Page 2 of 8

Sample ID	NYSDEC	NYSDEC	NYSDEC	SB-1, S2		SB-2, S3		SB-3, S5		SB-4, S5		SB-5, S5		SB-6, S3		SB-7, S6		SB-8, S4		SB-9, S6		SB-10, S2
Sample Depth (ft)	TAGM #4046	Part 375	Part 375	(2.0-4.0)		(4.0-6.0)		(8.0-10)		(8.0-10)		(8.0-9.5)		(6.0-8.0)		(10-12)		(6.0-8.0)		(10-12)		(4.0-6.0)
Lab Sample ID	Soil Cleanup	Restricted	Restricted	A6E53502		A6E53503	i	A6E21901		A6E21902		A6E21903		A6E42505		6E42504		A6E42503		A6E37701		A6E27408
Date Sampled	Objectives	Residential	Commercial	12/1/2006		12/1/2006		11/27/2006		11/27/2006		11/27/2006		11/30/2006	11	1/30/2006		11/30/2006		11/29/2006		11/28/2006
Di-n-octyl phthalate	50000	N/A	N/A	8	J	2200	U	410	U	20	J	20	J	370 U		420	U	380	U	30	J	2000 U
Dibenzo(a,h)anthracene	14 or MDL	330	560	23	J	75	J	45	J	63	J	37	J	370 U		27	J	36	J	31	J	490 J
Dibenzofuran	6200	N/A	N/A	8	J	50	J	410	U	390	U	56	J	370 U		23	J	380	U	56	J	280 J
Diethyl phthalate	7100	N/A	N/A	390	U	2200	U	410	U	390	U	400	U	370 U		420	U	380	U	440	U	2000 U
Dimethyl phthalate	2000	N/A	N/A	390	U	2200	U	410	U	390	U	400	U	370 U		420	U	380	U	440	U	2000 U
Fluoranthene	50000	100000	500000	210	J	900	J	400	J	320	J	480		17 J		220	J	180	J	620		2900
Fluorene	50000	100000	500000	14	J	73	J	23	J	21	J	79	J	370 U		40	J	96	J	520		180 J
Hexachlorobenzene	410	N/A	N/A	390	U	2200	U	410	U	390	U	400	U	370 U		420	U	380	U	440	U	2000 U
Hexachlorobutadiene	N/A	N/A	N/A	390	U	2200	U	410	U	390	U	400	J	370 U		420	U	380	U	440	U	2000 U
Hexachlorocyclopentadiene	N/A	N/A	N/A	390	U	2200	U	410	U	390	U	400	J	370 U		420	U	380	U	440	U	2000 U
Hexachloroethane	N/A	N/A	N/A	390	U	2200	U	410	U	390	U	400	U	370 U		420	U	380	U	440	U	2000 U
Indeno(1,2,3-cd)pyrene	3200	500	5600	68	J	230	J	160	J	230	J	110	J	370 U		54	J	100	J	88	J	1300 J
Isophorone	4400	N/A	N/A	390	U	2200	U	410	U	390	U	400	J	370 U		420	U	380	U	440	U	2000 U
N-Nitroso-Di-n-propylamine	N/A	N/A	N/A	390	U	2200	U	410	U	390	U	400	J	370 U		420	U	380	U	440	U	2000 U
N-nitrosodiphenylamine	N/A	N/A	N/A	390	U	2200	U	410	U	390	U	400	J	370 U		420	U	380	U	440	U	2000 U
Naphthalene	13000	100000	500000	390	U	2200	U	410	U	390	U	40	J	13 J		420	U	130	J	2300		260 J
Nitrobenzene	200 or MDL	N/A	N/A	390	U	2200	U	410	U	390	U	400	J	370 U		420	U	380	U	440	U	2000 U
Pentachlorophenol	1000 or MDL	6700	6700	390	U	2200	U	410	U	390	U	400	U	370 U		420	U	380	U	440	U	2000 U
Phenanthrene	50000	100000	500000	140	J	710	J	230	J	200	J	540		20 J		230	J	320	J	2000		1000 J
Phenol	30 or MDL	100000	500000	390	U	2200	U	410	U	390	U	400	U	370 U		420	U	380	U	440	U	2000 U
Pyrene	50000	100000	500000	150	J	650	J	510		320	J	490		13 J		210	J	360	J	1100		2900 J
Total PAHs				1291		5172		2637		2606		3091		106		1462		2511		12629		24150
Total SVOC	500000			1400		5277		2637		2651		3231		106		1532		2709		13725		24720

Notes:

- Compounds with concentrations greater than Part 375 Restricted Residential soil cleanup objectives are shaded gray.
- Compounds with concentrations greater than TAGM #4046 soil cleanup objectives and/or site background (metals only) are bolded.
- Total PAHs includes 2-methylnaphthalene, acenaphthene, acenaphthylene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, naphthalene, phenanthrene, and pyrene.
- ND = All analytes in this sample are nondetect.
- N/A = Data Not Available.

Data Qualifiers:

U = Nondetected Result

J = Estimated Result

DRAFT Table 2 Soil Semivolatile Organic Compound Results Canal Street, Rochester, New York

Page 3 of 8

								Page 3 of	10			(DUP of SB-13,	S3)					Dup of SB-16, S1			
Sample ID	NYSDEC	NYSDEC	NYSDEC	SB-10, S6		SB-11, S6		SB-12, S2		SB-12, S5		DUP-112806	ĺ	SB-13, S3	}	SB-14, S4		DUP120506		SB-16, S1	
Sample Depth (ft)	TAGM #4046	Part 375	Part 375	(12-13.2)		(10-12)		(2.0-4.0)		(8.0-10)				(4.0-6.0)		(6.0-8.0)				(0.0-2.0)	
Lab Sample ID	Soil Cleanup	Restricted	Restricted	A6E27401		A6E37702		A6E27402		A6E27403		A6E27406		A6E27404	ļ	A6E37703		A6E62904		A6E62902	
Date Sampled	Objectives	Residential	Commercial	11/28/2006		11/29/2006		11/28/2006		11/28/2006		11/28/2006		11/28/2006	6	11/29/2006		12/5/2006		12/5/2006	
TCL SVOCs (ug/kg)																					
2,2'-Oxybis(1-Chloropropane)	N/A	N/A	N/A	400	U	380	U	390	U	2200	U	3700	U	3800	U	390	U	2000	U	2000	U
2,4,5-Trichlorophenol	100	N/A	N/A	400	U	380	U	390	U	2200	U	3700	U	3800	U	390	U	2000	U	2000	U
2,4,6-Trichlorophenol	N/A	N/A	N/A	400	U	380	U	390	U	2200	U	3700	U	3800	U	390	U	2000	U	2000	U
2,4-Dichlorophenol	400	N/A	N/A	400	U	380	U	390	U	2200	U	3700	U	3800	U	390	U	2000	U	2000	U
2,4-Dimethylphenol	N/A	N/A	N/A	400	U	380	U	390	U	2200	U	3700	U	3800	U	390	U	2000	U	2000	U
2,4-Dinitrophenol	200 or MDL	N/A	N/A	2000	U	2000	UJ	2000	U	11000	UJ	19000	UJ	19000	UJ	2000	UJ	10000	UJ	10000	UJ
2,4-Dinitrotoluene	N/A	N/A	N/A	400	U	380	U	390	U	2200	U	3700	U	3800	U	390	U	2000	U	2000	U
2,6-Dinitrotoluene	1000	N/A	N/A	400	U	380	U	390	U	2200	U	3700	U	3800	U	390	U	2000	U	2000	U
2-Chloronaphthalene	N/A	N/A	N/A	400	U	380	U	390	U	2200	U	3700	U	3800	U	390	U	2000	U	2000	U
2-Chlorophenol	800	N/A	N/A	400	U	380	U	390	U	2200	U	3700	U	3800	U	390	U	2000	U	2000	U
2-Methylnaphthalene	36400	N/A	N/A	160	J	380	U	390	U	290	J	1400	J	680	J	3400		61	J	69	J
2-Methylphenol	100 or MDL	N/A	N/A	400	U	380	U	390	U	2200	U	3700	U	3800	U	390	U	2000	U	2000	U
2-Nitroaniline	430 or MDL	N/A	N/A	2000	U	2000	U	2000	U	11000	U	19000	U	19000	U	2000	U	10000	U	10000	U
2-Nitrophenol	330 or MDL	N/A	N/A	400	U	380	U	390	U	2200	U	3700	U	3800	U	390	U	2000	U	2000	U
3,3'-Dichlorobenzidine	N/A	N/A	N/A	1900	U	1800	U	1900	U	10000	U	18000	U	18000	U	1900	U	9600	U	9600	U
3-Nitroaniline	500 or MDL	N/A	N/A	2000	U	2000	U	2000	U	11000	U	19000	U	19000	U	2000	U	10000	U	10000	U
4,6-Dinitro-2-methylphenol	N/A	N/A	N/A	2000	U	2000	U	2000	U	11000	U	19000	U	19000	U	2000	U	10000	U	10000	U
4-Bromophenyl phenyl ether	N/A	N/A	N/A	400	U	380	U	390	U	2200	U	3700	U	3800	U	390	U	2000	U	2000	U
4-Chloro-3-methylphenol	240 or MDL	N/A	N/A	400	U	380	U	390	U	2200	U	3700	U	3800	U	390	U	2000	U	2000	U
4-Chloroaniline	220 or MDL	N/A	N/A	400	U	380	U	390	U	2200	U	3700	U	3800	U	390	U	2000	U	2000	U
4-Chlorophenyl phenyl ether	N/A	N/A	N/A	400	U	380	U	390	U	2200	U	3700	U	3800	U	390	U	2000	U	2000	U
4-Methylphenol	900	N/A	N/A	400	U	380	U	390	U	2200	U	3700	U	3800	U	390	U	2000	U	2000	U
4-Nitroaniline	N/A	N/A	N/A	2000	U	2000	U	2000	U	11000	U	19000	U	19000	U	2000	U	10000	U	10000	U
4-Nitrophenol	100 or MDL	N/A	N/A	2000	U	2000	U	2000	U	11000	U	19000	U	19000	U	2000	U	10000	U	10000	U
Acenaphthene	50000	100000	500000	2200		51	J	28	J	460	J	3700	U	3800	U	390	U	2000	U	130	J
Acenaphthylene	41000	100000	500000	370	J	380	U	390	U	780	J	3700	U	3800	U	390	U	280	J	400	J
Acetophenone	N/A	N/A	N/A	58	J	380	U	390	U	2200	U	3700	U	3800	U	390	U	2000	U	2000	U
Anthracene	50000	100000	500000	1600		61	J	93	J	2200		340	J	260	J	45	J	170	J	420	J
Atrazine	N/A	N/A	N/A	400	U	380	U	390	U	2200	U	3700	U	3800	U	390	U	2000	U	2000	U
Benzaldehyde	N/A	N/A	N/A	400	U	380	U	390	U	2200	U	3700	U	3800	U	390	U	2000	U	2000	U
Benzo(a)anthracene	224 or MDL	1000	5600	1700		53	J	100	J	4200		210	J	230	J	75	J	790	J	1100	J
Benzo(a)pyrene	61 or MDL	1000	1000	1500		28	J	71	J	3800		3700	U	3800	U	53	J	990	J	1500	J
Benzo(b)fluoranthene	1100	1000	5600	1600		45	J	99	J	5300		3700	U	3800	U	91	J	1200	J	1600	J
Benzo(ghi)perylene	50000	100000	500000	640		380	U	29	J	2700		3700	U	3800	U	33	J	1600	J	2400	
Benzo(k)fluoranthene	1100	3900	56000	400	U	24	J	390	U	2200	U	3700	U	3800	U	390	U	370	J	500	J
Biphenyl	N/A	N/A	N/A	610		380	U	27	J	130	J	3700	U	330	J	140	J	140	J	2000	U
Bis(2-chloroethoxy) methane	N/A	N/A	N/A	400	U	380	U	390	U	2200	U	3700	U	3800	U	390	U	2000	U	2000	U
Bis(2-chloroethyl) ether	N/A	N/A	N/A		UJ	380	UJ	390	UJ	2200	U		U	3800	U	390	UJ	2000	U	2000	U
Bis(2-ethylhexyl) phthalate	50000	N/A	N/A	400	U	380	U	99	J	2200	U	3700	U	3800	U	390	U	2000	U	2000	U
Butyl benzyl phthalate	50000	N/A	N/A	400	U	380	U	390	U	2200	U	3700	U	3800	U	390	U	2000	U	2000	U
Caprolactam	N/A	N/A	N/A	2000	UJ	2000	U	2000	UJ	2400	J	19000	U	19000	U	2000	U	10000	U	10000	U
Carbazole	N/A	N/A	N/A	400	U	21	J	390	U	490	J	3700	U	3800	U	390	U	2000	U	41	J
Chrysene	400	3900	56000	1500		51	J	100	J	3900		3700	U	200	J	76	J	870	J	1200	J
Di-n-butyl phthalate	8100	N/A	N/A	400	U	380	U	390	U	2200	U	3700	U	3800	U	390	U	2000	U	2000	U
·				•	•			•								•					

DRAFT Table 2 Soil Semivolatile Organic Compound Results Canal Street, Rochester, New York Page 4 of 8

								i age + oi				(DUP of SB-13, S	33)					Dup of SB-16, S1			
Sample ID	NYSDEC	NYSDEC	NYSDEC	SB-10, S6		SB-11, S6		SB-12, S2		SB-12, S5		DUP-112806		SB-13, S3		SB-14, S4		DUP120506		SB-16, S1	
Sample Depth (ft)	TAGM #4046	Part 375	Part 375	(12-13.2)		(10-12)		(2.0-4.0)		(8.0-10)				(4.0-6.0)		(6.0-8.0)				(0.0-2.0)	
Lab Sample ID	Soil Cleanup	Restricted	Restricted	A6E27401		A6E37702		A6E27402		A6E27403		A6E27406		A6E27404		A6E37703		A6E62904		A6E62902	
Date Sampled	Objectives	Residential	Commercial	11/28/2006		11/29/2006		11/28/2006		11/28/2006		11/28/2006		11/28/2006		11/29/2006		12/5/2006		12/5/2006	
Di-n-octyl phthalate	50000	N/A	N/A	400	U	380	U	390	U	2200	U	3700	U	3800	U	20	J	2000	U	2000	U
Dibenzo(a,h)anthracene	14 or MDL	330	560	180	J	380	U	390	U	670	J	3700	U	3800	U	390	U	300	J	280	J
Dibenzofuran	6200	N/A	N/A	140	J	57	J	390	U	640	J	3700	U	3800	U	390	U	2000	U	2000	U
Diethyl phthalate	7100	N/A	N/A	400	U	380	U	390	U	2200	U	3700	U	3800	U	390	U	2000	U	2000	U
Dimethyl phthalate	2000	N/A	N/A	400	U	380	U	390	U	2200	U	3700	U	3800	U	390	U	2000	U	2000	U
Fluoranthene	50000	100000	500000	2900		210	J	290	J	9700		500	J	490	J	200	J	1200	J	2700	
Fluorene	50000	100000	500000	1300		81	J	75	J	1100	J	3700	U	310	J	35	J	47	J	2000	U
Hexachlorobenzene	410	N/A	N/A	400	U	380	U	390	U	2200	U	3700	U	3800	J	390	U	2000	U	2000	U
Hexachlorobutadiene	N/A	N/A	N/A	400	U	380	U	390	U	2200	U	3700	U	3800	J	390	U	2000	U	2000	U
Hexachlorocyclopentadiene	N/A	N/A	N/A	400	U	380	U	390	U	2200	U	3700	U	3800	J	390	U	2000	U	2000	U
Hexachloroethane	N/A	N/A	N/A	400	U	380	U	390	U		U	3700	U	3800	J	390	U	2000	U	2000	U
Indeno(1,2,3-cd)pyrene	3200	500	5600	520		380	U	26	J	2400		3700	U	3800	J	25	J	850	J	1300	J
Isophorone	4400	N/A	N/A	400	U	380	U	390	U	2200	U	3700	U	3800	J	390	U	2000	U	2000	U
N-Nitroso-Di-n-propylamine	N/A	N/A	N/A	400	U	380	U	390	U		U	3700	U	3800	J	390	U	2000	U	2000	U
N-nitrosodiphenylamine	N/A	N/A	N/A	400	U	380	U	390	U	2200	U	3700	U	3800	J	390	U	2000	U	2000	U
Naphthalene	13000	100000	500000	240	J	380	U	390	U	420	J	350	J	3800	J	2100		80	J	160	J
Nitrobenzene	200 or MDL	N/A	N/A	400	U	380	U	390	U		U	3700	U	3800	J	390	U	2000	U	2000	U
Pentachlorophenol	1000 or MDL	6700	6700	400	U	380	U	390	U	2200	U	3700	U	3800	J	390	U	2000	U	2000	U
Phenanthrene	50000	100000	500000	4200		320	J	260	J	7000		880	J	680	J	170	J	500	J	2400	
Phenol	30 or MDL	100000	500000	400	U	380	U	390	U	2200	U	3700	U	3800	J	390	U	2000	U	2000	U
Pyrene	50000	100000	500000	4000		120	J	270	J	8100		480	J	430	J	210	J	1200	J	3200	
Total PAHs				24610		1044		1441		53020		4160		3280		6513		10508		19359	
Total SVOC	500000			25418		1122		1567		56680		4160		3610		6673		10648		19400	

Notes:

- Compounds with concentrations greater than Part 375 Restricted Residential soil cleanup objectives are shaded gray.
- Compounds with concentrations greater than TAGM #4046 soil cleanup objectives and/or site background (metals only) are bolded.
- Total PAHs includes 2-methylnaphthalene, acenaphthene, acenaphthylene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, naphthalene, phenanthrene, and pyrene.
- ND = All analytes in this sample are nondetect.
- N/A = Data Not Available.

Data Qualifiers:

U = Nondetected Result

J = Estimated Result

DRAFT Table 2 Soil Semivolatile Organic Compound Results Canal Street, Rochester, New York Page 5 of 8

Sample ID Sample Depth (ft)	NYSDEC TAGM #4046	NYSDEC Part 375	NYSDEC Part 375	SB-16, S7 (12-14)		SB-17, S1 (0.0-2.0)		SB-17, S6 (10-12)		SB-19, S2 (2.0-4.0)		SB-19, S5 (8.0-10)		MW-1, S2 (2.0-4.0)		MW-2, S8 (14-15)		MW-3, S5 (8.0-10)		MW-4, S5 (8.0-10)		MW-5, S5 (8.0-10)
Lab Sample ID	Soil Cleanup	Restricted	Restricted	A6E62903		A6E53513	,	A6E53510	,	A6E53504		A6E53505		A6E53501	l	A6E27405		A6E21904	l	A6E37705		(8.0-10) A6E42501
Date Sampled	Objectives		Commercial	12/5/2006		12/4/2006		12/4/2006	'	12/1/2006	•	12/1/2006	'	12/1/2006		11/28/2006		11/27/2006		11/29/2006		11/30/2006
TCL SVOCs (ug/kg)	Objectives	Residential	Commercial	12/3/2000		12/4/2000		12/4/2000		12/1/2000		12/1/2000		12/1/2000		11/20/2000		11/2//2000		11/29/2000	1	11/30/2000
2,2'-Oxybis(1-Chloropropane)	N/A	N/A	N/A	370	U	3800	U	420	U	3900	U	420	U	2100	U	2000	U	400	U	370	Τυ	510 U
2,4,5-Trichlorophenol	100	N/A	N/A	370	U	3800	U	420 420	U	3900	U	420	U	2100	U	2000	U	400	U		U	510 U
2,4,6-Trichlorophenol	N/A	N/A	N/A	370	U	3800	U	420	U	3900	U	420	U	2100	U	2000	U	400	U	370	U	510 U
2,4-Dichlorophenol	400	N/A	N/A	370	111	3800	U	420	U	3900	Ü	420	U	2100	U	2000	U	400	$\frac{1}{0}$		ΙÜ	510 U
2,4-Dichiolophenol	N/A	N/A	N/A	370	111	3800	U	420	U	3900	11	420	U	2100	U	2000	U	400	$\frac{1}{0}$		ΙÜ	510 U
2,4-Dinitrophenol	200 or MDL	N/A	N/A	1900	UJ	19000	UJ	2100	UJ		111	2100	U	11000	U	10000	UJ	2000	UJ		UJ	2600 U
2,4-Dinitrophenol	N/A	N/A	N/A	370	U	3800	U	420	U	3900	U	420	U	2100	U	2000	U	400	U		U	510 U
2,6-Dinitrotoluene	1000	N/A	N/A	370	Ü	3800	U	420	U	3900	Ū	420	U	2100	U	2000	U	400	TÜ	370	ΙÜ	510 U
2-Chloronaphthalene	N/A	N/A	N/A	370	Ü	3800	Ü	420	U	3900	U	420	U	2100	U	2000	U	400	TÜ	370	ΙÜ	510 U
2-Chlorophenol	800	N/A	N/A	370	Ü	3800	Ü	420	U	3900	Ü	420	Ū	2100	ΙÜ	2000	Ü	400	Τ υ	370	ΙÜ	510 U
2-Methylnaphthalene	36400	N/A	N/A	370	Ü	3800	Ü	420	U	4200	Ť	28	J.	2100	U	470	.1	34	1.1	370	ΙÜ	510 U
2-Methylphenol	100 or MDL	N/A	N/A	370	Ü	3800	Ü	420	U	3900	U	420	Ü	2100	ΙÜ	2000	Ü	400	Τ υ	370	Τ υ	510 U
2-Nitroaniline	430 or MDL	N/A	N/A	1900	Ü	19000	Ü	2100	U	20000	Ü	2100	U	11000	ΙÜ	10000	Ü	2000	Ü		ΙÜ	2600 U
2-Nitrophenol	330 or MDL	N/A	N/A	370	Ü	3800	Ū	420	Ū	3900	Ū	420	Ū	2100	Ü	2000	Ū	400	Ü		Ü	510 U
3,3'-Dichlorobenzidine	N/A	N/A	N/A	1800	Ü	18000	Ü	2000	Ū	19000	U	2000	U	10000	Ü	9700	Ü	1900	Ü		Ü	2500 U
3-Nitroaniline	500 or MDL	N/A	N/A	1900	Ü	19000	Ū	2100	Ū	20000	Ü	2100	Ü	11000	Ü	10000	Ū	2000	Ü	1900	Ü	2600 U
4,6-Dinitro-2-methylphenol	N/A	N/A	N/A	1900	Ü	19000	Ü	2100	Ü	20000	Ū	2100	Ü	11000	Ü	10000	Ü	2000	Ü		Ü	2600 U
4-Bromophenyl phenyl ether	N/A	N/A	N/A	370	Ū	3800	Ū	420	Ū	3900	Ū	420	Ū	2100	Ū	2000	Ū	400	Ü		Ū	510 U
4-Chloro-3-methylphenol	240 or MDL	N/A	N/A	370	Ū	3800	Ū	420	Ū	3900	Ū	420	Ū	2100	Ū	2000	Ū	400	Ü	370	Ū	510 U
4-Chloroaniline	220 or MDL	N/A	N/A	370	Ū	3800	Ū	420	Ū	3900	Ū	420	Ū	2100	Ū	2000	Ū	400	Ū	370	Ū	510 U
4-Chlorophenyl phenyl ether	N/A	N/A	N/A	370	Ū	3800	Ū	420	Ū	3900	Ū	420	Ū	2100	Ū	2000	Ū	400	Ū		Ū	510 U
4-Methylphenol	900	N/A	N/A	370	Ū	3800	Ū	420	Ū	3900	Ū	420	U	2100	Ū	2000	Ū	400	Ū		Ū	510 U
4-Nitroaniline	N/A	N/A	N/A	1900	Ū	19000	Ū	2100	Ū	20000	Ū	2100	Ū	11000	Ū	10000	Ū	2000	Ū		Ū	2600 U
4-Nitrophenol	100 or MDL	N/A	N/A	1900	U	19000	U	2100	U	20000	U	2100	U	11000	U	10000	U	2000	U		U	2600 U
Acenaphthene	50000	100000	500000	370	U	3800	U	420	U	540	J	62	J	2100	U	720	J	43	J	370	U	510 U
Acenaphthylene	41000	100000	500000	370	U	1100	J	420	U	1200	J	420	U	2100	U	320	J	400	U	370	U	510 U
Acetophenone	N/A	N/A	N/A	370	U	3800	U	420	U	3900	U	420	U	2100	U	2000	U	400	U	370	U	510 U
Anthracene	50000	100000	500000	370	U	240	J	420	U	1900	J	140	J	58	J	2000		24	J	370	U	38 J
Atrazine	N/A	N/A	N/A	370	U	3800	U	420	U	3900	U	420	U	2100	U	2000	U	400	U	370	U	510 U
Benzaldehyde	N/A	N/A	N/A	370	U	3800	U	420	U	3900	UJ	420	UJ	2100	UJ	2000	U	400	U	370	U	510 U
Benzo(a)anthracene	224 or MDL	1000	5600	370	U	2300	J	420	U	1500	J	240	J	220	J	2400		400	U	370	U	55 J
Benzo(a)pyrene	61 or MDL	1000	1000	370	U	1700	J	420	U		J	180	J	220	J	2000		400	U	370	U	56 J
Benzo(b)fluoranthene	1100	1000	5600	370	U	3700	J	420	U	1500	J	200	J	230	J	3300		400	U	370	U	77 J
Benzo(ghi)perylene	50000	100000	500000	370	U	6000		420	U	1300	J	100	J	130	J	1200	J	400	U	370	U	43 J
Benzo(k)fluoranthene	1100	3900	56000	370	U	1200	J	420	U	3900	U	93	J	110	J	2000	U	400	U	370	U	510 U
Biphenyl	N/A	N/A	N/A	370	U	3800	U	420	U	920	J	420	U	2100	U	180	J	44	J	370	U	510 U
Bis(2-chloroethoxy) methane	N/A	N/A	N/A	370	U	3800	U	420	U	3900	U	420	U	2100	U	2000	U	400	U	370	U	510 U
Bis(2-chloroethyl) ether	N/A	N/A	N/A	370	U	3800	U	420	U	3900	U	420	U	2100	U	2000	U	400	U	370	UJ	510 U
Bis(2-ethylhexyl) phthalate	50000	N/A	N/A	370	U	3800	U	420	U		U		U	2100	U	2000	U	400	U		U	510 U
Butyl benzyl phthalate	50000	N/A	N/A	370	U	3800	U	420	U		U	420	U	2100	U	2000	U	400	U		U	510 U
Caprolactam	N/A	N/A	N/A	1900	U	19000	U	2100	U		U	2100	U	11000	U	10000	U	2000	U	1900	U	2600 U
Carbazole	N/A	N/A	N/A	370	U	3800	U	420	U		U		J	2100	U	380	J	400	U		U	510 U
Chrysene	400	3900	56000	370	U	2200	J	420	U		J	210	J	200	J	2500		400	U		U	61 J
Di-n-butyl phthalate	8100	N/A	N/A	370	U	3800	U	420	U	3900	U	420	U	2100	U	2000	U	400	U	370	U	510 U

DRAFT Table 2 Soil Semivolatile Organic Compound Results Canal Street, Rochester, New York Page 6 of 8

Sample ID	NYSDEC	NYSDEC	NYSDEC	SB-16, S7		SB-17, S1		SB-17, S6		SB-19, S2		SB-19, S5		MW-1, S2		MW-2, S8		MW-3, S5		MW-4, S5		MW-5, S5
Sample Depth (ft)	TAGM #4046	Part 375	Part 375	(12-14)		(0.0-2.0)		(10-12)		(2.0-4.0)		(8.0-10)		(2.0-4.0)		(14-15)		(8.0-10)		(8.0-10)		(8.0-10)
Lab Sample ID	Soil Cleanup	Restricted	Restricted	A6E62903		A6E53513		A6E53510		A6E53504		A6E53505		A6E53501		A6E27405		A6E21904		A6E37705		A6E42501
Date Sampled	Objectives	Residential	Commercial	12/5/2006		12/4/2006		12/4/2006		12/1/2006		12/1/2006		12/1/2006		11/28/2006		11/27/2006		11/29/2006		11/30/2006
Di-n-octyl phthalate	50000	N/A	N/A	370	U	3800	U	420	U	3900	U	11	J	2100	U	2000	U	22	7	370	U	510 U
Dibenzo(a,h)anthracene	14 or MDL	330	560	370	U	670	J	420	U	260	J	34	J	44	J	380	J	400	כ	370	U	510 U
Dibenzofuran	6200	N/A	N/A	370	U	3800	U	420	U	150	J	34	J	2100	U	610	J	400	כ	370	U	510 U
Diethyl phthalate	7100	N/A	N/A	370	U	3800	U	420	U	3900	U	420	U	2100	U	2000	J	400	כ	370	U	510 U
Dimethyl phthalate	2000	N/A	N/A	370	U	3800	U	420	U	3900	U	420	U	2100	U	2000	J	400	כ	370	U	510 U
Fluoranthene	50000	100000	500000	370	U	2400	J	420	U	2600	J	480		320	J	6500		400	כ	370	U	88 J
Fluorene	50000	100000	500000	370	U	3800	U	420	U	2100	J	68	J	2100	U	1200	J	27	7	370	U	29 J
Hexachlorobenzene	410	N/A	N/A	370	U	3800	U	420	U	3900	U	420	U	2100	U	2000	U	400	כ	370	U	510 U
Hexachlorobutadiene	N/A	N/A	N/A	370	U	3800	U	420	U	3900	U	420	U	2100	U	2000	U	400	כ	370	U	510 U
Hexachlorocyclopentadiene	N/A	N/A	N/A	370	U	3800	U	420	U	3900	U	420	U	2100	U	2000	U	400	כ	370	U	510 U
Hexachloroethane	N/A	N/A	N/A	370	U	3800	U	420	U	3900	U	420	U	2100	U	2000	U	400	כ	370	U	510 U
Indeno(1,2,3-cd)pyrene	3200	500	5600	370	U	3500	J	420	U	660	J	92	J	130	J	1200	J	400	כ	370	U	33 J
Isophorone	4400	N/A	N/A	370	U	3800	U	420	U	3900	U	420	U	2100	U	2000	J	400	כ	370	U	510 U
N-Nitroso-Di-n-propylamine	N/A	N/A	N/A	370	U	3800	U	420	U	3900	U	420	U	2100	U	2000	J	400	כ	370	U	510 U
N-nitrosodiphenylamine	N/A	N/A	N/A	370	U	3800	U	420	U	3900	U	420	U	2100	U	2000	U	400	כ	370	U	510 U
Naphthalene	13000	100000	500000	370	U	3800	U	38	J	1200	J	81	J	2100	U	3800		78	7	370	U	510 U
Nitrobenzene	200 or MDL	N/A	N/A	370	U	3800	U	420	U	3900	U	420	U	2100	U	2000	U	400	כ	370	U	510 U
Pentachlorophenol	1000 or MDL	6700	6700	370	U	3800	U	420	U	3900	U	420	U	2100	U	2000	U	400	כ	370	U	510 U
Phenanthrene	50000	100000	500000	370	U	980	J	420	U	7800		540		200	J	7000		100	7	370	U	100 J
Phenol	30 or MDL	100000	500000	370	Ū	3800	U	420	U	3900	U	420	U	2100	U	2000	U	400	\supset	370	U	510 U
Pyrene	50000	100000	500000	370	U	4600		420	U	4200		370	J	250	J	5200		32	J	370	U	140 J
Total PAHs	_	_		ND		30590		38		34060		2918		2112		40190		338		ND		720
Total SVOC	500000			ND		30590		38		35130		3024		2112		41360		404		ND		720

Notes:

- Compounds with concentrations greater than Part 375 Restricted Residential soil cleanup objectives are shaded gray.
- Compounds with concentrations greater than TAGM #4046 soil cleanup objectives and/or site background (metals only) are bolded.
- Total PAHs includes 2-methylnaphthalene, acenaphthene, acenaphthylene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, naphthalene, phenanthrene, and pyrene.
- ND = All analytes in this sample are nondetect.
- N/A = Data Not Available.

Data Qualifiers:

U = Nondetected Result

J = Estimated Result

DRAFT Table 2 Soil Semivolatile Organic Compound Results Canal Street, Rochester, New York Page 7 of 8

Sample ID	NYSDEC	NYSDEC	NYSDEC	MW-5, S7		MW-6, S2		MW-7, S4	
Sample Depth (ft)	TAGM #4046	Part 375	Part 375	(12-13.5)		(2.0-4.0)		(6.0-8.0)	
Lab Sample ID	Soil Cleanup	Restricted	Restricted	À6E42502		A6E62901		A6E53508	
Date Sampled	Objectives	Residential	Commercial	11/30/2006		12/5/2006		12/4/2006	
TCL SVOCs (ug/kg)			•					•	
2,2'-Oxybis(1-Chloropropane)	N/A	N/A	N/A	360	U	4300	U	380	U
2,4,5-Trichlorophenol	100	N/A	N/A	360	U	4300	U	380	U
2,4,6-Trichlorophenol	N/A	N/A	N/A	360	U	4300	U	380	U
2,4-Dichlorophenol	400	N/A	N/A	360	U	4300	U	380	U
2,4-Dimethylphenol	N/A	N/A	N/A	360	U	4300	U	380	U
2,4-Dinitrophenol	200 or MDL	N/A	N/A	1900	U	22000	UJ	1900	UJ
2,4-Dinitrotoluene	N/A	N/A	N/A	360	U	4300	U	380	U
2,6-Dinitrotoluene	1000	N/A	N/A	360	U	4300	U	380	U
2-Chloronaphthalene	N/A	N/A	N/A	360	U	4300	U	380	U
2-Chlorophenol	800	N/A	N/A	360	U	4300	U	380	U
2-Methylnaphthalene	36400	N/A	N/A	360	U	130	J	380	U
2-Methylphenol	100 or MDL	N/A	N/A	360	U	4300	U	380	U
2-Nitroaniline	430 or MDL	N/A	N/A	1900	U	22000	U	1900	U
2-Nitrophenol	330 or MDL	N/A	N/A	360	U	4300	U	380	U
3,3'-Dichlorobenzidine	N/A	N/A	N/A	1800	U	21000	U	1800	U
3-Nitroaniline	500 or MDL	N/A	N/A	1900	U	22000	U	1900	U
4,6-Dinitro-2-methylphenol	N/A	N/A	N/A	1900	U	22000	U	1900	U
4-Bromophenyl phenyl ether	N/A	N/A	N/A	360	U	4300	U	380	U
4-Chloro-3-methylphenol	240 or MDL	N/A	N/A	360	U	4300	U	380	U
4-Chloroaniline	220 or MDL	N/A	N/A	360	U	4300	U	380	U
4-Chlorophenyl phenyl ether	N/A	N/A	N/A	360	U	4300	U	380	U
4-Methylphenol	900	N/A	N/A	360	U	4300	U	380	U
4-Nitroaniline	N/A	N/A	N/A	1900	U	22000	U	1900	U
4-Nitrophenol	100 or MDL	N/A	N/A	1900	U	22000	U	1900	U
Acenaphthene	50000	100000	500000	88	J	4300	U	380	U
Acenaphthylene	41000	100000	500000	360	U	820	J	380	U
Acetophenone	N/A	N/A	N/A	360	U	4300	U	380	U
Anthracene	50000	100000	500000	47	J	160	J	380	U
Atrazine	N/A	N/A	N/A	360	U	4300	U	380	U
Benzaldehyde	N/A	N/A	N/A	360	U	4300	U	380	U
Benzo(a)anthracene	224 or MDL	1000	5600	360	U	520	J	19	J
Benzo(a)pyrene	61 or MDL	1000	1000	360	U	1000	J	380	U
Benzo(b)fluoranthene	1100	1000	5600	360	U	1200	J	380	U
Benzo(ghi)perylene	50000	100000	500000	360	U	4400		380	U
Benzo(k)fluoranthene	1100	3900	56000	360	U	340	J	380	U
Biphenyl	N/A	N/A	N/A	360	U	4300	U	380	U
Bis(2-chloroethoxy) methane	N/A	N/A	N/A	360	U	4300	U	380	U
Bis(2-chloroethyl) ether	N/A	N/A	N/A	360	U	4300	U	380	U
Bis(2-ethylhexyl) phthalate	50000	N/A	N/A	360	U	4300	U	380	U
Butyl benzyl phthalate	50000	N/A	N/A	360	U	4300	U	380	U
Caprolactam	N/A	N/A	N/A	1900	U	22000	U	1900	U
Carbazole	N/A	N/A	N/A	360	U	4300	U	380	U
Chrysene	400	3900	56000	360	U	630	J	380	U
Di-n-butyl phthalate	8100	N/A	N/A	360	U	4300	U	380	U

DRAFT Table 2 Soil Semivolatile Organic Compound Results Canal Street, Rochester, New York Page 8 of 8

Sample ID	NYSDEC	NYSDEC	NYSDEC	MW-5, S7		MW-6, S2		MW-7, S4	
Sample Depth (ft)	TAGM #4046	Part 375	Part 375	(12-13.5)		(2.0-4.0)		(6.0-8.0)	
Lab Sample ID	Soil Cleanup	Restricted	Restricted	A6E42502		A6E62901		A6E53508	
Date Sampled	Objectives	Residential	Commercial	11/30/2006		12/5/2006		12/4/2006	
Di-n-octyl phthalate	50000	N/A	N/A	360	U	4300	U	380	U
Dibenzo(a,h)anthracene	14 or MDL	330	560	360	U	610	J	380	U
Dibenzofuran	6200	N/A	N/A	360	U	4300	U	380	U
Diethyl phthalate	7100	N/A	N/A	360	U	4300	J	380	U
Dimethyl phthalate	2000	N/A	N/A	360	U	4300	J	380	U
Fluoranthene	50000	100000	500000	50	J	870	7	22	J
Fluorene	50000	100000	500000	36	J	110	J	380	U
Hexachlorobenzene	410	N/A	N/A	360	U	4300	J	380	U
Hexachlorobutadiene	N/A	N/A	N/A	360	U	4300	J	380	U
Hexachlorocyclopentadiene	N/A	N/A	N/A	360	U	4300	J	380	U
Hexachloroethane	N/A	N/A	N/A	360	U	4300	J	380	U
Indeno(1,2,3-cd)pyrene	3200	500	5600	360	U	2300	7	380	U
Isophorone	4400	N/A	N/A	360	U	4300	J	380	U
N-Nitroso-Di-n-propylamine	N/A	N/A	N/A	360	U	4300	J	380	U
N-nitrosodiphenylamine	N/A	N/A	N/A	360	U	4300	J	380	U
Naphthalene	13000	100000	500000	360	U	220	7	380	U
Nitrobenzene	200 or MDL	N/A	N/A	360	U	4300	J	380	U
Pentachlorophenol	1000 or MDL	6700	6700	360	U	4300	J	380	U
Phenanthrene	50000	100000	500000	150	J	420	7	31	J
Phenol	30 or MDL	100000	500000	360	U	4300	J	380	U
Pyrene	50000	100000	500000	56	J	1200	J	26	J
Total PAHs				427		14930		98	
Total SVOC	500000			427		14930		98	

Notes:

- Compounds with concentrations greater than Part 375 Restricted Residential soil cleanup objectives are shaded gray.
- Compounds with concentrations greater than TAGM #4046 soil cleanup objectives and/or site background (metals only) are bolded.
- Total PAHs includes 2-methylnaphthalene, acenaphthene, acenaphthylene, anthracene, benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, fluoranthene, fluorene, indeno(1,2,3-cd)pyrene, naphthalene, phenanthrene, and pyrene.
- ND = All analytes in this sample are nondetect.
- N/A = Data Not Available.

Data Qualifiers:

U = Nondetected Result

J = Estimated Result

DRAFT Table 3 Soil Metals and Miscellaneous Results Canal Street, Rochester, New York Page 1 of 4

Sample ID	NYSDEC	Eastern USA	NYSDEC	NYSDEC	SB-1, S2		SB-2, S3		SB-3, S5		SB-4, S5		SB-5, S5		SB-6, S3		SB-7, S6		SB-8, S4		SB-9, S6	
Sample Depth (ft)	TAGM #4046	Site	Part 375	Part 375	(2.0-4.0)		(4.0-6.0)		(8.0-10)		(8.0-10)		(8.0-9.5)		(6.0-8.0)		(10-12)		(6.0-8.0)		(10-12)	
Lab Sample ID	Soil Cleanup	Background	Restricted	Restricted	A6E53502		A6E53503		A6E21901		A6E21902		A6E21903		A6E42505		A6E42504		A6E42503		A6E37701	
Date Sampled	Objectives	Range	Residential	Commercial	12/1/2006		12/1/2006		11/27/2006		11/27/2006		11/27/2006		11/30/2006		11/30/2006		11/30/2006		11/29/2006	
TOTAL METALS (mg/kg)												-										
Aluminum	SB	33,000	N/A	N/A	5020	J	5220	J	5830	J	5500	J	4320	J	3020		10400		4650		5700	J
Antimony	SB	N/A	N/A	N/A	6.9	UJ	8.6	UJ	7	J	6.7	U	6.7	U	6.8	U	7.9	U	6	J	6.8	U
Arsenic	7.5 or SB	3.0-12	16	16	4.9	J	8.8	J	5.5		7.9		2.5		1.6		4.9		3.4		21.5	
Barium	300 or SB	15-600	400	400	49.4	0	385		62.1		96.6		34		19.8		86.6		28.1		1960	J
Beryllium	0.16 or SB	0-1.75	72	590	0.57	U	0.72	U	0.59	J	0.56	U	0.56	U	0.56	U	0.66	U	0.5	J	0.75	
Cadmium	1.0 or SB	0.1-1.0	4.3	9.3	0.57	U	0.72	U	0.59	J	0.56	U	0.56	U	0.56	U	0.66	U	0.5	J	5.5	
Calcium	SB	130-35,000	N/A	N/A	11000		51400		11100	J	21100	J	2980	J	40900		23900		36100		8260	J
Chromium	10 or SB	1.5-40	110	400	6.6	J	8.3	J	12		8.7		6.3		3.8		12.8		6.9		11.1	
Cobalt	30 or SB	2.5-60	N/A	N/A	6.2		7.2	U	5.9	J	5.6	U	5.6	U	5.6	U	7		5	U	28.8	
Copper	25 or SB	1.0-50	270	270	77.6	J	138	J	12.2		33.6		8.2		6.8		17.5		14.3		14.1	
Iron	2000 or SB	2,000-550,000	N/A	N/A	11800		21600		15300	J	15300	J	10700	J	5700		17900		11000		59100	J
Lead	SB	200-500	400	1000	143		969		27.7		131		7.3		5.6		125		29		24.5	J
Magnesium	SB	100-5,000	N/A	N/A	3730	J	5630	J	3910	J	5250	J	1750	J	13300		6640		8020		1880	
Manganese	SB	50-5,000	2000	10000	264	J	402	J	360	J	1030	J	129	J	183		336		481		12300	J
Mercury	0.1	0.01-0.2	0.81	2.8	0.581	J	0.737	J	0.52		0.36		0.0059	U	0.013		0.16		0.07		0.014	
Nickel	13 or SB	0.5-25	310	310	11		12.7		10.7		9.6		6.8		4.8		15.1		8.4		26.5	
Potassium	SB	8,500-43,000	N/A	N/A	796		1030		1100		753		544		601		1520		1010		498	
Selenium	2.0 or SB	0.1-3.9	180	1500	0.69		2.8		1.2		1.6		0.91		0.66	U	1.7		1.1		6.3	
Silver	SB	N/A	180	1500	1.2	U	1.4		1.2	J	1.1	U		U	1.2	U	1.3	U	1	J	1.1	U
Sodium	SB	6,000-8,000	N/A	N/A	443		601		146		159		134		76.9		120		105		111	
Thallium	SB	N/A	N/A	N/A	1.1	U	1.4	U	1.2	J	1.1	U	1.1	U	1.1	U	1.3	U	1.1		4.8	
Vanadium	150 or SB	1.0-300	N/A	N/A	13.4		13.2		15.7		17.2		11.9		5.6	U	18.4		12.4		53.8	
Zinc	20 or SB	9.0-50	10000	10000	71.1	J	350	J	57.8		57.5		23.8		20.2		73.1		30.2		838	J
Miscellaneous Parameters																						
Total Cyanide (ug/g)	N/A	N/A	27	27	0.95	UJ	1.1	UJ	1.1	J	1	U	1.2	U	1	U	1.2	U	1.2	J	1.3	U
Corrosivity (pH)	N/A	N/A	N/A	N/A	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-

Notes

- Compounds with concentrations greater than Part 375 Restricted Residential soil cleanup objectives are shaded gray.
- Compounds with concentrations greater than TAGM #4046 soil cleanup objectives and/or site background are bolded.
- N/A = Data Not Available.
- SB = Site Background.

Data Qualifiers:

U = Nondetected Result

J = Estimated Result

DRAFT Table 3 Soil Metals and Miscellaneous Results Canal Street, Rochester, New York Page 2 of 4

															(DUP of SB-13,	S3)	Ì			
Sample ID	NYSDEC	Eastern USA	NYSDEC	NYSDEC	SB-10, S2		SB-10, S6		SB-11, S6		SB-12, S2		SB-12, S5		DUP-112806		SB-13, S3		SB-14, S4	
Sample Depth (ft)	TAGM #4046	Site	Part 375	Part 375	(4.0-6.0)		(12-13.2)		(10-12)		(2.0-4.0)		(8.0-10)				(4.0-6.0)		(6.0-8.0)	
Lab Sample ID	Soil Cleanup	Background	Restricted	Restricted	A6E27408		A6E27401		A6E37702		A6E27402		A6E27403		A6E27406		A6E27404		A6E37703	
Date Sampled	Objectives	Range	Residential	Commercial	11/28/2006	;	11/28/2006		11/29/2006		11/28/2006		11/28/2006		11/28/2006		11/28/2006		11/29/2006	ا ا
TOTAL METALS (mg/kg)																				
Aluminum	SB	33,000	N/A	N/A	3730	J	1380	J	6800	J	6610	J	4820	J	2410	J	3090	J	4140	J
Antimony	SB	N/A	N/A	N/A	6.6	U	6.5	U		U	6.2	U	7.1	U	5.6	U	6.4	U		U
Arsenic	7.5 or SB	3.0-12	16	16	30	J	2.6	J			4	J	10.4	J	1.5	J	1.5	J		
Barium	300 or SB	15-600	400	400	43	J	11.6	J		J	60.9	J	67.9	J	19.7	J	20.7	J	28.7	J
Beryllium	0.16 or SB	0-1.75	72	590	0.55	U	0.54	U		U	0.52	U	0.6	U	0.47	U	0.53	U		U
Cadmium	1.0 or SB	0.1-1.0	4.3	9.3	0.55	U	0.54	U	0.52	U	0.52	U	0.6	U	0.47	U	0.53	U	0.54	U
Calcium	SB	130-35,000	N/A	N/A	29200	J	11600	J	29000	J	3340	J	41800	J	51300	J	54500	J	2320	J
Chromium	10 or SB	1.5-40	110	400	7.5		3.2		8.9		9.5		10.2		4.3		5.4		6.5	
Cobalt	30 or SB	2.5-60	N/A	N/A	5.5	U	5.4	U	5.3		6.4		9.1		4.7	U	5.3	U		U
Copper	25 or SB	1.0-50	270	270	49	J	5.4	J	9.3		11.3	J	149	J	7.3	J	11	J	9.3	
Iron	2000 or SB	2,000-550,000	N/A	N/A	17500		4860		15100	J	14400		33600		7990		9870		9010	J
Lead	SB	200-500	400	1000	116	J	27.4	J		J	12.4	J	4050	J	2.9	J	5.3	J		J
Magnesium	SB	100-5,000	N/A	N/A	12100		4210		2900		1840		15700		16300		12600		1450	
Manganese	SB	50-5,000	2000	10000	334	J	168	J	158	J	648	J	374	J	291	J	460	J	246	J
Mercury	0.1	0.01-0.2	0.81	2.8	0.37		0.086		0.024		0.018		2.1		0.0056	U	0.016		0.005	U
Nickel	13 or SB	0.5-25	310	310	14.4		4.3	U	10.8		10		14.9		5.1		6.1		7.9	
Potassium	SB	8,500-43,000	N/A	N/A	612		358		919		646		824		440		585		662	
Selenium	2.0 or SB	0.1-3.9	180	1500	1.6		0.64	U	2		1.1		3.8		0.55	U	0.69		0.73	
Silver	SB	N/A	180	1500	1.1	U	1.1	U	1	U	1	С	1.8		0.94	U	1	U	1.1	U
Sodium	SB	6,000-8,000	N/A	N/A	108		54.1	U	58.1		54.3		156		98		115		106	
Thallium	SB	N/A	N/A	N/A	1.1	U	1.1	U	1	U	1	U	1.2	U	0.94	U	1	U	1.1	U
Vanadium	150 or SB	1.0-300	N/A	N/A	11.7		5.4	U	13.6		18.5		15.7		9.1		11.6	1	12.8	
Zinc	20 or SB	9.0-50	10000	10000	89.6	J	23.1	J	40	J	45.5	J	144	J	15.6	J	19.1	J	18.7	J
Miscellaneous Parameters																				
Total Cyanide (ug/g)	N/A	N/A	27	27	0.9	U	0.99	U	0.98	U	0.89	U	1.1	U	1.6		0.88	U	1	U
Corrosivity (pH)	N/A	N/A	N/A	N/A	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Notes:

- Compounds with concentrations greater than Part 375 Restricted Residential soil cleanup objectives are shaded gray.
- Compounds with concentrations greater than TAGM #4046 soil cleanup objectives and/or site background are bolded.
- N/A = Data Not Available.
- SB = Site Background.

Data Qualifiers:

U = Nondetected Result

J = Estimated Result

DRAFT Table 3 Soil Metals and Miscellaneous Results Canal Street, Rochester, New York Page 3 of 4

Dup of SB-16, S1

					Dup of SB-16, S1																	
Sample ID	NYSDEC	Eastern USA	NYSDEC	NYSDEC	DUP120506		SB-16, S1		SB-16, S2		SB-16, S7		SB-17, S1		SB-17, S6	;	SB-19, S2		SB-19, S5		MW-1, S2	2
Sample Depth (ft)	TAGM #4046	Site	Part 375	Part 375			(0.0-2.0)		(2.0-4.0)		(12-14)		(0.0-2.0)		(10-12)		(2.0-4.0)		(8.0-10)		(2.0-4.0)	
Lab Sample ID	Soil Cleanup	Background	Restricted	Restricted	A6E62904		A6E62902		A6E73001		A6E62903		A6E53513		A6E53510)	A6E53504		A6E53505		A6E53501	1
Date Sampled	Objectives	Range	Residential	Commercial	12/5/2006		12/5/2006		12/5/2006		12/5/2006		12/4/2006		12/4/2006		12/1/2006		12/1/2006		12/1/2006	ز
TOTAL METALS (mg/kg)																				-		
Aluminum	SB	33,000	N/A	N/A	3930		3650		516		3260		4150	J	5330	J	5000	J	6050	J	4340	J
Antimony	SB	N/A	N/A	N/A	7.3	U	7.3	U	10.3	U	6.8	U	6.6	UJ	7.4	UJ	6.3	UJ	8.2	UJ	6.8	UJ
Arsenic	7.5 or SB	3.0-12	16	16	6.4		5.8		2.3		2		16.6	J	3.4	J	4.4	J	3.9	J	3.3	J
Barium	300 or SB	15-600	400	400	42.7		36.5		6.1		23.9		60.4		117		42.9		246		58.9	
Beryllium	0.16 or SB	0-1.75	72	590	0.61	U	0.61	U	0.85	U	0.57	U	0.55	U	0.62	U	0.52	U	0.68	U	0.56	U
Cadmium	1.0 or SB	0.1-1.0	4.3	9.3	0.61	U	0.61	U	0.85	C		U	0.55	U	0.67		0.52	U	0.68	U	0.56	U
Calcium	SB	130-35,000	N/A	N/A	144000		94600		236000		32900		70400		7670		24500		4570		32100	
Chromium	10 or SB	1.5-40	110	400	6.4		6		1.7	C	5		16.8	J	9.1	J	7.6	J	10	J	6.2	J
Cobalt	30 or SB	2.5-60	N/A	N/A	6.1	U	6.1	U		C		U	5.5	U	6.4		5.2	U	6.9		5.6	U
Copper	25 or SB	1.0-50	270	270	23.9		24.2		3.4	C	8.2		51.4	J	6	J	35.9	J	8.9	J	104	J
Iron	2000 or SB	2,000-550,000	N/A	N/A	11000		12100		1310		8450		13700		13200		11900		16100		9820	
Lead	SB	200-500	400	1000	82.3		50		9.3		2.8		185		13.2		137		89		147	
Magnesium	SB	100-5,000	N/A	N/A	19600		35400		71100		8600		21600	J	3320	J	8120	J	2950	J	14200	J
Manganese	SB	50-5,000	2000	10000	259		262		233		296		345	J	3040	J	324	J	1310	J	341	J
Mercury	0.1	0.01-0.2	0.81	2.8	0.11		0.1		0.024		0.005	U	1.1	J	0.025	J	0.428	J	0.142	J	0.41	J
Nickel	13 or SB	0.5-25	310	310	8.6		9.2			U	6.2		11.2		6.6		9.6		11.6		7	
Potassium	SB	8,500-43,000	N/A	N/A	853		736		342	U	727		838		462		836		952		716	
Selenium	2.0 or SB	0.1-3.9	180	1500	1		1.1			U		U	0.73		0.97		1.3		0.8	U	0.66	U
Silver	SB	N/A	180	1500	1.2	U	1.2	U		U		U	1.2	U	1.3	U	1.1	U	1.3	U	1.2	U
Sodium	SB	6,000-8,000	N/A	N/A	96.3		85.5			U	112		222		68.9		90.8		68.1	U	124	
Thallium	SB	N/A	N/A	N/A	1.2	U	1.2	U		U	1.1	U	1.1	U	1.2	U	1	U	1.4	U	1.1	U
Vanadium	150 or SB	1.0-300	N/A	N/A	9.8		9.1		8.5	U	8.9		10.2		15.7		11.6		14.2		9.7	
Zinc	20 or SB	9.0-50	10000	10000	125		126		41.8		18.8		1290	J	110	J	56.6	J	184	J	104	J
Miscellaneous Parameters																						
Total Cyanide (ug/g)	N/A	N/A	27	27	0.74	U	1	U	11.5		0.76	U	1.1	UJ	0.66	UJ	1.1	UJ	1.2	UJ	1.1	UJ
Corrosivity (pH)	N/A	N/A	N/A	N/A					8.98				-	-	-	-	-	-	-	-	-	-

Notes:

- Compounds with concentrations greater than Part 375 Restricted Residential soil cleanup objectives are shaded gray.
- Compounds with concentrations greater than TAGM #4046 soil cleanup objectives and/or site background are bolded.
- N/A = Data Not Available.
- SB = Site Background.

Data Qualifiers:

U = Nondetected Result

J = Estimated Result

DRAFT Table 3 Soil Metals and Miscellaneous Results Canal Street, Rochester, New York Page 4 of 4

Sample ID	NYSDEC	Eastern USA	NYSDEC	NYSDEC	MW-2, S8		MW-3, S5		MW-4, S5		MW-5, S5		MW-5, S7		MW-6, S2		MW-7, S4	
Sample Depth (ft)	TAGM #4046	Site	Part 375	Part 375	(14-15)		(8.0-10)		(8.0-10)		(8.0-10)		(12-13.5)		(2.0-4.0)		(6.0-8.0)	
Lab Sample ID	Soil Cleanup	Background	Restricted	Restricted	A6E27405		A6E21904		A6E37705		A6E42501		A6E42502		A6E62901		A6E53508	
Date Sampled	Objectives	Range	Residential	Commercial	11/28/2006		11/27/2006		11/29/2006		11/30/2006		11/30/2006		12/5/2006		12/4/2006	
TOTAL METALS (mg/kg)																		
Aluminum	SB	33,000	N/A	N/A	5660	J	7190	J	2760	٦	6410		1410		3180		3860	J
Antimony	SB	N/A	N/A	N/A	6.8	U	7.2	כ	5.8	U		U	-	J	_	U	6.8	UJ
Arsenic	7.5 or SB	3.0-12	16	16	58.9	J	6.5		1.6		13		2.9		3.5		2.4	J
Barium	300 or SB	15-600	400	400	72	J	49.6		16.8	J	85.2		16.8		42.8		43.2	
Beryllium	0.16 or SB	0-1.75	72	590	0.57	U		כ	0.49	U	0.78	U	0.56	J	0.66	J	0.57	U
Cadmium	1.0 or SB	0.1-1.0	4.3	9.3	0.57	U	0.6	כ	0.49	U	0.86		0.56	J	0.66	J	0.57	U
Calcium	SB	130-35,000	N/A	N/A	43100	J	8540	7	1170	J	8180		55600		69500		28500	
Chromium	10 or SB	1.5-40	110	400	13.4		9.3		3.7		13		4.8		5.9		5.5	J
Cobalt	30 or SB	2.5-60	N/A	N/A	5.7	U	6.6		4.9	U	7.8	U	5.6	J	6.6	J	5.7	U
Copper	25 or SB	1.0-50	270	270	41.2	J	9.5		6		18.3		3.3		47		16	J
Iron	2000 or SB	2,000-550,000	N/A	N/A	21200		19400	J	5760	J	13000		9150		3940		7690	
Lead	SB	200-500	400	1000	400	J	21.8		2.6	J	65		16.7		108		82.3	
Magnesium	SB	100-5,000	N/A	N/A	23700		5530	J	1140		2050		34700		34800		9200	J
Manganese	SB	50-5,000	2000	10000	490	J	320	7	65.7	J	448		483		156		238	J
Mercury	0.1	0.01-0.2	0.81	2.8	0.018		0.032		0.005	U	0.14		0.0055	U	0.34		0.01	J
Nickel	13 or SB	0.5-25	310	310	13.5		11.4		5		7.9		4.5	U	6.8		6	
Potassium	SB	8,500-43,000	N/A	N/A	632		639		373		579		708		417		757	
Selenium	2.0 or SB	0.1-3.9	180	1500	1.8		1.8			U	2.5		0.76		0.78	U	0.67	U
Silver	SB	N/A	180	1500	1.1	U	1.2	U		U		U	1.1	U		U	1.1	U
Sodium	SB	6,000-8,000	N/A	N/A	229		80.4		59.9		78.2	U	89.9		132		103	
Thallium	SB	N/A	N/A	N/A	1.1	U		כ	0.97	U		U	1.1	J	1.3	J	1.1	U
Vanadium	150 or SB	1.0-300	N/A	N/A	12.8		17		5.9		14.3		5.7		8		8.4	
Zinc	20 or SB	9.0-50	10000	10000	123	J	59.6		13.8	J	170		31.6		70.4		38.7	J
Miscellaneous Parameters																		
Total Cyanide (ug/g)	N/A	N/A	27	27	1.7		0.93	J	1	U	1.5	U	0.94	J	0.72	U	0.72	UJ
Corrosivity (pH)	N/A	N/A	N/A	N/A	-	-	-	-	-	-	-	-	-	-	-	-	-	-

Notes:

- Compounds with concentrations greater than Part 375 Restricted Residential soil cleanup objectives are shaded gray.
- Compounds with concentrations greater than TAGM #4046 soil cleanup objectives and/or site background are bolded.
- N/A = Data Not Available.
- SB = Site Background.

Data Qualifiers:

U = Nondetected Result

J = Estimated Result

DRAFT Table 4 Soil Total Petroleum Hydrocarbon Results Canal Street, Rochester, New York

Sample ID	NYSDEC	NYSDEC	NYSDEC	SB-10, S6		SB-13, S4		SB-14, S6	
Sample Depth (ft)	TAGM #4046	Part 375	Part 375	(12-13.2)		(6.0-8.0)		(10-12)	
Lab Sample ID	Soil Cleanup	Restricted	Restricted	A6E27401		A6E27407		A6E37704	
Date Sampled	Objectives	Residential	Commercial	11/28/2006		11/28/2006		11/29/2006	
TPH by 310.1 (mg/kg)									
Fuel Oil #2	N/A	N/A	N/A	550		340		11	U
Fuel Oil #4	N/A	N/A	N/A	61	J	12	U	11	U
Fuel Oil #6	N/A	N/A	N/A	61	J	12	U	11	U
Gasoline	N/A	N/A	N/A	61	J	12	U	3.6	J
Kerosene	N/A	N/A	N/A	61	J	12	U	11	
Motor Oil	N/A	N/A	N/A	61	J	12	U	11	U
Other-1	N/A	N/A	N/A	610	U	120	U	110	U
DRO by 8015B (mg/kg)									
Diesel Range Organics	N/A	N/A	N/A	550		340		3.3	U
GRO by 8015B (mg/kg)			•						
Gasoline Range Organics	N/A	N/A	N/A	420		360		4.6	

Notes:

- N/A = Data Not Available.

Data Qualifiers:

U = Nondetected Result

J = Estimated Result

DRAFT Table 5 **Groundwater Volatile Organic Compound Results** Canal Street, Rochester, New York Page 1 of 1

Sample ID	NYSDEC TOGS 1.1.1	MW-1	MW-1	MW-2	MW-2	MW-2-FD	MW-3	MW-3	MW-4	MW-4	MW-5	MW-5	MW-6	MW-6-FD	MW-6	MW-7
Lab Sample ID	Class GA Water	A6F46701	A7B81404	A6F46702	A7B81401	A7B81402	A6F49503	A7B81407	A6F49501	A7B81403	A6F49502	A7B81406	A6F53001	A6F53004	A7B81405	A6F53002
	Quality Standards	1.01 10101	7.1.201.101	7.01 10102	7201.01		7101 10000	7.1. 201 101	7101 10001	7 201.100	7.01 10002	7.1.201.00	7101 00001	7101 0000 1	7.1.201.100	
Date Sampled	(ug/L) ⁽¹⁾	12/26/2006	10/12/2007	12/26/2006	10/12/2007	10/12/2007	12/27/2006	10/11/2007	12/27/2006	10/12/2007	12/27/2006	10/12/2007	12/28/2006	12/28/2006	10/12/2007	12/28/2006
1,1,1-Trichloroethane	5	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U
1,1,2,2-Tetrachloroethane	5	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U
1,1,2-Trichloro-1,2,2-trifluoroethane	5	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U
1,1,2-Trichloroethane	1	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U
1,1-Dichloroethane	5	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U
1,1-Dichloroethene	5	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U
1,2,4-Trichlorobenzene	5	5 U	5 UJ	5 U	5 UJ	5 UJ	5 U	5 UJ	5 U	5 UJ	5 U	5 UJ	5 U	5 U	5 UJ	5 U
1,2-Dibromo-3-chloropropane	0.04	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U
1,2-Dibromoethane	N/A	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U
1,2-Dichlorobenzene	3	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U
1,2-Dichloroethane	0.6	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U
1,2-Dichloropropane	N/A	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U
1,3-Dichlorobenzene	3	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U
1,4-Dichlorobenzene	3	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U
2-Butanone	N/A	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U
2-Hexanone	50 ⁽⁴⁾	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U
4-Methyl-2-pentanone	N/A	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 UJ	10 U	10 U	10 U	10 U	10 U	10 U
Acetone	50 ⁽⁴⁾	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 U	20 UJ	20 U	5.8 J	20 U	20 U	20 U	20 U
Benzene	1	5 U	5 U	52	24	23	1.6 J	5 U	5 U	5 UJ	5 U	5 U	5 U	5 U	1 J	5 U
Bromodichloromethane	50 ⁽⁴⁾	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U
Bromoform	50 ⁽⁴⁾	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U
Bromomethane	5	5 U	5 UJ	5 U	5 UJ	5 UJ	5 U	5 UJ	5 U	5 UJ	5 U	5 UJ	5 U	5 U	5 UJ	5 U
Carbon Disulfide	N/A	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 U	10 UJ	10 U	0.76 J	10 U	10 U	10 U	10 U
Carbon Tetrachloride	5	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U
Chlorobenzene	5	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U
Chloroethane	5	5 U	5 UJ	5 UJ	5 UJ	5 UJ	5 U	5 UJ	5 U	5 UJ	5 U	5 UJ	5 U	5 U	5 UJ	5 U
Chloroform	7	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 UJ	1 J	5 U	5 U	5 U	5 U	5 U
Chloromethane	N/A	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U
cis-1,2-Dichloroethene	5	5 U	5 U	1.1	5 U	5 U	96	22	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U
cis-1,3-Dichloropropene	0.4 ⁽²⁾	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U
Cyclohexane	N/A	5 U	5 U	1 J	5 U	5 U	5 U	5 U	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U
Dibromochloromethane	50 ⁽⁴⁾	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U
Dichlorodifluoromethane	5	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U
Ethylbenzene	5	5 U	5 U	6.6	1.8 J	1.6 J	38	5 U	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U
Isopropylbenzene	5	5 U	5 U	0.5 J	5 U	5 U	12	5 U	5 U	5 UJ	3.5 J	1.5 J	5 U	5 U	5 U	5 U
Methyl acetate	N/A	10 U	10 U	10 UJ	10 U	10 U	10 U	10 U	10 U	10 UJ	10 U	10 U	10 UJ	10 UJ	10 U	10 UJ
Methyl-t-Butyl Ether (MTBE)	N/A	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U
Methylcyclohexane	N/A	10 U	10 U	2.2 J	10 U	10 U	9 J	10 U	10 U	0.53 J	10 U	10 U	10 U	10 U	10 U	10 U
Methylene chloride	5	5 U	5 UJ	5 UJ	5 UJ	5 UJ	5 U	5 UJ	5 U	5 UJ	5 U	5 UJ	5 UJ	5 UJ	5 UJ	5 UJ
Styrene	5	5 U	5 U	1.5 J	5 U	5 U	5 U	5 U	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U
Tetrachloroethene	5	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U
Toluene	5	5 U	5 U	18	5 U	5 U	0.79 J	5 U	5 U	0.56 J	0.44 J	5 U	5 U	5 U	5 U	5 U
Total Xylenes	5 ⁽³⁾	15 U	15 U	13 J	2.4 J	1.3 J	25	15 U	15 U	15 UJ	15 U	15 U	15 U	15 U	15 U	15 U
trans-1,2-Dichloroethene	5	5 U	5 U	5 U	5 U	5 U	5.1	0.82 J	5 U	5 UJ	5 U	5 U	5 U	5 U	1.8 J	5 U
trans-1,3-Dichloropropene	0.4 ⁽²⁾	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U
Trichloroethene	5	5 U	5 U	5 U	5 U	5 U	57	38	5 U	5 UJ	5 U	5 U	2.4 J	2.3 J	1.1 J	5 U
Trichlorofluoromethane	5	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U
Vinyl chloride	2	5 U	5 U	5 U	5 U	5 U	5.9	5 U	5 U	5 UJ	5 U	5 U	5 U	5 U	5 U	5 U

- Footnotes:
 (1) Division of Water Technical and Operational Guidance Series (1.1.1). Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998.
- (2) Applies to the sum of cis- and trans-1,3-dichloropropene.
- (2) Applies to the same of six and trains 1,5 die(3) Applies to o-, m-, and p-xylene separately.(4) Guidance value

- <u>Data Qualifiers:</u>
 U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ = The analyte was not detected above the reported sample quantitation limit. However the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

- Notes:
 Bold values indicate concentrations that exceed the TOGS Water Quality Standards.
- N/A Data Not Available.
- "U" flagged constituents were bolded or shaded if the quantitation limit exceeded
- the TOGS Water Quality Standards.

DRAFT Table 6 Groundwater Semivolatile Organic Compound Results Canal Street, Rochester, New York Page 1 of 2

Sample ID	1	MW-1	MW-1	MW-2	MW-2	MW-2-FD	MW-3	MW-3	MW-4	MW-4	MW-5	MW-5	MW-6	MW-6-FD	MW-6	MW-7
Lab Sample ID		A6F46701	A7B81404	A6F46702	A7B81401	A7B81402	A6F49503	A7B81407	A6F53003	A7B81403	A6F49502	A7B81406	A6F53001	A6F53004	A7B81405	A6F53002
Date Sampled		12/26/2006	10/12/2007	12/26/2006	10/12/2007	10/12/2007	12/27/2006	10/11/2007	12/28/2006	10/12/2007	12/27/2006	10/12/2007	12/28/2006	12/28/2006	10/12/2007	12/28/2006
2.2'-Oxybis(1-Chloropropane)	5	9 U	200 U	9 U	10 U	9 U	10	10 UJ	11 U	9 UJ	9 U	10 U	10 U	10 U	10 U	13 U
2,4,5-Trichlorophenol	N/A	9 U	200 U	9 U	10 U	9 U	10	10 UJ	11 U	9 UJ	9 U	10 U	10 U	10 U	10 U	13 U
2,4,6-Trichlorophenol	N/A	9 U	200 U	9 U	10 U	9 U	10	10 UJ	11 U	9 UJ	9 U	10 U	10 U	10 U	10 U	13 U
2,4-Dichlorophenol	5	9 U	200 U	9 U	10 U	9 U	10	10 UJ	11 U	9 UJ	9 U	10 U	10 U	10 U	10 U	13 U
2,4-Dimethylphenol	50 ⁽³⁾	9 U	200 U	9 U	10 U	9 U	10	10 UJ	11 U	9 UJ	9 U	10 U	10 U	10 U	10 U	13 U
2,4-Dinitrophenol	10 ⁽³⁾	47 UJ	980 UJ	47 UJ	49 UJ	47 UJ	50 UJ	50 UJ	56 U	47 UJ	47 UJ	48 UJ	48 U	48 U	49	64 U
2,4-Dinitrotoluene	5	9 U	200 U	9 U	10 U	9 U	10	10 UJ	11 U	9 UJ	9 U	10 U	10 U	10 U	10 U	13 U
2,6-Dinitrotoluene	5	9 U	200 U	9 U	10 U	9 U	10 U	10 UJ	11 U	9 UJ	9 U	10 U	10 U	10 U	10 U	13 U
2-Chloronaphthalene	10	9 U	200 U	9 U	10 U	9 U	10 U	10 UJ	11 U	9 UJ	9 U	10 U	10 U	10 U	10 U	13 U
2-Chlorophenol	N/A	9 U	200 UJ	9 U	10 UJ	9 UJ	10 U	10 UJ	11 U	9 UJ	9 U	10 UJ	10 U	10 U	10	13 U
2-Methylnaphthalene	N/A	9 UJ	200 U	3 J	0.9 J	0.6 J	3 J	10 UJ	11 U	9 UJ	9 UJ	2 J	10 U	10 U	10 U	13 U
2-Methylphenol	N/A	9 U	200 U	9 U	10 U	9 U	10 U	10 UJ	11 U	9 UJ	9 U	10 U	10 U	10 U	10 U	13 U
2-Nitroaniline	5	47 U	980 U	47 U	49 U	47 U	50 U	50 UJ	56 U	47 UJ	47 U	48 U	48 U	48 U	49 U	64 U
2-Nitrophenol	N/A	9 U	200 U	9 U	10 U	9 U	10 U	10 UJ	11 U	9 UJ	9 U	10 U	10 U	10 U	10 U	13 U
3,3'-Dichlorobenzidine	5	9 U	200 U	9 U	10 U	9 U	10 U	10 UJ	11 U	9 UJ	9 U	10 U	10 U	10 U	10 U	13 U
3-Nitroaniline	5	47 U	980 U	47 U	49 U	47 U	50 U	50 UJ	56 U	47 UJ	47 U	48 U	48 U	48 U	49 U	64 U
4,6-Dinitro-2-methylphenol	N/A	47 U	980 U	47 U	49 U	47 U	50 U	50 UJ	56 U	47 UJ	47 U	48 U	48 U	48 U	49 U	64 U
4-Bromophenyl phenyl ether	N/A	9 U	200 U	9 U	10 U	9 U	10 U	10 UJ	11 U	9 UJ	9 U	10 U	10 U	10 U	10 U	13 U
4-Chloro-3-methylphenol	N/A	9 U	200 U	9 U	10 U	9 U	10 U	10 UJ	11 U	9 UJ	9 U	10 U	10 U	10 U	10 U	13 U
4-Chloroaniline	5	9 U	200 U	9 U	10 U	9 U	10 U	10 UJ	11 U	9 UJ	9 U	10 U	10 U	10 U	10 U	13 U
4-Chlorophenyl phenyl ether	N/A	9 U	200 U	9 U	10 U	9 U	10 U	10 UJ	11 U	9 UJ	9 U	10 U	10 U	10 U	10 U	13 U
4-Methylphenol	N/A	9 U	200 U	9 U	10 U	9 U	10 U	10 UJ	11 U	9 UJ	9 U	10 U	10 U	10 U	10 U	13 U
4-Nitroaniline	5	47 U	980 U	47 U	49 U	47 U	50 U	50 UJ	56 U	47 UJ	47 U	48 U	48 U	48 U	49 U	64 U
4-Nitrophenol	N/A	47 U	980 U	47 U	49 U	47 U	50 U	50 UJ	56 U	47 UJ	47 U	48 U	48 U	48 U	49 U	64 U
Acenaphthene																
		1														<u> </u>
		1														<u> </u>
		1														
		1														<u> </u>
		1														<u> </u>
		1														<u> </u>

DRAFT Table 6 Groundwater Semivolatile Organic Compound Results Canal Street, Rochester, New York Page 2 of 2

Sample ID	NYSDEC TOGS 1.1.1	MW-1	MW-1	MW-2	MW-2	MW-2-FD	MW-3	MW-3	MW-4	MW-4	MW-5	MW-5	MW-6	MW-6-FD	MW-6	MW-7
Lab Sample ID	Class GA Water	A6F46701	A7B81404	A6F46702	A7B81401	A7B81402	A6F49503	A7B81407	A6F53003	A7B81403	A6F49502	A7B81406	A6F53001	A6F53004	A7B81405	A6F53002
·	Quality Standards															1
Date Sampled	(ug/L) ⁽¹⁾	12/26/2006	10/12/2007	12/26/2006	10/12/2007	10/12/2007	12/27/2006	10/11/2007	12/28/2006	10/12/2007	12/27/2006	10/12/2007	12/28/2006	12/28/2006	10/12/2007	12/28/2006
Bis(2-chloroethyl) ether	1	9 U	200 U	9 U	10 U	9 U	10 U	10 UJ	11 U	9 UJ	9 U	10 U	10 U	10 U	10 U	13 U
Bis(2-ethylhexyl) phthalate	5	9 U	200 U	9 U	10 U	9 U	10 U	10 UJ	11 U	9 UJ	9 U	10 U	10 U	10 U	10 U	13 U
Butyl benzyl phthalate	50 ⁽³⁾	9 U	200 U	9 U	9 U	9 U	10 U	10 UJ	11 U	9 UJ	9 U	9 U	10 U	10 U	10 U	13 U
Caprolactam	N/A	47 U	980 U	47 U	49 U	47 U	50 U	50 UJ	56 U	47 UJ	47 U	48 U	48 U	48 U	49 U	64 U
Carbazole	N/A	9 U	200 U	1 J	0.7 J	0.8 J	10 U	10 UJ	11 U	9 UJ	9 U	10 U	10 U	10 U	10 U	13 U
Chrysene	0.002 ⁽³⁾	9 U	8 J	9 U	10 U	9 U	10 U	10 UJ	11 U	9 UJ	9 U	10 U	10 U	10 U	10 U	13 U
Di-n-butyl phthalate	50	9 U	200 U	9 U	0.3 J	9 U	0.6 J	10 UJ	11 U	0.3 J	1 J	0.6 J	10 U	10 U	10 U	13 U
Di-n-octyl phthalate	50 ⁽³⁾	9 U	200 UJ	9 U	10 UJ	9 UJ	10 U	10 UJ	11 U	9 UJ	9 U	10 UJ	10 U	10 U	10 UJ	13 U
Dibenzo(a,h)anthracene	N/A	9 U	200 U	9 U	10 U	9 U	10 U	10 UJ	11 U	9 UJ	9 U	10 U	10 U	10 U	10 U	13 U
Dibenzofuran	N/A	9 U	200 U	1 J	0.8 J	0.7 J	10 U	10 UJ	11 U	9 UJ	9 U	10 U	10 U	10 U	10 U	13 U
Diethyl phthalate	50 ⁽³⁾	9 U	200 U	9 U	10 U	9 U	10 U	10 UJ	11 U	9 UJ	9 U	10 U	10 U	10 U	10 U	13 U
Dimethyl phthalate	50 ⁽³⁾	9 U	200 U	9 U	10 U	9 U	10 U	10 UJ	11 U	9 UJ	9 U	10 U	10 U	10 U	10 U	13 U
Fluoranthene	50 ⁽³⁾	9 U	14 J	2 J	1 J	1 J	10 U	10 UJ	11 U	9 UJ	9 U	10 U	10 U	10 U	0.6 J	13 U
Fluorene	50 ⁽³⁾	9 U	200 U	2 J	1 J	1 J	10 U	10 UJ	11 U	9 UJ	1 J	0.8 J	10 U	10 U	10 U	13 U
Hexachlorobenzene	0.04	9 U	200 U	9 U	10 U	9 U	10 U	10 UJ	11 U	9 UJ	9 U	10 U	10 U	10 U	10 U	13 U
Hexachlorobutadiene	0.5	9 U	200 U	9 U	10 U	9 U	10 U	10 UJ	11 U	9 UJ	9 U	10 U	10 U	10 U	10 U	13 U
Hexachlorocyclopentadiene	5	9 U	200 U	9 U	10 U	9 U	10 U	10 UJ	11 UJ	9 UJ	9 U	10 U	10 UJ	10 UJ	10 U	13 UJ
Hexachloroethane	5	9 U	200 U	9 U	10 U	9 U	10 U	10 UJ	11 U	9 UJ	9 U	10 U	10 U	10 U	10 U	13 U
Indeno(1,2,3-cd)pyrene	0.002 ⁽³⁾	9 U	7 J	9 U	10 U	9 U	10 U	10 UJ	11 U	9 UJ	9 U	10 U	10 U	10 U	0.2 J	13 U
Isophorone	50 ⁽³⁾	9 U	200 U	9 U	10 U	9 U	10 U	10 UJ	11 U	9 UJ	9 U	10 U	10 U	10 U	10 U	13 U
N-Nitroso-Di-n-propylamine	N/A	9 U	200 UJ	9 U	10 UJ	9 UJ	10 U	10 UJ	11 U	9 UJ	9 U	10 UJ	10 U	10 U	10 UJ	13 U
N-nitrosodiphenylamine	50 ⁽³⁾	9 U	200 U	9 U	10 U	9 U	10 U	10 UJ	11 U	9 UJ	9 U	10 U	10 U	10 U	10 U	13 U
Naphthalene	10 ⁽³⁾	9 U	200 U	68	4 J	2 J	33	10 UJ	11 U	9 UJ	1 J	10 U	10 U	10 U	10 U	13 U
Nitrobenzene	0.4	9 U	200 U	9 U	10 U	9 U	10 U	10 UJ	11 U	9 UJ	9 U	10 U	10 U	10 U	10 U	13 U
Pentachlorophenol	1 ⁽²⁾	47 U	980 U	47 U	49 U	47 U	50 U	50 UJ	56 U	47 UJ	7 J	48 U	48 U	48 U	49 U	64 U
Phenanthrene	50 ⁽³⁾	9 U	10 J	5 J	3 J	3 J	10 U	10 UJ	11 U	9 UJ	0.9 J	0.4 J	10 U	10 U	10 U	13 U
Phenol	1 ⁽²⁾	9 U	200 UJ	9 U	10 UJ	9 UJ	10 U	10 UJ	11 U	9 UJ	9 U	10 UJ	10 U	10 U	10 UJ	13 U
Pyrene	50 ⁽³⁾	9 U	13 J	1 J	0.8 J	1 J	10 U	10 UJ	11 U	9 UJ	9 U	10 U	10 U	10 U	0.7 J	13 U

ootnotes

- (1) Division of Water Technical and Operational Guidance Series (1.1.1). Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998.
- (2) Applies to sum of phenolic compounds.
- (3) Guidance value

Data Qualifiers:

- U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ = The analyte was not detected above the reported sample quantitation limit. However the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.

lotes:

- **Bold** values indicate concentrations that exceed the TOGS Water Quality Standards.
- N/A Data Not Available.
- "U" flagged constituents were bolded or shaded if the quantitation limit exceeded the TOGS Water Quality Standards.

