

## SUPPLEMENTAL PHASE II ENVIRONMENTAL SITE INVESTIGATION

Providence Housing – Lot I Wambach Farms 2590 Culver Road Town of Irondequoit, Monroe County, New York



Bergmann 280 East Broad Street, Suite 200 Rochester, NY 14604

Phone: 585.232.5135

www.bergmannpc.com

June 7, 2021



### **Table Contents**

| 1.0 IN | NTRODUCTION                                                   | 1 |
|--------|---------------------------------------------------------------|---|
| 2.0 S  | ITE INVESTIGATION METHODS / SOIL SAMPLING AND FIELD SCREENING | 2 |
| 2.1    | SUBSURFACE EXPLORATIONS                                       | 2 |
| 3.0 II | NVESTIGATIVE FINDINGS OVERBURDEN GEOLOGY                      | 2 |
| 3.1    | SOIL FIELD SCREEN RESULTS                                     | 3 |
| 4.0 S  | OIL QUALITY                                                   | 3 |
| 4.1    | VOLATILE ORGANIC COMPOUNDS – VOCS                             | 3 |
| 4.2    | SEMI-VOLATILE PETROLEUM COMPOUNDS – SVOCS                     | 3 |
| 4.3    | RCRA 8 METALS                                                 | 4 |
| 4.4    | CHLORINATED PESTICIDES                                        | 5 |
| 4.4    | HERBICIDES                                                    | 5 |
| 5.0 S  | UMMARY AND CONCLUSIONS                                        | 5 |
| 6.0 R  | ECOMMENDATIONS                                                | 6 |

#### LIST OF TABLES

| TABLE 1 | VOC ANALYTICAL SUMMARY         |
|---------|--------------------------------|
| TABLE 2 | SVOC ANALYTICAL SUMMARY        |
| TABLE 3 | RCRA METALS ANALYTICAL SUMMARY |
| TABLE 4 | PESTICIDES ANALYTICAL SUMMARY  |

#### **LIST OF FIGURES**

FIGURE 1 SITE LOCATION MAP
FIGURE 2 TEST PIT LOCATION MAP

#### **LIST OF APPENDICES**

APPENDIX 1 TEST PIT LOGS

APPENDIX 2 LABORATORY ANALYTICAL REPORTS

APPENDIX 3 LIMITATIONS

#### **PHOTOGRAPHS**



#### 1.0 INTRODUCTION

At the request of Providence Housing (Providence), Bergmann conducted a Supplemental Phase II Environmental Site Investigation concurrently with an additional geotechnical survey, to further characterize the nature and extent of the landfilled materials and associated impacts on soil, groundwater, and soil vapor quality. Therefore, evaluated areas included potential landfilled and non-filled locations associated with the proposed development areas and the former filled ravine identified as a Recognized Environmental Condition (REC) during previous investigations. The former Wambach Farm parcel (SBL 092.10-3-2) is located at 2590 Culver Road, Town of Irondequoit, Monroe County, New York (Site), see Figure 1 – Site Location Map. This parcel is also known as Lot 1 Wambach Farms. The planned redevelopment for this site is multi-family housing that is constant with NYSDEC Restricted Use Soil Cleanup Objective levels for evaluation of soil quality. The Supplemental Phase II Environmental Site Investigation was recommended by Bergmann based on the findings of the Phase I ESA and Phase II ESA reports dated September 2020 and December 2020, respectively. The following RECs were identified in the Phase I ESA for the Site that required further subsurface investigation:

- A Freedom of Information Law (FOIL) Response from Monroe County identifies the Subject Property as a suspected site for unknown waste. The response is provided in Appendix F. No further information was provided to Bergmann. It is noted that a geotechnical report for an adjacent parcel to the east, completed by Foundation Design, PC on July 3, 2019, indicated the presence of fill. The report indicated that the fill material may be associated with two (2) separate filling operations that involved ash/cinder to fill an east/west drainage ravine and a mass fill that covered the west end of this parcel.
- A potential fill port was observed on the exterior of the two-story residential house located on the Subject Property.
- A gasoline station is located adjacent to the west of the Subject Property at 2579 Culver Road. Several spills are documented with this property including an active gasoline spill (NYSDEC Spill #0751369) that required a site investigation and remedial action. The Site Investigation Report indicates that monitoring wells were installed on off-site properties to the north and east as it was determined that groundwater flows northeast. It is unknown if monitoring wells were installed on the Subject Property as part of the site investigation.
- There are several documented spills involving petroleum and pesticides within approximately 0.10-miles of the Subject Property.