DRAFT Table 7 Groundwater Metals and Miscellaneous Parameter Results Canal Street, Rochester, New York Page 1 of 1

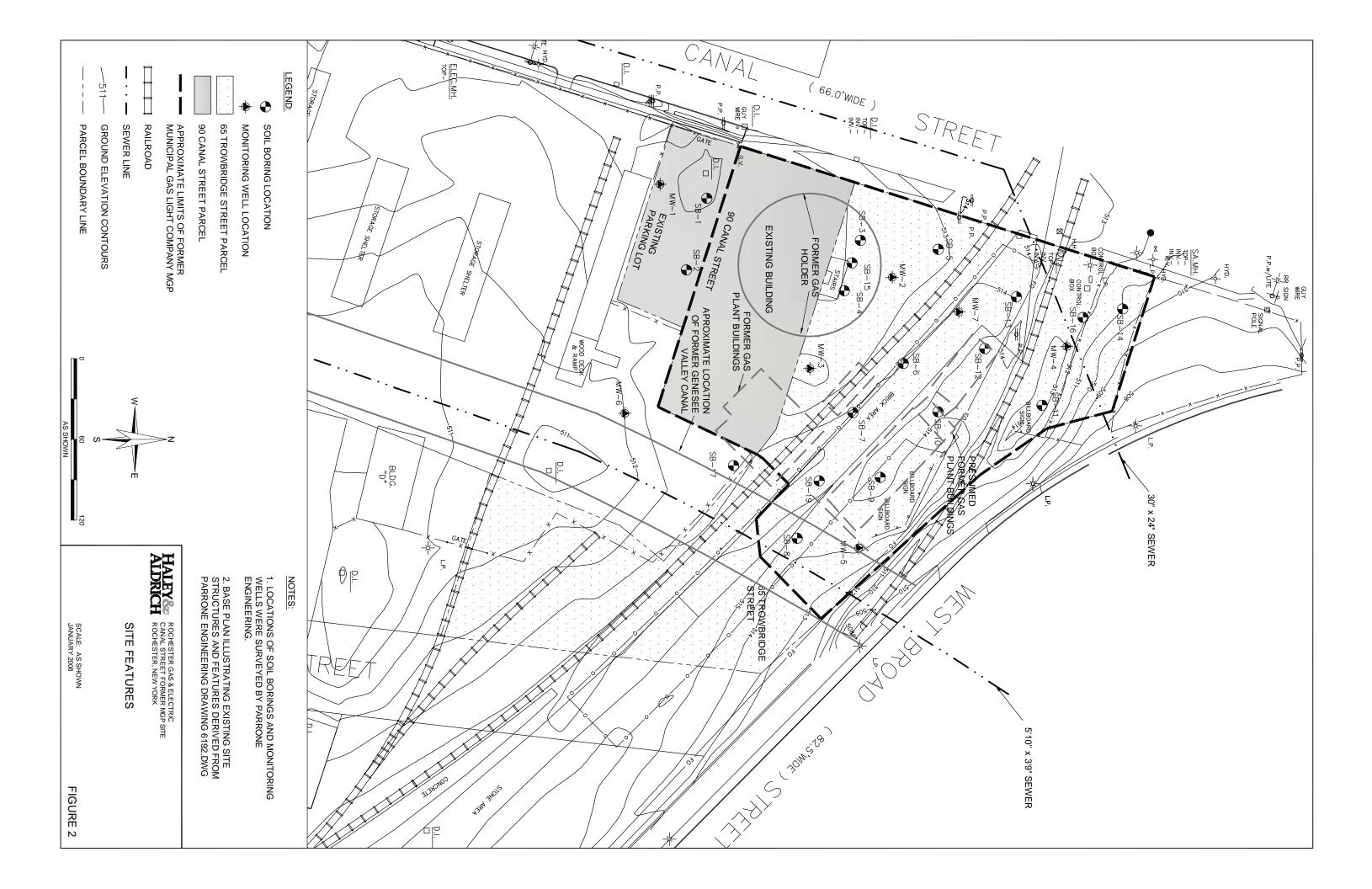
Sample ID	NYSDEC TOGS 1.1.1 Class GA Water	MW-1	MW-1	MW-2	MW-2	MW-2-FD	MW-3	MW-3	MW-4	MW-4	MW-5	MW-5	MW-6	MW-6-FD	MW-6	MW-7
Lab Sample ID	Quality Standards	A6F46701	A7B81404	A6F46702	A7B81401	A7B81402	A6F49503	A7B81407	A6F53003	A7B81403	A6F49502	A7B81406	A6F53001	A6F53004	A7B81405	A6F53002
Date Sampled	(ug/L) ⁽¹⁾	12/26/2006	10/12/2007	12/26/2006	10/12/2007	10/12/2007	12/27/2006	10/11/2007	12/28/2006	10/12/2007	12/27/2006	10/12/2007	12/28/2006	12/28/2006	10/12/2007	12/28/2006
TAL Metals (ug/L)																
Aluminum - Total	N/A	655	117000	763	560	518	190	190	1480	19600	8840	16900	190	190	4190	190
Antimony - Total	3	600 R	600 U	600 R	600 U											
Arsenic - Total	25	10 U	120	10 U	14.5	23.3	44.5	10 U	10 U	10 U	10 U					
Barium - Total	1000	104	1630	93.2	102	107	48.3	63.5	136	397	300	819	61.9	62	128	68.2
Beryllium - Total	3	5 U	5	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Cadmium - Total	5	1 U	6.1	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1.3	1 U	1 U	1 U	1 U
Calcium - Total	N/A	114000	424000	83600	80500	83800	98300	91200	91000	209000	264000	329000	57500	57500	88200	138000
Chromium - Total	50	10 U	180	10 U	40.1	19.5	43	10 U	10 U	10 U	10 U					
Cobalt - Total	N/A	50 U	66.2	50 U												
Copper - Total	200	20 U	1970	20 U	41.4	20 U	45	20 U	20 U	20 U	20 U					
Iron - Total	300 ⁽³⁾	11800	246000	8850	7830	7770	547	433	1960	45100	39500	47700	100 U	100 U	9920	559
Lead - Total	25	12.2	3940	16.2	11.8	12.1	3 U	3 U	6.6	89.8	44.8	112	3 U	3 U	23.7	3 U
Magnesium - Total	35000 ⁽²⁾	24100	165000	38200	35800	37500	33300	24400	184000	82800	103000	124000	221000	219000	218000	25800
Manganese - Total	300 ⁽³⁾	382	4080	740	604	604	667	15 U	490	2590	1400	1540	22.1	22.5	172	854
Mercury - Total	0.7	0.3 U	20.8	0.3 U												
Nickel - Total	100	40 U	154	40 U												
Potassium - Total	N/A	8720	25500	10700	12200	12800	7480	6090	7380	11700	11800	11600	10400	10400	13300	6330
Selenium - Total	10	6.1 U	6.2	6.1 U	9.6	6.1 U	6.1 U									
Silver - Total	50	10 U	10.4	10 U												
Sodium - Total	20000	58900	44700	49700	65600	70100	11700	9840	7110	9570	17500	22100	61800	61800	75500	13300
Thallium - Total	0.5 ⁽²⁾	10 U														
Vanadium - Total	N/A	50 U	217	50 U												
Zinc - Total	2000 ⁽²⁾	30.8	3990	20 U	32	126	115	251	20 U	20 U	66.1	29.1				
Miscellaneous (ug/L)																
Cyanide - Total	200	10 U	25.5	10 U	10 U											

Footnotes:

- (1) Division of Water Technical and Operational Guidance Series (1.1.1). Ambient Water Quality Standards and Guidance Values and Groundwater Effluent Limitations. June 1998.
- (2) Guidance value
- (3) Standard for total iron and manganese is 500 ug/L.

Data Qualifiers:

- U = The analyte was analyzed for, but was not detected above the reported sample quantitation limit.
- J = The analyte was positively identified; the associated numerical value is the approximate concentration of the analyte in the sample.
- UJ = The analyte was not detected above the reported sample quantitation limit. However the reported quantitation limit is approximate and may or may not represent the actual limit of quantitation necessary to accurately and precisely measure the analyte in the sample.
- R = The sample results are rejected due to serious deficiencies in the ability to analyze the sample and meet quality control criteria. The presence or absence of the analyte cannot be verified.


lotes:

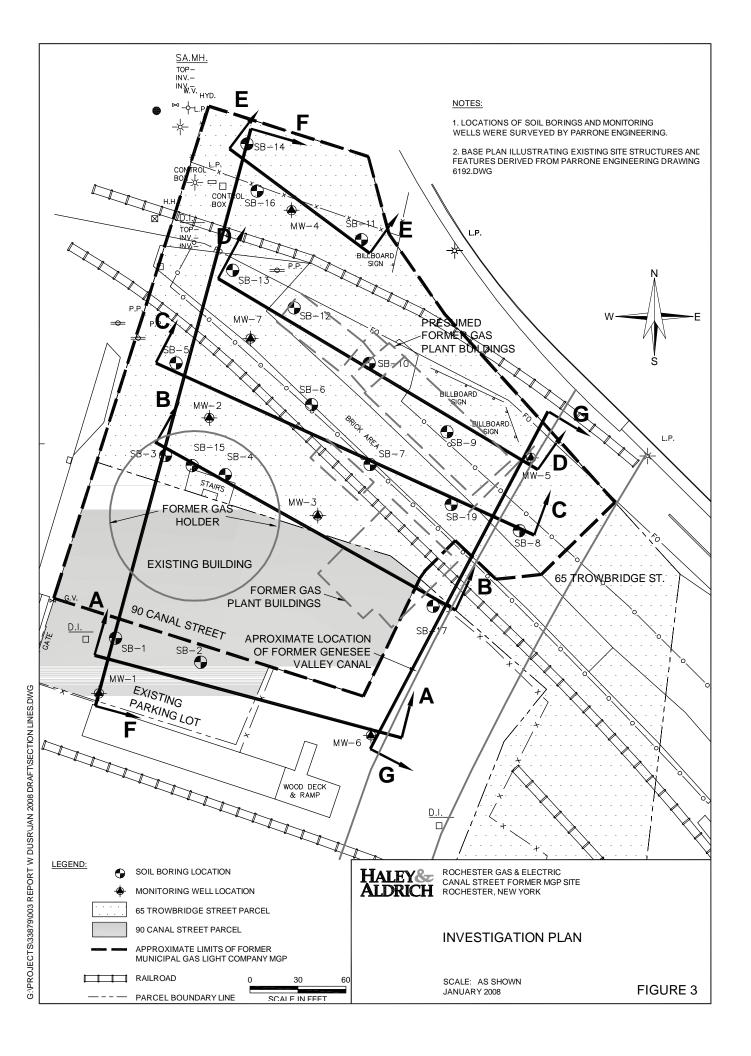

- **Bold** values indicate concentrations that exceed the TOGS Water Quality Standards.
- N/A Data Not Available.
- "U" flagged constituents were bolded or shaded if the quantitation limit exceeded the TOGS Water Quality Standards.

Table 8
Groundwater Well Data
Canal Street, Rochester, New York

Well ID	Depth of Well (ft)	Screen Interval (ft)	Ground Surface Elevation (ft)	PVC Riser Elevation (ft)	Bedrock Elevation (ft)	Static Depth to Water (TOR-ft) 12/18/2006	Groundwater Elevation (ft) 12/18/2006	Static Depth to Water (TOR-ft) 10/11/2007	Groundwater Elevation (ft) 10/11/2007
MW-1	9.5	2.5 - 7.5	514.07	513.77	504.6	5.23	508.54	6.86	506.91
MW-2	17	5.0 - 15.0	512.75	512.53	495.8	10.06	502.47	10.19	502.34
MW-3	13.1	3.0 - 11.1	513.57	516.59	500.5	11.84	504.75	11.98	504.61
MW-4	15	4.0 - 13.0	513.10	515.90	498.1	16.04	499.86	15.75	500.15
MW-5	15.5	4.5 - 13.5	514.23	514.05	498.7	9.68	504.37	11.42	502.63
MW-6	12.5	4.5 - 10.5	511.80	511.67	499.3	6.11	505.56	7.25	504.42
MW-7	14.5	7.0 - 12.5	514.59	514.49	500.1	11.83	502.66	12.1	502.39

Soil description on logs of subsurface explorations are based on Standard Penetration Test results, visual-manual examination of exposed soil and soil samples, and the results of laboratory tests on selected samples. The criteria, descriptive terms and definitions are as follows:

DENSITY OR CONSISTENCY

Density of Cohesionless <u>Soils</u>	Penetration Resistance (Blows per	Consistency of Cohesive <u>Soils</u>	Penetration Resistance (Blows per
	<u>ft.)</u>		<u>ft.)</u>
Very Loose	0-4	Very Soft	0-2
Loose	5-10	Soft	3-4
Medium	11-30	Medium	5-8
Dense	31-50	Stiff	9-15
Very Dense	over 50	Very Stiff	16-30
	550,074,105	Hard	over 30

PENETRATION RESISTANCE

12"

305 mm

Boulders

Standard Penetration Test (ASTM D-1586) — Number of blows required to drive a standard 2 in. O.D. split spoon sampler 1 ft. with a 140 lb. weight falling freely through 30 in.

Basic colors and combinations: black, brown, gray, yellow-brown, etc.

76 mm

19 mm

SUPPLEMENTAL SOIL TERMINOLOGY:

Lamina	- 0 to 1/16 in. thick (cohesive)
Parting	- 0 to 1/16 in. thick (granular)
Seam	- 1/16 to 1/2 in. thick
Layer	- 1/2 to 12 in. thick
Stratum	- > 12 in thick

Pocket - Small, erratic deposit less than 12 in. size Lens Lenticular deposit larger than a pocket - One or less per 12 in. of thickness Occasional - More than one per 12 in. of thickness Frequent Interbedded - Alternating soil layers of differing composition Varved - Alternating thin seams of silt and clay

GEOLOGIC INTERPRETATION

Mottled

Deposit type - GLACIAL TILL, ALLUVIUM, FILL.....

0.43 mm

Variation of color

The natural soils are identified by criteria of Unified Soil Classification System (USCS), with appropriate group symbol in parenthesis for each soil description. Fill materials may not be classified by USCS criteria.

0.074 mm

,						
	U.S. Standa	rd Series Seive			Clear Square S	iieve Openings
3	" 3/	'4" 4	- 1	0 4	-0 20	00
Cobbles	Gravel Gravel			Sand		Silte and Clave
CONDIES	Coarse	Fine	Coarse	Medium	Fine	Silts and Clays

2.00 mm

UNIFIED SOIL CLASSIFICATION SYSTEM			
MAJOR DIVISIONS			Group Graphic Symbol Symbol TYPICAL NAMES
Coarse grained soils: more than half is larger than number 200 sieve	Gravels More than half of coarse fraction is larger than number 4 sieve	Gravels with little or no fines	GW Well graded gravels, gravel—sand mixtures
			GP Poorly graded gravels, gravel—sand mixtures
		Gravels with over 12% fines	GM : Silty gravels, poorly graded gravel—sand—silt mixtures
			GC // Clayey gravels, poorly graded gravel—sand—clay mixtures
	Sands	or no fines	SW Well graded sands, gravelly sands
	More than half of coarse fraction is smaller than number 4 sieve		SP Poorly graded sands, gravelly sands
		Sands with over 12% fines	SM
			SC Clayey sands, poorly graded sand-clay mixtures
Fined—grained soils: more than half smaller than number 200 sieve	Silts and Clays Liquid limit 50% or less		ML
			CL // Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays
			OL Organic clays and organic silty clays of low plasticity
			MH Inorganic silty, micaceous or diatomaceous fine sandy or silty soils, elastic silts
	Silts and Clays		CH Inorganic clays of high plasticity, fat clays
	Liquid limit greater than 50%		OH Organic clays of medium to high plasticity, organic silts
Highly organic soils			PT Peat and other highly organic soils

4.75 mm

GENERAL NOTES

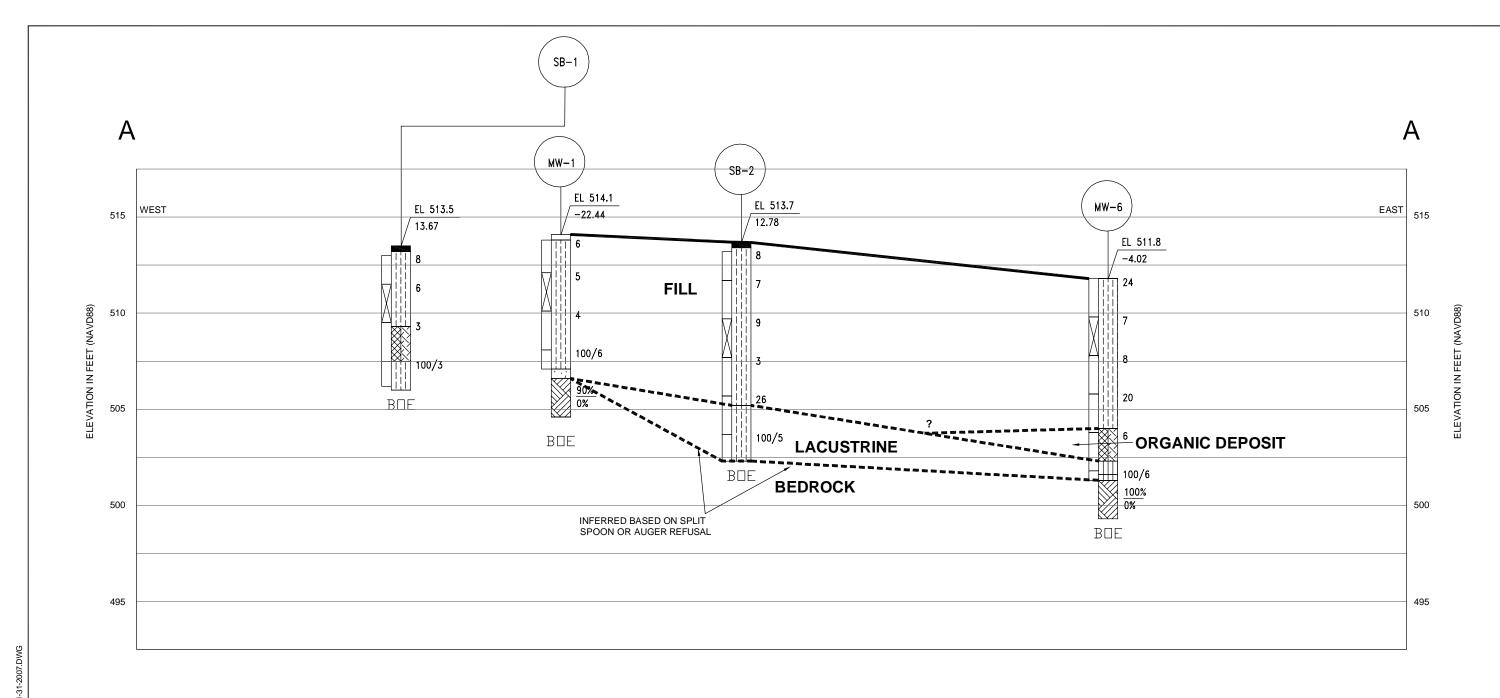
1. Logs of subsurface explorations depict soil and groundwater conditions only at the locations specified on the dates indicated. Subsurface conditions may vary at other locations and at other times.

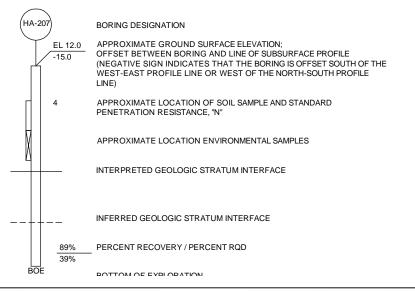
Water levels noted on the logs were measured at the times and under the conditions indicated. During test borings, these water levels could have been affected by the introduction of water into the borehole, extraction of tools on other procedures and thus may not reflect actual groundwater level at the test boring location. Groundwater level fluctuations may also occur as a result of variations in precipitation, temperature, season, tides, adjacent construction activities and pumping of water supply wells and construction dewatering

GENERAL LEGEND

BEDROCK

WEATHERED BEDROCK


CONCRETE

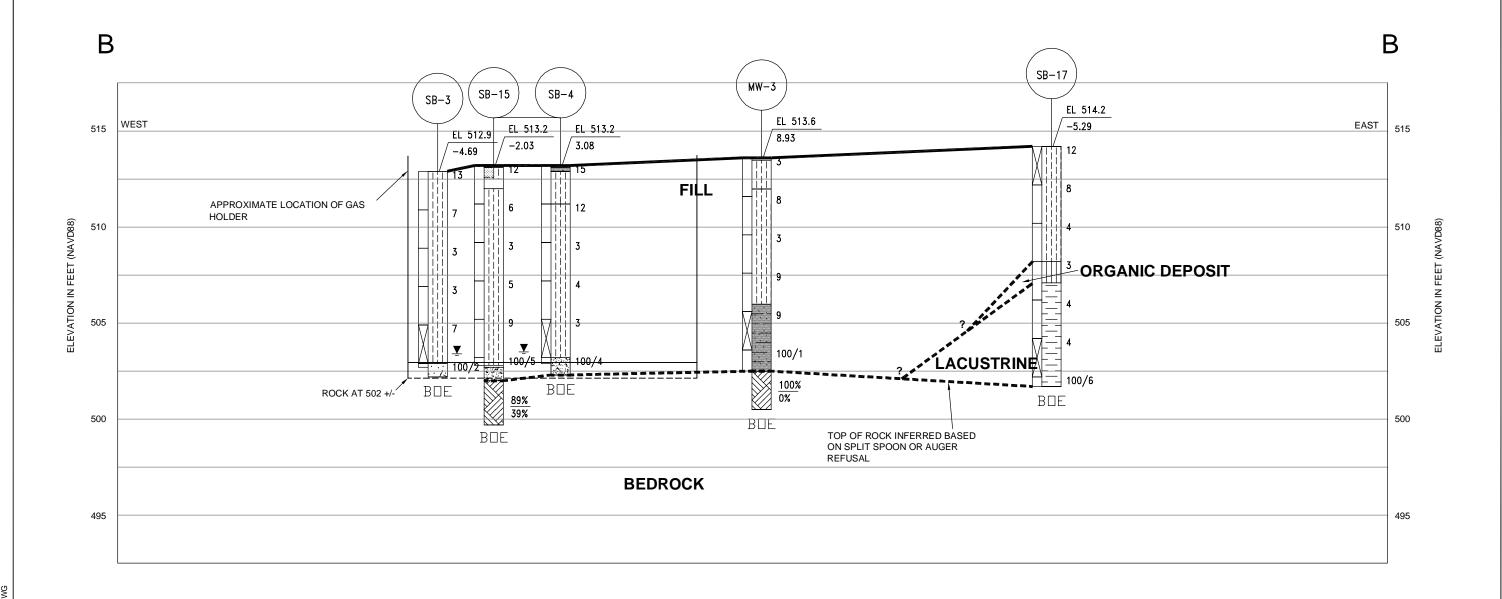

HALEY& ROCHESTER GAS & ELECTRIC CANAL STREET FORMER MGP SITE ROCHESTER, NEW YORK

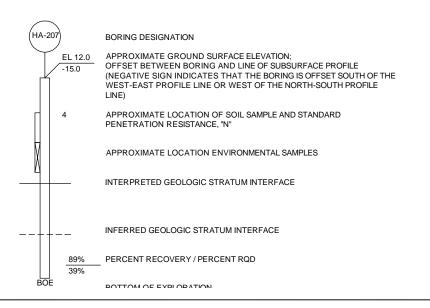
SUBSURFACE EXPLORATION **KEY FOR SOIL**


SCALE: NONE JANUARY 2008

FIGURE 4

- 1. ELEVATIONS ARE IN FEET AND REFER TO NAVD88.
- 2. OFFSET DISTANCES INDICATED ARE MEASURED FROM THE PLAN ELEVATION OF THE PROFILE LINE,
- 3. WATER LEVELS IN OPEN BOREHOLES WERE OBSERVED ON THE DATE INDICATED ON THE BORING LOG. INDICATED LEVELS MAY NOT REFLECT THE ACTUAL GROULDWATER. FLUCUATIONS IN GROUNDWATER LEVELS CAN OCCUR DUE TO VARIATIONS IN PRECIPITATION, SEASONS, WATER TABLE FLUCTUATION. ADJACENT CONSTRUCTION ACTIVITY, CONSTRUCTION DEWATERING SYSTEMS AND OTHER FACTORS.
- 4. REFER TO THE REPORT APPENDICES FOR TEST BORING LOGS.
- 5. THE STANDARD PENETRATION RESISTANCE, "N", IS DEFINED AS THE NUMBER OF BLOWS OF A 140-LB HAMMER FALLING THROUGH A VERTICAL DISTANCE OF 30 INCHES REQUIRED TO DRIVE A 2-INCH O.D., $1\frac{3}{8}$ -INCH I.D. SPLIT SPOON SAMPLER 12 INCHES.
- 6. REFER TO THE REPORT TEXT FOR MORE DETAILED SOIL STRATUM DESCRIPTIONS AND THE TEST BORING LOGS FOR DETAILED SAMPLE DESCRIPTIONS.
- 7. SUBSURFACE PROFILES DEPICT THE GENERAL GEOLOGIC CONDITIONS AT THE SITE AND ARE BASED ON INTERPRETATION OF DATA ENCOUNTERED IN THE EXPLORATIONS. LINES REPRESENTING INTERFACES BETWEEN STRATA ON THE PROFILE ARE BASED ON ADJACENT BORINGS. THE BORING STICK SHOWS THE INTERPRETED SEQUENCE OF STRATA ENCOUNTERED AT THAT LOCATION. ACTUAL SOIL CONDITIONS AND INTERFACES BETWEEN EXPLORATIONS MAY VARY SIGNIFICANTLY FROM THOSE INDICATED ON THE PROFILES.



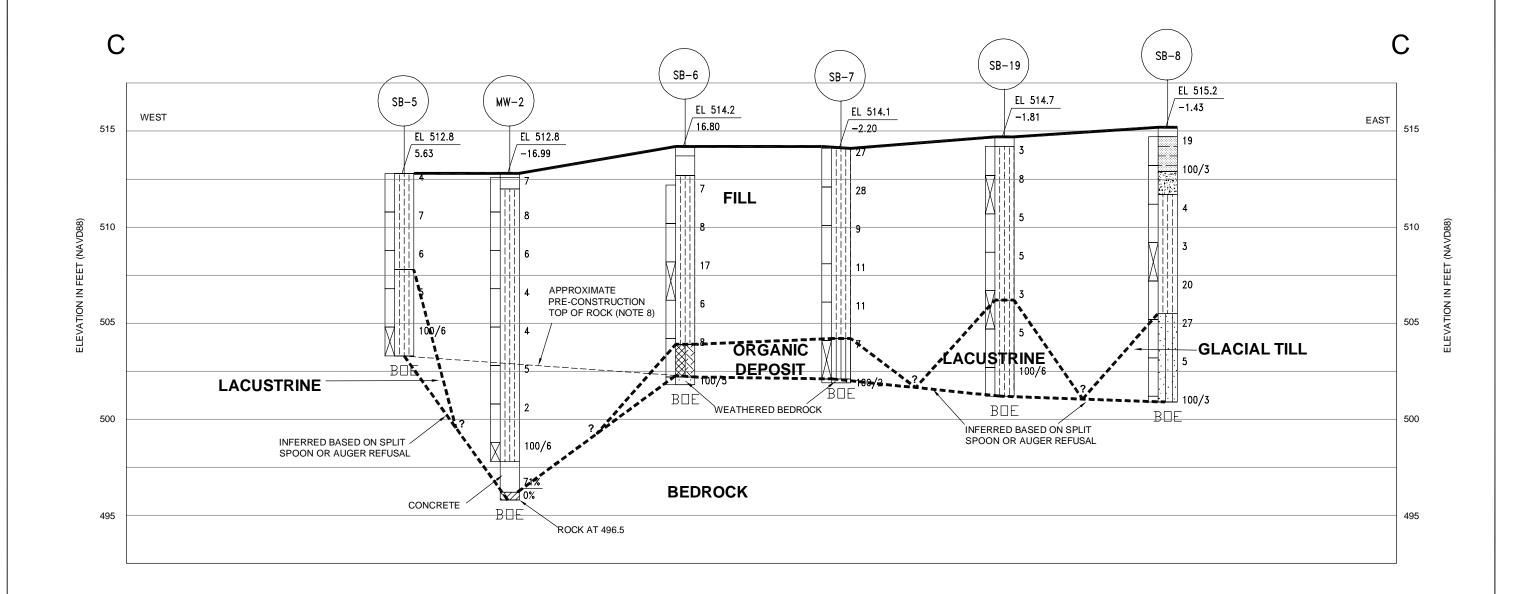

HALEY& ROCHESTER GAS & ELECTRIC CANAL STREET FORMER MGP SITE ROCHESTER, NEW YORK

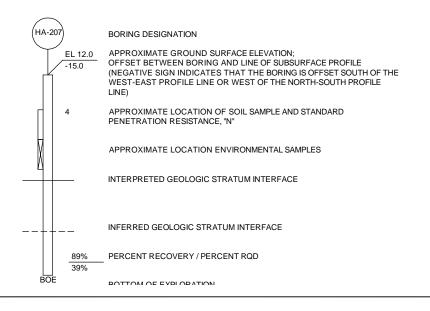
SUBSURFACE PROFILE A-A

SCALE: AS SHOWN JANUARY 2008

FIGURE 5A

- 1. ELEVATIONS ARE IN FEET AND REFER TO NAVD88.
- 2. OFFSET DISTANCES INDICATED ARE MEASURED FROM THE PLAN ELEVATION OF THE PROFILE LINE,
- 3. WATER LEVELS IN OPEN BOREHOLES WERE OBSERVED ON THE DATE INDICATED ON THE BORING LOG. INDICATED LEVELS MAY NOT REFLECT THE ACTUAL GROULDWATER. FLUCUATIONS IN GROUNDWATER LEVELS CAN OCCUR DUE TO VARIATIONS IN PRECIPITATION, SEASONS, WATER TABLE FLUCTUATION. ADJACENT CONSTRUCTION ACTIVITY, CONSTRUCTION DEWATERING SYSTEMS AND OTHER FACTORS.
- 4. REFER TO THE REPORT APPENDICES FOR TEST BORING LOGS.
- 5. THE STANDARD PENETRATION RESISTANCE, "N", IS DEFINED AS THE NUMBER OF BLOWS OF A 140-LB HAMMER FALLING THROUGH A VERTICAL DISTANCE OF 30 INCHES REQUIRED TO DRIVE A 2-INCH O.D., $1-\frac{3}{8}$ -INCH I.D. SPLIT SPOON SAMPLER 12 INCHES.
- 6. REFER TO THE REPORT TEXT FOR MORE DETAILED SOIL STRATUM DESCRIPTIONS AND THE TEST BORING LOGS FOR DETAILED SAMPLE DESCRIPTIONS.
- 7. SUBSURFACE PROFILES DEPICT THE GENERAL GEOLOGIC CONDITIONS AT THE SITE AND ARE BASED ON INTERPRETATION OF DATA ENCOUNTERED IN THE EXPLORATIONS. LINES REPRESENTING INTERFACES BETWEEN STRATA ON THE PROFILE ARE BASED ON ADJACENT BORINGS. THE BORING STICK SHOWS THE INTERPRETED SEQUENCE OF STRATA ENCOUNTERED AT THAT LOCATION. ACTUAL SOIL CONDITIONS AND INTERFACES BETWEEN EXPLORATIONS MAY VARY SIGNIFICANTLY FROM THOSE INDICATED ON THE PROFILES.




HALEY& ROCHESTER GAS & ELECTRIC CANAL STREET FORMER MGP SITE ROCHESTER, NEW YORK

SUBSURFACE PROFILE B-B

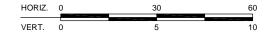

SCALE: AS SHOWN JANUARY 2008

FIGURE 5B

- 1. ELEVATIONS ARE IN FEET AND REFER TO NAVD88.
- 2. OFFSET DISTANCES INDICATED ARE MEASURED FROM THE PLAN ELEVATION OF THE PROFILE LINE,
- 3. WATER LEVELS IN OPEN BOREHOLES WERE OBSERVED ON THE DATE INDICATED ON THE BORING LOG. INDICATED LEVELS MAY NOT REFLECT THE ACTUAL GROULDWATER. FLUCUATIONS IN GROUNDWATER LEVELS CAN OCCUR DUE TO VARIATIONS IN PRECIPITATION, SEASONS, WATER TABLE FLUCTUATION. ADJACENT CONSTRUCTION ACTIVITY, CONSTRUCTION DEWATERING SYSTEMS AND OTHER FACTORS.
- 4. REFER TO THE REPORT APPENDICES FOR TEST BORING LOGS.
- 5. THE STANDARD PENETRATION RESISTANCE, "N", IS DEFINED AS THE NUMBER OF BLOWS OF A 140-LB HAMMER FALLING THROUGH A VERTICAL DISTANCE OF 30 INCHES REQUIRED TO DRIVE A 2-INCH O.D., $1\frac{3}{8}$ -INCH I.D. SPLIT SPOON SAMPLER 12 INCHES.
- 6. REFER TO THE REPORT TEXT FOR MORE DETAILED SOIL STRATUM DESCRIPTIONS AND THE TEST BORING LOGS FOR DETAILED SAMPLE DESCRIPTIONS.
- SUBSURFACE PROFILES DEPICT THE GENERAL GEOLOGIC CONDITIONS AT THE SITE AND ARE BASED ON INTERPRETATION OF DATA ENCOUNTERED IN THE EXPLORATIONS. LINES REPRESENTING INTERFACES BETWEEN STRATA ON THE PROFILE ARE BASED ON ADJACENT BORINGS. THE BORING STICK SHOWS THE INTERPRETED SEQUENCE OF STRATA ENCOUNTERED AT THAT LOCATION. ACTUAL SOIL CONDITIONS AND INTERFACES BETWEEN EXPLORATIONS MAY VARY SIGNIFICANTLY FROM THOSE INDICATED ON THE
- 8. PRE-CONSTRUCTION BEDROCK ELEVATION INTERPOLATED BETWEEN BORING SB-6 AND BORING SB-5.

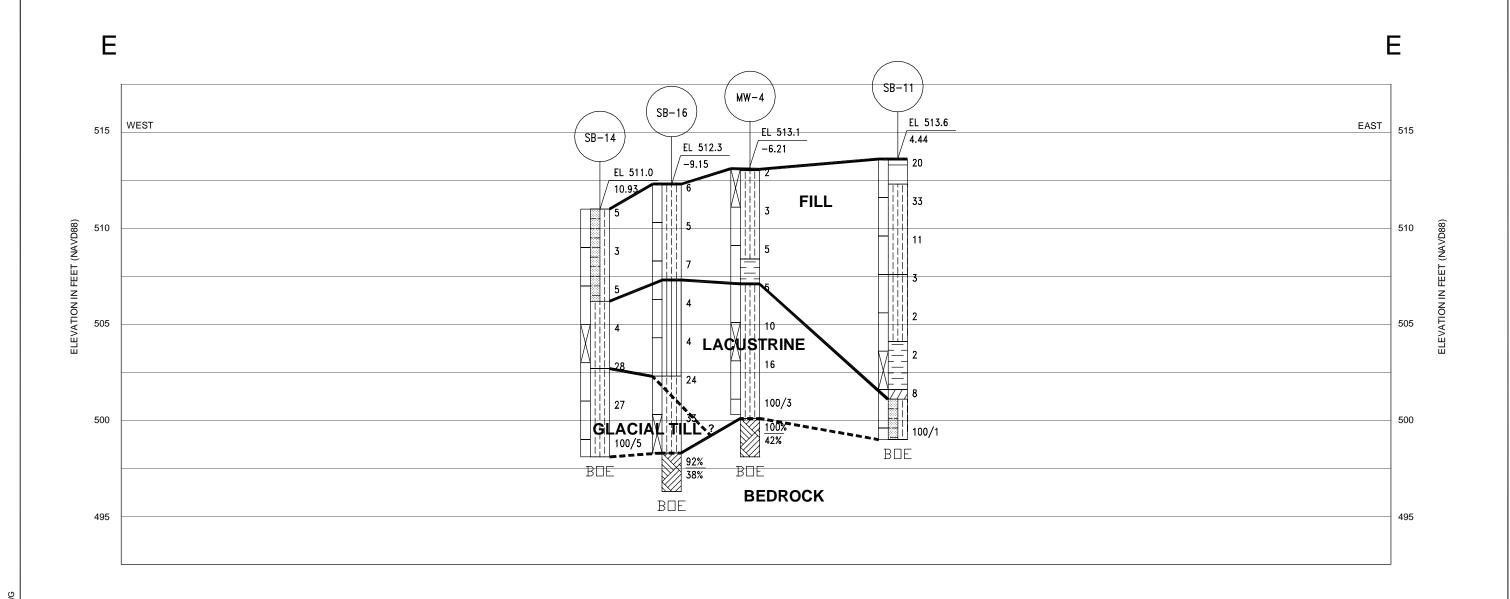
HALEY& ROCHESTER GAS & ELECTRIC CANAL STREET FORMER MGP SITE ROCHESTER, NEW YORK

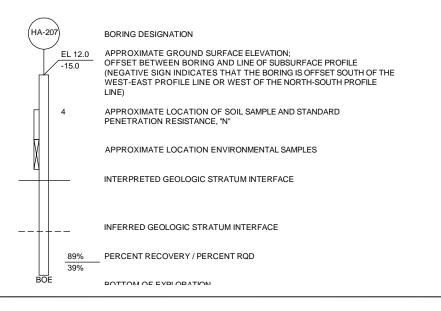
SUBSURFACE PROFILE C-C

SCALE: AS SHOWN JANUARY 2008

FIGURE 5C

- 1. ELEVATIONS ARE IN FEET AND REFER TO NAVD88.
- 2. OFFSET DISTANCES INDICATED ARE MEASURED FROM THE PLAN ELEVATION OF THE PROFILE LINE,
- 3. WATER LEVELS IN OPEN BOREHOLES WERE OBSERVED ON THE DATE INDICATED ON THE BORING LOG. INDICATED LEVELS MAY NOT REFLECT THE ACTUAL GROULDWATER. FLUCUATIONS IN GROUNDWATER LEVELS CAN OCCUR DUE TO VARIATIONS IN PRECIPITATION, SEASONS, WATER TABLE FLUCTUATION. ADJACENT CONSTRUCTION ACTIVITY, CONSTRUCTION DEWATERING SYSTEMS AND OTHER FACTORS.
- 4. REFER TO THE REPORT APPENDICES FOR TEST BORING LOGS.
- 5. THE STANDARD PENETRATION RESISTANCE, "N", IS DEFINED AS THE NUMBER OF BLOWS OF A 140-LB HAMMER FALLING THROUGH A VERTICAL DISTANCE OF 30 INCHES REQUIRED TO DRIVE A 2-INCH O.D., $1\frac{3}{8}$ -INCH I.D. SPLIT SPOON SAMPLER 12 INCHES.
- 6. REFER TO THE REPORT TEXT FOR MORE DETAILED SOIL STRATUM DESCRIPTIONS AND THE TEST BORING LOGS FOR DETAILED SAMPLE DESCRIPTIONS.
- 7. SUBSURFACE PROFILES DEPICT THE GENERAL GEOLOGIC CONDITIONS AT THE SITE AND ARE BASED ON INTERPRETATION OF DATA ENCOUNTERED IN THE EXPLORATIONS. LINES REPRESENTING INTERFACES BETWEEN STRATA ON THE PROFILE ARE BASED ON ADJACENT BORINGS. THE BORING STICK SHOWS THE INTERPRETED SEQUENCE OF STRATA ENCOUNTERED AT THAT LOCATION. ACTUAL SOIL CONDITIONS AND INTERFACES BETWEEN EXPLORATIONS MAY VARY SIGNIFICANTLY FROM THOSE INDICATED ON THE PROFILES.




HALEY& ROCHESTER GAS & ELECTRIC CANAL STREET FORMER MGP SITE ROCHESTER, NEW YORK

SUBSURFACE PROFILE D-D

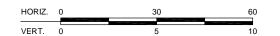
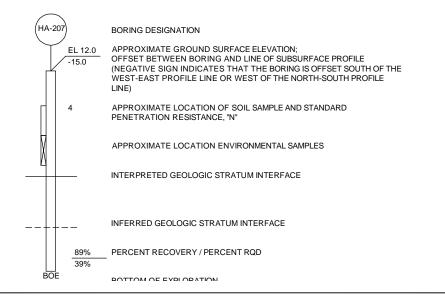

SCALE: AS SHOWN JANUARY 2008

FIGURE 5D

- 1. ELEVATIONS ARE IN FEET AND REFER TO NAVD88.
- 2. OFFSET DISTANCES INDICATED ARE MEASURED FROM THE PLAN ELEVATION OF THE PROFILE LINE,
- 3. WATER LEVELS IN OPEN BOREHOLES WERE OBSERVED ON THE DATE INDICATED ON THE BORING LOG. INDICATED LEVELS MAY NOT REFLECT THE ACTUAL GROULDWATER. FLUCUATIONS IN GROUNDWATER LEVELS CAN OCCUR DUE TO VARIATIONS IN PRECIPITATION, SEASONS, WATER TABLE FLUCTUATION. ADJACENT CONSTRUCTION ACTIVITY, CONSTRUCTION DEWATERING SYSTEMS AND OTHER FACTORS.
- 4. REFER TO THE REPORT APPENDICES FOR TEST BORING LOGS.
- 5. THE STANDARD PENETRATION RESISTANCE, "N", IS DEFINED AS THE NUMBER OF BLOWS OF A 140-LB HAMMER FALLING THROUGH A VERTICAL DISTANCE OF 30 INCHES REQUIRED TO DRIVE A 2-INCH O.D., $1\frac{3}{8}$ -INCH I.D. SPLIT SPOON SAMPLER 12 INCHES.
- 6. REFER TO THE REPORT TEXT FOR MORE DETAILED SOIL STRATUM DESCRIPTIONS AND THE TEST BORING LOGS FOR DETAILED SAMPLE DESCRIPTIONS.
- 7. SUBSURFACE PROFILES DEPICT THE GENERAL GEOLOGIC CONDITIONS AT THE SITE AND ARE BASED ON INTERPRETATION OF DATA ENCOUNTERED IN THE EXPLORATIONS. LINES REPRESENTING INTERFACES BETWEEN STRATA ON THE PROFILE ARE BASED ON ADJACENT BORINGS. THE BORING STICK SHOWS THE INTERPRETED SEQUENCE OF STRATA ENCOUNTERED AT THAT LOCATION. ACTUAL SOIL CONDITIONS AND INTERFACES BETWEEN EXPLORATIONS MAY VARY SIGNIFICANTLY FROM THOSE INDICATED ON THE PROFILES.



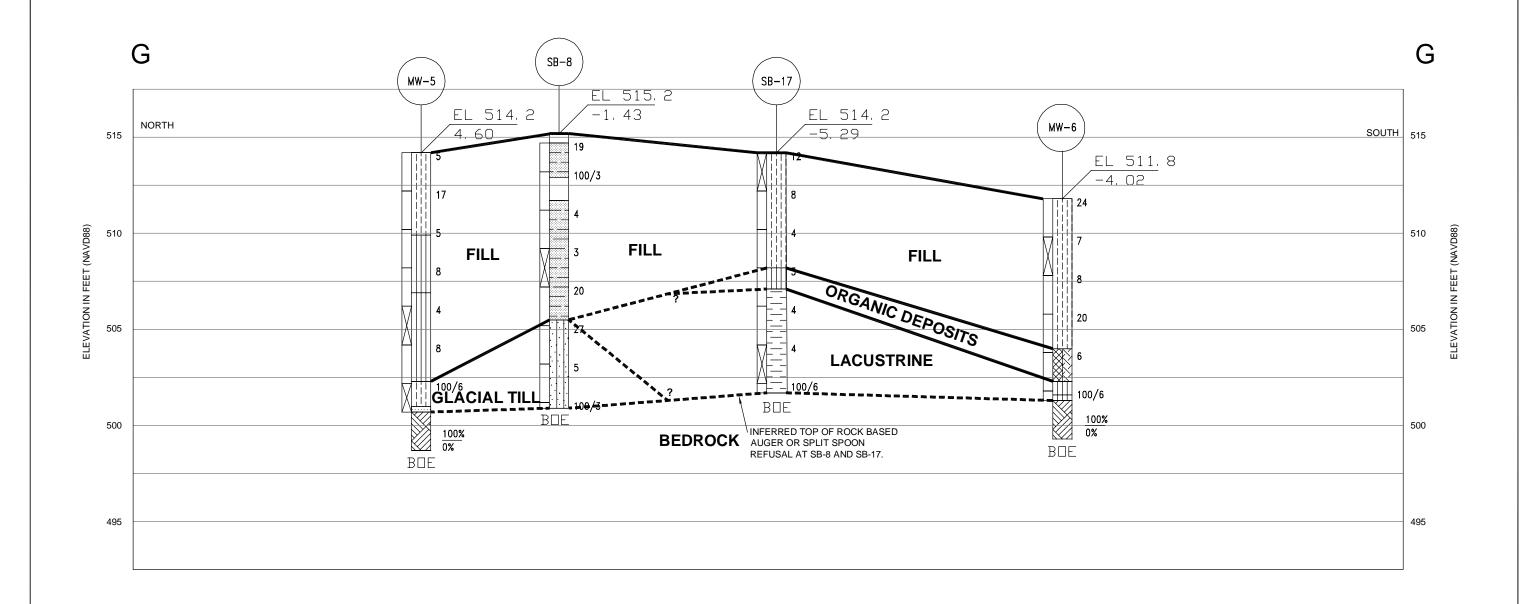
HALEY& ROCHESTER GAS & ELECTRIC CANAL STREET FORMER MGP SITE ROCHESTER, NEW YORK

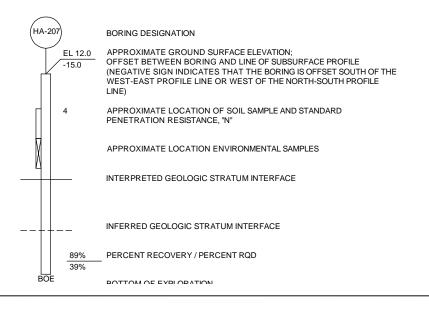
SUBSURFACE PROFILE E-E

SCALE: AS SHOWN JANUARY 2008

FIGURE 5E

- 1. ELEVATIONS ARE IN FEET AND REFER TO NAVD88.
- 2. OFFSET DISTANCES INDICATED ARE MEASURED FROM THE PLAN ELEVATION OF THE PROFILE LINE,
- 3. WATER LEVELS IN OPEN BOREHOLES WERE OBSERVED ON THE DATE INDICATED ON THE BORING LOG. INDICATED LEVELS MAY NOT REFLECT THE ACTUAL GROULDWATER. FLUCUATIONS IN GROUNDWATER LEVELS CAN OCCUR DUE TO VARIATIONS IN PRECIPITATION, SEASONS, WATER TABLE FLUCTUATION. ADJACENT CONSTRUCTION ACTIVITY, CONSTRUCTION DEWATERING SYSTEMS AND OTHER FACTORS.
- 4. REFER TO THE REPORT APPENDICES FOR TEST BORING LOGS.
- 5. THE STANDARD PENETRATION RESISTANCE, "N", IS DEFINED AS THE NUMBER OF BLOWS OF A 140-LB HAMMER FALLING THROUGH A VERTICAL DISTANCE OF 30 INCHES REQUIRED TO DRIVE A 2-INCH O.D., $1\frac{3}{8}$ -INCH I.D. SPLIT SPOON SAMPLER 12 INCHES.
- 6. REFER TO THE REPORT TEXT FOR MORE DETAILED SOIL STRATUM DESCRIPTIONS AND THE TEST BORING LOGS FOR DETAILED SAMPLE DESCRIPTIONS.
- SUBSURFACE PROFILES DEPICT THE GENERAL GEOLOGIC CONDITIONS AT THE SITE AND ARE BASED ON INTERPRETATION OF DATA ENCOUNTERED IN THE EXPLORATIONS. LINES REPRESENTING INTERFACES BETWEEN STRATA ON THE PROFILE ARE BASED ON ADJACENT BORINGS. THE BORING STICK SHOWS THE INTERPRETED SEQUENCE OF STRATA ENCOUNTERED AT THAT LOCATION. ACTUAL SOIL CONDITIONS AND INTERFACES BETWEEN EXPLORATIONS MAY VARY SIGNIFICANTLY FROM THOSE INDICATED ON THE PROFILES.
- 8. PRE-CONSTRUCTION BEDROCK ELEVATION INTERPOLATED BETWEEN BORING MW-1 AND BORING MW-7.



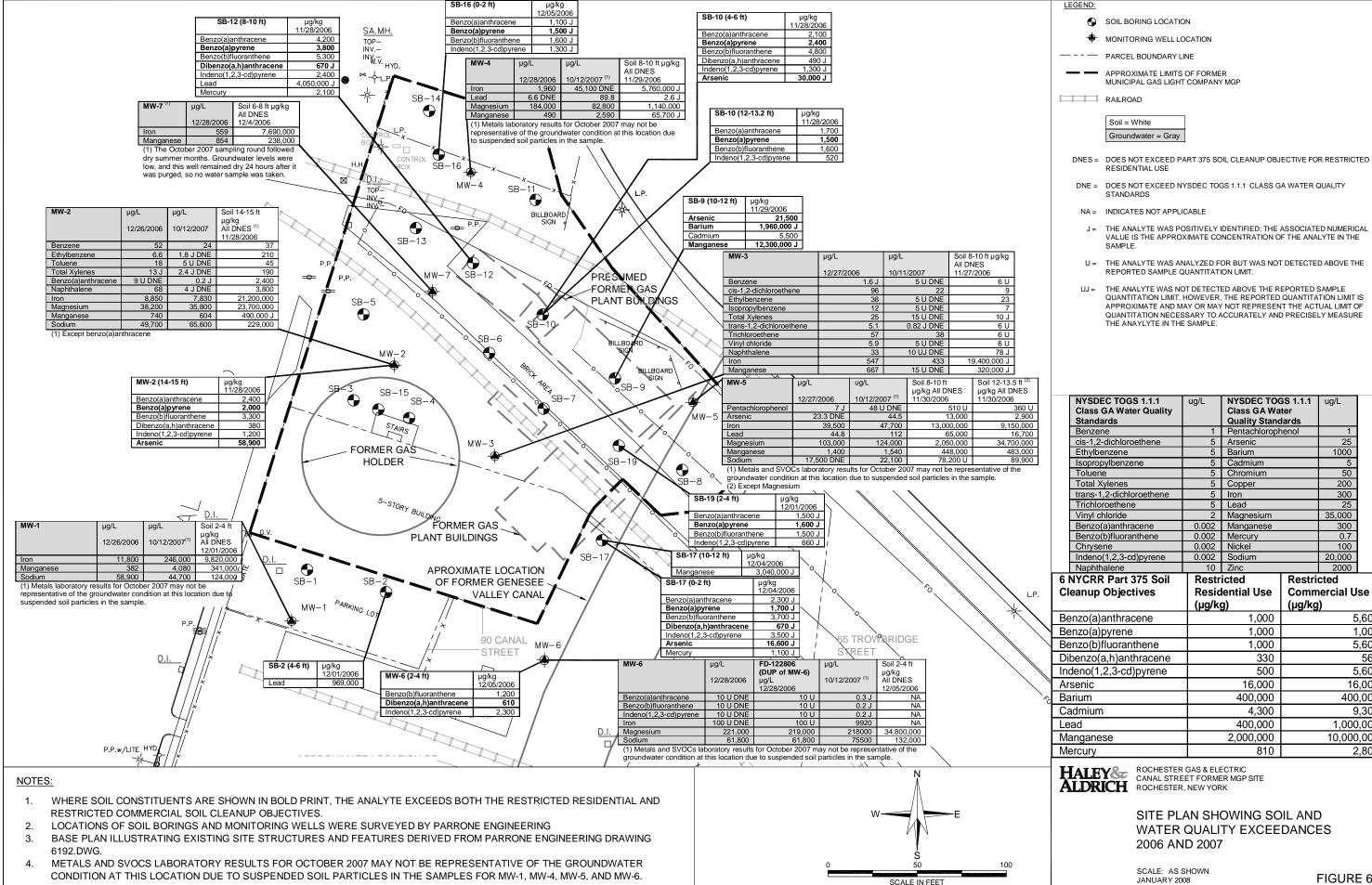

HALEY& ROCHESTER GAS & ELECTRIC CANAL STREET FORMER MGP SITE ROCHESTER, NEW YORK

SUBSURFACE PROFILE F-F

SCALE: AS SHOWN JANUARY 2008

FIGURE 5F

- 1. ELEVATIONS ARE IN FEET AND REFER TO NAVD88.
- 2. OFFSET DISTANCES INDICATED ARE MEASURED FROM THE PLAN ELEVATION OF THE PROFILE LINE,
- 3. WATER LEVELS IN OPEN BOREHOLES WERE OBSERVED ON THE DATE INDICATED ON THE BORING LOG. INDICATED LEVELS MAY NOT REFLECT THE ACTUAL GROULDWATER. FLUCUATIONS IN GROUNDWATER LEVELS CAN OCCUR DUE TO VARIATIONS IN PRECIPITATION, SEASONS, WATER TABLE FLUCTUATION. ADJACENT CONSTRUCTION ACTIVITY, CONSTRUCTION DEWATERING SYSTEMS AND OTHER FACTORS.
- 4. REFER TO THE REPORT APPENDICES FOR TEST BORING LOGS.
- 5. THE STANDARD PENETRATION RESISTANCE, "N", IS DEFINED AS THE NUMBER OF BLOWS OF A 140-LB HAMMER FALLING THROUGH A VERTICAL DISTANCE OF 30 INCHES REQUIRED TO DRIVE A 2-INCH O.D., $1\frac{3}{8}$ -INCH I.D. SPLIT SPOON SAMPLER 12 INCHES.
- 6. REFER TO THE REPORT TEXT FOR MORE DETAILED SOIL STRATUM DESCRIPTIONS AND THE TEST BORING LOGS FOR DETAILED SAMPLE DESCRIPTIONS.
- 7. SUBSURFACE PROFILES DEPICT THE GENERAL GEOLOGIC CONDITIONS AT THE SITE AND ARE BASED ON INTERPRETATION OF DATA ENCOUNTERED IN THE EXPLORATIONS. LINES REPRESENTING INTERFACES BETWEEN STRATA ON THE PROFILE ARE BASED ON ADJACENT BORINGS. THE BORING STICK SHOWS THE INTERPRETED SEQUENCE OF STRATA ENCOUNTERED AT THAT LOCATION. ACTUAL SOIL CONDITIONS AND INTERFACES BETWEEN EXPLORATIONS MAY VARY SIGNIFICANTLY FROM THOSE INDICATED ON THE PROFILES.



HALEY& ROCHESTER GAS & ELECTRIC CANAL STREET FORMER MGP SITE ROCHESTER, NEW YORK

SUBSURFACE PROFILE G-G

SCALE: AS SHOWN JANUARY 2008

FIGURE 5G

1000

50

200

300

35,000

300

0.7

100

5,600

1,000

5,600

5,600

16,000

400,000

1.000.000

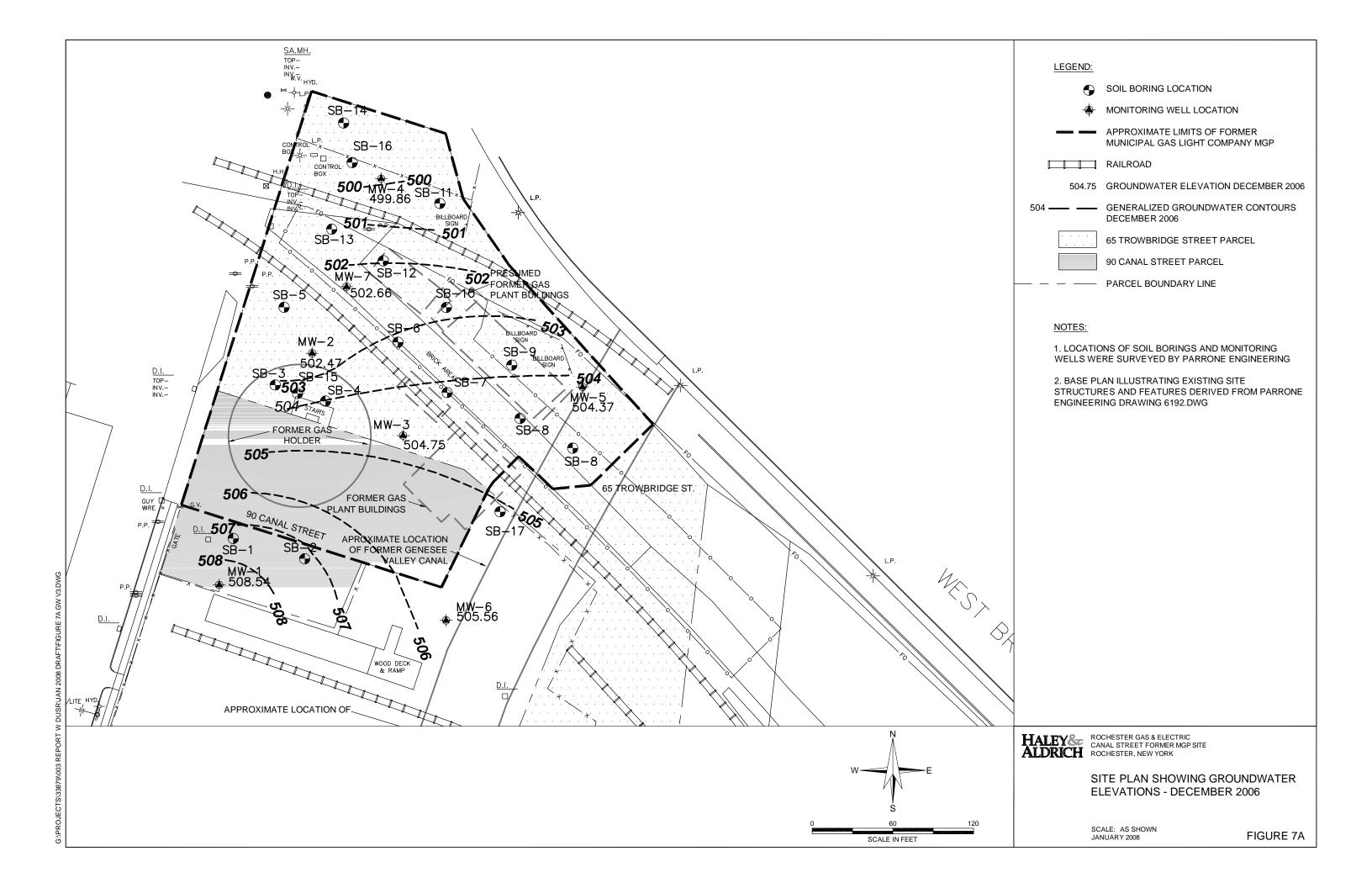
10.000.000

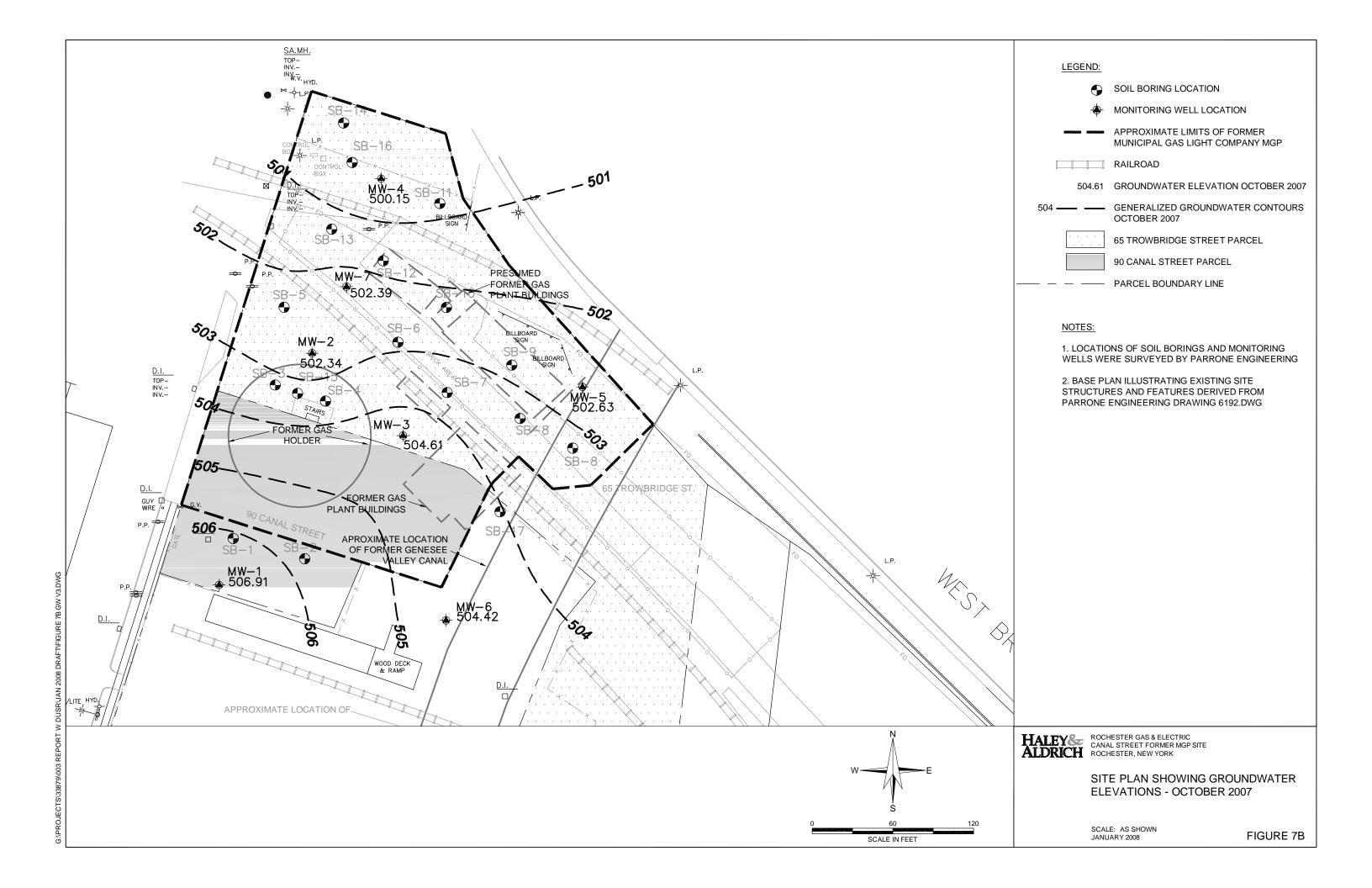
FIGURE 6

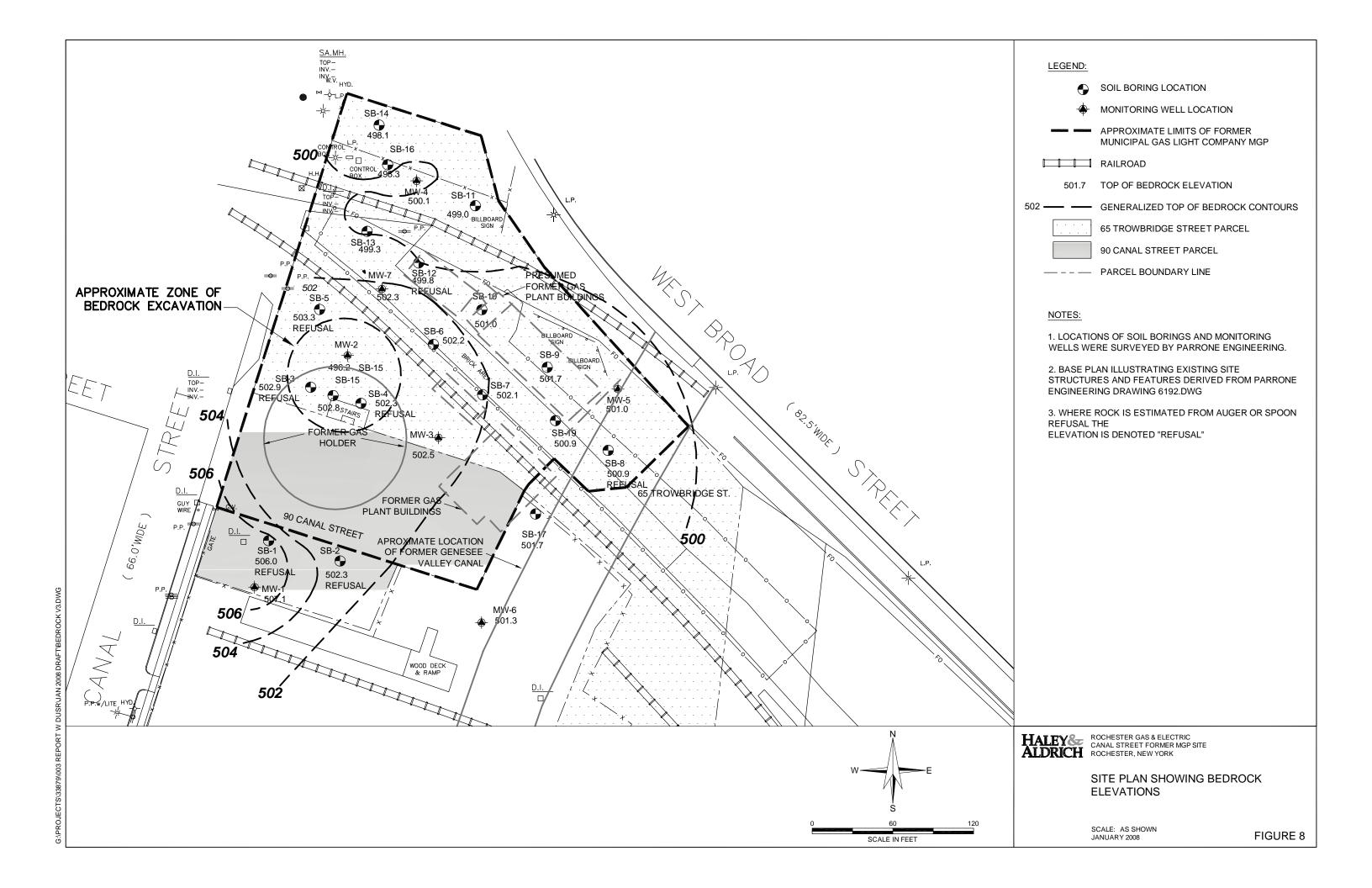
9,300

2.800

560


20,000


2000


Commercial Use

Restricted

(µg/kg)

APPENDIX A

Geophysical Report

November 27, 2006

Mr. Steve Mullin Rochester Gas & Electric Corp. 89 East Avenue, 4th Floor Rochester, NY 14649-0001

Subject: Geophysical Survey Report

Canal Street Former MGP Site

Rochester, New York

Dear Mr. Mullin:

1.0 INTRODUCTION

This report summarizes the methods and findings of the geophysical survey conducted by Geomatrix Consultants, Inc. at the Rochester Gas and Electric (RG&E) Canal Street, Rochester former manufactured gas plant (MGP) Site (the "Site"), located in Rochester, NY.

All surface remnants of the former MGP site have been removed and the site is currently vacant land and a parking lot adjacent to a multi-story residential apartment building. The parking lot is located south of the apartment building and the vacant land (apparently used primarily for walking dogs) is located north of the building.

The geophysical survey was performed by Geomatrix on November 19, 2006. The primary objective was to identify the location of the former gas holder. The secondary objective was to geophysically characterize the site to explore for any anomalies of potential environmental significance. The survey was performed utilizing a suite of geophysical tools: Time domain electromagnetics (EM61); frequency domain electromagnetics (EM31) and ground penetrating radar (GPR). All vehicles were removed from the survey area with the exception of several in the southwestern portion of the parking lot.

The geophysical results presented herein are intended to serve as a guide to focus any future intrusive investigations, if warranted. Additional collaborative data are generally necessary to confirm geophysical anomalies.

2.0 METHODOLOGY

A reference grid was installed to facilitate data acquisition along lines spaced three feet apart. The grid was marked with red and white spray paint with select coordinates labeled to facilitate

reoccupation of stations if necessary. The grid was installed such that coordinate 50N,0E was established at the southwest corner of the apartment building.

2.1 Electromagnetic EM61 Survey Methodology

The property was geophysically surveyed using the Geonics EM61. The EM61 unit is a high sensitivity, high resolution time domain electromagnetic (TDEM) metal detector that can detect both ferrous and nonferrous metallic objects. It has an approximate investigation depth of 10 feet. processing console The contained in a backpack worn by the operator which is interfaced to a digital data logger. transmitter and two receiver coils are located on a two-wheeled cart that is pulled by the operator.

EM61 (photo not from this site)

The device's transmitter coil

generates a pulsed primary EM field at a rate of 150 pulses per second, inducing eddy currents into the subsurface. The decay rates of these eddy currents are measured by two, 3.28 foot by 1.64 foot (1 meter by ½ meter) rectangular receiver coils. By taking the measurements at a relatively long time frame after termination of the primary pulse, the response is practically independent of the survey area's terrain conductivity. Specifically, the decay rates of the eddy currents are much longer for metals than for normal soils allowing the discrimination of the two.

Data are collected from the EM61's two receiver coils. One of the receiver coils is located coincident to the transmitter coil. The other receiver coil is located 1.31 feet (0.4 meters) above the transmitter coil. Data from the top receiver coil are stored on Channel 1 of a digital data logger. Data from the bottom receiver coil are stored on Channel 2 of the data logger. Channel 1 and Channel 2 data are simultaneously recorded at each station location. The instrument responses are recorded in units of milliVolts (mV). Data were recorded digitally by a data logger

at a rate of approximately 2 measurements per foot along the survey lines which were spaced 3 feet apart.

2.2 Electromagnetic EM31 Survey Methodology

Α Geonics EM31 Terrain Conductivity meter was used to measure and record the quadrature component (ground conductivity) and the inphase component of the EM field along the survey lines. The quadrature component of the EM field is a measurement of the apparent ground conductivity. The inphase component of the EM field is sensitive to metallic objects. Comparison of the quadrature component of the EM field data (expressed units in ofmilliSiemens per meter (mS/m)) and the inphase component data (expressed in units of parts per

EM31 with GPS (photo not from this site)

thousand (ppt)) results in increased anomaly definition. The character of the EM response, low or high, is partially dependent on the orientation of the buried target relative to the orientation of the EM31 device during data acquisition, and the survey direction. A buried metal pipe, for example, will exhibit a high valued response when the trend of the pipe is parallel to the survey direction. Alternatively, when a survey line crosses a buried metal pipe whose trend is perpendicular to the survey direction, it is characterized by a low response. Similarly, other complex buried metal anomalies are indicated by a coupling of a high and low response.

All readings were taken with the instrument oriented parallel to the direction of travel, in the vertical dipole mode and with the instrument at waist height. The depth of penetration with the instrument in this configuration is approximately 12 to 15 feet below ground surface. Data were collected and stored in a solid state memory data logger during the survey. The data logger was interfaced to a portable computer and the data were transferred to a floppy disk for subsequent processing and interpretation. A survey base station was established on-site and was revisited

throughout the survey to check for instrument drift and malfunction. No significant drift or malfunction was observed.

The terrain conductivity and inphase data were initially edited and then plotted as profile lines for interpretation. Contour maps of the data were then constructed and utilized for final interpretation. The geophysical data are presented in final form as a series of color contour maps. The color maps allow for an illustration of detected anomalies that are associated with conductive materials such as buried metals, wastes, fill, utilities, and changes in soil texture and/or moisture content

2.3 Ground Penetrating Radar Survey Methodology

Ground penetrating radar works on the principle of inducing high frequency radio waves into the earth and recording the energy that is reflected back from depth. Depth of penetration is dependent on the transmitting frequency, the dielectric constant of the subsurface material and the electrical conductivity of the subsurface material and its pore fluid (i.e., depth of penetration is reduced in fine grained soils).

GPR equipment (photo not from this site)

GPR reflections occur at interfaces between different materials. The

magnitude and character of the reflections are dependent on the geometry of the reflecting interface and the change in the dielectric constant of the materials across that interface. A common misconception concerning GPR data that should be noted is that a GPR profile does not represent a 1-dimensional slice of the subsurface. Rather, as radar energy comes from a 3-dimensional cone of material beneath the GPR transducer, features outside of the vertical line beneath the transducer may occur in a spatially incorrect position. For example, a point source (brick, cobble, etc) in the subsurface will exhibit a response similar in appearance to a hyperbola or inverted "U" on the radar profile. These hyperbolas are diffraction events from point sources in the subsurface. As the radar unit passes over the object, the radar wave travel time decreases until the radar unit is directly above the object. As the radar unit continues past the object, the travel time increases thereby forming a hyperbolic shaped reflection.

3.0 RESULTS

The results of the geophysical survey are presented in Figure 1 through Figure 7. The color bar to the right of the maps indicates the colors associated with the instrument response. For each EM data set, two figures are presented, both with and without a historic map overlay provided by RG&E.

The EM61 data for this Site are presented in Figures 1 and 2. Areas suspected to be free of buried metals are shown as color shades of light blue. All areas exhibiting a response greater than background (0 to 20 mVolts) likely contain surface or buried metals. These areas are depicted in shades of dark blue through yellow on the figures. The existing railroad tracks were not crossed with the EM61 due to the potential for instrument damage. The brushy area to the north of the site was not surveyed with the EM61 due to inaccessibility. With the exception of the southern parking lot area, numerous buried metal anomalies are observed scattered throughout the site. None of these anomalies appear to correlate with prior MGP features. Eight linear anomalies are observed in the north central portion of the survey area. These are shown as a linear EM high response in shades of light blue through yellow. These linear anomalies are likely buried utilities and may or may not be related to former MGP activities.

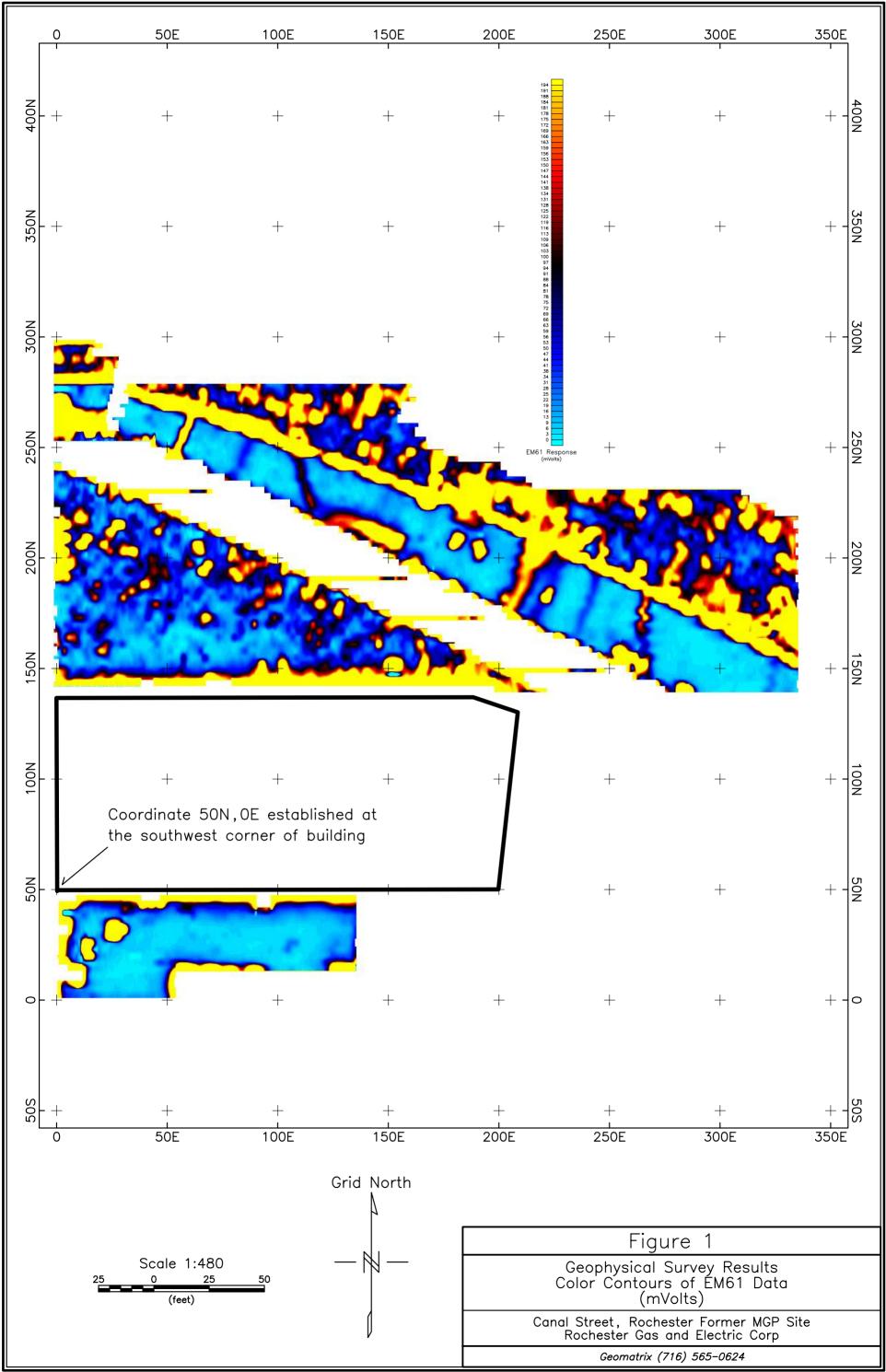
The EM31 conductivity and inphase data are presented in Figures 3 through 6 (again, with and without the historic feature map overlay). As expected, the quality of the EM31 data relative to the EM61 is poor. The EM31 was used primarily to provide coverage in the northern portion of the survey are where dense brush precluded the acquisition of EM61 data. The most notable anomaly in the EM31 data set is the conductivity and inphase high observed in the northern (brushy) area (300N to 350N). This type of response is typical of a large buried object such as a building foundation. An alternative possibility would include an area of electrically conductive fill material such as railroad ballast or slag.

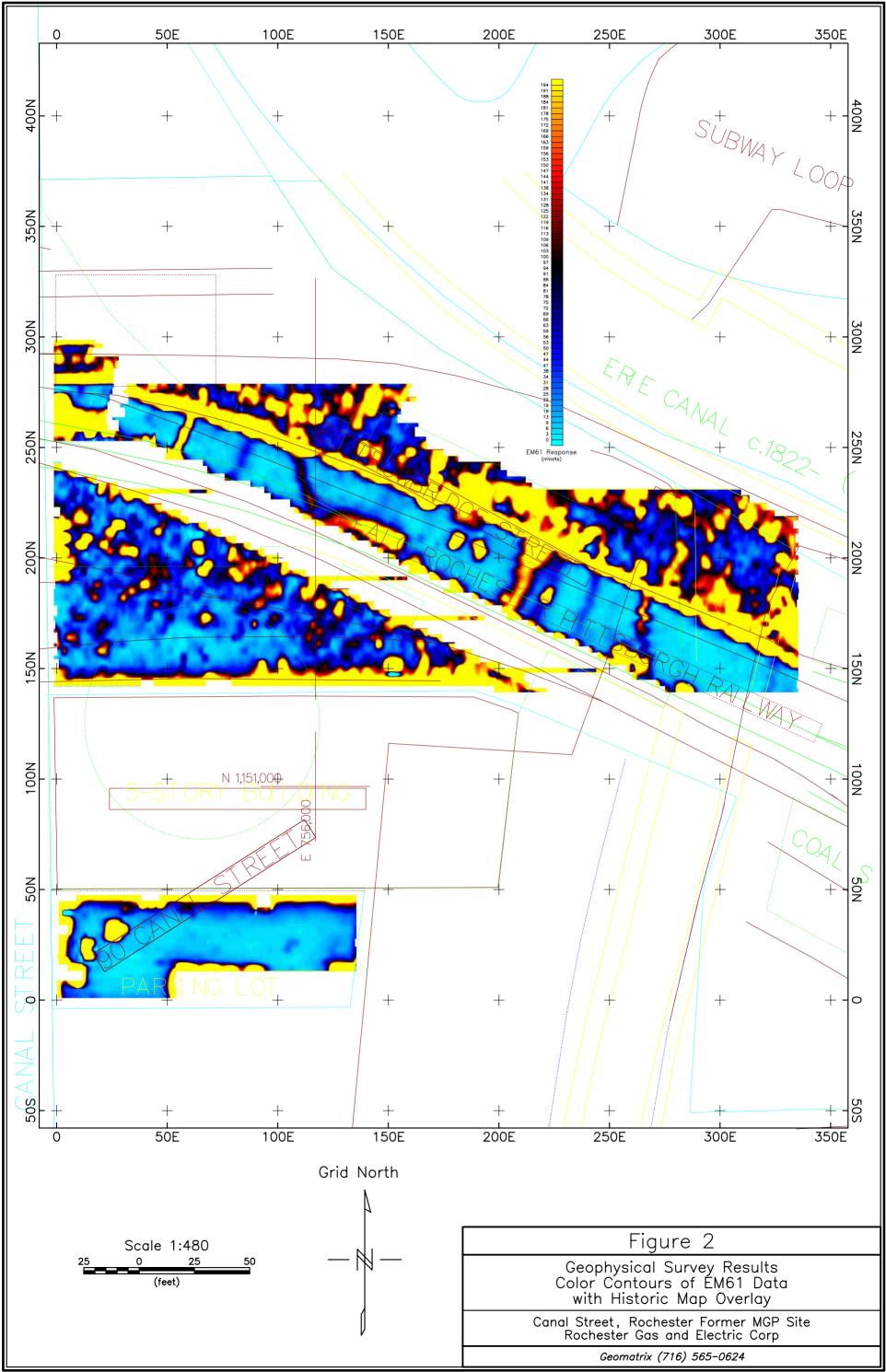
A time slice of the GPR data are presented in Figure 7. No mappable GPR anomalies were detected (except as discussed below). GPR was run in the parking lot to the south of the building and in the field immediately north of the building (south of the railroad tracks). Buried utilities were detected in the southern parking lot and these were marked in the field with spray paint. The location of the electric lines running to the automatic gate was clearly observed however the response of the drain pipe leaving the storm grate exhibited a weak response and the location is suspect.

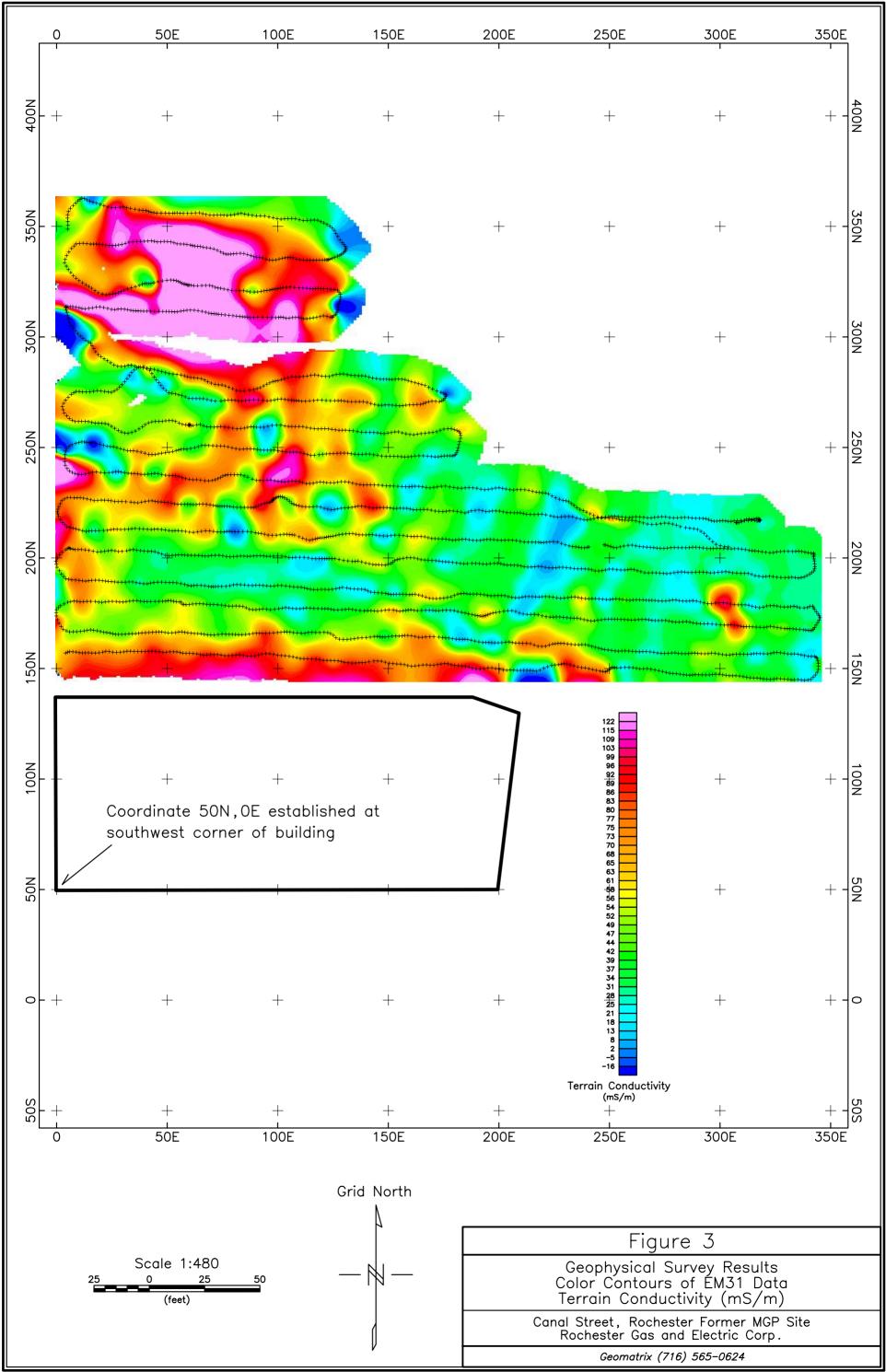
4.0 LIMITATIONS

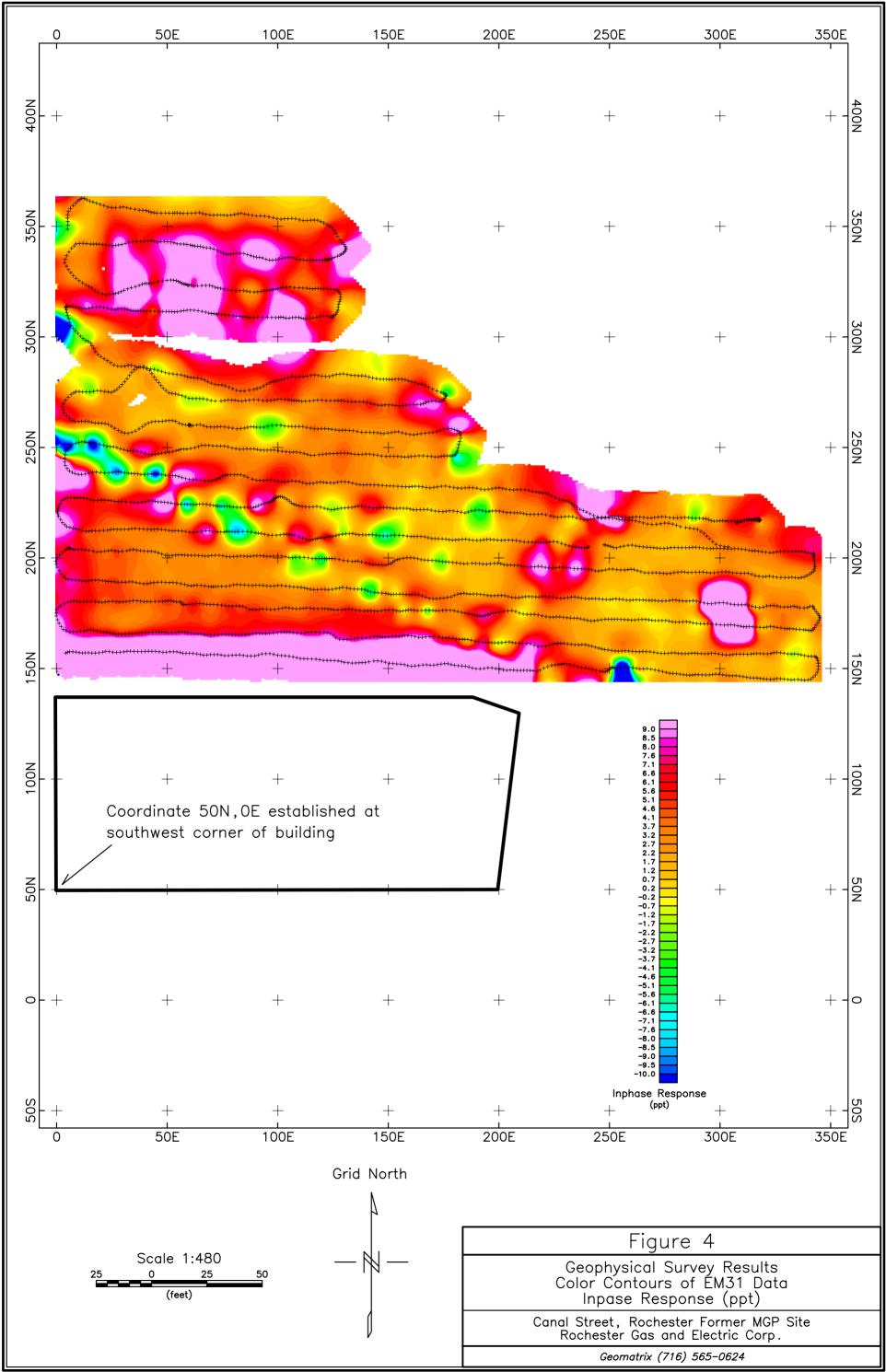
The geophysical methods used during this survey are established, indirect techniques for non-invasive subsurface reconnaissance exploration. As these instruments utilize indirect methods, they are subject to inherent limitations and ambiguities. All geophysical methods utilize

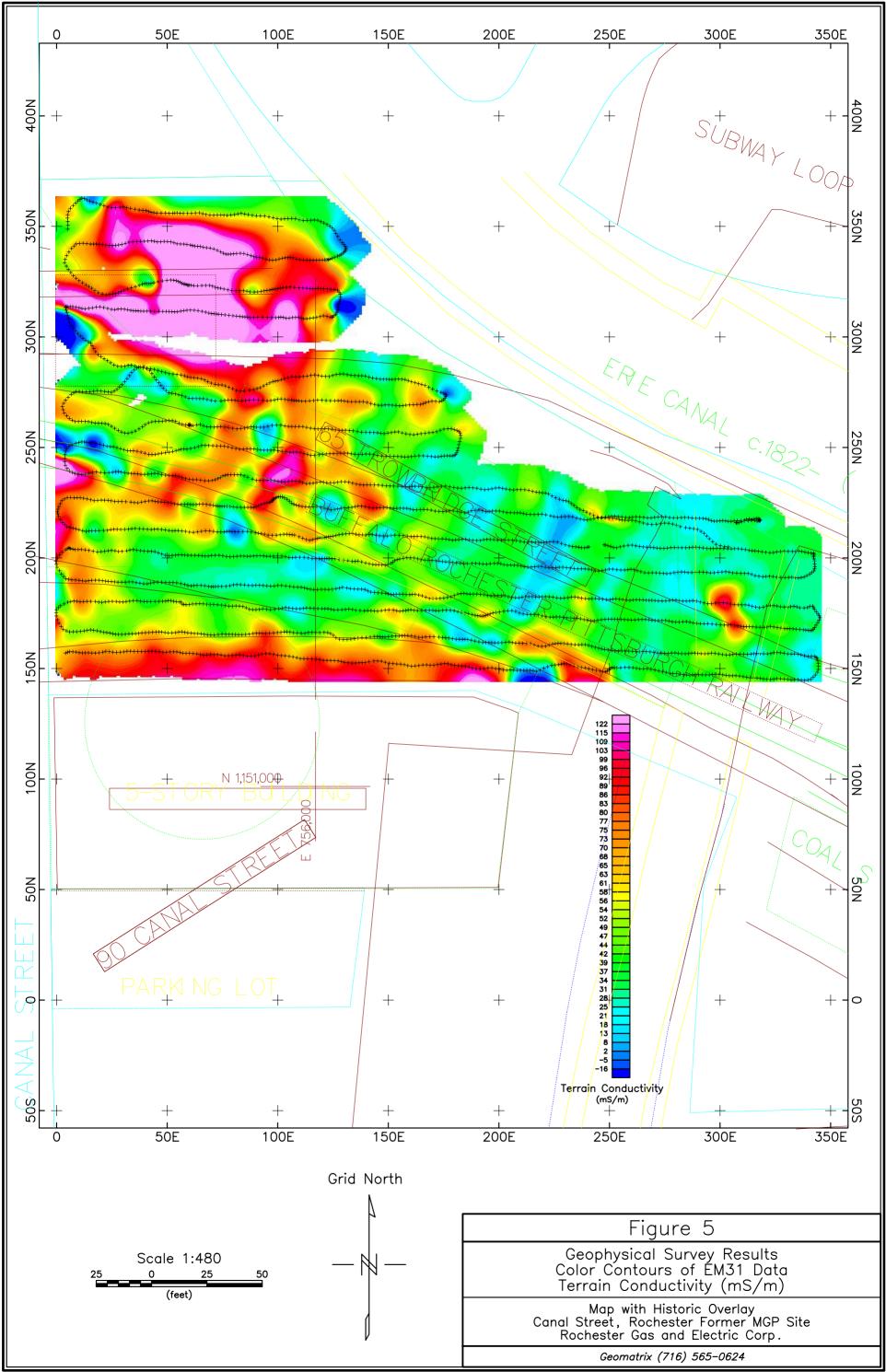
interpretative techniques which can be significantly impacted by varying site conditions. Anomalies can only be identified if they show recognizable patterns against data representative of background or natural conditions. Therefore, where possible, confirmation of any geophysical anomalies identified or interpreted should be sought through the use of historical aerial photography, test pit and/or borehole information.

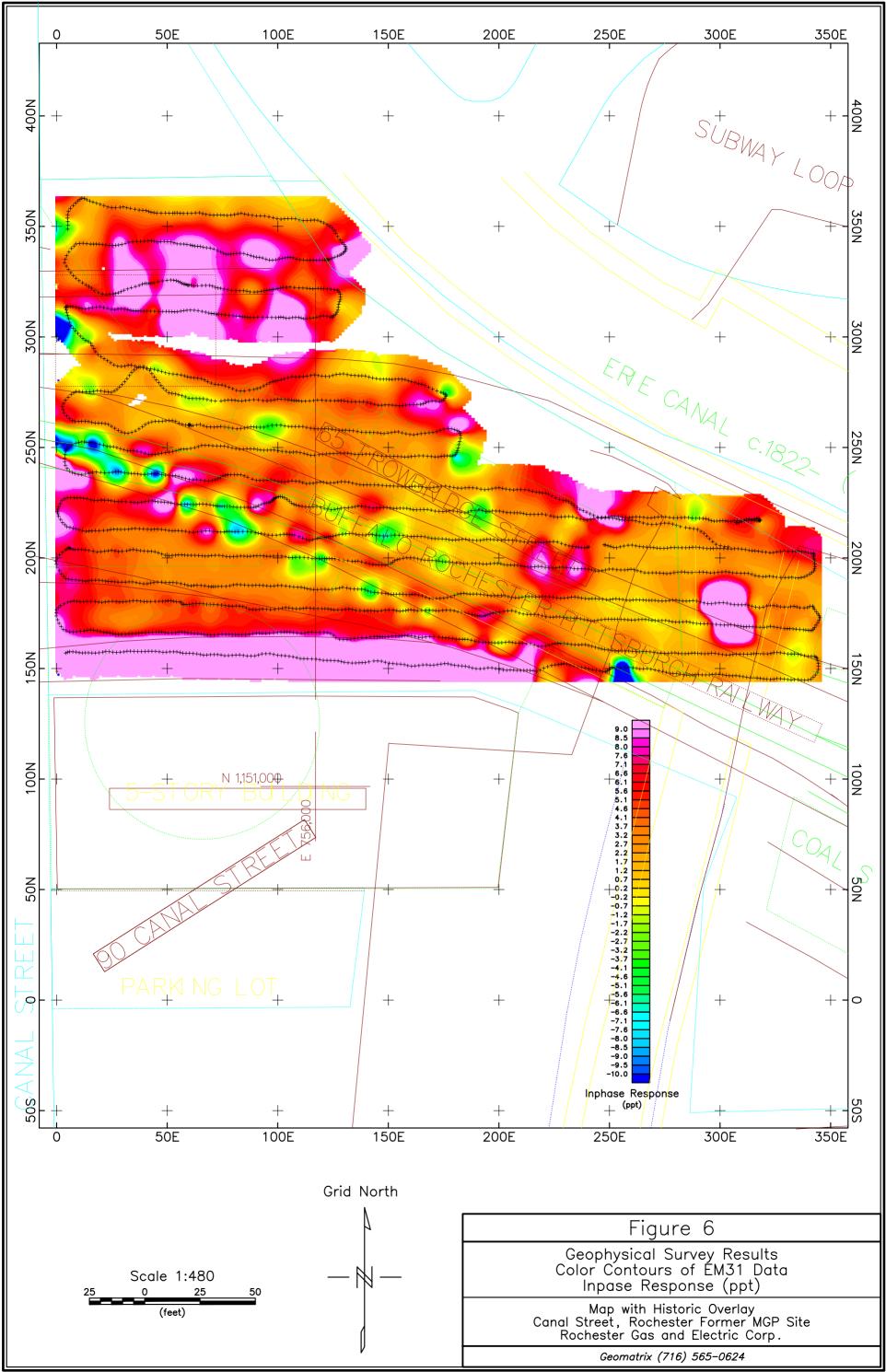

We trust the information contained in this report is sufficient for your present needs. Please do not hesitate to contact us if you have any questions or require additional information.

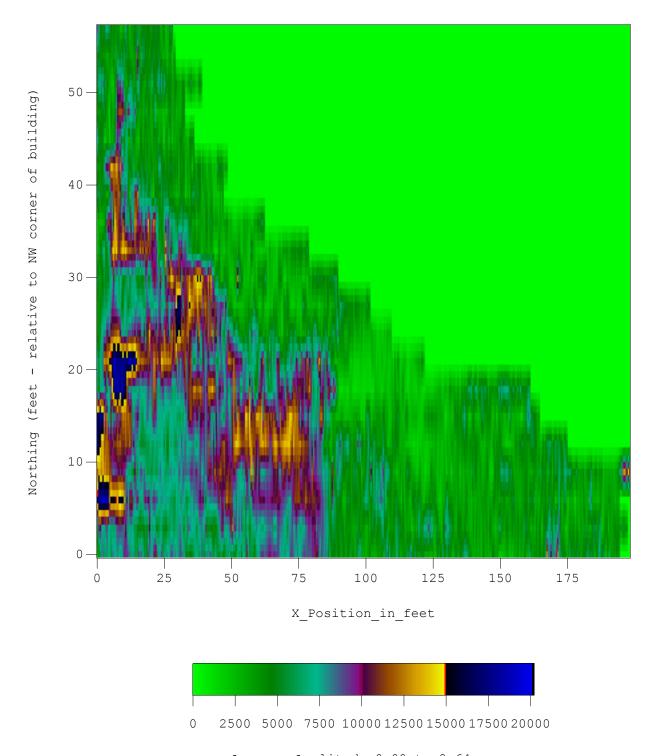

Sincerely yours,


GEOMATRIX CONSULTANTS, INC.


John Luttinger


Senior Geophysicist





Average_Amplitude_0_000_to_8_64_ns

Average_Amplitude_0_00_to_8_64_ns

Figure 7 GPR Time Slice. Page 1 of 1 Canal St Former MGP Site

APPENDIX B

Boring Logs and Well Installation Reports

I- A	IALEY LDRIC	& .H					TEST	воі	RING REPOR	₹T	_				Вс	rir	ng	No).		SB	-1	
CI	oject ient ontracto	ROCH	ESTER	GAS	3 & EL	ECTF		ROC	HESTER, NEW YOR	ık 🗀) -	RAF		SI	tart	t N	ο. ; De	ecei	f 1 nbe	er 1,			
			С	asing	Sar	npler	Barrel		Drilling Equipment	and P	roced	ures			nisl rille		Dε			er 1, orar		06	
Ту	pe		I	ISA		s	-	Rig I	Make & Model: Truc	k-moun	ted CN	иЕ 85		4	&A		p.		. P		,		
Ins	ide Dia	meter (in.) 2	1/4	1	3/8	-		ype: Cutting Head					1	leva		n	5	13.	5			
На	mmer \	Veight	(lb.)	_	1	40	_	Casi	Mud: None ing: spun						atui oca		1 5	See	Pla	ın	-		
На	mmer l	Fall (in.)		-		30	-			atic Har	nmer						1,1 1,4						
Depth (ft.)	SPT¹	Sample No. & Rec. (in.)	Sample Depth (ft.)	Well Diagram	Elev./Depth (ft.)	USCS Symbol	(Densit	y/consi	-Manual Identification istency, color, GROUP loisture, optional descri	NAME, i	max. p	article size²,	ion)	% Coarse	% Fine	Coarse	San	ď	% Fines		Toughness a	Plasticity a	
0				-	513.2			-BITU	JMINOUS PAVEMENT	<u> </u>												ш.	-
-	3 4 4	\$1 8/18	0.5 2.0		0.3	SM		ck to da	ark brown, silty SAND particles, trace brick, con	with gra		PID = 0.0	ppm	5	10	5	20	15	20				
_	2 3 3 4	S2 12/24	2.0 4.0			SM			gray to black, silty SAN n, clinker, no odor, mois -FILL-		•	PID = 0.0	ppm										
- 5	$\begin{bmatrix} 1 \\ 1 \\ 2 \\ 2 \end{bmatrix}$	S3 16/24	4.0 6.0		509.3 4.2	OL/ OH			, ORGANIC SILT (OL/orace organic fibers, orga		- 1	PID = 0.0	ppm										
-	7	S4	6.0		507.5	SM	Medium de		RGANIC DEPOSITS- ray-brown, silty SAND	with ora	vel	$PID \approx 0.6$	nnm	10	5	5	15	40	25				\vdash
-	12 100/3	6/15	7.3		506.0		(SM), sligh	ht orgai	nic odor, wet. 7.5 ft. on rock.	5	.,.,	110 - 0.0	ppm	'	٦			70	20				
G:PROJECTS/33879/003 REPORT W DUSRIFIELD LOGS/33879-001TBC.GFJ Apr 12, 07				NO WELL INSTALLED	7.5		Bottom of	explora	ation at 7.5 ft.														
34.GD1																							
JSCST	-	Wa	ter Lev			th (ft.) to:		ample Identification	We	ell Dia Rise	gram r Pipe					nma						
3.8	Date	Time	Elaps Time (hr √	Bottom	Botto	M Water	O	Open End Rod Thin Wall Tube		Scree	en .	Ove				•			7.5			
12	/01/06	-	 	Of	Casing -	of Ho	6 +/-	U	Undisturbed Sample	9 q 0	Cutti	-	Ro Sar			ea	(III).	. It.) 45		-			
PID USCS				<u> </u>				s G	Split Spoon Geoprobe			rete onite Seal	Во	гiп	ıg l				S	B -1	[
4 TB3A	ield Tes			Touc	ancy: hnęss:	L_L	Rapid, S-Slo .ow, M-Med	dium,	H-High Dry	Strength	h: N-N	olastic, L-Lo None, L-Lo	∧ ∴ M-	Me	diur	m.	H-H	ligh	. V	-Ver	y Hi	igh	
SCS	<u>r і = Sai</u>	npler blo No			-Ma ntifica	xımum tion b	particle size ased on vi	(mm) is sual-n	s determined by direct obs nanual methods of th	ervation e USCS	within as p	tne limitations racticed by	of sa	mple y &	ersi Ale	ze (dric	ın m :h, l	nc.	eter	s).	••••		

H. AI	ALEY DRIC	& .H					TEST	вог	RING REP	OR	т_					Вс	rir	ıg	No).		\$B	-2	
Clie	ject ent ntracto	ROCHE	ESTEF	R GAS	8 & EL	ECTF		ROCI	HESTER, NEW	YORI	, L)	RAF		St	art	t N	o. D		f 1 mbe	er 1			
			C	asing	Sar	npler	Barrel		Drilling Equipn	nent a	and Pi	roced	ures			nisl rille		D			er 1, orai		06	
Тур	e			HSA		S	_	Rig f	Make & Model:	Truck	-moun	ted Cl	ME 85		4	8A		p.			off	ııy		
Insid	de Dia	meter (i	in.)	2 1/4	1	3/8	_	Bit T		ead					1	eva		n	5	13.	7			
Han	nmer \	Veight ((lb.)	_		40	_	Drill Casi	Mud: None							atur		1 :	See	Pis	an			
Han	nmer f	all (in.)		-	1	30	-			itomat	tic Har	nmer					N	1,	150 104.	,98	1			
Depth (ft.)	SPT¹	Sample No. & Rec. (in.)	Sample Depth (ft.)	Well Diagram	Elev./Depth (ft.)	USCS Symbol	(Densit	ty/consi:	Manual Identifica	DUP N	AME, r	max. p	particle size²		Coarse	evel Eige	Coarse	San	ıd		F	Toughness @	Plasticity a	
- 0 -	S	ഗ്യ	ΩΩ	₹		Š	structure, c		oisture, optional de		ions, g	eologi	c interpreta	tion)	%	%	%	%	%	%	ä	ŏ	Pla	Ů
	11 5 3	S1 4/18	0.5 2.0		513.4 0.3	SM		ense, si	IMINOUS PAVEM filty SAND with gra- cum odor, dry.		M), sliį	ght	PID = 1.0) ррт	10	25	10	20	15	20				
	5 4 3 3	S2 14/24	2.0 4.0			SM			n, silty SAND with oal particles, no odd -FILL-),	PID = 0.0) ppm	10	10	5	15	20	35				
- 5 -	3 5 4 4	S3 14/24	4.0 6.0			SM	20% coal,	20% as	n, silty SAND with sh, present as occas in. thick, 5% clink	sional o	coal an		PID = 0.2	7 ppm										
-	1 1 2 2	S4 11/24	6.0 8.0	LED		SM	wet.		brown, silty SAND	,	,	·	PID = 0.0) ppm		10	20	15	20	35				
5	9 13	S5 12/24	8.0	TAL	505.2 8.5	SM	Loose, dar \odor, wet.		n, silty SAND with	ı grave	el (SM)), no /	PID = 0.0) ppm									_	_
	13 16			NI		SM	Medium de	ense, ta	ın, silty SAND (SM	l), no e	ođor, v	vet.			5	5		10	45	35				
- 10 - -	10 38 100/5	S6 12/17	10.0 11.4		502.5	SM	_		silty SAND (SM), 1 -LACUSTRINE-				PID = 0.0) ppm										
	ate	Wa Time	ter Lev Elaps Time	sed_ (hr.) E		th (ft.	Bottom of Dottom of	explora	al with 2 in. weather ATHERED BEDRO at 11.4 ft. ample Identification of the Company of the Comp	OCK-		ell Diz	agram r Pipe en r Sand	3		urd		(lin	ary . ft.)		1.4			
12/0	01/06	-	-		casing -	of Ho	~6.1	U	Undisturbed Sam	ıple	9 g	Cutti	ngs	1	ck (mpl		ed	(III)	. rt.) 65		-			
Fie	eld Tes	ts:		Dilat	ancy:	R-F	Rapid, S-SI	S G	Split Spoon Geoprobe		city: N			Во	rin	g l				S	SB-2	2		
190		npler blov	ws ner f	Toug	hness	L-L	ow. M-Med	dium. I		Dry S	trenath	h: N-Ñ	None, L-Lo	w⊹ M-	Mei	diur	n. I	H-F	diαĥ	. V	-Vei	у Н	<u>igh</u>	_
	120				ntifica	ion b	ased on vi	sual-m	nanual methods o	of the	USCS	asp	racticed by	/ Hale	y &	Alc	iric	h.	inc.	~(0)	٠,٠			_

HALEY ALDRIC	& H					TEST	BORING REPORT Boring No.	SB-3
Project Client Contracto	ROCHE	STER	GAS	& ELI	ECTF		ROCHESTER, NEW YORK File No. 33879-001 Sheet No. 1 of 1 Start November 2'	7, 2006
		С	asing	San	npler	Barrel	Drilling Equipment and Procedures Finish November 2: Driller S. Lora	
Туре]	HSA		S	-	Rig Make & Model: Truck-mounted CME 85 H&A Rep. S. Poff	•
Inside Dia	ameter (in.) 2	2 1/4	1	3/8	_	Bit Type: Cutting Head Elevation 512.9	
Hammer 1	Weight ((lb.)	_	1	40	_	Drill Mud: None Datum Casing: spun Location See Plan	
Hammer	Fall (in.)		-	3	30	-	Hoist/Hammer: Automotic Hammer N 1,151,097	
	<u>9</u>	Γ	E		<u>8</u>			Field Test
Depth (ft.) SPT¹	Sample No. & Rec. (in.)	Sample Depth (ft.)	Well Diagram	Elev./Depth (ft.)	USCS Symbol	(Densit	/isual-Manual Identification and Description y/consistency, color, GROUP NAME, max. particle size², addr, moisture, optional descriptions, geologic interpretation)	Toughness
7 8 5 7	SI 12/24	0.0 2.0			SM	(SM), 20%	ense, gray-brown to brown, silty SAND accoal particles, 5% furnace brick, trace o odor, dry. -FILL-	
5 4 3 3	S2 8/24	2.0 4.0			SM	Loose, gra particles, f	sy-brown to brown, silty SAND (SM), coal furnace brick, trace ceramic, no odor, dry.	
2 2 1 1	S3 14/24	4.0 6.0			SM		e, yellow-brown, silty SAND with gravel coal particles, trace ash, no odor, wet. PID = 0.0 ppm 15 10 10 30 30	
3 2 1 1	S4 12/24	6.0 8.0	<u> </u>		SM		e, yellow-brown, silty SAND (SM), 10% PID = 0.0 ppm 10 10 10 20 25 1% coal, 5% brick, trace ash, no odor, wet.	
2 3 4 5	S5 10/24	8.0 10.0	WELL INSTALLED	502.0	SM		low-brown, silty SAND with gravel (SM), er, 10% coal, 5% brick, trace ash, no	
10 -100/2	S6 2/2	10.0 10.2	NO WEL	502.9 10.0 502.2 10.7		Highly we at 10.2 ft.,	athered rock fragments, split-spoon refusal auger refusal at 10.7 ftWEATHERED BEDROCK-	
						Bottom of	exploration at 10.7 ft.	
1	Wa	ter Lev	· · · · · · · · · · · · · · · · · · ·	ta			Sample Identification Well Diagram Summary	1 1 1
	1	Elaps		Dep	th (ft.) for	O Open End Rod	

Field Tests: SPT = Sampler blows per 6 in.

USCSLIB4,GLB USCSTC3A,GDT G:PROJECTS(33879:003 REPORT W DUSRYFIELD LOGS(33879-001TBC,GPJ

U

s

G

Concrete Bentonite Seal

Cuttings

Grout

Samples 6S

Boring No. SB-3

Dilatancy: R-Rapid, S-Slow, N-None Plasticity: N-Nonplastic, L-Low, M-Medium, H-High Dry Strength: N-None, L-Low: M-Medium, H-High, V-Very High r blows per 6 in. Maximum particle size (mm) is determined by direct observation within the limitations of sampler size (in millimeters).

Note: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.

Undisturbed Sample

Split Spoon

Geoprobe

Boring No. SB-4 **TEST BORING REPORT** CANAL STREET FORMER MGP SITE ROCHESTER, NEW YORK File No. Project 33879-001 Client **ROCHESTER GAS & ELECTRIC** Sheet No. 1 of 1 Contractor NOTHNAGLE DRILLING, INC. Start November 27, 2006 November 27, 2006 Finish Casing Sampler Barrel **Drilling Equipment and Procedures** Driller S. Loranty Rig Make & Model: Truck-mounted CME 85 H&A Rep. Type S. Poff **HSA** S Bit Type: Cutting Head Elevation 513.2 Inside Diameter (in.) 2 1/4 1 3/8 Drill Mud: None Datum Hammer Weight (lb.) 140 Location See Plan Casing: spun N 1,151,097 Hammer Fall (in.) 30 Hoist/Hammer: Automatic Hammer E 1,404,316 Sample No. & Rec. (in.) Elev./Depth (ft.) Symbol Sand Field Test Vell Diagram Sample Depth (ft.) Visual-Manual Identification and Description Œ % Medium Toughness % Coarse Coarse % Fines Depth Dilatancy Plasticity % Fine USCS SPT (Density/consistency, color, GROUP NAME, max. particle size2, structure, odor, moisture, optional descriptions, geologic interpretation) % % 2 SI 0.0 513.1 -TOPSOIL GP PID = 0.0 ppm | 20 40 15 10 10 5 0.1 15/24 6 2.0 Loose, gray, poorly-graded GRAVEL with sand SM 512.9 9 (GP), no odor, dry 13 0.3 Medium dense, black to dark brown, COAL particles 50%, 35% silty sand (SM), 10% clinker fragments 2 2.0 PID = 0.0 ppm15 5 10 20 35 and particles, 5% brick fragments, no odor, dry. 15/24 5 7 4.0 Medium dense, dark gray-brown, silty SAND with gravel (SM), 10% coal particles, 5% brick particles, 10 trace ash and ceramic, slight organic odor, moist. PID = 0.0 ppm4.0 Medium dense, dark gray-brown, silty SAND with 1 16/24 2 6.0 gravel (SM), coal particles, brick particles, trace ash 5 and ceramic, slight organic odor, moist. 2 -FILL-6.0 Í **S4** Medium dense, dark gray-brown, silty SAND with PID = 0.0 ppm14/24 8.0 2 gravel (SM), coal particles, trace brick, ash and ceramic, slight organic odor, moist, brown from 7.7 2 NO WELL INSTALLED 8.0 SM Similar to S4 except wet at approximately 9.7 ft. PID = 0.0 ppm15/24 2 10.0 100/4 **S**6-10.0 SM PID = 0.0 ppmSimilar to \$5 with 2 in, layer of tan ash particles and 4/24 10.3 502.3 specks at 10.0 ft., dark gray, silty SAND 10.2 ft. to 10.9 10.3 ft., tan concrete in split-spoon tip. Note: auger to 10.9 ft. through concrete, auger refusal at 10.9 ft. Bottom of exploration at 10.9 ft. Water Level Data

Apr 12, 07

G:/PROJECTS\33879\303 REPORT W DUSR\frield LOGS\33879-0017BC,GPJ

USCSTC3A.GDT

USCSLIB4.GLB

Sample Identification Well Diagram Summary Depth (ft.) to: Riser Pipe Elapsed Overburden (lin. ft.) Open End Rod Date Time 10.7 Bottom Bottom Screen Time (hr.) Water Т Thin Wall Tube of Casing of Hole Filter Sand Rock Cored (lin. ft.) Cuttings 11/27/06 9.7 U Undisturbed Sample Samples 6S Grout S Split Spoon Concrete Boring No. SB-4 G Geoprobe Bentonite Seal Field Tests: Dilatancy: Plasticity: N-Nonplastic, L-Low, M-Medium, H-High

Field Tests: Dilatancy: R-Rapid, S-Slow, N-None Plasticity: N-Nonplastic, L-Low, M-Medium, H-High Toughness: L-Low, M-Medium, H-High Dry Strength: N-None, L-Low, M-Medium, H-High, V-Very High SPT = Sampler blows per 6 in. Maximum particle size (mm) is determined by direct observation within the limitations of sampler size (in millimeters).

Note: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.

H. Aĭ	ALEY & LDRIC	& H						TEST	BORING REPORT	- V III -		Bc	rii	ng	No).		SB	-5	
Clie	ject ent l ntracto	ROCHE	ST	ER	GAS	& ELI	ECTF		ROCHESTER, NEW YORK	(A -	St	nee art		o. No		f I nbe	r 27			
				Са	sing	Sar	npler	Barrel	Drilling Equipment and Proced	ures		nisl ille		No			r 27		06	
Тур	e				SA		s S	_	Rig Make & Model: Truck-mounted Ci				Re	p.		s. L S. P	orar off	Ly		
Insid	de Dia	meter (i	in.)	2	1/4	1	3/8	_	Bit Type: Cutting Head		4		atio	n	5	12.	8			
Han	nmer V	Veight ((lb.)		-	1	40	-	Drill Mud: None Casing: spun		1	atur oca		1 ,	See	Pla	ın			
Han	nmer F	all (in.)			_	3	30	-	Hoist/Hammer: Automatic Hammer				N E	1, 1,	151 404	,15 ,26.	4 5			
£		No.(.		<u>۔</u>	ram	pth	Symbol		Visual-Manual Identification and Descrip	otion	Gra	_		San	ō			ield	Tes	it
Depth (ft.)	Consity/consistency, color, GROUP NAME, max. particle size Consity/consistency, color, col													% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Ctronoth
- 0 -		S1						Very loose	e, dark brown to black, silty SAND with	PID = 0.0 ppm			T		25				Щ.	Ë
-	2 2 2	3/24	2	.0				gravel (SN	1), 10% coal particles, no odor, dry.											
-	1 3 4 6	S2 4/24		.0 .0			SM	Similar to	S1, excpet loose.	PID = 0.3 ppm										
- 5 -	2 3	S3 14/24	ŧ	.0		507.8	SM	Similar to	-FILL-	PID = 0.0 ppm										
•	3 3					5.0	SM	Loose, bro	own to yellow-brown, silty SAND (SM), no			10	10	10	25	45				
-	2 2 3	S4 13/24	1	.0 .0	_		SM		S3 (from 5.0 ft. to 6.0 ft.).	PID = 0.0 ppm										
-	9 16 100/6	S5 15/18		.0	WELL INSTALLED	503.3	SM	(SM), no c	ense, brown to yellow-brown, silty SAND dor, wet, split-spoon refusal at 9.5 ft., sal at 9.5 ft.	PID = 0.0 ppm		10	5	5	40	40				
- 10 -					ELL	9.5		Bottom of	-LACUSTRINE- f exploration at 9.5 ft.											
-		Wo			ON				er refusal at 9.5 ft.		THE PROPERTY OF THE PROPERTY O								The state of the s	
n.	ate	vva Time		.eve	el Da	Dep	th (ft.		d O Oben end Rob i cess	r Pipe Ov	erbu				ary ft)		9.5			
Di	ate	riine	Tim			ottom Casing	Botto	Water	T Thin Wall Tube	en	ck (•			7.3			

Field Tests: SPT = Sampler blows per 6 in.

11/27/06

1535

0.2

8

G:PROJECTS\33879\003 REPORT W DUSRVFIELD LOGS\33879-001TBC.GPJ

USCSTC3A.GDT

8.5+/-

S

G

8.5

Samples

Boring No.

5\$

SB-5

Cuttings

Concrete Bentonite Seal

Grout

Dilatancy: R-Rapid, S-Slow, N-None Plasticity: N-Nonplastic, L-Low, M-Medium, H-High Toughness: L-Low, M-Medium, H-High Dry Strength: N-None, L-Low, M-Medium, H-High, V-Very High r blows per 6 in. Maximum particle size (mm) is determined by direct observation within the limitations of sampler size (in millimeters).

Note: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.

Undisturbed Sample

Split Spoon

Geoprobe

		ALEY O	& H					TEST	ВО	RING REPO	RT			В	ori	ng	No	o.		SB	-6	
	Proj Clie Con		ROCHE	STE	R GA	S & EL	ECTF		ROC	HESTER, NEW YO	RK D	TAL	- ∣s	ile I hee	et N	lo. No	1 o	of 1 mbe	r 30			
-				C	Casing	g Sar	npler	Barrel		Drilling Equipme	nt and Proce	dures	- 1	inis Fille		No			r 30 orar		006	
ſ	Туре	e			HSA		S	_	Rig	Make & Model: Tri	ıck-mounted (CME 85		l&A		p.			off	ııy		
	Insid	de Dia	meter (in.)	2 1/4	1	3/8	-		ype: Cutting Head	ı			lev		חמ		514.	.2			
	Ham	nmer V	Veight ((lb.)	-	1	40	-	Casi	Mud: None _ ing: spun			-	atu oca	tio			Pla				
	Ham	nmer F	all (in.)		-		30	-			matic Hamme	r			N E	I 1,	151 404	,15 ,35	5 4			
	Depth (ft.)	SPT¹	Sample No. & Rec. (in.)	Sample Depth (ft.)	Well Diagram	lev./Depth t.)	USCS Symbol	(Density	y/consi	-Manual Identification	P NAME, max.	particle size ² ,	Coarse	ave Line	şe	% Medium	F	Fines	stancy	Toughness a	Plasticity ad	t quoto
ŀ	<u> </u>	S	ഗയ	SO	≩	ш	Š	structure, o		oisture, optional desc	ripuons, geolo	gic interpretation)	%	%	%	%	%	%	ä	P	윤	Į,
						513.7 0.5	-			-BRICK PAVERS- -CONCRETE-		_	-	-	<u> </u>		_					
ľ						512.7											ļ					
-		2 2 5 5	S1 10/24	2.0		1.5	SM	coal particl	les, 10	Ity SAND with gravel % brick fragments, 5% ash, no odor, dry.		PID = 0.0 ppm	ı									
- Limited States	5 -	2 3 5 6	\$2 12/24	4.0 6.0			SM			Ity SAND with gravel no odor, dry.	(SM), 10%	PID = 0.0 ppm										
-		5 9 8 9	S3 15/24	6.0 8.0	LED		SM			ight brown, silty SANI p of split-spoon. -FILL-) (SM), trace	PID = 0.0 ppm		10	5	10	45	30				
Apr 12, 07	10 -	1 2 4 2	S4 8/24	8.0 10.0	ILL INS	503.9	SM	Loose, bro odor, mois		lty SAND with gravel	(SM), no	PID = 0.0 ppm	. 10	10	5	10	40	25				
3879-001TBC.GPJ		2 3 5 6	S5 10/24	10.0 12.0		502.2	OL/ OH	sand (OL/O organic ode	OH), tr or, wet -Ol	ck brown, ORGANIC race clam shells and or t at approximately 11.: RGANIC DEPOSITS-	ganics, 5 ft.	PID = 0.0 ppm				5	10	85				
OGSI3		100/5	S6 2/5	12.0 12.4		12.0 501.8		Split spoon		al with 2 in. of rock fr ATHERED BEDROC	_	/		-	-	_					-	
A GDT G:VPROJECTS/33879/003 REPORT W DUSRIFIELD LOGS/33879-0011BC.GPJ						12.4		Bottom of d		ation at 12.4 ft.												
STC3A.			Wa	ter Le	vel D	ı ata	1		Sa	ample Identification	Well D	iagram	1	<u> </u>	Sur	mm	arv	I		l	!	
nsc	Da	ate	Time	Flan	sed	Dep	th (ft.) to:	0	Open End Rod	Ris	ser Pipe	/erb				•) 1	12.4			_
34.GLB				Time	(hr.)	Bottom Casing	of Ho	Water	Т	Thin Wall Tube	Fill	ter Sand Re	ock	Coi		•	. ft.)	-			
TB3APID USCSLIB4.GLB USCSTC3A.GDT	E!-	Jd Tast						Rapid, S-Sk	U S G	Undisturbed Sample Split Spoon Geoprobe	Great	ncrete Bentonite Seal	orir	ıg			6. Uia	S	SB-(5		
		ld Test	s: opler blov	ve no. '	Tou	tancy: <u>ghness:</u> ² Ma	: L-L	ow, M-Med	dium.		v Strenath: N	nplastic, L-Low, N -None, L-Low; N	-Me	diu	m.	H-F	-liah	١V	-Ver	y Hi	igh	
nscs –	J _F	, <u> </u>				ntifica	tion b	ased on vis	sual-n	s determined by direct on the same of the	he USCS as	practiced by Hal	ey 8	ersi k Al	ze (dric	un π ch.	iiiim Inc.	eter	s).			

	ALEY & DRIC	ř H					TEST	BORING REPORT	~ ^ -		Вс	ri	ng	No	ο.		SB	3-7	
Proj Clie Con	nt i	ROCHE	STER	GAS	& ELI	ECTF		ROCHESTER, NEW YORK	ZAF I	SI	tart	t N	lo. No	1 o over	f 1 nbe	r 30			
			С	asing	Sar	npler	Barrel	Drilling Equipment and Proce	dures		nisl rille		No			r 30 orai		006	
Туре	3		I	ISA		S	-	Rig Make & Model: Truck-mounted (CME 85	-1	&A		p.			off	ity		
Insid	đe Diar	neter (i	in.) 2	1/4	1	3/8	_	Bit Type: Cutting Head			leva		n	5	514.	.1			
Ham	mer V	Veight (lb.)	-	1	40	-	Drill Mud: None Casing: spun		⊢	atur oca		1	See	Pla	an			_
Ham	nmer F	all (in.)		-	3	30	-	Hoist/Hammer: Automatic Hammer	г			N E	I 1,	151 404	,13	1			
£		N J. (-	t.	ram	pth	Symbol	\	/isual-Manual Identification and Descr	intion		avel	Γ	Sar	ıd	1		_	Tes	<u>t</u>
Depth (ft.)	SPT¹	Sample No. & Rec. (in.)	Sample Depth (ft.)	Well Diagram	Elev./Depth (ft.)	USCS Syr	(Density	y/consistency, color, GROUP NAME, max.	particle size ² ,	% Coarse	. Fine	6 Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
0 -	9	S1	0.0	>	ш	SM		um dense, black to dark brown, silty	.1		T	_	15		_	Ӧ	F	ā	Ü
	10 17 31	15/24	2.0			O. T	SAND with	h gravel (SM), 10% coal, 5% ash, 5% race clinker, no odor, dry.	- 0.3 ppiii	10	lu	10	10	15	15				
	9 12 16 21	S2 14/24	2.0 4.0			SM	Similar to a concrete.	S1, 10% clinker, trace ash, brick and	PID = 0.0 ppm										
5 -	5 4 5	S3 12/24	4.0 6.0			SM	Loose, bro ash, coal, t	own, silty SAND with gravel (SM), brick, trace clinker, no odor, moist.	PID = 0.6 ppm										
	3	\$4	6.0			SM		low-brown, silty SAND with gravel (SM), coal, and brick, no odor, moist.		5	15	10	15	25	30				
	4 7 8	10/24	8.0	ED		SM		ense, 70% black and red, coal and brick 60% silty SAND with gravel (SM).	PID = 0.0 ppm										
	7 8 3 3	\$5 8/24	8.0 10.0	ELL INSTALLED	504.2	SM	Medium de particles, 3	ense, 70% black and red, coal and brick 10% silty SAND with gravel (SM). -FILL-	PID = 0.5 ppm										
10 -	5 3 4 5	S6 9/24	10.0 12.0	NO WELI	504.2 9.9 502.1	ML	Medium sti trace small	iff, dark brown, SILT with sand (ML), clam shells, slight organic odor, moistORGANIC DEPOSIT-	PID = 0.0 ppm					20	80	N	L	L	
	100/2	S7	12.0		12.0		Split spoon	refusal with weathered bedrock chips		=							_		
		1/2	12.2		501.9 12.2		Bottom of a	-WEATHERED BEDROCK- exploration at 12.2 ft.											
				el Da				Sample Identification Mall Di											

. j					·					1	1 1 1 1	
3		Wa	ter Level	Data			Sa	ample Identification	We	ell Diagram	Summary	
D	ate	Time	Elapsed Time (hr.		th (ft.) t Bottom of Hole	Motor	O T	Open End Rod Thin Wall Tube		Riser Pipe Screen Filter Sand	Overburden (lin. ft.) Rock Cored (lin. ft.)	12.0
11/2	30/06	1210	.25	10	11	10+/-	U	Undisturbed Sample	9,90	Cuttings	Samples 7S	
3							S G	Split Spoon Geoprobe	<u></u>	Grout Concrete Bentonite Seal	Boring No.	SB-7
Fie	eld Tes	ts:	Dil	latancy:	R-Ra	oid, S-Slo	w, N	-None Plas			ow, M-Medium, H-High	

Field Tests: Dilatancy: R-Rapid, S-Slow, N-None Plasticity: N-Nonplastic, L-Low, M-Medium, H-High
Toughness: L-Low, M-Medium, H-High Dry Strength: N-None, L-Low, M-Medium, H-High, V-Very High

SPT = Sampler blows per 6 in. 2 Maximum particle size (mm) is determined by direct observation within the limitations of sampler size (in millimeters).

Note: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.

USCS_TB3APID USCSLIB4.GLB USCSTC34.GDT G:\PROJECTS\33879\003 REPORT W DUSRIFIELD LOGS\33879-001TBC,GPJ

	ALEY & DRIC							TEST	. В	Ol	RI	NG	RI	EP	OR	T	_		· /				Bo	rir	ıg	No).		SB	-8	
Clie	ject int i itracto	ROCHE	STE	ER (GAS	& ELI	ECTR	IGP SITE RIC , INC.		OCI	HE	STE	R, NI	EW Y	/ORI	ĸ L	ナ	T	\ }	\		SI	art	t N	o. No		f 1 nbe	r 30			
				Ca	sing	San	npler	Barrel				Drillin	ng Ed	quipm	nent	and	Pro	cedi	ıres				nisl rille		No			г 30 orar)06	
Тур	9			Н	SA		s	_	F	Rig I	Ma	ke &	Mod	lel: T	ruck	-moı	ınte	d CN	ΛE 8:	5		Н	&A	Re	p.		. P				
Insid	de Diai	meter (i	in.)	2	1/4	1	3/8	-		3it T		e: (.id:)		ng He	ad								leva atui	atio m	n	5	15.	2			
Han	nmer V	Veight ((lb.)		-	1	40	<u>-</u>		Jilli Casi			oun	•										tion		See					
Han	nmer F	all (in.)			-		80	-		lois	st/H	lamm	ner:	Aut	toma	tic H	amı	тег						E	1,4	151 104		2			
Depth (ft.)	SPT¹	Sample No. & Rec. (in.)	Sample	epth (ft.)	Well Diagram	Elev./Depth (ft.)	USCS Symbol	(Densit	ity/co	onsi	iste	ency, c	color,		UP N	IAME	., m:	ax. р	article			Coarse	Fine	Coarse	% Medium as	_	Fines	Difatancy	Toughness @	Plasticity at	noth
- O -		00 ∞	100	_	<u> </u>		Ď									10113	g Ç	ologi	C IIIC	preta	1011)	8	%	%		8	%	Ö	<u> </u>	ď	7
_	2 3 16	\$1 3/18	0. 2.			514.7 0.5	SP	Medium de with grave		se, b	row	vn to b	black,		ly-gra				PID	= 0.	1 ppm	10	20	20	20	10	5				
-	100/3	S2 2/3	2.			512.9 2.3 511.7 3.5	_SP _	Medium de with grave Split-spoor	el (S on re	SP), efusa	coa al a	al part t 2.3 f	ticles, ft.	no od	lor, d	lry.			PID	= 0.	1 ppm										
- 5 -	1 2 2 3	S3 0/24	4. 6.			3.3		No recover																							
-	1 2 1 2	\$4 14/24	6. 8.	- 1	ED		SM	Very loose gravel (SM apparent si	M),	10%	% cc	oal par	rticles	s, trace	e ash				PID	= 1.	б ррт		20	10	15	20	25	:			
-	8 9 11 12	\$5 9/24	8. 10	- 1	WELL INSTALLED	505.5	SM	Medium do with grave layer of co ft. to 10.0	el (S oal a	SM), and	, co ash	al par at 9.5	rticles 5 ft. to	, trace	ash	and t	oricl	k,			0 ppm										
- 10 -	7 8 19 6	\$6 5/24	10 12		NO WEI	9.7	GM	Medium de (GM), no e				n, silı	ILL- ty GR	RAVE	L wit	h san	ıd	/	PID	= 0.	1 ppm	25	20	10	10	15	20				
-	1 2 3 3	\$7 2/24	12 14	- 1			GM	Loose, bro odor, wet,		or ro	reco				and (C	GM),	no		PID	= 0.0	0 ppm										İ
- 15 -	-100/3-	S8 1/3	14 14			500.9 14.3	GM	Very dense no odor, w top-of-rock Bottom of	wet, ck.	, spli	it-sp	poon r	refusa	d on p			GM)),													
			Ela	neo	d Da	Dep	th (ft.) to:	-	Sa O		ple Id pen E		ficatio	n]		gram r Pipe		0	orh.		Sur en			٠,	4.3			
D:	ate	Time	Time	e (h	r.) B	ottom Casing	Botto of Ho	m Mater		T		hin W				<u>目</u>	<u></u>	Scree Filter	en Sand			ck (4.3			
11/3	0/06	1050		.2		10	12	9.5+/-	-	U				Samp	ple	° 9 °]	Cutti	ngs			mpl				88					
										S G	G	plit Sp Seopro					3	Conc	rete onite S			rin	_					B-8	}		
	ld Test				Foug	ncy: hnęss:	L-L	Rapid, S-SI .ow, M-Me	ediui	ım.	 -{-	Hiah			Dry S	tren	ath:	N-N	lone.	L-Lc	ow, N	-Me	uib	m.	H-F	liob	· V	-Vei	y Hi	gh	
SP	ı = San	npler blov No 1						particle size ased on vi																				s).			

G.PROJECTS133879403 REPORT WIDUSRFIELD LOGS133879-001 TBC.GPJ

USCSLIB4.GLB USCSTC3A.GDT

H/AI	ALEY o	& H					TEST	В	0	RIN	NG	RE	POI	RT	_		-	\ r			Вс	ori	ng	No).		SB	-9	
Clie	ject int l itracto	ROCHE	STER	GAS	8 & EL	ECTF	MGP SITE RIC J, INC.		ос	HES	STER	, NE\	N YOI	RK	フ		<∕	\ †	- †	SI	art	et N	lo. No	1 o					
			С	asing	Sar	mpler	Barrel			D	rilling	g Equ	ipmen	t and	Pro	oceo	ures			i	nisi rille		INC			r 29 orar		סטנ	
Тур	е		I	ISA		S	_	R	Rig .	Mak	e & N	/lodel	: Truc	ck-mo	unte	ed C	ME 8:	5		H	&A	Re	p.		8. P		٠,		
Insid	de Dia	meter (in.) 2	1/4	1	3/8	_			Гуре:			Head							ı	leva atur		n	5	513.	9			
Han	nmer V	Veight ((lb.)	-	1	140	-			iviua ing:	i: No spu	-									oca		٦	See	Pla	n			
Han	nmer F	all (in.)		-		30	-	1			ımme		Autom	atic l	Ham	mer									,16 ,43				
t.)		No.		am	pth	Symbol	\	Visi	ual-	-Man	nual k	dentif	fication	n and	l De	scri	ation				avel		Sar	ıd				Tes	t
Depth (ft.)	SPT1	Sample No. & Rec. (in.)	Sample Depth (ft.)	Well Diagram	Elev./Depth (ft.)	USCS Syn	(Densit	ity/co	onsi	isten	ісу, со	lor, G	ROUP	NAM	E, m	nax, p	particle	e size	ition)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
- 0 -	2 3 5	S1 6/24	0.0 2.0			SM	Loose, dar 10% coal p	rk b	orow ticle	vn, si es, no	ilty SA o odor,	ND v , dry.	vith gra	ivel (S	SM),		PID	= 0.	0 ppm	20	╁	+	15	 	-	1		<u> </u>	
-	The second particles, trace brick and ash, occasional clayer lenses, no odor, moist. SM Loose, yellow-brown, silty SAND (SM), 5% coal particles, trace brick and ash, occasional clayer lenses, no odor, moist. Similar to S2, trace coal and brick, occasional clayer lenses, petroleum odor at 5.5 ft., moist. PID = 0.0 ppm 10 10 20 25 30 PID = 48.7 ppm 10 10 10 10 10 PID = 48.7 ppm 10 10 10 PID = 48.7 ppm 10 10 PID = 48.7 ppm 10 10 PID = 48.7 ppm 10 PID = 48.7 ppm 10 PID = 48.7 ppm 10 PID = 48																												
- 5 -	particles, trace brick and ash, occasional clayey lenses, no odor, moist. Similar to S2, trace coal and brick, occasional clayey lenses, petroleum odor at 5.5 ft., moist. SM Very loose, gray-brown, silty SAND with gravel (SM), trace coal and small clam shells, weathered																												
	s - \begin{array}{c c c c c c c c c c c c c c c c c c c																												
- 10 -	1 1 2 3	S5 15/24	8.0 10.0	LL INSTALLED				quen	nt sn	nall c	clam sl	hells, wet, so	trace o ome str	rganio	zs,	l .	PID	== 34 .	0 ррт		10	5	15	30	40				
- 10 - -	1 2 1 2	S6 18/24	10.0 12.0	NO WELL!	501.7	SM	Very loose (SM), freq petroleum sample	quen	nt sn	nall c	clam sl	hells,	weathe	red,			PID	= 48.	7 ppm										
	100/6	S7 1/6	12.0 12.5		12.2 501.4 12.5		One inch o weathered	i peti	role	um o	odor.		wet, s																
-							Bottom of Note: Split bedrock.	•					t. in we	eather	ed														

	· · ·	Wa	ter Lev	- 1		41		Ŧ	Sa	ampl	le lde	ntific	ation				igran				(Sur	nm	ary					
Da	ate	Time	Elaps Time (he (E	Dep Bottom Casing	oth (ft. Botto of Ho	m		0 T U S	Thir Uni	en End in Wal disturi lit Spo	ll Tube bed S			=	Scre Filte Cutt Gro	r Sand ings ut		Ro Sa	ck (mpl	Cor es	ed	(lin)	2.5			
Fie	eld Test	s:			ancy:		Rapid, S-Si	low,	G , N	Ge -Non	oprob ne		Plas	sticity	.1 ⊠ : N-	Beni Non	crete tonite s plasti	c. L-I	Bo Low, M	1-Ме	ediu	ım.	Н-	Higi	h	B-9			
SP	T = Sam	pler blov		in.	² Ma	ximum	ow, M-Med particle size	e (mr	m) is	s dete	ermine	đ by d	Dry irect ob	Strer serva	igth:	: N- vithin	None, the lin	L-Lo	w; M- s of sa	Me mple	diur er si:	m, ze (H-H in m	<u>ligh</u> sillim	, V	-Ver s).	y Hi	gh	
		Not	e: So	il ide	ntifica	<u>tion b</u>	ased on vi	isua	<u>al-n</u>	nanu	ıal me	ethod	s of th	ne US	CS	as p	ractio	ed b	y Hale	у &	Ale	dric	ch.	Inc.					

Apr 12, 07

G:PROJECTS\33879\003 REPORT W DUSRVIELD LOGS\33879-0017BC,GPJ

USCSTC3A.GDT

	ALEY (LDRIC	& H					TEST	BORING	REPOR	RT .	-			Во	rir	ng	No),	S	3B-	10	
Clie	oject ent ntracto	ROCHE	STER	GAS	& ELI	ECTF		ROCHESTE	R, NEW YOR	rk D	TAF		SI	le N hee tart	t N	o. No	ven	f 1 nbe	r 28			
			С	asing	Sar	npler	Barrel	Drilli	ng Equipmen	t and Proce	edures			nish rille		MO			r 28 oran		OUC	
Тур	е		1	HSA		s	-	Rig Make &	Model: Truc	k-mounted	CME 85		Н	&A	Re	p.		. P		,		
Insi	de Dia	meter (i	in.) 2	2 1/4	1	3/8	-	Bit Type: Drill Mud:	Cutting Head				i	leva atur		n	5	13.	8			
Han	nmer V	Veight ((lb.)	-	1	40	-		None _ pun				-	oca	tion							_
Han	nmer F	all (in.)		_	3	30	-	Hoist/Hamn	•	atic Hamme	er						151 104,					
□		No.		ram	ta E	Symbol		/isual-Manual	I Identification	and Desc	ription		\vdash	avel	-	San ⊏İ			F		Tes	t
Depth (ft.)	SPT	Sample No. & Rec. (in.)	Sample Depth (ft.)	Well Diagram	Elev./Depth (ft.)	USCS Syr	(Densit	//consistency,	color, GROUP optional descri	NAME, max	. particle size ²		% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strenath
- 0 -	5 10 11	S1 14/24	0.0 2.0			SM	with grave		vn to black, silt pal, 5% clinker, or, dry		PID = 0.0) ppm		15	10	10	20	20				
-	16							r through rubbl 2.0 ft. to 4.0 f	le debris 1.8 ft. t.	to 4.0 ft.												
- 5 -	2 3 4 5	\$2 16/24	4.0 6.0		***************************************	SM		S1, except loos odor, moist.	e, with weather	ed												
-	1 2 1 3	S3 10/24	6.0 8.0	ED		SM			own, silty SANI ered petroleum		PID = 32.4	l ppm	5	20	10	10	35	20				
Apr 13, 07	2 3 6 7	S4 12/24	8.0 10.0	NO WELL INSTALLED	503.6	SM	sand from	9.3 ft. to 10.0 f petroleum odor	SAND (SM), to ft., 5% brick ar r, moist. ILL-		PID = 80.8	3 ppm										
- 10 -	2 3 4 6	\$5 6/24	10.0 12.0	NO WE	10.2	SM		ow to gray, sil petroleum odor	ty SAND with ;	gravel (SM),	PID = 281	ppm										
-	12	\$6 9/14	12.0	İ	501.0				e, yellow-greer		PID = 73.0) ppm										
	28 100/2	2/14	13.2		12.8 500.6		weathered	petroleum odor	or product; app with possible i	naphthalene,	F											
-					13.2		wet, bottor	<u>-LACŪ</u>	letely weathered													
15 -							Bottom of	<u>-WEATHERE</u> exploration at 1	ED BEDROCK 3.2 ft.													
PARAMETER LOGSTON REPORT TO THE PARAMETER LOGSTON TO THE PARAMETER LOGS							Note: Spli	t spoon refusal	with weathered	rock.												
D D D D D D D D D D D D D D D D D D D						1				1 100												
- 1			ter Lev Elaps	ал	Dep	th (ft.) to:	•	dentification End Rod	☐☐ Ri	Diagram iser Pipe	Ov.		urd		nma (lin		1	2 2			
B D	ate	Time	Time (hr.) [Bottom Casing	Botto of Ho	m Mater		/all Tube	444	reen Iter Sand			Cor					3.2			
11/2	28/06	1555	.2		10	11	10+/-		urbed Sample	TT CI	uttings rout	Saı					65					
S C								S Split S G Geopre	obe	Co Be	oncrete entonite Seal	Во							B-1	0		
Fie	eld Tes			Touc	ancy: hnęss:	L-L	ow. M-Med	ow, N-None dium, H-High	Dry_	Strength: N	onplastic, L-L N-None, L-Lo	<u>w∵M-</u>	Me	diur	n.	H-H	<u>ligh</u>	. V		y Hi	igh	
S SP	T = San	npler blov No 1							ned by direct ob methods of th									eter	s).			

HALEY & ALDRICH		-	TEST	BORING REPORT	A —		Воі	ring	No).	S	B-	11
Client ROCHES	TER GAS		ΓRIC	ROCHESTER, NEW YORK	RAFT	Sh	art	No.	over	f 1 nbe	r 29		
	Casing	Sample	er Barrel	Drilling Equipment and Pr	ocedures	t	nish iller				r 29 oran		00
Туре	HSA	S	-	Rig Make & Model: Truck-mount	ed CME 85	-1		₹ер.		6. P			
Inside Diameter (in.)	2 1/4	1 3/8	_	Bit Type: Cutting Head		1 '	evat		5	513.	6		
Hammer Weight (lb.) -	140	_	Drill Mud: None Casing: spun		-	tum cati		See	Pla	n		
Hammer Fall (in.)	-	30	-	Hoist/Hammer: Automatic Ham	nmer			N 1 E 1.	,151	,26	3		
SPT¹ Sample No. & Rec. (in.)	Depth (ft.) Well Diagram	Elev./Depth (ft.)	(Densit	/isual-Manual Identification and De y/consistency, color, GROUP NAME, n odor, moisture, optional descriptions, gr	nax. particle size².	% Coarse	Fine	Coarse S	nd	Fines		Toughness @	Plasticity Test
D	0.0	513.3	structure, c	-TOPSOIL-	eologic interpretation)	%	%	% %	8	%	ā	P	곱
	2.0	0.3 512.3	Wood with	r creosote odor, probable railroad tie.	PID = 39.3 ppm								
26 9 S2	2.0	1.3 SN	trace conci	k brown, silty SAND with gravel (SM) rete and clinker/slag, creosote odor, dry cosote-coated wood, probable railroad ti	. DID - 104					-			
1 1	4.0			eosote-saturated wood, strong odor, sheed probable railroad tie, poor recovery.	en PID = 109 ppm								
1 1	6.0 8.0	507.6 6.0 SN	, ,	e, brown, silty SAND (SM) and pated wood fibers, poor recoveryFILL-	PID = 32.3 ppm					-	,		
	ELL INSTALLED	504.1 9.5 SO	ash, 5% w	e, brown to black, silty SAND (SM), 20 ood fibers, slight creosote odor, wet.			10.4					_	
	0.0 2.0 NO MET			e, yellow-brown, clayey SAND (SC), sli dor, wet, bottom 2 in. is brown, trace eers.	ght PID = 1.2 ppm		10 1	0 5	30	45			
	2.0	501.6 12.0 CI 501.1 SP 12.5 SN	odor, mois Medium de	-FILL- ense, yellow-brown, poorly-graded SAN	PID = 0.0 ppm			5 20	65	10		-	
	4.0	499.0	with silt (S	P-SM), slight creosote odor, wetLACUSTRINE-									
15 -	4.6	14.6		exploration at 14.6 ft. it spoon refusal.									
Water	Level Da	fa		Sample Identification We	Il Diagram			umn					

Time (hr.) Bottom Bottom Screen Water Thin Wall Tube Ţ Rock Cored (lin. ft.) Filter Sand of Hole Cuttings 11/29/06 1420 0.1 14 8+/-Undisturbed Sample Samples 14.5 8S Grout S Split Spoon Concrete Boring No. **SB-11** G Geoprobe Bentonite Seal Dilatancy: R-Rapid, S-Slow, N-None Plasticity: N-Nonplastic, L-Low, M-Medium, H-High Dry Strength: N-None, L-Low, M-Medium, H-High, V-Very High in. 2 Maximum particle size (mm) is determined by direct observation within the limitations of sampler size (in millimeters). Field Tests:

¹SPT = Sampler blows per 6 in. Note: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.

127	ALEY	0								
ΑΪ	DRIC	Ť						TEST	BORING REPORT Boring No.	SB-12
Clie	ject ent f ntracto	ROCHE	STE	R (GAS	& ELE	ECTF			1 per 28, 2006
				Ca	sing	San	npler	Barrel	Drilling Equipment and Department	per 28, 2006 Loranty
Тур	е			Н	SA	,	S	_	Rig Make & Model: Truck-mounted CME 85 H&A Rep. S.	Poff
		meter (i	- 1	2	1/4		3/8	_	Bit Type: Cutting Head Elevation 51 Drill Mud: None Datum	3.8
		Veight (all (in.)	` 1		-	_	40 80	- _	Casing: spun Hoist/Hammer: Automotic Hammer N 1,151,2	209
			\top	\neg			,		Gravel Sand	24 Field Test
Depth (ft.)	SPT¹	Sample No. & Rec. (in.)	Sample	Deptn (II.	Well Diagram	Elev./Depth (ft.)	USCS Symbol	(Densit	Visual-Manual Identification and Description ty/consistency, color, GROUP NAME, max. particle size², odor, moisture, optional descriptions, geologic interpretation)	% Fines We Fines Dilatancy Toughness Plasticity
- 0 -	2 3 6 6	S1 19/24	0. 2.	- 1		rk brown to black, silty SAND (SM), 15% PID = 0.7 ppm 10 10 10 10 15 2 cles, 5% brick, no odor, dry, occasional or-free, yellow-brown, silty sand.	5			
-	6 4 5 5	\$2 16/24	2. 4.			511.4 2.4 509.8	ΜĪ		wn to gray-brown, sandy SILT (ML), trace t weathered petroleum odor, moist. PID = 65.8 ppm 10 5 10 25 50	5
-5-	1 2 1 3	\$3 14/24	6.			4.0	SM	coal partic	e, black to brown, silty SAND (SM), 20% cles, 15% ash, 15% brick, 5% clinker, d odor, dry.	
-	1 2 4 5	S4 14/24	6. 8.	,	E		SM		ack to brown, silty SAND (SM), 20% coal 15% ash, 15% brick, 5% clinker, slight -, dry.	
-	2 4 4 3	\$5 12/24	8.	- 1	WELL INSTALLED		SM	gravel (SN	ack to yellow-brown, silty SAND with M), trace coal, slight weathered petroleum 5 ft., wet at 9.0 ft., no sheen. PID = 0.7 ppm 5 20 10 10 25 31)
- 10 - -	5 10 28 38	\$6 12/24	10 12		NO WEL	502.8 11.0	SM GP	gravel (SN	ack to yellow-brown, silty SAND with A), slight weathered petroleum odor, no oble fragments at 11.4 ft. to 11.6 ft. PID = 0.5 ppm PID = 1.3 ppm	
-	9 10 12 13	\$7 6/24	12. 14.	- 1		499.8		sand, mus Note: cobb	lense, gray, poorly-graded GRAVEL with ty odor, dry. bles and boulders 12.0 ft. to 14.0 ft, n refusal and auger refusal at 14.0 ft GLACIAL TILL-	
- 15 -	100/0	S8 0/0	14.	- 1		14.0		Bottom of	exploration at 14.0 ft.	
D.	ate	Time		pse	d	Dep	th (ft.		Sample Identification Well Diagram Summary O Open End Rod Secretary Overburden (lin. ft.)	14 0
		rinie	Time		-√B	ottom Casing	Botto of Ho	le vvater	T Thin Wall Tube Filter Sand Rock Cored (lin. ft.)	-
11/2	28/06	-		-		-	-	9+/-	U Undisturbed Sample Cuttings Samples 8S	

Split Spoon

Geoprobe

Dilatancy: R-Rapid, S-Slow, N-None Plasticity: N-Nonplastic, L-Low, M-Medium, H-High Toughness: L-Low, M-Medium, H-High Dry Strength: N-None, L-Low; M-Medium, H-High, V-Very High Plows per 6 in. Maximum particle size (mm) is determined by direct observation within the limitations of sampler size (in millimeters).

Note: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.

G

Concrete Bentonite Seal

Boring No.

SB-12

G:PROJECTS:03879:003 REPORT W DUSRVFIELD LOGS:033879-001TBC.GPJ

Field Tests:

¹SPT = Sampler blows per 6 in.

	ALEY DRIC		BORING REPORT Boring No.	SB-13															
Clie	ject ent ntracto	ROCHE	STER	GAS	& ELI	ECTR		ROCHESTER, NEW YORK DRAFFILE No. 33879-0 Sheet No. 1 of 1 Start November	28, 2006										
			С	asing	Sar	npler	Barrel	Drilling Equipment and Procedures Finish November Driller S. Lo											
Тур	е е			HSA		 S	_												
		meter (i	in.) 2	2 1/4	1	3/8	_												
		Veight (_		40	_	Location C. Di	Datum Location See Plan										
Hammer Fall (in.) - 30							-	Hoist/Hammer: Automotic Hammer N 1,151,220	N 1,151,220 E 1,404,281										
Sept1 Sample No. & Rec. (in.) Sample Depth (ft.) Well Diagram Elev./Depth (ft.)								Visual-Manual Identification and Description	Dilatancy Toughness applications to the street to the stre										
	SPT	Sar	Sar	Well	⊞ Œ	nscs	structure, o	odor, moisture, optional descriptions, geologic interpretation)	Dilatancy Toughnes Plasticity Strenoth										
- 0 -	6 5 4 3	S1 16/24	0.0 2.0		513.8 0.2	SM		-TOPSOIL- rk brown to black, silty SAND with gravel coal particles, 5% clinker, no odor, dry. PID = 0.0 ppm 5 10 10 15 20 15											
-	6 4 4 5	S2 15/24	2.0			SM		rk gray-brown, silty SAND (SM), 5% coal weathered petroleum odor, moistFILL-											
- 5 -	2 3 6 6	S3 17/24	4.0 6.0			SM		ht brown to light gray-brown, silty SAND PID = 437 ppm 5 10 5 50 30 hthered petroleum odor, moist.											
-	2 3 4 4	S4 20/24	6.0 8.0			SM		ht brown, silty SAND (SM), weathered odor, moist.											
-	3 3 4 4	S5 24/24	8.0 10.0	L INSTALLED	504.0	SM		ht brown, silty SAND (SM), weathered odor, wet at 9.6 ftFILL-											
- 10 - -	6 7 8 8	S6 18/24	10.0 12.0	NO WELL	10.0	ML		brown to tan, sandy SILT (ML), petroleum odor, wet, no sheen. PID = 260 ppm											
-	9 11 16 18	S7 18/24	12.0 14.0			ML		light brown to tan, sandy SILT (ML), petroleum odor, wet, no sheen. PID = 168 ppm 10 5 15 70											
- 15 -	26 -100/2	S8 5/8	14.0 -14.7		499.3 14.7	ML	weathered	light brown to tan, SILT with sand (ML), petroleum odor, wet, no sheen. -LACUSTRINE- exploration at 14.7 ft.											
-							Note: Spl	it spoon refusal.											
			ter Lev			th (ft.) to:	Sample Identification Well Diagram Summary O Open End Rod Sample Roser Pipe Overburden (lin. ft.) 14	4 7										
D;	ate	Time	Time (hr √ E	ottom Casing	Botto of Ho	m Mater	T Thin Wall Tube Screen Rock Cored (lin. ft.)	4.7 -										
11/2	28/06	-	-		-	-	9.6+/-	U Undisturbed Sample Cuttings Samples 8S											
								Bentonite Seal	3-13										
,	eld Tes			Toug	ancy: hness:	: L-L	ow. M-Me	low, N-None Plasticity: N-Nonplastic, L-Low, M-Medium, H-High dium, H-High Dry Strength: N-None, L-Low, M-Medium, H-High, V-	Very High										
_'SP	T = Sar	npler blov No t			<u>"Ma</u> ntifica	ximum tion b	particle size ased on vi	(mm) is determined by direct observation within the limitations of sampler size (in millimeters such than 1 such that the use of the uses as practiced by Haley & Aldrich, Inc.).										

HALEY & ALDRICH TEST BORING REPORT													Boring No. SB-14													
Clier	Client ROCHESTER GAS & ELECTRIC Contractor NOTHNAGLE DRILLING, INC.														File No. 33879-001 Sheet No. 1 of 1 Start November 29, 2006 Finish November 29, 2006											
	***************************************			Casin	g Sar	npler	Barrel		Drilling Equipmen	t and Proce	dures		1	nish riller	•	No					006					
Type	· · · · · · · · · · · · · · · · · · ·			HSA	_	S	_	Rig Make & Model: Truck-mounted CME 85								Driller S. Loranty H&A Rep. S. Poff										
1 -		neter (in.)	2 1/4	. 1	3/8	_	Bit Ty					Elevation 511.0													
1			- 1	_		40	-		Mud: None				Datum Location See Plan													
Hammer Weight (lb.) - 144 Hammer Fall (in.) - 30							-	Casing: spun Hoist/Hammer: Automatic Hammer							N 1,151,297 E 1,404,264											
Depth (ft.)	SPT¹	Sample No. & Rec. (in.)	Sample Depth (ft.)	Well Diagram	Elev./Depth (ft.)	USCS Symbol	(Densit	Visual-Manual Identification and Description (Density/consistency, color, GROUP NAME, max. particle size ² ,								San			F	Toughness a	Plasticity at	Strength				
Ö	ις.	လွတ	လိုင်	§	<u>m</u> €	ns	structure, c	odor, mo	oisture, optional descri	ptions, geolo	gic interpreta	tion)	% Coarse	% Fine	% Coarse	%	%	%	ä	卢	Pias	챬				
-	2 2 3 3	S1 19/24	0.0 2.0			\$M/SI		vI), layer	orly-graded SAND (SP tred, with 20% coal par fry.		PID = 0.0) ppm														
- -	3 2 1	S2 14/24	2.0 4.0	Ł			Similar to	S1, exce	ept very loose, trace bi -FILL-	rick.	PID = 0.0) ppm														
- 5 -	1 2 3 7	\$3 16/24	4.0 6.0		506.2 4.8		gravel (SM	brown to yellow-brown, silty SAND with (SM), trace clay, occasional sand seams, no					5	10	10	15	30	30								
 	1		6.0				odor, mois	odor, moist, wet at approximately 5.5 ftLACUSTRINE-																		
	2 2 3	24/24	8.0	1_	502.7	SM	,		gray to black-stained, silty SAND with petroleum odor, wet, no sheen.																	
Apr 13, 07	12 13 15 22	S5 18/24	8.0 10.0	_ <⊺∵	8.3	SM			ght gray-brown, silty S. bleum odor, wet, no sh		PID = 1200	ó ppm	20	15	5	10	25	25								
Gen 10	9 12 15 20	12 18/24 15		10.0 12.0 M 0N		SM	Medium dense, light brown, silty SAND with gravel (SM), petroleum odor, wet, no sheen.						pm													
-	36 100/5	\$7 7/24	12.0	4	498.1 12.9	SM																				
								explorat	GLACIAL TILL- tion at 12.9 ft.	ş.						***************************************						_				
S. Proceduration of the Company of t																										
1 1															ļ											
		Wa	ter Le	vel D	ata			Sa	mple Identification		iagram			. <u>'</u>	} 3un	nma	ary									
Da	te	Time	Elap	sed	Dep Bottom	th (ft.		0	Open End Rod	Scr	ser Pipe reen	Ove				•			12.9							
1112	voc	10.40			Bottom f Casing	of Ho	ole vvater	1	Thin Wall Tube	Filt	ter Sand ttings			Core	eď	(lin.		-	-							
Da 11/29		1240	0.		10	-	5.5+/-	G	Undisturbed Sample Split Spoon Geoprobe	Green Co	out ncrete ntonite Seal	Sar Bo	rin	g N			7:	S	B-1	4		_				
Fiel	d Test			Tou	tancy: ghness	: L-L	Rapid, S-Sl .ow, M-Med	dium. F	H-Hiah Drv	Strength: N	nplastic, L-L -None, L-Lo	w: M-	Me	diun	n.	H-H	liah	1. V	<u>-Ve</u> ı	<u>у Н</u>	igh					
3 SPT	= Sam	pler blov Not							determined by direct ob anual methods of th										<u>s).</u>							

Boring No. **SB-15** TEST BORING REPORT CANAL STREET FORMER MGP SITE ROCHESTER, NEW YORK File No. 33879-001 Project Client **ROCHESTER GAS & ELECTRIC** Sheet No. 1 of 2 Contractor NOTHNAGLE DRILLING, INC. November 28, 2006 Start November 28, 2006 Finish Casing Sampler Barrel **Drilling Equipment and Procedures** Driller S. Loranty Rig Make & Model: Truck-mounted CME 85 H&A Rep. Type S. Poff **HSA** S Bit Type: Elevation Cutting Head 513.2 Inside Diameter (in.) 2 1/4 1 3/8 Drill Mud: None Datum Hammer Weight (lb.) 140 Location on See Plan N 1,151,096 Casing: spun Hammer Fall (in.) 30 Hoist/Hammer: Automatic Hammer E 1,404,295 , No. Elev./Depth (ft.) Gravel Sand Field Test Symbol Well Diagram Sample Depth (ft.) Visual-Manual Identification and Description Medium Ë Sample N & Rec. (ir Coarse Coarse Toughness Dilatancy Rec Fines Depth Fine Plasticity Strength SPT JSCS (Density/consistency, color, GROUP NAME, max. particle size2, structure, odor, moisture, optional descriptions, geologic interpretation) % % % 8 % Q 513.1 4 S1 0.0 -TOPSOIL SP-PID = 0.0 ppm25 15 20 30 10 16/24 0.1 5 2.0 Medium dense, brown, poorly-graded SAND with \underline{SM} 512.5 PID = 0.0 ppmsilt and gravel (SP-SM), no odor, dry. SM 8 0.7 PID = 0.0 ppm20 5 10 30 35 Medium dense, black, COAL particles, 25% slag and 512.0 clinker particles, no odor, dry. 2.0 4 1.2 Loose, brown, silty SAND with gravel (SM), no 3 20/24 40 odor, moist. 3 3 SM 1 **S3** 4.0 Very loose, brown, silty SAND with gravel (SM), PID = 0.0 ppm20 5 10 30 35 16/24 2 6.0 trace coal and brick particles, no odor, moist. - 5 2 SM 6.0 S4 Loose, brown, silty SAND with gravel (SM), trace PID = 0.0 ppm | 5 | 15 | 5 | 5 | 30 | 408/24 2 8.0 coal particles, no odor, moist. 3 1 WELL INSTALLED 2 PID = 0.0 ppm8.0 Similar to S4, wet at approximately 9.8 ft. 9/24 10.0 5 Apr 100/5 502.8 10.0 SM <u>S6</u> Loose, brown, silty SAND with gravel (SM), trace G:\PROJECTS\33879\003 REPORT W DUSR\FIELD LOGS\33879-001TBC.GPJ PID = 0.0 ppm3/24 10.4 10.4 coal particles, no odor, wet, split-spoon refusal at 2 10.4 ft. See Core Boring Report SB-15. 15 GÖT Water Level Data Well Diagram Sample Identification Summary Depth (ft.) to: Riser Pipe Elapsed 0 Open End Rod Overburden (lin. ft.) 10.4 Date Time Bottom Bottom Screen Time (hr.) Water Τ Thin Wall Tube Rock Cored (lin. ft.) of Casing of Hole Fifter Sand 11/28/06 U Undisturbed Sample Cuttings 9.8 Samples 6S Grout S Split Spoon Concrete **Boring No. SB-15** G Geoprobe Bentonite Seal

Dilatancy:

Field Tests:

SPT = Sampler blows per 6 in.

R-Rapid, S-Slow, N-None L-Low, M-Medium, H-High

Plasticity: N-Nonplastic, L-Low, M-Medium, H-High

Dry Strength: N-None, L-Lowe M-Medium, H-High, V-Very High

Toughness: L-Low, M-Medium, H-High

Dry Strength, N-North, L-Low, M-Medium, H-High

in.

Maximum particle size (mm) is determined by direct observation within the limitations of sampler size (in millimeters).

Note: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.

	Drilling Rate		·	Recove	ry/RQD		Elev./	Sheet No. 2 of 2
Depth (ft)	Rate Min./ft	Run No.	Depth (ft)	in.	%	Weath- ering	Depth (ft)	Visual Description and Remarks
•			· · · · · ·				(1.1)	SEE TEST BORING REPORT FOR OVERBURDEN DETAILS
10 -								
		C1	10.5	32	89		502.7 10.5	Highly weathered, tan, CONCRETE, no odor, no stain.
	1 2		13.5	14	39		502.0 11.2	-CONCRETE FILL-
	2							Hard, moderately to slightly weathered, gray, fine-grained DOLOSTONE with frequent tan SHALE beds, bedding horizontal to low angle, planar to undulating thin, joints are horizontal to low angle, very close to close, rough, planar to undulating, discolored, open, with frequent discontinuous fractures. -BEDROCK-
							499.7	
							13.5	Bottom of exploration at 13.5 ft.
15 -								
				·				
:								
}								

					:			

	TEST BORING REPORT Project CANAL STREET FORMER MGP SITE ROCHESTER NEW YORK PROJECT CANAL STREET FORMER MGP SITE ROCHESTER NEW YORK														Boring No. SB-16										
Clie	Project CANAL STREET FORMER MGP SITE ROCHESTER, NEW YORK Client ROCHESTER GAS & ELECTRIC Contractor NOTHNAGLE DRILLING, INC.														File No. 33879-001 Sheet No. 1 of 2 Start December 5, 2006										
	Casing Sampler Barrel Drilling Equipment and Procedures Type HSA S - Rig Make & Model: Truck-mounted CME 85														Finish December 5, 200 Driller S. Loranty										
Туре	3			HSA	1	- ;	s S	-	Rig Make & Model: Truc	k-mounted C	ME 85		H&A Rep. S. Poff												
Insid	de Diar	meter (i	in.)	2 1/-	4	1 :	3/8	_	Bit Type: Cutting Head			- {	Elevation 512.3 Datum												
Ham	ımer V	Veight ((lb.)	-		1	40	-	Drill Mud: None Casing: spun			h	Location See Plan												
Ham	mer F	all (in.)		_		3	0	-	l	atic Hammer						,151 ,404									
Depth (ft.)	SPT¹ Sample No. & Rec. (in.) Sample Depth (ft.) Well Diagram Elev./Depth (ft.) USCS Symbol								Visual-Manual Identification and Description (Density/consistency, color, GROUP NAME, max, particle size ² .						% Medium es	_	Fines	Itancy	Toughness 🙃	Plasticity a	Г				
<u> </u>						ぜ			dor, moisture, optional descri				% Coarse	% FINE	8 8	2 %	%	ä	To	딤	2				
-	2 3 3 2	S1 12/24	0. 2.				SM		k brown, silty SAND (SM), 35 ite lime-like material, 10% coary.		PID = 0.0 p	pm	1	0 5	5 10	15	15								
-	1 2 3 3	\$2 15/24	2. 4.	· I			SM	white lime	k brown, silty SAND (SM), lind like material from 2.1 ft. to 2.1 to odor, dry. -FILL-		PID = 0.0 p	pm													
-	2	S3	4.0				SM		Loose, dark brown, silty SAND (SM), light blue to																
- 5 -	4	4	6.	0		507.3 5.0	ML	white lime-like material, coal particles, no odor, dry. Stiff, brown to dark brown, SILT with sand (ML), no PID = 0.0 ppn						;	-	20	80			ļ	L				
_	5							odor, mois	odor, moist.							20	00								
-	1 2 2 4	S4 16/24	6. 8.	0	3		CL- ML		Soft, yellow-brown to brown, clayey SILT (CL-ML) vith occasional seams of fine sand, no odor, moist. -LACUSTRINE-																
-	1 2 2 3	S5 14/24	8. 10	<	502	2 3	CL	Similar to S4, wet at approximately 9.3 ft.; red-brown, lean CLAY from 9.4 ft. to 9.6 ft.																	
- 10 - -	8 9 15 17			10.0 12.0 NET		2.3 0.0	SM		ense, brown to yellow-brown, I (SM), no odor, wet, compact		PID = 0.0 p	pm 1	0 5	;		45	40								
-	12 15 18 25	S7 16/24	12 14		498	3.3	SM	with grave	nse, yellow-brown to light brown, silty SAND h gravel (SM), slight motor oil-like odor, wet, apact in-situ.			pm 1:	0 2	0 5	i 10	25	30								
- 15 -					14	1.0	_	See Core E	-GLACIAL TILL- Boring Report SB-16.																
-										T															
		vva	-	evel (psed)en	th (ft.) to:	Sample Identification O Open End Rod	Well Di	agram er Pipe				umn n (lii	nary					—				

Date Time (hr.) Bottom of Casing Screen Bottom Water Thin Wall Tube Rock Cored (lin. ft.) T 2.0 of Hole Filter Sand Cuttings Undisturbed Sample Samples **7**S Grout S Split Spoon Concrete Boring No. **SB-16** Field Tests:

Dilatancy:
Toughness:
L-Low, M-Medium, H-High
Dry Strength:
Note:
Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc. G Geoprobe

USCSLIB4,GLB

	Drilling						ORIN	Sheet No. 2 of 2
Depth (ft)	Drilling Rate Min./ft	Run No.	Depth (ft)	in.	ry/RQD %	Weath- ering	Elev./ Depth (ft)	Visual Description and Remarks
(10)	141111.711	NO.	(10)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	70	ening	(ft)	SEE TEST BORING REPORT FOR OVERBURDEN DETAILS Note: Drill action suggests top-of-bedrock
15 —		CI	14.0 16.0	22 9	92 38		498.3 14.0	Hard, slightly weathered, gray, fine-grained DOLOSTONE, bedding horizontal low angle, thin, joints horizontal to low angle, very close to close, rough, plana to undulating, discolored to fresh, open. -BEDROCK-
							496.3 16.0	Bottom of exploration at 16.0 ft.

HA AL	DRIC	& H					TEST	BORING REPOI	RT)		=	Во	rin	g	No.	•	SE	-17	,
Proj Clie Con	nt I	CANA ROCHE r NO	STER	R GAS	& ELI	ECTR	RIC	ROCHESTER, NEW YO	RK D	KAL		St St	art	t No	De	of	ıber	4, 2		
			С	asing	Sar	npler	Barrel	Drilling Equipmen	t and Proce	dures			nish iller	•	De			4, 20 anty	JU6	
Гуре				HSA		 S	_	Rig Make & Model: True	ck-mounted C	ME 85			λA I		٥,		Pof	_		
		meter (i	n.)	2 1/4	1	3/8	_	Bit Type: Cutting Head					eva		1	51	4.2			
		Veight (- 1	_	ł	40	-	Drill Mud: None_ Casing: spun					cat			ee i	Plan			_
		all (in.)	1	_	3	30	_		natic Hammer	•				N	1,1	51, 04,	060			
		<u> </u>		E	Ę	- E	,	Court beautiful attention				Gra	vel	S	an		<u> </u>	Fiel	-	25
Depth (ft.)	SPT	Sample No. & Rec. (in.)	Sample Depth (ft.)	Well Diagram	Elev./Depth (ft.)	USCS Symbol	(Density	/isual-Manual Identification y/consistency, color, GROUP idor, moisture, optional descr	NAME, max.	particle size ² ,	OD)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Toughness	Plasticity	
<u>Ω</u> 0 -	3	ഗ «୪ S1	0.0	3	Ш€ 	SM		ense, brown, silty SAND with		PID = 0.0	-					20 2		5 2	8	
	5 7 6	14/24	2.0				(SM), 20% odor, dry.	coal particles, trace clinker a	nd brick, no		•									
	3 4 4	\$2 3/24	2.0 4.0			SM	(SM), coal	ense, brown, silty SAND with particles, no odor, dry, poor		PID = 0.0	ppm									
	5	63	4.0			SM	_	p of split-spoon. , dark brown to orange-brown	eiltu	PID = 0.0	nnm			5	10	40 4	ın			
5 -	2 2 3	2 4/24 6.0 2 3 508.2						f), 5% coal, trace ash, no odo -FILL-		110 = 0.0	ppin			3		-				
	1 2	S4 16/24	6.0 8.0			ML	Soft, dark odor, mois		tht organic	PID = 0.0	ppm			+		30 7	0			1
	1 2			日日	7.1	SC		-ORGANIC DEPOSIT- , brown to yellow-brown, clay		PID = 0.0	ppm	5	15	10	10	15	15			
	1 2 2 2	S5 11/24	8.0 10.0	WELL INSTALLED		SC	Very loose	I (SC), slight organic odor, mo , brown to yellow-brown, clay I (SC), trace organics, slight o	ey SAND	PID = 0.0	ppm									
10 -	1 2	S6 12/24	10.0 12.0	NO WELL			Similar to 3	-LACUSTRINE- S5; slight weathered petroleun 12.0 ft.	n odor from											
	2 2		10.0			sc		, brown to yellow-brown, clay organics, slight weathered pe		PID = 0.0	ppm									
	100/6	S7 6/6	12.0 12.5		501.7 12.5		\odor, wet.			4					1			-	-	-
								exploration at 12.5 ft. t spoon refusal and auger refu	sal at 12.5											
	T	Wa	ter Lev			th (ft,	\ to:	Sample Identification	Well D	agram er Pipe				Sum						_
	ate	Time	Elaps Time (hr \ E	Dep Bottom Casing	Botto of Ho	Water	O Open End Rod T Thin Wall Tube	Scr Filt	een er Sand	Roc	k C	Core			ft.)	12.	.5		
12/0	14/06	-	-		-	-	8+/-	U Undisturbed Sample S Split Spoon	Gro	ncrete	San Bo i	•		۷o.		<u>7S</u>	SB			_
Fie	ld Test	ts:		 Dilata	ancy:	R-R	Rapid, S-Slo	G Geoprobe ow, N-None Pla		ntonite Seal						ligh		-/		_
.,		npler blov	vs ner 6	Toug	ihness:	L-L	ow. M-Med		Strenath: N	None L-Lov	v: M-I	Vied	nuib	n. F	H	iah.	V-V	ery i	ligh	<u>L</u>

Boring No. SB-18 Was not installed

Note: Boring SB-19 was not re-numbered to be SB-18 because the soil sample labels and chain-of-custody documentation completed in the field used the SB-19 designation.