The following REC was identified in the Phase I and Phase II ESA for the Site that required further subsurface investigation:

Additional subsurface investigation is recommended to characterize the nature and extent of the landfilled
materials and there impacts on soil, groundwater, and soil gas quality. The results would be used to evaluate
remedial alternatives with subsequent preparation of a site management plan/site excavation plan.

Bergmann's New York State Licensed Professional Geologist (PG) monitored the Supplemental Phase II Environmental Site Investigation (Supplemental Phase II ESA) and concurrent Geotechnical Survey field work that included the installation of test pits, field screening excavated materials, and collection of soil samples on May 7, 2021. The purpose of this Supplemental Phase II ESA is to evaluate the presence or absence of identified REC-related impacts that required subsurface investigation in accordance with our proposal dated May 2021. The location of the Site vicinity is presented on Figure 1 and the approximate locations of test pit excavations are shown on Figure 2 – Test Pit Location Map.



#### 2.0 SITE INVESTIGATION METHODS / SOIL SAMPLING AND FIELD SCREENING

The Supplemental Phase II Environmental Site Investigation, included installation of test pits with collection of soil samples based on field soil screening and visual observations concurrent with the supplemental geotechnical survey. The methods used are presented in Section 2.1, below.

#### 2.1 SUBSURFACE EXPLORATIONS

The Supplemental Phase II ESA included the installation of fifteen (15) test pit excavations designated TP21-24 through TP21-40 at the Site to allow for further investigation of RECs. Test Pits TP21-27 and TP21-33 were not excavated at the direction of the geotechnical engineering firm (Foundation Design), as their proposed locations were close to previously excavated Phase II ESA test pits or located in areas of thicker landfilled materials. The test pit excavations were installed using a Caterpillar (CAT) 250 excavator under the supervision of the Foundation Design, PC for geotechnical investigation and Bergmann's New York State Licensed Professional Geologist (Bergmann PG) for the Supplemental Phase II ESA observations, monitoring, and sampling. The approximate locations of the test pit excavations are presented on Figure 2. Test pits were excavated to completion depths ranging from approximately four (4) to twenty (20) feet below ground surface (bgs). All test pit excavations were backfilled to ground surface.

The Bergmann PG visually logged and recorded the grain size, color, relative moisture content, and visual observations/odors, if present, for excavated soils/fill materials on an environmental test pit log. Test pit logs are presented in Appendix 1 – Test Pit Logs. Each soil sample was screened for Volatile Organic Compound (VOC) vapors in the field with a Photoionization Detector (PID). The PID measures total organic vapors in parts per million (ppm). Soil field screening (PID) measurements are summarized in Section 3.1 of this report and presented on each Test pit log. PID measurements ranged from non-detect (ND) to 0.2 ppm for soils screened from each test pit location.

Soil samples were selected for laboratory analysis from ten (10) test pit locations based on PID field screening results, olfactory and visual observations. Selected soil samples were placed into laboratory-supplied sample containers, labeled for identification, and preserved on ice. These samples were submitted under chain-of-custody documentation to Paradigm Environmental Services of Rochester, New York, for analysis in accordance with EPA Method 8260C Volatile Organic Compounds (VOCs) CP-51 list (gasoline VOCs), EPA Method 8260C TAL (solvents), EPA Method 8270D Semi-Volatile Organic Compounds (SVOCs) CP-51 list (fuel oil SVOCs) and EPA Method 7471B/6010C RCRA 8 Metals (Metals), and EPA Method 8081B Pesticides, EPA Method 8151A Herbicides.