Į.	IALEY LDRIC	& .H					TEST	BORING REPORT Boring No.	SB-19
C	oject ient ontracto	ROCH	ESTER	GAS	& EL	ECTF		1	1 ber 1, 2006
			С	asing	Sar	npler	Barrel	Drilling Equipment and Dresedures	ber 1, 2006 Loranty
Ту	pe]	HSA		s	-		Poff
Ins	side Dia	meter (in.) 2	2 1/4	1	3/8	_	Bit Type: Cutting Head Elevation	
Ha	ımmer '	Weight	(lb.)	_	1	40	_	Drill Mud: None Datum Casing: spun Location See I	llan
Ha	mmer	Fall (in.))	_	1	30	_	Hoist/Hammer: Automatic Hammer	
Depth (ff.)	SPT ¹	Sample No. & Rec. (in.)	Sample Depth (ft.)	Well Diagram	Elev./Depth (ft.)	USCS Symbol	(Densit	Gravel Sand Sand	Dilatancy Toughness planticity Strength
- 0	-	10,00	0,13	<u> </u>	E (-BRICK PAVERS-	
-	2 1 2	S1 10/18	0.5 2.0		0.5	SM		L particles, 50% dark brown, silty SAND PID = 0.0 ppm e ash, no odor, moist.	
-	4 4 4 4	S2 12/24	2.0 4.0			SM	gravel (SM	k gray-brown to brown, silty SAND with), trace coal, ash and glass, weathered odor, moist.	
- 5	4 3 2 1	S3 14/24	4.0 6.0			SM		wn, silty SAND (SM), slight weathered odor, moist. PID = 6.2 ppm 5 5 20 35 3 3 3 3 3 3 3 3	
	2 2 3 2	S4 14/24	6.0 8.0	CED		SM	petroleum	wn, silty SAND (SM), slight weathered odor with slight naphthalene odor, moist, a tip of spoon. -FILL-	
Apr 12, 07	1 1 2 2	S5 12/24	8.0 10.0	NO WELL INSTALLED	8.5	SM		wn to yellow-brown, silty SAND with), no odor, wet at approximately 9.5 ft. PID = 6.8 ppm 5 15 5 15 30 3)
- 10 - 10	1 2 3 5	\$6 7/24	10.0 12.0	NO WEL		SM		wn to yellow-brown, silty SAND with), no odor, wetLACUSTRINE-	
LD LOGS/3387	6 18 100/6	S7 8/18	12.0 13.5			SM		wn to yellow-brown, silty SAND with), no odor, wet, weathered rock in spoon	
SRVFI					13.5		Bottom of	exploration at 13.5 ft.	
G:PROJECTSX3879/003 REPORT W DUSRIFIELD LOGSX3879							Note: Spli	spoon refusal with weathered rock.	
nscs.			ter Lev Elaps			th (ft.) to:	Sample Identification Well Diagram Summary O Open End Rod	10.5
	Date	Time	Time (hr ∮ B	ottom Casing	Botto	M Water	O Open End Rod T Thin Wall Tube Overburden (lin. ft.) Screen Filter Sand Rock Cored (lin. ft.)	13.5
SLIBA								U Undisturbed Sample Cuttings Samples 7S	
USCS_TB3APID USCSLIB4.GLB USCSTC3A.GDT				Dist				Bentonite Seal	SB-19
5 F	ield Tes				hness:	L-L	ow, M-Med	w, N-None Plasticity: N-Nonplastic, L-Low, M-Medium, H-High Dry Strength: N-None, L-Low, M-Medium, H-High,	V-Very High
	rı = Saı	mpler blov No t			-Ma ntificat	ion b	paπicle size ased on vis	mm) is determined by direct observation within the limitations of sampler size (in millimet sual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.	ers).

H/ AL	ALEY o	& H					TEST	вог	RING REPO	RT_				Во	rin	g N	۱o.	•	M	W-	1
Proj Clie Cor	nt l	CANA ROCHE r NO	ESTE	R GAS	3 & EL	ECTR	RIC	ROC	HESTER, NEW YO	DRK D	RAF		St	art	t No	Dec	of cerr	ıber	1, 2		
			1	Casing	Sar	npler	Barrel		Drilling Equipme	nt and Pro	cedures			nish iller		Dec			1, 2 ranty		5
Туре	9			HSA		S	NX	Rig N	Make & Model: Tr	uck-mounted	1 CME 85		Н	\$А I	Rep) .		Po	-	, 	
Insid	de Dia	meter (in.)	4 1/4	1	3/8	2.0	1	ype: Cutting Hea Mud: None	i				eva atun		1	51	4.1			
Ham	nmer V	Veight ((lb.)	-	1	40	-	Casi							ion	S					
Ham	nmer F	all (in.)		-		30	-	Hois		matic Hamr	ner				E	1,1: 1,40)4,2				
Depth (ft.)	SPT¹	Sample No. & Rec. (in.)	Sample	Well Diagram	Elev./Depth (ft.)	S Symbol	(Densit	y/consi:	Manual Identificati	P NAME, ma	ax. particle size²	2	Coarse n	Pine lave		Medium Sans		% Fines		ld T	Plasticity a
	S	S &	s c	§ <u>§</u>	∰ (±)	nscs	structure, c	odor, m	oisture, optional des	riptions, ged	ologic interpreta	tion)	%	%	%	%	%	%		<u></u> ∃	Plas
- 0 -	2 3 3	S1 12/18	0.3		513.8 0.3	SM		k brow	MINOUS PAVEMENT OF THE PARTY OF	ravel (SM),	PID = 0.0	0 ppm		15	10 :	20 4	10 1	15			
	1 2 3 3	S2 14/24	2.0 4.0	1		SM			on, silty SAND with g e brick at 3.9 ft.	ravel (SM), I	no PID = 0.0	0 ppm									
- 5 -	1 2 2 3	S3 1/24	4.0	1		SM			brown, silty SAND woist, poor recovery.	ith gravel	PID = 0.0	0 ррт									
.	19 100/6	\$4 4/12	6.0 7.0	1	507.2 6.9 506.6	SM		odor, m	ark brown, silty SAN to the second se		PID = 0.0	0 ррш									
-					7.5		Weathered See Core F														
-10		Wa	Ī	evel Da		th /ft) to	Se	ample Identification	,,	Diagram Piser Pina					nma					
Da	ate	Time	Elap Time	/hr √	Bottom	th (ft. Botto	M Water	0	Open End Rod		Riser Pipe Screen	1				lin. 1	_		.5		
1270	1/06	0840			Casing 6	of Ho		T U	Thin Wall Tube Undisturbed Sample	9. 0. 5.	Filter Sand Cuttings	Ro			ed (lin.	ft.) 4S	2	.0		
				Dilat	ancy:		Rapid, S-SI	S G	Split Spoon Geoprobe		Grout Concrete Bentonite Seal Vonplastic, L-L	Во	rin	g N					W-1		
	eld Tes	ts: npler blov	Me no-	Toug	hness:	L-L	ow, M-Med	dium,		v Strength:	N-None, L-Lo	w. M-	Med	diun	n. F	I-Hi	qh.	V-1		Hig	h
<u> </u>	ı - 5an								s determined by direct on anual methods of									(CIS)			

ALIDI	RICH				· · · · · ·	RE B	1	G REPORT DRAF Sheet No. 33879-001 Sheet No. 2 of 2
epth	Drilling Rate Min./ft	Run No	Depth (ft)	Recove in.	ry/RQD %	Weath- ering	Elev./ Depth	Visual Description and Remarks
(17)		110.	(14)		,,	O.III.g	(ft)	SEE TEST BORING REPORT FOR OVERBURDEN DETAILS
							506.6	
		C1	7.5 9.5	22 0	92		506.6 7.5 504.6	Hard, highly weathered, gray-brown, fine-grained DOLOSTONE, bedding horizontal to low angle, thin to medium thick, joints horizontal to low angle, ve close to close, rough to smooth, undulating, discolored to slightly disintegrated, open, based on drill action, the missing core was likely washed out in weathered zones at 7.5 ft. to 7.6 ft. and 9.4 ft. to 9.5 ft. -BEDROCK-
10 -							9.5	Bottom of exploration at 7.5 ft.
		-						

H. Al	ALEY DRIC	& H					TEST	ВС	RING REPO	ORT				Во	riı	ng	No	э.		MV	/-2	
Clie	eject ent entracto	ROCHE	STER	GAS	& ELE	ECTF		RO	CHESTER, NEW Y	ORK D F	RAF		St	art	t N	lo. No	1 o		: r 28	3, 20		
			C	asing	San	npler	Barrel		Drilling Equipme	ent and Proced	dures		1	nisl Tille		No			r 28 orai	3, 20	006	
Тур	e		I	ISA		s	NX	Rig	J Make & Model: Ti	uck-mounted C	ME 85		1	&A		p.		5. P		ny		
1		meter (i	in.) 4	1/4	1	3/8	2.0		Type: Cutting Hea	d				eva		n	5	512.	8			
l		Veight (_		40		1	ll Mud: None sing:					atur oca:		·····	See	Pla	an	—		
Han	nmer F	all (in.)		-	3	30	_		- •	matic Hammer					N	ΙI,	151	,12 ,29	8			
Depth (ft.)		Sample No. & Rec. (in.)	Sample Depth (ft.)	Well Diagram	Elev./Depth (ft.)	Symbol			al-Manual Identificati		· _		Coarse 30	avel o	eg ge	Sar	ıd		F	Toughness @		Γ
	SPT	Sam & Re	Sam Depi	Well [(f.)	nscs	(Density structure, o	ty/cor odor,	nsistency, color, GROL moisture, optional des	JP NAME, max. criptions, geolog	particle size², gic interpretat	ion)	ပိ %	% Fine	ပိ %	% Me	% Fine	% Fines	Dilatancy	Tough	Plasticity	Strength
- 0 -	2 3 4 4	S1 19/24	0.2 2.0		512.6 0.2 512.0 0.8	SM	Loose, bro	<u>ce pari</u> own, :	-TOPSOIL- COAL particles, 25% sl ticles, trace ash, no odd silty SAND (SM), 5%	or, dryi	PID = 0.0	ppm		5	10	10	30	40				-
- -	4 4 4 4	S2 18/24	2.0 4.0			SM		rk, gr	or, dry. ay-brown, silty SAND s, slight organic odor,		PID = 0.0	ppm		5	5	10	35	40				
- 5 -	3 3 3 3	S3 16/24	4.0 6.0			SM	Similar to	S2, v	vith 0.3 in. of odor-free	e wood.	PID = 0.0	ppm										
- -	1 2 2 4	\$4 21/24	6.0 8.0			SM	coal and as	sh pa	k, gray-brown, silty SA rticles, trace coarse gra dor, moist.	PID = 0.0	ppm											
-	1 2 2 3	S5 17/24	8.0 10.0			SM	coal and as	ish pai	k, gray-brown, silty SA rticles, slight organic of ee wood at 8.7 ft.	PID = 0.0	ppm										0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
10 <i>-</i> -	1 2 3 4	\$6 16/24	10.0 12.0			SM	(SM), 10%	% coal	y-brown, silty SAND of particles, trace brick, organic odor, wet at 16	ash, and	PID = 0.0	ppm		20	10	10	20	30				
<u>-</u> -	1 1 1	\$7 6/24	12.0 14.0			SM	gravel (SM	v i), co	k gray-brown, silty SA al particles, trace brick organic odor, wet.		PID = 0.0	ppm										
- - 15 - -	18 100/6	S8 11/12	14.0 15.0		497.8 15.0	SM	gravel (SM organics w black stain from 14.3	M), co with 2 n and ft. to	dark gray-brown, silty al particles, trace brick in. concrete at 14.5 ft. moderate apparent napl 14.5 ft., wet. FILL-	t, ash, and to 14.7 ft.,	PID = 0.0	ppm										_
-								•	g Report MW-2.													
		Wa	ter Lev	el Da	ta	•			Sample Identification		iagram		<u>' </u>		Sur	mm	ury					
D	ate	Time	Elaps Time (hr∖B	Dep lottom Casing	th (ft. Botto of Ho	om Water	_ c	Open End Rod	Ris	er Pipe	Ove Ro				•			15.0 2			
								U	•	le 199 Cut	tings out	Sar	mpl	es			8	•				
- 15 15	eld Tes	ts:		Dilata			Rapid, S-SI	low,	Geoprobe N-None P	Ber lasticity: N-Nor			-Me	ediu	ım,	H-		h	IW			
'SP		npler blov	ws per 6	Tougl	hness:	L-1	ow, M-Me	dium		ry Strength: N-	None, L-Lo	w: M-	Me	diur	m,	H-F	Higi	'n. V	/-Ve s).	ry H	igh	
									-manual methods of													

ALDI	EY &z UCH				co	RE B	ORIN	G REPORT Boring No. MW-2 Speet No. 33879-001 Speet No. 2 of 2
Depth (ft)	Drilling Rate Min./ft	Run No.	Depth (ft)	Recover	ry/RQD %	Weath- ering	Elev./ Depth (ft)	Visual Description and Remarks
			• • • • • • • • • • • • • • • • • • • •				(11)	SEE TEST BORING REPORT FOR OVERBURDEN DETAILS
15 —	1	C1	15.0 17.0	17 0	71 0		497.8 15.0 496.2 16.6 495.8 17.0	Weathered CONCRETE (mud-mat), no odor, no stain. Hard, highly to moderately weathered, gray, fine-grained DOLOSTONE, bedding, not apparent, joints horizontal to low angle, very close to close, rouglundulating, discolored, open. -BEDROCK- Bottom of exploration at 17.0 ft.
Annual de la constantina del constantina de la constantina de la constantina de la constantina del constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la constantina de la con								

H.	ALEY DRIC	& H					TEST	BORIN	NG REPOI	RT C	7 A F			Вс	rir	ıg	No).	ı	MΝ	/-3	
Clie	ject ent ntracto	ROCH	ESTER	GAS	& ELI	ECTF		ROCHES	STER, NEW YO	RK D	KA F	•	Sh St	nee art		o. No		f 2 nbe	r 27			•
			C	asing	San	npler	Barrel	D	rilling Equipmen	t and Proce	dures			nisl ille		No			г 27 orar		006	
Тур	е		I	ISA		S	NX	Rig Make	e & Model: Trud	k-mounted C	CME 85		1		Re	p.		3. P				
Insid	de Dia	meter (in.) 4	1/4	1	3/8	2.0	Bit Type:					E	eva	atio	ח	5	13.	6			
Han	nmer V	Veight	(lb.)	_	1	40	-	Casing:	Spun				├ ──		tion		See					_
Han	nmer F	all (in.)		-	3	30	-	Hoist/Ha	•	atic Hammer	•						151 104					
(ft.)		(in.)	(£)	gram	epth	Symbol	\	/isual-Man	ual Identification	and Descri	iption		Gra ø	vel		San	q		F		Tes	Γ
Depth (ft.)	SPT¹	Sample R & Rec. (ii	Sample Depth (ft.)	Well Diagram	Elev./Depth (ft.)	uscs s ₎	(Densit	y/consistend dor, moistu	cy, color, GROUP ire, optional descri	NAME, max. ptions, geolo	particle size², gic interpretati	on)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
- 0 -	1	S1 24/24	0.0		513.5 0.1		\		TOPSOIL-		/				-							
Ī	2 1 2	24/24	2.0		512.0	SM			AL particles, (50%		PID = 3.2	ppm										
-	1	S2	2.0		1.6	SM			brown, silty SANI soil present as a 5		PID = 0.1	nnm		10	10	10	 20					-
-	3 5 6	12/24	4.0			SIVI	l <u>layer.</u> Loose, bro		AND (SM), 20% c		PID = 0.1	ppin		10	10	10	20	30				
- 5 -	1 2 1	S3 15/24	4.0 6.0			SM			ty SAND (SM), co d ceramic, musty o		PID = 0.0	ppm										
	2 2 3 6	S4 10/24	6.0				Similar to	S3, except t	race coal, no ash,	wet.	PID = 0.0	ppm										
-	9 4 4	S5 10/24	8.0	-	506.0 7.6	GP GP	(GP), no o	dor, dry.	, poorly-graded Gl		PID = 35.6	ppm	_		-	_						_
- 10	5 17		10.0				naphthalen	e odor from	with slight gray sta 9.6 ft. to 10.0 ft.,	wet.												
-	5 18 -100/1 -	S6 5/13	10.0 11.1		502.5				nly-weathered bedr thalene odor, dry. -FILL-	ock	PID = NS	ppm										
					11.1		See Core E	oring Repo														
-							Note: Spli	t spoon refu	isal at 11.1 ft.													
- 15 -																						
- 15 -																						
		ALL COMPANY OF THE PARTY OF THE																				
		Wa	ter Lev	el Dat	ta	<u> </u>		Sampl	e Identification	Well D	iagram				Sun	nm·	ar.	ļ				
Da	ate	Time	Elaps	ed	Dep	th (ft.			en End Rod	Ris	er Pipe	Ove	erbu) 1	1.1			_
			Time (of C	ottom Casing	Botto of Ho	ole vvater		n Wall Tube	Filt	een er Sand	Roo	ck C	Сог		•	. ft.)	2			
	27/06	1400	0.5		13.1	13.1		S Spl G Ge	disturbed Sample it Spoon oprobe	Gro Ser Ber	ncrete ntonite Seal	Sar Bo	rin	g l			63	M	[W-	-3		
L.,	eld Tes				nness:	L-L	Rapid, S-Sl .ow, M-Med	dium, H-Hi	igh Dry	ticity: N-No Strength: N	nplastic, L-Lo -None, L-Lov	v:• M-	Meg	liur	n.	H-H	ligh	, V		уΗ	igh	_
'SP	T = Sar	npler blo No			² Ma: itificat	kimum ion b	particle size ased on vi	(mm) is dete sual-manu	ermined by direct ob al methods of th	servation withi	n the limitations	of sar	nple	r si	ze (i	in m	illim					_
														_								

	Drilling Rate			Recove	ry/RQD		Elev./	GREPORT DRAF Sheet No. 33879-001
Depth (ft)	Rate Min./ft	Run No.	Depth (ft)	in.	%	Weath- ering	Depth (ft)	Visual Description and Remarks
							(,0	SEE TEST BORING REPORT FOR OVERBURDEN DETAILS
	2	C1	11.1 13.1	24 0	100		502.5 11.1 500.5 13.1	Hard, highly weathered 11.1 ft. to 11.6 ft., moderately weathered 11.6 ft. to 11.6 ft., tan to gray, fine-grained DOLOSTONE, bedding horizontal, planar to undulating, thin, primary joints horizontal to low angle, very close to close, rough, undulating, discolored, open, secondary joints high angle to vertical, moderately spaced, other wise similar to primary joints. ———————————————————————————————————
15 -								Note. Gw Molinoling wen instance.

	ALEY DRIC	& H					TEST	ВС	ORING REP	ORT					Во	rii	ng	No).	ı	MW	<i>I-</i> 4	
Clie	ject ent ntracto	ROCHE	STE	R GAS	8 & EL	ECTF		RO	OCHESTER, NEW Y	YORK)F	RAF	- 1	Sh	e N nee	t N	o. No	1 o		г 29	9, 20		
				Casing	Sar	npler	Barrel		Drilling Equipn	nent and Pi	roced	lures			nist ille		No			r 29 orar), 2 0)06	
Тур	e			HSA		 S	NX	Ri	g Make & Model: 1	ruck-moun	ted Cl	ME 85		4	kΑ		p.		5. P		пу		
Insid	de Dia	meter (i	in.)	4 1/4	1	3/8	2.0	Bit	t Type: Cutting He					I	eva		n	5	13.	1			
		Veight (_		40	_	1	rill Mud: None sasing: spun						tur		1 9	See	Pla				
Han	nmer F	all (in.)		-	1	30	_	1		tomatic Har	nmer					N	1,	151	,26 ,30	7			
$\overline{}$		9 (-		, E	Ę	log Pa		<u> </u>						Gra		Ŀ	San	ď	,50		ield	Tes	t
Depth (ft.)	SPT¹	Sample No. & Rec. (in.)	Sample Depth (ft.)	Well Diagram	Elev./Depth (ft.)	USCS Symbol	(Densit	ty/cor	al-Manual Identifica nsistency, color, GRO moisture, optional de	UP NAME, I	max. p	particle size²	tion)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
- 0 ~	1 1 1 1	S1 4/24	0.0 2.0		513.0 0.1	SM		10%	-TOPSOIL- rk brown, silty SAND clinker and slag, trace		0	PID = 0.0) ppm		5	10	20	20	25				
	1 2 1 3	S2 15/24	2.0 4.0			SM	layer of ta	ın to g	own, silty SAND (SM) green-blue ash at 2.7 friticles, no odor, moist	t., 10% coal	and	PID = 0.0) ррт		5	10	20	30	25				
- 5 -	1 2 3 5	S3 18/24	4.0 6.0		508.4	SM SC	√moist	own,	silty SAND (SM), 5%			PID = 0.0) ppm	_	10	10	15	30	30		_	_	
	2 2 3 5	S4 12/24	6.0	1	507.1 6.0	SM			-FILL- silty SAND (SM), trac t organic odor, moist.	ce clay and		PID = 0.0) ppm		10	5	10	40	35				
_	2 3 7 8	S5 14/24	8.0 10.0			SM			no organics, no odor, a ayers of silty fine sand			PID = 0.0) ppm				-						
10 -	3 7 9 11	S6 15/24	10.0 12.0			SM	Medium de with grave	ense, al (SM	, brown to yellow-brov M), no odor, wet.	vn, silty SAI	ND	PID = 0.0) ppm	10	15	10	15	25	25				
-	28 100/3	S7 7/9	12.0		500.1 13.0	SM	with grave	el (SN	own to yellow-brown, M), no odor, wet. usal at 12.8 ft., auger	•		PID = 0.0) ppm		15	20	15	20	30				
- 15 -			ACADIMINATE OF THE PARTY OF THE					Вогіп	-LACUSTRINE- ig Report MW-4.														
		10/2	terle	vel Da	nta				Sample Identificatio	on 104	all Dia	agram				211	<u></u>	050					
D:	ate	Time	Elap	sed	Dep	th (ft.					Rise	r Pipe	Ove	erbi			nma (lin.) 1	3.0			
			Time		Bottom Casing	Botto of Ho			·		Scre Filter	en r Sand		ck (-		2			
								L		ple (990	Cutti Grou		Sar	nple	es			75	S				_
								S	G Geoprobe		Cond	crete ionite Seal	Во		_					W.	-4		
Fie	eld Tes	ts:			ancy: hness:	L-L	Rapid, S-SI ow, M-Me	dium	n. H-Hiah I	Drv Strenati	N-Non	plastic, L-L None, L-Lo	w≝ M-	Med	fium	n	H-H	lioh	· V	-Ver	v H	igh	
'SP	T = Sar	npler blov No 1			² Ma ntificat	ximum	particle size	(mm) is determined by direction	t observation	within	the limitation	s of sai	mple	r siz	ze (in m	illim	eter	s).			
															_				_	_	-	_	•

Denth	Drilling Rate	Pun	Depth	Recove	ry/RQD	Weath-	Elev./	Visual Description
(ft)	Min./ft	No.	(ft)	in.	%	ering	Depth (ft)	and Remarks
								SEE TEST BORING REPORT FOR OVERBURDEN DETAILS
							-nn -	
15 —	2	C1	13.0 15.0	24 10	100 42		500.1 13.0 498.1 15.0	Hard, moderately to slightly weathered, gray, fine-grained DOLOSTONE, bedding horizontal to low angle, planar to undulating, thin, primary joints, horizontal to low angle, very close to close, rough, planar to undulating, discolored to slightly disintegrated, open, secondary joints are vertical, modera spacing, smooth, planar to undulating, discolored to fresh, open. ——BEDROCK— Bottom of exploration at 15.0 ft.

I A	IALEY LDRIC	& <u>*</u> H					TEST	BORING REPORT Boring N	o. MW-5	
CI	oject ient ontracto	ROCHE	STER	R GAS	& ELI	ECTF		Sheet No. 1 Start Nove	ember 30, 2006	
			С	asing	San	npler	Barrel	Drilling Continuent and Descentions	ember 30, 2006 S. Loranty	
Ту	pe]	HSA		s	NX	Rig Make & Model: Truck-mounted CME 85 H&A Rep.	S. Poff	
Ins	ide Dia	meter (in.) 4	1 1/4	1	3/8	2.0	Bit Type: Cutting Head Elevation	514.2	
Ha	mmer \	Veight ((lb.)	-	1	40	_	Drill Mud: None Datum Casing: spun Location Se	e Plan	
Ha	mmer F	Fall (in.)		-	3	30	_	Hoist/Hammer: Automatic Hammer N 1,15	1,167	
		9 (2		am	th.	loqi	,	Gravel Sand	Field Test	
Depth (ft.)	SPT	Sample No. & Rec. (in.)	Sample Depth (ft.)	Well Diagram	Elev./Depth (ft.)	USCS Symbol	(Densit	Visual-Manual Identification and Description y/consistency, color, GROUP NAME, max. particle size ² , podor, moisture, optional descriptions, geologic interpretation)	% Fines % Fines Dilatancy Toughness Plasticity	Strength
- 0	1 2 3 4	S1 16/24	0.0 2.0			SM		own to black, silty SAND (SM), 20% coal, trace clinker, trace clam shells, no odor,		_
-	6 7 10 8	S2 3/24	2.0 4.0			SM	20% coal,	ense, brown to black, silty SAND (SM), 10% ash, trace clinker, trace clam shells, ry, poor recoveryFILL-		
- 5	1 2 3 3	S3 19/24	4.0 6.0		509.9 4.3	ML		iff, brown to gray-brown, mottled, sandy pID = 0.0 ppm 5 5 29 29 29 29 29 29 29 29 29 29 29 29 29	5 65 S L L	N
	2 4 4 4	S4 15/24	6.0 8.0			ML		S3 below 4.3 ft. tiff, dark gray to black, sandy SILT (ML), PID = 6.6 ppm 5 5 5 30	0 60	
Apr 12, 07	1 2 2 4	S5 10/24	8.0 10.0			ML	Soft, dark	petroleum odor (diesel or fuel oil), moist. gray to black, sandy SILT (ML), petroleum odor (fuel oil), wet at 9.5 ft. PID = 12.9 ppm		
78-001TBC.GPJ	2 3 5 18	S6 4/24	10.0 12.0		502.3	ML	gravel (MI	tiff, dark gray to black, sandy SILT with L), weathered petroleum odor (fuel oil), in spoon tipFILL-		
FIELD LOGS/338	12 38 100/6	S7 8/18	12.0 13.5		11.9 501.0 13.2	SM	(SM), slig weathered	e, gray to brown, silty SAND with gravel ht weathered petroleum odor, moist, bedrock at 13.2 ft. -GLACIAL TILL- PID = 1.0 ppm 20 15 5 10 25 10	25	
G:PROJECTS\(3879\)\(3003\)\(700\)\(70	-				500.7 13.5			I top-of-bedrock. Boring Report MW-5.		
USCS_TR3APID USCSLIB4.GLB USCSTC3A.GDT GAPROJECT		10/0	ter Lev	(e) Do	ta			Sample Identification Well Diagram Summar		=
nsc.	Date	Time	Flans	he:	Dep	th (ft.		O Open End Rod Riser Pipe Overburden /lin. f		
	Jait	ипе	Time	(hr.) B	ottom Casing	Botto of Ho			•	
CSLIB								U Undisturbed Sample Cuttings Samples	7S	
SO CILEVES	ield Tes	its:			ancy:			G Geoprobe Concrete Boring No.		
g s		npler blov		in.		ximum	particle size	dium, H-High Dry Strength: N-None, L-Low, M-Medium, H-Hig (mm) is determined by direct observation within the limitations of sampler size (in milli	meters).	
≝ <u></u>		No	te: So	il ider				sual-manual methods of the USCS as practiced by Haley & Aldrich, In-		

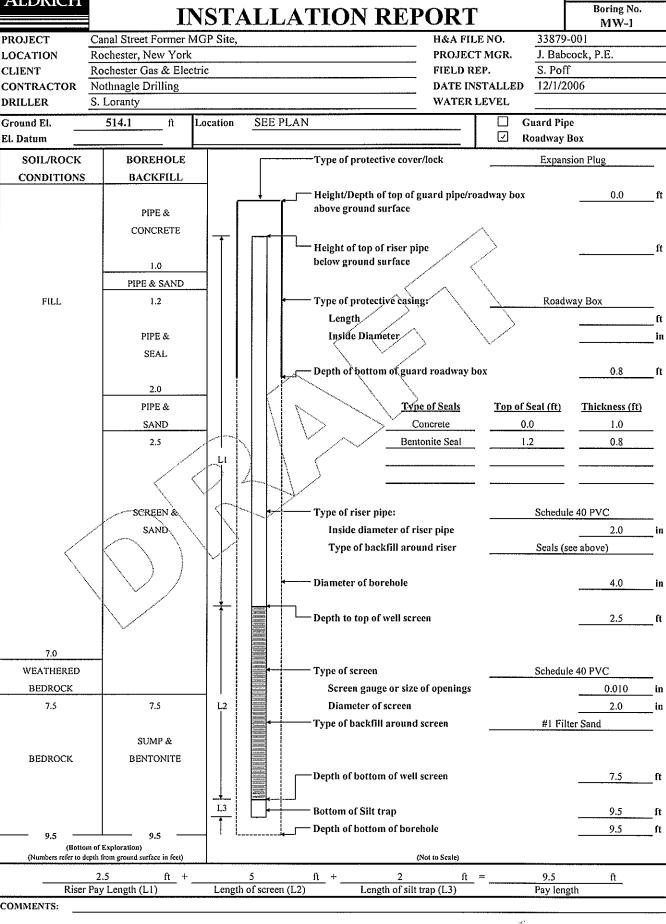
	CORE BORING REPORT Boring No. MW-5 Sheet No. 33879-001 Sheet No. 2 of 2								
Denth	Drilling Rate	Run	Depth	Recove	ry/RQD	Weath-	Elev./	Visual Description	
(ft)	Min./ft	No.	(ft)	in.	%	ering	Depth (ft)	and Remarks	
								SEE TEST BORING REPORT FOR OVERBURDEN DETAILS Note: Split-spoon and auger refusal at 13.5 ft.	
15 —	2	C1	13.5 15.5	24 0	100		500.7 13.5 498.7 15.5	Hard, moderately to slightly weathered, gray, fine-grained DOLOSTONE, bedding horizontal, thin, planar to undulating, primary joints horizontal to low angle, very close to close, smooth to rough, planar to undulating, discolored to slightly disintegrated, secondary joints are vertical, moderate to wide spacing, otherwise similar to primary joints. -BEDROCK- Bottom of exploration at 15.5 ft.	
The second secon									

	HA AL	LEY O	&= H					TEST	ВО	RING REPOR	lΤ				Вс	riı	ng	No).	ř	VIW	-6	
	Proj Clie Con		ROCHE		GAS	& ELI	ECTR	liC	ROC	HESTER, NEW YOR	кD	RAF		SI	le N hee tart	t N	0. D	l o		; er 5,			
ľ				С	asing	Sar	npler	Barrel		Drilling Equipment	and Proc	edures			nisi rille		D			er 5, oran		06	
ŀ	Туре			- -	ISA	1	s S	NX	Rig	Make & Model: Truci				4	&A		p.		s. P		цy		
- 1			meter (i		1/4	l	3/8	2.0	•	Type: Cutting Head				Elevation 511.8									
- 1		Hammer Weight (Ib.)							Datum Location See Plan														
- !			all (in.)		-	1 -	30	_			ntic Hamır	ier		N 1,150,971 E 1,404,454									
f	_		0 🔿	<u> </u>	٤	£	0	I						Gra	ave	7	San	ď	,454		ield	Tes	t
	Depth (ft.)	SPT¹	Sample No. & Rec. (in.)	Sample Depth (ft.)	Well Diagram	Elev./Depth (ft.)	USCS Symbol	(Density	y/consi	-Manual Identification istency, color, GROUP I noisture, optional descrip	NAME, ma	x. particle size ² ,	ion)	% Coarse	% Fine	% Coarse	% Medium	% Fine	% Fines	Dilatancy	Toughness	Plasticity	Strength
-	- 0 +	15 14 10 4	S1 11/24	0.0 2.0			SM	(SM), 10% coal particl frost, the li	light les, 5% ime-lik	brown, silty SAND with a blue to white lime-like m concrete, no odor, dry, te material reacts strongly	aterial, 59	PID = 0.0	ppm		15	10	20	20	15				
		2 3 4 5	\$2 12/24	2.0 4.0			SM	(SM), 30%	k brow	c acid. on to black, silty SAND on nd lime-like material, 5% on, no odor, moist.		PID = 0.3	ppm	10	10	5	5	15	20				
-	- 5 -	2 3 5 6	\$3 5/24	4.0 6.0			SM	(SM), ash,	coal, t	vn to black, silty SAND v trace tan concrete, no ode	or, moist.		• •										
-		5 10 10 6	\$4 10/24	6.0 8.0		504.0 7.8	SM SM	(SM), trace	coal s	rown, silty SAND with g specks, no odor, dry. ark gray, silty SAND wi		PID = 0.2 $PID = 0.0$		25	10	15	10		90				
Apr 13, 07		1 2 4 4	S5 10/24	8.0 10.0		502.3	OL/ OH	tip of split-	spoon	specks, no odor, wet, org with trace small clam sh -FILL- ANIC SOIL (OL/OH), to	ells.	1	FF										
2	10	100/6	S6	10.0		9.5 501.6	ML ML		, orgai	nic odor, wet.	acc sman							30	70		_		
1180	ĺ		1/6	10.5		10.2 501.3	1.1.2		iff, bro	RGANIC DEPOSITS- own, sandy SILT (ML), 1	o odor,	_											
GS\33879-00						10.5				-LACUSTRINE- own, sandy SILT (ML), r													
SRVFIELD LO									-ŴE	ATHERED BEDROCK- Report MW-6.	ret.												
PORT W DU	ļ							Note: Spli ft.	t spooi	n refusal at 10.5 ft., auge	r to 10.5												_
G:PROJECTS133879:003 REPORT W DUSRIFIELD LOGS133879-001TBC.GPJ																				***************************************			
G;PROJEC																							
A.GDT																							
ST33			Wa	ter Lev	el Da				Sa	ample Identification		Diagram			(Sur	nm	ary					
<u>ရ</u>	Da	ite	Time	Elaps Time (i n	Dep ottom	th (ft.) Botto		0	Open End Rod	III s	Riser Pipe creen	Ov				-			0.5			
ם -	[3 IV	5/06	1130	11110 (''' of (Casing			T	Thin Wall Tube Undisturbed Sample	F	ilter Sand Cuttings	Ro Sai	ck (mnl		ed	(lin	. ft.: 63	•	2			
USCS_TB3APID USCSLIB4.GLB USCSTC3A.GDT				•		-			Ø G	Split Spoon Geoprobe		Frout Concrete Sentonite Seal	Во	rin	ıg l				M	W-	6		
183A		ld Tes				hnéss:	L-L	tapid, S-Slo <u>ow, M-Med</u>	lium.	H-High Dry S	Strenath:	lonplastic, L-Lo N-None, L-Lo	w∴ M-	Me	diur	n.	H-H	liah	i. V	<u>-Ver</u>	y Hi	<u>gh</u>	
SS -	SP	ı = San	npler blov Not							s determined by direct obs									eter	3)			

	Drilling	_		Recove	ry/RQD		Elev./	DRAH Sheet No. 2 of 2
epth (ft)	Rate Min./ft	Run No.	Depth (ft)	in.	%	Weath- ering	Depth (ft)	Visual Description and Remarks
							(1.0)	SEE TEST BORING REPORT FOR OVERBURDEN DETAILS
10 -								
		Cl	10.5	24	100		501.3 10.5	Hard highly to moderately weathered gray fine-grained DOLOSTONE with
	3		12.5	0	0			occasional very thin layers of brown siltstone, bedding is horizontal to low any
	3							Hard, highly to moderately weathered, gray, fine-grained DOLOSTONE with occasional very thin layers of brown siltstone, bedding is horizontal to low any very thin to thin, joints are horizontal to low angle, very close to close, smoot rough, discolored, open.
							499.3 12.5	-BEDROCK-
							12.3	Bottom of exploration at 12.5 ft.
	ĺ							
		İ						
							İ	
							İ	
							İ	
		ŀ						

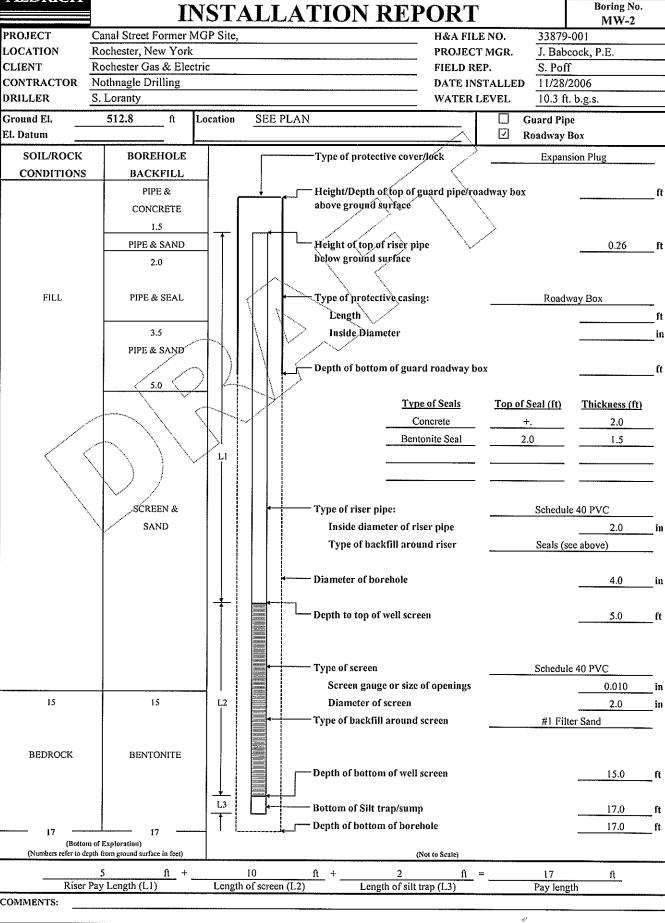
HA AL	LEY &	%≥ H		BORING REPORT Boring No.	MW-7										
Proj Clie Con		ROCHE	STE	R GAS	S & EL	ECTF									
				Casing	Sar	npler	Barrel	Drilling Equipment and Dresedures	oranty						
Туре	9			HSA		S	NX		Poff						
Insid	le Dia	meter (i	n.)	4 1/4	1	3/8	2.0	Bit Type: Cutting Head Elevation 514 Drill Mud: None Datum	Elevation 514.6						
		Veight (lb.)	-		.40	-	Casing: spun Location See Pl							
Ham	mer F	all (in.)				30	-	Hoist/Hammer: Automatic Hammer E 1,404,30 Gravel Sand							
Depth (ft.)	SPT¹	Sample No. & Rec. (in.)	Sample Denth (#)	Well Diagram	Elev./Depth (ft.)	USCS Symbol	(Densit	/isual-Manual Identification and Description y/consistency, color, GROUP NAME, max. particle size², dor, moisture, optional descriptions, geologic interpretation)	SS						
- 0 -					514.3		\	-BRICK PAVERS-							
. -	4	S1	1.0		0.3 513.6		Medium d	-CONCRETE- ense, brown to black, silty SAND (SM), PID = 0.0 ppm 5 10 10 15 20							
-	9	6/12	2.0		1.0		40% brick	particles, trace ash, no odor, dry.							
-	4 7 9 9	S2 15/24	2.0 4.0	+		SM		ense, brown, silty SAND (SM), coal, no odor, dry.							
-5-	9 16 12 8	S3 14/24	4.0 6.0	1		SM		ense, brown, silty SAND with gravel e coal particles, no odor, dry. PID = 0.0 ppm 5 10 10 5 25 45							
-	7 4 9	S4 12/24	6.0 8.0	- 1		SM	Similar to	S3, wet at approximately 7.3 ft. wetFILL- PID = 0.0 ppm 10 15 10 10 25 30							
_	10 2 3 4	\$5 12/24	8.0 10.0		506.6 8.0			low-brown to brown, silty SAND with PID = 0.0 ppm I), no odor, wet.							
- 10 -	4 7 10 16	S6 8/24	10.0 12.0			SM		ense, yellow-brown to brown, silty SAND PID = 0.0 ppm I (SM), no odor, wet.							
-	100/3	S7	12.0		502.6 12.0		Weathered	rock fragments.							
- 15 -		1/3	12.:	3	502.3			Boring Report MW-7.							
			ter Le	vel D		oth (ft.) to:	Sample Identification Well Diagram Summary Riser Pipe Overhunder (lin ft.)	10.0						
Da 	ate	Time	Time	/br	Bottom Casing	Botto	m Mater	O Open End Rod Screen T Thin Wall Tube Risel Pipe Overburden (lin. ft.) Screen Rock Cored (lin. ft.)	12.3 2						
							U Undisturbed Sample Fig. Cuttings Samples 7S								
							loold C C	G Geoprobe Concrete Bentonite Seal Boring No.	1W-7						
,	ld Test		UP NO-	Tou	tancy: phness:	: L-L	ow, M-Mei	ow, N-None Plasticity: N-Nonplastic, L-Low, M-Medium, H-High dium, H-High Dry Strength: N-None, L-Low, M-Medium, H-High, Normalist determined by direct observation within the limitations of samples size (in millimeter)	/-Very High						
J.F	SPT = Sampler blows per 6 in. Maximum particle size (mm) is determined by direct observation within the limitations of sampler size (in millimeters). Note: Soil identification based on visual-manual methods of the USCS as practiced by Haley & Aldrich, Inc.														

Apr 13, 07

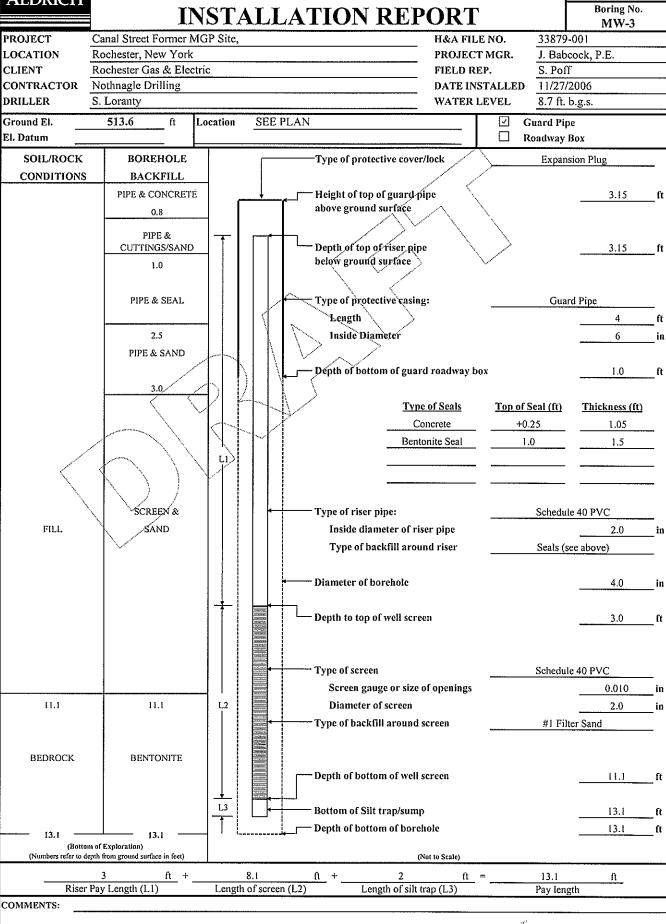

USCS_TB3APID USCSLIB4.GLB USCSTC3A.GDT G:PROJECTSW38799003 REPORT W DUSRVFIELD LOGSW3879-001TBC.GPJ

)anth	Drilling Rate	Dun	Depth	Recove	ry/RQD	Weath-	Elev./	Visual Description
(ft)	Min./ft	No.	(ft)	în.	%	ering	Depth (ft)	and Remarks
								SEE TEST BORING REPORT FOR OVERBURDEN DETAILS
		C1	12.5 14.5	20 0	83		502.1 12.5 500.1	Hard, moderately weathered, gray, fine-grained DOLOSTONE interbedded wind brown SILTSTONE, bedding horizontal to low angle, thin, joints horizontal to low angle, very close to close, smooth to rough, discolored, open, trace black stain on approximately 75% of joint surfaces from 12.8 ft. to 14.3 ft., slight weathered petroleum odor and slight sheen in re-circulated core water. —BEDROCK-
15							14.5	Bottom of exploration at 14.5 ft.

OBSERVATION WELL INSTALLATION REPORT


Well No.
MW-1
Boring No.

OBSERVATION WELL INSTALLATION REPORT


Well No.
MW-2
Boring No.

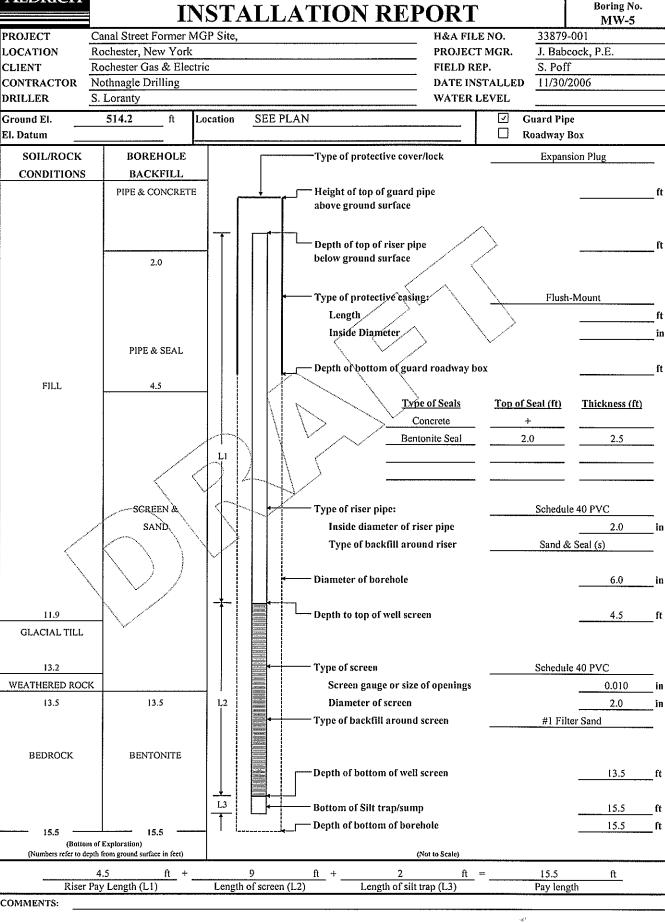
OBSERVATION WELL INSTALLATION REPORT

Well No.
MW-3
Boring No.

OBSERVATION WELL INSTALLATION REPORT

Well No.
MW-4
Boring No.

	IN	STA	LLA	TION REP	ORT		Boring No. MW-4	
PROJECT	Canal Street Former MC				H&A FILE	NO. 33879		***********
	Rochester, New York				PROJECT I		ocock, P.E.	
CLIENT	Rochester Gas & Electri	ic			FIELD REP			
CONTRACTOR	Nothnagle Drilling				DATE INST	'ALLED 11/29	/2006	
DRILLER	S. Loranty				WATER LE	VEL		
Ground El.	513.1 ft L	ocation	SEE PLAN			☑ Guard Pi	pe	
El. Datum		-				☐ Roadway	Box	
SOJL/ROCK	BOREHOLE		[Type of protective cover/	lock	Expai	nsion Plug	
CONDITIONS	BACKFILL			• • •			8	_
	PIPE & CONCRETE		1 -	Height of top of guard pig	ne			ſt
	1112000101212			above ground surface	,,,			 ''
				v				
		 	╅┼	Davida sekan sentan atau				
		-		Depth of top of riser pipe below ground surface		.		ft
	2.0			below ground surface	Market Market Comments of the	>		
				/				
RILL	PIPE & SEAL		*	Type of protective casing:	: 📐 🔝			
		4		Length				_ ſt
	3.5			Inside Diameter	1			in
	PIPE & SAND							
				Depth of bottom of guard	roadway box			_ ft
	4.0	1						
				Type	of Seals	Top of Seal (ft)	Thickness (ft)	
				10 <u>3</u>	ncrete	+		
				Benton	nite Seal	2.0	1.5	
6.0		ļ Ļŗ						
		+ $+$ $+$ $+$ $+$						_
		1) /		<u> </u>				_
	SCREEN &			Type of riser pipe:		Schedu	ile 40 PVC	
LACUSTRINE	SAND			Inside diameter of rise	er pipe		2.0	— in
	$A \subset X \subset X$		·	Type of backfill aroun				_
				-,,				_
		Y/		Diameter of borehole			4.0	in
1				Diameter of Bot choic			7.0	—"'
\		17		Depth to top of well scree	n		4.0	£4
	X /			Depart to top of wen serve			4.0	– ſt
				Type of screen		Schad	ile 40 PVC	
				Screen gauge or size of	fananings	Schedi	0.010	— in
13.0	13.0	L2		Diameter of screen	ropenings		2.0	_
13.0	15.0					#1 5		_ in
				Type of backfill around so	сгеен	#1 F1	Iter Sand	
DEDDOOK	200000000000000000000000000000000000000							
BEDROCK	BENTONITE			B 4 41 4				_
				Depth of bottom of well so	ereen		13.0	- ft
		+						
		L3 L	-	Bottom of Silt trap/sump			15.0	_ft
15.0	15.0	_		Depth of bottom of boreh	ole		15.0	ft
	n of Exploration) pth from ground surface in feet)			(No	et to Scale)			
,	4 ft +	9		ft + 2	ft =	15	ft	
Riser I	Pay Length (L1)		screen (L2)	Length of silt tra		Pay ler		
COMMENTS:								
ĺ								



OBSERVATION WELL INSTALLATION REPORT

Well No.

MW-5

Boring No.

OBSERVATION WELL INSTALLATION REPORT

Well No.
MW-6
Boring No.

		1112	<u>LAL</u>	LATION	<u>KEPUKI</u>			MW-6	
	Canal Street Form		ite,		H&A FILE		33879-00		
	Rochester, New Y				PROJECT		J. Babcoo	k, P.E.	
	Rochester Gas &				FIELD RE	-	S. Poff		
	Nothnagle Drillin	ıg			DATE INS	-	12/5/200	6	
DRILLER	S. Loranty				WATER L	-			
Ground El.	511.8 f	ft Locatio	on <u>SE</u>	E PLAN			ard Pipe		_
El. Datum						Roa	adway Bo	x	
SOIL/ROCK	BOREHO	LE		Type of protect	ive cover/lock				_
CONDITIONS	BACKFII	LL							_
	PIPE & CONC			Height of top of	f guard pipe	s.			ft
				above ground s		>	•		_
		17	- [Depth of top of	riedr nine				ft
	20			below grounds		1	-		—"
	2.0					1			
	PIPE & SE.	AL		Type of protect	ivé casing:	<u> </u>			
				Length	puter and the second				— ^{ſt}
	3.5			Inside Diam	icter				in
	PIPE & SA	.ND	114		<u> </u>				
				Depth of botton	n of guard roadway bo	x			ft
	4.5			[\	<i>y</i>				
			N		Type of Seals	Top of Se	eal (ft)	Thickness (ft)	
			1)	\mathbb{N}	Concrete	0		2	
		<			Bentonite Seal	2.0		1.5	
FILL					Dollome July			110	
PILL	1		\		***************************************		-		_
/	$A \sim 1$	/ /					 .		_
		$\langle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	>						
	SCREEN	1 1		Type of riser pi			Schedule 4		
	SAND	/ []		}	eter of riser pipe			2.0	in
***	$A \times Z$			Type of back	kfill around riser		Sand & S	eal (s)	_
	V //								
				Diameter of bor	rehole			6.0	in
7.8		1	_						
	_			Depth to top of	well screen			4.5	ft
ORGANIC DEPOSIT	r		200 A 100 A						
10.2				Type of screen		:	Schedule 4	IN PVC	
WEATHERED ROCI	<u></u>		100 (100 (100 (100 (100 (100 (100 (100	· ·	e or size of openings		00110000	0.010	— in
10.5	10.5	Li		Diameter of				2.0	_
10.5	10,5	Ī		į			#1 Filton		— in
				Type of backfill	l around screen		#1 Filter	Sand	_
BEDROCK	BENTONI	TE							
				Depth of botton	n of well screen		-	10.5	_ft
		_\psi	-	,					
		L3	<u>³</u>	Bottom of Silt t	rap/sump			12.5	ft
12.5	12.5		<u></u>	Depth of botton	n of borehole			12.5	ft
(Betton	n of Exploration)								
(Numbers refer to de	epth from ground surface in t	fcet)			(Not to Scale)				
		<u>t</u> +	6	<u>n</u> + <u> </u>	2 ft :		12.5	ft	
	Pay Length (L1)	Le	ength of scr	reen (L2) Leng	th of silt trap (L3)	<u> </u>	Pay length		
COMMENTS:						-,4-1			
						- 12			

OBSERVATION WELL INSTALLATION REPORT

Well No.
MW-7
Boring No.

	11	NSI	ALLATION REI	PORT		Boring No. MW-7	
PROJECT	Canal Street Former N	1GP Site,		H&A FILE	NO. 3387	2	******
LOCATION	Rochester, New York			PROJECT N	AGR. J. Bal	ocock, P.E.	
CLIENT	Rochester Gas & Elec	tric		FIELD REP			
CONTRACTOR	Nothnagle Drilling			DATE INST	ALLED 12/4/	2006	
DRILLER	S. Loranty			WATER LE	VEL		
Ground El El. Datum	514.6 ft	Location	SEE PLAN		☐ Guard Pi☐ Roadway	-	
SOIL/ROCK	BOREHOLE		Type of protective cove	er/lock			
CONDITIONS							_
	PIPE & CONCRETE	1	Height of top of guard above ground surface	pipe			f
	1.0		Depth of top of riser pi	pe			fi
	PIPE & SEAL		Type of protective casi	ng:			f
	3.0		Inside Diameter,			-	i
			Depth of bottom of gua	rd roadway box			_ fi
	PIPE & SAND			pe of Scals Concrete	Top of Seal (ft)	Thickness (ft)	
FILL	7.6						<u>-</u> -
	SCREEN &	$\langle $	Type of riser pipe:		Schedu	ıle 40 PVC	_
	SAND	}	lnside diameter of r Type of backfill aro		Sand	2.0 & Seal (s)	_ i
			Diameter of borehole			6.0	_ i _'
			Depth to top of well scr	een		7	_ n
12.0 WEATHERED ROC	K.		Type of screen		Schedu	ile 40 PVC	
12.3			Screen gauge or size	of openings		0.010	_ i'
	12.5	L2	Diameter of screen			2.0	_ iı
			Type of backfill around	l screen	#1 Fi	Iter Sand	_
BEDROCK	BENTONITE		Depth of bottom of well	screen		12.5	ft
		L3	Bottom of Silt trap/sum	ıp		14.5	ft
			Depth of bottom of bore	-		14.5	
14.5 (Botton	n of Exploration)	- ' '-				2 112	'
	epth from ground surface in feet)			(Not to Scale)			
Riser	7 ft + Pay Length (L1)	Length	5.5 ft + 2 n of screen (L2) Length of silt	$\frac{\text{ft}}{\text{trap}(L3)} =$	14.5 Pay len	ft	

APPENDIX C

Air Monitoring Documentation

Dust Monitor Data Summary

Serial no.		D099							
Start Date	27-Nov-06	28-Nov-06	29-Nov-06	30-Nov-06	4-Dec-06				
Start Time	11:04:11	9:50:09	07:46:10	7:38:25	7:57:13				
Log Period	0:00:30	0:00:30	0:00:30	0:00:30	0:00:30				
# of Records	531	757	802	534	965				
Max Mass (ug/m³)	775.4	336.2	82.4	92.6	125.1				
Avg Mass (ug/m³)	53.8	79.5	37.1 -	17.6	16.8				

Serial no.		, , , , , ,	D293		
Start Date	27-Nov-06	28-Nov-06	29-Nov-06	30-Nov-06	4-Dec-06
Start Time	N/A	8:55:45	7:59:27	7:38:07	8:01:30
Log Period	N/A	0:00:30	0:00:30	0:00:30	0:00:30
# of Records	N/A	871	766	526	956
Max Mass (ug/m³)	N/A	197.0	99.9	40.6	195.0
Avg Mass (ug/m³)	N/A	133.7	51.8	25.9	35.0

Instrument: MiniRAE 2000 (PGM7600) Serial Number: 010066

Data Points: 412 Sample Period: 60 sec

Last Calibration Time: 11/27/2006 05:45 Gas Name: Isobutylene

Date: 11/27/2006

Line#	Time	Avg(ppm) STEL
1	5:48:00	0
2	5:49:00	0
3	5:50:00	0.1
4	5:51:00	0.1
5	5:52:00	0.1
6	5:53:00	0.1
7	5:54:00	0.1
8	5:55:00	0.1
9	5:56:00	0.1
10	5:57:00	0.1
11	5:58:00	0.1
12	5:59:00	0.1
13	6:00:00	0.1
14	6:01:00	0.2
15	6:02:00	0.2
16	6:03:00	0.2
17	6:04:00	0.2
18	6:05:00	0.2
19	6:06:00	0.2
20	6:07:00	0.2
21	6:08:00	0.3
22	6:09:00	0.3
23	6:10:00	0.3
24	6:11:00	0.3
25	6:12:00	0.4
26	6:13:00	0.4
27	6:14:00	0.5
28	6:15:00	0.5
29	6:16:00	0.5
30	6:17:00	
30		0.6
31	6:18:00	0.6
3∠ 33	6:19:00	0.7
33	6:20:00	0.7
	6:21:00	0.8
35	6:22:00	0.8
36	6:23:00	0.9
37	6:24:00	0.9
38	6:25:00	0.9
39	6:26:00	1
40	6:27:00	1
41	6:28:00	1.1
42	6:29:00	1.1
43	6:30:00	1.2
44	6:31:00	1.2
45	6:32:00	1.2

46	6:33:00	1.3
47	6:34:00	1.3
48	6:35:00	1.3
49	6:36:00	1.4
50	6:37:00	1.4
51	6:38:00	1.4
52	6:39:00	1.5
53	6:40:00	1.5
54	6:41:00	1.5
55	6:42:00	1.5 1.5
56	6:43:00	1.6
57	6:44:00	1.6
58	6:45:00	1.6
59	6:46:00	1.6 1.7
60	6:47:00	1.7
61	6:48:00	1.7
62	6:49:00	
63		1.8
	6:50:00 6:51:00	1.8
64		1.8
65	6:52:00	1.8
66	6:53:00	1.9
67	6:54:00	1.9
68	6:55:00	1.9
69	6:56:00	1.9
70	6:57:00	2
71	6:58:00	2
72	6:59:00	2
73	7:00:00	2
74	7:01:00	2
75	7:02:00	
76	7:03:00	2
77	7:04:00	2
78	7:05:00	2
79	7:06:00	2
80	7:07:00	2
81	7:08:00	2
82	7:09:00	2
83	7:10:00	2 2 2 2 2 2 2 2 2 2
84	7:11:00	2
85	7:12:00	2
86	7:13:00	2
87	7:14:00	2
88	7:15:00	2
89	7:16:00	2
90	7:17:00	2
91	7:18:00	2
92	7:19:00	2.1
93	7:20:00	2.1
94	7:21:00	2.1
95	7:22:00	2.1
96	7:23:00	2.2
97	7:24:00	2.2
	, ,	

•

2.3

98	7:25:00	2.3
99	7:26:00	2.3
100	7:27:00	2.3
101	7:28:00	2.3
102	7:29:00	2.4
103	7:30:00	2.4
104	7:31:00	2.4
105	7:32:00	2.5
106	7:33:00	2.5
107	7:34:00	2.5
108	7:35:00	2.6
109	7:36:00	2.6
110	7:37:00	2.6
111	7:38:00	2.6
112	7:39:00	2.6
113	7:40:00	2.6
114	7:41:00	2.6
115	7:42:00	2.6
116	7:43:00	2.6
117	7:44:00	2.7
118	7:45:00	2.7
119	7:46:00	2.8
120	7:47:00	2.8
121	7:48:00	2.8
122	7:49:00	2.9
123	7:50:00	2.9
124	7:51:00	3
125	7:52:00	3
126	7:53:00	3
127	7:54:00	3
128	7:55:00	3.1
129	7:56:00	3.1
130	7:57:00	3.1
131	7:58:00	3.2
132	7:59:00	3.2
133	8:00:00	3.2
134	8:01:00	3.2
135	8:02:00	3.3
136	8:03:00	3.3
137	8:04:00	3.3
138	8:05:00	3.4
139	8:06:00	3.4
140	8:07:00	3.5
141	8:08:00	3.5
142	8:09:00	3.5
143	8:10:00	3.5
144	8:11:00	3.6
145	8:12:00	3.6
146	8:13:00	3.6
147	8:14:00	3.6
148	8:15:00	3.7
149	8:16:00	3.7
1	1 0	

- 42

•

150	8:17:00	3.7
151	8:18:00	3.7
152	8:19:00	3.7
153	8:20:00	3.7
154	8:21:00	3.7
155	8:22:00	3.7
156	8:23:00	3.8
157	8:24:00	3.8
158	8:25:00	3.9
159	8:26:00	3.9
160	8:27:00	3.9
161	8:28:00	4
162	8:29:00	4
163	8:30:00	4
164	8:31:00	4
165	8:32:00	4
166	8:33:00	4
167	8:34:00	4
168	8:35:00	4
169	8:36:00	4
170	8:37:00	4
171	8:38:00	3.9
172	8:39:00	3.9
173	8:40:00	3.9
174	8:41:00	3.8
175	8:42:00	3.8
176	8:43:00	3.8
177	8:44:00	3.8
178	8:45:00	3.8
179	8:46:00	3.8
180	8:47:00	3.8
181	8:48:00	3.7
182	8:49:00	3.7
183	8:50:00	3.6
184	8:51:00	3.6
185	8:52:00	3.5
186	8:53:00	3.5
187	8:54:00	3.4
188	8:55:00	3.3
189	8:56:00	3.3
190	8:57:00	3.2
191	8:58:00	3.2
192	8:59:00	3.1
193	9:00:00	3.1
194	9:01:00	3.1
195	9:02:00	3
196	9:02:00	2.9
		2.9
197	9:04:00	
198	9:05:00	2.8 2.8
199	9:06:00	
200	9:07:00	2.8
201	9:08:00	2.8

.

202	9:09:00	2.8
203	9:10:00	2.8
204	9:11:00	2.8
205	9:12:00	2.8
206	9:13:00	2.7
207	9:14:00	2.7
208	9:15:00	2.7
209	9:16:00	2.7
210	9:17:00	2.6
211	9:18:00	2.6
212	9:19:00	2.5
213	9:20:00	2.5
214	9:21:00	2.5
215	9:22:00	2.4
216	9:23:00	2.3
217		2.2
218	9:24:00	2.2
218	9:25:00	2.2
	9:26:00	
220	9:27:00	2
221	9:28:00	1.9
222	9:29:00	1.8
223	9:30:00	1.8
224	9:31:00	1.7
225	9:32:00	1.6
226	9:33:00	1.5
227	9:34:00	1.5
228	9:35:00	1.4
229	9:36:00	1.3
230	9:37:00	1.2
231	9:38:00	1.1
232	9:39:00	1
233	9:40:00	1
234	9:41:00	0.9
235	9:42:00	0.9
236	9:43:00	0.9
237	9:44:00	0.8
238	9:45:00	0.8
239	9:46:00	0.8
240	9:47:00	0.8
241	9:48:00	0.7
242	9:49:00	0.7
243	9:50:00	0.7
244	9:51:00	0.7
245	9:52:00	0.7
246	9:53:00	0.6
247	9:54:00	0.6
248	9:55:00	0.6
249	9:56:00	0.6
250	9:57:00	0.5
251	9:58:00	0.5
252	9:59:00	0.5
253	10:00:00	
	10.00:00	0.5

.

254	10.01.00	A •
	10:01:00	0.4
255	10:02:00	0.4
256	10:03:00	0.4
257	10:04:00	0.4
258	10:05:00	0.4
259	10:06:00	0.4
260	10:07:00	0.4
261	10:08:00	0.4
262	10:09:00	0.3
263	10:10:00	0.3
264	10:11:00	0.3
265	10:12:00	0.3
266	10:13:00	0.3
267	10:14:00	0.3
	10:15:00	0.3
269	10:16:00	0.3
270	10:17:00	0.3
271	10:17:00	0.3
272	10:19:00	0.3
273	10:20:00	0.2
274	10:21:00	0.2
274	10:21:00	0.2
		0.2
	10:23:00	0.2
	10:24:00	
	10:25:00	0.2
280	10:26:00 10:27:00	0.2 0.2
	10:27:00	0.2
282	10:28:00	0.2
283	10:29:00	0.2
284	10:30:00	0.2
285	10:31:00	0.1
	10:32:00	0.1
	10:34:00	0.1
288 289	10:35:00	0.1
	10:36:00	0
290	10:37:00	0
291	10:38:00	0
292	10:39:00	0
293	10:40:00	0
294	10:41:00	0
295	10:42:00	0
296	10:43:00	0
297	10:44:00	0
298	10:45:00	0
299	10:46:00	0
300	10:47:00	0
301	10:48:00	0
302	10:49:00	0
303	10:50:00	0
304	10:51:00	0
305	10:52:00	

306	10:53:00	0
307	10:54:00	0
308	10:55:00	0
309	10:56:00	0
310	10:57:00	0
311	10:58:00	0
312	10:59:00	0
313	11:00:00	0
314	11:01:00	0
315	11:02:00	0
316	11:03:00	0
317	11:04:00	0
318	11:05:00	0
319	11:06:00	0
320	11:07:00	0
321	11:08:00	0
322	11:09:00	0
323	11:10:00	0
324	11:11:00	0
325	11:12:00	0
326	11:13:00	0
327	11:14:00	0
328	11:15:00	0
329	11:16:00	0
330	11:17:00	0
331	11:18:00	0
332	11:19:00	0
333	11:20:00	0
334	11:21:00	0
335	11:22:00	0
336	11:23:00	0
337	11:24:00	0
338	11:25:00	0
339	11:26:00	0.1
340	11:27:00	0.1
341	11:28:00	0.1
342	11:29:00	0.1
343	11:30:00	0.2
344	11:31:00	0.2
345	11:32:00	0.2
346	11:33:00	0.2
347	11:34:00	0.3
348		
	11:35:00	0.4
349	11:36:00	0.4
350	11:37:00	0.5
351	11:38:00	0.5
352	11:39:00	0.5
353	11:40:00	0.6
354	11:41:00	0.6
355	11:42:00	0.6
356	11:43:00	0.7
357	11:44:00	0.7

358	11:45:00	0.7
359	11:46:00	8.0
360	11:47:00	0.8
361	11:48:00	0.8
362	11:49:00	8.0
363	11:50:00	0.9
364	11:51:00	0.9
365	11:52:00	0.9
366	11:53:00	0.9
367	11:54:00	0.9
368	11:55:00	0.9
369	11:56:00	0.9
370	11:57:00	0.9
371	11:58:00	0.9
372	11:59:00	0.9
373	12:00:00	0.9
374	12:01:00	0.9
375	12:02:00	0.9
376	12:03:00	0.9
377	12:04:00	0.9
378	12:05:00	0.9
379	12:06:00	0.9
380	12:07:00	0.9
381	12:08:00	0.9
382	12:09:00	0.9
383	12:10:00	0.9
384	12:11:00	0.9
385	12:12:00	0.9
386	12:13:00	0.9
387	12:14:00	0.9
388	12:15:00	0.9
389	12:16:00	1.1
390	12:17:00	1.1 1.3
391	12:18:00	1.6
392	12:19:00	1.8
393	12:20:00	
394	12:21:00	2.3
395	12:22:00	2.6
396	12:23:00	2.9
397	12:24:00	3.2
398	12:25:00	3.5
399	12:26:00	3.9
400	12:27:00	4.2
401	12:28:00	4.5
402	12:29:00	4.9
403	12:30:00	5.2
404	12:31:00	5.4
405	12:32:00	5.5
406	12:33:00	5.6
407	12:34:00	5.7
	12:35:00	5.7
408	12:36:00	6
L 408	142.00.00	U 0

410	12:37:00	6.1
411	12:38:00	6.3
412	12:39:00	6.4

.

Instrument: MiniRAE 2000 (PGM7600)
Data Points: 111 Sample Period: 60 sec Serial Number: 010066

Last Calibration Time: 11/27/2006 05:45 Gas Name: Isobutylene

Date: 11/28/2006

Line#	Time	Avg(ppm) STEL
1	5:03:00	0
2	5:04:00	0.4
3	5:05:00	0.4
4	5:06:00	0.4
5	5:07:00	0.4
6	5:08:00	0.4
7	5:09:00	0.4
8	5:10:00	0.4
9	5:11:00	0.4
10	5:12:00	0.4
11		0.4
	5:13:00	
12	5:14:00	0.4
13	5:15:00	0.4
14	5:16:00	0.5
15	5:17:00	0.5
16	5:18:00	0.6
17	5:19:00	0.3
18	5:20:00	0.4
19	5:21:00	0.6
20	5:22:00	0.8
21	5:23:00	1
22	5:24:00	1.3
23	5:25:00	1.6
24	5:26:00	1.9
25	5:27:00	2.4
26	5:28:00	2.8
27	5:29:00	3.3
28	5:30:00	4
29	5:31:00	4.7
30	5:32:00	5.4
31	5:33:00	6.1
32	5:34:00	6.9
33	5:35:00	7.7
34	5:36:00	8.5
35	5:37:00	9.3
36	-	10
36	5:38:00	
	5:39:00	10.8
38	5:40:00	11.6
39	5:41:00	12.5
40	5:42:00	13.2
41	5:43:00	14
42	5:44:00	14.8
43	5:45:00	15.5
44	5:46:00	16.1
45	5:47:00	16.8

46	E.40.00	176
46 47	5:48:00	17.5
	5:49:00	18.2
48	5:50:00	19
49	5:51:00	20
50	5:52:00	20.9
51	5:53:00	21.9
52	5:54:00	22.9
53	5:55:00	23.9
54	5:56:00	24.9
55	5:57:00	26.1
56	5:58:00	27.2
57	5:59:00	28.3
58	6:00:00	29.4
59	6:01:00	30.5
60	6:02:00	31.6
61	6:03:00	32.8
62	6:04:00	34
63	6:05:00	35.1
64	6:06:00	36.1
65	6:07:00	37.1
66	6:08:00	38
67	6:09:00	38.9
68	6:10:00	39.7
69	6:11:00	40.5
70	6:12:00	41.1
71	6:13:00	41.6
72	6:14:00	42.1
73	6:15:00	42.5
74	6:16:00	42.9
75	6:17:00	43.3
76	6:18:00	43.5
77	6:19:00	43.6
78	6:20:00	43.8
79	6:21:00	44
80	6:22:00	44.2
81	6:23:00	44.4
82	6:24:00	44.5
83	6:25:00	44.6
84	6:26:00	44.6
85	6:27:00	44.7
86	6:28:00	44.7
87	6:29:00	44.8
88	6:30:00	44.8
89	6:31:00	44.6
90	6:32:00	44.4
91	6:33:00	44.1
92	6:34:00	43.8
93	6:35:00	43.4
94	6:36:00	42.9
95	6:37:00	42.4
96	6:38:00	41.8
97	6:39:00	41

98	6:40:00	40.3
99	6:41:00	39.5
100	6:42:00	38.7
101	6:43:00	37.9
102	6:44:00	36.9
103	6:45:00	36
104	6:46:00	35.2
105	6:47:00	34.4
106	6:48:00	33.6
107	6:49:00	32.9
108	6:50:00	32.1
109	6:51:00	31.3
110	6:52:00	30.6
111	6:53:00	29.8

Instrument: MiniRAE 2000 (PGM7600)
Data Points: 379 Sample Period: 60 sec Serial Number: 010066

Last Calibration Time: 11/28/2006 06:57 Gas Name: Isobutylene

Date: 11/28/2006

		Avg(ppm)
Line#	Time	STEL
1	6:59:00	0.1
2	7:00:00	0.1
3	7:01:00	0.2
4	7:02:00	0.3
5	7:03:00	0.4
6	7:04:00	0.4
7	7:05:00	0.4
8	7:06:00	0.4
9	7:07:00	0.4
10	7:08:00	0.4
11	7:09:00	0.4
12	7:10:00	0.4
13	7:11:00	0.4
14	7:12:00	0.4
15	7:13:00	0.4
16	7:14:00	0.3
17	7:15:00	0.3
18	7:16:00	0.2
19	7:17:00	0.1
20	7:18:00	0
21	7:19:00	0
22	7:20:00	0
23	7:21:00	0
24	7:22:00	0
25	7:23:00	0
26	7:24:00	0
27	7:25:00	0
28	7:26:00	0
29	7:27:00	0
30	7:28:00	0

31	7:29:00	0
32	7:30:00	0
33	7:31:00	0
34	7:32:00	0
35	7:33:00	0
36	7:34:00	0
37	7:35:00	0
38	7:36:00	0
39	7:37:00	0
40	7:38:00	0
41	7:39:00	0
42	7:40:00	0
43	7:41:00	0
43	7:42:00	0
45	7:42:00	0
45	7:44:00	0
46		0
	7:45:00	0
48	7:46:00 7:47:00	0
49		
50	7:48:00	0
51	7:49:00	0
52	7:50:00	0
53	7:51:00	0
54	7:52:00	0
55	7:53:00	0
56	7:54:00	0
57	7:55:00	0
<u>58</u>	7:56:00	0
59	7:57:00	0
60	7:58:00	0
61	7:59:00	0
62	8:00:00	0
63	8:01:00	0
64	8:02:00	0
65	8:03:00	0
66	8:04:00	0
67	8:05:00	0
68	8:06:00	0
69	8:07:00	0
70	8:08:00	0
71	8:09:00	0
72	8:10:00	0
73	8:11:00	0
74	8:12:00	0
75	8:13:00	0
76	8:14:00	0
77	8:15:00	0
78	8:16:00	0
79	8:17:00	0
80	8:18:00	0
81	8:19:00	0
82	8:20:00	0

83	8:21:00	0
84	8:22:00	0
85	8:23:00	0
86	8:24:00	0
87	8:25:00	0
88	8:26:00	0
89	8:27:00	0
90	8:28:00	0
91	8:29:00	0
92	8:30:00	0
93	8:31:00	0
94	8:32:00	0
95	8:33:00	0
96	8:34:00	0
97	8:35:00	0
98	8:36:00	0
99	8:37:00	0
100	8:38:00	0
101	8:39:00	0
102	8:40:00	0
103	8:41:00	0
104	8:42:00	0
105	8:43:00	0
106	8:44:00	0
107	8:45:00	0
108	8:46:00	0
109	8:47:00	0
110	8:48:00	0
111	8:49:00	0
112	8:50:00	0
113	8:51:00	0
114	8:52:00	0
115	8:53:00	0
116		
117	8:54:00	0
	8:55:00	0
118	8:56:00	0
119	8:57:00	0
120	8:58:00	0
121	8:59:00	0
122	9:00:00	0
123	9:01:00	0
124	9:02:00	0
125	9:03:00	0
126	9:04:00	0
127	9:05:00	0
128	9:06:00	0
129	9:07:00	0
130	9:08:00	0
131	9:09:00	0
132	9:10:00	0
133	9:11:00	0
134	9:12:00	0
107	0.12.00	

135	9:13:00	0
136	9:14:00	0
137	9:15:00	0
138	9:16:00	0
139	9:17:00	0
140	9:18:00	0
141	9:19:00	0
142	9:20:00	0
143	9:21:00	0
144	9:22:00	0
145	9:23:00	0
146	9:24:00	0
147	9:25:00	0
148	9:26:00	0
149	9:27:00	0
150	9:28:00	0
151	9:29:00	Ō
152	9:30:00	0
153	9:31:00	0
154	9:32:00	0
155	9:33:00	0
156	9:34:00	0
157	9:35:00	0
158	9:36:00	0
159	9:37:00	0
160 161	9:38:00	0
162	9:39:00 9:40:00	0
163		0
164	9:41:00 9:42:00	0
165	9:42:00	0
166	9:44:00	
		0
167	9:45:00	0
168	9:46:00	0
169	9:47:00	0
170	9:48:00	0
171	9:49:00	0
172	9:50:00	0
173	9:51:00	0
174	9:52:00	0
175	9:53:00	0
176	9:54:00	0
177	9:55:00	0
178	9:56:00	0
179	9:57:00	0
180	9:58:00	0
181	9:59:00	0
182	10:00:00	0
183	10:01:00	0
184	10:02:00	0
185	10:03:00	0
186	10:04:00	0

187	10:05:00	0
188	10:06:00	0
189	10:07:00	0
190	10:08:00	0
191	10:09:00	0
192	10:10:00	0
193	10:11:00	0
194	10:12:00	0
195	10:13:00	0
196	10:14:00	0
197	10:15:00	0
198	10:16:00	0
199	10:17:00	0
200	10:18:00	0
201	10:19:00	0
202	10:20:00	0
203	10:21:00	0
204	10:22:00	0
205	10:23:00	0
206	10:24:00	0
207	10:25:00	0
208	10:26:00	0
209	10:27:00	0
210	10:28:00	0
211	10:29:00	0
212	10:30:00	0
213	10:31:00	0
214	10:32:00	0
215	10:33:00	0
216	10:34:00	0
217	10:35:00	0
218	10:36:00	0
219	10:37:00	0
220	10:38:00	0
221	10:39:00	0
222	10:40:00	0
223	10:41:00	0
224	10:42:00	0
225	10:43:00	0
226	10:44:00	0
227	10:45:00	0
228	10:46:00	0
229	10:47:00	0
230	10:48:00	0
231	10:49:00	0
232	10:50:00	0
233	10:51:00	0
234	10:52:00	0
235	10:53:00	0
236	10:54:00	0
237	10:55:00	0
238	10:56:00	0

•

239	10:57:00	0
240	10:58:00	0
241	10:59:00	0
242	11:00:00	0
243	11:01:00	0
244	11:02:00	0
245	11:03:00	0
246	11:04:00	0
247	11:05:00	0
248	11:06:00	0
249	11:07:00	0
250	11:08:00	0
251	11:09:00	0
252	11:10:00	0
253	11:11:00	0
254	11:12:00	0
255	11:13:00	0
256	11:14:00	0
257	11:15:00	0
258	11:16:00	0
259	11:17:00	0
260	11:18:00	0
261	11:19:00	0
262	11:20:00	0
263	11:21:00	0
264	11:22:00	0
265	11:23:00	0
266	11:24:00	0
267	11:25:00	0
268	11:26:00	0
269	11:27:00	0
270	11:28:00	0
271	11:29:00	0
272	11:30:00	0
273	11:31:00	0
274	11:32:00	0
275	11:33:00	0
276	11:34:00	0
277	11:35:00	0
278	11:36:00	0
279	11:37:00	0
280	11:38:00	0
281	11:39:00	0
282	11:40:00	0
283	11:41:00	0
284	11:42:00	0
285	11:43:00	0
286	11:44:00	0
287	11:45:00	0
288	11:46:00	0
289	11:47:00	0
290	11:48:00	0
	L	

291	11:49:00	0
292	11:50:00	0
293	11:51:00	0
294	11:52:00	0
295	11:53:00	0
296	11:54:00	0
297	11:55:00	0
298	11:56:00	0
299	11:57:00	0
300	11:58:00	0
301	11:59:00	0
302	12:00:00	0
303	12:01:00	0
304	12:02:00	0
305	12:03:00	0
306	12:04:00	0
307	12:05:00	0
308	12:06:00	0
309	12:07:00	0
310	12:08:00	0
311	12:09:00	0
312	12:10:00	0
		0
313	12:11:00	
314	12:12:00	0
315	12:13:00	0
316	12:14:00	0
317	12:15:00	0
318	12:16:00	0
319	12:17:00	0
320	12:18:00	0
321	12:19:00	0
322	12:20:00	0
323	12:21:00	0
324	12:22:00	0
325	12:23:00	0
326	12:24:00	0
327	12:25:00	0
328	12:26:00	0
329	12:27:00	0
330	12:28:00	0
331	12:29:00	0
332	12:30:00	0
333	12:31:00	0
334	12:32:00	0
335	12:33:00	0
336	12:34:00	0
337	12:35:00	0
338	12:36:00	0
339	12:37:00	0
340	12:38:00	0
341	12:39:00	0
342	12:40:00	0
L 344	12.40.00	V

343	12:41:00	0
344	12:42:00	0
345	12:43:00	0
346	12:44:00	0
347	12:45:00	0
348	12:46:00	0
349	12:47:00	0
350	12:48:00	0
351	12:49:00	0
352	12:50:00	0
353	12:51:00	0
354	12:52:00	0
355	12:53:00	0
356	12:54:00	0
357	12:55:00	0
358	12:56:00	0
359	12:57:00	0
360	12:58:00	0
361	12:59:00	0
362	13:00:00	0
363	13:01:00	0
364	13:02:00	0
365	13:03:00	0
366	13:04:00	0
367	13:05:00	0
368	13:06:00	0
369	13:07:00	0
370	13:08:00	0
371	13:09:00	0
372	13:10:00	0
373	13:11:00	0
374	13:12:00	0
375	13:13:00	0
376	13:14:00	0
377	13:15:00	0
378	13:16:00	0
379	13:17:00	0

.

A^{r3}

Instrument: MiniRAE 2000 (PGM7600) Serial Number: 010066

Data Points: 417 Sample Period: 60 sec

Last Calibration Time: 11/28/2006 06:57 Gas Name: Isobutylene

Date: 11/29/2006

Line#	Time	Avg(ppm) STEL
1	4:35:00	0
2	4:36:00	0
3	4:37:00	0
4	4:38:00	0
5	4:39:00	0
6	4:40:00	0
7	4:41:00	0
8	4:42:00	0
9		0
	4:43:00	
10	4:44:00	0
11	4:45:00	0
12	4:46:00	0
13	4:47:00	0
14	4:48:00	0
15	4:49:00	0
16	4:50:00	0
17	4:51:00	0
18	4:52:00	0
19	4:53:00	0
20	4:54:00	0
21	4:55:00	0
22	4:56:00	0
23	4:57:00	0
24	4:58:00	0
25	4:59:00	0
26	5:00:00	0
27	5:01:00	0
28	5:02:00	0
29	5:03:00	0
30	5:04:00	0
31	5:05:00	0
32	5:06:00	Ö
33	5:07:00	0
34	5:08:00	0
35	5:09:00	0
36	5:10:00	0
37	5:11:00	0
38	5:12:00	0
39	5:12:00	0
40	5:14:00	0
41	· · · · · · · · · · · · · · · · · · ·	ļ
	5:15:00	0
42	5:16:00	0
43	5:17:00	0
44	5:18:00	0
45	5:19:00	0

46	5:20:00	0
47	5:21:00	0
48	5:22:00	0
49	5:23:00	0
50	5:24:00	0
51	5:25:00	0
52	5:26:00	0
53	5:27:00	0
54	5:28:00	0
55	5:29:00	0
56	5:30:00	0
57	5:31:00	0
58	5:32:00	0
59	5:33:00	0
60	5:34:00	0
61	5:35:00	0
62	5:36:00	0
63	5:37:00	0
64	5:38:00	
	4	0
65	5:39:00	0
66	5:40:00	0
67	5:41:00	0
68	5:42:00	0
69	5:43:00	0
70	5:44:00	0
71	5:45:00	0
72	5:46:00	0
73	5:47:00	0
74	5:48:00	0
75	5:49:00	0
76	5:50:00	0
77	5:51:00	0
78	5:52:00	0
79	5:53:00	0
80	5:54:00	0
81	5:55:00	0
82	5:56:00	0
83	5:57:00	0
84	5:58:00	0
85	5:59:00	0
86	6:00:00	0
87	6:01:00	0
88	6:02:00	0
89	6:03:00	0
90	6:04:00	0
91	6:05:00	0
92	6:06:00	0
93	6:07:00	0
94	6:08:00	0
95	6:09:00	0
96	6:10:00	0
97	6:11:00	0
V /	V. 1 1.00	Ų

•

98	6:12:00	0
99	6:13:00	0
100	6:14:00	0
101	6:15:00	0
102	6:16:00	0
103	6:17:00	0
104	6:18:00	0
105	6:19:00	0
106	6:20:00	0
107	6:21:00	0
108	6:22:00	0
109	6:23:00	0
110	6:24:00	0
111	6:25:00	0
112	6:26:00	0
113	6:27:00	0
114		
	6:28:00	0
115	6:29:00	0
116	6:30:00	0
117	6:31:00	0
118	6:32:00	0
119	6:33:00	0
120	6:34:00	0
121	6:35:00	0
122	6:36:00	0
123	6:37:00	0
124	6:38:00	0
125	6:39:00	0
126	6:40:00	0
127	6:41:00	0
128	6:42:00	0
129	6:43:00	0
130	6:44:00	0
131	6:45:00	0
132	6:46:00	0
133	6:47:00	0
134	6:48:00	0
135	6:49:00	0
136	6:50:00	0
137	6:51:00	Ō
138	6:52:00	0
139	6:53:00	0
140	6:54:00	0
141	6:55:00	0
142	6:56:00	0
143	6:57:00	0
144	6:58:00	0
145	6:59:00	0
146	7:00:00	0
147	7:01:00	0
148	7:02:00	0
149	7:03:00	0

150	150	7.04.00	1 0
152 7:06:00 0 153 7:07:00 0 154 7:08:00 0 155 7:09:00 0 156 7:10:00 0 157 7:11:00 0 158 7:12:00 0 159 7:13:00 0 160 7:14:00 0 161 7:15:00 0 162 7:16:00 0 163 7:17:00 0 164 7:18:00 0 165 7:19:00 0 166 7:20:00 0 167 7:21:00 0 168 7:22:00 0 169 7:23:00 0 170 7:24:00 0 171 7:25:00 0 172 7:26:00 0 173 7:27:00 0 174 7:28:00 0 175 7:29:00 0 176 <td>****</td> <td></td> <td></td>	****		
153 7:07:00 0 154 7:08:00 0 155 7:09:00 0 156 7:10:00 0 157 7:11:00 0 158 7:12:00 0 159 7:13:00 0 160 7:14:00 0 161 7:15:00 0 162 7:16:00 0 163 7:17:00 0 164 7:18:00 0 165 7:19:00 0 166 7:20:00 0 167 7:21:00 0 168 7:22:00 0 169 7:23:00 0 170 7:24:00 0 171 7:25:00 0 172 7:26:00 0 173 7:27:00 0 174 7:28:00 0 175 7:29:00 0 176 7:30:00 0 177 <td></td> <td></td> <td></td>			
154 7:08:00 0 155 7:09:00 0 156 7:10:00 0 157 7:11:00 0 158 7:12:00 0 159 7:13:00 0 160 7:14:00 0 161 7:15:00 0 162 7:16:00 0 163 7:17:00 0 164 7:18:00 0 165 7:19:00 0 166 7:20:00 0 167 7:21:00 0 168 7:22:00 0 169 7:23:00 0 170 7:24:00 0 171 7:25:00 0 172 7:26:00 0 173 7:27:00 0 174 7:28:00 0 175 7:29:00 0 176 7:30:00 0 177 7:31:00 0 178 <td></td> <td></td> <td>ļ</td>			ļ
155 7:09:00 0 156 7:10:00 0 157 7:11:00 0 158 7:12:00 0 159 7:13:00 0 160 7:14:00 0 161 7:15:00 0 162 7:16:00 0 163 7:17:00 0 164 7:18:00 0 165 7:19:00 0 166 7:20:00 0 167 7:21:00 0 168 7:22:00 0 169 7:23:00 0 170 7:24:00 0 171 7:25:00 0 172 7:26:00 0 173 7:27:00 0 174 7:28:00 0 175 7:29:00 0 176 7:30:00 0 177 7:31:00 0 179 7:33:00 0 180 <td></td> <td></td> <td></td>			
156 7:10:00 0 157 7:11:00 0 158 7:12:00 0 159 7:13:00 0 160 7:14:00 0 161 7:15:00 0 162 7:16:00 0 163 7:17:00 0 164 7:18:00 0 165 7:19:00 0 166 7:20:00 0 167 7:21:00 0 168 7:22:00 0 169 7:23:00 0 170 7:24:00 0 171 7:25:00 0 172 7:26:00 0 173 7:27:00 0 174 7:28:00 0 175 7:29:00 0 176 7:30:00 0 177 7:31:00 0 179 7:33:00 0 180 7:34:00 0 181 <td></td> <td>1</td> <td><u> </u></td>		1	<u> </u>
157 7:11:00 0 158 7:12:00 0 159 7:13:00 0 160 7:14:00 0 161 7:15:00 0 162 7:16:00 0 163 7:17:00 0 164 7:18:00 0 165 7:19:00 0 166 7:20:00 0 167 7:21:00 0 168 7:22:00 0 169 7:23:00 0 170 7:24:00 0 172 7:26:00 0 173 7:27:00 0 174 7:28:00 0 175 7:29:00 0 176 7:30:00 0 177 7:31:00 0 178 7:32:00 0 179 7:33:00 0 180 7:34:00 0 181 7:35:00 0 182 <td></td> <td></td> <td>1</td>			1
158 7:12:00 0 159 7:13:00 0 160 7:14:00 0 161 7:15:00 0 162 7:16:00 0 163 7:17:00 0 164 7:18:00 0 165 7:19:00 0 166 7:20:00 0 167 7:21:00 0 168 7:22:00 0 169 7:23:00 0 170 7:24:00 0 171 7:25:00 0 172 7:26:00 0 173 7:27:00 0 174 7:28:00 0 175 7:29:00 0 176 7:30:00 0 177 7:31:00 0 178 7:32:00 0 179 7:33:00 0 180 7:34:00 0 181 7:35:00 0 182 <td></td> <td>7:10:00</td> <td></td>		7:10:00	
159 7:13:00 0 160 7:14:00 0 161 7:15:00 0 162 7:16:00 0 163 7:17:00 0 164 7:18:00 0 165 7:19:00 0 166 7:20:00 0 167 7:21:00 0 168 7:22:00 0 169 7:23:00 0 170 7:24:00 0 171 7:25:00 0 172 7:26:00 0 173 7:27:00 0 174 7:28:00 0 175 7:29:00 0 176 7:30:00 0 177 7:31:00 0 178 7:32:00 0 179 7:33:00 0 180 7:34:00 0 181 7:35:00 0 182 7:36:00 0 183 <td></td> <td></td> <td></td>			
160 7:14:00 0 161 7:15:00 0 162 7:16:00 0 163 7:17:00 0 164 7:18:00 0 165 7:19:00 0 166 7:20:00 0 167 7:21:00 0 168 7:22:00 0 169 7:23:00 0 170 7:24:00 0 171 7:25:00 0 172 7:26:00 0 173 7:27:00 0 174 7:28:00 0 175 7:29:00 0 176 7:30:00 0 177 7:31:00 0 178 7:33:00 0 179 7:33:00 0 180 7:34:00 0 181 7:35:00 0 182 7:36:00 0 183 7:37:00 0 184 <td></td> <td></td> <td></td>			
161 7:15:00 0 162 7:16:00 0 163 7:17:00 0 164 7:18:00 0 165 7:19:00 0 166 7:20:00 0 167 7:21:00 0 168 7:22:00 0 169 7:23:00 0 170 7:24:00 0 171 7:25:00 0 172 7:26:00 0 173 7:27:00 0 174 7:28:00 0 175 7:29:00 0 176 7:30:00 0 177 7:31:00 0 178 7:32:00 0 179 7:33:00 0 180 7:34:00 0 181 7:35:00 0 182 7:36:00 0 183 7:37:00 0 184 7:39:00 0 185 7:39:00 0 186 7:40:00 0 <t< td=""><td></td><td></td><td></td></t<>			
162 7:16:00 0 163 7:17:00 0 164 7:18:00 0 165 7:19:00 0 166 7:20:00 0 167 7:21:00 0 168 7:22:00 0 169 7:23:00 0 170 7:24:00 0 171 7:25:00 0 172 7:26:00 0 173 7:27:00 0 174 7:28:00 0 175 7:29:00 0 176 7:30:00 0 177 7:31:00 0 178 7:32:00 0 179 7:33:00 0 180 7:34:00 0 181 7:35:00 0 182 7:36:00 0 183 7:37:00 0 184 7:39:00 0 185 7:39:00 0 186 7:40:00 0 187 7:41:00 0 <t< td=""><td></td><td></td><td>1</td></t<>			1
163 7:17:00 0 164 7:18:00 0 165 7:19:00 0 166 7:20:00 0 167 7:21:00 0 168 7:22:00 0 169 7:23:00 0 170 7:24:00 0 171 7:25:00 0 172 7:26:00 0 173 7:27:00 0 174 7:28:00 0 175 7:29:00 0 176 7:30:00 0 177 7:31:00 0 178 7:32:00 0 179 7:33:00 0 180 7:34:00 0 181 7:35:00 0 182 7:36:00 0 183 7:37:00 0 184 7:38:00 0 185 7:39:00 0 186 7:40:00 0 187 7:41:00 0 188 7:42:00 0 <t< td=""><td></td><td></td><td></td></t<>			
164 7:18:00 0 165 7:19:00 0 166 7:20:00 0 167 7:21:00 0 168 7:22:00 0 169 7:23:00 0 170 7:24:00 0 171 7:25:00 0 172 7:26:00 0 173 7:27:00 0 174 7:28:00 0 175 7:29:00 0 176 7:30:00 0 177 7:31:00 0 178 7:32:00 0 179 7:33:00 0 180 7:34:00 0 181 7:35:00 0 182 7:36:00 0 183 7:37:00 0 184 7:38:00 0 185 7:39:00 0 186 7:40:00 0 187 7:41:00 0 188 7:42:00 0 190 7:44:00 0 <t< td=""><td></td><td></td><td></td></t<>			
165 7:19:00 0 166 7:20:00 0 167 7:21:00 0 168 7:22:00 0 169 7:23:00 0 170 7:24:00 0 171 7:25:00 0 172 7:26:00 0 173 7:27:00 0 174 7:28:00 0 175 7:29:00 0 176 7:30:00 0 177 7:31:00 0 178 7:32:00 0 179 7:33:00 0 180 7:34:00 0 181 7:35:00 0 182 7:36:00 0 183 7:37:00 0 184 7:38:00 0 185 7:39:00 0 186 7:40:00 0 187 7:41:00 0 188 7:42:00 0 190 7:44:00 0 191 7:45:00 0 <t< td=""><td>·····</td><td></td><td>********</td></t<>	·····		********
166 7:20:00 0 167 7:21:00 0 168 7:22:00 0 169 7:23:00 0 170 7:24:00 0 171 7:25:00 0 172 7:26:00 0 173 7:27:00 0 174 7:28:00 0 175 7:29:00 0 176 7:30:00 0 177 7:31:00 0 178 7:32:00 0 179 7:33:00 0 180 7:34:00 0 181 7:35:00 0 182 7:36:00 0 183 7:37:00 0 184 7:38:00 0 185 7:39:00 0 186 7:40:00 0 187 7:41:00 0 188 7:42:00 0 190 7:44:00 0 191 7:45:00 0 192 7:46:00 0 <t< td=""><td></td><td>7:18:00</td><td>0</td></t<>		7:18:00	0
167 7:21:00 0 168 7:22:00 0 169 7:23:00 0 170 7:24:00 0 171 7:25:00 0 172 7:26:00 0 173 7:27:00 0 174 7:28:00 0 175 7:29:00 0 176 7:30:00 0 177 7:31:00 0 178 7:32:00 0 179 7:33:00 0 180 7:34:00 0 181 7:35:00 0 182 7:36:00 0 183 7:37:00 0 184 7:38:00 0 185 7:39:00 0 186 7:40:00 0 187 7:41:00 0 188 7:42:00 0 189 7:43:00 0 190 7:44:00 0 191 7:45:00 0 192 7:46:00 0 <t< td=""><td></td><td></td><td></td></t<>			
168 7:22:00 0 169 7:23:00 0 170 7:24:00 0 171 7:25:00 0 172 7:26:00 0 173 7:27:00 0 174 7:28:00 0 175 7:29:00 0 176 7:30:00 0 177 7:31:00 0 178 7:32:00 0 179 7:33:00 0 180 7:34:00 0 181 7:35:00 0 182 7:36:00 0 183 7:37:00 0 184 7:38:00 0 185 7:39:00 0 186 7:40:00 0 187 7:41:00 0 188 7:42:00 0 190 7:44:00 0 191 7:45:00 0 192 7:46:00 0 193 7:47:00 0 194 7:48:00 0 <t< td=""><td>****</td><td></td><td></td></t<>	****		
169 7:23:00 0 170 7:24:00 0 171 7:25:00 0 172 7:26:00 0 173 7:27:00 0 174 7:28:00 0 175 7:29:00 0 176 7:30:00 0 177 7:31:00 0 178 7:32:00 0 179 7:33:00 0 180 7:34:00 0 181 7:35:00 0 182 7:36:00 0 183 7:37:00 0 184 7:38:00 0 185 7:39:00 0 186 7:40:00 0 187 7:41:00 0 188 7:42:00 0 189 7:43:00 0 190 7:44:00 0 191 7:45:00 0 192 7:46:00 0 193 7:47:00 0 194 7:49:00 0 <t< td=""><td></td><td></td><td></td></t<>			
170 7:24:00 0 171 7:25:00 0 172 7:26:00 0 173 7:27:00 0 174 7:28:00 0 175 7:29:00 0 176 7:30:00 0 177 7:31:00 0 178 7:32:00 0 179 7:33:00 0 180 7:34:00 0 181 7:35:00 0 182 7:36:00 0 183 7:37:00 0 184 7:38:00 0 185 7:39:00 0 186 7:40:00 0 187 7:41:00 0 188 7:42:00 0 189 7:43:00 0 190 7:44:00 0 191 7:45:00 0 192 7:46:00 0 193 7:47:00 0 194 7:48:00 0 195 7:49:00 0 <t< td=""><td>168</td><td>7:22:00</td><td>0</td></t<>	168	7:22:00	0
171 7:25:00 0 172 7:26:00 0 173 7:27:00 0 174 7:28:00 0 175 7:29:00 0 176 7:30:00 0 177 7:31:00 0 178 7:32:00 0 179 7:33:00 0 180 7:34:00 0 181 7:35:00 0 182 7:36:00 0 183 7:37:00 0 184 7:38:00 0 185 7:39:00 0 186 7:40:00 0 187 7:41:00 0 188 7:42:00 0 189 7:43:00 0 190 7:44:00 0 191 7:45:00 0 193 7:47:00 0 194 7:48:00 0 195 7:49:00 0 196 7:50:00 0 199 7:53:00 0 <t< td=""><td>169</td><td>7:23:00</td><td>0</td></t<>	169	7:23:00	0
172 7:26:00 0 173 7:27:00 0 174 7:28:00 0 175 7:29:00 0 176 7:30:00 0 177 7:31:00 0 178 7:32:00 0 179 7:33:00 0 180 7:34:00 0 181 7:35:00 0 182 7:36:00 0 183 7:37:00 0 184 7:38:00 0 185 7:39:00 0 186 7:40:00 0 187 7:41:00 0 188 7:42:00 0 189 7:43:00 0 190 7:44:00 0 191 7:45:00 0 192 7:46:00 0 193 7:47:00 0 194 7:48:00 0 195 7:49:00 0 196 7:50:00 0 199 7:53:00 0 <t< td=""><td></td><td>7:24:00</td><td>0</td></t<>		7:24:00	0
173 7:27:00 0 174 7:28:00 0 175 7:29:00 0 176 7:30:00 0 177 7:31:00 0 178 7:32:00 0 179 7:33:00 0 180 7:34:00 0 181 7:35:00 0 182 7:36:00 0 183 7:37:00 0 184 7:38:00 0 185 7:39:00 0 186 7:40:00 0 187 7:41:00 0 188 7:42:00 0 189 7:43:00 0 190 7:44:00 0 191 7:45:00 0 192 7:46:00 0 193 7:47:00 0 194 7:48:00 0 195 7:49:00 0 196 7:50:00 0 197 7:51:00 0 198 7:52:00 0 <t< td=""><td>171</td><td>7:25:00</td><td>0</td></t<>	171	7:25:00	0
174 7:28:00 0 175 7:29:00 0 176 7:30:00 0 177 7:31:00 0 178 7:32:00 0 179 7:33:00 0 180 7:34:00 0 181 7:35:00 0 182 7:36:00 0 183 7:37:00 0 184 7:38:00 0 185 7:39:00 0 186 7:40:00 0 187 7:41:00 0 188 7:42:00 0 189 7:43:00 0 190 7:44:00 0 191 7:45:00 0 192 7:46:00 0 193 7:47:00 0 194 7:48:00 0 195 7:49:00 0 196 7:50:00 0 197 7:51:00 0 198 7:52:00 0 199 7:53:00 0 <t< td=""><td>172</td><td></td><td>0</td></t<>	172		0
175 7:29:00 0 176 7:30:00 0 177 7:31:00 0 178 7:32:00 0 179 7:33:00 0 180 7:34:00 0 181 7:35:00 0 182 7:36:00 0 183 7:37:00 0 184 7:38:00 0 185 7:39:00 0 186 7:40:00 0 187 7:41:00 0 188 7:42:00 0 189 7:43:00 0 190 7:44:00 0 191 7:45:00 0 192 7:46:00 0 193 7:47:00 0 194 7:48:00 0 195 7:49:00 0 196 7:50:00 0 199 7:53:00 0 199 7:53:00 0 200 7:54:00 0		7:27:00	0
176 7:30:00 0 177 7:31:00 0 178 7:32:00 0 179 7:33:00 0 180 7:34:00 0 181 7:35:00 0 182 7:36:00 0 183 7:37:00 0 184 7:38:00 0 185 7:39:00 0 186 7:40:00 0 187 7:41:00 0 188 7:42:00 0 189 7:43:00 0 190 7:44:00 0 191 7:45:00 0 192 7:46:00 0 193 7:47:00 0 194 7:48:00 0 195 7:49:00 0 196 7:50:00 0 197 7:51:00 0 198 7:52:00 0 199 7:53:00 0 200 7:54:00 0	174	7:28:00	0
177 7:31:00 0 178 7:32:00 0 179 7:33:00 0 180 7:34:00 0 181 7:35:00 0 182 7:36:00 0 183 7:37:00 0 184 7:38:00 0 185 7:39:00 0 186 7:40:00 0 187 7:41:00 0 188 7:42:00 0 189 7:43:00 0 190 7:44:00 0 191 7:45:00 0 192 7:46:00 0 193 7:47:00 0 194 7:48:00 0 195 7:49:00 0 196 7:50:00 0 197 7:51:00 0 198 7:52:00 0 199 7:53:00 0 200 7:54:00 0		7:29:00	0
178 7:32:00 0 179 7:33:00 0 180 7:34:00 0 181 7:35:00 0 182 7:36:00 0 183 7:37:00 0 184 7:38:00 0 185 7:39:00 0 186 7:40:00 0 187 7:41:00 0 188 7:42:00 0 189 7:43:00 0 190 7:44:00 0 191 7:45:00 0 192 7:46:00 0 193 7:47:00 0 194 7:48:00 0 195 7:49:00 0 196 7:50:00 0 197 7:51:00 0 198 7:52:00 0 199 7:53:00 0 200 7:54:00 0		7:30:00	0
179 7:33:00 0 180 7:34:00 0 181 7:35:00 0 182 7:36:00 0 183 7:37:00 0 184 7:38:00 0 185 7:39:00 0 186 7:40:00 0 187 7:41:00 0 188 7:42:00 0 190 7:44:00 0 191 7:45:00 0 192 7:46:00 0 193 7:47:00 0 194 7:48:00 0 195 7:49:00 0 196 7:50:00 0 197 7:51:00 0 198 7:52:00 0 199 7:53:00 0 200 7:54:00 0		7:31:00	0
180 7:34:00 0 181 7:35:00 0 182 7:36:00 0 183 7:37:00 0 184 7:38:00 0 185 7:39:00 0 186 7:40:00 0 187 7:41:00 0 188 7:42:00 0 189 7:43:00 0 190 7:44:00 0 191 7:45:00 0 192 7:46:00 0 193 7:47:00 0 194 7:48:00 0 195 7:49:00 0 196 7:50:00 0 197 7:51:00 0 198 7:52:00 0 199 7:53:00 0 200 7:54:00 0			
181 7:35:00 0 182 7:36:00 0 183 7:37:00 0 184 7:38:00 0 185 7:39:00 0 186 7:40:00 0 187 7:41:00 0 188 7:42:00 0 189 7:43:00 0 190 7:44:00 0 191 7:45:00 0 192 7:46:00 0 193 7:47:00 0 194 7:48:00 0 195 7:49:00 0 196 7:50:00 0 197 7:51:00 0 198 7:52:00 0 199 7:53:00 0 200 7:54:00 0		7:33:00	0
182 7:36:00 0 183 7:37:00 0 184 7:38:00 0 185 7:39:00 0 186 7:40:00 0 187 7:41:00 0 188 7:42:00 0 189 7:43:00 0 190 7:44:00 0 191 7:45:00 0 192 7:46:00 0 193 7:47:00 0 194 7:48:00 0 195 7:49:00 0 196 7:50:00 0 197 7:51:00 0 198 7:52:00 0 199 7:53:00 0 200 7:54:00 0		7:34:00	0
183 7:37:00 0 184 7:38:00 0 185 7:39:00 0 186 7:40:00 0 187 7:41:00 0 188 7:42:00 0 189 7:43:00 0 190 7:44:00 0 191 7:45:00 0 192 7:46:00 0 193 7:47:00 0 194 7:48:00 0 195 7:49:00 0 196 7:50:00 0 197 7:51:00 0 198 7:52:00 0 199 7:53:00 0 200 7:54:00 0		7:35:00	
184 7:38:00 0 185 7:39:00 0 186 7:40:00 0 187 7:41:00 0 188 7:42:00 0 189 7:43:00 0 190 7:44:00 0 191 7:45:00 0 192 7:46:00 0 193 7:47:00 0 194 7:48:00 0 195 7:49:00 0 196 7:50:00 0 197 7:51:00 0 198 7:52:00 0 199 7:53:00 0 200 7:54:00 0	182	7:36:00	0
185 7:39:00 0 186 7:40:00 0 187 7:41:00 0 188 7:42:00 0 189 7:43:00 0 190 7:44:00 0 191 7:45:00 0 192 7:46:00 0 193 7:47:00 0 194 7:48:00 0 195 7:49:00 0 196 7:50:00 0 197 7:51:00 0 198 7:52:00 0 199 7:53:00 0 200 7:54:00 0	183	7:37:00	0
186 7:40:00 0 187 7:41:00 0 188 7:42:00 0 189 7:43:00 0 190 7:44:00 0 191 7:45:00 0 192 7:46:00 0 193 7:47:00 0 194 7:48:00 0 195 7:49:00 0 196 7:50:00 0 197 7:51:00 0 198 7:52:00 0 199 7:53:00 0 200 7:54:00 0	184	7:38:00	0
187 7:41:00 0 188 7:42:00 0 189 7:43:00 0 190 7:44:00 0 191 7:45:00 0 192 7:46:00 0 193 7:47:00 0 194 7:48:00 0 195 7:59:00 0 197 7:51:00 0 198 7:52:00 0 199 7:53:00 0 200 7:54:00 0	185	7:39:00	0
188 7:42:00 0 189 7:43:00 0 190 7:44:00 0 191 7:45:00 0 192 7:46:00 0 193 7:47:00 0 194 7:48:00 0 195 7:49:00 0 196 7:50:00 0 197 7:51:00 0 198 7:52:00 0 199 7:53:00 0 200 7:54:00 0	186	7:40:00	0
189 7:43:00 0 190 7:44:00 0 191 7:45:00 0 192 7:46:00 0 193 7:47:00 0 194 7:48:00 0 195 7:49:00 0 196 7:50:00 0 197 7:51:00 0 198 7:52:00 0 199 7:53:00 0 200 7:54:00 0	187	7:41:00	0
190 7:44:00 0 191 7:45:00 0 192 7:46:00 0 193 7:47:00 0 194 7:48:00 0 195 7:49:00 0 196 7:50:00 0 197 7:51:00 0 198 7:52:00 0 199 7:53:00 0 200 7:54:00 0	188	7:42:00	0
191 7:45:00 0 192 7:46:00 0 193 7:47:00 0 194 7:48:00 0 195 7:49:00 0 196 7:50:00 0 197 7:51:00 0 198 7:52:00 0 199 7:53:00 0 200 7:54:00 0		7:43:00	0
192 7:46:00 0 193 7:47:00 0 194 7:48:00 0 195 7:49:00 0 196 7:50:00 0 197 7:51:00 0 198 7:52:00 0 199 7:53:00 0 200 7:54:00 0		7:44:00	0
193 7:47:00 0 194 7:48:00 0 195 7:49:00 0 196 7:50:00 0 197 7:51:00 0 198 7:52:00 0 199 7:53:00 0 200 7:54:00 0		7:45:00	0
194 7:48:00 0 195 7:49:00 0 196 7:50:00 0 197 7:51:00 0 198 7:52:00 0 199 7:53:00 0 200 7:54:00 0		7:46:00	
195 7:49:00 0 196 7:50:00 0 197 7:51:00 0 198 7:52:00 0 199 7:53:00 0 200 7:54:00 0		7:47:00	
196 7:50:00 0 197 7:51:00 0 198 7:52:00 0 199 7:53:00 0 200 7:54:00 0	194	7:48:00	
197 7:51:00 0 198 7:52:00 0 199 7:53:00 0 200 7:54:00 0		7:49:00	0
198 7:52:00 0 199 7:53:00 0 200 7:54:00 0			
199 7:53:00 0 200 7:54:00 0	197	7:51:00	0
200 7:54:00 0	198	7:52:00	
	199	7:53:00	0
201 7:55:00 0	200	7:54:00	0
	201	7:55:00	0

202	7:56:00	0
203	7:57:00	0
204	7:58:00	0
205	7:59:00	0
206	8:00:00	0
207	8:01:00	0
208	8:02:00	0
209	8:03:00	0
210	8:04:00	0
211	8:05:00	0
212	8:06:00	0
213	8:07:00	0
214	8:08:00	0
215	8:09:00	0
216	8:10:00	0
217	8:11:00	0
218	8:12:00	0
219	8:13:00	0
220	8:14:00	0
221	8:15:00	0
222	8:16:00	0
223	8:17:00	0
224	8:18:00	0
225	8:19:00	0
226	8:20:00	0
227	8:21:00	0
228	8:22:00	0
229	8:23:00	0
230	8:24:00	0
231	8:25:00	0
232	8:26:00	0
233	8:27:00	0
234	8:28:00	0
235	8:29:00	0
236	8:30:00	0
237	8:31:00	0
238	8:32:00	0
239	8:33:00	0
240	8:34:00	0
241	8:35:00	0
242	8:36:00	0
243	8:37:00	0
244	8:38:00	0
245	8:39:00	0
246	8:40:00	0
247	8:41:00	0
248	8:42:00	0
249	8:43:00	0
250	8:44:00	0
251	8:45:00	0
252	8:46:00	0
253	8:47:00	0

tings of the second of the sec

254	8:48:00	0
255	8:49:00	0
256	8:50:00	0
257	8:51:00	0
258	8:52:00	0
259	8:53:00	0
260	8:54:00	0
261	8:55:00	0
262	8:56:00	0
263	8:57:00	0
264	8:58:00	0
265	8:59:00	0
266	9:00:00	0
267	9:01:00	0
268	9:02:00	0
269	9:03:00	0
270	9:04:00	0
271	9:05:00	0
272	9:06:00	0
	9:07:00	
273	9:07:00	0
274		0
275	9:09:00	0
276	9:10:00	0
277	9:11:00	0
278	9:12:00	0
279	9:13:00	0
280	9:14:00	0
281	9:15:00	0
282	9:16:00	0
283	9:17:00	0
284	9:18:00	0
285	9:19:00	0
286	9:20:00	0
287	9:21:00	0
288	9:22:00	0
289	9:23:00	0
290	9:24:00	0
291	9:25:00	0
292	9:26:00	0
293	9:27:00	0
294	9:28:00	0
295	9:29:00	0
296	9:30:00	0
297	9:31:00	0
298	9:32:00	0
299	9:33:00	0
300	9:34:00	0
301	9:35:00	0
302	9:36:00	0
303	9:37:00	Ō
304	9:38:00	0
305	9:39:00	Ö
	0.00.00	

•		
306	9:40:00	0
307	9:41:00	0
308	9:42:00	0
309	9:43:00	0
310	9:44:00	0
311	9:45:00	0
312	9:46:00	0
313	9:47:00	0
314	9:48:00	0
315	9:49:00	0
316	9:50:00	0
317	9:51:00	0
318	9:52:00	0
319	9:53:00	0
320	9:54:00	0
321	9:55:00	0
322	9:56:00	0
323	9:57:00	0
324	9:58:00	0
325	9:59:00	0
326	10:00:00	0
327	10:01:00	0
328	10:02:00	0
329	10:03:00	0
330	10:04:00	0
331	10:05:00	0
332	10:06:00	0
333	10:07:00	0
334	10:08:00	0
335	10:09:00	0
336	10:10:00	0
337	10:11:00	0
338	10:12:00	0
339	10:13:00	0
340	10:14:00	0
341	10:15:00	0
342	10:16:00	0
343	10:17:00	0
344	10:18:00	0
345	10:19:00	0
346	10:20:00	0
347	10:21:00	0
348	10:22:00	0
349	10:23:00	0
350	10:24:00	0
351	10:25:00	0
352	10:26:00	0
353	10:27:00	0
354	10:28:00	0
355	10:29:00	0
356	10:30:00	0
357	10:31:00	0

A. 3

358	10:32:00	0
359	10:33:00	0
360	10:34:00	0
361	10:35:00	0
362	10:36:00	0
363	10:37:00	0
364	10:38:00	0
365	10:39:00	0
366	10:40:00	0
367	10:41:00	0
368	10:42:00	0
369	10:43:00	0
370	10:44:00	0
371	10:45:00	0
372	10:46:00	0
373	10:47:00	0
374	10:48:00	0
375	10:49:00	0
376	10:50:00	0
377	10:51:00	0
378	10:52:00	0
379	10:53:00	0
380	10:54:00	0
381	10:55:00	0
382	10:56:00	0
383	10:57:00	0
384	10:57:00	0
385	10:59:00	0
386	11:00:00	0
387	11:01:00	0
388	11:02:00	0
389	11:03:00	0
390	11:04:00	0
391	11:05:00	0
392	11:06:00	0
393	11:07:00	0
394	11:07:00	0
395	11:09:00	0
396	11:10:00	0
397	11:11:00	0
398	11:12:00	0
		0
399	11:13:00	0
400	11:14:00	
<u> </u>	11:15:00	0
402	11:16:00	0
403	11:17:00	0
404	11:18:00	0
405	11:19:00	0
406	11:20:00	0
407	11:21:00	0
408	11:22:00	0
409	11:23:00	0

410	11:24:00	0
411	11:25:00	0
412	11:26:00	0
413	11:27:00	0
414	11:28:00	0
415	11:29:00	0
416	11:30:00	0
4 1 7	11:31:00	0

•

Instrument: MiniRAE 2000 (PGM7600) Serial Number: 010066

Data Points: 452 Sample Period: 60 sec

Last Calibration Time: 11/28/2006 06:57 Gas Name: Isobutylene

Date: 11/30/2006

Line#	Time	Avg(ppm) STEL
1	4:46:00	0
2	4:47:00	0
3	4:48:00	0
4	4:49:00	0
5	4:50:00	0
6	4:51:00	0
7	4:52:00	0
8	4:53:00	0
9	4:54:00	0
10	4:55:00	0
11	4:56:00	0
12	4:57:00	0
13	4:58:00	0
14	4:59:00	0
15	5:00:00	0
16	5:01:00	0
17	5:02:00	0
18	5:03:00	0
19	5:04:00	0
20	5:05:00	0
21	5:06:00	0
22	5:07:00	0
23	5:08:00	0
24	5:09:00	0
25	5:10:00	0
26	5:11:00	0
27	5:12:00	0
28	5:13:00	00
29	5:14:00	0
30	5:15:00	0
31	5:16:00	0
32	5:17:00	0
33	5:18:00	0
34	5:19:00	0
35	5:20:00	0
36	5:21:00	0
37	5:22:00	0
38	5:23:00	0
39	5:24:00	0
40	5:25:00	0
41	5:26:00	0
42	5:27:00	0
43	5:28:00	0
44	5:29:00	0
45	5:30:00	0

46	5:31:00	0
47	5:32:00	0
48	5:33:00	0
49	5:34:00	0
50	5:35:00	0
51	5:36:00	0
52	5:37:00	0
53	5:38:00	0
54	5:39:00	0
55	5:40:00	0
56	5:41:00	0
57	5:42:00	0
58	5:43:00	0
59	5:44:00	0
60	5:45:00	0
61		0
62	5:46:00	
	5:47:00	0
63	5:48:00	0
64	5:49:00	0
65	5:50:00	0
66	5:51:00	0
67	5:52:00	0
68	5:53:00	0
69	5:54:00	0
70	5:55:00	0
71	5:56:00	0
72	5:57:00	0
73	5:58:00	0
74	5:59:00	0
75	6:00:00	0
76	6:01:00	0
77	6:02:00	0
78	6:03:00	0
79	6:04:00	0
80	6:05:00	0
81	6:06:00	0
82	6:07:00	0
83	6:08:00	0
84	6:09:00	0
85	6:10:00	Ö
86	6:11:00	0
87	6:12:00	0
88	6:13:00	0
89	6:14:00	0
90	6:15:00	0
91	6:16:00	0
92	6:17:00	0
93		0
	6:18:00	
94	6:19:00	0
95	6:20:00	0
96	6:21:00	0
97	6:22:00	0

**

98	6:23:00	0
99	6:24:00	0
100	6:25:00	0
101	6:26:00	0
102	6:27:00	0
103	6:28:00	0
104	6:29:00	0
105	6:30:00	0
106	6:31:00	0
107	6:32:00	0
108	6:33:00	0
109	6:34:00	0
110	6:35:00	0
111	6:36:00	0
112	6:37:00	0
113	6:38:00	0
114	6:39:00	0
115	6:40:00	0
116	6:41:00	0
117	6:42:00	0
118	6:43:00	0
119	6:44:00	0
120	6:45:00	0
121	6:46:00	0
122	6:47:00	0
123	6:48:00	0
124	6:49:00	0
125	6:50:00	0
126	6:51:00	0
127	6:52:00	0
128	6:53:00	0
129	6:54:00	0
130	6:55:00	0
131	6:56:00	0
132	6:57:00	0
133	6:58:00	0
134	6:59:00	0
135	7:00:00	0
136	7:01:00	0
137	7:02:00	0
138	7:02:00	0
139	7:04:00	0
140	7:04:00	0
141	7:05:00	0
142		0
143	7:07:00	0
144	7:08:00 7:09:00	0
145		0
146	7:10:00	0
	7:11:00	
147 148	7:12:00	0
	7:13:00	
149	7:14:00	0

150	7:15:00	0
151	7:16:00	0
152	7:17:00	0
153	7:18:00	0
154	7:19:00	0
155	7:20:00	0
156	7:21:00	0
157	7:22:00	0
158	7:23:00	0
159	7:24:00	0
160	7:25:00	0
161	7:26:00	0
162	7:27:00	0
163	7:28:00	0
164	7:29:00	0
165	7:30:00	0
166	7:31:00	0
167	7:32:00	0
168	7:33:00	0
169	7:34:00	0
170	7:35:00	0
171	7:36:00	0
172	7:37:00	0
173	7:38:00	Ŏ
174	7:39:00	0
175	7:40:00	ő
176	7:41:00	0
177	7:42:00	Ö
178	7:43:00	Ö
179	7:44:00	0
180	7:45:00	<u> </u>
181	7:46:00	0
182	7:47:00	0
183	7:48:00	0
184	7:49:00	0
185	7:50:00	0
186	7:51:00	0
187	7:52:00	0
188	7:53:00	0
189	7:54:00	0
190	7:55:00	0
191	7:56:00	0
192	7:57:00	0
193	7:58:00	0
194	7:59:00	0
195	8:00:00	0
196	8:01:00	0
197	8:02:00	0
198	8:03:00	0
199	8:04:00	0
200	8:05:00	0
201	8:06:00	0
401	0.00:00	U

•

202	8:07:00	0
203	8:08:00	0
204	8:09:00	0
205	8:10:00	0
206	8:11:00	0
207	8:12:00	0
208	8:13:00	0
209	8:14:00	0
210	8:15:00	0
211	8:16:00	0
212	8:17:00	0
213	8:18:00	0
214	8:19:00	0
215	8:20:00	0
216	8:21:00	0
217	8:22:00	0
218	8:23:00	0
219	8:24:00	0
220	8:25:00	0
221	8:26:00	0
222	8:27:00	0
223	8:28:00	0
224	8:29:00	0
225	8:30:00	0
226		0
	8:31:00	
227	8:32:00	0
228	8:33:00	0
229	8:34:00	0
230	8:35:00	0
231	8:36:00	0
232	8:37:00	0
233	8:38:00	0
234	8:39:00	0
235	8:40:00	0
236	8:41:00	0
237	8:42:00	0
238	8:43:00	0
239	8:44:00	0
240	8:45:00	0
241	8:46:00	0
242	8:47:00	0
243	8:48:00	0
244	8:49:00	0
245	8:50:00	0
246	8:51:00	0
247	8:52:00	0
248	8:53:00	0
249	8:54:00	0
250	8:55:00	0
251	8:56:00	0
252	8:57:00	0
253	8:58:00	0
		·····

OE 4	0.50.00	
254	8:59:00	0
255	9:00:00	0
256	9:01:00	0
257	9:02:00	0
258	9:03:00	0
259	9:04:00	0
260	9:05:00	0
261	9:06:00	0
262	9:07:00	0
263	9:08:00	0
264	9:09:00	0
265	9:10:00	0
266	9:11:00	0
267	9:12:00	0
268	9:13:00	0
269	9:14:00	0
270	9:15:00	0
271	9:16:00	0
272	9:17:00	0
273	9:18:00	0
274	9:19:00	0
275	9:20:00	0
276	9:21:00	0
277	9:22:00	0
278	9:23:00	0
279	9:24:00	0
280	9:25:00	0
281	9:26:00	0
282	9:27:00	0
283	9:28:00	0
284	9:29:00	0
285	9:30:00	0
286	9:31:00	0
287	9:32:00	0
288	9:33:00	0
289	9:34:00	0
290	9:35:00	0
291	9:36:00	0
292	9:37:00	0
293	9:38:00	0
294	9:39:00	0
295	9:40:00	0
296	9:41:00	0
297	9:42:00	0
298	9:43:00	0
299	9:44:00	0
300	9:45:00	0
301	9:46:00	0
302	9:47:00	0
303	9:48:00	0
304	9:49:00	0
305	9:50:00	0

206	0.51.00	
306 307	9:51:00	0
	9:52:00	
308	9:53:00	0
309	9:54:00	0
310	9:55:00	0
311	9:56:00	0
312	9:57:00	0
313	9:58:00	0
314	9:59:00	0
315	10:00:00	0
316	10:01:00	0
317	10:02:00	0
318	10:03:00	0
319	10:04:00	0
320	10:05:00	0
321	10:06:00	0
322	10:07:00	0
323	10:08:00	0
324	10:09:00	ō
325	10:10:00	0
326	10:11:00	0
327	10:12:00	0
328	10:12:00	0
329	10:14:00	0
330	10:15:00	0
331	10:16:00	0
332	10:17:00	0
333	10:18:00	0
334	10:19:00	0
335	10:20:00	0
336	10:21:00	0
337	10:22:00	0
338	10:23:00	0
339	10:24:00	0
340	10:25:00	0
341	10:26:00	0
342	10:27:00	0
343	10:28:00	0
344	10:29:00	0
345	10:30:00	0
346	10:31:00	0
347	10:32:00	0
348	10:33:00	0
349	10:34:00	0
350	10:35:00	0
351	10:36:00	0
352	10:37:00	0
353	10:38:00	0
354	10:39:00	0
355	10:40:00	0
356	10:41:00	0
357	10:41:00	0
007	10.42.00	V

358	10:43:00	0
359	10:44:00	0
360	10:45:00	0
361	10:46:00	0
362	10:47:00	0
363	10:48:00	0
364	10:49:00	0
365	10:50:00	0
366	10:51:00	0
367	10:52:00	0
368	10:53:00	0
369	10:54:00	0
370	10:55:00	0
371	10:56:00	0
372	10:57:00	0
373	10:58:00	0
374	10:59:00	0
375	11:00:00	0
376	11:01:00	0
377	11:02:00	0
378	11:03:00	0
379	11:04:00	0
380	11:05:00	0
381	11:06:00	0
382	11:07:00	Ō
383	11:08:00	0
384	11:09:00	0
385	11:10:00	0
386	11:11:00	0
387	11:12:00	0
388	11:13:00	0
389	11:14:00	0
390	11:15:00	0
391	11:16:00	0
392	11:17:00	0
393	11:18:00	0
394	11:19:00	0
395	11:20:00	0
396	11:21:00	Ö
397	11:22:00	0
398	11:23:00	0
399	11:24:00	0
400	11:25:00	0
401	11:26:00	0
402	11:27:00	0
403	11:28:00	0
404	11:29:00	0
405	11:30:00	0
406	11:31:00	0
407	11:32:00	0
408	11:33:00	0
409	11:34:00	0
403	11.04.00	<u> </u>

410	11:35:00	0
411	11:36:00	0
412	11:37:00	0
413	11:38:00	0
414	11:39:00	0
415	11:40:00	0
416	11:41:00	0
417	11:42:00	0
418	11:43:00	0
419	11:44:00	0
420	11:45:00	0
421	11:46:00	0
422	11:47:00	0
423	11:48:00	0
424	11:49:00	0
425	11:50:00	0
426	11:51:00	0
427	11:52:00	0
428	11:53:00	0
429	11:54:00	0
430	11:55:00	0
431	11:56:00	0
432	11:57:00	0
433	11:58:00	0
434	11:59:00	0
435	12:00:00	0
436	12:01:00	0
437	12:02:00	0
438	12:03:00	0
439	12:04:00	0
440	12:05:00	0
441	12:06:00	0
442	12:07:00	0
443	12:08:00	0
444	12:09:00	0
445	12:10:00	0
446	12:11:00	0
447	12:12:00	0
448	12:13:00	0
449	12:14:00	0
450	12:15:00	0
451	12:16:00	0
452	12:17:00	0

.

Instrument: MiniRAE 2000 (PGM7600) Serial Number: 010066

Data Points: 100 Sample Period: 60 sec

Last Calibration Time: 11/28/2006 06:57 Gas Name: Isobutylene

Date: 12/1/2006

Line#	Time	Avg(ppm) STEL
1	4:55:00	0
2	4:56:00	0
3	4:57:00	0
4	4:58:00	0
5	4:59:00	0
6	5:00:00	0
7	5:01:00	- o
8	5:02:00	0
9	5:03:00	0
10	5:04:00	0
11	5:05:00	0
12	5:06:00	
13	5:07:00	0
14	5:08:00	0
15	5:09:00	0
16		0
	5:10:00	
17	5:11:00	
18	5:12:00	0
19	5:13:00	0
20	5:14:00	0
21	5:15:00	0
22	5:16:00	0
23	5:17:00	0
24	5:18:00	0
25	5:19:00	0
26	5:20:00	0
27	5:21:00	0
28	5:22:00	0
29	5:23:00	0
30	5:24:00	0
31	5:25:00	0
32	5:26:00	0
33	5:27:00	0
34	5:28:00	0
35	5:29:00	0
36	5:30:00	0
37	5:31:00	0
38	5:32:00	0
39	5:33:00	0
40	5:34:00	0
41	5:35:00	0
42	5:36:00	0
43	5:37:00	Ō
44	5:38:00	o o
45	5:39:00	i o

40	F.40.00	
46	5:40:00	0
47	5:41:00	0
48	5:42:00	0
49	5:43:00	0
50	5:44:00	0
51	5:45:00	0
52	5:46:00	0
53	5:47:00	0
54	5:48:00	0
55	5:49:00	0
56	5:50:00	0
57	5:51:00	0
58	5:52:00	0
59	5:53:00	0
60	5:54:00	0
61	5:55:00	0.1
62	5:56:00	0.9
63	5:57:00	2
64	5:58:00	3.6
65	5:59:00	5.5
66	6:00:00	7.8
67	6:01:00	11.2
68	6:02:00	14.5
69	6:03:00	18.1
70	6:04:00	20.7
71	6:05:00	22.8
72	6:06:00	25.7
73	6:07:00	29.3
74	6:08:00	32
75	6:09:00	34.5
76	6:10:00	36.9
77	6:11:00	38
78	6:12:00	38.1
79	6:13:00	37.5
80	6:14:00	36.4
81	6:15:00	
82	6:16:00	32.3
83	6:17:00	29.7
84	6:18:00	26.7
85	6:19:00	24.6
86	6:20:00	23.2
87	6:21:00	20.7
88	6:22:00	20
89	6:23:00	25.5
90	6:24:00	29.6
91	6:25:00	33.9
92	6:26:00	39.2
93	6:27:00	43.8
94	6:28:00	48.4
95	6:29:00	53.1
96	6:30:00	57.7
97	6:31:00	62
	1 010 1100	<u> </u>

98	6:32:00	67.1
99	6:33:00	72.2
100	6:34:00	78.1

Instrument: MiniRAE 2000 (PGM7600) Serial Number: 010066

Data Points: 487 Sample Period: 60 sec

Last Calibration Time: 12/4/2006 05:01 Gas Name: Isobutylene

Date: 12/4/2006

Line#	Time	Avg(ppm) STEL
1	5:01:00	0
2	5:02:00	0
3	5:03:00	0
4	5:04:00	0
5	5:05:00	ō
6	5:06:00	0
 7	5:07:00	0
8	5:08:00	0
9	5:09:00	0
10	5:10:00	0
11	5:11:00	0
12	5:12:00	0
13	5:12:00	
14	5:13:00	0
		I
15	5:15:00	0.1
16	5:16:00	0.1
17	5:17:00	0.1
18	5:18:00	0.1
19	5:19:00	0.1
20	5:20:00	0.1
21	5:21:00	0.1
22	5:22:00	0.2
23	5:23:00	0.2
24	5:24:00	0.2
25	5:25:00	0.2
26	5:26:00	0.2
27	5:27:00	0.2
28	5:28:00	0.2
29	5:29:00	0.2
30	5:30:00	0.2
31	5:31:00	0.2
32	5:32:00	0.2
33	5:33:00	0.2
34	5:34:00	0.2
35	5:35:00	0.2
36	5:36:00	0.2
37	5:37:00	0.2
38	5:38:00	0.2
39	5:39:00	0.2
40	· · · · · · · · · · · · · · · · · · ·	0.3
	5:40:00	
41	5:41:00	0.3
42	5:42:00	0.3
43	5:43:00	0.3
44	5:44:00	0.3
45	5:45:00	0.3

46	5:46:00	0.4
47	5:47:00	0.4
48	5:48:00	0.4
49	5:49:00	0.4
50	5:50:00	0.4
51	5:51:00	0.4
52	5:52:00	0.4
53	5:53:00	0.5
54	5:54:00	0.5
55	5:55:00	0.5
56	5:56:00	0.5
57	5:57:00	0.5
58	5:58:00	0.5
59	5:59:00	0.6
60	6:00:00	0.6
61	6:01:00	0.6
62	6:02:00	0.6
63	6:03:00	0.6
64	6:04:00	0.0
65	6:05:00	0.7
66	6:06:00	0.7
67		
	6:07:00	0.8
68	6:08:00	0.8
69	6:09:00	0.8
70	6:10:00	0.9
71	6:11:00	0.9
72	6:12:00	0.9
73	6:13:00	0.9
74	6:14:00	0.9
75	6:15:00	1
76	6:16:00	1
77	6:17:00	1
78	6:18:00	1
79	6:19:00	1
80	6:20:00	1
81	6:21:00	1
82	6:22:00	1
83	6:23:00	1
84	6:24:00	1
85	6:25:00	1
86	6:26:00	1
87	6:27:00	1
88	6:28:00	0.9
89	6:29:00	0.9
90	6:30:00	0.9
91	6:31:00	0.9
92	6:32:00	0.9
93	6:33:00	0.9
94	6:34:00	0.9
95	6:35:00	0.9
96	6:36:00	0.9
97	6:37:00	0.9
		

98	6:38:00	0.9
99	6:39:00	0.9
100	6:40:00	0.9
101	6:41:00	0.9
102	6:42:00	0.9
103	6:43:00	0.9
104	6:44:00	0.9
105	6:45:00	0.9
106	6:46:00	0.9
107	6:47:00	0.9
108	6:48:00	1
109	6:49:00	1
110	6:50:00	1
111	6:51:00	1
112	6:52:00	1
113	6:53:00	1
114	6:54:00	1.1
115	6:55:00	1.1
116	6:56:00	1.1
117	6:57:00	1.1
118	6:58:00	1.1
119	6:59:00	1.1
120	7:00:00	1.1
121	7:01:00	1.1
122	7:02:00	1.1
123	7:03:00	1.1
124	7:04:00	1.1
125	7:05:00	1.1
126	7:06:00	1
127	7:07:00	1
128	7:08:00	1
129	7:09:00	1
130	7:10:00	1
131	7:11:00	0.9
132	7:12:00	0.9
133	7:13:00	0.9
134	7:14:00	0.9
135	7:15:00	0.9
136	7:16:00	0.9
137	7:17:00	0.9
138	7:17:00	0.9
139	7:10:00	0.8
140	7:10:00	0.8
141	7:21:00	0.8
142	7:22:00	0.8
143	7:23:00	0.8
144	7:24:00	0.8
145	7:25:00	0.8
146	7:26:00	0.8
147	7:27:00	0.8
148	7:28:00	0.8
149	7:28:00	0.8
149	7.28.00	J 0.6

150	7:30:00	0.8
151	7:31:00	0.8
152	7:32:00	0.8
153	7:33:00	0.8
154	7:34:00	0.8
155	7:35:00	0.8
156	7:36:00	0.9
157	7:37:00	0.9
158	7:38:00	0.8
159	7:39:00	0.8
160	7:40:00	0.8
161	7:41:00	0.8
162	7:42:00	0.8
163	7:43:00	0.8
164	7:44:00	8.0
165	7:45:00	0.8
166	7:46:00	8.0
167	7:47:00	8.0
168	7:48:00	8.0
169	7:49:00	0.8
170	7:50:00	0.8
171	7:51:00	0.8
172	7:52:00	8.0
173	7:53:00	0.8
174	7:54:00	0.8
175	7:55:00	0.8
176	7:56:00	0.8
177	7:57:00	0.9
178	7:58:00	0.9
179	7:59:00	0.9
180	8:00:00	0.9
181	8:01:00	0.9
182	8:02:00	0.9
183	8:03:00	0.9
184	8:04:00	0.9
185	8:05:00	0.9
186	8:06:00	0.9
187	8:07:00	0.9
188	8:08:00	0.9
189	8:09:00	0.9
190	8:10:00	0.9
191	8:11:00	0.9
192	8:12:00	0.9
193	8:13:00	0.9
194	8:14:00	0.9
195	8:15:00	0.9
196	8:16:00	0.9
197	8:17:00	0.9
198	8:18:00	0.9
199	8:19:00	0.9
200	8:20:00	0.9
201	8:21:00	0.9

202	8:22:00	0.9
203	8:23:00	0.9
204	8:24:00	0.9
205	8:25:00	0.9
206	8:26:00	1
207	8:27:00	1
208	8:28:00	1
209	8:29:00	1
210	8:30:00	1
211	8:31:00	1
212	8:32:00	1
213	8:33:00	1
214	8:34:00	1
215	8:35:00	1
216	8:36:00	1
217	8:37:00	1
218	8:38:00	1
219	8:39:00	1
220	8:40:00	1
221	8:41:00	1
222	8:42:00	1
223	8:43:00	1
224	8:44:00	1.1
225	8:45:00	1.1
226	8:46:00	1.1
227	8:47:00	1.1
228	8:48:00	1.1
229	8:49:00	1.1
230	8:50:00	1.1 1.1 1.1 1.1 1.1
231	8:51:00	1.1
232	8:52:00	1.1
233	8:53:00	1.1
234	8:54:00	1.1
235	8:55:00	1.1
236	8:56:00	1.1
237	8:57:00	1.1
238	8:58:00	1.1
239	8:59:00	1.1
240	9:00:00	1.1
241	9:01:00	1.1
242	9:02:00	1.1
243	9:03:00	1.1
244	9:04:00	1.1
245	9:05:00	1.1
246	9:06:00	1.1
247	9:07:00	11
248	9:08:00	1.1 1.1 1.1
249	9:09:00	1.1
250	9:10:00	1.1
251	9:11:00	1.1 1.1
252	9:11:00	1.1
252	9:12:00	1.1
253	j 5. 13.00	1.1

254	9:14:00	1.1
255	9:15:00	1.1
256	9:16:00	1.1
257	9:17:00	1.1
258	9:18:00	1.1
259	9:19:00	1.1
260	9:20:00	1.1
261	9:21:00	1
262	9:22:00	1
263	9:23:00	1
264	9:24:00	0.9
265	9:25:00	0.9
266	9:26:00	0.9
267	9:27:00	0.9
268	9:28:00	0.9
269	9:29:00	0.9
270	9:30:00	0.8
271	9:31:00	0.8
272	9:32:00	0.8
273	9:33:00	0.8
274	9:34:00	0.8
275	9:35:00	0.8
276	9:36:00	0.8
277	9:37:00	0.8
278	9:38:00	0.8
279	9:39:00	0.8
280	9:40:00	0.8
281	9:41:00	0.8
282	9:42:00	0.8
283	9:43:00	0.8
284	9:44:00	0.8
285	9:45:00	0.8
286	9:46:00	0.8
287	9:47:00	0.8
288	9:48:00	0.8
289	9:49:00	0.8
290	9:50:00	0.8
291	9:51:00	0.8
292	9:52:00	0.8
293	9:53:00	0.8
294	9:54:00	0.8
295	9:55:00	0.8
296	9:56:00	0.8
297	9:57:00	0.8
298	9:58:00	0.8
299	9:59:00	0.8
300	10:00:00	0.8
301	10:01:00	0.8
302	10:01:00	0.8
303	10:02:00	0.8
304	10:04:00	0.8
305	10:04:00	0.8
	10.00.00	0.0

.

2.5

306	10:06:00	8.0
307	10:07:00	0.8
308	10:08:00	0.8
309	10:09:00	0.8
310	10:10:00	0.8
311	10:11:00	0.8
312	10:12:00	8.0
313	10:13:00	0.8
314	10:14:00	0.8
315	10:15:00	0.8
316	10:16:00	0.8
317	10:17:00	8.0
318	10:18:00	0.8
319	10:19:00	0.8
320	10:20:00	8.0
321	10:21:00	0.8
322	10:22:00	0.8
323	10:23:00	0.8
324	10:24:00	0.8
325	10:25:00	0.8
326	10:26:00	0.8
327	10:27:00	0.8
328	10:28:00	8.0
329	10:29:00	0.8
330	10:30:00	0.8
331	10:31:00	0.8
332	10:32:00	0.8
333	10:33:00	8.0
334	10:34:00	0.8
335	10:35:00	0.8
336	10:36:00	0.8
337	10:37:00	0.8
338	10:38:00	0.8
339	10:39:00	0.8
340	10:40:00	8.0
341	10:41:00	0.8
342	10:42:00	0.8
343	10:43:00	0.8
344	10:44:00	0.8
345	10:45:00	0.8
346	10:46:00	0.8
347	10:47:00	0.8
348	10:48:00	0.8
349	10:49:00	0.8
350	10:50:00	0.8
351	10:51:00	0.8
352	10:52:00	0.8
353	10:53:00	0.8
354	10:54:00	0.9
355	10:55:00	0.9
356	10:56:00	0.9
357	10:57:00	0.9
		·

**

	····	,
358	10:58:00	0.9
359	10:59:00	0.9
360	11:00:00	0.9
361	11:01:00	0.9
362	11:02:00	0.9
363	11:03:00	0.9
364	11:04:00	0.9
365	11:05:00	0.9
366	11:06:00	0.9
367	11:07:00	0.9
368	11:08:00	0.9
369	11:09:00	0.9
370	11:10:00	0.9
371	11:11:00	0.9
372	11:12:00	0.9
373	11:13:00	0.9
374	11:14:00	1
375	11:15:00	1
376	11:16:00	1
377	11:17:00	1
378	11:18:00	1
379	11:19:00	1
380	11:20:00	1
381	11:21:00	1
382	11:22:00	1
383	11:23:00	1
384	11:24:00	1
385	11:25:00	1
386	11:26:00	1
387	11:27:00	1
388	11:28:00	1
389	11:29:00	1
390	11:30:00	1
391	11:31:00	1.1
392	11:32:00	1.1
393	11:33:00	
394		1.1 1.1
	11:34:00	1.1
395 396	11:35:00 11:36:00	1.1
		1.1 1.1 1.1 1.1 1.2
397	11:37:00	1.1
398	11:38:00	1.1
399	11:39:00	1.1
400	11:40:00	
401	11:41:00	1.2
402	11:42:00	1.2
403	11:43:00	1.2
404	11:44:00	1.2
405	11:45:00	1.2
406	11:46:00	1.3
407	11:47:00	1.3
408	11:48:00	1.3
409	11:49:00	1.3

410	11:50:00	1.3
411	11:51:00	1.3
412	11:52:00	1.3
413	11:53:00	1.2
414	11:54:00	1.2
415	11:55:00	1.2
416	11:56:00	1.2
417	11:57:00	1.2
418	11:58:00	1.2
419	11:59:00	1.2
420	12:00:00	1.2
421	12:01:00	1.2
422	12:02:00	1.2
423	12:03:00	1.2
424	12:04:00	1.2
425	12:05:00	1.2
426	12:06:00	1.2
427	12:07:00	1.3
428	12:08:00	1.3
429	12:09:00	1.3
430	12:10:00	1.3
431	12:11:00	1.3
432	12:12:00	1.3
433	12:13:00	1.3
434	12:14:00	1.3
435	12:15:00	1.3
436	12:16:00	1.3
437	12:17:00	1.3
438	12:18:00	1.3
439	12:19:00	1.3
440	12:20:00	1.3
441	12:21:00	1.3
442	12:22:00	1.3
443	12:23:00	1.3
444	12:24:00	1.3
445	12:25:00	1.3
446	12:26:00	1.3
447	12:27:00	1.3
448	12:28:00	1.3
449	12:29:00	1.3
450	12:30:00	1.4
451	12:31:00	1.4
452	12:32:00	1.4
453	12:33:00	1.4
454	12:34:00	1.4
455	12:35:00	1.6
456	12:36:00	1.6
457	12:37:00	1.7
458	12:38:00	1.8
459	12:39:00	1.9
460	12:40:00	2
461	12:41:00	2.1

.

462	12:42:00	2.2
463	12:43:00	2.3
464	12:44:00	2.3
465	12:45:00	2.4
466	12:46:00	2.5
467	12:47:00	2.6
468	12:48:00	2.7
469	12:49:00	2.7
470	12:50:00	2.7
471	12:51:00	2.8
472	12:52:00	2.9
473	12:53:00	3
474	12:54:00	3.1
475	12:55:00	3.2
476	12:56:00	3.3
477	12:57:00	3.3
478	12:58:00	3.4
479	12:59:00	3.5
480	13:00:00	3.6
481	13:01:00	3.8
482	13:02:00	3.8
483	13:03:00	3.8
484	13:04:00	3.9
485	13:05:00	3.9
486	13:06:00	3.9
487	13:07:00	3.9

.

Instrument: MiniRAE 2000 (PGM7600)
Data Points: 434 Sample Period: 60 sec Serial Number: 005431

Last Calibration Time: 11/27/2006 14:35 Gas Name: Isobutylene

Date: 11/27/2006

Line#	Time	Avg(ppm) STEL
1	14:35:00	0
2	14:36:00	0
3	14:37:00	0
4	14:38:00	0
5	14:39:00	0
6	14:40:00	0
7	14:41:00	0
8	14:42:00	0
9	14:43:00	0
10	14:44:00	0
11	14:45:00	0
12	14:46:00	0
13	14:47:00	0
14	14:48:00	0
15	14:49:00	ō
16	14:50:00	0
17	14:51:00	0
18	14:52:00	0
19	14:53:00	0
20	14:54:00	Ö
21	14:55:00	0
22	14:56:00	0
23	14:57:00	0
24	14:58:00	0
25	14:59:00	0
26	15:00:00	0
27	15:01:00	0
28	15:02:00	0
 29	15:03:00	0
30	15:04:00	0
31	15:05:00	0
32	15:06:00	0
33	15:07:00	0
34	15:08:00	
35	15:09:00	0.1
36	15:10:00	0.1
37	15:11:00	0.1
38	15:11:00	0.1
39	15:12:00	0.1
40	15:14:00	0.1
41	15:15:00	0.1
42	15:16:00	0.1
43	15:17:00	0.1
44	15:17:00	0.2
45	15:19:00	0.2
40	10.19.00	U.£

46	15:20:00	0.2
47	15:21:00	0.2
48	15:22:00	0.2
49	15:23:00	0.2
50	15:24:00	0.2
51	15:25:00	0.2
52	15:26:00	0.2
53	15:27:00	0.2
54	15:28:00	0.2
55	15:29:00	0.3
56	15:30:00	0.3
57	15:31:00	0.3
58	15:32:00	0.3
59	15:33:00	0.3
60	15:34:00	0.3
61	15:35:00	0.3
62	15:36:00	0.3
63	15:37:00	0.3
64	15:38:00	0.3
65	15:39:00	0.3
66	15:40:00	0.3
67	15:41:00	0.3
68	15:42:00	0.3
69	15:43:00	0.3
70	15:44:00	0.3
71	15:45:00	0.3
72	15:46:00	0.3
73	15:47:00	0.3
74	15:48:00	0.3
75	15:49:00	0.3
76	15:50:00	0.3
77	15:51:00	0.3
78	15:52:00	0.3
79	15:53:00	0.3
80	15:54:00	0.3
81	15:55:00	0.3
82	15:56:00	0.3
83	15:57:00	0.3
84		0.3
	15:58:00	0.3
85 86	15:59:00	
86	16:00:00	0.4
87	16:01:00	0.4
88	16:02:00	0.4
89	16:03:00	0.4
90	16:04:00	0.4
91	16:05:00	0.4
92	16:06:00	0.4
93	16:07:00	0.4
94	16:08:00	0.4
95	16:09:00	0.4
96	16:10:00	0.4
97	16:11:00	0.4
<u>_</u>		

98	16:12:00	0.4
99	16:13:00	0.4
100	16:14:00	0.4
101	16:15:00	0.4
102	16:16:00	0.4
103	16:17:00	0.4
104	16:18:00	0.4
105	16:19:00	0.4
106	16:20:00	0.4
107	16:21:00	0.4
108	16:22:00	0.4
109	16:23:00	0.4
110	16:24:00	0.4
111	16:25:00	0.4
112	16:26:00	0.4
113	16:27:00	0.4
114	16:28:00	0.3
115	16:29:00	0.3
116	16:30:00	0.3
117	16:31:00	0.3
118	16:32:00	0.3
119	16:33:00	0.3
		0.3
120	16:34:00	
121	16:35:00	0.3
122	16:36:00	0.3
123	16:37:00	0.3
124	16:38:00	0.3
125	16:39:00	0.3
126	16:40:00	0.3
127	16:41:00	0.3
128	16:42:00	0.3
129	16:43:00	0.3
130	16:44:00	0.3
131	16:45:00	0.3
132	16:46:00	0.3
133	16:47:00	
134	16:48:00	
135	16:49:00	0.3
136	16:50:00	0.3
137	16:51:00	0.2
138	16:52:00	0.2
139	16:53:00	0.2
140	16:54:00	0.2
141	16:55:00	0.2
142	16:56:00	0.2
143	16:57:00	0.2
144	16:58:00	0.2
145	16:59:00	0.2
146	17:00:00	0.2
147	17:01:00	0.2
148	17:02:00	t——
149	17:03:00	0.2
1 1 1 1 1	17.00.00	1 4.2

150	17:04:00	0.2
151	17:05:00	0.2
152	17:06:00	0.2
153	17:07:00	0.2
154	17:08:00	0.2
155	17:09:00	0.2
156	17:10:00	0.2
157	17:11:00	0.2
158	17:12:00	0.2
159	17:13:00	0.2
160	17:14:00	0.2
161	17:15:00	0.2
162	17:16:00	0.2
163	17:17:00	0.2
164	17:18:00	0.2
165	17:19:00	0.2
166	17:20:00	0.2
167	17:21:00	0.2
168	17:22:00	0.2
169	17:23:00	0.2
170	17:24:00	0.1
171	17:25:00	0.1
172	17:26:00	0.1
173	17:27:00	0.1
174	17:28:00	0.1
175	17:29:00	0.1
176	17:30:00	0.1
177	17:31:00	0.1
178	17:32:00	0.1
179	17:33:00	0.1
180	17:34:00	0.1
181	17:35:00	0.1
182	17:36:00	0.1
183	17:37:00	0.1
184	17:38:00	0.1
185	17:39:00	
186	17:40:00	0.1
187	17:41:00	0.1
188	17:42:00	0.1
189	17:43:00	0.1
190	17:44:00	0.1
191	17:45:00	0.1
192	17:46:00	0.1
193	17:47:00	0.1
194	17:48:00	0.1
195	17:49:00	0.1
196	17:50:00	0.1
197	17:50:00	0.1
198	17:52:00	0.1
199	17:52:00	0.1
200	17:54:00	0.1
201	17:55:00	0.1
	17,00,00	U. 1

202	17:56:00	0.1
203	17:57:00	0.1
204	17:58:00	0.1
205	17:59:00	0.1
206	18:00:00	0.1
207	18:01:00	0.1
208	18:02:00	0.1
209	18:03:00	0.1
210	18:04:00	0.1
211	18:05:00	0.1
212	18:06:00	0.1
213	18:07:00	0.1
214	18:08:00	0.1
215	18:09:00	0.1
216	18:10:00	0.1
217	18:11:00	0.1
218	18:12:00	0.1
219	18:13:00	0.1
220	18:14:00	0.1
221	18:15:00	0.1
222	18:16:00	0.1
223	18:17:00	0.1
224	18:18:00	0.1
225	18:19:00	0.1
226	18:20:00	0.1
227	18:21:00	0.1
228	18:22:00	0.1
229	18:23:00	0.1
230	18:24:00	0.1
231	18:25:00	0.1
232	18:26:00	0.1
233	18:27:00	0.1
234	18:28:00	0.1
235	18:29:00	0.1
236	18:30:00	0.1
237	18:31:00	0.1
238	18:32:00	0.1
239	18:32:00	0.1
240		0.1
	18:34:00	
241	18:35:00	0.1
242	18:36:00	0.1
243	18:37:00	0.1
244	18:38:00	0.1
245	18:39:00	0.1
246	18:40:00	0.1
247	18:41:00	0.1
248	18:42:00	0.1
249	18:43:00	0.1
250	18:44:00	0.1
251	18:45:00	0.1
252	18:46:00	0.1
253	18:47:00	0.1

054	10,40,00	0.4
254	18:48:00	
255	18:49:00	0.1
256	18:50:00	0.1
257	18:51:00	0.1
258	18:52:00	0.1
259	18:53:00	0.1
260	18:54:00	
261	18:55:00	0.1
262	18:56:00	0.1
263	18:57:00	0.1
264	18:58:00	0.1
265	18:59:00	0.1
266	19:00:00	0.1
267	19:01:00	0.1
268	19:02:00	0.1
269	19:03:00	0.1
270	19:04:00	0.1
271	19:05:00	0.1
272	19:06:00	0.1
273	19:07:00	0.1
274	19:08:00	0.1
275	19:09:00	0.1
276	19:10:00	0.1
277	19:11:00	0.1
278	19:12:00	0.1
279	19:13:00	0.1
280	19:14:00	0.1
281	19:15:00	0.1
282	19:16:00	0.1
283	19:17:00	0.2
284	19:18:00	0.2
285	19:19:00	0.2
286	19:20:00	0.2
287	19:21:00	0.2
288	19:22:00	0.2
289	19:23:00	
290	19:24:00	0.2
291	19:25:00	0.2
292	19:26:00	0.2
293	19:27:00	0.2
294	19:28:00	0.2
295	19:29:00	0.2
296	19:30:00	0.2
297	19:31:00	0.2
298	19:32:00	0.2
299	19:33:00	0.2
300	19:34:00	0.2
301	19:35:00	0.2
302	19:36:00	0.2
303	19:37:00	0.2
304	19:38:00	0.2
305	19:39:00	0.2
304 305	19:38:00	0.2

•

306	19:40:00	0.2
307	19:41:00	0.2
308	19:42:00	0.2
309	19:43:00	0.2
310	19:44:00	0.2
311	19:45:00	0.2
312	19:46:00	0.2
313	19:47:00	0.2
314	19:48:00	0.2
315	19:49:00	0.2
316	19:50:00	0.2
317	19:51:00	0.2
318	19:52:00	0.2
319	19:53:00	0.2
320	19:54:00	0.2
321	19:55:00	0.2
322	19:56:00	0.2
323	19:57:00	0.2
324	19:58:00	0.2
325	19:59:00	0.2
326	20:00:00	0.2
327	20:01:00	0.2
328	20:02:00	0.2
329	20:03:00	0.2
330	20:04:00	0.2
331	20:05:00	0.2
332	20:06:00	0.2
333	20:07:00	0.2
334	20:08:00	0.2
335	20:09:00	0.2
336	20:10:00	0.2
337	20:11:00	0.2
338	20:12:00	0.2
339	20:13:00	0.2
340	20:14:00	0.2
341	20:15:00	0.2
342	20:16:00	0.2
343	20:17:00	0.2
344	20:18:00	0.2
345	20:19:00	0.2
346	20:20:00	0.2
347	20:21:00	0.2
348	20:22:00	0.2
349	20:23:00	0.2
350	20:24:00	0.2
351	20:25:00	0.2
352	20:26:00	0.2
353	20:27:00	0.2
354	20:28:00	0.2
355	20:29:00	0.2
356	20:30:00	0.2
357	20:31:00	0.2

_			
	358	20:32:00	0.2
[359	20:33:00	0.2
	360	20:34:00	0.2
l	361	20:35:00	0.2
1	362	20:36:00	0.2
[363	20:37:00	0.2
	364	20:38:00	0.2
	365	20:39:00	0.2
	366	20:40:00	0.2
	367	20:41:00	0.2
ĺ	368	20:42:00	0.2
ĺ	369	20:43:00	0.2
	370	20:44:00	0.2
	371	20:45:00	0.2
l	372	20:46:00	0.2
l	373	20:47:00	0.2
	374	20:48:00	0.2
	375	20:49:00	0.2
	376	20:50:00	0.2
ı	377	20:51:00	0.2
ı	378	20:52:00	0.2
- 1	379	20:53:00	0.2
	380	20:54:00	0.2
	381	20:55:00	0.2
	382	20:56:00	0.3
	383	20:57:00	0.3
	384	20:58:00	0.3
	385	20:59:00	0.3
	386	21:00:00	0.3
	387	21:01:00	0.3
	388	21:02:00	0.3
	389	21:03:00	0.3
	390	21:04:00	0.3
	391	21:05:00	0.2
	392	21:06:00	0.2
	393	21:07:00	0.2
	394	21:08:00	0.2
	395	21:09:00	0.2
	396	21:10:00	0.2
	397	21:11:00	0.2
	398	21:12:00	0.2
	399	21:13:00	0.2
	400	21:14:00	0.2
	401	21:15:00	0.2
	402	21:16:00	0.2
	403	21:17:00	0.2
	404	21:18:00	0.2
	405	21:19:00	0.2
	406	21:20:00	0.3
	407	21:21:00	0.3
	408	21:22:00	0.3
	409	21:23:00	0.3

410	21:24:00	0.3
411	21:25:00	0.3
412	21:26:00	0.3
413	21:27:00	0.3
414	21:28:00	0.3
415	21:29:00	0.3
416	21:30:00	0.3
417	21:31:00	0.3
418	21:32:00	0.3
419	21:33:00	0.3
420	21:34:00	0.3
421	21:35:00	0.3
422	21:36:00	0.3
423	21:37:00	0.3
424	21:38:00	0.3
425	21:39:00	0.3
426	21:40:00	0.3
427	21:41:00	0.3
428	21:42:00	0.3
429	21:43:00	0.3
430	21:44:00	0.3
431	21:45:00	0.3
432	21:46:00	0.3
433	21:47:00	0.3
434	21:48:00	0.3

.