#### 3.0 INVESTIGATIVE FINDINGS OVERBURDEN GEOLOGY

Four (4) overburden soil deposits were encountered at the test pit locations. The overburden deposits encountered, with an increasing depth, include fill, buried topsoil, lacustrine, and glacial till. The fill deposits represent soils that have been transported to the Site and landfilled containing what appear to be urban fill materials intermixed with construction and demolition (C&D) materials/debris. Theses fill materials range in thickness from approximately two (2) to greater than fifteen (15) feet below ground surface (bgs) and are generally distributed across the Site in a former ravine. This fill material has a wide range of descriptions including brown GRAVEL, little coarse to fine sand, with wood, concrete, metal, plastic, and glass fragments to black coarse to fine sand, with boulders, slag, wood, brick, metal, ash, and cinders. It appears that these fill materials are likely from many sources and appeared to be primarily sourced from construction waste based on observations. The lacustrine deposit underlies the fill deposit. A buried topsoil deposit that overlies the lacustrine deposit was



observed in TP21-37 and is one (1) foot thick from 2.9 ft. to 3.9 ft. below ground surface (bgs). The buried topsoil represents the original ground surface and was described as Gray SILT, with root fibers. The lacustrine descriptions ranged from light brown fine SAND, little silt, trace clay to light brown fine SAND, little silt, trace clay with brown SILT, trace clay seams. Glacial till was observed below the lacustrine deposit and was described as Red-brown GRAVEL, some silt, trace coarse to fine sand. The soil descriptions vary and are described for soil observed at each test pit excavation on test pit logs presented in Appendix 1 – Test Pit Logs.

#### 3.1 SOIL FIELD SCREEN RESULTS

Each soil sample was field screened with a PID for total organic vapors. Results for PID measurements are presented on the test pit logs at sample depth intervals, see Appendix 1. The PID measurements on soils excavated ranged from non-detect (ND) to 0.2 ppm. Therefore, elevated PID measurements for total organic vapors were not detected from soil excavated at each test pit location.

#### 4.0 SOIL QUALITY

Ten (10) soil samples from TP21-38 (4.0-4.5 ft.), TP21-37 (2.5-3.0 ft.), TP21-36 (2.5-3.0 ft.), TP21-34 (12.5-13.0 ft.), TP21-24 (18.0-18.5 ft.), TP21-25 (3.0-3.5 ft.), TP21-28 (5.0-5.5 ft.), TP21-40 (3.5-4.0ft.), TP21-31 (11.0-11.5ft.) and TP21-35 (3.0-3.5ft.) were selected based on PID measurements, olfactory/visual observations and submitted for laboratory analysis of VOCs, SVOCs, RCRA metals, pesticides, and herbicides.

#### 4.1 VOLATILE ORGANIC COMPOUNDS - VOCS

The laboratory VOCs results (solvent and gasoline chemical compounds) from four (4) samples TP21-24 (18-18.5ft.), TP21-25 (3.0-3.5ft.), and TP21-40 (3.5-4.0ft.) were non-detect (ND) with concentrations below the laboratory method detection limits in all four of the samples. Test-pit locations TP21-31 (11.0-11.5ft.) and TP21-35 (3.0-3.5ft.) were detected with concentrations below the NYSDEC Unrestricted Use Soil Cleanup Objectives UUSCO and Restricted-Residential Use Soil Cleanup Objectives (RRUSCO) levels.

Acetone was detected in TP21-28 (5.0-5.5 ft.) at 0.092, TP21-38 (4.0-4.5ft.) at 0.252 ppm, TP21-37 (2.5-3.0ft.) at 0.949 ppm, TP21-36 (2.5-3.0 ft.) at 0.121 ppm, and TP21-34 (12.5-13.0 ft.) at 0.169 ppm. The level of Acetone exceeds the UUSCOs and is below the RRSCOs level, see Table 1 – VOC Analytical Summary. The laboratory report is presented in Appendix 2 – Laboratory Analytical Report.

It appears that low levels of Acetone (a common solvent) have been released to the subsurface soils at these sample locations and there is a potential for vapor intrusion and vapor encroachment conditions from the fill soils into future buildings that are proposed for restricted residential use. These results regarding potential vapor intrusion and vapor encroachment conditions are consistent with our finding during the Phase II ESA when nuisance odors and slight petroleum odors were noted. The laboratory reports are presented in Appendix 2 – Laboratory Analytical Reports. Sample locations are shown on Figure 2.