Instrument: MiniRAE 2000 (PGM7600) Serial Number: 005431

Data Points: 497 Sample Period: 60 sec

Last Calibration Time: 11/28/2006 13:59 Gas Name: Isobutylene

Date: 11/28/2006

Line# Time STEL 1 14:02:00 0.2 2 14:03:00 0.2 3 14:04:00 0.2 4 14:05:00 0.2 5 14:06:00 0.2 6 14:07:00 0.2 7 14:08:00 0.2 8 14:09:00 0.2 9 14:10:00 0.2 10 14:11:00 0.2 11 14:12:00 0.2 12 14:13:00 0.2 13 14:16:00 0.2 14 14:15:00 0.2 15 14:16:00 0.2 16 14:17:00 0 17 14:18:00 0 18 14:19:00 0 20 14:21:00 0 21 14:22:00 0 22 14:23:00 0 23 14:24:00 0 24 14:25:00 0 <			Avg(ppm)
2 14:03:00 0.2 3 14:04:00 0.2 4 14:05:00 0.2 5 14:06:00 0.2 6 14:07:00 0.2 7 14:08:00 0.2 8 14:09:00 0.2 9 14:10:00 0.2 10 14:11:00 0.2 11 14:12:00 0.2 12 14:13:00 0.2 13 14:14:00 0.2 14 14:15:00 0.2 15 14:16:00 0.2 16 14:17:00 0 17 14:18:00 0 18 14:19:00 0 20 14:21:00 0 21 14:22:00 0 22 14:23:00 0 23 14:24:00 0 24 14:25:00 0 25 14:26:00 0 26 14:27:00 0 27 14:28:00 0 28 14:33:00 0.1			
3 14:04:00 0.2 4 14:05:00 0.2 5 14:06:00 0.2 6 14:07:00 0.2 7 14:08:00 0.2 8 14:09:00 0.2 9 14:10:00 0.2 10 14:11:00 0.2 11 14:12:00 0.2 12 14:13:00 0.2 13 14:14:00 0.2 14 14:15:00 0.2 15 14:16:00 0.2 16 14:17:00 0 17 14:18:00 0 18 14:19:00 0 20 14:21:00 0 21 14:22:00 0 22 14:23:00 0 23 14:24:00 0 24 14:25:00 0 25 14:26:00 0 26 14:27:00 0 27 14:28:00 0	-	14:02:00	
4 14:05:00 0.2 5 14:06:00 0.2 6 14:07:00 0.2 7 14:08:00 0.2 8 14:09:00 0.2 9 14:10:00 0.2 10 14:11:00 0.2 11 14:12:00 0.2 12 14:13:00 0.2 13 14:14:00 0.2 14 14:15:00 0.2 15 14:16:00 0.2 16 14:17:00 0 17 14:18:00 0 18 14:19:00 0 20 14:21:00 0 21 14:22:00 0 22 14:23:00 0 23 14:24:00 0 24 14:25:00 0 25 14:26:00 0 26 14:27:00 0 27 14:28:00 0 28 14:29:00 0 29 14:30:00 0.1 30 14:33:00 0.1			
5 14:06:00 0.2 6 14:07:00 0.2 7 14:08:00 0.2 8 14:09:00 0.2 9 14:10:00 0.2 10 14:11:00 0.2 11 14:12:00 0.2 12 14:13:00 0.2 13 14:14:00 0.2 14 14:15:00 0.2 15 14:16:00 0.2 16 14:17:00 0 17 14:18:00 0 18 14:19:00 0 19 14:20:00 0 20 14:21:00 0 21 14:22:00 0 22 14:23:00 0 23 14:24:00 0 24 14:25:00 0 25 14:26:00 0 26 14:27:00 0 27 14:28:00 0 29 14:30:00 0.1	3	14:04:00	
6 14:07:00 0.2 7 14:08:00 0.2 8 14:09:00 0.2 9 14:10:00 0.2 10 14:11:00 0.2 11 14:12:00 0.2 12 14:13:00 0.2 13 14:14:00 0.2 14 14:15:00 0.2 15 14:16:00 0.2 16 14:17:00 0 17 14:18:00 0 18 14:19:00 0 19 14:20:00 0 20 14:21:00 0 21 14:22:00 0 22 14:23:00 0 23 14:24:00 0 24 14:25:00 0 25 14:26:00 0 26 14:27:00 0 27 14:28:00 0 28 14:29:00 0 29 14:30:00 0.1		14:05:00	0.2
7 14:08:00 0.2 8 14:09:00 0.2 9 14:10:00 0.2 10 14:11:00 0.2 11 14:12:00 0.2 12 14:13:00 0.2 13 14:14:00 0.2 14 14:15:00 0.2 15 14:16:00 0.2 16 14:17:00 0 17 14:18:00 0 18 14:19:00 0 20 14:21:00 0 20 14:21:00 0 21 14:22:00 0 22 14:23:00 0 23 14:24:00 0 24 14:25:00 0 25 14:26:00 0 26 14:27:00 0 27 14:28:00 0 28 14:29:00 0 29 14:30:00 0.1 31 14:33:00 0.1		14:06:00	0.2
8 14:09:00 0.2 9 14:10:00 0.2 10 14:11:00 0.2 11 14:12:00 0.2 12 14:13:00 0.2 13 14:14:00 0.2 14 14:15:00 0.2 15 14:16:00 0.2 16 14:17:00 0 17 14:18:00 0 18 14:19:00 0 20 14:21:00 0 21 14:22:00 0 22 14:23:00 0 23 14:24:00 0 24 14:25:00 0 25 14:26:00 0 26 14:27:00 0 27 14:28:00 0 28 14:29:00 0 29 14:30:00 0.1 31 14:32:00 0.1 32 14:33:00 0.1 33 14:36:00 0.1 34 14:36:00 0.1 35 14:36:00 <td< td=""><td></td><td>14:07:00</td><td>0.2</td></td<>		14:07:00	0.2
9 14:10:00 0.2 10 14:11:00 0.2 11 14:12:00 0.2 12 14:13:00 0.2 13 14:14:00 0.2 14 14:15:00 0.2 15 14:16:00 0.2 16 14:17:00 0 17 14:18:00 0 18 14:19:00 0 19 14:20:00 0 20 14:21:00 0 21 14:22:00 0 21 14:22:00 0 22 14:23:00 0 23 14:24:00 0 24 14:25:00 0 25 14:26:00 0 26 14:27:00 0 27 14:28:00 0 28 14:29:00 0 29 14:30:00 0 130 14:31:00 0.1 31 14:32:00 0.1 32 14:33:00 0.1 33 14:34:00 0.1 34 14:35:00 0.1 35 14:36:00 0.1 36 14:37:00 0.1 37 14:38:00 0.1 38 14:39:00 0.1 39 14:40:00 0.1 40 14:41:00 0.1 41 14:42:00 0.1 42 14:43:00 0.1	7	14:08:00	0.2
10 14:11:00 0.2 11 14:12:00 0.2 12 14:13:00 0.2 13 14:14:00 0.2 14 14:15:00 0.2 15 14:16:00 0.2 16 14:17:00 0 17 14:18:00 0 18 14:19:00 0 19 14:20:00 0 20 14:21:00 0 21 14:22:00 0 22 14:23:00 0 23 14:24:00 0 24 14:25:00 0 25 14:26:00 0 26 14:27:00 0 27 14:28:00 0 28 14:29:00 0 29 14:30:00 0.1 30 14:31:00 0.1 31 14:32:00 0.1 32 14:33:00 0.1 33 14:36:00 0.1 <t< td=""><td>8</td><td>14:09:00</td><td>0.2</td></t<>	8	14:09:00	0.2
11 14:12:00 0.2 12 14:13:00 0.2 13 14:14:00 0.2 14 14:15:00 0.2 15 14:16:00 0.2 16 14:17:00 0 17 14:18:00 0 18 14:19:00 0 20 14:21:00 0 20 14:21:00 0 21 14:22:00 0 22 14:23:00 0 23 14:24:00 0 24 14:25:00 0 25 14:26:00 0 26 14:27:00 0 27 14:28:00 0 28 14:29:00 0 29 14:30:00 0.1 30 14:31:00 0.1 31 14:32:00 0.1 32 14:33:00 0.1 33 14:36:00 0.1 34 14:39:00 0.1 <t< td=""><td>9</td><td>14:10:00</td><td>0.2</td></t<>	9	14:10:00	0.2
12 14:13:00 0.2 13 14:14:00 0.2 14 14:15:00 0.2 15 14:16:00 0.2 16 14:17:00 0 17 14:18:00 0 18 14:19:00 0 19 14:20:00 0 20 14:21:00 0 21 14:22:00 0 22 14:23:00 0 23 14:24:00 0 24 14:25:00 0 25 14:26:00 0 26 14:27:00 0 27 14:28:00 0 28 14:29:00 0 29 14:30:00 0.1 30 14:31:00 0.1 31 14:32:00 0.1 32 14:33:00 0.1 33 14:36:00 0.1 34 14:37:00 0.1 35 14:36:00 0.1 36 14:37:00 0.1 37 14:38:00 <td< td=""><td>10</td><td>14:11:00</td><td>0.2</td></td<>	10	14:11:00	0.2
13 14:14:00 0.2 14 14:15:00 0.2 15 14:16:00 0.2 16 14:17:00 0 17 14:18:00 0 18 14:19:00 0 19 14:20:00 0 20 14:21:00 0 21 14:22:00 0 22 14:23:00 0 23 14:24:00 0 24 14:25:00 0 25 14:26:00 0 26 14:27:00 0 27 14:28:00 0 28 14:29:00 0 29 14:30:00 0.1 30 14:31:00 0.1 31 14:32:00 0.1 32 14:33:00 0.1 33 14:36:00 0.1 34 14:36:00 0.1 35 14:36:00 0.1 36 14:37:00 0.1 <t< td=""><td>11</td><td>14:12:00</td><td>0.2</td></t<>	11	14:12:00	0.2
14 14:15:00 0.2 15 14:16:00 0.2 16 14:17:00 0 17 14:18:00 0 18 14:19:00 0 19 14:20:00 0 20 14:21:00 0 21 14:22:00 0 22 14:23:00 0 23 14:24:00 0 24 14:25:00 0 25 14:26:00 0 26 14:27:00 0 27 14:28:00 0 28 14:29:00 0 29 14:30:00 0.1 30 14:31:00 0.1 31 14:32:00 0.1 32 14:33:00 0.1 33 14:36:00 0.1 34 14:36:00 0.1 35 14:36:00 0.1 36 14:37:00 0.1 37 14:38:00 0.1 38 14:39:00 0.1 40 14:41:00 <td< td=""><td>12</td><td>14:13:00</td><td>0.2</td></td<>	12	14:13:00	0.2
14 14:15:00 0.2 15 14:16:00 0.2 16 14:17:00 0 17 14:18:00 0 18 14:19:00 0 19 14:20:00 0 20 14:21:00 0 21 14:22:00 0 22 14:23:00 0 23 14:24:00 0 24 14:25:00 0 25 14:26:00 0 26 14:27:00 0 27 14:28:00 0 28 14:29:00 0 29 14:30:00 0.1 30 14:31:00 0.1 31 14:32:00 0.1 32 14:33:00 0.1 33 14:36:00 0.1 34 14:36:00 0.1 35 14:36:00 0.1 36 14:37:00 0.1 37 14:38:00 0.1 38 14:39:00 0.1 40 14:41:00 <td< td=""><td>13</td><td>14:14:00</td><td>0.2</td></td<>	13	14:14:00	0.2
15 14:16:00 0.2 16 14:17:00 0 17 14:18:00 0 18 14:19:00 0 19 14:20:00 0 20 14:21:00 0 21 14:22:00 0 22 14:23:00 0 23 14:24:00 0 24 14:25:00 0 25 14:26:00 0 26 14:27:00 0 27 14:28:00 0 28 14:29:00 0 29 14:30:00 0.1 30 14:31:00 0.1 31 14:32:00 0.1 32 14:33:00 0.1 33 14:36:00 0.1 34 14:35:00 0.1 35 14:36:00 0.1 36 14:37:00 0.1 37 14:38:00 0.1 39 14:40:00 0.1 <t< td=""><td>14</td><td></td><td></td></t<>	14		
16 14:17:00 0 17 14:18:00 0 18 14:19:00 0 19 14:20:00 0 20 14:21:00 0 21 14:22:00 0 22 14:23:00 0 23 14:24:00 0 24 14:25:00 0 25 14:26:00 0 26 14:27:00 0 27 14:28:00 0 28 14:29:00 0 29 14:30:00 0.1 30 14:31:00 0.1 31 14:32:00 0.1 32 14:33:00 0.1 33 14:36:00 0.1 34 14:35:00 0.1 35 14:36:00 0.1 36 14:37:00 0.1 37 14:38:00 0.1 39 14:40:00 0.1 40 14:41:00 0.1 41 14:42:00 0.1 42 14:43:00 <td< td=""><td></td><td></td><td></td></td<>			
17 14:18:00 0 18 14:19:00 0 19 14:20:00 0 20 14:21:00 0 21 14:22:00 0 22 14:23:00 0 23 14:24:00 0 24 14:25:00 0 25 14:26:00 0 26 14:27:00 0 27 14:28:00 0 28 14:29:00 0 29 14:30:00 0.1 30 14:31:00 0.1 31 14:32:00 0.1 32 14:33:00 0.1 33 14:36:00 0.1 34 14:35:00 0.1 35 14:36:00 0.1 36 14:37:00 0.1 37 14:38:00 0.1 38 14:39:00 0.1 40 14:41:00 0.1 41 14:42:00 0.1 42 14:43:00 0.1 43 14:44:00 <			
18 14:19:00 0 19 14:20:00 0 20 14:21:00 0 21 14:22:00 0 22 14:23:00 0 23 14:24:00 0 24 14:25:00 0 25 14:26:00 0 26 14:27:00 0 27 14:28:00 0 28 14:29:00 0 29 14:30:00 0.1 30 14:31:00 0.1 31 14:32:00 0.1 32 14:33:00 0.1 33 14:36:00 0.1 34 14:36:00 0.1 35 14:36:00 0.1 36 14:37:00 0.1 37 14:38:00 0.1 38 14:40:00 0.1 40 14:41:00 0.1 41 14:42:00 0.1 42 14:43:00 0.1 43 14:44:00 0.1 44 14:44:00	17		0
19 14:20:00 0 20 14:21:00 0 21 14:22:00 0 22 14:23:00 0 23 14:24:00 0 24 14:25:00 0 25 14:26:00 0 26 14:27:00 0 27 14:28:00 0 28 14:29:00 0 29 14:30:00 0.1 30 14:31:00 0.1 31 14:32:00 0.1 32 14:33:00 0.1 33 14:36:00 0.1 34 14:35:00 0.1 35 14:36:00 0.1 36 14:37:00 0.1 37 14:38:00 0.1 38 14:40:00 0.1 40 14:41:00 0.1 41 14:42:00 0.1 42 14:43:00 0.1 43 14:44:00 0.1 44 14:45:00 0.1	18		0
20 14:21:00 0 21 14:22:00 0 22 14:23:00 0 23 14:24:00 0 24 14:25:00 0 25 14:26:00 0 26 14:27:00 0 27 14:28:00 0 28 14:29:00 0 29 14:30:00 0.1 30 14:31:00 0.1 31 14:32:00 0.1 32 14:33:00 0.1 33 14:36:00 0.1 34 14:35:00 0.1 35 14:36:00 0.1 36 14:37:00 0.1 37 14:38:00 0.1 39 14:40:00 0.1 40 14:41:00 0.1 41 14:42:00 0.1 42 14:43:00 0.1 43 14:44:00 0.1 44 14:45:00 0.1 <td></td> <td></td> <td>0</td>			0
21 14:22:00 0 22 14:23:00 0 23 14:24:00 0 24 14:25:00 0 25 14:26:00 0 26 14:27:00 0 27 14:28:00 0 28 14:29:00 0 29 14:30:00 0.1 30 14:31:00 0.1 31 14:32:00 0.1 32 14:33:00 0.1 33 14:36:00 0.1 34 14:35:00 0.1 35 14:36:00 0.1 36 14:37:00 0.1 37 14:38:00 0.1 38 14:39:00 0.1 40 14:41:00 0.1 41 14:42:00 0.1 42 14:43:00 0.1 43 14:44:00 0.1 44 14:45:00 0.1			0
22 14:23:00 0 23 14:24:00 0 24 14:25:00 0 25 14:26:00 0 26 14:27:00 0 27 14:28:00 0 28 14:29:00 0 29 14:30:00 0.1 30 14:31:00 0.1 31 14:32:00 0.1 32 14:33:00 0.1 33 14:36:00 0.1 35 14:36:00 0.1 36 14:37:00 0.1 37 14:38:00 0.1 38 14:39:00 0.1 39 14:40:00 0.1 40 14:41:00 0.1 41 14:42:00 0.1 42 14:43:00 0.1 43 14:44:00 0.1 44 14:45:00 0.1 44 14:45:00 0.1			
23 14:24:00 0 24 14:25:00 0 25 14:26:00 0 26 14:27:00 0 27 14:28:00 0 28 14:29:00 0 29 14:30:00 0.1 30 14:31:00 0.1 31 14:32:00 0.1 32 14:33:00 0.1 34 14:35:00 0.1 35 14:36:00 0.1 36 14:37:00 0.1 37 14:38:00 0.1 38 14:39:00 0.1 39 14:40:00 0.1 40 14:41:00 0.1 41 14:42:00 0.1 42 14:43:00 0.1 43 14:44:00 0.1 44 14:45:00 0.1			
24 14:25:00 0 25 14:26:00 0 26 14:27:00 0 27 14:28:00 0 28 14:29:00 0 29 14:30:00 0.1 30 14:31:00 0.1 31 14:32:00 0.1 32 14:33:00 0.1 34 14:35:00 0.1 35 14:36:00 0.1 36 14:37:00 0.1 37 14:38:00 0.1 38 14:39:00 0.1 39 14:40:00 0.1 40 14:41:00 0.1 41 14:42:00 0.1 42 14:43:00 0.1 43 14:44:00 0.1 44 14:45:00 0.1 44 14:45:00 0.1	23		0
26 14:27:00 0 27 14:28:00 0 28 14:29:00 0 29 14:30:00 0.1 30 14:31:00 0.1 31 14:32:00 0.1 32 14:33:00 0.1 33 14:34:00 0.1 35 14:36:00 0.1 36 14:37:00 0.1 37 14:38:00 0.1 38 14:39:00 0.1 39 14:40:00 0.1 40 14:41:00 0.1 41 14:42:00 0.1 42 14:43:00 0.1 43 14:44:00 0.1 44 14:45:00 0.1	24	14:25:00	0
27 14:28:00 0 28 14:29:00 0 29 14:30:00 0.1 30 14:31:00 0.1 31 14:32:00 0.1 32 14:33:00 0.1 33 14:34:00 0.1 34 14:35:00 0.1 35 14:36:00 0.1 36 14:37:00 0.1 37 14:38:00 0.1 38 14:39:00 0.1 40 14:41:00 0.1 41 14:42:00 0.1 42 14:43:00 0.1 43 14:44:00 0.1 44 14:45:00 0.1 44 14:45:00 0.1	25	14:26:00	0
28	26	14:27:00	0
29 14:30:00 0.1 30 14:31:00 0.1 31 14:32:00 0.1 32 14:33:00 0.1 33 14:34:00 0.1 34 14:35:00 0.1 35 14:36:00 0.1 36 14:37:00 0.1 37 14:38:00 0.1 38 14:39:00 0.1 39 14:40:00 0.1 40 14:41:00 0.1 41 14:42:00 0.1 42 14:43:00 0.1 43 14:44:00 0.1 44 14:45:00 0.1	27	14:28:00	0
29 14:30:00 0.1 30 14:31:00 0.1 31 14:32:00 0.1 32 14:33:00 0.1 33 14:34:00 0.1 34 14:35:00 0.1 35 14:36:00 0.1 36 14:37:00 0.1 37 14:38:00 0.1 38 14:39:00 0.1 39 14:40:00 0.1 40 14:41:00 0.1 41 14:42:00 0.1 42 14:43:00 0.1 43 14:44:00 0.1 44 14:45:00 0.1	28	14:29:00	0
31 14:32:00 0.1 32 14:33:00 0.1 33 14:34:00 0.1 34 14:35:00 0.1 35 14:36:00 0.1 36 14:37:00 0.1 37 14:38:00 0.1 38 14:39:00 0.1 39 14:40:00 0.1 40 14:41:00 0.1 41 14:42:00 0.1 42 14:43:00 0.1 43 14:44:00 0.1 44 14:45:00 0.1	29		0.1
31 14:32:00 0.1 32 14:33:00 0.1 33 14:34:00 0.1 34 14:35:00 0.1 35 14:36:00 0.1 36 14:37:00 0.1 37 14:38:00 0.1 38 14:39:00 0.1 39 14:40:00 0.1 40 14:41:00 0.1 41 14:42:00 0.1 42 14:43:00 0.1 43 14:44:00 0.1 44 14:45:00 0.1	30	14:31:00	0.1
32 14:33:00 0.1 33 14:34:00 0.1 34 14:35:00 0.1 35 14:36:00 0.1 36 14:37:00 0.1 37 14:38:00 0.1 38 14:39:00 0.1 39 14:40:00 0.1 40 14:41:00 0.1 41 14:42:00 0.1 42 14:43:00 0.1 43 14:44:00 0.1 44 14:45:00 0.1	31	14:32:00	
33 14:34:00 0.1 34 14:35:00 0.1 35 14:36:00 0.1 36 14:37:00 0.1 37 14:38:00 0.1 38 14:39:00 0.1 39 14:40:00 0.1 40 14:41:00 0.1 41 14:42:00 0.1 42 14:43:00 0.1 43 14:44:00 0.1 44 14:45:00 0.1			
34 14:35:00 0.1 35 14:36:00 0.1 36 14:37:00 0.1 37 14:38:00 0.1 38 14:39:00 0.1 39 14:40:00 0.1 40 14:41:00 0.1 41 14:42:00 0.1 42 14:43:00 0.1 43 14:44:00 0.1 44 14:45:00 0.1			
35 14:36:00 0.1 36 14:37:00 0.1 37 14:38:00 0.1 38 14:39:00 0.1 39 14:40:00 0.1 40 14:41:00 0.1 41 14:42:00 0.1 42 14:43:00 0.1 43 14:44:00 0.1 44 14:45:00 0.1			
36 14:37:00 0.1 37 14:38:00 0.1 38 14:39:00 0.1 39 14:40:00 0.1 40 14:41:00 0.1 41 14:42:00 0.1 42 14:43:00 0.1 43 14:44:00 0.1 44 14:45:00 0.1			
37 14:38:00 0.1 38 14:39:00 0.1 39 14:40:00 0.1 40 14:41:00 0.1 41 14:42:00 0.1 42 14:43:00 0.1 43 14:44:00 0.1 44 14:45:00 0.1			
38			
39 14:40:00 0.1 40 14:41:00 0.1 41 14:42:00 0.1 42 14:43:00 0.1 43 14:44:00 0.1 44 14:45:00 0.1			
40 14:41:00 0.1 41 14:42:00 0.1 42 14:43:00 0.1 43 14:44:00 0.1 44 14:45:00 0.1			
41 14:42:00 0.1 42 14:43:00 0.1 43 14:44:00 0.1 44 14:45:00 0.1			
42 14:43:00 0.1 43 14:44:00 0.1 44 14:45:00 0.1			
43 14:44:00 0.1 44 14:45:00 0.1			
44 14:45:00 0.1			
45 14:46:00 0.1	45	14:46:00	0.1

46	14:47:00	0.1
47	14:48:00	0.1
48	14:49:00	0.1
49	14:50:00	0.1
50	14:51:00	0.1
51	14:52:00	0.1
52	14:53:00	0.1
53	14:54:00	0.1
54	14:55:00	0.1
55	14:56:00	0.1
56	14:57:00	0.1
57	14:58:00	0.1
58	14:59:00	0.1
59	15:00:00	0.1
60	15:01:00	0.1
61	15:02:00	0.1
62	15:03:00	0.1
63	15:04:00	0.1
64	15:05:00	0.1
65	15:06:00	0.1
66	15:07:00	0.1
67	15:08:00	0.1
68	15:09:00	0.1
69	15:10:00	0.1
70	15:11:00	
		0.1
71	15:12:00	0.1
72 73	15:13:00	0.1
74	15:14:00	0.1
	15:15:00	0.1
75 76	15:16:00	0.1
76	15:17:00	0.1
77	15:18:00	0.1
78	15:19:00	0.1
79	15:20:00	0.1
80	15:21:00	0.1
81	15:22:00	
82	15:23:00	0.1
83	15:24:00	0.2
84	15:25:00	0.2
85	15:26:00	0.2
86	15:27:00	0.2
87	15:28:00	0.2
88	15:29:00	0.2
89	15:30:00	0.2
90	15:31:00	0.2
91	15:32:00	0.2
92	15:33:00	0.2
93	15:34:00	0.2
94	15:35:00	0.2
95	15:36:00	0.2
96	15:37:00	0.2
97	15:38:00	0.2

98	15:39:00	0.2
99	15:40:00	0.2
100	15:41:00	0.2
101	15:42:00	0.2
102	15:43:00	0.2
103	15:44:00	0.2
104	15:45:00	0.2
105	15:46:00	0.2
106	15:47:00	0.2
107	15:48:00	0.2
108	15:49:00	0.2
109	15:50:00	0.2
110	15:51:00	0.2
111	15:52:00	0.2
112	15:53:00	0.2
113	15:54:00	0.2
114	15:55:00	0.2
115	15:56:00	0.2
116	15:57:00	0.2
117	15:58:00	0.2
118	15:59:00	0.2
119	16:00:00	0.2
120	16:01:00	0.2
121	16:02:00	0.2
122	16:03:00	0.2
123	16:04:00	0.2
124	16:05:00	0.2
125	16:06:00	0.2
126	16:07:00	0.2
127	16:08:00	0.2
128	16:09:00	0.2
129	16:10:00	0.2
130	16:11:00	0.2
131	16:12:00	0.2
132	16:12:00	0.2
133	16:14:00	
134	16:15:00	0.2
135	16:16:00	
136	16:17:00	0.2
137	16:17:00	0.2
138	16:19:00	0.2
139	16:20:00	0.2
140	16:21:00	0.2
141	16:22:00	0.2
142	16:23:00	0.2
143	16:24:00	0.2
144	16:25:00	0.2
145	16:26:00	0.2
146	16:27:00	0.2
147	16:27:00	0.2
148	16:29:00	0.2
149	16:30:00	0.2
148	10.00.00	L <u>0.4</u>

•

150	16:31:00	0.2
151	16:32:00	0.2
152	16:33:00	0.3
153	16:34:00	0.3
154	16:35:00	0.3
155	16:36:00	0.3
156	16:37:00	0.3
157	16:38:00	0.3
158	16:39:00	0.3
159	16:40:00	0.3
160	16:41:00	0.3
161	16:42:00	0.3
162	16:43:00	0.3
163	16:44:00	0.3
164	16:45:00	0.3
165	16:46:00	0.3
166	16:47:00	0.3
167	16:48:00	0.3
168	16:49:00	0.3
169	16:50:00	0.3
170	16:51:00	0.3
171	16:52:00	0.3
172	16:53:00	0.3
173	16:54:00	0.3
174	16:55:00	0.3
175	16:56:00	0.3
176	16:57:00	0.3
177	16:58:00	0.3
178	16:59:00	0.3
179	17:00:00	0.3
180	17:01:00	0.3
181	17:02:00	0.3
182	17:03:00	0.3
183	17:04:00	0.3
184	17:05:00	0.3
185	17:06:00	
186	17:07:00	0.3
187	17:08:00	0.3
188	17:09:00	0.3
189	17:10:00	0.3
190	17:11:00	0.3
191	17:12:00	0.3
192	17:12:00	0.3
193	17:14:00	0.3
194	17:15:00	0.3
195	17:16:00	0.3
196	17:17:00	0.3
197	17:18:00	0.3
198	17:19:00	0.3
199	17:20:00	0.3
200	17:21:00	0.3
201	17:22:00	0.3
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.0

	47.00.00	
202	17:23:00	
203	17:24:00	0.3
204	17:25:00	0.3
205	17:26:00	0.3
206	17:27:00	0.3
207	17:28:00	0.3
208	17:29:00	0.3
209	17:30:00	0.3
210	17:31:00	0.3
211	17:32:00	0.3
212	17:33:00	0.3
213	17:34:00	0.3
214	17:35:00	0.3
215	17:36:00	0.3
216	17:37:00	0.3
217	17:38:00	0.3
218	17:39:00	0.3
219	17:40:00	0.3
220	17:41:00	0.3
221	17:42:00	0.3
222	17:42:00	0.4
223		
	17:44:00	0.4
224	17:45:00	0.4
225	17:46:00	0.4
226	17:47:00	0.4
227	17:48:00	0.4
228	17:49:00	0.4
229	17:50:00	0.4
230	17:51:00	0.4
231	17:52:00	0.4
232	17:53:00	0.4
233	17:54:00	0.4
234	17:55:00	0.4
235	17:56:00	0.4
236	17:57:00	0.4
237	17:58:00	0.4
238	17:59:00	0.4
239	18:00:00	0.4
240	18:01:00	0.4
241	18:02:00	0.4
242	18:03:00	0.4
243	18:04:00	0.4
244	18:05:00	0.4
245	18:06:00	0.4
246	18:07:00	0.4
247	18:08:00	0.4
248	18:09:00	0.4
249	18:10:00	0.4
250	18:11:00	0.4
251	18:12:00	0.4
252	18:13:00	0.4
253	18:14:00	0.4
	10.14.00	U

.

254	18:15:00	0.4
255	18:16:00	0.4
256	18:17:00	0.4
257	18:18:00	0.4
258	18:19:00	0.4
259	18:20:00	0.4
260	18:21:00	0.4
261	18:22:00	0.4
262	18:23:00	0.4
263	18:24:00	0.4
264	18:25:00	0.4
265	18:26:00	0.4
266	18:27:00	0.4
267	18:28:00	0.4
268	18:29:00	0.4
269	18:30:00	0.4
270	18:31:00	0.4
271	18:32:00	0.4
272	18:33:00	0.4
273	18:34:00	0.4
274	18:35:00	0.4
275	18:36:00	0.4
276	18:37:00	0.4
277	18:38:00	0.4
278	18:39:00	0.4
279	18:40:00	0.4
280	18:41:00	0.4
281	18:42:00	0.4
282	18:43:00	0.4
283	18:44:00	0.4
284	18:45:00	0.4
285	18:46:00	0.4
286	18:47:00	0.4
287	18:48:00	0.4
288	18:49:00	0.4
289	18:50:00	0.4
290	18:51:00	0.4
291	18:52:00	0.4
292	18:53:00	0.4
293	18:54:00	0.4
294	18:55:00	0.4
295	18:56:00	0.4
296	18:57:00	0.4
297	18:58:00	0.4
298	18:59:00	0.4
299	19:00:00	0.4
300	19:01:00	0.4
301	19:02:00	0.4
302	19:03:00	0.4
303	19:04:00	0.4
304	19:05:00	0.4
304		0.4
<u>305</u>	19:06:00	U.4

306 19:07:00 0.4 307 19:08:00 0.4 308 19:09:00 0.4 309 19:10:00 0.4 310 19:11:00 0.4 311 19:12:00 0.4 312 19:13:00 0.4 313 19:14:00 0.4 314 19:15:00 0.4 315 19:16:00 0.4 316 19:17:00 0.4 317 19:18:00 0.4 318 19:19:00 0.4 319 19:20:00 0.4 320 19:21:00 0.4 321 19:22:00 0.4 322 19:23:00 0.4 323 19:24:00 0.4 324 19:25:00 0.4 325 19:26:00 0.4 326 19:27:00 0.4 327 19:28:00 0.4 329 19:30:00 0.4 331 1			
308 19:09:00 0.4 309 19:10:00 0.4 310 19:11:00 0.4 311 19:12:00 0.4 312 19:13:00 0.4 313 19:14:00 0.4 314 19:15:00 0.4 315 19:16:00 0.4 316 19:17:00 0.4 317 19:18:00 0.4 318 19:19:00 0.4 319 19:20:00 0.4 320 19:21:00 0.4 321 19:22:00 0.4 322 19:23:00 0.4 323 19:24:00 0.4 324 19:25:00 0.4 325 19:26:00 0.4 326 19:27:00 0.4 327 19:28:00 0.4 328 19:29:00 0.4 329 19:30:00 0.4 331 19:32:00 0.4 332 1	306	19:07:00	0.4
309 19:10:00 0.4 310 19:11:00 0.4 311 19:12:00 0.4 312 19:13:00 0.4 313 19:14:00 0.4 314 19:15:00 0.4 315 19:16:00 0.4 316 19:17:00 0.4 317 19:18:00 0.4 318 19:19:00 0.4 319 19:20:00 0.4 320 19:21:00 0.4 321 19:22:00 0.4 322 19:23:00 0.4 323 19:24:00 0.4 324 19:25:00 0.4 325 19:26:00 0.4 326 19:27:00 0.4 327 19:28:00 0.4 328 19:29:00 0.4 329 19:30:00 0.4 331 19:32:00 0.4 332 19:33:00 0.4 333 1	307	19:08:00	0.4
310 19:11:00 0.4 311 19:12:00 0.4 312 19:13:00 0.4 313 19:14:00 0.4 314 19:15:00 0.4 315 19:16:00 0.4 316 19:17:00 0.4 317 19:18:00 0.4 318 19:19:00 0.4 319 19:20:00 0.4 320 19:21:00 0.4 321 19:22:00 0.4 322 19:23:00 0.4 323 19:24:00 0.4 324 19:25:00 0.4 325 19:26:00 0.4 326 19:27:00 0.4 327 19:28:00 0.4 328 19:29:00 0.4 329 19:30:00 0.4 331 19:35:00 0.4 332 19:33:00 0.4 333 19:34:00 0.4 334 1	308	19:09:00	0.4
311 19:12:00 0.4 312 19:13:00 0.4 313 19:14:00 0.4 314 19:15:00 0.4 315 19:16:00 0.4 316 19:17:00 0.4 317 19:18:00 0.4 318 19:19:00 0.4 319 19:20:00 0.4 320 19:21:00 0.4 321 19:22:00 0.4 322 19:23:00 0.4 323 19:24:00 0.4 324 19:25:00 0.4 325 19:26:00 0.4 326 19:27:00 0.4 327 19:28:00 0.4 328 19:29:00 0.4 329 19:30:00 0.4 329 19:30:00 0.4 331 19:32:00 0.4 332 19:33:00 0.4 333 19:34:00 0.4 334 1	309	19:10:00	0.4
312 19:13:00 0.4 313 19:14:00 0.4 314 19:15:00 0.4 315 19:16:00 0.4 316 19:17:00 0.4 317 19:18:00 0.4 318 19:19:00 0.4 319 19:20:00 0.4 320 19:21:00 0.4 321 19:22:00 0.4 322 19:23:00 0.4 323 19:24:00 0.4 324 19:25:00 0.4 325 19:26:00 0.4 326 19:27:00 0.4 327 19:28:00 0.4 328 19:29:00 0.4 329 19:30:00 0.4 331 19:32:00 0.4 332 19:33:00 0.4 331 19:32:00 0.4 332 19:33:00 0.4 333 19:34:00 0.4 334 1	310	19:11:00	0.4
313 19:14:00 0.4 314 19:15:00 0.4 315 19:16:00 0.4 316 19:17:00 0.4 317 19:18:00 0.4 318 19:19:00 0.4 319 19:20:00 0.4 320 19:21:00 0.4 321 19:22:00 0.4 322 19:23:00 0.4 323 19:24:00 0.4 324 19:25:00 0.4 325 19:26:00 0.4 326 19:27:00 0.4 327 19:28:00 0.4 328 19:29:00 0.4 329 19:30:00 0.4 330 19:31:00 0.4 331 19:32:00 0.4 332 19:33:00 0.4 333 19:34:00 0.4 334 19:35:00 0.4 335 19:36:00 0.4 336 1	311	19:12:00	0.4
313 19:14:00 0.4 314 19:15:00 0.4 315 19:16:00 0.4 316 19:17:00 0.4 317 19:18:00 0.4 318 19:19:00 0.4 319 19:20:00 0.4 320 19:21:00 0.4 321 19:22:00 0.4 322 19:23:00 0.4 323 19:24:00 0.4 324 19:25:00 0.4 325 19:26:00 0.4 326 19:27:00 0.4 327 19:28:00 0.4 328 19:29:00 0.4 329 19:30:00 0.4 330 19:31:00 0.4 331 19:32:00 0.4 332 19:33:00 0.4 333 19:34:00 0.4 334 19:35:00 0.4 335 19:36:00 0.4 336 1	312	19:13:00	0.4
314 19:15:00 0.4 315 19:16:00 0.4 316 19:17:00 0.4 317 19:18:00 0.4 318 19:19:00 0.4 319 19:20:00 0.4 320 19:21:00 0.4 321 19:22:00 0.4 322 19:23:00 0.4 323 19:24:00 0.4 324 19:25:00 0.4 325 19:26:00 0.4 326 19:27:00 0.4 327 19:28:00 0.4 328 19:29:00 0.4 329 19:30:00 0.4 330 19:31:00 0.4 331 19:32:00 0.4 332 19:33:00 0.4 333 19:34:00 0.4 334 19:35:00 0.4 335 19:36:00 0.4 336 19:37:00 0.4 337 1	313	19:14:00	0.4
315 19:16:00 0.4 316 19:17:00 0.4 317 19:18:00 0.4 318 19:19:00 0.4 319 19:20:00 0.4 320 19:21:00 0.4 321 19:22:00 0.4 322 19:23:00 0.4 323 19:24:00 0.4 324 19:25:00 0.4 325 19:26:00 0.4 326 19:27:00 0.4 327 19:28:00 0.4 328 19:29:00 0.4 329 19:30:00 0.4 330 19:31:00 0.4 331 19:32:00 0.4 332 19:33:00 0.4 333 19:34:00 0.4 334 19:35:00 0.4 335 19:36:00 0.4 336 19:37:00 0.4 337 19:38:00 0.4 338 1	314		0.4
316 19:17:00 0.4 317 19:18:00 0.4 318 19:19:00 0.4 319 19:20:00 0.4 320 19:21:00 0.4 321 19:22:00 0.4 322 19:23:00 0.4 323 19:24:00 0.4 324 19:25:00 0.4 325 19:26:00 0.4 326 19:27:00 0.4 327 19:28:00 0.4 328 19:29:00 0.4 329 19:30:00 0.4 330 19:31:00 0.4 331 19:32:00 0.4 332 19:33:00 0.4 333 19:34:00 0.4 334 19:35:00 0.4 335 19:36:00 0.4 336 19:37:00 0.4 337 19:38:00 0.4 338 19:39:00 0.4 340 1	315		
317 19:18:00 0.4 318 19:19:00 0.4 319 19:20:00 0.4 320 19:21:00 0.4 321 19:22:00 0.4 322 19:23:00 0.4 323 19:24:00 0.4 324 19:25:00 0.4 325 19:26:00 0.4 326 19:27:00 0.4 327 19:28:00 0.4 329 19:30:00 0.4 329 19:30:00 0.4 331 19:32:00 0.4 332 19:33:00 0.4 333 19:34:00 0.4 334 19:35:00 0.4 335 19:36:00 0.4 336 19:37:00 0.4 337 19:38:00 0.4 338 19:39:00 0.4 339 19:40:00 0.4 340 19:41:00 0.4 341 1			0.4
318 19:19:00 0.4 319 19:20:00 0.4 320 19:21:00 0.4 321 19:22:00 0.4 322 19:23:00 0.4 323 19:24:00 0.4 324 19:25:00 0.4 325 19:26:00 0.4 326 19:27:00 0.4 327 19:28:00 0.4 328 19:29:00 0.4 329 19:30:00 0.4 330 19:31:00 0.4 331 19:32:00 0.4 332 19:33:00 0.4 333 19:34:00 0.4 334 19:35:00 0.4 335 19:36:00 0.4 336 19:37:00 0.4 337 19:38:00 0.4 338 19:39:00 0.4 339 19:40:00 0.4 340 19:41:00 0.4 341 1			
319 19:20:00 0.4 320 19:21:00 0.4 321 19:22:00 0.4 322 19:23:00 0.4 323 19:24:00 0.4 324 19:25:00 0.4 325 19:26:00 0.4 326 19:27:00 0.4 327 19:28:00 0.4 328 19:29:00 0.4 329 19:30:00 0.4 330 19:31:00 0.4 331 19:32:00 0.4 332 19:33:00 0.4 333 19:34:00 0.4 334 19:35:00 0.4 335 19:36:00 0.4 336 19:37:00 0.4 337 19:38:00 0.4 338 19:39:00 0.4 339 19:40:00 0.4 340 19:41:00 0.4 341 19:42:00 0.4 342 1			
320 19:21:00 0.4 321 19:22:00 0.4 322 19:23:00 0.4 323 19:24:00 0.4 324 19:25:00 0.4 325 19:26:00 0.4 326 19:27:00 0.4 327 19:28:00 0.4 328 19:29:00 0.4 329 19:30:00 0.4 330 19:31:00 0.4 331 19:32:00 0.4 332 19:33:00 0.4 333 19:34:00 0.4 334 19:35:00 0.4 335 19:36:00 0.4 336 19:37:00 0.4 337 19:38:00 0.4 338 19:39:00 0.4 339 19:40:00 0.4 340 19:41:00 0.4 341 19:42:00 0.4 342 19:43:00 0.4 343 1			
321 19:22:00 0.4 322 19:23:00 0.4 323 19:24:00 0.4 324 19:25:00 0.4 325 19:26:00 0.4 326 19:27:00 0.4 327 19:28:00 0.4 328 19:29:00 0.4 329 19:30:00 0.4 330 19:31:00 0.4 331 19:32:00 0.4 332 19:33:00 0.4 333 19:34:00 0.4 334 19:35:00 0.4 335 19:36:00 0.4 336 19:37:00 0.4 337 19:38:00 0.4 338 19:39:00 0.4 339 19:40:00 0.4 340 19:41:00 0.4 341 19:42:00 0.4 342 19:43:00 0.4 343 19:44:00 0.4 344 1			
322 19:23:00 0.4 323 19:24:00 0.4 324 19:25:00 0.4 325 19:26:00 0.4 326 19:27:00 0.4 327 19:28:00 0.4 328 19:29:00 0.4 329 19:30:00 0.4 330 19:31:00 0.4 331 19:32:00 0.4 332 19:33:00 0.4 334 19:35:00 0.4 335 19:36:00 0.4 336 19:37:00 0.4 337 19:38:00 0.4 338 19:39:00 0.4 339 19:40:00 0.4 340 19:41:00 0.4 341 19:42:00 0.4 342 19:43:00 0.4 343 19:45:00 0.4 344 19:45:00 0.4 345 19:46:00 0.4 346 1			
323 19:24:00 0.4 324 19:25:00 0.4 325 19:26:00 0.4 326 19:27:00 0.4 327 19:28:00 0.4 328 19:29:00 0.4 329 19:30:00 0.4 330 19:31:00 0.4 331 19:32:00 0.4 332 19:33:00 0.4 333 19:34:00 0.4 334 19:35:00 0.4 335 19:36:00 0.4 337 19:38:00 0.4 338 19:37:00 0.4 339 19:40:00 0.4 340 19:41:00 0.4 341 19:42:00 0.4 342 19:43:00 0.4 343 19:45:00 0.4 344 19:45:00 0.4 345 19:46:00 0.4 346 19:47:00 0.4 347 1			
324 19:25:00 0.4 325 19:26:00 0.4 326 19:27:00 0.4 327 19:28:00 0.4 328 19:29:00 0.4 329 19:30:00 0.4 329 19:30:00 0.4 330 19:31:00 0.4 331 19:32:00 0.4 332 19:33:00 0.4 333 19:34:00 0.4 334 19:35:00 0.4 335 19:36:00 0.4 336 19:37:00 0.4 337 19:38:00 0.4 338 19:39:00 0.4 339 19:40:00 0.4 340 19:41:00 0.4 341 19:42:00 0.4 342 19:43:00 0.4 343 19:45:00 0.4 344 19:45:00 0.4 345 19:46:00 0.4 346 1			
325 19:26:00 0.4 326 19:27:00 0.4 327 19:28:00 0.4 328 19:29:00 0.4 329 19:30:00 0.4 330 19:31:00 0.4 331 19:32:00 0.4 332 19:33:00 0.4 333 19:34:00 0.4 334 19:35:00 0.4 335 19:36:00 0.4 336 19:37:00 0.4 337 19:38:00 0.4 338 19:39:00 0.4 339 19:40:00 0.4 340 19:41:00 0.4 341 19:42:00 0.4 342 19:43:00 0.4 343 19:45:00 0.4 344 19:45:00 0.4 345 19:46:00 0.4 346 19:47:00 0.4 347 19:48:00 0.4 348 1			
326 19:27:00 0.4 327 19:28:00 0.4 328 19:29:00 0.4 329 19:30:00 0.4 330 19:31:00 0.4 331 19:32:00 0.4 332 19:33:00 0.4 333 19:34:00 0.4 334 19:35:00 0.4 335 19:36:00 0.4 336 19:37:00 0.4 337 19:38:00 0.4 339 19:40:00 0.4 340 19:41:00 0.4 341 19:42:00 0.4 342 19:43:00 0.4 343 19:44:00 0.4 344 19:45:00 0.4 345 19:46:00 0.4 346 19:47:00 0.4 347 19:48:00 0.4 348 19:50:00 0.4 349 19:50:00 0.4 351 1			
327 19:28:00 0.4 328 19:29:00 0.4 329 19:30:00 0.4 330 19:31:00 0.4 331 19:32:00 0.4 332 19:33:00 0.4 333 19:34:00 0.4 334 19:35:00 0.4 335 19:36:00 0.4 336 19:37:00 0.4 337 19:38:00 0.4 339 19:40:00 0.4 340 19:41:00 0.4 341 19:42:00 0.4 342 19:43:00 0.4 343 19:44:00 0.4 344 19:45:00 0.4 345 19:46:00 0.4 346 19:47:00 0.4 347 19:48:00 0.4 348 19:50:00 0.4 349 19:50:00 0.4 350 19:51:00 0.4 351 1			
328 19:29:00 0.4 329 19:30:00 0.4 330 19:31:00 0.4 331 19:32:00 0.4 332 19:33:00 0.4 333 19:34:00 0.4 334 19:35:00 0.4 335 19:36:00 0.4 336 19:37:00 0.4 337 19:38:00 0.4 338 19:39:00 0.4 340 19:41:00 0.4 341 19:42:00 0.4 342 19:43:00 0.4 343 19:44:00 0.4 344 19:45:00 0.4 345 19:46:00 0.4 346 19:47:00 0.4 347 19:48:00 0.4 348 19:49:00 0.4 349 19:50:00 0.4 350 19:51:00 0.4 351 19:52:00 0.4 352 1			
329 19:30:00 0.4 330 19:31:00 0.4 331 19:32:00 0.4 332 19:33:00 0.4 333 19:34:00 0.4 334 19:35:00 0.4 335 19:36:00 0.4 336 19:37:00 0.4 337 19:38:00 0.4 338 19:39:00 0.4 340 19:40:00 0.4 341 19:40:00 0.4 342 19:43:00 0.4 343 19:44:00 0.4 344 19:45:00 0.4 345 19:46:00 0.4 346 19:47:00 0.4 347 19:48:00 0.4 348 19:49:00 0.4 349 19:50:00 0.4 350 19:51:00 0.4 351 19:52:00 0.4 352 19:53:00 0.4 353 1			
330 19:31:00 0.4 331 19:32:00 0.4 332 19:33:00 0.4 333 19:34:00 0.4 334 19:35:00 0.4 335 19:36:00 0.4 336 19:37:00 0.4 337 19:38:00 0.4 338 19:39:00 0.4 339 19:40:00 0.4 340 19:41:00 0.4 341 19:42:00 0.4 342 19:43:00 0.4 343 19:44:00 0.4 344 19:45:00 0.4 345 19:46:00 0.4 346 19:47:00 0.4 347 19:48:00 0.4 348 19:49:00 0.4 349 19:50:00 0.4 350 19:51:00 0.4 351 19:52:00 0.4 352 19:53:00 0.4 353 1			
331 19:32:00 0.4 332 19:33:00 0.4 333 19:34:00 0.4 334 19:35:00 0.4 335 19:36:00 0.4 336 19:37:00 0.4 337 19:38:00 0.4 338 19:39:00 0.4 339 19:40:00 0.4 340 19:41:00 0.4 341 19:42:00 0.4 342 19:43:00 0.4 343 19:45:00 0.4 344 19:45:00 0.4 345 19:46:00 0.4 346 19:47:00 0.4 347 19:48:00 0.4 349 19:50:00 0.4 350 19:51:00 0.4 351 19:52:00 0.4 352 19:53:00 0.4 353 19:54:00 0.4 354 19:55:00 0.4 355 1			-
332 19:33:00 0.4 333 19:34:00 0.4 334 19:35:00 0.4 335 19:36:00 0.4 336 19:37:00 0.4 337 19:38:00 0.4 338 19:39:00 0.4 339 19:40:00 0.4 340 19:41:00 0.4 341 19:42:00 0.4 342 19:43:00 0.4 343 19:44:00 0.4 344 19:45:00 0.4 345 19:46:00 0.4 346 19:47:00 0.4 347 19:48:00 0.4 349 19:50:00 0.4 350 19:51:00 0.4 351 19:52:00 0.4 352 19:53:00 0.4 353 19:54:00 0.4 354 19:55:00 0.4 355 19:56:00 0.4 356 1			
333 19:34:00 0.4 334 19:35:00 0.4 335 19:36:00 0.4 336 19:37:00 0.4 337 19:38:00 0.4 338 19:39:00 0.4 339 19:40:00 0.4 340 19:41:00 0.4 341 19:42:00 0.4 342 19:43:00 0.4 343 19:44:00 0.4 344 19:45:00 0.4 345 19:46:00 0.4 346 19:47:00 0.4 347 19:48:00 0.4 348 19:49:00 0.4 349 19:50:00 0.4 350 19:51:00 0.4 351 19:52:00 0.4 352 19:53:00 0.4 353 19:54:00 0.4 354 19:55:00 0.4 355 19:56:00 0.4 356 1			
334 19:35:00 0.4 335 19:36:00 0.4 336 19:37:00 0.4 337 19:38:00 0.4 338 19:39:00 0.4 339 19:40:00 0.4 340 19:41:00 0.4 341 19:42:00 0.4 342 19:43:00 0.4 343 19:44:00 0.4 344 19:45:00 0.4 345 19:46:00 0.4 346 19:47:00 0.4 347 19:48:00 0.4 348 19:49:00 0.4 349 19:50:00 0.4 350 19:51:00 0.4 351 19:52:00 0.4 352 19:53:00 0.4 353 19:54:00 0.4 354 19:55:00 0.4 355 19:56:00 0.4 356 19:57:00 0.4			
335 19:36:00 0.4 336 19:37:00 0.4 337 19:38:00 0.4 338 19:39:00 0.4 339 19:40:00 0.4 340 19:41:00 0.4 341 19:42:00 0.4 342 19:43:00 0.4 343 19:44:00 0.4 344 19:45:00 0.4 345 19:46:00 0.4 346 19:47:00 0.4 347 19:48:00 0.4 348 19:49:00 0.4 350 19:50:00 0.4 351 19:50:00 0.4 352 19:53:00 0.4 353 19:54:00 0.4 354 19:55:00 0.4 355 19:56:00 0.4 356 19:57:00 0.4			
336 19:37:00 0.4 337 19:38:00 0.4 338 19:39:00 0.4 339 19:40:00 0.4 340 19:41:00 0.4 341 19:42:00 0.4 342 19:43:00 0.4 343 19:44:00 0.4 344 19:45:00 0.4 345 19:46:00 0.4 346 19:47:00 0.4 347 19:48:00 0.4 349 19:50:00 0.4 350 19:51:00 0.4 351 19:52:00 0.4 352 19:53:00 0.4 353 19:54:00 0.4 354 19:55:00 0.4 355 19:56:00 0.4 356 19:57:00 0.4			
337 19:38:00 0.4 338 19:39:00 0.4 339 19:40:00 0.4 340 19:41:00 0.4 341 19:42:00 0.4 342 19:43:00 0.4 343 19:44:00 0.4 344 19:45:00 0.4 345 19:46:00 0.4 346 19:47:00 0.4 347 19:48:00 0.4 348 19:49:00 0.4 350 19:51:00 0.4 351 19:50:00 0.4 352 19:53:00 0.4 353 19:54:00 0.4 354 19:55:00 0.4 355 19:56:00 0.4 356 19:57:00 0.4	L		_,,
338 19:39:00 0.4 339 19:40:00 0.4 340 19:41:00 0.4 341 19:42:00 0.4 342 19:43:00 0.4 343 19:44:00 0.4 344 19:45:00 0.4 345 19:46:00 0.4 346 19:47:00 0.4 347 19:48:00 0.4 348 19:49:00 0.4 350 19:51:00 0.4 351 19:52:00 0.4 352 19:53:00 0.4 353 19:54:00 0.4 354 19:55:00 0.4 355 19:56:00 0.4 356 19:57:00 0.4			
339 19:40:00 0.4 340 19:41:00 0.4 341 19:42:00 0.4 342 19:43:00 0.4 343 19:44:00 0.4 344 19:45:00 0.4 345 19:46:00 0.4 346 19:47:00 0.4 347 19:48:00 0.4 348 19:49:00 0.4 350 19:51:00 0.4 351 19:52:00 0.4 352 19:53:00 0.4 353 19:54:00 0.4 354 19:55:00 0.4 355 19:56:00 0.4 356 19:57:00 0.4			
340 19:41:00 0.4 341 19:42:00 0.4 342 19:43:00 0.4 343 19:44:00 0.4 344 19:45:00 0.4 345 19:46:00 0.4 346 19:47:00 0.4 347 19:48:00 0.4 348 19:49:00 0.4 350 19:51:00 0.4 351 19:52:00 0.4 352 19:53:00 0.4 353 19:54:00 0.4 354 19:55:00 0.4 355 19:56:00 0.4 356 19:57:00 0.4			
341 19:42:00 0.4 342 19:43:00 0.4 343 19:44:00 0.4 344 19:45:00 0.4 345 19:46:00 0.4 346 19:47:00 0.4 347 19:48:00 0.4 348 19:49:00 0.4 350 19:51:00 0.4 351 19:52:00 0.4 352 19:53:00 0.4 353 19:54:00 0.4 354 19:55:00 0.4 355 19:56:00 0.4 356 19:57:00 0.4			
342 19:43:00 0.4 343 19:44:00 0.4 344 19:45:00 0.4 345 19:46:00 0.4 346 19:47:00 0.4 347 19:48:00 0.4 348 19:49:00 0.4 349 19:50:00 0.4 350 19:51:00 0.4 351 19:52:00 0.4 352 19:53:00 0.4 353 19:54:00 0.4 354 19:55:00 0.4 355 19:56:00 0.4 356 19:57:00 0.4	L		
343 19:44:00 0.4 344 19:45:00 0.4 345 19:46:00 0.4 346 19:47:00 0.4 347 19:48:00 0.4 348 19:49:00 0.4 350 19:50:00 0.4 351 19:52:00 0.4 352 19:53:00 0.4 353 19:54:00 0.4 354 19:55:00 0.4 355 19:56:00 0.4 356 19:57:00 0.4			
344 19:45:00 0.4 345 19:46:00 0.4 346 19:47:00 0.4 347 19:48:00 0.4 348 19:49:00 0.4 349 19:50:00 0.4 350 19:51:00 0.4 351 19:52:00 0.4 352 19:53:00 0.4 353 19:54:00 0.4 354 19:55:00 0.4 355 19:56:00 0.4 356 19:57:00 0.4			
345 19:46:00 0.4 346 19:47:00 0.4 347 19:48:00 0.4 348 19:49:00 0.4 349 19:50:00 0.4 350 19:51:00 0.4 351 19:52:00 0.4 352 19:53:00 0.4 353 19:54:00 0.4 354 19:55:00 0.4 355 19:56:00 0.4 356 19:57:00 0.4			
346 19:47:00 0.4 347 19:48:00 0.4 348 19:49:00 0.4 349 19:50:00 0.4 350 19:51:00 0.4 351 19:52:00 0.4 352 19:53:00 0.4 353 19:54:00 0.4 354 19:55:00 0.4 355 19:56:00 0.4 356 19:57:00 0.4			
347 19:48:00 0.4 348 19:49:00 0.4 349 19:50:00 0.4 350 19:51:00 0.4 351 19:52:00 0.4 352 19:53:00 0.4 353 19:54:00 0.4 354 19:55:00 0.4 355 19:56:00 0.4 356 19:57:00 0.4		.	
348 19:49:00 0.4 349 19:50:00 0.4 350 19:51:00 0.4 351 19:52:00 0.4 352 19:53:00 0.4 353 19:54:00 0.4 354 19:55:00 0.4 355 19:56:00 0.4 356 19:57:00 0.4		.	
349 19:50:00 0.4 350 19:51:00 0.4 351 19:52:00 0.4 352 19:53:00 0.4 353 19:54:00 0.4 354 19:55:00 0.4 355 19:56:00 0.4 356 19:57:00 0.4			
350 19:51:00 0.4 351 19:52:00 0.4 352 19:53:00 0.4 353 19:54:00 0.4 354 19:55:00 0.4 355 19:56:00 0.4 356 19:57:00 0.4			
351 19:52:00 0.4 352 19:53:00 0.4 353 19:54:00 0.4 354 19:55:00 0.4 355 19:56:00 0.4 356 19:57:00 0.4			
352 19:53:00 0.4 353 19:54:00 0.4 354 19:55:00 0.4 355 19:56:00 0.4 356 19:57:00 0.4			
353 19:54:00 0.4 354 19:55:00 0.4 355 19:56:00 0.4 356 19:57:00 0.4			
354 19:55:00 0.4 355 19:56:00 0.4 356 19:57:00 0.4			
355 19:56:00 0.4 356 19:57:00 0.4			
356 19:57:00 0.4			
	***************************************	<u> </u>	
357 19:58:00 0.4			
	357	19:58:00	0.4

358	19:59:00	0.4
359	20:00:00	0.4
360	20:01:00	0.4
361	20:02:00	0.4
362	20:03:00	0.4
363	20:04:00	0.4
364	20:05:00	0.4
365	20:06:00	0.4
366	20:07:00	0.4
367	20:08:00	0.4
368	20:09:00	0.4
369	20:10:00	0.5
370	20:11:00	0.5
371	20:12:00	0.5
372	20:13:00	0.5
373	20:14:00	0.5
374	20:15:00	0.5
375	20:16:00	0.5
376	20:17:00	0.5
377	20:18:00	0.5
378	20:19:00	0.5
379	20:20:00	0.5
380	20:21:00	0.5
381	20:22:00	0.5
382	20:23:00	0.5
383	20:24:00	0.5
384	20:25:00	0.5
385	20:26:00	0.5
386	20:27:00	0.5
387	20:28:00	0.5
388	20:29:00	0.5
389	20:30:00	0.5
390	20:31:00	0.5
391	20:32:00	0.5
392	20:33:00	0.5
393	20:34:00	
394	20:35:00	0.5
395	20:36:00	0.5
396	20:37:00	0.5
397	20:38:00	0.5
398	20:39:00	0.5
399	20:40:00	0.5
400	20:41:00	0.5
401	20:42:00	0.5
402	20:43:00	0.5
403	20:44:00	0.5
404	20:45:00	0.5
405	20:46:00	0.5
406	20:47:00	0.5
407	20:48:00	0.5
408	20:49:00	0.5
409	20:50:00	0.5
	1 -0.00.00	L

410	20:51:00	
411	20:52:00	0.5
412	20:53:00	0.5
413	20:54:00	0.5
414	20:55:00	0.5
415	20:56:00	0.5
416	20:57:00	0.5
417	20:58:00	0.5
418	20:59:00	0.5
419	21:00:00	0.5
420	21:01:00	0.5
421	21:02:00	0.5
422	21:03:00	0.5
423	21:04:00	0.5
424	21:05:00	0.5
425	21:06:00	0.5
426	21:07:00	0.5
427	21:08:00	0.5
428	21:09:00	0.5
429	21:10:00	0.5
430	21:11:00	0.5
431	21:12:00	0.5
432	21:13:00	0.5
433	21:14:00	0.5
434	21:15:00	0.5
435	21:16:00	0.5
436	21:17:00	0.5
437	21:18:00	0.5
438	21:19:00	0.5
439	21:20:00	0.5
440	21:21:00	0.5
441	21:22:00	0.5
442	21:23:00	0.5
443	21:24:00	0.5
444	21:25:00	0.5
445	21:26:00	0.5
446	21:27:00	0.5
447	21:28:00	0.5
448	21:29:00	0.5
449	21:30:00	0.5
450	21:31:00	0.5
451	21:32:00	0.5
452	21:33:00	0.5
453	21:34:00	0.5
454	21:35:00	0.5
455	21:36:00	0.5
456	21:37:00	0.5
457	21:38:00	0.5
458	21:39:00	0.5
459	21:40:00	0.5
460	21:41:00	0.5
461	21:41:00	0.6
01	1 ~ 1.72.00	<u> </u>

462	21:43:00	0.6
463	21:44:00	0.6
464	21:45:00	0.6
465	21:46:00	0.6
466	21:47:00	0.6
467	21:48:00	0.6
468	21:49:00	0.6
469	21:50:00	0.6
470	21:51:00	0.6
471	21:52:00	0.6
472	21:53:00	0.6
473	21:54:00	0.6
474	21:55:00	0.6
475	21:56:00	0.6
476	21:57:00	0.6
477	21:58:00	0.6
478	21:59:00	0.6
479	22:00:00	0.6
480	22:01:00	0.6
481	22:02:00	0.6
482	22:03:00	0.6
483	22:04:00	0.6
484	22:05:00	0.6
485	22:06:00	0.6
486	22:07:00	0.6
487	22:08:00	0.6
488	22:09:00	0.6
489	22:10:00	0.6
490	22:11:00	0.6
491	22:12:00	0.6
492	22:13:00	0.6
493	22:14:00	0.6
494	22:15:00	0.6
495	22:16:00	0.6
496	22:17:00	0.6
497	22:18:00	0.6

Instrument: MiniRAE 2000 (PGM7600)
Data Points: 402 Sample Period: 60 sec Serial Number: 005431

Last Calibration Time: 11/28/2006 13:59 Gas Name: Isobutylene

Date: 11/29/2006

Line#	Time	Avg(ppm) STEL
1	13:53:00	0
2	13:54:00	0
3	13:55:00	0
4	13:56:00	0
5	13:57:00	0
6	13:58:00	0
7	13:59:00	0
8	14:00:00	0
9	14:01:00	0
10	14:02:00	0
11	14:03:00	0
12	14:04:00	0
13	14:05:00	0
14	14:06:00	0
15	14:07:00	0
16	14:08:00	0
17	14:09:00	0
18	14:10:00	0
19	14:11:00	0.1
20	14:12:00	0.1
21	14:13:00	0.1
22	14:14:00	0.1
23	14:15:00	0.1
24	14:16:00	0.1
25	14:17:00	0.1
26	14:18:00	0.1
27	14:19:00	0.2
28	14:20:00	0.2
29	14:21:00	0.2
30	14:22:00	0.2
31	14:23:00	0.2
32	14:24:00	0.2
33	14:25:00	0.2
34	14:26:00	0.2
35	14:27:00	0.2
36	14:28:00	0.3
37	14:29:00	0.3
38	14:30:00	0.3
39	14:31:00	0.3
40	14:32:00	0.3
41	14:33:00	0.3
42	14:34:00	0.3
43	14:35:00	0.3
44	14:36:00	0.3
45	14:37:00	0.3
		1

F********		
46	14:38:00	0.3
47	14:39:00	0.3
48	14:40:00	0.4
49	14:41:00	0.4
50	14:42:00	0.4
51	14:43:00	0.4
52	14:44:00	0.4
53	14:45:00	0.4
54	14:46:00	0.4
55	14:47:00	0.4
56	14:48:00	0.4
57	14:49:00	0.4
58	14:50:00	0.4
59	14:51:00	0.4
60	14:52:00	0.4
61	14:53:00	0.4
62	14:54:00	0.4
63	14:55:00	0.4
64	14:56:00	0.4
65	14:57:00	0.4
66	14:58:00	0.4
67	14:59:00	0.4
68	15:00:00	0.4
69	15:01:00	0.4
70	15:02:00	0.4
71	15:03:00	0.4
72	15:04:00	0.4
73	15:05:00	0.4
74	15:06:00	0.4
75	15:07:00	0.4
76	15:08:00	0.4
77	15:09:00	0.4
78	15:10:00	0.4
79	15:11:00	0.5
80	15:12:00	0.5
81	15:13:00	0.5
82	15:14:00	0.5
83	15:15:00	0.5
84	15:16:00	0.5
85	15:17:00	0.5
86	15:18:00	0.5
87	15:19:00	0.5
88	15:20:00	0.5
89	15:21:00	0.5
90	15:22:00	0.5
91	15:23:00	0.5
92	15:24:00	0.5
93	15:25:00	0.5
94	15:26:00	0.5
95	15:27:00	0.5
96	15:28:00	0.5
97	15:29:00	0.5
31	10.28.00	0.0

•

98	15:30:00	0.5
99	15:31:00	0.5
100	15:32:00	0.5
101	15:33:00	0.5
102	15:34:00	0.5
103	15:35:00	0.5
104	15:36:00	0.5
105	15:37:00	0.5
106	15:38:00	0.5
107	15:39:00	0.5
108	15:40:00	0.5
109	15:41:00	0.5
110	15:42:00	0.5
111	15:43:00	0.5
112	15:44:00	0.5
113	15:45:00	0.5
114	15:46:00	0.5
115	15:47:00	0.5
116	15:48:00	0.5
117	15:49:00	0.5
118	15:50:00	0.5
119	15:51:00	0.5
120	15:52:00	0.5
121	15:53:00	0.5
122	15:54:00	0.5
123	15:55:00	0.5
124	15:56:00	0.5
125	15:57:00	0.5
126	15:58:00	0.5
127	15:59:00	0.5
128 129	16:00:00	0.5
130	16:01:00	0.5
131	16:02:00	0.5
132	16:03:00	0.5
	16:04:00	0.5
133	16:05:00	
134	16:06:00	0.5
135	16:07:00	0.5
136	16:08:00	0.5
137	16:09:00	0.5
138	16:10:00	0.5
139	16:11:00	0.5
140	16:12:00	0.5
141	16:13:00	0.5
142	16:14:00	0.5
143	16:15:00	0.5
144	16:16:00	0.5
145	16:17:00	0.5
146	16:18:00	0.5
147	16:19:00	0.5
148	16:20:00	0.5
149	16:21:00	0.5

150	16:22:00	0.5
151	16:23:00	0.5
152	16:24:00	0.5
153	16:25:00	0.5
154	16:26:00	0.5
155	16:27:00	0.5
156	16:28:00	0.5
157	16:29:00	0.5
158	16:30:00	0.5
159	16:31:00	0.5
160	16:32:00	0.5
161	16:33:00	0.5
162	16:34:00	0.5
163	16:35:00	0.5
164	16:36:00	0.5
165	16:37:00	0.5
166	16:38:00	0.5
167	16:39:00	0.5
168	16:40:00	0.5
169	16:41:00	0.5
170	16:42:00	0.5
171	16:43:00	0.5
172	16:44:00	0.5
173	16:45:00	0.5
174	16:46:00	0.5
175	16:47:00	0.5
176	16:48:00	0.5
177	16:49:00	0.5
178	16:50:00	0.5
179	16:51:00	0.5
180	16:52:00	0.5
181	16:53:00	0.5
182	16:54:00	0.5
183	16:55:00	0.5
184	16:56:00	0.5
185	16:57:00	0.5
186	16:58:00	0.5
187	16:59:00	0.4
188	17:00:00	0.4
189	17:01:00	0.4
190	17:02:00	0.4
191	17:03:00	0.4
192	17:04:00	0.4
193	17:05:00	0.4
194	17:06:00	0.4
195	17:07:00	0.4
196	17:08:00	0.4
197	17:09:00	0.4
198	17:10:00	0.4
199	17:10:00	0.4
200	17:12:00	0.4
201	17:12:00	0.4
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, U.=r

200	47.44.00	0.4
202	17:14:00	0.4
203	17:15:00	0.4
204	17:16:00	0.4
205	17:17:00	0.4
206	17:18:00	0.4
207	17:19:00	0.4
208	17:20:00	0.4
209	17:21:00	0.4
210	17:22:00	0.4
211	17:23:00	0.4
212	17:24:00	0.4
213	17:25:00	0.4
214	17:26:00	0.4
215	17:27:00	0.4
216	17:28:00	0.4
217	17:29:00	0.4
218	17:30:00	0.4
219	17:31:00	0.4
220	17:32:00	0.4
221	17:33:00	0.4
222	17:34:00	0.4
223	17:35:00	0.4
224	17:36:00	0.4
225	17:37:00	0.4
226	17:38:00	0.4
227	17:39:00	0.4
228	17:40:00	0.4
229	17:41:00	0.4
230	17:42:00	0.4
231	17:43:00	0.4
232	17:44:00	0.4
233	17:45:00	0.4
234	17:46:00	0.4
235	17:47:00	0.4
236	17:48:00	0.3
237	17:49:00	0.3
238	17:50:00	0.3
239	17:51:00	0.3
240	17:52:00	0.3
241	17:53:00	0.3
242	17:54:00	0.3
243	17:55:00	0.3
244	17:56:00	0.3
245	17:57:00	0.3
246	17:58:00	0.3
247	17:59:00	0.3
248	18:00:00	0.3
249	18:01:00	0.3
250	18:02:00	0.2
251	18:03:00	0.2
252	18:04:00	0.2
253	18:05:00	0.2
I		<u> </u>

•

254	18:06:00	0.2
255	18:07:00	0.2
256	18:08:00	0.2
257	18:09:00	0.2
258	18:10:00	0.1
259	18:11:00	0.1
260	18:12:00	0.1
261	18:13:00	0.1
262	18:14:00	0.1
263	18:15:00	0.1
264	18:16:00	0.1
265	18:17:00	0.1
266	18:18:00	0.1
267	18:19:00	0.1
268	18:20:00	0.1
269	18:21:00	0.1
270	18:22:00	0.1
271	18:23:00	0.1
272	18:24:00	0.1
273	18:25:00	0.1
274	18:26:00	0.1
275	18:27:00	0.1
276	18:28:00	0.1
277	18:29:00	0.1
278	18:30:00	0.1
279	18:31:00	0.1
280	18:32:00	0.1
281	18:33:00	0.1
282	18:34:00	0.1
283	18:35:00	0.1
284	18:36:00	0.1
285	18:37:00	0.1
286	18:38:00	0.1
287	18:39:00	0.1
288	18:40:00	0.1
289	18:41:00	0.1
290	18:42:00	0.1
291	18:43:00	0.1
292	18:44:00	0.1
293	18:45:00	0.1
294	18:46:00	0.1
295	18:47:00	0.1
296	18:48:00	0.1
297	18:49:00	0.1
298	18:50:00	0.1
299	18:51:00	0.1
300	18:52:00	0.1
301	18:53:00	0.1
302	18:54:00	0.1
303	18:55:00	0.1
304	18:56:00	0.1
305	18:57:00	0.1
	. 0.07.00	L

18:58:00	0.1
18:59:00	0.1
19:00:00	0.1
19:01:00	0.1
19:02:00	0.2
19:03:00	0.2
19:04:00	0.2
19:05:00	0.2
19:06:00	0.2
19:07:00	0.2
19:08:00	0.2
19:09:00	0.2
19:10:00	0.2
19:11:00	0.2
19:12:00	0.2
19:13:00	0.2
19:14:00	0.2
19:15:00	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
	0.2
19:49:00	0.2
	18:59:00 19:00:00 19:01:00 19:02:00 19:03:00 19:04:00 19:05:00 19:06:00 19:07:00 19:08:00 19:09:00 19:10:00 19:11:00 19:12:00 19:13:00 19:14:00

358	19:50:00	0.2
359	19:51:00	0.2
360	19:52:00	0.2
361	19:53:00	0.2
362	19:54:00	0.2
363	19:55:00	0.2
364	19:56:00	0.2
365	19:57:00	0.2
366	19:58:00	0.2
367	19:59:00	0.2
368	20:00:00	0.2
369	20:01:00	0.3
370	20:02:00	0.3
371	20:03:00	0.3
372	20:04:00	0.3
373	20:05:00	0.3
374	20:06:00	0.3
375	20:07:00	0.3
376	20:08:00	0.3
377	20:09:00	0.3
378	20:10:00	0.3
379	20:11:00	0.3
380	20:12:00	0.3
381	20:13:00	0.3
382	20:14:00	0.3
383	20:15:00	0.3
384	20:16:00	0.3
385	20:17:00	0.3
386	20:18:00	0.3
387	20:19:00	0.3
388	20:20:00	0.3
389	20:21:00	0.3
390	20:22:00	0.3
391	20:23:00	0.4
392	20:24:00	0.4
393	20:25:00	0.4
394	20:26:00	0.4
395	20:27:00	0.4
396	20:28:00	0.4
397	20:29:00	0.4
398	20:30:00	0.4
399	20:31:00	0.4
400	20:32:00	0.4
401	20:33:00	0.4
402	20:34:00	0.4

Instrument: MiniRAE 2000 (PGM7600)
Data Points: 450 Sample Period: 60 sec Serial Number: 005431

Last Calibration Time: 11/28/2006 13:59 Gas Name: Isobutylene

Date: 11/30/2006

Line#	Time	Avg(ppm) STEL
1	13:45:00	0
2	13:46:00	0
3	13:47:00	0
4	13:48:00	0
5	13:49:00	0
6	13:50:00	0
7	13:51:00	0
8	13:52:00	0
9	13:53:00	0
10	13:54:00	0
11	13:55:00	0
12	13:56:00	0
13	13:57:00	0
14	13:58:00	0
15	13:59:00	Ō
16	14:00:00	Ō
17	14:01:00	0
18	14:02:00	0
19	14:03:00	0
20	14:04:00	0
21	14:05:00	Ō
22	14:06:00	0
23	14:07:00	0
24	14:08:00	0
25	14:09:00	0
26	14:10:00	0
27	14:11:00	0
28	14:12:00	0
29	14:13:00	0
30	14:14:00	0
31	14:15:00	0
32	14:16:00	0
33	14:17:00	0
34	14:18:00	0
35	14:19:00	0
36	14:20:00	0
37	14:21:00	Ō
38	14:22:00	0
39	14:23:00	0
40	14:24:00	ō
41	14:25:00	0.1
42	14:26:00	0.1
43	14:27:00	0.1
44	14:28:00	0.1
45	14:29:00	0.1

<u></u>		
46	14:30:00	0.1
47	14:31:00	0.1
48	14:32:00	0.1
49	14:33:00	0.1
50	14:34:00	0.1
51	14:35:00	0.1
52	14:36:00	0.1
53	14:37:00	0.1
54	14:38:00	0.1
55	14:39:00	0.2
56	14:40:00	0.2
57	14:41:00	0.2
58	14:42:00	0.2
59	14:43:00	0.2
60	14:44:00	0.2
61	14:45:00	0.2
62	14:46:00	0.2
63	14:47:00	0.2
64	14:48:00	0.2
65	14:49:00	0.2
66	14:50:00	0.2
67	14:51:00	0.2
68	14:52:00	0.2
69	14:53:00	0.2
70	14:54:00	0.2
71	14:55:00	0.2
72	14:56:00	0.2
73	14:57:00	0.2
74	14:58:00	0.2
75	14:59:00	0.3
76	15:00:00	0.3
77	15:01:00	0.3
78	15:02:00	0.3
79	15:03:00	0.3
80	15:04:00	0.3
81	15:05:00	
82	15:06:00	0.3
83	15:07:00	0.3
84	15:08:00	0.3
85	15:09:00	0.3
86	15:10:00	0.3
87	15:11:00	0.3
88	15:12:00	0.3
89	15:13:00	0.3
90	15:14:00	0.3
91	15:15:00	0.3
92	15:16:00	0.3
93	15:17:00	0.3
94	15:18:00	0.3
95	15:19:00	0.3
96	15:20:00	0.3
97	15:21:00	0.3
L	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

•

98	15:22:00	0.3
99	15:23:00	0.3
100	15:24:00	0.3
101	15:25:00	0.3
102	15:26:00	0.3
103	15:27:00	0.3
104	15:28:00	0.3
105	15:29:00	0.3
106	15:30:00	0.3
107	15:31:00	0.3
108	15:32:00	0.3
109	15:33:00	0.3
110	15:34:00	0.3
111	15:35:00	0.3
112	15:36:00	0.3
113	15:37:00	0.3
114	15:38:00	0.3
115	15:39:00	0.3
116	15:40:00	0.3
117	15:41:00	0.3
118		0.3
119		0.3
120		0.3
121	15:45:00	0.3
122	15:46:00	0.3
123		0.3
124	15:48:00	0.3
125	15:49:00	0.4
126	15:50:00	0.4
127	15:51:00	0.4
128	15:52:00	0.4
129	15:53:00	0.4
130	15:54:00	0.4
131	15:55:00	0.4
132	15:56:00	0.4
133	15:57:00	0.4
134	15:58:00	0.4
135	15:59:00	0.4
136	16:00:00	0.4
137	16:01:00	0.4
138		0.4
139	16:03:00	0.4
140		0.4
141	16:05:00	0.4
142		0.4
143		0.4
144		0.4
145		0.4
146		0.4
147		0.4
148		0.4
149	16:13:00	0.4

.

150	16:14:00	0.4
151	16:15:00	0.4
152	16:16:00	0.4
153	16:17:00	0.4
154	16:18:00	0.4
155	16:19:00	0.4
156	16:20:00	0.4
157	16:21:00	0.4
158	16:22:00	0.4
159	16:23:00	0.4
160	16:24:00	0.4
161	16:25:00	0.4
162	16:26:00	0.4
163	16:27:00	0.4
164	16:28:00	0.4
165	16:29:00	0.4
166	16:30:00	0.4
167	16:31:00	0.4
168	16:32:00	0.4
169	16:33:00	0.4
170	16:34:00	0.4
171	16:35:00	0.4
172	16:36:00	0.4
173	16:37:00	0.4
174	16:38:00	0.4
175	16:39:00	0.4
176	16:40:00	0.4
177	16:41:00	0.4
178	16:42:00	0.4
179	16:43:00	0.4
180	16:44:00	0.4
181	16:45:00	0.4
182	16:46:00	0.4
183	16:47:00	0.4
184	16:48:00	0.4
185	16:49:00	0.4
186	16:50:00	0.4
187	16:51:00	0.4
188	16:52:00	0.4
189	16:53:00	0.4
190	16:54:00	0.4
191	16:55:00	0.4
192	16:56:00	0.4
193	16:57:00	0.4
194	16:58:00	0.4
195	16:59:00	0.4
196	17:00:00	0.4
197	17:01:00	0.4
198	17:02:00	0.4
199	17:03:00	0.4
200	17:04:00	0.4
201	17:05:00	0.4

the second of th

202	17:06:00	0.4
203	17:07:00	0.4
204	17:08:00	0.4
205	17:09:00	0.4
206	17:10:00	0.4
207	17:11:00	0.4
208	17:12:00	0.4
209	17:13:00	0.4
210	17:14:00	0.4
211	17:15:00	0.4
212	17:16:00	0.3
213	17:17:00	0.4
214	17:18:00	0.3
215	17:19:00	0.3
216	17:20:00	0.3
217	17:20:00	0.3
218	17:22:00	
219		0.3
	17:23:00	0.3
220	17:24:00	0.3
221	17:25:00	0.3
222	17:26:00	0.3
223	17:27:00	0.3
224	17:28:00	0.3
225	17:29:00	0.3
226	17:30:00	0.3
227	17:31:00	0.3
228	17:32:00	0.3
229	17:33:00	0.3
230	17:34:00	0.3
231	17:35:00	0.3
232	17:36:00	0.4
233	17:37:00	0.4
234	17:38:00	0.4
235	17:39:00	0.4
236	17:40:00	0.4
237	17:41:00	0.4
238	17:42:00	0.4
239	17:43:00	0.4
240	17:44:00	0.4
241	17:45:00	0.4
242	17:46:00	0.4
243	17:47:00	0.4
244	17:48:00	0.4
245	17:49:00	0.4
246	17:50:00	0.4
247	17:51:00	0.4
248	17:52:00	0.4
249	17:53:00	0.4
250	17:54:00	0.4
251	17:55:00	0.4
252	17:56:00	0.4
253	17:57:00	0.4
F		

254	17:58:00	0.4
255	17:59:00	0.4
256	18:00:00	0.4
257	18:01:00	0.4
258	18:02:00	0.4
259	18:03:00	0.4
260	18:04:00	0.4
261	18:05:00	0.4
262	18:06:00	0.4
263	18:07:00	0.4
264	18:08:00	0.4
265	18:09:00	0.4
266	18:10:00	0.4
267	18:11:00	0.4
268	18:12:00	0.4
269	18:13:00	0.4
270	18:14:00	0.4
271	18:15:00	0.4
272	18:16:00	0.4
273	18:17:00	0.4
274	18:18:00	0.4
275	18:19:00	0.4
276	18:20:00	0.4
277	18:21:00	0.4
		0.4
278	18:22:00	
279	18:23:00	0.4
280	18:24:00	0.4
281	18:25:00	0.4
282	18:26:00	0.4
283	18:27:00	0.4
284	18:28:00	0.4
285	18:29:00	0.4
286	18:30:00	0.4
287	18:31:00	0.5
288	18:32:00	0.5
289	18:33:00	
290	18:34:00	0.5
291	18:35:00	0.5
292	18:36:00	0.5
293	18:37:00	0.5
294	18:38:00	0.5
295	18:39:00	0.5
296	18:40:00	0.5
297	18:41:00	0.5
298	18:42:00	0.5
299	18:43:00	0.5
300	18:44:00	0.5
301	18:45:00	0.5
302	18:46:00	0.5
303	18:47:00	0.5
304	18:48:00	0.5
305	18:49:00	0.5

f*

306	18:50:00	0.5
307	18:51:00	0.5
308	18:52:00	0.5
309	18:53:00	0.5
310	18:54:00	0.5
311	18:55:00	0.5
312	18:56:00	0.5
313	18:57:00	0.5
314	18:58:00	0.5
315	18:59:00	0.5
316	19:00:00	0.5
317	19:01:00	0.5
318	19:02:00	0.5
319	19:03:00	0.4
320	19:04:00	0.4
321	19:05:00	0.4
322	19:06:00	0.4
323	19:07:00	0.4
324	19:08:00	0.4
325	19:09:00	0.4
326	19:10:00	0.4
327	19:11:00	0.4
328	19:12:00	0.4
329	19:13:00	0.4
330	19:14:00	0.4
331	19:15:00	0.4
332	19:16:00	0.4
333	19:17:00	0.4
334	19:18:00	0.4
335	19:19:00	0.4
336	19:20:00	0.4
337	19:21:00	0.4
338	19:22:00	0.4
339	19:23:00	0.4
340	19:24:00	0.4
341	19:25:00	
342	19:26:00	0.4
343	19:27:00	0.4
344	19:28:00	0.4
345	19:29:00	0.4
346	19:30:00	0.4
347	19:31:00	0.4
348	19:32:00	0.4
349	19:33:00	0.4
350	19:34:00	0.4
351	19:35:00	0.4
352	19:36:00	0.4
353	19:37:00	0.4
354	19:38:00	0.4
355	19:39:00	0.4
356	19:40:00	0.4
357	19:40:00	0.4
	13.41.00	0.4

358	19:42:00	0.4
359	19:43:00	0.4
360	19:44:00	0.4
361	19:45:00	0.4
362	19:46:00	0.4
363	19:47:00	0.4
364	19:48:00	0.4
365	19:49:00	0.4
366	19:50:00	0.4
367	19:51:00	0.4
368	19:52:00	0.5
369	19:53:00	0.5
370	19:54:00	0.5
371	19:55:00	0.5
372	19:56:00	0.5
373	19:57:00	0.5
374	19:58:00	0.5
375	19:59:00	0.5
376	20:00:00	0.5
377	20:01:00	0.5
378	20:02:00	0.5
379	20:03:00	0.5
380	20:04:00	0.5
381	20:05:00	0.5
382	20:06:00	0.5
383	20:07:00	0.5
384	20:08:00	0.5
385	20:09:00	0.5
386	20:10:00	0.5
387	20:11:00	0.5
388	20:12:00	0.5
389	20:13:00	0.5
390	20:14:00	0.5
391	20:15:00	0.5
392	20:16:00	0.5
393	20:17:00	0.5
394	20:18:00	0.5
395	20:19:00	0.5
396	20:20:00	0.5
397	20:21:00	0.5
398	20:22:00	0.5
399	20:23:00	0.6
400	20:24:00	0.6
401	20:25:00	0.6
402	20:26:00	0.6
403	20:27:00	0.6
404	20:28:00	0.6
405	20:29:00	0.6
406	20:30:00	0.6
407	20:31:00	0.6
408	20:32:00	0.6
40 9	20:33:00	0.6

.

411 20:35:00 0.6 412 20:36:00 0.6 413 20:37:00 0.6 414 20:38:00 0.6 415 20:39:00 0.6 416 20:40:00 0.6 417 20:41:00 0.6 418 20:42:00 0.6 419 20:43:00 0.6 420 20:44:00 0.6 421 20:45:00 0.6 422 20:46:00 0.6 423 20:47:00 0.6 424 20:48:00 0.6 425 20:49:00 0.6 426 20:50:00 0.6 427 20:51:00 0.6 428 20:52:00 0.6 429 20:53:00 0.6 431 20:55:00 0.6 432 20:56:00 0.6 433 20:57:00 0.6 434 20:58:00 0.6 435 2			
412 20:36:00 0.6 413 20:37:00 0.6 414 20:38:00 0.6 415 20:39:00 0.6 416 20:40:00 0.6 417 20:41:00 0.6 418 20:42:00 0.6 419 20:43:00 0.6 420 20:44:00 0.6 421 20:45:00 0.6 422 20:46:00 0.6 423 20:47:00 0.6 424 20:48:00 0.6 425 20:49:00 0.6 426 20:50:00 0.6 427 20:51:00 0.6 428 20:52:00 0.6 429 20:53:00 0.6 431 20:55:00 0.6 432 20:54:00 0.6 433 20:55:00 0.6 434 20:58:00 0.6 433 20:59:00 0.6 434 2	410	20:34:00	0.6
413 20:37:00 0.6 414 20:38:00 0.6 415 20:39:00 0.6 416 20:40:00 0.6 417 20:41:00 0.6 418 20:42:00 0.6 419 20:43:00 0.6 420 20:44:00 0.6 421 20:45:00 0.6 422 20:46:00 0.6 423 20:47:00 0.6 424 20:48:00 0.6 425 20:49:00 0.6 426 20:50:00 0.6 427 20:51:00 0.6 428 20:52:00 0.6 429 20:53:00 0.6 430 20:54:00 0.6 431 20:55:00 0.6 432 20:56:00 0.6 433 20:57:00 0.6 434 20:58:00 0.6 435 20:59:00 0.6 436 2			0.6
414 20:38:00 0.6 415 20:39:00 0.6 416 20:40:00 0.6 417 20:41:00 0.6 418 20:42:00 0.6 419 20:43:00 0.6 420 20:44:00 0.6 421 20:45:00 0.6 422 20:46:00 0.6 423 20:47:00 0.6 424 20:48:00 0.6 425 20:49:00 0.6 426 20:50:00 0.6 427 20:51:00 0.6 428 20:52:00 0.6 429 20:53:00 0.6 430 20:54:00 0.6 431 20:55:00 0.6 432 20:56:00 0.6 433 20:57:00 0.6 434 20:58:00 0.6 435 20:59:00 0.6 437 21:01:00 0.6 438 2	412	20:36:00	0.6
415 20:39:00 0.6 416 20:40:00 0.6 417 20:41:00 0.6 418 20:42:00 0.6 419 20:43:00 0.6 420 20:44:00 0.6 421 20:45:00 0.6 422 20:46:00 0.6 423 20:47:00 0.6 424 20:48:00 0.6 425 20:49:00 0.6 426 20:50:00 0.6 427 20:51:00 0.6 428 20:52:00 0.6 429 20:53:00 0.6 430 20:54:00 0.6 431 20:55:00 0.6 432 20:56:00 0.6 433 20:57:00 0.6 434 20:58:00 0.6 435 20:59:00 0.6 436 21:00:00 0.6 437 21:01:00 0.6 439 2		20:37:00	0.6
416 20:40:00 0.6 417 20:41:00 0.6 418 20:42:00 0.6 419 20:43:00 0.6 420 20:44:00 0.6 421 20:45:00 0.6 422 20:46:00 0.6 423 20:47:00 0.6 424 20:48:00 0.6 425 20:49:00 0.6 426 20:50:00 0.6 427 20:51:00 0.6 428 20:52:00 0.6 429 20:53:00 0.6 430 20:54:00 0.6 431 20:55:00 0.6 432 20:56:00 0.6 433 20:57:00 0.6 434 20:58:00 0.6 435 20:59:00 0.6 436 21:00:00 0.6 437 21:01:00 0.6 439 21:03:00 0.6 440 2	414	20:38:00	0.6
417 20:41:00 0.6 418 20:42:00 0.6 419 20:43:00 0.6 420 20:44:00 0.6 421 20:45:00 0.6 422 20:46:00 0.6 423 20:47:00 0.6 424 20:48:00 0.6 425 20:49:00 0.6 426 20:50:00 0.6 427 20:51:00 0.6 428 20:52:00 0.6 429 20:53:00 0.6 430 20:54:00 0.6 431 20:55:00 0.6 432 20:56:00 0.6 433 20:57:00 0.6 434 20:58:00 0.6 435 20:59:00 0.6 436 21:00:00 0.6 437 21:01:00 0.6 438 21:02:00 0.6 439 21:03:00 0.6 441 2	415	20:39:00	0.6
418 20:42:00 0.6 419 20:43:00 0.6 420 20:44:00 0.6 421 20:45:00 0.6 422 20:46:00 0.6 423 20:47:00 0.6 424 20:48:00 0.6 425 20:49:00 0.6 426 20:50:00 0.6 427 20:51:00 0.6 428 20:52:00 0.6 429 20:53:00 0.6 430 20:54:00 0.6 431 20:55:00 0.6 432 20:56:00 0.6 433 20:57:00 0.6 434 20:58:00 0.6 435 20:59:00 0.6 436 21:00:00 0.6 437 21:01:00 0.6 438 21:02:00 0.6 439 21:03:00 0.6 441 21:05:00 0.6 442 2	416	20:40:00	0.6
419 20:43:00 0.6 420 20:44:00 0.6 421 20:45:00 0.6 422 20:46:00 0.6 423 20:47:00 0.6 424 20:48:00 0.6 425 20:49:00 0.6 426 20:50:00 0.6 427 20:51:00 0.6 428 20:52:00 0.6 429 20:53:00 0.6 430 20:54:00 0.6 431 20:55:00 0.6 432 20:56:00 0.6 433 20:57:00 0.6 434 20:58:00 0.6 435 20:59:00 0.6 436 21:00:00 0.6 437 21:01:00 0.6 439 21:03:00 0.6 440 21:04:00 0.6 441 21:05:00 0.6 442 21:06:00 0.6 443 2	417	20:41:00	0.6
420 20:44:00 0.6 421 20:45:00 0.6 422 20:46:00 0.6 423 20:47:00 0.6 424 20:48:00 0.6 425 20:49:00 0.6 426 20:50:00 0.6 427 20:51:00 0.6 428 20:52:00 0.6 429 20:53:00 0.6 430 20:54:00 0.6 431 20:55:00 0.6 432 20:56:00 0.6 433 20:57:00 0.6 434 20:58:00 0.6 435 20:59:00 0.6 436 21:00:00 0.6 437 21:01:00 0.6 438 21:02:00 0.6 439 21:03:00 0.6 441 21:05:00 0.6 442 21:06:00 0.6 443 21:07:00 0.6 444 2		20:42:00	0.6
421 20:45:00 0.6 422 20:46:00 0.6 423 20:47:00 0.6 424 20:48:00 0.6 425 20:49:00 0.6 426 20:50:00 0.6 427 20:51:00 0.6 428 20:52:00 0.6 429 20:53:00 0.6 430 20:54:00 0.6 431 20:55:00 0.6 432 20:56:00 0.6 433 20:57:00 0.6 434 20:58:00 0.6 435 20:59:00 0.6 436 21:00:00 0.6 437 21:01:00 0.6 438 21:02:00 0.6 439 21:03:00 0.6 440 21:04:00 0.6 441 21:05:00 0.6 442 21:06:00 0.6 443 21:07:00 0.6 444 2	419	20:43:00	0.6
422 20:46:00 0.6 423 20:47:00 0.6 424 20:48:00 0.6 425 20:49:00 0.6 426 20:50:00 0.6 427 20:51:00 0.6 428 20:52:00 0.6 429 20:53:00 0.6 430 20:54:00 0.6 431 20:55:00 0.6 432 20:56:00 0.6 433 20:57:00 0.6 434 20:58:00 0.6 435 20:59:00 0.6 436 21:00:00 0.6 437 21:01:00 0.6 438 21:02:00 0.6 439 21:03:00 0.6 440 21:04:00 0.6 441 21:05:00 0.6 442 21:06:00 0.6 443 21:07:00 0.6 444 21:08:00 0.6 445 2	420	20:44:00	0.6
423 20:47:00 0.6 424 20:48:00 0.6 425 20:49:00 0.6 426 20:50:00 0.6 427 20:51:00 0.6 428 20:52:00 0.6 429 20:53:00 0.6 430 20:54:00 0.6 431 20:55:00 0.6 432 20:56:00 0.6 433 20:57:00 0.6 434 20:58:00 0.6 435 20:59:00 0.6 436 21:00:00 0.6 437 21:01:00 0.6 438 21:02:00 0.6 439 21:03:00 0.6 441 21:05:00 0.6 442 21:06:00 0.6 443 21:07:00 0.6 444 21:08:00 0.6 444 21:09:00 0.6 445 21:10:00 0.6 447 2	421	20:45:00	0.6
424 20:48:00 0.6 425 20:49:00 0.6 426 20:50:00 0.6 427 20:51:00 0.6 428 20:52:00 0.6 429 20:53:00 0.6 430 20:54:00 0.6 431 20:55:00 0.6 432 20:56:00 0.6 433 20:57:00 0.6 434 20:58:00 0.6 435 20:59:00 0.6 436 21:00:00 0.6 437 21:01:00 0.6 438 21:02:00 0.6 439 21:03:00 0.6 440 21:04:00 0.6 441 21:05:00 0.6 442 21:06:00 0.6 443 21:07:00 0.6 444 21:08:00 0.6 445 21:09:00 0.6 446 21:10:00 0.6 447 2	422	20:46:00	0.6
425 20:49:00 0.6 426 20:50:00 0.6 427 20:51:00 0.6 428 20:52:00 0.6 429 20:53:00 0.6 430 20:54:00 0.6 431 20:55:00 0.6 432 20:56:00 0.6 433 20:57:00 0.6 434 20:58:00 0.6 435 20:59:00 0.6 436 21:00:00 0.6 437 21:01:00 0.6 438 21:02:00 0.6 439 21:03:00 0.6 440 21:04:00 0.6 441 21:05:00 0.6 442 21:06:00 0.6 443 21:07:00 0.6 444 21:08:00 0.6 445 21:09:00 0.6 446 21:10:00 0.6 447 21:11:00 0.6 448 2	423	20:47:00	0.6
426 20:50:00 0.6 427 20:51:00 0.6 428 20:52:00 0.6 429 20:53:00 0.6 430 20:54:00 0.6 431 20:55:00 0.6 432 20:56:00 0.6 433 20:57:00 0.6 434 20:58:00 0.6 435 20:59:00 0.6 436 21:00:00 0.6 437 21:01:00 0.6 438 21:02:00 0.6 439 21:03:00 0.6 440 21:04:00 0.6 441 21:05:00 0.6 442 21:06:00 0.6 443 21:07:00 0.6 444 21:08:00 0.6 445 21:09:00 0.6 446 21:10:00 0.6 447 21:11:00 0.6 448 21:12:00 0.6 449 2	424	20:48:00	0.6
427 20:51:00 0.6 428 20:52:00 0.6 429 20:53:00 0.6 430 20:54:00 0.6 431 20:55:00 0.6 432 20:56:00 0.6 433 20:57:00 0.6 434 20:58:00 0.6 435 20:59:00 0.6 436 21:00:00 0.6 437 21:01:00 0.6 438 21:02:00 0.6 439 21:03:00 0.6 440 21:04:00 0.6 441 21:05:00 0.6 442 21:06:00 0.6 443 21:07:00 0.6 444 21:08:00 0.6 444 21:09:00 0.6 445 21:10:00 0.6 446 21:10:00 0.6 447 21:11:00 0.6 448 21:12:00 0.6 449 2	425	20:49:00	0.6
428 20:52:00 0.6 429 20:53:00 0.6 430 20:54:00 0.6 431 20:55:00 0.6 432 20:56:00 0.6 433 20:57:00 0.6 434 20:58:00 0.6 435 20:59:00 0.6 436 21:00:00 0.6 437 21:01:00 0.6 438 21:02:00 0.6 439 21:03:00 0.6 440 21:04:00 0.6 441 21:05:00 0.6 442 21:06:00 0.6 443 21:07:00 0.6 444 21:08:00 0.6 445 21:09:00 0.6 446 21:10:00 0.6 447 21:11:00 0.6 448 21:12:00 0.6 449 21:13:00 0.6	426	20:50:00	0.6
429 20:53:00 0.6 430 20:54:00 0.6 431 20:55:00 0.6 432 20:56:00 0.6 433 20:57:00 0.6 434 20:58:00 0.6 435 20:59:00 0.6 436 21:00:00 0.6 437 21:01:00 0.6 438 21:02:00 0.6 439 21:03:00 0.6 440 21:04:00 0.6 441 21:05:00 0.6 442 21:06:00 0.6 443 21:07:00 0.6 444 21:08:00 0.6 445 21:09:00 0.6 446 21:10:00 0.6 447 21:11:00 0.6 448 21:12:00 0.6 449 21:13:00 0.6	427	20:51:00	0.6
430 20:54:00 0.6 431 20:55:00 0.6 432 20:56:00 0.6 433 20:57:00 0.6 434 20:58:00 0.6 435 20:59:00 0.6 436 21:00:00 0.6 437 21:01:00 0.6 438 21:02:00 0.6 439 21:03:00 0.6 440 21:04:00 0.6 441 21:05:00 0.6 442 21:06:00 0.6 443 21:07:00 0.6 444 21:08:00 0.6 445 21:09:00 0.6 446 21:10:00 0.6 447 21:11:00 0.6 448 21:12:00 0.6 449 21:13:00 0.6	428	20:52:00	0.6
431 20:55:00 0.6 432 20:56:00 0.6 433 20:57:00 0.6 434 20:58:00 0.6 435 20:59:00 0.6 436 21:00:00 0.6 437 21:01:00 0.6 438 21:02:00 0.6 439 21:03:00 0.6 440 21:04:00 0.6 441 21:05:00 0.6 442 21:06:00 0.6 443 21:07:00 0.6 444 21:08:00 0.6 445 21:09:00 0.6 446 21:10:00 0.6 447 21:11:00 0.6 448 21:12:00 0.6 449 21:13:00 0.6	429	20:53:00	0.6
432 20:56:00 0.6 433 20:57:00 0.6 434 20:58:00 0.6 435 20:59:00 0.6 436 21:00:00 0.6 437 21:01:00 0.6 438 21:02:00 0.6 439 21:03:00 0.6 440 21:04:00 0.6 441 21:05:00 0.6 442 21:06:00 0.6 443 21:07:00 0.6 444 21:08:00 0.6 445 21:09:00 0.6 446 21:10:00 0.6 447 21:11:00 0.6 448 21:12:00 0.6 449 21:13:00 0.6	430	20:54:00	0.6
433 20:57:00 0.6 434 20:58:00 0.6 435 20:59:00 0.6 436 21:00:00 0.6 437 21:01:00 0.6 438 21:02:00 0.6 439 21:03:00 0.6 440 21:04:00 0.6 441 21:05:00 0.6 442 21:06:00 0.6 443 21:07:00 0.6 444 21:08:00 0.6 445 21:09:00 0.6 446 21:10:00 0.6 447 21:11:00 0.6 448 21:12:00 0.6 449 21:13:00 0.6	431	20:55:00	0.6
434 20:58:00 0.6 435 20:59:00 0.6 436 21:00:00 0.6 437 21:01:00 0.6 438 21:02:00 0.6 439 21:03:00 0.6 440 21:04:00 0.6 441 21:05:00 0.6 442 21:06:00 0.6 443 21:07:00 0.6 444 21:08:00 0.6 445 21:09:00 0.6 446 21:10:00 0.6 447 21:11:00 0.6 448 21:12:00 0.6 449 21:13:00 0.6	432	20:56:00	0.6
435 20:59:00 0.6 436 21:00:00 0.6 437 21:01:00 0.6 438 21:02:00 0.6 439 21:03:00 0.6 440 21:04:00 0.6 441 21:05:00 0.6 442 21:06:00 0.6 443 21:07:00 0.6 444 21:08:00 0.6 445 21:09:00 0.6 446 21:10:00 0.6 447 21:11:00 0.6 448 21:12:00 0.6 449 21:13:00 0.6	433	20:57:00	0.6
436 21:00:00 0.6 437 21:01:00 0.6 438 21:02:00 0.6 439 21:03:00 0.6 440 21:04:00 0.6 441 21:05:00 0.6 442 21:06:00 0.6 443 21:07:00 0.6 444 21:08:00 0.6 445 21:09:00 0.6 446 21:10:00 0.6 447 21:11:00 0.6 448 21:12:00 0.6 449 21:13:00 0.6	434	20:58:00	0.6
437 21:01:00 0.6 438 21:02:00 0.6 439 21:03:00 0.6 440 21:04:00 0.6 441 21:05:00 0.6 442 21:06:00 0.6 443 21:07:00 0.6 444 21:08:00 0.6 445 21:09:00 0.6 446 21:10:00 0.6 447 21:11:00 0.6 448 21:12:00 0.6 449 21:13:00 0.6		20:59:00	0.6
438 21:02:00 0.6 439 21:03:00 0.6 440 21:04:00 0.6 441 21:05:00 0.6 442 21:06:00 0.6 443 21:07:00 0.6 444 21:08:00 0.6 445 21:09:00 0.6 446 21:10:00 0.6 447 21:11:00 0.6 448 21:12:00 0.6 449 21:13:00 0.6	436	21:00:00	0.6
439 21:03:00 0.6 440 21:04:00 0.6 441 21:05:00 0.6 442 21:06:00 0.6 443 21:07:00 0.6 444 21:08:00 0.6 445 21:09:00 0.6 446 21:10:00 0.6 447 21:11:00 0.6 448 21:12:00 0.6 449 21:13:00 0.6	437	21:01:00	0.6
440 21:04:00 0.6 441 21:05:00 0.6 442 21:06:00 0.6 443 21:07:00 0.6 444 21:08:00 0.6 445 21:09:00 0.6 446 21:10:00 0.6 447 21:11:00 0.6 448 21:12:00 0.6 449 21:13:00 0.6	438	21:02:00	0.6
441 21:05:00 0.6 442 21:06:00 0.6 443 21:07:00 0.6 444 21:08:00 0.6 445 21:09:00 0.6 446 21:10:00 0.6 447 21:11:00 0.6 448 21:12:00 0.6 449 21:13:00 0.6	439	21:03:00	0.6
442 21:06:00 0.6 443 21:07:00 0.6 444 21:08:00 0.6 445 21:09:00 0.6 446 21:10:00 0.6 447 21:11:00 0.6 448 21:12:00 0.6 449 21:13:00 0.6	440	21:04:00	0.6
443 21:07:00 0.6 444 21:08:00 0.6 445 21:09:00 0.6 446 21:10:00 0.6 447 21:11:00 0.6 448 21:12:00 0.6 449 21:13:00 0.6	441	21:05:00	0.6
444 21:08:00 0.6 445 21:09:00 0.6 446 21:10:00 0.6 447 21:11:00 0.6 448 21:12:00 0.6 449 21:13:00 0.6	442	21:06:00	0.6
445 21:09:00 0.6 446 21:10:00 0.6 447 21:11:00 0.6 448 21:12:00 0.6 449 21:13:00 0.6	443	21:07:00	0.6
446 21:10:00 0.6 447 21:11:00 0.6 448 21:12:00 0.6 449 21:13:00 0.6	444	21:08:00	0.6
447 21:11:00 0.6 448 21:12:00 0.6 449 21:13:00 0.6	445	21:09:00	0.6
448 21:12:00 0.6 449 21:13:00 0.6			0.6
449 21:13:00 0.6	447		0.6
	448	21:12:00	0.6
	4.4		0.6
450 21:14:00 0.6	450	21:14:00	0.6

.47

Instrument: MiniRAE 2000 (PGM7600)
Data Points: 136 Sample Period: 60 sec Serial Number: 005431

Last Calibration Time: 11/28/2006 13:59 Gas Name: Isobutylene

Date: 12/1/2006

		Avg(ppm)
Line#	Time	STEL
1	13:54:00	0
2	13:55:00	0
3	13:56:00	0
4	13:57:00	0
5	13:58:00	0
6	13:59:00	0
7	14:00:00	0
8	14:01:00	0.1
9	14:02:00	0.1
10	14:03:00	0.1
11	14:04:00	0.1
12	14:05:00	0.1
13	14:06:00	0.1
14	14:07:00	0.1
15	14:08:00	0.2
16	14:09:00	0.2
17	14:10:00	0.2
18	14:11:00	0.2
19	14:12:00	0.2
20	14:13:00	0.2
21	14:14:00	0.2
22	14:15:00	0.3
23	14:16:00	0.3
24	14:17:00	0.3
25	14:18:00	0.3
26	14:19:00	0.3
27	14:20:00	0.3
28	14:21:00	0.3
29	14:22:00	0.4
30	14:23:00	0.4
31	14:24:00	0.4
32	14:25:00	0.4
33	14:26:00	0.4
34	14:27:00	0.4
35	14:28:00	0.4
36	14:29:00	0.4
37	14:30:00	0.4
38	14:31:00	0.4
39	14:32:00	0.4
40	14:33:00	0.4
41	14:34:00	0.4
42	14:35:00	0.4
43	14:36:00	0.4
44	14:37:00	0.4
45	14:37:00	0.4
_ + 3	17.00.00	U. 4

46	14:39:00	0.4
47	14:40:00	0.4
48	14:41:00	0.4
49	14:42:00	0.4
50	14:43:00	0.4
51	14:44:00	0.4
52	14:45:00	0.4
53	14:46:00	0.4
54	14:47:00	0.4
55	14:48:00	0.4
56	14:49:00	0.4
57	14:50:00	0.4
58	14:51:00	0.4
59	14:52:00	0.4
60	14:53:00	0.4
61	14:54:00	0.4
62	14:55:00	0.4
63	14:56:00	0.4
64	14:57:00	0.4
65	14:58:00	0.4
66	14:59:00	0.4
67	15:00:00	0.3
68		
	15:01:00	0.3
69	15:02:00	0.3 0.3
70 71	15:03:00	
	15:04:00	0.3
72	15:05:00	0.3
73	15:06:00	0.3 0.3
74	15:07:00	
75	15:08:00	0.3
76	15:09:00	0.3
77	15:10:00	0.3
78	15:11:00	0.3
79	15:12:00	0.3
80	15:13:00	0.3
81	15:14:00	
82	15:15:00	0.3
83	15:16:00	0.3
84	15:17:00	0.2
85	15:18:00	0.2
86	15:19:00	0.2
87	15:20:00	0.2
88	15:21:00	0.2
89	15:22:00	0.2
90	15:23:00	0.2
91	15:24:00	0.2
92	15:25:00	0.2
93	15:26:00	0.2
94	15:27:00	0.2
95	15:28:00	0.2
96	15:29:00	0.2
97	15:30:00	0.2

.

98	15:31:00	
99	15:32:00	
100	15:33:00	0.2
101	15:34:00	0.2
102	15:35:00	0.2
103	15:36:00	0.2
104	15:37:00	0.2
105	15:38:00	0.2
106	15:39:00	0.2
107	15:40:00	0.2
108	15:41:00	0.2
109	15:42:00	0.2
110	15:43:00	0.2
111	15:44:00	0.2
112	15:45:00	0.2
113	15:46:00	0.2 .
114	15:47:00	0.2
115	15:48:00	0.2
116	15:49:00	0.2
117	15:50:00	0.2
118	15:51:00	0.2
119	15:52:00	0.2
120	15:53:00	0.2
121	15:54:00	0.2
122	15:55:00	0.2
123	15:56:00	0.2
124	15:57:00	0.2
125	15:58:00	0.2
126	15:59:00	0.2
127	16:00:00	0.2
128	16:01:00	0.2
129	16:02:00	0.2
130	16:03:00	0.2
131	16:04:00	0.2
132	16:05:00	0.2
133	16:06:00	0.2
134	16:07:00	0.2
135	16:08:00	0.2
136	16:09:00	0.2

Serial Number: 005431

Instrument: MiniRAE 2000 (PGM7600)
Data Points: 7 Sample Period: 60 sec

Last Calibration Time: 11/28/2006 13:59 Gas Name: Isobutylene

Date: 12/1/2006

Line#	Time	Avg(ppm) STEL
1	19:39:00	0
2	19:40:00	0
3	19:41:00	0
4	19:42:00	0
5	19:43:00	0

6	19:44:00	0
7	19:45:00	0

.

X*

Instrument: MiniRAE 2000 (PGM7600) Serial Number: 005431

Data Points: 2 Sample Period: 60 sec

Last Calibration Time: 11/28/2006 13:59 Gas Name: Isobutylene

Date: 12/4/2006

Line#	Time	Avg(ppm) STEL
11	13:51:00	0
2	13:52:00	0

Instrument: MiniRAE 2000 (PGM7600) Serial Number: 005431

Data Points: 491 Sample Period: 60 sec

Last Calibration Time: 12/4/2006 13:56 Gas Name: Isobutylene

Date: 12/4/2006

		Avg(ppm)
Line#	Time	STEL
1	13:57:00	0
2	13:58:00	0
3	13:59:00	0
4	14:00:00	0
5	14:01:00	0
6	14:02:00	0
7	14:03:00	0
8	14:04:00	0
9	14:05:00	0
10	14:06:00	0
11	14:07:00	0
12	14:08:00	0
13	14:09:00	0
14	14:10:00	0
15	14:11:00	0
16	14:12:00	0
17	14:13:00	0
18	14:14:00	0
19	14:15:00	0
20	14:16:00	0
21	14:17:00	0
22	14:18:00	0
23	14:19:00	0
24	14:20:00	0
25	14:21:00	0
26	14:22:00	0
27	14:23:00	0
28	14:24:00	0
29	14:25:00	0
30	14:26:00	0
31	14:27:00	0
32	14:28:00	0
33	14:29:00	0
34	14:30:00	0
35	14:31:00	0

36	14:32:00	0
37	14:33:00	0
38	14:34:00	0
39	14:35:00	0
40	14:36:00	0
41	14:37:00	0
42	14:38:00	0
43	14:39:00	0
44	14:40:00	0
45	14:41:00	0
46	14:42:00	0
47	14:43:00	0
48	14:44:00	0
49	14:45:00	0
50	14:46:00	0
51	14:47:00	0
52	14:48:00	0
53	14:49:00	0
54	14:50:00	0
55	14:51:00	
	14:51:00	0
56	14:52:00	0
57	~~~	0
58	14:54:00	0
59	14:55:00	0
60	14:56:00	0
61	14:57:00	0
62	14:58:00	0
63	14:59:00	0
64	15:00:00	0
65	15:01:00	0
66	15:02:00	0
67	15:03:00	0
68	15:04:00	0
69	15:05:00	0
70	15:06:00	0
71	15:07:00	0
72	15:08:00	0
73	15:09:00	0
74	15:10:00	0
75	15:11:00	0
76	15:12:00	0
77	15:13:00	0
78	15:14:00	0
79	15:15:00	0
80	15:16:00	0
81	15:17:00	0
82	15:18:00	0
83	15:19:00	0
84	15:20:00	0
85	15:21:00	0
86	15:22:00	0
87	15:23:00	0
<u> </u>	10.40.00	U

88	15:24:00	0
89	15:25:00	0
90	15:26:00	0
91	15:27:00	0
92	15:28:00	0
93	15:29:00	0
94	15:30:00	0
95	15:31:00	0
96	15:32:00	0
97	15:33:00	0
98	15:34:00	0
99	15:35:00	0
100	15:36:00	0
101	15:37:00	0
102	15:38:00	0
103	15:39:00	0
103		0
	15:40:00	
105	15:41:00	0
106	15:42:00	0
107	15:43:00	0
108	15:44:00	0
109	15:45:00	0
110	15:46:00	0
111	15:47:00	0
112	15:48:00	0
113	15:49:00	0
114	15:50:00	0
115	15:51:00	0
116	15:52:00	0
117	15:53:00	0
118	15:54:00	0
119	15:55:00	0
120	15:56:00	0
121	15:57:00	0
122	15:58:00	0
123	15:59:00	0
124	16:00:00	0
125	16:01:00	0
126	16:02:00	0
127	16:03:00	0
128	16:04:00	0
129	16:05:00	0
130	16:06:00	0
131	16:07:00	0
132	16:08:00	ō
133	16:09:00	0
134	16:10:00	0
135	16:11:00	0
136	16:12:00	0
137	16:13:00	0
138	16:14:00	0
139	16:14:00	0
199	10.15.00	U

en de la companya de la companya de la companya de la companya de la companya de la companya de la companya de La companya de la companya de la companya de la companya de la companya de la companya de la companya de la co

140	16:16:00	0
141	16:17:00	0
142	16:18:00	0
143	16:19:00	0
144	16:20:00	0
145	16:21:00	0
146	16:22:00	0
147	16:23:00	0
148	16:24:00	0
149	16:25:00	0
150	16:26:00	0
151	16:27:00	0
152	16:28:00	0
153	16:29:00	0
154	16:30:00	0
155	16:31:00	0
156	16:32:00	0
157	16:33:00	0
158	16:34:00	0
159	16:35:00	0
160	16:36:00	0
161	16:37:00	0
162	16:38:00	0
163	16:39:00	0
164	16:40:00	0
165	16:41:00	0
166	16:42:00	0
167	16:43:00	0
168	16:44:00	0
169	16:45:00	0
170	16:46:00	0
171	16:47:00	0
172	16:48:00	0
173	16:49:00	0
174	16:50:00	0
175	16:51:00	0
176	16:52:00	0
177	16:53:00	0
178	16:54:00	0
179	16:55:00	0
180	16:56:00	0
181	16:57:00	0
182	16:58:00	0
183	16:59:00	0
184	17:00:00	0
185	17:01:00	0
186	17:02:00	0
187	17:03:00	0
188	17:04:00	0
189	17:05:00	0
190	17:06:00	0
191	17:07:00	0

•

192	17:08:00	0
193	17:09:00	0
194	17:10:00	0
195	17:11:00	0
196	17:12:00	0
197	17:13:00	0
198	17:14:00	0
199	17:15:00	0
200	17:16:00	0
201	17:17:00	0
202	17:18:00	0
203	17:19:00	0
204	17:20:00	0
205	17:21:00	0
206	17:22:00	0
207	17:23:00	0
208	17:24:00	0
209	17:25:00	0
210	17:26:00	0
211	17:27:00	0
212	17:28:00	0
213	17:29:00	0
214	17:30:00	0
215	17:31:00	0
216	17:32:00	0
217	17:33:00	0
218	17:34:00	0
219	17:35:00	0
220	17:36:00	0
221	17:37:00	0
222	17:38:00	0
223	17:39:00	0
224	17:40:00	0
225	17:41:00	0
226	17:42:00	0
227	17:43:00	0
228	17:44:00	0
229	17:45:00	0
230	17:46:00	0
231	17:47:00	0
232	17:48:00	0
233	17:49:00	0
234	17:50:00	0
235	17:51:00	0
236	17:52:00	0
237	17:53:00	0
238	17:54:00	0
239		0
240	17:55:00	0
	17:56:00	
241	17:57:00	0
242	17:58:00	0
243	17:59:00	0

244	18:00:00	0
245	18:01:00	0
246	18:02:00	0
247	18:03:00	0
248	18:04:00	0
249	18:05:00	0
250	18:06:00	0
251	18:07:00	ő
252	18:08:00	0
253	18:09:00	0
254	18:10:00	0
255	18:11:00	0
256		0
	18:12:00	0
257	18:13:00	
258	18:14:00	0 0
259	18:15:00	
260	18:16:00	0
261	18:17:00	0
262	18:18:00	0
263	18:19:00	0
264	18:20:00	0
265	18:21:00	0
266	18:22:00	0
267	18:23:00	0
268	18:24:00	0
269	18:25:00	0
270	18:26:00	0
271	18:27:00	0
272	18:28:00	0
273	18:29:00	0
274	18:30:00	0
275	18:31:00	0
276	18:32:00	0
277	18:33:00	0
278	18:34:00	0
279	18:35:00	0
280	18:36:00	Ö
281	18:37:00	0
282	18:38:00	0
283	18:39:00	0
284	18:40:00	0
285	18:41:00	0
286	18:42:00	0
287	18:43:00	0
288	18:44:00	0
289		0
	18:45:00	0
290	18:46:00	
291	18:47:00	0
292	18:48:00	0
293	18:49:00	0
294	18:50:00	0
295	18:51:00	0

296	18:52:00	0
297	18:53:00	0
298	18:54:00	0
299	18:55:00	0
300	18:56:00	0
301	18:57:00	0
302	18:58:00	Ö
303	18:59:00	0
304	19:00:00	0
305	19:01:00	0
306	19:02:00	0
307	19:03:00	0
308	19:04:00	0
309	19:04:00	0
310	19:06:00	0
		0
311	19:07:00	
312	19:08:00	0
313	19:09:00	0
314	19:10:00	0
315	19:11:00	0
316	19:12:00	0
317	19:13:00	0
318	19:14:00	0
319	19:15:00	0
320	19:16:00	0
321	19:17:00	0
322	19:18:00	0
323	19:19:00	0
324	19:20:00	0
325	19:21:00	0
326	19:22:00	0
327	19:23:00	0
328	19:24:00	0
329	19:25:00	0
330	19:26:00	0
331	19:27:00	0
332	19:28:00	0
333	19:29:00	0
334	19:30:00	0
335	19:31:00	0
336	19:32:00	0
337	19:33:00	0
338	19:34:00	0
339	19:35:00	0
340	19:36:00	Ö
341	19:37:00	0
342	19:38:00	0
343	19:39:00	0
344	19:40:00	0
345	19:41:00	0
346	19:42:00	0
347	19:42:00	0
L 34/	13.43.00	<u> </u>

.

348	19:44:00	0
349	19:45:00	0
350	19:46:00	0
351	19:47:00	0
352	19:48:00	0
353	19:49:00	0
354	19:50:00	0
355	19:51:00	0
356	19:52:00	0
357	19:53:00	0
358	19:54:00	0
359	19:55:00	0
360	19:56:00	0
361	19:57:00	0
362	19:58:00	0
363	19:59:00	0
364	20:00:00	0
365	20:01:00	0
366	20:02:00	0
367	20:03:00	0
368	20:04:00	0
369	20:05:00	0
370	20:06:00	0
371	20:07:00	0
372	20:08:00	0
373	20:09:00	0
374	20:10:00	0
375	20:11:00	0
376	20:12:00	0
377	20:13:00	0
378	20:14:00	0
379	20:15:00	0
380	20:16:00	0
381	20:17:00	0
382	20:18:00	0
383	20:19:00	0
384	20:20:00	Ö
385	20:21:00	0
386	20:22:00	0
387	20:23:00	0
388	20:24:00	0
389	20:25:00	0
390	20:26:00	0
391	20:27:00	0
392	20:27:00	0
-		0
393	20:29:00	
394	20:30:00	0
395	20:31:00	0
396	20:32:00	0
397	20:33:00	0
398	20:34:00	0
399	20:35:00	0

400	20:36:00	0
401	20:37:00	0
402	20:38:00	0
403	20:39:00	0
404	20:40:00	0
405	20:41:00	0
406	20:42:00	0
407	20:43:00	0
408	20:44:00	0
409	20:45:00	0
410	20:46:00	0
411	20:47:00	0
412	20:48:00	0
413	20:49:00	0
414	20:50:00	0
415	20:51:00	0
416	20:52:00	0
417	20:53:00	Ō
418	20:54:00	0
419	20:55:00	0
420	20:56:00	0
421	20:57:00	0
422	20:58:00	0
423	20:59:00	0
424	21:00:00	0
425	21:01:00	ō
426	21:02:00	0
427	21:03:00	0
428	21:04:00	0
429	21:05:00	0
430	21:06:00	0
431	21:07:00	0
432	21:08:00	0
433	21:09:00	0
434	21:10:00	0
435	21:11:00	0
436	21:12:00	0
437	21:13:00	0
438	21:14:00	0
439	21:15:00	0
440	21:16:00	0
441	21:17:00	0
442	21:18:00	0
443	21:19:00	0
444	21:20:00	0
445	21:21:00	0
446	21:22:00	0
447	21:23:00	0
448	21:24:00	0
449	21:25:00	0
450	21:26:00	0
451	21:27:00	0

452	21:28:00	0
453	21:29:00	0
454	21:30:00	0
455	21:31:00	0
456	21:32:00	0
457	21:33:00	0
458	21:34:00	0
459	21:35:00	0
460	21:36:00	0
461	21:37:00	0
462	21:38:00	0
463	21:39:00	0
464	21:40:00	0
465	21:41:00	0
466	21:42:00	0
467	21:43:00	0
468	21:44:00	0
469	21:45:00	0
470	21:46:00	0
471	21:47:00	0
472	21:48:00	0
473	21:49:00	0
474	21:50:00	0
475	21:51:00	0
476	21:52:00	0
477	21:53:00	0
478	21:54:00	0
479	21:55:00	0
480	21:56:00	0
481	21:57:00	0
482	21:58:00	0
483	21:59:00	0
484	22:00:00	0
485	22:01:00	0
486	22:02:00	0
487	22:03:00	0
488	22:04:00	0
489	22:05:00	0
490	22:06:00	0
491	22:07:00	0

APPENDIX D

Waste Disposal Documentation

PPW 09/05/2006 WORK ORDER NO. D21383550

TRANSPORTE	# 623	59761				
EPA ID#	HONE(78	31) 792-5000				
RANSPORTER 2				VEHICLE ID	#	
EPA ID#				TRANS. 2 PI	HONE	
DESIGNATED Spring Grove f	Resource Re	covery		SHIPPER Rochester Gas & Electric		
O H D 0 0		9		SHIPPER EPA ID # N Y D 0 0 0 8 1 8 7 8 1		
ADDRESS 4879 Spring G	irove Avenue			ADDRESS 89 East Avenue	100.00	
CITY Cincinnati			STATE ZIP OH 45232	CITY Rochester		ZIP 14649
CONTAINERS NO. & SIZE	TYPE	НМ		N OF MATERIALS	TOTAL QUANTITY	UNIT WT/VOL
001	Dm		 A. NON HAZARDOUS, NON D.O.T. REGULATED LIQUID, (OIL W<50PPM PCB'S), N/A, NONE 		430	P
9115 H	Dim		B. NON DOT REGULATED N/A, NONE	MATERIAL, (WATER, GASOLINE)		ρ
001	DM			C. NON DOT REGULATED MATERIAL, (NON-PCB CAPACITORS), N/A, NONE		Р
001	Dm.		D. NON DOT REGULATED LIQUID), NONE, NONE	, (TRANSFORMERS - NO FREE	350 250	P
0024	DM		E. NON-RCRA HAZARDOL GRAVEL), NONE, NONE	JS WASTE, SOLID, (SOIL &	11,915	P
			F.		1	
			G.			
			H.			
SPECIAL HAN			IONS EMERGENCY PHONE #: 1838 D: CH239463 E: CH8	(800) 483-3718		

105606

SHIPPERS CERTIFICATION: This is to certify that the above named materials are properly classified, described, packaged, marked and labeled and are in proper condition for transportation according to the applicable regulations of the Department of Transportation.

SHIPPER Thomas C. Wright	SIGN C. W.P.D	DATE 2/26
TRANSPORTER 1 LARRY SALISBURY	SIGN Larry Salisty	DATE 2/22/07
PRINT TRANSPORTER 2	SIGN 2	DATE
PRINT RECEIVED BY	SIGN	DATE

ROCHESTER GAS AND ELECTRIC CORPORATION 755 Brooks Avenue Non-Hazardous Material

DATE IN	DRUM NO.	GAL. LBS	WASTE DESCRIPTION	Generator	BLDG DISPOSAL	DATE SHIP'D
1/3/2007	BA484	350	Non PCB Ballest	89-10	Cleanharbors	2/22/2007
1/3/2007	BA485	420	Sta. 3 Decon Water	SIR	Cleanharbors	2/22/2007
1/3/2007	BA486	400	Sta. 3 Decon Water	SIR	Cleanharbors	2/22/2007
1/3/2007	BA487	290	Sta. 3 Decon Water	SIR	Cleanharbors	2/22/2007
1/3/2007	BA488	400	Sta. 3 Decon Water	SIR	Cleanharbors	2/22/2007
1/3/2007	BA489	200	Filmore Decon Water	SIR	Cleanharbors	2/22/2007
1/5/2007	BA490	430	Drip oil Norton St 15PPM	Operations	Cleanharbors	2/22/2007
1/9/2007	BA491	560	Canal St. Decon Water	SIR	Cleanharbors	2/22/2007
1/9/2007	BA492	525	Canal St. Decon Water	SIR	Cleanharbors	2/22/2007
1/9/2007	BA493	525	Canal St. Decon Water	SIR	Cleanharbors	2/22/2007
1/9/2007	BA494	560	Canal St. Decon Water	SIR	Cleanharbors	2/22/2007
1/9/2007	BA495	510	Canal St. Decon Water	SIR	Cleanharbors	2/22/2007
1/9/2007	BA496	505	Canal St. Decon Water	SIR	Cleanharbors	2/22/2007
1/9/2007	BA497	240	Canal St. Decon Water	SIR	Cleanharbors	2/22/2007
1/9/2007	BA498	560	Canal St. Soil Borings	SIR	Cleanharbors	2/22/2007
1/9/2007	BA499	525	Canal St. Soil Borings	SIR	Cleanharbors	2/22/2007
1/9/2007	BA500	525	Canal St. Soil Borings	SIR	Cleanharbors	2/22/2007
1/9/2007	BA501	560	Canal St. Soil Borings	SIR	Cleanharbors	2/22/2007
1/9/2007	BA502	315	Canal St. Soil Borings	SIR	Cleanharbors	2/22/2007
1/9/2007	BA503	490	Canal Decon Water	SIR	Cleanharbors	2/22/2007
1/9/2007	BA504	540	Canal St. Decon Water	SIR	Cleanharbors	2/22/2007
2/21/2007	BA505	55	Mercaptan Debris / Caladonia	a Operations	Cleanharbors	2/22/2007
2/21/2007	BA506	90	Mercaptan Debris / Caladonia	a Operations	Cleanharbors	2/22/2007

APPENDIX E

Laboratory Analytical Reports and DUSRs

MEMORANDUM

22 January 2007 File No. 33879-003

TO:

Jon Babcock

Sr. Engineer

FROM:

Michael G. Nickelsen

Sr. Scientist

SUBJECT:

RG&E Canal Street Data Validation

Analytical results for environmental samples associated with the following Severn Trent Laboratories, Inc. laboratory data packages were reviewed to determine the data usability:

Table 1. Summary of Validated Laboratory Reports.

Soil Lab Reports	Ground Water Lab Reports
AO6-E219	AO6-F467
AO6-E274	AO6-F495
AO6-E377	AO6-F530
AO6-E425	
AO6-E535	
AO6-E587	
AO6-E629	
AO6-E730	

Each laboratory data package was reviewed with guidance provided by the United States Environmental Protection Agency (USEPA) National Functional Guidelines for Organic Data Review (EPA 540/R-99/008, Oct 1999), and/or National Functional Guidelines for Inorganic Data Review (EPA 540-R-04-004, Oct 2004) and NYSDEC Guidance for the Development of Quality Assurance Plans and Data Usability Summary Reports (DUSR), September 1997. Laboratory method specific criteria as prescribed by "Test Methods for Evaluating Solid Waste", SW846, Update III, 1996 were used, where applicable, if the analytical anomaly identified was not addressed by the guidelines referenced above.

Data validation of the analytical results was performed by Ethan G. Lee and reviewed and approved by me.

Data Usability Summary Report (DUSR)

RG&E Canal Street

Analytical Laboratory: Severn Trent Laboratories, Inc. – Buffalo, NY Sample Delivery Group # A06-E219

Analytical results for the project samples were reviewed to evaluate the data usability. Data was assessed in accordance with guidance from the following Federal and/or State guidance documents:

- USEPA National Functional Guidelines for Inorganic Data Review (EPA 540-R-04-004)
- USEPA National Functional Guidelines for Organic Data Review (EPA 540/R-99/008)
- NYSDEC "Guidance for the Development of Quality Assurance Plans and Data Usability Summary Reports (DUSR)", September 1997

and method protocol criteria where applicable as prescribed by "Test Methods for Evaluating Solid Waste", SW846, Update III, 1996.

This DUSR pertains to the following samples:

Sample ID	
SB-3,S5	
SB-4,S5	
SB-5,S5	
MW-5,S5	
EB112706	
TB112706	

Project Samples were analyzed according to the following analytical methods:

	Parameter	Analytical Method	Holding Time Criteria
1.	VOCs	EPA 8260B	14 days
2.	VOCs	EPA 8260B/624	14 days
3.	SVOCs (BNAs)	EPA 8270C	14 days ext/40 days analysis
4.	ICP Metals	EPA 6010B	180 days
5.	ICP Metals	EPA 6010B/200.7	180 days
6.	Mercury	EPA 7471A	28 days
7.	Mercury	EPA 7470A	28 days
8.	Cyanide, Total	EPA 9010B/9014	14 days
9.	Cyanide, Total	EPA 335.2	14 days

The following items/criteria applicable to the analysis of project samples and associated QA/QC procedures were reviewed.

- · Holding Times
- GC/MS Instrument Performance Check
- · Initial Calibration Procedures
- Continuing Calibration Procedures
- · Blank Sample Analysis
- System Monitoring Compound Recoveries
- Laboratory Control Samples, Matrix Spike/Matrix Spike Duplicate Recoveries
- · Internal Standard Recoveries
- Duplicate Sample Analysis
- · ICP Interference Check Sample Performance
- ICP Serial Dilution Replicate Percent Difference
- · Sample Data Reporting Format
- Data Qualifiers
- Summary

Preservation and Holding Times

Maximum allowable holding times, measured from the time of sample collection to the time of sample preparation or analysis, were met for each project sample analyzed as part of this sample delivery group. No qualification of the data is recommended.

GC/MS Instrument Performance Check

GC/MS instrument performance checks for the instruments used in the analysis of project samples fell within method specific criteria without exception. No qualification of the data is recommended.

Initial Calibration Procedures

Initial instrument calibration procedures for the analysis of project samples were consistent with the guidelines prescribed by EPA protocols, with the following exception(s):

During the analysis of VOCs (SW846 8260B), the initial calibration standards for the following target compound(s) exhibited a percent relative standard deviation (%RSD) greater than the acceptance criteria of 30% and/or a RRF less than 0.05:

Inst.	Date / Time	Target Analyte(s)	%RSD	RRF	Affected Sample(s)	Corrective Action
F	11/21/06	Methylene Chloride	50.00	0.35	SB-3,S5	See Action #1 Below
	1016				SB-4,S5	
					SB-5,S5	
					MW-5,S5	
N	12/04/06	Dichlorodifluoromethane	32.90	0.21	EB112706	See Action #1 Below
	1757	Methyl acetate	39.00	0.25	TB112706	See Action #1 Below

Action #1

Positive results are qualified "J", estimated and non-detected analytes as "UJ", estimated detection limit.

During the analysis of SVOCs (SW846 8270C), the initial calibration standards for the following target compound(s) exhibited a percent relative standard deviation (%RSD) greater than the acceptance criteria of 30% and/or a RRF less than 0.05:

Inst.	Date / Time	Target Analyte(s)	%RSD	RRF	Affected Sample(s)	Corrective Action
V	11/29/06	2,4-Dinitrophenol	36.60	0.09	All Project Samples	See Action #1 Below
	1040					

Action #1

Positive results are qualified "J", estimated and non-detected analytes as "UJ", estimated detection limit.

Continuing Calibration Procedures

Continuing calibration verification (CCV) procedures for the analysis of project samples were consistent with the guidelines prescribed by EPA protocols, with the following exception(s):

During the analysis of VOCs (SW846 8260B), the continuing calibration verification (CCV) standards for the following target compound(s) exhibited a percent drift (%D) greater than the acceptance criteria of 25% and/or a RRF less than 0.05:

	Date /					interest programme actions (Sec.
Inst.	Time	Target Analyte(s)	%D	RRF	Affected Sample(s)	Corrective Action
F	11/29/06	Bromomethane	59.00	0.03	SB-3,S5	See Action #2 Below
	2237	Methylene Chloride	34.50	0.23	SB-4,S5	See Action #1 Below
		Acetone	25.80	0.05	SB-5,S5	See Action #1 Below
		Methyl acetate	30.10	0.18	MW-5,S5	See Action #1 Below
N	12/06/06	Acetone	37.80	0.04	EB112706	See Action #2 Below
	0855	2-Butanone	31.70	0.06	TB112706	See Action #1 Below
	ļ	Bromoform	27.50	0.23		See Action #1 Below
		4-Methyl-2-pentanone	27.30	0.17		See Action #1 Below
		2-Hexanone	29.20	0.11		See Action #1 Below
		1,2,4-Trichlorobenzene	41.10	0.50		See Action #1 Below
		1,2-Dibromo-3-chloropropane	48.70	0.03		See Action #2 Below
		Methyl acetate	39.90	0.15		See Action #1 Below

Action #1

Positive results are qualified "J", estimated and non-detected analytes as "UJ", estimated detection limit.

Positive results are qualified "J", estimated and non-detected analytes as "R", rejected.

Blank Sample Analysis

In accordance with cited USEPA guidelines, positive sample results should be reported unless the concentration of the compound in the project sample is less than or equal to 10 times (10X) the amount in any blank for metals and the common organic laboratory contaminants (methylene chloride, acetone, 2-butanone, cyclohexane, and phthalate esters), or 5 times (5X) the amount for other target compounds. Target compounds were not detected in associated blank samples (trip, equipment, method) prepared and analyzed concurrently with the project samples, with the following exception(s):

Blank	Target Analyte(s)	Conen.	Affected Sample(s)	Flag sample results with a "U" if < to this value
TB112706	Acetone	3.0 ug/L	All Project Samples	30.0 ug/L
Method Blank	Methylene Chloride	2.0 ug/kg	SB-3,S5	20.0 ug/kg
VBLK04			SB-4,S5	
			SB-5,S5	
			MW-5,S5	

Blank	Target Analyte(s)	Conen.	Affected Sample(s)	Flag sample results with a "U" if < to this value
Method Blank SBLK54	bis(2-Ethylhexyl)phthalate	67.0 ug/kg	All Project Samples	670.0 ug/kg

System Monitoring Compound Recoveries

System monitoring/surrogate compounds are added to each sample prior to analysis of organic parameters by EPA Methods 8260B and/or 8270C to confirm the efficiency of the sample preparation procedure. The calculated recovery for each surrogate compound was evaluated to confirm the accuracy of the reported results. The calculated recovery of these compounds fell within the laboratory specific quality control criteria. In a few instances, sample extracts required dilution prior to analysis to either improve instrument performance by minimizing matrix interference or enable quantification of the detected target analytes within the instrument calibration range. Where applicable, the laboratory qualified the reported results indicating the system monitoring compound recovery could not be calculated due to a sample extract dilution. In cases where the instrument resolution appeared to be unaffected by the diluted sample matrix, the sample results were accepted without qualification. No qualification of the data is recommended.

Laboratory Control Samples, Matrix Spike/Matrix Spike Duplicate Recoveries

Analytical precision and accuracy was evaluated based on the laboratory control and matrix spike sample analyses performed concurrently with the project samples. For matrix spike samples, after the addition of a known amount of each target analyte to the sample matrix, the sample was analyzed to confirm the ability to identify these compounds within the sample matrix. For LCS analyses, after the addition of a known amount of each target analyte into laboratory reagent water, the sample was analyzed to confirm the ability of the analytical system to accurately quantify the compounds. The reported recovery of MS/MSD and LCS analyses fell within the laboratory QA acceptance criteria, with the following exception(s):

LCS ID / Project Sample MS	Туре	Target Analyte(s)	%R	Affected Sample(s)	Positive Results	Non Detect (ND)
LCS D048-540	LCS	Cadmium	120	SB-3,S5	J	
	LCS			SB-4,S5		
	LCS			SB-5,S5		
	LCS			MW-5,85		

Internal Standard Recoveries

Internal Standard compounds were added to each sample matrix prior to the analysis of organic parameters by EPA Methods 8260B and/or 8270C to quantify the amount of the target compounds detected within each sample. The calculated response of each IS compound fell within the QA/QC criteria of +100% and –50% of the corresponding CCV standard. No qualification of the data is recommended.

Duplicate Sample Analysis

The replicate percent difference (RPD) was evaluated for each duplicate sample pair to monitor the reproducibility of the data. The RPD for each sample pair was within the QA/QC limit of 30% for aqueous samples and 50% for solid matrices, for those target analytes with sample concentrations >5X the MDL, with the following exception(s):

Sample ID	Matrix	Target Analyte(s)	RPD	Affected Sample(s)
MS/MSD	AQ	Cyanide, Amenable	21	EB112706

Action

Analytes with RPDs greater than 20% should be qualified "J" and non-detects qualified "UJ".

ICP Interference Check Sample Performance

The results of the ICP Interference Check Samples analyzed concurrently with the project samples were all within the acceptance criteria +/-20% of true value as prescribed by USEPA guidance. No qualification of the data is recommended.

ICP Serial Dilution Replicate Percent Difference

The results of the ICP Serial Dilution samples analyzed concurrently with the project samples were in accordance with the EPA QA acceptance criteria of less than 10% RPD for those target analytes with sample concentrations >50X the MDL, with the following exception(s):

Serial Dilution ID	Target Analyte(s)	%D	Affected Sample(s)
SB-3,S5	Aluminum	13	SB-3,S5
	Calcium	14	SB-4,S5
	Iron	14	SB-5,S5
	Magnesium	13	MW-5,S5
	Manganese	14	

Action:

For serial dilution %D results > 10%, qualify results > the MDL as "J" and non-detects as "UJ".

Sample Data Reporting Format

The sample data are presented using USEPA Contract Laboratory Protocol (CLP) format. The data package has been reviewed for completeness and found to contain each required sample result and associated QA/QC report form. The reporting format is complete and compliant with the objectives of the project. No qualification of the data is recommended.

Data Qualifiers

Data qualifiers were assigned by the laboratory to the reported results to identify target analytes detected below the reporting limit but above the method detection limit, and/or when target analytes were detected in the associated method/preparation blank sample. Based on a spot check of the data qualifiers used, these flags appeared to be applied to the reported results in accordance with EPA guidance.

Organic analyses samples that contained concentrations of target analytes at a reportable level in the associated method blanks were flagged by the laboratory with a "B". If the target analyte concentration was greater than 10 times (10X) the amount in any blank for the common laboratory contaminants or 5 times (5X) the amount for other target compounds, the "B" qualifier was not carried forward for database input; if less than the 10X or 5X rule the "B" qualifier was replaced with a "U". The "J" qualifier, which indicates an estimated value because the result was between the MDL and RL was carried through to the database.

Summary

The results presented in each report were found to be compliant with the data quality objectives for the project and usable. Based on our review, the usability of the data is 100%, with the few exceptions noted above.

G:\Projects\33879\003 Report w DUSR\DUSRs\[A06E219_DV Notes.xls]Final Report

Data Usability Summary Report (DUSR)

RG&E Canal Street

Analytical Laboratory: Severn Trent Laboratories, Inc. – Buffalo, NY Sample Delivery Group # A06-E274

Analytical results for the project samples were reviewed to evaluate the data usability. Data was assessed in accordance with guidance from the following Federal and/or State guidance documents:

- USEPA National Functional Guidelines for Inorganic Data Review (EPA 540-R-04-004)
- USEPA National Functional Guidelines for Organic Data Review (EPA 540/R-99/008)
- NYSDEC "Guidance for the Development of Quality Assurance Plans and Data Usability Summary Reports (DUSR)", September 1997

and method protocol criteria where applicable as prescribed by "Test Methods for Evaluating Solid Waste", SW846, Update III, 1996.

This DUSR pertains to the following samples:

Sample ID
SB-10,S6
SB-12,S2
SB-12,S5
SB-13,S3
MW-2,S8
DUP-112806
SB-13,S4
SB-10,S2
EB112806
TRIP BLANK

Project Samples were analyzed according to the following analytical methods:

00000000000000000000000000000000000000	Parameter	Analytical Method	Holding Time Criteria
l.	VOCs	EPA 8260B	14 days
2.	VOCs	EPA 8260B/624	14 days
3.	SVOCs (BNAs)	EPA 8270C	14 days ext/40 days analysis
4.	ICP Metals	EPA 6010B	180 days
5.	ICP Metals	EPA 6010B/200.7	180 days
6.	Mercury	EPA 7471A	28 days
7.	Mercury	EPA 7470A	28 days
8.	Cyanide, Total	EPA 9010B/9014	14 days
9.	Cyanide, Total	EPA 335.2	14 days
10.	TPH(d)	EPA 8015M	14 days
11.	TPH(g)/BTEX/MTBE	EPA 8015M/8021B	14 days
12.	TRPH	EPA 418.1	28 days

The following items/criteria applicable to the analysis of project samples and associated QA/QC procedures were reviewed.

- Holding Times
- · GC/MS Instrument Performance Check
- · Initial Calibration Procedures
- · Continuing Calibration Procedures
- Blank Sample Analysis
- · System Monitoring Compound Recoveries
- Laboratory Control Samples, Matrix Spike/Matrix Spike Duplicate Recoveries
- · Internal Standard Recoveries
- · Duplicate Sample Analysis
- ICP Interference Check Sample Performance
- · ICP Serial Dilution Replicate Percent Difference
- Sample Data Reporting Format
- Data Qualifiers
- Summary

Preservation and Holding Times

Maximum allowable holding times, measured from the time of sample collection to the time of sample preparation or analysis, were met for each project sample analyzed as part of this sample delivery group. No qualification of the data is recommended.

GC/MS Instrument Performance Check

GC/MS instrument performance checks for the instruments used in the analysis of project samples fell within method specific criteria without exception. No qualification of the data is recommended.

Initial Calibration Procedures

Initial instrument calibration procedures for the analysis of project samples were consistent with the guidelines prescribed by EPA protocols, with the following exception(s):

During the analysis of VOCs (SW846 8260B), the initial calibration standards for the following target compound(s) exhibited a percent relative standard deviation (%RSD) greater than the acceptance criteria of 30% and/or a RRF less than 0.05:

Inst.	Date / Time	Target Analyte(s)	%RSD	RRF	Affected Sample(s)	Corrective Action
F	11/21/06 1016	Methylene Chloride	50.00	0.35	SB-10,S2	See Action #1 Below
N	1757	1,2-Dibromo-3-chloropropane Dichlorodifluoromethane Methyl acetate	33.30 32.90 39.00	0.07 0.21 0.25	EB112806 TRIP BLANK	See Action #1 Below See Action #1 Below See Action #1 Below
Р	11/16/06 2130	Methylene Chloride	34.30	0.40	SB-12,S2 SB-12,S5 MW-2,S8	See Action #1 Below
S	12/12/06 1101	Methylene Chloride	32.10	0.28	SB-13,S3	See Action #1 Below

Action #1

Positive results are qualified "J", estimated and non-detected analytes as "UJ", estimated detection limit.

During the analysis of SVOCs (SW846 8270C), the initial calibration standards for the following target compound(s) exhibited a percent relative standard deviation (%RSD) greater than the acceptance criteria of 30% and/or a RRF less than 0.05:

Inst.	Date / Time	Target Analyte(s)	%RSD	RRF	Affected Sample(s)	Corrective Action
U	12/07/06 0748	bis(2-Chloroethyl)ether	42.70	1.99	SB-10,S6 SB-12,S2	See Action #1 Below
U	12/07/06 1038	Caprolactam	34.10	0.08	SB-10,S6 SB-12,S2	See Action #1 Below
U	12/11/06 1410	2,4-Dinitrophenol	36.60	0.09	SB-12,S5 SB-13,S3 MW-2,S8 DUP-112806 SB-10,S2	See Action #1 Below
U	12/13/06 0906	2,4-Dinitrophenol	44.60	0.10	SB-13,S3 RI DUP-112806 RI	See Action #1 Below

Action #1

Positive results are qualified "J", estimated and non-detected analytes as "UJ", estimated detection limit.

Continuing Calibration Procedures

Continuing calibration verification (CCV) procedures for the analysis of project samples were consistent with the guidelines prescribed by EPA protocols, with the following exception(s):

During the analysis of VOCs (SW846 8260B), the continuing calibration verification (CCV) standards for the following target compound(s) exhibited a percent drift (%D) greater than the acceptance criteria of 25% and/or a RRF less than 0.05:

Inst.	Data / Time	Target Analyte(s)	%D	RRF	Affortoil Complete)	
F		1—			Affected Sample(s)	Corrective Action
r		Bromomethane	46.20	0.04	SB-10,S2	See Action #2 Below
	1033	Methylene Chloride	40.30	0.21		See Action #1 Below
		Acetone	29.00	0.05		See Action #1 Below
		1,1-Dichloroethane	27.30	0.47		See Action #1 Below
		Methyl acetate	33.40	0.17		See Action #1 Below
G	12/11/06	Bromomethane	38.00	0.16	SB-10,S6	See Action #1 Below
	2222				DUP-112806	
N	12/06/06	Dibromochloromethane	26.60	0.21	EB112806	See Action #1 Below
	2036	Acetone	23.40	0.04	TRIP BLANK	See Action #2 Below
		1,2-Dibromo-3-chloropropane	38.80	0.04		See Action #2 Below
		Bromoform	35.30	0.21		See Action #1 Below
		1,2,4-Trichlorobenzene	31.40	0.59		See Action #1 Below
		Methyl acetate	33.90	0.16		See Action #1 Below
S	12/11/06	Bromomethane	38.80	0.05	SB-13,S3	See Action #2 Below
	1027	Methyl acetate	26.30	0.27		See Action #1 Below

Action #1

Positive results are qualified "J", estimated and non-detected analytes as "UJ", estimated detection limit.

Positive results are qualified "J", estimated and non-detected analytes as "R", rejected.

Blank Sample Analysis

In accordance with cited USEPA guidelines, positive sample results should be reported unless the concentration of the compound in the project sample is less than or equal to 10 times (10X) the amount in any blank for metals and the common organic laboratory contaminants (methylene chloride, acetone, 2-butanone, cyclohexane, and phthalate esters), or 5 times (5X) the amount for other target compounds. Target compounds were not detected in associated blank samples (trip, equipment, method) prepared and analyzed concurrently with the project samples, with the following exception(s):

Blank	Target Analyte(s)	Conen.	Affected Sample(s)	Flag sample results with a "U" if < to this value
TRIP BLANK	Acetone	4.0 ug/L	All Project Samples	40.0 ug/L
Method Blank VBLK07	Methylene Chloride	1.0 ug/kg	MW-2,S8 SB-12,S2 SB-12,S5	10.0 ug/kg
Method Blank VBLK07	Methylene Chloride	2.0 ug/kg	SB-10,S2	20.0 ug/kg
Method Blank VBLK12	Methylene Chloride	0.7 ug/L	EB112806 TRIP BLANK	7.1 ug/L
Method Blank VBLK58	Methylene Chloride	66.0 ug/kg	SB-10,S6 DUP-112806	660.0 ug/kg

System Monitoring Compound Recoveries

System monitoring/surrogate compounds are added to each sample prior to analysis of organic parameters by EPA Methods 8260B, 8270C, and/or 8082 to confirm the efficiency of the sample preparation procedure. The calculated recovery for each surrogate compound was evaluated to confirm the accuracy of the reported results. The calculated recovery of these compounds fell within the laboratory specific quality control criteria, with the following exception(s):

Surrogate Percent Recovery Criteria						
Surrogate	(a) and the comment of the comment o	Aqueous Matrix (%)	Solid Matrix (%)			
Phenol-d5	S01	low - high	40~- 120	Acid		
2-Fluorophenol	S02	low - high	30 - 120	Acid		
2,4,6-Tribromophenol	S03	low - high	46 - 129	Acid		
Nitrobenzene-d5	S04	low - high	35 - 120	Base/Neutral		
2-Fluorobiphenyl	S05	low - high	45 - 120	Base/Neutral		
Terphenyl-d14	S06	low - high	54 - 135	Base/Neutral		
2-Chlorophenol-d4	S07	low - high	low - high	Acid		
1,2-Dichlorobenzene-d4	S08	low - high	low - high	Base/Neutral		

										A	cid	Base/i	Veutral
	E 46 St 0: 10.	S01	S02	S03	S04	S05	S06	S07	S08	Positive	Non Detect	Positive	Non Detect
Project Sample ID	Matrix	%R	%R	%R	%R	%R	%R	%R	%R	Results	(ND) =	Results	(ND)
DUP-112806	Soil	56	45	41	103	80	82						

Laboratory Control Samples, Matrix Spike/Matrix Spike Duplicate Recoveries

Analytical precision and accuracy was evaluated based on the laboratory control and matrix spike sample analyses performed concurrently with the project samples. For matrix spike samples, after the addition of a known amount of each target analyte to the sample matrix, the sample was analyzed to confirm the ability to identify these compounds within the sample matrix. For LCS analyses, after the addition of a known amount of each target analyte into laboratory reagent water, the sample was analyzed to confirm the ability of the analytical system to accurately quantify the compounds. The reported recovery of MS/MSD and LCS analyses fell within the laboratory QA acceptance criteria, with the following exception(s):

LCS ID / Project Sample MS		%R Criteria	%R	Affected Sample(s)
SB-10,S2 MS	1,1-Dichloroethene	65 - 146	157	SB-10,S2
	Trichloroethene	74 - 127	132	
	Benzene	74 - 128	150	
	Toluene	74 - 123	129	
SB-10,S2 MSD	Benzene	74 - 128	139	SB-10,S2

Action:

If the LCS %R is greater than the upper acceptance limit, associated target analyte positive results are qualified "J" and non-detects should not be qualified. If the LCS %R is less than the lower acceptance limit associated target analyte positive results are qualified "J" and non-detects are qualified "R". If the MS/MSD is from a project sample and the %R greater than the upper acceptance limit, associated target analyte positive results are qualified "J" and non-detects should not be qualified. If the MS/MSD %R is >10%, but less than the lower acceptance limit, associated analyte positive results are qualified "J" and non-detects are qualified "UJ". If the MS/MSD %R is less than 10% associated target analyte positive results are qualified "J" and non-detects are qualified "R". MS/MSD qualifiers are only applied to affected samples of the same matrix. If the MS/MSD is a LAB sample do not qualify project samples.

LCS ID / Project Sample MS	Target Analyte(s)	%R Criteria	%R	Affected Sample(s)
SB-10,S2 MSD	Pyrene	41 - 138	26	SB-10,S2

Action:

If the LCS %R is greater than the upper acceptance limit, associated target analyte positive results are qualified "J" and non-detects should not be qualified. If the LCS %R is less than the lower acceptance limit associated target analyte positive results are qualified "J" and non-detects are qualified "R". If the MS/MSD is from a project sample and the %R greater than the upper acceptance limit, associated target analyte positive results are qualified "J" and non-detects should not be qualified. If the MS/MSD %R is >10%, but less than the lower acceptance limit, associated analyte positive results are qualified "J" and non-detects are qualified "UJ". If the MS/MSD %R is less than 10% associated target analyte positive results are qualified "J" and non-detects are qualified "R". MS/MSD qualifiers are only applied to affected samples of the same matrix. If the MS/MSD is a LAB sample do not qualify project samples.

LCS ID / Project Sample MS	Type	Target Analyte(s)	%R	Affected Sample(s)	Positive Results	Non Detect (ND)
SB-10,S2	MS	Aluminum	176	SB-10,S6	J	
	MS	Arsenic	60	SB-12,S2	J	UJ
	MS	Barium	126	SB-12,S5	J	
	MS	Lead	553	SB-13,S3	J	
	MS			MW-2,S8		
	MS			DUP-112806		
	MS			SB-10,S2		
SB-10,S2	MSD	Aluminum	147	SB-10,S6	J	
	MSD	Arsenic	47	SB-12,S2	j	UJ
	MSD	Copper	64	SB-12,S2	J	Ωĭ
	MSD	Lead	154	SB-13,S3	J	
	MSD	Zinc	63	MW-2,S8	J	Ωĭ
	MSD			MW-2,S8		
	MSD			SB-10,S2		

Internal Standard Recoveries

Internal Standard compounds were added to each sample matrix prior to the analysis of organic parameters by EPA Methods 8260B and/or 8270C to quantify the amount of the target compounds detected within each sample. The calculated response of each IS compound fell within the QA/QC criteria of +100% and -50% of the corresponding CCV standard, with the following exception(s):

Sample ID	Non-Compliant IS	UCLAre	a LCL Area	Sample Area	Analytes Affected
DUP-112806	Chrysene-d12	902360	225590	1161634	See List Below
SB-13,S3	Chrysene-d12	902360	225590	930796	See List Below
DUP-112806	Perylene-d12	865264	216316	949160	See List Below
SB-13,S3	Perylene-d12	865264	216316	1015023	See List Below

Chrysene-d12

3,3'-Dichlorobenzidine, Benzo(a)anthracene, bis(2-Ethylhexyl)phthalate, Butylbenzylphthalate, Chrysene, Pyrene

Perylene-d12

Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(g,h,i)perylene, Benzo(k)fluoranthene, Dibenz(a,h)anthracene, Di-n-octylphthalate, Indeno(1,2,3-cd)pyrene

Action

If the internal standard is greater than the upper limit, positive results for the associated target analytes are qualified "J" and non-detects should not be qualified. If the internal standard is less than the lower limit, positive results for the associated target analytes are qualified "J" and non-detects are qualified "UJ". If the internal standard is less than 10% of the lower limit, positive results for the associated target analytes are qualified "J" and non-detects are qualified "R".

Duplicate Sample Analysis

The replicate percent difference (RPD) was evaluated for each duplicate sample pair to monitor the reproducibility of the data. The RPD for each sample pair was within the QA/QC limit of 30% for aqueous samples and 50% for solid matrices, for those target analytes with sample concentrations >5X the MDL, with the following exception(s):

Sample ID	Matrix	Target Analyte(s)	RPD	Affected Sample(s)
SB-10,S2	Soil	Barium	21	SB-10,S6
		Calcium	131	SB-12,S2
		Copper	33	SB-12,S5
		Lead	68	SB-13,S3
		Manganese	94	MW-2,S8
				DUP-112806
				SB-10,S2

Action:

Analytes with RPDs greater than 20% should be qualified "J" and non-detects qualified "UJ".

ICP Interference Check Sample Performance

The results of the ICP Interference Check Samples analyzed concurrently with the project samples were all within the acceptance criteria +/-20% of true value as prescribed by USEPA guidance. No qualification of the data is recommended.

ICP Serial Dilution Replicate Percent Difference

The results of the ICP Serial Dilution samples analyzed concurrently with the project samples were in accordance with the EPA QA acceptance criteria of less than 10% RPD for those target analytes with sample concentrations >50X the MDL, with the following exception(s):

Serial Dilution ID	Target Analytc(s)	%D	Affected Sample(s)
SB-10,S2	Zinc	11	SB-10,S6
			SB-12,S2
			SB-12,S5
			SB-13,S3
			MW-2,S8
			DUP-112806
			SB-10,S2

Action:

For serial dilution %D results > 10%, qualify results > the MDL as "J" and non-detects as "UJ".

Sample Data Reporting Format

The sample data are presented using USEPA Contract Laboratory Protocol (CLP) format. The data package has been reviewed for completeness and found to contain each required sample result and associated QA/QC report form. The reporting format is complete and compliant with the objectives of the project. No qualification of the data is recommended.

Data Qualifiers

Data qualifiers were assigned by the laboratory to the reported results to identify target analytes detected below the reporting limit but above the method detection limit, and/or when target analytes were detected in the associated method/preparation blank sample. Based on a spot check of the data qualifiers used, these flags appeared to be applied to the reported results in accordance with EPA guidance.

Organic analyses samples that contained concentrations of target analytes at a reportable level in the associated method blanks were flagged by the laboratory with a "B". If the target analyte concentration was greater than 10 times (10X) the amount in any blank for the common laboratory contaminants or 5 times (5X) the amount for other target compounds, the "B" qualifier was not carried forward for database input; if less than the 10X or 5X rule the "B" qualifier was replaced with a "U". The "J" qualifier, which indicates an estimated value because the result was between the MDL and RL was carried through to the database.

Summary

The results presented in each report were found to be compliant with the data quality objectives for the project and usable. Based on our review, the usability of the data is 100%, with the few exceptions noted above.

\ROC\common\Projects\33879\003 Report w DUSR\DUSRs\[A06E274_DV Notes.xls]Final Report

Data Usability Summary Report (DUSR)

RG&E Canal Street

Analytical Laboratory: Severn Trent Laboratories, Inc. - Buffalo, NY Sample Delivery Group # A06-E377

Analytical results for the project samples were reviewed to evaluate the data usability. Data was assessed in accordance with guidance from the following Federal and/or State guidance documents:

- USEPA National Functional Guidelines for Inorganic Data Review (EPA 540-R-04-004)
- USEPA National Functional Guidelines for Organic Data Review (EPA 540/R-99/008)
- NYSDEC "Guidance for the Development of Quality Assurance Plans and Data Usability Summary Reports (DUSR)", September 1997

and method protocol criteria where applicable as prescribed by "Test Methods for Evaluating Solid Waste", SW846, Update III, 1996.

This DUSR pertains to the following samples:

Sample ID
SB-9,S6
SB-11,S6
SB-14,S4
SB-14,S6
MW-4,S5
EB112906
TB112906

Project Samples were analyzed according to the following analytical methods:

100 (000)	Parameter	Analytical Method	Holding Time Criteria
1.	VOCs	EPA 8260B	14 days
	VOCs	EPA 8260B/624	14 days
3.	SVOCs (BNAs)	EPA 8270C	14 days ext/40 days analysis
4.	SVOCs (BNAs)	EPA 8270C/625	7 days ext/40 days analysis
5.	ICP Metals	EPA 6010B	180 days
6.	ICP Metals	EPA 6010B/200.7	180 days
7.	Mercury	EPA 7471A	28 days
8.	Mercury	EPA 7470A	28 days
_	Cyanide, Total	EPA 9010B/9014	14 days
	Cyanide, Total	EPA 335.2	14 days
11.	TPH(d)	EPA 8015M	14 days
12.	TPH(g)	EPA 8015M/8021B	14 days
13.	ТРН	EPA 310.13	14 days

The following items/criteria applicable to the analysis of project samples and associated QA/QC procedures were reviewed.

- · Holding Times
- GC/MS Instrument Performance Check
- · Initial Calibration Procedures
- Continuing Calibration Procedures
- · Blank Sample Analysis
- · System Monitoring Compound Recoveries
- · Laboratory Control Samples, Matrix Spike/Matrix Spike Duplicate Recoveries
- · Internal Standard Recoveries
- Duplicate Sample Analysis
- ICP Interference Check Sample Performance
- · ICP Serial Dilution Replicate Percent Difference
- Sample Data Reporting Format
- Data Qualifiers
- Summary

Preservation and Holding Times

Maximum allowable holding times, measured from the time of sample collection to the time of sample preparation or analysis, were met for each project sample analyzed as part of this sample delivery group. No qualification of the data is recommended.

GC/MS Instrument Performance Check

GC/MS instrument performance checks for the instruments used in the analysis of project samples fell within method specific criteria without exception. No qualification of the data is recommended.

Initial Calibration Procedures

Initial instrument calibration procedures for the analysis of project samples were consistent with the guidelines prescribed by EPA protocols, with the following exception(s):

During the analysis of VOCs (SW846 8260B), the initial calibration standards for the following target compound(s) exhibited a percent relative standard deviation (%RSD) greater than the acceptance criteria of 30% and/or a RRF less than 0.05:

Inst.	Date / Time	Target Analyte(s)	%RSD	RRF	Affected Sample(s)	Corrective Action
F	11/21/06 1016	Methylene Chloride	50.00		SB-11,S6 SB-14,S6 MW-4,S5 EB112906 TB112906	See Action #1 Below
S	12/12/06 1101	Methylene Chloride	32.10		SB-14,S4	See Action #1 Below

Action #1

Positive results are qualified "J", estimated and non-detected analytes as "UJ", estimated detection limit.

During the analysis of SVOCs (SW846 8270C), the initial calibration standards for the following target compound(s) exhibited a percent relative standard deviation (%RSD) greater than the acceptance criteria of 30% and/or a RRF less than 0.05:

Inst.	Date / Time	Target Analyte(s)	%RSD	RRF	Affected Sample(s)	Corrective Action
υ	12/11/06	2,4-Dinitrophenol	36.60	0.09	SB-9,S6	See Action #1 Below
	1410				SB-11,S6	
					SB-14,S4	
					MW-4,85	

Action #1

Positive results are qualified "J", estimated and non-detected analytes as "UJ", estimated detection limit.

Continuing Calibration Procedures

Continuing calibration verification (CCV) procedures for the analysis of project samples were consistent with the guidelines prescribed by EPA protocols, with the following exception(s):

During the analysis of VOCs (SW846 8260B), the continuing calibration verification (CCV) standards for the following target compound(s) exhibited a percent drift (%D) greater than the acceptance criteria of 25% and/or a RRF less than 0.05:

Alexandors	≅ Date /			2.0000000000000000000000000000000000000		ga sak da da ga ga ga kasa ka ka ka ka ka ka ka ka ka ka ka ka ka
Inst.	Time	Target Analyte(s)	%D	RRF	Affected Sample(s)	Corrective Action
F	12/05/06	Bromomethane	35,60	0.05	SB-11,S6	See Action #2 Below
	0957	Methylene Chloride	32.10	0.24	EB112906	See Action #1 Below
		trans-1,2-Dichloroethene	-43.60	0.35	TB112906	See Action #1 Below
		Carbon tetrachloride	-26.90	0.41		See Action #1 Below
F	12/06/06	Bromomethane	35.60	0.05	SB-14,S6	See Action #2 Below
	1458	Methylene Chloride	35.50	0.23	MW-4,S5	See Action #1 Below
		trans-1,2-Dichloroethene	-45.40	0.35		See Action #1 Below
		Methyl tert-butyl ether	-28.60	0.78		See Action #1 Below
S	12/11/06	Bromomethane	38.80	0.05	SB-9,S6	See Action #2 Below
	1027	Methyl Acetate	26.30	0.27		See Action #1 Below

Action #1

Positive results are qualified "J", estimated and non-detected analytes as "UJ", estimated detection limit.

Action #2

Positive results are qualified "J", estimated and non-detected analytes as "R", rejected.

Blank Sample Analysis

In accordance with cited USEPA guidelines, positive sample results should be reported unless the concentration of the compound in the project sample is less than or equal to 10 times (10X) the amount in any blank for metals and the common organic laboratory contaminants (methylene chloride, acetone, 2-butanone, cyclohexane, and phthalate esters), or 5 times (5X) the amount for other target compounds. Target compounds were not detected in associated blank samples (trip, equipment, method) prepared and analyzed concurrently with the project samples, with the following exception(s):

Blank	Target Analyte(s)	Concu.	Affected Sample(s)	Flag sample results with a "U" if < to this value
EB112906	Methylene Chloride	1.9 ug/L	SB-9,S6	19.0 ug/L
	Toluene	1.6 ug/L	SB-11,S6	8.0 ug/L
			SB-14,S4	
			SB-14,S6	
			MW-4,S5	
TB112906	Methylene Chloride	2.1 ug/L	SB-9,S6	21.0 ug/L
			SB-11,S6	
			SB-14,S4	
			SB-14,S6	
			MW-4,S5	
			EB112906	
VBLKII	Methylene Chloride	2.0 ug/L	EB112906	20.0 ug/L
		_	TB112906	
VBLK11	Methylene Chloride	2.0 ug/kg	SB-11,S6	20.0 ug/kg
VBLK13	Methylene Chloride	2.0 ug/kg	SB-14,S6	20.0 ug/kg
	_		MW-4,S5	

	Target Analyte(s)	Concn.	Affected Sample(s)	Flag sample results with a "U" if < to this value
EB112906	Di-n-octylphthalate	1.0 ug/L	All Project Samples	10.0 ug/L
SBLK50	bis(2-Ethylhexyl)phthalate	490.0 ug/kg	SB-9,S6	4900.0 ug/kg
			SB-11,S6	
			SB-14,S4	
		_	MW-4,S5	

Blank	Target Analyte(s)	Concn.	Affected Sample(s)	Flag sample results with a "U" if < to this value
CCB 13:51	Manganese	8.09 ug/L	SB-9,S6 SB-11,S6 SB-14,S4 MW-4,S5	80.9 ug/L
Soil Prep Blank	Iron	19.802 mg/kg	SB-9,S6 SB-11,S6 SB-14,S4 MW-4,S5	198.02 mg/kg

System Monitoring Compound Recoveries

System monitoring/surrogate compounds are added to each sample prior to analysis of organic parameters by EPA Methods 8260B, 8270C, and/or 8082 to confirm the efficiency of the sample preparation procedure. The calculated recovery for each surrogate compound was evaluated to confirm the accuracy of the reported results. The calculated recovery of these compounds fell within the laboratory specific quality control criteria. In a few instances, sample extracts required dilution prior to analysis to either improve instrument performance by minimizing matrix interference or enable quantification of the detected target analytes within the instrument calibration range. Where applicable, the laboratory qualified the reported results indicating the system monitoring compound recovery could not be calculated due to a sample extract dilution. In cases where the instrument resolution appeared to be unaffected by the diluted sample matrix, the sample results were accepted without qualification. No qualification of the data is recommended.

Laboratory Control Samples, Matrix Spike/Matrix Spike Duplicate Recoveries

Analytical precision and accuracy was evaluated based on the laboratory control and matrix spike sample analyses performed concurrently with the project samples. For matrix spike samples, after the addition of a known amount of each target analyte to the sample matrix, the sample was analyzed to confirm the ability to identify these compounds within the sample matrix. For LCS analyses, after the addition of a known amount of each target analyte into laboratory reagent water, the sample was analyzed to confirm the ability of the analytical system to accurately quantify the compounds. The reported recovery of MS/MSD and LCS analyses fell within the laboratory QA acceptance criteria. No qualification of the data is recommended.

Internal Standard Recoveries

Internal Standard compounds were added to each sample matrix prior to the analysis of organic parameters by EPA Methods 8260B and/or 8270C to quantify the amount of the target compounds detected within each sample. The calculated response of each IS compound fell within the QA/QC criteria of +100% and -50% of the corresponding CCV standard. No qualification of the data is recommended.

Duplicate Sample Analysis

The replicate percent difference (RPD) was evaluated for each duplicate sample pair to monitor the reproducibility of the data. The RPD for each sample pair was within the QA/QC limit of 30% for aqueous samples and 50% for solid matrices, for those target analytes with sample concentrations >5X the MDL. No qualification of the data is recommended.

ICP Interference Check Sample Performance

The results of the ICP Interference Check Samples analyzed concurrently with the project samples were all within the acceptance criteria +/-20% of true value as prescribed by USEPA guidance. No qualification of the data is recommended.

ICP Serial Dilution Replicate Percent Difference

The results of the ICP Serial Dilution samples analyzed concurrently with the project samples were in accordance with the EPA QA acceptance criteria of less than 10% RPD for those target analytes with sample concentrations >50X the MDL, with the following exception(s):

Serial Dilution ID	Target Analyte(s)	%D	Affected Sample(s)
SB-9,S6	Aluminum	14	SB-9,S6
	Barium	13	SB-11,S6
	Calcium	18	SB-14,S4
	Iron	18	MW-4,S5
	Lead	17	
	Manganese	43	
	Zinc	21	

Action:

For serial dilution %D results > 10%, qualify results > the MDL as "J" and non-detects as "UJ".

Sample Data Reporting Format

The sample data are presented using USEPA Contract Laboratory Protocol (CLP) format. The data package has been reviewed for completeness and found to contain each required sample result and associated QA/QC report form. The reporting format is complete and compliant with the objectives of the project. No qualification of the data is recommended.

Data Qualifiers

Data qualifiers were assigned by the laboratory to the reported results to identify target analytes detected below the reporting limit but above the method detection limit, and/or when target analytes were detected in the associated method/preparation blank sample. Based on a spot check of the data qualifiers used, these flags appeared to be applied to the reported results in accordance with EPA guidance.

Organic analyses samples that contained concentrations of target analytes at a reportable level in the associated method blanks were flagged by the laboratory with a "B". If the target analyte concentration was greater than 10 times (10X) the amount in any blank for the common laboratory contaminants or 5 times (5X) the amount for other target compounds, the "B" qualifier was not carried forward for database input; if less than the 10X or 5X rule the "B" qualifier was replaced with a "U". The "J" qualifier, which indicates an estimated value because the result was between the MDL and RL was carried through to the database.

Summary

The results presented in each report were found to be compliant with the data quality objectives for the project and usable. Based on our review, the usability of the data is 100%, with the few exceptions noted above.

G:\Projects\33879\003 Report w DUSR\DUSRs\[A06E377_DV Notes.xls]Final Report

Data Usability Summary Report (DUSR)

RG&E Canal Street

Analytical Laboratory: Severn Trent Laboratories, Inc. - Buffalo, NY Sample Delivery Group # A06-E425

Analytical results for the project samples were reviewed to evaluate the data usability. Data was assessed in accordance with guidance from the following Federal and/or State guidance documents:

- USEPA National Functional Guidelines for Inorganic Data Review (EPA 540-R-04-004)
- USEPA National Functional Guidelines for Organic Data Review (EPA 540/R-99/008)
- NYSDEC "Guidance for the Development of Quality Assurance Plans and Data Usability Summary Reports (DUSR)", September 1997

and method protocol criteria where applicable as prescribed by "Test Methods for Evaluating Solid Waste", SW846, Update III, 1996.

This DUSR pertains to the following samples:

Sample ID
MW-5,S5
MW-5,S7
SB-8,S4
SB-7,S6
EB113006
TB113006

Project Samples were analyzed according to the following analytical methods:

Control of the Control	Parameter.	Analytical Method	Holding Time Criteria
1.	VOCs	EPA 8260B	14 days
2.	VOCs	EPA 8260B/624	14 days
3.	SVOCs (BNAs)	EPA 8270C	14 days ext/40 days analysis
4.	SVOCs (BNAs)	EPA 8270C/625	7 days ext/40 days analysis
5.	ICP/MS Metals	EPA 6020	180 days
6.	ICP Metals	EPA 6010B/200.7	180 days
7.	Mercury	EPA 7471A	28 days
8.	Mercury	EPA 7470A	28 days
9.	Cyanide, Total	EPA 9010B/9014	14 days
10.	Cyanide, Total	EPA 335.2	14 days

The following items/criteria applicable to the analysis of project samples and associated QA/QC procedures were reviewed.

- Holding Times
- · GC/MS Instrument Performance Check
- Initial Calibration Procedures
- Continuing Calibration Procedures
- · Blank Sample Analysis
- System Monitoring Compound Recoveries
- Laboratory Control Samples, Matrix Spike/Matrix Spike Duplicate Recoveries
- · Internal Standard Recoveries
- Duplicate Sample Analysis
- ICP Interference Check Sample Performance
- ICP Serial Dilution Replicate Percent Difference
- · Sample Data Reporting Format
- Data Qualifiers
- Summary

Preservation and Holding Times

Maximum allowable holding times, measured from the time of sample collection to the time of sample preparation or analysis, were met for each project sample analyzed as part of this sample delivery group. No qualification of the data is recommended.

GC/MS Instrument Performance Check

GC/MS instrument performance checks for the instruments used in the analysis of project samples fell within method specific criteria without exception. No qualification of the data is recommended.

Initial Calibration Procedures

Initial instrument calibration procedures for the analysis of project samples were consistent with the guidelines prescribed by EPA protocols, with the following exception(s):

During the analysis of VOCs (SW846 8260B), the initial calibration standards for the following target compound(s) exhibited a percent relative standard deviation (%RSD) greater than the acceptance criteria of 30% and/or a RRF less than 0.05:

Inst.	Date / Time	Target Analyte(s)	%RSD	RRF	Affected Sample(s)	Corrective Action
F	11/21/06	Methylene Chloride	50.00	0.35	All Project Samples	See Action #1 Below
	1016		ļ			

Action #1

Positive results are qualified "J", estimated and non-detected analytes as "UJ", estimated detection limit.

Continuing Calibration Procedures

Continuing calibration verification (CCV) procedures for the analysis of project samples were consistent with the guidelines prescribed by EPA protocols, with the following exception(s):

During the analysis of VOCs (SW846 8260B), the continuing calibration verification (CCV) standards for the following target compound(s) exhibited a percent drift (%D) greater than the acceptance criteria of 25% and/or a RRF less than 0.05:

	Date /				in Schulie in School of the School various views	
Inst.	Time	Target Analyte(s)	%D	RRF	Affected Sample(s)	Corrective Action
F	12/05/06	Bromomethane	35.60	0.05	EB113006	See Action #2 Below
	0957	Methylene Chloride	32.10	0.24	TB113006	See Action #1 Below
		trans-1,2-Dichloroethene	-43.60	0.35		See Action #1 Below
		Carbon tetrachloride	-26.90	0.41		See Action #1 Below
F	12/06/06	Bromomethane	35.60	0.05	MW-5,S5	See Action #2 Below
	1458	Methylene Chloride	35.50	0.23	MW-5,S7	See Action #1 Below
		trans-1,2-Dichloroethene	-45.40	0.35	SB-8,S4	See Action #1 Below
		Methyl tert-butyl ether	-28.60	0.78	SB-7,S6	See Action #1 Below

Action #1

Positive results are qualified "J", estimated and non-detected analytes as "UJ", estimated detection limit.

Positive results are qualified "J", estimated and non-detected analytes as "R", rejected.

Blank Sample Analysis

In accordance with cited USEPA guidelines, positive sample results should be reported unless the concentration of the compound in the project sample is less than or equal to 10 times (10X) the amount in any blank for metals and the common organic laboratory contaminants (methylene chloride, acetone, 2-butanone, cyclohexane, and phthalate esters), or 5 times (5X) the amount for other target compounds. Target compounds were not detected in associated blank samples (trip, equipment, method) prepared and analyzed concurrently with the project samples, with the following exception(s):

Blank	Target Analyte(s)	- Conen.	Affected Sample(s)	Flag sample results with a "U" if < to this value
EB113006	Methylene Chloride	2.1 ug/L	MW-5,S5	21.0 ug/L
			MW-5,S7	
			SB-8,S4	
			SB-7,S6	
TB113006	Methylene Chloride	2.0 ug/L	MW-5,S5	20.0 ug/L
			MW-5,S7	
			SB-8,S4	
			SB-7,S6	
			EB113006	
VBLK11	Methylene Chloride	2.0 ug/L	EB113006	20.0 ug/L
		-	TB113006	
VBLK13	Methylene Chloride	2.0 ug/kg	MW-5,S5	20.0 ug/kg
			MW-5,S7	
			SB-8,S4	
			SB-7,S6	

Blank	Target Analyte(s)	Conen.	Affected Sample(s)	Flag sample results with a "U" if < to this value
SBLK62	bis(2-Ethylhexyl)phthalate	78.0 ug/kg	SB-7,S6	780.0 ug/kg

System Monitoring Compound Recoveries

System monitoring/surrogate compounds are added to each sample prior to analysis of organic parameters by EPA Methods 8260B, 8270C, and/or 8082 to confirm the efficiency of the sample preparation procedure. The calculated recovery for each surrogate compound was evaluated to confirm the accuracy of the reported results. The calculated recovery of these compounds fell within the laboratory specific quality control criteria, with the following exception(s):

Surrogate Percent Recovery Criteria					
Surrogate		Aqueous Matrix (%)	Solid Matrix (%)	Vapor Matrix (%)	
Dibromofluoromethane	S01	low high	low high	low high	
1,2-Dichloroethane-d4	S02	low high	low high	low high	
Toluene-d8	S03	low high	low high	low high	
4-Bromofluorobenzene	S04	73 - 120	low high	low high	

	The second secon	S01	S02	S03	S04	Positive	Non Detect
Project Sample ID	Matrix	%R	%R	%R	%R	Results	(ND)
TB113006	AQ				70	J	UJ

Affected Analytes

All VOC target analytes in identified project sample(s).

Laboratory Control Samples, Matrix Spike/Matrix Spike Duplicate Recoveries

Analytical precision and accuracy was evaluated based on the laboratory control and matrix spike sample analyses performed concurrently with the project samples. For matrix spike samples, after the addition of a known amount of each target analyte to the sample matrix, the sample was analyzed to confirm the ability to identify these compounds within the sample matrix. For LCS analyses, after the addition of a known amount of each target analyte into laboratory reagent water, the sample was analyzed to confirm the ability of the analytical system to accurately quantify the compounds. The reported recovery of MS/MSD and LCS analyses fell within the laboratory QA acceptance criteria. No qualification of the data is recommended.

Internal Standard Recoveries

Internal Standard compounds were added to each sample matrix prior to the analysis of organic parameters by EPA Methods 8260B and/or 8270C to quantify the amount of the target compounds detected within each sample. The calculated response of each IS compound fell within the QA/QC criteria of +100% and -50% of the corresponding CCV standard. No qualification of the data is recommended.

Duplicate Sample Analysis

The replicate percent difference (RPD) was evaluated for each duplicate sample pair to monitor the reproducibility of the data. The RPD for each sample pair was within the QA/QC limit of 30% for aqueous samples and 50% for solid matrices, for those target analytes with sample concentrations >5X the MDL. No qualification of the data is recommended.

ICP Interference Check Sample Performance

The results of the ICP Interference Check Samples analyzed concurrently with the project samples were all within the acceptance criteria +/-20% of true value as prescribed by USEPA guidance. No qualification of the data is recommended.

ICP Serial Dilution Replicate Percent Difference

The results of the ICP Serial Dilution samples analyzed concurrently with the project samples were in accordance with the EPA QA acceptance criteria of less than 10% RPD for those target analytes with sample concentrations >50X the MDL. No qualification of the data is recommended.

Sample Data Reporting Format

The sample data are presented using USEPA Contract Laboratory Protocol (CLP) format. The data package has been reviewed for completeness and found to contain each required sample result and associated QA/QC report form. The reporting format is complete and compliant with the objectives of the project. No qualification of the data is recommended.

Data Qualifiers

Data qualifiers were assigned by the laboratory to the reported results to identify target analytes detected below the reporting limit but above the method detection limit, and/or when target analytes were detected in the associated method/preparation blank sample. Based on a spot check of the data qualifiers used, these flags appeared to be applied to the reported results in accordance with EPA guidance.

Organic analyses samples that contained concentrations of target analytes at a reportable level in the associated method blanks were flagged by the laboratory with a "B". If the target analyte concentration was greater than 10 times (10X) the amount in any blank for the common laboratory contaminants or 5 times (5X) the amount for other target compounds, the "B" qualifier was not carried forward for database input; if less than the 10X or 5X rule the "B" qualifier was replaced with a "U". The "J" qualifier, which indicates an estimated value because the result was between the MDL and RL was carried through to the database.

Summary

The results presented in each report were found to be compliant with the data quality objectives for the project and usable. Based on our review, the usability of the data is 100%, with the few exceptions noted above.

 $G: \label{lem:conditional} G: \label{lem:conditional} G: \label{lem:conditional} Projects \label{lem:conditional} A06E425_DV \ Notes. xls] Final \ Report \ A06E425_DV \ Notes. xls] Final \ A06E425_DV \$

Data Usability Summary Report (DUSR) RG&E Canal Street

Analytical Laboratory: Severn Trent Laboratories, Inc. – Buffalo, NY Sample Delivery Group #A06-E535

Analytical results for the project samples were reviewed to evaluate the data usability. Data was assessed in accordance with guidance from the following Federal and/or State guidance documents:

- USEPA National Functional Guidelines for Inorganic Data Review (EPA 540-R-04-004)
- USEPA National Functional Guidelines for Organic Data Review (EPA 540/R-99/008)
- NYSDEC "Guidance for the Development of Quality Assurance Plans and Data Usability Summary Reports (DUSR)", September 1997

and method protocol criteria where applicable as prescribed by "Test Methods for Evaluating Solid Waste", SW846, Update III, 1996.

This DUSR pertains to the following samples:

Sample ID
MW-1,S2
SB-1,S2
SB-2,S3
SB-19,S2
SB-19,S5
EB120106
TB120106
MW-7,S4
SB-17,S6
EB120406
TB120406
SB-17,S1

Project Samples were analyzed according to the following analytical methods:

0000000	Parameter	Analytical Method	Holding Time Criteria
1.	VOCs	EPA 8260B	14 days
2.	VOCs	EPA 8260B/624	14 days
3.	SVOCs (BNAs)	EPA 8270C	14 days ext/40 days analysis
4.	SVOCs (BNAs)	EPA 8270C/625	7 days ext/40 days analysis
5.	ICP Metals	EPA 6010B	180 days
6.	ICP Metals	EPA 6010B/200.7	180 days
7.	Mercury	EPA 7471A	28 days
8.	Mercury	EPA 7470A	28 days
9.	Cyanide, Total	EPA 9010B/9014	14 days
10.	Cyanide, Total	EPA 335.2	14 days

The following items/criteria applicable to the analysis of project samples and associated QA/QC procedures were reviewed.

- Holding Times
- · GC/MS Instrument Performance Check
- · Initial Calibration Procedures
- Continuing Calibration Procedures
- Blank Sample Analysis
- System Monitoring Compound Recoveries
- · Laboratory Control Samples, Matrix Spike/Matrix Spike Duplicate Recoveries
- · Internal Standard Recoveries
- · Duplicate Sample Analysis
- · ICP Interference Check Sample Performance
- ICP Serial Dilution Replicate Percent Difference
- · Sample Data Reporting Format
- Data Qualifiers
- Summary

Preservation and Holding Times

Maximum allowable holding times, measured from the time of sample collection to the time of sample preparation or analysis, were met for each project sample analyzed as part of this sample delivery group. No qualification of the data is recommended.

GC/MS Instrument Performance Check

GC/MS instrument performance checks for the instruments used in the analysis of project samples fell within method specific criteria without exception. No qualification of the data is recommended.

Initial Calibration Procedures

Initial instrument calibration procedures for the analysis of project samples were consistent with the guidelines prescribed by EPA protocols, with the following exception(s):

During the analysis of VOCs (SW846 8260B), the initial calibration standards for the following target compound(s) exhibited a percent relative standard deviation (%RSD) greater than the acceptance criteria of 30% and/or a RRF less than 0.05:

		Target Analyte(s)	%RSD	RRF	Affected Sample(s)	Corrective Action
P	11/16/06 2130	Methylene chloride	34.30	0.40	All Project Samples	See Action #1 Below

Action #1

Positive results are qualified "J", estimated and non-detected analytes as "UJ", estimated detection limit.

Continuing Calibration Procedures

Continuing calibration verification (CCV) procedures for the analysis of project samples were consistent with the guidelines prescribed by EPA protocols, with the following exception(s):

During the analysis of VOCs (SW846 8260B), the continuing calibration verification (CCV) standards for the following target compound(s) exhibited a percent drift (%D) greater than the acceptance criteria of 25% and/or a RRF less than 0.05:

Inst.	Date / Time	Target Analyte(s)	%D	RRF	Affected Sample(s)	Corrective Action
P	12/05/06	Bromomethane	27.40	0.15	All Project Samples	See Action #1 Below
	1608	Trichlorofluoromethane	27.90	0.41		See Action #1 Below

Action #1

Positive results are qualified "J", estimated and non-detected analytes as "UJ", estimated detection limit.

During the analysis of SVOCs (SW846 8270C), the continuing calibration verification (CCV) standards for the following target compound(s) exhibited a percent drift (%D) greater than the acceptance criteria of 25% and/or a RRL less than 0.05:

Inst.	Date / Time	Target Analyte(s)	%D	RRF	Affected Sample(s)	Corrective Action
V	12/13/06 1117	2,4-Dinitrophenol	25.30		MW-7,S4 SB-17,S6 SB-17,S1	See Action #1 Below
V	12/15/06 0726	Benzaldehyde	43.40	1.08		See Action #1 Below

Action #1

Positive results are qualified "J", estimated and non-detected analytes as "UJ", estimated detection limit.

Blank Sample Analysis

In accordance with cited USEPA guidelines, positive sample results should be reported unless the concentration of the compound in the project sample is less than or equal to 10 times (10X) the amount in any blank for metals and the common organic laboratory contaminants (methylene chloride, acetone, 2-butanone, cyclohexane, and phthalate esters), or 5 times (5X) the amount for other target compounds. Target compounds were not detected in associated blank samples (trip, equipment, method) prepared and analyzed concurrently with the project samples, with the following exception(s):

Blank	Target Analyte(s)	Conen.	- Affected Sample(s)	Flag sample results with a "U" if < to this value
TB120106	Methylene chloride	1.2 ug/L	MW-1,S2	12.0 ug/L
			SB-1,S2	
			SB-2,S3	
			SB-2,S3 SB-19,S5	
TB120406	Methylene chloride	2.0 ug/L	MW-7,S4	20.0 ug/L
	Toluene	3.1 ug/L	SB-17,S6	15.5 ug/L
			SB-17,S1	
VBLK11	Methylene chloride	2.0 ug/kg	MW-1,S2	20.0 ug/kg
			SB-1,S2	
			SB-2,S3	
			SB-19,S2	
			SB-19,S5	
			MW-7,S4	
			SB-17,S6	
			SB-17,S1	
VBLKII	Methylene chloride	2.4 ug/L	TB120106	24.0 ug/L
			TB120406	

				Flag sample results with a "U" if < to this value
EB120106	Pyrene	0.2 ug/L	MW-1,S2	1.0 ug/L
			SB-1,S2	_
			SB-2,S3	
			SB-19,S2	
			SB-19,S5	

System Monitoring Compound Recoveries

System monitoring/surrogate compounds are added to each sample prior to analysis of organic parameters by EPA Methods 8260B, 8270C, and/or 8082 to confirm the efficiency of the sample preparation procedure. The calculated recovery for each surrogate compound was evaluated to confirm the accuracy of the reported results. The calculated recovery of these compounds fell within the laboratory specific quality control criteria. In a few instances, sample extracts required dilution prior to analysis to either improve instrument performance by minimizing matrix interference or enable quantification of the detected target analytes within the instrument calibration range. Where applicable, the laboratory qualified the reported results indicating the system monitoring compound recovery could not be calculated due to a sample extract dilution. In cases where the instrument resolution appeared to be unaffected by the diluted sample matrix, the sample results were accepted without qualification. No qualification of the data is recommended.

Laboratory Control Samples, Matrix Spike/Matrix Spike Duplicate Recoveries

Analytical precision and accuracy was evaluated based on the laboratory control and matrix spike sample analyses performed concurrently with the project samples. For matrix spike samples, after the addition of a known amount of each target analyte to the sample matrix, the sample was analyzed to confirm the ability to identify these compounds within the sample matrix. For LCS analyses, after the addition of a known amount of each target analyte into laboratory reagent water, the sample was analyzed to confirm the ability of the analytical system to accurately quantify the compounds. The reported recovery of MS/MSD and LCS analyses fell within the laboratory QA acceptance criteria, with the following exception(s):

LCS ID / Project Sample MS	Target Analyte(s)	%R Criteria		Affected Sample(s)
SB-17,S1 MS	Chlorobenzene	76 - 124	75	SB-17,S1
SB-17,S1 MSD	Chlorobenzene	76 - 124	72	SB-17,S1

Action:

If the LCS %R is greater than the upper acceptance limit, associated target analyte positive results are qualified "J" and non-detects should not be qualified. If the LCS %R is less than the lower acceptance limit associated target analyte positive results are qualified "J" and non-detects are qualified "R". If the MS/MSD is from a project sample and the %R greater than the upper acceptance limit, associated target analyte positive results are qualified "J" and non-detects should not be qualified. If the MS/MSD %R is >10%, but less than the lower acceptance limit, associated analyte positive results are qualified "J" and non-detects are qualified "UJ". If the MS/MSD %R is less than 10% associated target analyte positive results are qualified "J" and non-detects are qualified "R". MS/MSD qualifiers are only applied to affected samples of the same matrix. If the MS/MSD is a LAB sample do not qualify project samples.

LCS ID / Project Sample MS		%R Criteria	Loek-an kecikalibekile	Affected Sample(s)
SB-17,S1 MSD	Pyrene	41 - 138	152	SB-17,S1

Action:

If the LCS %R is greater than the upper acceptance limit, associated target analyte positive results are qualified "J" and non-detects should not be qualified. If the LCS %R is less than the lower acceptance limit associated target analyte positive results are qualified "J" and non-detects are qualified "R". If the MS/MSD is from a project sample and the %R greater than the upper acceptance limit, associated target analyte positive results are qualified "J" and non-detects should not be qualified. If the MS/MSD %R is >10%, but less than the lower acceptance limit, associated analyte positive results are qualified "J" and non-detects are qualified "UJ". If the MS/MSD %R is less than 10% associated target analyte positive results are qualified "J" and non-detects are qualified "R". MS/MSD qualifiers are only applied to affected samples of the same matrix. If the MS/MSD is a LAB sample do not qualify project samples.

LCS ID / Project Sample MS	Type	Target Analyte(s)	%R	Affected Sample(s)	Positive Results	Non Detect (ND)
SB-17,S1	MS	Aluminum	48	MW-1,S2	J	UJ
		Antimony	46	SB-1,S2	j	UJ
		Chromium	134	SB-2,S3	j	
		Copper	157	SB-19,S2	J	
				SB-19,S5		
				MW-7,S4		
				SB-17,S6		
				SB-17,S1		
SB-17,S1	MSD	Aluminum	66	MW-1,S2	J	υJ
		Antimony	45	SB-1,S2	J	UJ
		•		SB-2,S3		
				SB-19,S2		
				SB-19,S5		
				MW-7,S4		
				SB-17,S6		
				SR-17 S1		

LCS ID / Project Sample MS	Type	Target Analyte(s)	%R	Affected Sample(s)	Positive Results	Non Detect (ND)
SB-17,S1	MS	Mercury	1021	MW-1,S2	J	
				SB-1,S2		
				SB-2,S3		
				SB-19,S2		į į
				SB-19,S5		
				MW-7,S4		
				SB-17,S6		
				SB-17,S1		
SB-17,S1	MSD	Mercury	249	MW-1,S2	j	
:				SB-1,S2		
				SB-2,S3		
				SB-19,S2		
				SB-19,S5		
				MW-7,S4		
				SB-17,S6		
				SB-17,S1		

Internal Standard Recoveries

Internal Standard compounds were added to each sample matrix prior to the analysis of organic parameters by EPA Methods 8260B and/or 8270C to quantify the amount of the target compounds detected within each sample. The calculated response of each IS compound fell within the QA/QC criteria of +100% and – 50% of the corresponding CCV standard. No qualification of the data is recommended.

Duplicate Sample Analysis

The replicate percent difference (RPD) was evaluated for each duplicate sample pair to monitor the reproducibility of the data. The RPD for each sample pair was within the QA/QC limit of 30% for aqueous samples and 50% for solid matrices, for those target analytes with sample concentrations >5X the MDL, with the following exception(s):

Sample ID	Matrix	Target Analyte(s)	RPD	Affected Sample(s)
SB-17,S1	Soil	Arsenic	22	MW-1,S2
		Chromium	33	SB-1,S2
		Magnesium	26	SB-2,S3
		Manganese	38	SB-19,S2
		Zine	55	SB-19,S5
				MW-7,S4
				SB-17,S6
				SB-17,S1

Action:

Analytes with RPDs greater than 20% should be qualified "J" and non-detects qualified "UJ".

Sample ID	Matrix	Target Analyte(s)	RPD	Affected Sample(s)
SB-17,S1	Soil	Mercury	80	MW-1,S2
				SB-1,S2
				SB-2,S3
				SB-19,S2
				SB-19,S5
				MW-7,S4
				SB-17,S6
				SB-17.S1

Action

Analytes with RPDs greater than 20% should be qualified "J" and non-detects qualified "UJ".

Sample ID	Matrix	Target Analyte(s)	RPD	Affected Sample(s)
SB-17,S1	Soil	Total Cyanide	22	MW-1,S2
				SB-1,S2
				SB-2,S3
				SB-19,S2
				SB-19,S5
				MW-7,S4
				SB-17,S6
				SB-17,S1

Action:

Analytes with RPDs greater than 20% should be qualified "J" and non-detects qualified "UJ".

ICP Interference Check Sample Performance

The results of the ICP Interference Check Samples analyzed concurrently with the project samples were all within the acceptance criteria +/-20% of true value as prescribed by USEPA guidance. No qualification of the data is recommended.

ICP Serial Dilution Replicate Percent Difference

The results of the ICP Serial Dilution samples analyzed concurrently with the project samples were in accordance with the EPA QA acceptance criteria of less than 10% RPD for those target analytes with sample concentrations >50X the MDL. No qualification of the data is recommended.

Sample Data Reporting Format

The sample data are presented using USEPA Contract Laboratory Protocol (CLP) format. The data package has been reviewed for completeness and found to contain each required sample result and associated QA/QC report form. The reporting format is complete and compliant with the objectives of the project. No qualification of the data is recommended.

Data Qualifiers

Data qualifiers were assigned by the laboratory to the reported results to identify target analytes detected below the reporting limit but above the method detection limit, and/or when target analytes were detected in the associated method/preparation blank sample. Based on a spot check of the data qualifiers used, these flags appeared to be applied to the reported results in accordance with EPA guidance.

Organic analyses samples that contained concentrations of target analytes at a reportable level in the associated method blanks were flagged by the laboratory with a "B". If the target analyte concentration was greater than 10 times (10X) the amount in any blank for the common laboratory contaminants or 5 times (5X) the amount for other target compounds, the "B" qualifier was not carried forward for database input; if less than the 10X or 5X rule the "B" qualifier was replaced with a "U". The "J" qualifier, which indicates an estimated value because the result was between the MDL and RL was carried through to the database.

Summary

The results presented in each report were found to be compliant with the data quality objectives for the project and usable. Based on our review, the usability of the data is 100%, with the few exceptions noted above.

G:\Projects\33879\003 Report w DUSR\DUSRs\[A06E535_DV Notes.xls]Final Report

Data Usability Summary Report (DUSR)

RG&E Canal Street

Analytical Laboratory: Severn Trent Laboratories, Inc. – Buffalo, NY Sample Delivery Group # A06-E587

Analytical results for the project samples were reviewed to evaluate the data usability. Data was assessed in accordance with guidance from the following Federal and/or State guidance documents:

- USEPA National Functional Guidelines for Inorganic Data Review (EPA 540-R-04-004)
- USEPA National Functional Guidelines for Organic Data Review (EPA 540/R-99/008)
- NYSDEC "Guidance for the Development of Quality Assurance Plans and Data Usability Summary Reports (DUSR)", September 1997

and method protocol criteria where applicable as prescribed by "Test Methods for Evaluating Solid Waste", SW846, Update III, 1996.

This DUSR pertains to the following samples:

Sample ID

Project Samples were analyzed according to the following analytical methods:

	Parameter.	Analytical Method	Holding Time Criteria
1.	VOCs	EPA 8260B	I4 days
2.	SVOCs (BNAs)	EPA 8270C	14 days ext/40 days analysis
3.	ICP Metals	EPA 6010B	180 days
4.	Mercury	EPA 7471A	28 days
5.	Cyanide, Total	EPA 9010B/9014	14 days

The following items/criteria applicable to the analysis of project samples and associated QA/QC procedures were reviewed.

- · Holding Times
- GC/MS Instrument Performance Check
- Initial Calibration Procedures
- · Continuing Calibration Procedures
- Blank Sample Analysis
- · System Monitoring Compound Recoveries
- · Laboratory Control Samples, Matrix Spike/Matrix Spike Duplicate Recoveries
- · Internal Standard Recoveries
- · Duplicate Sample Analysis
- · ICP Interference Check Sample Performance
- Sample Data Reporting Format
- Data Qualifiers
- Summary

Preservation and Holding Times

Maximum allowable holding times, measured from the time of sample collection to the time of sample preparation or analysis, were met for each project sample analyzed as part of this sample delivery group. No qualification of the data is recommended.

GC/MS Instrument Performance Check

GC/MS instrument performance checks for the instruments used in the analysis of project samples fell within method specific criteria without exception. No qualification of the data is recommended.

Initial Calibration Procedures

Initial instrument calibration procedures for the analysis of project samples were consistent with the guidelines prescribed by EPA protocols, with the following exception(s):

During the analysis of VOCs (SW846 8260B), the initial calibration standards for the following target compound(s) exhibited a percent relative standard deviation (%RSD) greater than the acceptance criteria of 30% and/or a RRF less than 0.05:

Inst.	Date / Time	Target Analyte(s)	%RSD	RRF	Affected Sample(s)	Corrective Action
F	11/21/06	Methylene chloride	50.00	0.35	SB-6,S3	See Action #1 Below
	1016					

Action #1

Positive results are qualified "J", estimated and non-detected analytes as "UJ", estimated detection limit.

Continuing Calibration Procedures

Continuing calibration verification (CCV) procedures for the analysis of project samples were consistent with the guidelines prescribed by EPA protocols, with the following exception(s):

During the analysis of VOCs (SW846 8260B), the continuing calibration verification (CCV) standards for the following target compound(s) exhibited a percent drift (%D) greater than the acceptance criteria of 25% and/or a RRF less than 0.05:

Inst.	Date / Time	Target Analyte(s)	%D	RRF	Affected Sample(s)	Corrective Action
F	12/09/06	Bromomethane	47.50	0.04	SB-6,S3	See Action #2 Below
	0911	Methylene chloride	34.30	0.23		See Action #1 Below
		trans-1,2-Dichloroethene	-46.70	0.35		See Action #1 Below
		Carbon tetrachloride	-25.40	0.40		See Action #1 Below

Action #1

Positive results are qualified "J", estimated and non-detected analytes as "UJ", estimated detection limit.

Action #2

Positive results are qualified "J", estimated and non-detected analytes as "R", rejected.

During the analysis of SVOCs (SW846 8270C), the continuing calibration verification (CCV) standards for the following target compound(s) exhibited a percent drift (%D) greater than the acceptance criteria of 25% and/or a RRL less than 0.05:

Inst.	Date /	Target Analyte(s)	%D	RRF	Affected Sample(s)	Corrective Action
	12/12/06	2,4-Dinitrophenol	30.20	0.12	SB-6,S3	See Action #1 Below
	1315					

Action #1

Positive results are qualified "J", estimated and non-detected analytes as "UJ", estimated detection limit.

Blank Sample Analysis

In accordance with cited USEPA guidelines, positive sample results should be reported unless the concentration of the compound in the project sample is less than or equal to 10 times (10X) the amount in any blank for metals and the common organic laboratory contaminants (methylene chloride, acetone, 2-butanone, cyclohexane, and phthalate esters), or 5 times (5X) the amount for other target compounds. Target compounds were not detected in associated blank samples (trip, equipment, method) prepared and analyzed concurrently with the project samples, with the following exception(s):

System Monitoring Compound Recoveries

System monitoring/surrogate compounds are added to each sample prior to analysis of organic parameters by EPA Methods 8260B, 8270C, and/or 8082 to confirm the efficiency of the sample preparation procedure. The calculated recovery for each surrogate compound was evaluated to confirm the accuracy of the reported results. The calculated recovery of these compounds fell within the laboratory specific quality control criteria. In a few instances, sample extracts required dilution prior to analysis to either improve instrument performance by minimizing matrix interference or enable quantification of the detected target analytes within the instrument calibration range. Where applicable, the laboratory qualified the reported results indicating the system monitoring compound recovery could not be calculated due to a sample extract dilution. In cases where the instrument resolution appeared to be unaffected by the diluted sample matrix, the sample results were accepted without qualification. No qualification of the data is recommended.

Laboratory Control Samples, Matrix Spike/Matrix Spike Duplicate Recoveries

Analytical precision and accuracy was evaluated based on the laboratory control and matrix spike sample analyses performed concurrently with the project samples. For matrix spike samples, after the addition of a known amount of each target analyte to the sample matrix, the sample was analyzed to confirm the ability to identify these compounds within the sample matrix. For LCS analyses, after the addition of a known amount of each target analyte into laboratory reagent water, the sample was analyzed to confirm the ability of the analytical system to accurately quantify the compounds. The reported recovery of MS/MSD and LCS analyses fell within the laboratory QA acceptance criteria. No qualification of the data is recommended.

Internal Standard Recoveries

Internal Standard compounds were added to each sample matrix prior to the analysis of organic parameters by EPA Methods 8260B and/or 8270C to quantify the amount of the target compounds detected within each sample. The calculated response of each IS compound fell within the QA/QC criteria of +100% and -50% of the corresponding CCV standard. No qualification of the data is recommended.

Duplicate Sample Analysis

The replicate percent difference (RPD) was evaluated for each duplicate sample pair to monitor the reproducibility of the data. The RPD for each sample pair was within the QA/QC limit of 30% for aqueous samples and 50% for solid matrices, for those target analytes with sample concentrations >5X the MDL. No qualification of the data is recommended.

ICP Interference Check Sample Performance

The results of the ICP Interference Check Samples analyzed concurrently with the project samples were all within the acceptance criteria +/-20% of true value as prescribed by USEPA guidance. No qualification of the data is recommended.

Sample Data Reporting Format

The sample data are presented using USEPA Contract Laboratory Protocol (CLP) format. The data package has been reviewed for completeness and found to contain each required sample result and associated QA/QC report form. The reporting format is complete and compliant with the objectives of the project. No qualification of the data is recommended.

Data Qualifiers

Data qualifiers were assigned by the laboratory to the reported results to identify target analytes detected below the reporting limit but above the method detection limit, and/or when target analytes were detected in the associated method/preparation blank sample. Based on a spot check of the data qualifiers used, these flags appeared to be applied to the reported results in accordance with EPA guidance.

Organic analyses samples that contained concentrations of target analytes at a reportable level in the associated method blanks were flagged by the laboratory with a "B". If the target analyte concentration was greater than 10 times (10X) the amount in any blank for the common laboratory contaminants or 5 times (5X) the amount for other target compounds, the "B" qualifier was not carried forward for database input; if less than the 10X or 5X rule the "B" qualifier was replaced with a "U". The "J" qualifier, which indicates an estimated value because the result was between the MDL and RL was carried through to the database.

y ·

Summary

The results presented in each report were found to be compliant with the data quality objectives for the project and usable. Based on our review, the usability of the data is 100%, with the few exceptions noted above.

 $G:\label{lem:conditional} G:\label{lem:conditional} G:\label{lem:conditional} G:\label{lem:conditional} G:\label{lem:conditional} Projects\label{lem:conditional} A06E587_DV\ Notes.xls\] Final\ Report$

Data Usability Summary Report (DUSR)

RG&E Canal Street

Analytical Laboratory: Severn Trent Laboratories, Inc. – Buffalo, NY Sample Delivery Group # A06-E629

Analytical results for the project samples were reviewed to evaluate the data usability. Data was assessed in accordance with guidance from the following Federal and/or State guidance documents:

- USEPA National Functional Guidelines for Inorganic Data Review (EPA 540-R-04-004)
- USEPA National Functional Guidelines for Organic Data Review (EPA 540/R-99/008)
- NYSDEC "Guidance for the Development of Quality Assurance Plans and Data Usability Summary Reports (DUSR)", September 1997

and method protocol criteria where applicable as prescribed by "Test Methods for Evaluating Solid Waste", SW846, Update III, 1996.

This DUSR pertains to the following samples:

Sample ID
MW-6,S2
SB-16,S1
SB-16,S7
DUP120506
EB120506
TB1205069

Project Samples were analyzed according to the following analytical methods:

REPORTS	Parameter	Analytical Method	Holding Time Criteria
1.	VOCs	EPA 8260B	14 days
2.	VOCs	EPA 8260B/624	14 days
3.	SVOCs (BNAs)	EPA 8270C	14 days ext/40 days analysis
4.	SVOCs (BNAs)	EPA 8270C/625	7 days ext/40 days analysis
5.	ICP Metals	EPA 6010B	180 days
6.	ICP Metals	EPA 6010B/200.7	180 days
7.	Mercury	EPA 7471A	28 days
8.	Mercury	EPA 7470A	28 days
9.	Cyanide, Total	EPA 9010B/9014	14 days
10.	Cyanide, Total	EPA 335.2	14 days

The following items/criteria applicable to the analysis of project samples and associated QA/QC procedures were reviewed.

- Holding Times
- · GC/MS Instrument Performance Check
- Initial Calibration Procedures
- Continuing Calibration Procedures
- · Blank Sample Analysis
- System Monitoring Compound Recoveries
- · Laboratory Control Samples, Matrix Spike/Matrix Spike Duplicate Recoveries
- · Internal Standard Recoveries
- Duplicate Sample Analysis
- ICP Interference Check Sample Performance
- Sample Data Reporting Format
- Data Qualifiers
- Summary

Preservation and Holding Times

Maximum allowable holding times, measured from the time of sample collection to the time of sample preparation or analysis, were met for each project sample analyzed as part of this sample delivery group. No qualification of the data is recommended.

GC/MS Instrument Performance Check

GC/MS instrument performance checks for the instruments used in the analysis of project samples fell within method specific criteria without exception. No qualification of the data is recommended.

Initial Calibration Procedures

Initial instrument calibration procedures for the analysis of project samples were consistent with the guidelines prescribed by EPA protocols, with the following exception(s):

During the analysis of VOCs (SW846 8260B), the initial calibration standards for the following target compound(s) exhibited a percent relative standard deviation (%RSD) greater than the acceptance criteria of 30% and/or a RRF less than 0.05:

Inst.	Date / Time	Target Analyte(s)	%RSD	RRF	Affected Sample(s)	Corrective Action
F	11/21/06	Methylene chloride	50.00	0.35	MW-6,S2	See Action #1 Below
	1016				SB-16,S1	
					SB-16,S7	
					DUP120506	

Action #1

Positive results are qualified "J", estimated and non-detected analytes as "UJ", estimated detection limit.

Continuing Calibration Procedures

Continuing calibration verification (CCV) procedures for the analysis of project samples were consistent with the guidelines prescribed by EPA protocols, with the following exception(s):

During the analysis of VOCs (SW846 8260B), the continuing calibration verification (CCV) standards for the following target compound(s) exhibited a percent drift (%D) greater than the acceptance criteria of 25% and/or a RRF less than 0.05:

55 - 5 - 60 - 62 - 63 63 - 64 - 69 - 64 - 64	Date /			20000000000		
Inst.	Time	Target Analyte(s)	%D	RRF	Affected Sample(s)	Corrective Action
F	12/08/06	Bromomethane	38.10	0.05	MW-6,S2	See Action #2 Below
ŀ	0910	Methylene chloride	30.70	0.24	SB-16,S1	See Action #1 Below
		trans-1,2-Dichloroethene	-50.40	0.36	SB-16,S7	See Action #1 Below
		Carbon tetrachloride	-29.20	0.42	DUP120506	See Action #1 Below
		Methyl acetate	25.40	0.19		See Action #1 Below
N	12/14/06	Acetone	45.50	0.08	EB120506	See Action #1 Below
	0833	2-Butanone	48.70	0.14	TB1205069	See Action #1 Below
		Bromoform	25.10	0.35		See Action #1 Below
		4-Methyl-2-pentanone	43.50	0.33		See Action #1 Below
		2-Hexanone	46.00	0.23		See Action #1 Below
		1,1,2,2-Tetrachloroethane	31.60	0.63		See Action #1 Below
		1,2-Dibromo-3-chloropropane	57.40	0.09		See Action #1 Below
		Methyl acetate	34.80	0.33		See Action #1 Below

Action #1

Positive results are qualified "J", estimated and non-detected analytes as "UJ", estimated detection limit. Action #2

Positive results are qualified "J", estimated and non-detected analytes as "R", rejected.

During the analysis of SVOCs (SW846 8270C), the continuing calibration verification (CCV) standards for the following target compound(s) exhibited a percent drift (%D) greater than the acceptance criteria of 25% and/or a RRL less than 0.05:

	Date/					
Inst.	Time	Target Analyte(s)	%D	RRF	Affected Sample(s)	Corrective Action
V	12/13/06	2,4-Dinitrophenol	25.30	0.12	EB120506	See Action #1 Below
	1117					
	12/12/06	2,4-Dinitrophenol	30.20	0.12	MW-6,S2	See Action #1 Below
	1315				SB-16,S1	
					SB-16,S7	
					DUP120506	

Action #1

Positive results are qualified "J", estimated and non-detected analytes as "UJ", estimated detection limit.

Blank Sample Analysis

In accordance with cited USEPA guidelines, positive sample results should be reported unless the concentration of the compound in the project sample is less than or equal to 10 times (10X) the amount in any blank for metals and the common organic laboratory contaminants (methylene chloride, acetone, 2-butanone, cyclohexane, and phthalate esters), or 5 times (5X) the amount for other target compounds. Target compounds were not detected in associated blank samples (trip, equipment, method) prepared and analyzed concurrently with the project samples, with the following exception(s):

Blank	Target Analyte(s)	Concn.	Affected Sample(s)	Flag sample results with a "U" if < to this value
VBLK15	Methylene chloride	2.0 ug/kg	MW-6,S2	20.0 ug/kg
			SB-16,S1	
			SB-16,S7	
			DUP120506	

Blank	Target Analyte(s)	Conen.	Affected Sample(s)	Flag sample results with a "U" if ≤ to this value
	bis(2-Ethylhexyl)phthalate		MW-6,S2	540.0 ug/kg
1: : :	Di-n-octylphthalate		SB-16.S1	
	Di-n-octyrpitharate	0 0	l '	100.0 ug/kg
			SB-16,S7	1
			DUP120506	

System Monitoring Compound Recoveries

System monitoring/surrogate compounds are added to each sample prior to analysis of organic parameters by EPA Methods 8260B, 8270C, and/or 8082 to confirm the efficiency of the sample preparation procedure. The calculated recovery for each surrogate compound was evaluated to confirm the accuracy of the reported results. The calculated recovery of these compounds fell within the laboratory specific quality control criteria. In a few instances, sample extracts required dilution prior to analysis to either improve instrument performance by minimizing matrix interference or enable quantification of the detected target analytes within the instrument calibration range. Where applicable, the laboratory qualified the reported results indicating the system monitoring compound recovery could not be calculated due to a sample extract dilution. In cases where the instrument resolution appeared to be unaffected by the diluted sample matrix, the sample results were accepted without qualification. No qualification of the data is recommended.

Laboratory Control Samples, Matrix Spike/Matrix Spike Duplicate Recoveries

Analytical precision and accuracy was evaluated based on the laboratory control and matrix spike sample analyses performed concurrently with the project samples. For matrix spike samples, after the addition of a known amount of each target analyte to the sample matrix, the sample was analyzed to confirm the ability to identify these compounds within the sample matrix. For LCS analyses, after the addition of a known amount of each target analyte into laboratory reagent water, the sample was analyzed to confirm the ability of the analytical system to accurately quantify the compounds. The reported recovery of MS/MSD and LCS analyses fell within the laboratory QA acceptance criteria. No qualification of the data is recommended.

Internal Standard Recoveries

Internal Standard compounds were added to each sample matrix prior to the analysis of organic parameters by EPA Methods 8260B and/or 8270C to quantify the amount of the target compounds detected within each sample. The calculated response of each IS compound fell within the QA/QC criteria of +100% and -50% of the corresponding CCV standard. No qualification of the data is recommended.

Duplicate Sample Analysis

The replicate percent difference (RPD) was evaluated for each duplicate sample pair to monitor the reproducibility of the data. The RPD for each sample pair was within the QA/QC limit of 30% for aqueous samples and 50% for solid matrices, for those target analytes with sample concentrations >5X the MDL. No qualification of the data is recommended.

ICP Interference Check Sample Performance

The results of the ICP Interference Check Samples analyzed concurrently with the project samples were all within the acceptance criteria +/-20% of true value as prescribed by USEPA guidance. No qualification of the data is recommended.

Sample Data Reporting Format

The sample data are presented using USEPA Contract Laboratory Protocol (CLP) format. The data package has been reviewed for completeness and found to contain each required sample result and associated QA/QC report form. The reporting format is complete and compliant with the objectives of the project. No qualification of the data is recommended.

Data Qualifiers

Data qualifiers were assigned by the laboratory to the reported results to identify target analytes detected below the reporting limit but above the method detection limit, and/or when target analytes were detected in the associated method/preparation blank sample. Based on a spot check of the data qualifiers used, these flags appeared to be applied to the reported results in accordance with EPA guidance.

Organic analyses samples that contained concentrations of target analytes at a reportable level in the associated method blanks were flagged by the laboratory with a "B". If the target analyte concentration was greater than 10 times (10X) the amount in any blank for the common laboratory contaminants or 5 times (5X) the amount for other target compounds, the "B" qualifier was not carried forward for database input; if less than the 10X or 5X rule the "B" qualifier was replaced with a "U". The "J" qualifier, which indicates an estimated value because the result was between the MDL and RL was carried through to the database.

Summary

The results presented in each report were found to be compliant with the data quality objectives for the project and usable. Based on our review, the usability of the data is 100%, with the few exceptions noted above.

G:\Projects\33879\003 Report w DUSR\DUSRs\[A06E629_DV Notes.xls]Final Report

Data Usability Summary Report (DUSR) RG&E Canal Street

Analytical Laboratory: Severn Trent Laboratories, Inc. - Buffalo, NY Sample Delivery Group # A06-E730

Analytical results for the project samples were reviewed to evaluate the data usability. Data was assessed in accordance with guidance from the following Federal and/or State guidance documents:

- USEPA National Functional Guidelines for Inorganic Data Review (EPA 540-R-04-004)
- · NYSDEC "Guidance for the Development of Quality Assurance Plans and Data Usability Summary Reports (DUSR)", September 1997

and method protocol criteria where applicable as prescribed by "Test Methods for Evaluating Solid Waste", SW846, Update III, 1996.

This DUSR pertains to the following samples:

Sample ID		155,7
SB-16-S2		

Project Samples were analyzed according to the following analytical methods:

	Parameter	Analytical Method	Holding Time Criteria
1.	ICP Metals	EPA 6010B	180 days
2.	Mercury	EPA 7471A	28 days
3.	Cyanide, Total	EPA 9010B/9014	14 days
4.	pH	EPA 9045B	ASAP (24 hours)

The following items/criteria applicable to the analysis of project samples and associated QA/QC procedures were reviewed.

- Holding Times
- Initial Calibration Procedures
- Continuing Calibration Procedures
- Blank Sample Analysis
- Laboratory Control Samples, Matrix Spike/Matrix Spike Duplicate Recoveries
- **Duplicate Sample Analysis**
- ICP Interference Check Sample Performance
- Sample Data Reporting Format
- Data Qualifiers
- Summary

Preservation and Holding Times

Maximum allowable holding times, measured from the time of sample collection to the time of sample preparation or analysis, were met for each project sample analyzed as part of this sample delivery group. No qualification of the data is recommended.

Initial Calibration Procedures

Initial instrument calibration procedures for the analysis of project samples were consistent with the guidelines prescribed by EPA protocols. No Qualification of the data is recommended.

Continuing Calibration Procedures

Continuing calibration verification (CCV) procedures for the analysis of project samples were consistent with the guidelines prescribed by EPA protocols. No Qualification of the data is recommended.

Blank Sample Analysis

In accordance with cited USEPA guidelines, positive sample results should be reported unless the concentration of the compound in the project sample is less than or equal to 10 times (10X) the amount in any blank for metals and the common organic laboratory contaminants (methylene chloride, acetone, 2-butanone, cyclohexane, and phthalate esters), or 5 times (5X) the amount for other target compounds. Target analytes were not detected in associated blank samples (trip, equipment, method) prepared and analyzed concurrently with the project samples. No qualification of the data is recommended.

Laboratory Control Samples, Matrix Spike/Matrix Spike Duplicate Recoveries

Analytical precision and accuracy was evaluated based on the laboratory control and matrix spike sample analyses performed concurrently with the project samples. For matrix spike samples, after the addition of a known amount of each target analyte to the sample matrix, the sample was analyzed to confirm the ability to identify these compounds within the sample matrix. For LCS analyses, after the addition of a known amount of each target analyte into laboratory reagent water, the sample was analyzed to confirm the ability of the analytical system to accurately quantify the compounds. The reported recovery of MS/MSD and LCS analyses fell within the laboratory QA acceptance criteria. No qualification of the data is recommended.

Duplicate Sample Analysis

The replicate percent difference (RPD) was evaluated for each duplicate sample pair to monitor the reproducibility of the data. The RPD for each sample pair was within the QA/QC limit of 30% for aqueous samples and 50% for solid matrices, for those target analytes with sample concentrations >5X the MDL. No qualification of the data is recommended.

ICP Interference Check Sample Performance

The results of the ICP Interference Check Samples analyzed concurrently with the project samples were all within the acceptance criteria +/-20% of true value as prescribed by USEPA guidance. No qualification of the data is recommended.

Sample Data Reporting Format

The sample data are presented using USEPA Contract Laboratory Protocol (CLP) format. The data package has been reviewed for completeness and found to contain each required sample result and associated QA/QC report form. The reporting format is complete and compliant with the objectives of the project. No qualification of the data is recommended.

Data Qualifiers

Data qualifiers were assigned by the laboratory to the reported results to identify target analytes detected below the reporting limit but above the method detection limit, and/or when target analytes were detected in the associated method/preparation blank sample. Based on a spot check of the data qualifiers used, these flags appeared to be applied to the reported results in accordance with EPA guidance.

Organic analyses samples that contained concentrations of target analytes at a reportable level in the associated method blanks were flagged by the laboratory with a "B". If the target analyte concentration was greater than 10 times (10X) the amount in any blank for the common laboratory contaminants or 5 times (5X) the amount for other target compounds, the "B" qualifier was not carried forward for database input; if less than the 10X or 5X rule the "B" qualifier was replaced with a "U". The "J" qualifier, which indicates an estimated value because the result was between the MDL and RL was carried through to the database.

Summary

The results presented in each report were found to be compliant with the data quality objectives for the project and usable. Based on our review, the usability of the data is 100%, with the few exceptions noted above.

G:\Projects\33879\003 Report w DUSR\DUSRs\[A06E730_DV Notes.xls]Final Report

Data Usability Summary Report (DUSR)

RG&E Canal Street

Analytical Laboratory: Severn Trent Laboratories, Inc. – Buffalo, NY Sample Delivery Group # A06-F467

Analytical results for the project samples were reviewed to evaluate the data usability. Data was assessed in accordance with guidance from the following Federal and/or State guidance documents:

- USEPA National Functional Guidelines for Inorganic Data Review (EPA 540-R-04-004)
- USEPA National Functional Guidelines for Organic Data Review (EPA 540/R-99/008)
- NYSDEC "Guidance for the Development of Quality Assurance Plans and Data Usability Summary Reports (DUSR)", September 1997

and method protocol criteria where applicable as prescribed by "Test Methods for Evaluating Solid Waste", SW846, Update III, 1996.

This DUSR pertains to the following samples:

Samp	ole ID
MW-	I
MW-	2
EB12	2606
TRIO	2606

Project Samples were analyzed according to the following analytical methods:

Section Sectio	Parameter	Analytical Method	Holding Time Criteria
1	VOCs	EPA 8260B/624	I4 days
2	SVOCs (BNAs)	EPA 8270C/625	7 days ext/40 days analysis
3	ICP Metals	EPA 6010B/200.7	180 days
4	Mercury	EPA 7470A	28 days
5	Cyanide, Total	EPA 335.2	14 days

The following items/criteria applicable to the analysis of project samples and associated QA/QC procedures were reviewed.

- · Holding Times
- GC/MS Instrument Performance Check
- · Initial Calibration Procedures
- · Continuing Calibration Procedures
- · Blank Sample Analysis
- · System Monitoring Compound Recoveries
- · Laboratory Control Samples, Matrix Spike/Matrix Spike Duplicate Recoveries
- Internal Standard Recoveries
- Duplicate Sample Analysis
- ICP Interference Check Sample Performance
- · ICP Serial Dilution Replicate Percent Difference
- · Sample Data Reporting Format
- Data Qualifiers
- Summary

Preservation and Holding Times

Maximum allowable holding times, measured from the time of sample collection to the time of sample preparation or analysis, were met for each project sample analyzed as part of this sample delivery group. No qualification of the data is recommended.

GC/MS Instrument Performance Check

GC/MS instrument performance checks for the instruments used in the analysis of project samples fell within method specific criteria without exception. No qualification of the data is recommended.

Initial Calibration Procedures

Initial instrument calibration procedures for the analysis of project samples were consistent with the guidelines prescribed by EPA protocols, with the following exception(s):

During the analysis of VOCs (SW846 8260B), the initial calibration standards for the following target compound(s) exhibited a percent relative standard deviation (%RSD) greater than the acceptance criteria of 30% and/or a RRF less than 0.05:

Inst.	Date / Time	Target Analyte(s)	%RSD	RRF	Affected Sample(s)	Corrective Action
G	12/20/06 1124	Methylene chloride	33.60	0.58	All Project Samples	See Action #1 Below

Action #1

Positive results are qualified "J", estimated and non-detected analytes as "UJ", estimated detection limit.

During the analysis of SVOCs (SW846 8270C), the initial calibration standards for the following target compound(s) exhibited a percent relative standard deviation (%RSD) greater than the acceptance criteria of 30% and/or a RRF less than 0.05:

Înst.	Date / Time	Target Analyte(s)	%RSD	RRF	Affected Sample(s)	Corrective Action
U	12/13/06 0906	2,4-Dinitrophenol	44.60	0.10	All Project Samples	See Action #1 Below

Action #1

Positive results are qualified "J", estimated and non-detected analytes as "UJ", estimated detection limit.

Continuing Calibration Procedures

Continuing calibration verification (CCV) procedures for the analysis of project samples were consistent with the guidelines prescribed by EPA protocols, with the following exception(s):

During the analysis of VOCs (SW846 8260B), the continuing calibration verification (CCV) standards for the following target compound(s) exhibited a percent drift (%D) greater than the acceptance criteria of 25% and/or a RRF less than 0.05:

			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	the second second second second		
	Date/					
120000000000000000000000000000000000000	Market er Girth		BRIDARE MERKETERS			
Tunt	rre	Target Analyte(s)	0/ D	DDD	4 ec	
Inst.	anguatal HIII Cassiya	Larget Analyte(s)	70D	KKI	Affected Sample(s)	Corrective Action
	01/02/07	Chlamathana	26.20	0.20	A EL Don't and Co. 1	C
l G	01/02/07	Chloroethane	-36.20	0.38	All Project Samples	See Action #1 Below
1		l	مميد ا	ا مما	l ' '	l
1	2235	Methyl acetate	-41.20	0.91		ISee Action #1 Below I
L		L			L	200 100 01 11 200 11

Action #1

Positive results are qualified "J", estimated and non-detected analytes as "UJ", estimated detection limit.

During the analysis of SVOCs (SW846 8270C), the continuing calibration verification (CCV) standards for the following target compound(s) exhibited a percent drift (%D) greater than the acceptance criteria of 25% and/or a RRL less than 0.05:

Inst.	Date/	Target Analyte(s)	%D	RRF	Affected Sample(s)	Corrective Action
U	01/03/07	2-Methylnaphthalene	-31.80	1.00	All Project Samples	See Action #1 Below
	0853					

Action #1

Positive results are qualified "J", estimated and non-detected analytes as "UJ", estimated detection limit.

Blank Sample Analysis

In accordance with cited USEPA guidelines, positive sample results should be reported unless the concentration of the compound in the project sample is less than or equal to 10 times (10X) the amount in any blank for metals and the common organic laboratory contaminants (methylene chloride, acetone, 2-butanone, cyclohexane, and phthalate esters), or 5 times (5X) the amount for other target compounds. Target compounds were not detected in associated blank samples (trip, equipment, method) prepared and analyzed concurrently with the project samples, with the following exception(s):

Blank	Target Analyte(s)	Concn.	Affected Sample(s)	Flag sample results with a "U" if < to this value
TB122606	Acetone	8.7 ug/L	All Project Samples	87.0 ug/L

System Monitoring Compound Recoveries

System monitoring/surrogate compounds are added to each sample prior to analysis of organic parameters by EPA Methods 8260B, 8270C, and/or 8082 to confirm the efficiency of the sample preparation procedure. The calculated recovery for each surrogate compound was evaluated to confirm the accuracy of the reported results. The calculated recovery of these compounds fell within the laboratory specific quality control criteria. In a few instances, sample extracts required dilution prior to analysis to either improve instrument performance by minimizing matrix interference or enable quantification of the detected target analytes within the instrument calibration range. Where applicable, the laboratory qualified the reported results indicating the system monitoring compound recovery could not be calculated due to a sample extract dilution. In cases where the instrument resolution appeared to be unaffected by the diluted sample matrix, the sample results were accepted without qualification. No qualification of the data is recommended.

Laboratory Control Samples, Matrix Spike/Matrix Spike Duplicate Recoveries

Analytical precision and accuracy was evaluated based on the laboratory control and matrix spike sample analyses performed concurrently with the project samples. For matrix spike samples, after the addition of a known amount of each target analyte to the sample matrix, the sample was analyzed to confirm the ability to identify these compounds within the sample matrix. For LCS analyses, after the addition of a known amount of each target analyte into laboratory reagent water, the sample was analyzed to confirm the ability of the analytical system to accurately quantify the compounds. The reported recovery of MS/MSD and LCS analyses fell within the laboratory QA acceptance criteria, with the following exception(s):

LCS ID / Project Sample MS	Туре	Target Analyte(s)	%R	Affected Sample(s)	Positive Results	Non Detect (ND)
MW-2	MS	Antimony	0	All Project Samples	J	R

Internal Standard Recoveries

Internal Standard compounds were added to each sample matrix prior to the analysis of organic parameters by EPA Methods 8260B and/or 8270C to quantify the amount of the target compounds detected within each sample. The calculated response of each IS compound fell within the QA/QC criteria of +100% and - 50% of the corresponding CCV standard. No qualification of the data is recommended.

Duplicate Sample Analysis

The replicate percent difference (RPD) was evaluated for each duplicate sample pair to monitor the reproducibility of the data. The RPD for each sample pair was within the QA/QC limit of 30% for aqueous samples and 50% for solid matrices, for those target analytes with sample concentrations >5X the MDL. No qualification of the data is recommended.

ICP Interference Check Sample Performance

The results of the ICP Interference Check Samples analyzed concurrently with the project samples were all within the acceptance criteria +/-20% of true value as prescribed by USEPA guidance. No qualification of the data is recommended.

ICP Serial Dilution Replicate Percent Difference

The results of the ICP Serial Dilution samples analyzed concurrently with the project samples were in accordance with the EPA QA acceptance criteria of less than 10% RPD for those target analytes with sample concentrations >50X the MDL. No qualification of the data is recommended.

Sample Data Reporting Format

The sample data are presented using USEPA Contract Laboratory Protocol (CLP) format. The data package has been reviewed for completeness and found to contain each required sample result and associated QA/QC report form. The reporting format is complete and compliant with the objectives of the project. No qualification of the data is recommended.

Data Qualifiers

Data qualifiers were assigned by the laboratory to the reported results to identify target analytes detected below the reporting limit but above the method detection limit, and/or when target analytes were detected in the associated method/preparation blank sample. Based on a spot check of the data qualifiers used, these flags appeared to be applied to the reported results in accordance with EPA guidance.

Organic analyses samples that contained concentrations of target analytes at a reportable level in the associated method blanks were flagged by the laboratory with a "B". If the target analyte concentration was greater than 10 times (10X) the amount in any blank for the common laboratory contaminants or 5 times (5X) the amount for other target compounds, the "B" qualifier was not carried forward for database input; if less than the 10X or 5X rule the "B" qualifier was replaced with a "U". The "J" qualifier, which indicates an estimated value because the result was between the MDL and RL was carried through to the database.

Summary

The results presented in each report were found to be compliant with the data quality objectives for the project and usable. Based on our review, the usability of the data is 100%, with the few exceptions noted above.

Data Usability Summary Report (DUSR)

RG&E Canal Street

Analytical Laboratory: Severn Trent Laboratories, Inc. - Buffalo, NY Sample Delivery Group # A06-F495

Analytical results for the project samples were reviewed to evaluate the data usability. Data was assessed in accordance with guidance from the following Federal and/or State guidance documents:

- USEPA National Functional Guidelines for Inorganic Data Review (EPA 540-R-04-004)
- USEPA National Functional Guidelines for Organic Data Review (EPA 540/R-99/008)
- · NYSDEC "Guidance for the Development of Quality Assurance Plans and Data Usability Summary Reports (DUSR)", September 1997

and method protocol criteria where applicable as prescribed by "Test Methods for Evaluating Solid Waste", SW846, Update III, 1996.

This DUSR pertains to the following samples:

Sample ID	
MW-4	
MW-5	
MW-3	
EB-122706	
TB-122706	

Project Samples were analyzed according to the following analytical methods:

153410350 N/1571050	Parameter	Analytical Method	Holding Time Criteria
1.	VOCs	EPA 8260B/624	14 days
2.	SVOCs (BNAs)	EPA 8270C/625	7 days ext/40 days analysis
3.	ICP Metals	EPA 6010B/200.7	180 days
4.	Mercury	EPA 7470A	28 days
5.	Cyanide, Total	EPA 335.2	14 days

The following items/criteria applicable to the analysis of project samples and associated QA/QC procedures were reviewed.

- Holding Times
- GC/MS Instrument Performance Check
- Initial Calibration Procedures
- Continuing Calibration Procedures
- Blank Sample Analysis
- System Monitoring Compound Recoveries
- Laboratory Control Samples, Matrix Spike/Matrix Spike Duplicate Recoveries
- Internal Standard Recoveries
- Duplicate Sample Analysis
- ICP Interference Check Sample Performance
- ICP Serial Dilution Replicate Percent Difference
- Sample Data Reporting Format
- Data Qualifiers
- Summary

Preservation and Holding Times

Maximum allowable holding times, measured from the time of sample collection to the time of sample preparation or analysis, were met for each project sample analyzed as part of this sample delivery group. No qualification of the data is recommended.

GC/MS Instrument Performance Check

GC/MS instrument performance checks for the instruments used in the analysis of project samples fell within method specific criteria without exception. No qualification of the data is recommended.

Initial Calibration Procedures

Initial instrument calibration procedures for the analysis of project samples were consistent with the guidelines prescribed by EPA protocols, with the following exception(s):

During the analysis of SVOCs (SW846 8270C), the initial calibration standards for the following target compound(s) exhibited a percent relative standard deviation (%RSD) greater than the acceptance criteria of 30% and/or a RRF less than 0.05:

Inst.	Date / Time	Target Analyte(s)	%RSD	RRF	Affected Sample(s)	Corrective Action
U	12/13/06	2,4-Dinitrophenol	44.60	0.10	All Project Samples	See Action #1 Below
	0906					

Action #1

Positive results are qualified "J", estimated and non-detected analytes as "UJ", estimated detection limit.

Continuing Calibration Procedures

Continuing calibration verification (CCV) procedures for the analysis of project samples were consistent with the guidelines prescribed by EPA protocols, with the following exception(s):

During the analysis of SVOCs (SW846 8270C), the continuing calibration verification (CCV) standards for the following target compound(s) exhibited a percent drift (%D) greater than the acceptance criteria of 25% and/or a RRL less than 0.05:

	Inst.	Date / Time	Target Analyte(s)	%D	RRF	Affected Sample(s)	Corrective Action
	U	01/03/07	2-Methylnaphthalene	-31.80	1.00	All Project Samples	See Action #1 Below
L		0853					

Action #1

Positive results are qualified "J", estimated and non-detected analytes as "UJ", estimated detection limit.

Blank Sample Analysis

In accordance with cited USEPA guidelines, positive sample results should be reported unless the concentration of the compound in the project sample is less than or equal to 10 times (10X) the amount in any blank for metals and the common organic laboratory contaminants (methylene chloride, acetone, 2-butanone, cyclohexane, and phthalate esters), or 5 times (5X) the amount for other target compounds. Target compounds were not detected in associated blank samples (trip, equipment, method) prepared and analyzed concurrently with the project samples, with the following exception(s):

Blank	Target Analyte(s)	Concn.	Affected Sample(s)	Flag sample results with a "U" if < to this value
TB-122706	Acetone	7.5 ug/L	All Project Samples	75.0 ug/L
	Methylene chloride	0.7 ug/L		6.5 ug/L
VBLK48	Methylene chloride	0.6 ug/L	All Project Samples	6.4 ug/L

System Monitoring Compound Recoveries

System monitoring/surrogate compounds are added to each sample prior to analysis of organic parameters by EPA Methods 8260B, 8270C, and/or 8082 to confirm the efficiency of the sample preparation procedure. The calculated recovery for each surrogate compound was evaluated to confirm the accuracy of the reported results. The calculated recovery of these compounds fell within the laboratory specific quality control criteria. In a few instances, sample extracts required dilution prior to analysis to either improve instrument performance by minimizing matrix interference or enable quantification of the detected target analytes within the instrument calibration range. Where applicable, the laboratory qualified the reported results indicating the system monitoring compound recovery could not be calculated due to a sample extract dilution. In cases where the instrument resolution appeared to be unaffected by the diluted sample matrix, the sample results were accepted without qualification. No qualification of the data is recommended.

Laboratory Control Samples, Matrix Spike/Matrix Spike Duplicate Recoveries

Analytical precision and accuracy was evaluated based on the laboratory control and matrix spike sample analyses performed concurrently with the project samples. For matrix spike samples, after the addition of a known amount of each target analyte to the sample matrix, the sample was analyzed to confirm the ability to identify these compounds within the sample matrix. For LCS analyses, after the addition of a known amount of each target analyte into laboratory reagent water, the sample was analyzed to confirm the ability of the analytical system to accurately quantify the compounds. The reported recovery of MS/MSD and LCS analyses fell within the laboratory QA acceptance criteria. No qualification of the data is recommended.

Internal Standard Recoveries

Internal Standard compounds were added to each sample matrix prior to the analysis of organic parameters by EPA Methods 8260B and/or 8270C to quantify the amount of the target compounds detected within each sample. The calculated response of each IS compound fell within the QA/QC criteria of +100% and -50% of the corresponding CCV standard. No qualification of the data is recommended.

Duplicate Sample Analysis

The replicate percent difference (RPD) was evaluated for each duplicate sample pair to monitor the reproducibility of the data. The RPD for each sample pair was within the QA/QC limit of 30% for aqueous samples and 50% for solid matrices, for those target analytes with sample concentrations >5X the MDL. No qualification of the data is recommended.

ICP Interference Check Sample Performance

The results of the ICP Interference Check Samples analyzed concurrently with the project samples were all within the acceptance criteria +/-20% of true value as prescribed by USEPA guidance. No qualification of the data is recommended.

ICP Serial Dilution Replicate Percent Difference

The results of the ICP Serial Dilution samples analyzed concurrently with the project samples were in accordance with the EPA QA acceptance criteria of less than 10% RPD for those target analytes with sample concentrations >50X the MDL. No qualification of the data is recommended.

Sample Data Reporting Format

The sample data are presented using USEPA Contract Laboratory Protocol (CLP) format. The data package has been reviewed for completeness and found to contain each required sample result and associated QA/QC report form. The reporting format is complete and compliant with the objectives of the project. No qualification of the data is recommended.

Data Qualifiers

Data qualifiers were assigned by the laboratory to the reported results to identify target analytes detected below the reporting limit but above the method detection limit, and/or when target analytes were detected in the associated method/preparation blank sample. Based on a spot check of the data qualifiers used, these flags appeared to be applied to the reported results in accordance with EPA guidance.

Organic analyses samples that contained concentrations of target analytes at a reportable level in the associated method blanks were flagged by the laboratory with a "B". If the target analyte concentration was greater than 10 times (10X) the amount in any blank for the common laboratory contaminants or 5 times (5X) the amount for other target compounds, the "B" qualifier was not carried forward for database input; if less than the 10X or 5X rule the "B" qualifier was replaced with a "U". The "J" qualifier, which indicates an estimated value because the result was between the MDL and RL was carried through to the database.

Summary

The results presented in each report were found to be compliant with the data quality objectives for the project and usable. Based on our review, the usability of the data is 100%, with the few exceptions noted above.

G:\Projects\33879\003 Report w DUSR\DUSRs\[A06F495 DV Notes.xis]Final Report

Data Usability Summary Report (DUSR) RG&E Canal Street

RG&E Canal Street

Analytical Laboratory: Severn Trent Laboratories, Inc. – Buffalo, NY Sample Delivery Group # A06-F530

Analytical results for the project samples were reviewed to evaluate the data usability. Data was assessed in accordance with guidance from the following Federal and/or State guidance documents:

- USEPA National Functional Guidelines for Inorganic Data Review (EPA 540-R-04-004)
- USEPA National Functional Guidelines for Organic Data Review (EPA 540/R-99/008)
- NYSDEC "Guidance for the Development of Quality Assurance Plans and Data Usability Summary Reports (DUSR)", September 1997

and method protocol criteria where applicable as prescribed by "Test Methods for Evaluating Solid Waste", SW846, Update III, 1996.

This DUSR pertains to the following samples:

Sample ID	May de granda
MW-6	
MW-7	
MW-4	
FD-122806	
EB-122806	
TB122806	

Project Samples were analyzed according to the following analytical methods:

	Parameter	Analytical Method	Holding Time Criteria
1.	VOCs	EPA 8260B/624	14 days
2.	SVOCs (BNAs)	EPA 8270C/625	7 days ext/40 days analysis
3.	ICP/MS Metals	EPA 6020/200.8	180 days
4.	Mercury	EPA 7470A	28 days
5.	Cyanide, Total	EPA 335.2	14 days

The following items/criteria applicable to the analysis of project samples and associated QA/QC procedures were reviewed.

- · Holding Times
- GC/MS Instrument Performance Check
- · Initial Calibration Procedures
- · Continuing Calibration Procedures
- · Blank Sample Analysis
- · System Monitoring Compound Recoveries
- Laboratory Control Samples, Matrix Spike/Matrix Spike Duplicate Recoveries
- · Internal Standard Recoveries
- Duplicate Sample Analysis
- · ICP Interference Check Sample Performance
- Sample Data Reporting Format
- Data Qualifiers
- Summary

Preservation and Holding Times

Maximum allowable holding times, measured from the time of sample collection to the time of sample preparation or analysis, were met for each project sample analyzed as part of this sample delivery group. No qualification of the data is recommended.

GC/MS Instrument Performance Check

GC/MS instrument performance checks for the instruments used in the analysis of project samples fell within method specific criteria without exception. No qualification of the data is recommended.

Initial Calibration Procedures

Initial instrument calibration procedures for the analysis of project samples were consistent with the guidelines prescribed by EPA protocols, with the following exception(s):

During the analysis of VOCs (SW846 8260B), the initial calibration standards for the following target compound(s) exhibited a percent relative standard deviation (%RSD) greater than the acceptance criteria of 30% and/or a RRF less than 0.05:

Inst.	Date / Time	Target Analyte(s)	%RSD	RRF	Affected Sample(s)	Corrective Action
G	12/20/06	Methylene chloride	33.60	0.58	All Project Samples	See Action #1 Below
	1124					

Action #1

Positive results are qualified "J", estimated and non-detected analytes as "UJ", estimated detection limit.

During the analysis of SVOCs (SW846 8270C), the initial calibration standards for the following target compound(s) exhibited a percent relative standard deviation (%RSD) greater than the acceptance criteria of 30% and/or a RRF less than 0.05:

01 M2(03) HE	Date /			MUNIMENTAL		
Inst.	Time	Target Analyte(s)	%RSD	RRF	Affected Sample(s)	Corrective Action
W	12/18/06	Hexachlorocyclopentadiene	35.40	0.17	All Project Samples	See Action #1 Below
	1031					

Action #1

Positive results are qualified "J", estimated and non-detected analytes as "UJ", estimated detection limit.

Continuing Calibration Procedures

Continuing calibration verification (CCV) procedures for the analysis of project samples were consistent with the guidelines prescribed by EPA protocols, with the following exception(s):

During the analysis of VOCs (SW846 8260B), the continuing calibration verification (CCV) standards for the following target compound(s) exhibited a percent drift (%D) greater than the acceptance criteria of 25% and/or a RRF less than 0.05:

Inst.	Date / Time	Target Analyte(s)	%D	RRF	Affected Sample(s)	Corrective Action
G	01/03/07 2144	Methyl acetate	-28.80	0.83	All Project Samples	See Action #1 Below

Action #1

Positive results are qualified "J", estimated and non-detected analytes as "UJ", estimated detection limit.

Blank Sample Analysis

In accordance with cited USEPA guidelines, positive sample results should be reported unless the concentration of the compound in the project sample is less than or equal to 10 times (10X) the amount in any blank for metals and the common organic laboratory contaminants (methylene chloride, acetone, 2-butanone, cyclohexane, and phthalate esters), or 5 times (5X) the amount for other target compounds. Target compounds were not detected in associated blank samples (trip, equipment, method) prepared and analyzed concurrently with the project samples, with the following exception(s):

Blank	Target Analyte(s)	Concn.	Affected Sample(s)	Flag sample results with a "U" if < to this value
TB122806	Acetone	4.4 ug/L	All Project Samples	44.0 ug/L

Blank	Target Analyte(s)	Concn.		Flag sample results with a "U" if < to this value
EB-122806	Di-n-octylphthalate	0.6 ug/L	All Project Samples	6.0 ug/L
SBLK52	Di-n-octylphthalate	0.7 ug/L	All Project Samples	7.0 ug/L

System Monitoring Compound Recoveries

System monitoring/surrogate compounds are added to each sample prior to analysis of organic parameters by EPA Methods 8260B, 8270C, and/or 8082 to confirm the efficiency of the sample preparation procedure. The calculated recovery for each surrogate compound was evaluated to confirm the accuracy of the reported results. The calculated recovery of these compounds fell within the laboratory specific quality control criteria. In a few instances, sample extracts required dilution prior to analysis to either improve instrument performance by minimizing matrix interference or enable quantification of the detected target analytes within the instrument calibration range. Where applicable, the laboratory qualified the reported results indicating the system monitoring compound recovery could not be calculated due to a sample extract dilution. In cases where the instrument resolution appeared to be unaffected by the diluted sample matrix, the sample results were accepted without qualification. No qualification of the data is recommended.

Laboratory Control Samples, Matrix Spike/Matrix Spike Duplicate Recoveries

Analytical precision and accuracy was evaluated based on the laboratory control and matrix spike sample analyses performed concurrently with the project samples. For matrix spike samples, after the addition of a known amount of each target analyte to the sample matrix, the sample was analyzed to confirm the ability to identify these compounds within the sample matrix. For LCS analyses, after the addition of a known amount of each target analyte into laboratory reagent water, the sample was analyzed to confirm the ability of the analytical system to accurately quantify the compounds. The reported recovery of MS/MSD and LCS analyses fell within the laboratory QA acceptance criteria. No qualification of the data is recommended.

Internal Standard Recoveries

Internal Standard compounds were added to each sample matrix prior to the analysis of organic parameters by EPA Methods 8260B and/or 8270C to quantify the amount of the target compounds detected within each sample. The calculated response of each IS compound fell within the QA/QC criteria of +100% and -50% of the corresponding CCV standard. No qualification of the data is recommended.

Duplicate Sample Analysis

The replicate percent difference (RPD) was evaluated for each duplicate sample pair to monitor the reproducibility of the data. The RPD for each sample pair was within the QA/QC limit of 30% for aqueous samples and 50% for solid matrices, for those target analytes with sample concentrations >5X the MDL. No qualification of the data is recommended.

ICP Interference Check Sample Performance

The results of the ICP Interference Check Samples analyzed concurrently with the project samples were all within the acceptance criteria +/-20% of true value as prescribed by USEPA guidance. No qualification of the data is recommended.

Sample Data Reporting Format

The sample data are presented using USEPA Contract Laboratory Protocol (CLP) format. The data package has been reviewed for completeness and found to contain each required sample result and associated QA/QC report form. The reporting format is complete and compliant with the objectives of the project. No qualification of the data is recommended.

Data Qualifiers

Data qualifiers were assigned by the laboratory to the reported results to identify target analytes detected below the reporting limit but above the method detection limit, and/or when target analytes were detected in the associated method/preparation blank sample. Based on a spot check of the data qualifiers used, these flags appeared to be applied to the reported results in accordance with EPA guidance.

Organic analyses samples that contained concentrations of target analytes at a reportable level in the associated method blanks were flagged by the laboratory with a "B". If the target analyte concentration was greater than 10 times (10X) the amount in any blank for the common laboratory contaminants or 5 times (5X) the amount for other target compounds, the "B" qualifier was not carried forward for database input; if less than the 10X or 5X rule the "B" qualifier was replaced with a "U". The "J" qualifier, which indicates an estimated value because the result was between the MDL and RL was carried through to the database.

Summary

The results presented in each report were found to be compliant with the data quality objectives for the project and usable. Based on our review, the usability of the data is 100%, with the few exceptions noted above.

G:\Projects\33879\003 Report w DUSR\DUSRs\[A06F530_DV Notes.xls]Final Report

MEMORANDUM

15 November 2007 File No. 33879-003

TO: Jon Babcock

Sr. Engineer

FROM: Michael G. Nickelsen

Sr. Scientist

SUBJECT: Canal Street Former MGP Site

Analytical results for environmental samples associated with TestAmerica, Inc. laboratory data package AO7-B814.

Each laboratory data package was reviewed with guidance provided by the United States Environmental Protection Agency (USEPA) National Functional Guidelines for Organic Data Review (EPA 540/R-99/008, Oct 1999), and/or National Functional Guidelines for Inorganic Data Review (EPA 540-R-04-004, Oct 2004) and NYSDEC Guidance for the Development of Quality Assurance Plans and Data Usability Summary Reports (DUSR), September 1997. Laboratory method specific criteria as prescribed by "Test Methods for Evaluating Solid Waste", SW846, Update III, 1996 were used, where applicable, if the analytical anomaly identified was not addressed by the guidelines referenced above.

Data validation of the analytical results was performed by Ethan G. Lee and reviewed and approved by me.

\\ROC\\common\\Projects\\33879\\006 Second GW Monitoring\\Data Validation\\RG&E Canal Street Data Validation Memo 111507.doc

Data Usability Summary Report (DUSR) Canal Street Rochester Former MGP Site Analytical Laboratory: TestAmerica - Buffalo, NY Sample Delivery Group # A07-B814

Analytical results for the project samples were reviewed to evaluate the data usability. Data was assessed in accordance with guidance from the following Federal and/or State guidance documents:

- USEPA National Functional Guidelines for Inorganic Data Review (EPA 540-R-04-004)
- USEPA National Functional Guidelines for Organic Data Review (EPA 540/R-99/008) and/or USEPA National Functional Guidelines for Low Concentration Organic Data Review (EPA 540-R-04-004)
- NYSDEC "Guidance for the Development of Quality Assurance Plans and Data Usability Summary Reports (DUSR)", September 1997

and method protocol criteria where applicable as prescribed by "Test Methods for Evaluating Solid Waste", SW846, Update III, 1996.

This DUSR pertains to the following samples:

Sample ID
MW-2
FD
MW-4
MW-1
MW-6
MW-5
MW-3
EB
TRIP BLANK 10-12-07
TB-2
TRIP BLANK 10-11-07

Project Samples were analyzed according to the following analytical methods:

		Parameter	Analytical Method	Holding Time Criteria
	1.	VOCs	EPA 8260B/624	14 days
	2.	SVOCs (BNAs)	EPA 8270C/625	7 days ext/40 days analysis
I	3.	ICP Metals	EPA 6010B/200.7	180 days
	4.	Mercury	EPA 7470A	28 days
ſ	5.	Cyanide, Total	EPA 9012A	14 days

The following items/criteria applicable to the analysis of project samples and associated QA/QC procedures were reviewed.

- Holding Times
- GC/MS Instrument Performance Check
- Initial Calibration Procedures
- Continuing Calibration Procedures
- Blank Sample Analysis
- · System Monitoring Compound Recoveries
- Laboratory Control Samples, Matrix Spike/Matrix Spike Duplicate Recoveries
- Internal Standard Recoveries
- Duplicate Sample Analysis
- ICP Interference Check Sample Performance
- · ICP Serial Dilution Replicate Percent Difference
- Sample Data Reporting Format
- Data Qualifiers
- Summary

Preservation and Holding Times

Maximum allowable holding times, measured from the time of sample collection to the time of sample preparation or analysis, were met for each project sample analyzed as part of this sample delivery group, with the following exception(s):

During the analysis of VOCs (EPA Method 8260B) preservation and/or technical holding times were exceeded for project samples shown below. Sample results should be qualified according to the actions specified in the following table:

Lab ID	Sample ID	Matrix	Action
A7B81403	MW-4	AQ	See Action #1 Below

Action #1

Positive results are qualified "J", estimated and non-detected analytes as "UJ", estimated reporting limit.

GC/MS Instrument Performance Check

GC/MS instrument performance checks for the instruments used in the analysis of project samples fell within method specific criteria without exception. No qualification of the data is recommended.

Initial Calibration Procedures

Initial instrument calibration procedures for the analysis of project samples were consistent with the guidelines prescribed by EPA protocols, with the following exception(s):

During the analysis of VOCs (SW846 8260B), the initial calibration standards for the following target compound(s) exhibited a percent relative standard deviation (%RSD) greater than the acceptance criteria of 30% and/or a RRF less than 0.05:

	Date /					
Inst.	Time	Target Analyte(s)	%RSD	RRF	Affected Sample(s)	Corrective Action
HP5	10/16/07	Bromomethane	45.40	0.14	All Project Samples	See Action #1 Below
	1050	Methylene Chloride	53.00	0.65		See Action #1 Below
		1,2,4-Trichlorobenzene	31.30	0.95		See Action #1 Below

Action #1

Positive results are qualified "J", estimated and non-detected analytes as "UJ", estimated detection limit.

During the analysis of SVOCs (SW846 8270C), the initial calibration standards for the following target compound(s) exhibited a percent relative standard deviation (%RSD) greater than the acceptance criteria of 30% and/or a RRF less than 0.05:

Inst.	Date / Time	Target Analyte(s)	%RSD	RRF	Affected Sample(s)	Corrective Action
HP5	09/24/07	2,4-Dinitrophenol	35.80	0.15	All Project Samples	See Action #1 Below
	1450	Di-n-octylphthalate	31.20	1.20		See Action #1 Below

Action #1

Positive results are qualified "J", estimated and non-detected analytes as "UJ", estimated detection limit.

Continuing Calibration Procedures

Continuing calibration verification (CCV) procedures for the analysis of project samples were consistent with the guidelines prescribed by EPA protocols, with the following exception(s):

During the analysis of VOCs (SW846 8260B), the continuing calibration verification (CCV) standards for the following target compound(s) exhibited a percent drift (%D) greater than the acceptance criteria of 25% and/or a RRF less than 0.05:

	Date /					
Inst.	Time	Target Analyte(s)	%D	RRF	Affected Sample(s)	Corrective Action
HP5	10/23/07	Bromomethane	35.60	0.09	All Project Samples	See Action #1 Below
	2226	Chloroethane	-26.60	0.10		See Action #1 Below
		Methylene Chloride	29.10	0.46		See Action #1 Below

Action #1

Positive results are qualified "J", estimated and non-detected analytes as "UJ", estimated detection limit.

During the analysis of SVOCs (SW846 8270C), the continuing calibration verification (CCV) standards for the following target compound(s) exhibited a percent drift (%D) greater than the acceptance criteria of 25% and/or a RRL less than 0.05:

	Date /					
Inst.	Time	Target Analyte(s)	%D	RRF	Affected Sample(s)	Corrective Action
HP5	10/18/07	Di-n-octylphthalate	-34.50	1.60	All Project Samples	See Action #1 Below
	2347	Benzo(g,h,i)perylene	-28.80	1.30		See Action #1 Below

Action #1

Positive results are qualified "J", estimated and non-detected analytes as "UJ", estimated detection limit.

Blank Sample Analysis

In accordance with cited USEPA guidelines, positive sample results should be reported unless the concentration of the compound in the project sample is less than or equal to 10 times (10X) the amount in any blank for metals and the common organic laboratory contaminants (methylene chloride, acetone, 2-butanone, cyclohexane, and phthalate esters), or 5 times (5X) the amount for other target compounds. Target compounds were not detected in associated blank samples (trip, equipment, method) prepared and analyzed concurrently with the project samples, with the following exception(s):

				Flag sample results
				with a "U"
Blank	Target Analyte(s)	Concn.	Affected Sample(s)	if < to this value
VBLK08	Bromomethane	0.6 ug/L	All Project Samples	2.8 ug/L
	cis-1,2-Dichloroethene	0.6 ug/L		2.8 ug/L

				Flag sample results
				with a "U"
Blank	Target Analyte(s)	Concn.	Affected Sample(s)	if < to this value
EB	Butylbenzylphthalate	2.0 ug/L	All Project Samples	20.0 ug/L
SBLK06	Butylbenzylphthalate	3.0 ug/L	All Project Samples	30.0 ug/L

System Monitoring Compound Recoveries

System monitoring/surrogate compounds are added to each sample prior to analysis of organic parameters by EPA Methods 8260B and 8270C to confirm the efficiency of the sample preparation procedure. The calculated recovery for each surrogate compound was evaluated to confirm the accuracy of the reported results. The calculated recovery of these compounds fell within the laboratory specific quality control criteria, with the following exception(s):

Surrogate Percent Recovery Criteria							
Surrogate		Aqueous Matrix (%)	Solid Matrix (%)				
Phenol-d5	S01	16 - 120	low - high	Acid			
2-Fluorophenol	S02	20 - 120	low - high	Acid			
2,4,6-Tribromophenol	S03	52 - 132	low - high	Acid			
Nitrobenzene-d5	S04	46 - 112	low - high	Base/Neutral			
2-Fluorobiphenyl	S05	48 - 116	low - high	Base/Neutral			
Terphenyl-d14	S06	24 - 136	low - high	Base/Neutral			
2-Chlorophenol-d4	S07	low - high	low - high	Acid			
1,2-Dichlorobenzene-d4	S08	low - high	low - high	Base/Neutral			

						Acid		Base/Neutral					
		S01	S02	S03	S04	S05	S06	S07	S08	Positive	Non Detect	Positive	Non Detect
Project Sample ID	Matrix	%R	%R	%R	%R	%R	%R	%R	%R	Results	(ND)	Results	(ND)
MW-3	AQ	13	15		31	38				J	UJ	J	UJ
MW-4	AQ	14	17		37	45				J	UJ	J	UJ

Acid Extractable

2,4,5-Trichlorophenol, 2,4,6-Trichlorophenol, 2,4-Dinitrophenol, 2,4-Dinitrophenol, 2-Chlorophenol, 2-Methylphenol, 2-Nitrophenol, 4,6-Dinitro-2-methylphenol, 4-Chloro-3-methylphenol, 4-Methylphenol, 4-Nitrophenol, Pentachlorophenol, Phenol

Base/Neutral Extractable

1,1-Biphenyl, 2,2'-oxybis(1-Chloropropane), 2,4-Dinitrotoluene, 2,6-Dinitrotoluene, 2-Chloronaphthalene, 2-Fluorobiphenyl, 2-Methylnaphthalene, 2-Nitroaniline, 3,3'-Dichlorobenzidine, 3-Nitroaniline, 4-Bromophenyl phenyl ether, 4-Chloroanaline, 4-Chlorophenyl phenyl ether, 4-Nitroaniline, Acenaphthylene, Acetophenone, Anthracene, Atrazine, Benzaldehyde, Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(g,h,i)perylene, Benzo(k)fluoranthene, bis(2-Chloroethoxy)methane, bis(2-Chloroethyl)ether, bis(2-Ethylhexyl)phthalate, Butylbenzylphthalate, Caprolactam, Carbazole, Chrysene, Dibenz(a,h)anthracene, Dibenzofuran, Diethylphthalate, Dimethylphthalate, Di-n-butylphthalate, Di-n-octylphthalate, Fluoranthene, Fluorene, Hexachlorobenzene, Hexachlorobyclopentadiene, Hexachloroethane, Indeno(1,2,3-cd)pyrene, Isophorone, Naphthalene, Nitrobenzene, N-Nitroso-di-n-propylamine, N-Nitrosodiphenylamine, Phenanthrene, Pyrene

Laboratory Control Samples, Matrix Spike/Matrix Spike Duplicate Recoveries

Analytical precision and accuracy was evaluated based on the laboratory control and matrix spike sample analyses performed concurrently with the project samples. For matrix spike samples, after the addition of a known amount of each target analyte to the sample matrix, the sample was analyzed to confirm the ability to identify these compounds within the sample matrix. For LCS analyses, after the addition of a known amount of each target analyte into laboratory reagent water, the sample was analyzed to confirm the ability of the analytical system to accurately quantify the compounds. The reported recovery of MS/MSD and LCS analyses fell within the laboratory QA acceptance criteria, with the following exception(s):

LCS ID /				
Project Sample MS	Target Analyte(s)	%R Criteria	%R	Affected Sample(s)
MW-3 MS	Phenol	17 - 120	14	All Project Samples
	2-Chlorophenol	47 - 120	33	
	N-Nitroso-di-n-propylamine	55 - 115	36	
	Acenaphthene	60 - 118	58	
MW-3 MSD	Phenol	17 - 120	12	All Project Samples
	2-Chlorophenol	47 - 120	27	
	N-Nitroso-di-n-propylamine	55 - 115	30	
	Acenaphthene	60 - 118	47	

Action:

If the LCS %R is greater than the upper acceptance limit, associated target analyte positive results are qualified "J" and non-detects should not be qualified. If the LCS %R is less than the lower acceptance limit associated target analyte positive results are qualified "J" and non-detects are qualified "R". If the MS/MSD is from a project sample and the %R greater than the upper acceptance limit, associated target analyte positive results are qualified "J" and non-detects should not be qualified. If the MS/MSD %R is >10%, but less than the lower acceptance limit, associated analyte positive results are qualified "J" and non-detects are qualified "UJ". If the MS/MSD %R is less than 10% associated target analyte positive results are qualified "J" and non-detects are qualified "R". MS/MSD qualifiers are only applied to affected samples of the same matrix. If the MS/MSD is a LAB sample do not qualify project samples.

Internal Standard Recoveries

Internal Standard compounds were added to each sample matrix prior to the analysis of organic parameters by EPA Methods 8260B and 8270C to quantify the amount of the target compounds detected within each sample. The calculated response of each IS compound fell within the QA/QC criteria of +100% and - 50% of the corresponding CCV standard. No qualification of the data is recommended.

Duplicate Sample Analysis

The replicate percent difference (RPD) was evaluated for each duplicate sample pair to monitor the reproducibility of the data. The RPD for each sample pair was within the QA/QC limit of 30% for aqueous samples and 50% for solid matrices, for those target analytes with sample concentrations >5X the MDL. No qualification of the data is recommended.

ICP Interference Check Sample Performance

The results of the ICP Interference Check Samples analyzed concurrently with the project samples were all within the acceptance criteria +/-20% of true value as prescribed by USEPA guidance. No qualification of the data is recommended.

ICP Serial Dilution Replicate Percent Difference

The results of the ICP Serial Dilution samples analyzed concurrently with the project samples were in accordance with the EPA QA acceptance criteria of less than 10% RPD for those target analytes with sample concentrations >50X the MDL. No qualification of the data is recommended.

Sample Data Reporting Format

The sample data are presented using USEPA Contract Laboratory Protocol (CLP) format. The data package has been reviewed for completeness and found to contain each required sample result and associated QA/QC report form. The reporting format is complete and compliant with the objectives of the project. No qualification of the data is recommended.

Data Qualifiers

Data qualifiers were assigned by the laboratory to the reported results to identify target analytes detected below the reporting limit but above the method detection limit, and/or when target analytes were detected in the associated method/preparation blank sample. Based on a spot check of the data qualifiers used, these flags appeared to be applied to the reported results in accordance with EPA guidance.

Organic analyses samples that contained concentrations of target analytes at a reportable level in the associated method blanks were flagged by the laboratory with a "B". If the target analyte concentration was greater than 10 times (10X) the amount in any blank for the common laboratory contaminants or 5 times (5X) the amount for other target compounds, the "B" qualifier was not carried forward for database input; if less than the 10X or 5X rule the "B" qualifier was replaced with a "U". The "J" qualifier, which indicates an estimated value because the result was between the MDL and RL was carried through to the database.

Summary

The results presented in each report were found to be compliant with the data quality objectives for the project and usable. Based on our review, the usability of the data is 100%, with the few exceptions noted above.

\\ROC\common\Projects\\33879\006 Second GW Monitoring\Data Validation\[A07-B814_DV Notes.xls]Final Report