#### 4.2 SEMI-VOLATILE PETROLEUM COMPOUNDS – SVOCS

The laboratory SVOCs results from samples are TP21-36 (2.5-3.0ft) indicate detection of five (5) individual SVOCs at concentrations above UUSCO values and three (3) exceed RRUSCO values that include: Benzo (a) anthracene, Benzo (b) fluoranthene, Benzo (k) fluoranthene, Chrysene, and Indeno(1,2.3-cd) pyrene in sample TP21-36. Levels detected include, Benzo (a) anthracene (1.94 ppm), Benzo (b) fluoranthene (1.2 ppm), Chrysene (1.68 ppm), and Indeno (1,2.3-cd) pyrene (0.785 ppm) in TP21-36 (2.5-3.0ft.),



TP21-24 (18-18.5ft.), and TP21-25 (2.5-3.0ft.) exceed RRUSCO levels. The sample results for the test pit locations that exceeded UUSCOs and RRUSCOs are as listed below:

| SVOC                     | Test Pit Location                    | Concentration Range (ppm) | UUSCOs<br>(ppm) | RRUSCOs<br>(ppm) |
|--------------------------|--------------------------------------|---------------------------|-----------------|------------------|
| Benzo (a) anthracene     | TP21-36 (2.5-3.0 ft.)                | 1.94                      | 1               | 1                |
| Benzo (a) pyrene         | TP21-36 (2.5-3.0 ft.)                | 1.56                      | 1               | 1                |
| Benzo (b) fluoranthene   | TP21-36 (2.5-3.0 ft.)                | 1.2                       | 1               | 1                |
| Benzo (K) fluoranthene   | TP21-36 (2.5-3.0 ft.)                | 1.2                       | 1               | 1                |
| Chrysene                 | TP21-36 (2.5-3.0 ft.)                | 1.68                      | 1               | 3.9              |
| Indeno (1,2,3-cd) pyrene | TP21-36 (2.5-3.0 ft.), TP21-24 (18-1 | 0.595 to 1.385            | 0.5             | 500              |
|                          | and TP21-25 (2.5-3.0ft.)             |                           |                 |                  |

The level of Benzo (a) pyrene at 1.56 ppm also exceeds the Commercial Use Soil Cleanup Objective level of 1 ppm in sample TP21-36. The SVOCs detected are likely Polycyclic Aromatic Hydrocarbons (PAHs) and are typically associated with incomplete combustion in materials such as cinder and ash. These results for SVOCs are consistent with our Phase II ESA results for fill materials impacted at levels that will require soil management and limited soil removal to allow for a potential residential re-development. A complete summary of detected SVOCs is presented in Table 2 – SVOC Analytical Summary. The locations of the samples are shown on Figure 2. The laboratory results are presented in Appendix 2.

#### 4.3 RCRA 8 METALS

Resource Recovery and Conservation Act (RCRA) lists eight (8) heavy metals that are toxic and are commonly referred to as the RCRA 8 metals. These metals are arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. Laboratory analytical soil sample results indicate detection of five (5) metals in each of the test pit samples. Arsenic, Barium, Chromium, Lead, and Mercury were detected in these soil samples. Barium, Chromium, and Mercury were detected at levels below UUSCOs, while Arsenic was detected at levels exceeding CUSCO level of 16 ppm and Lead was detected at levels exceeding the UUSCO level of 63 ppm.

The concentration of Arsenic detected at 50.9 ppm in TP 21-31 (11.0-11.5ft.) exceeds the UUSCO level of 13 ppm, RRUSCO of 16 ppm, and CUSCO of 16 ppm. Concentrations of Lead in samples TP21-38 (4.0-4.5ft.) at 80.9 ppm, TP21-28 (5.0-5.5ft) at 79.9 ppm, TP21-36 (2.5-3.0ft.) at 82.7 ppm, TP21-34 (12.5-13.0ft.) at 69.6 ppm, and at TP 21-24 (18-18.5ft.) at 356 ppm exceed the UUSCO level of 63 ppm.

The source of the detected metals is likely from the fill soils/landfilled materials and may be from cinders, ash, and observed in the fill soils. These results are consistent with our Phase II ESA results and metals impacts in soils/fill materials would also be included in soil management for the Site. The concentration of metals that exceed UUSCO, RRUSCO and CUSCO is summarized in the table below. Metals sample results are summarized in and attached Table 3 – RCRA Metals Analytical Summary presents the laboratory data summary. The laboratory results are presented in Appendix 2.

| Metal   | Test Pit Location                           | Concentration<br>Range<br>(ppm) | UUSCOs<br>(ppm) | RRUSCOs<br>(ppm) | CUSCOs<br>(ppm) |
|---------|---------------------------------------------|---------------------------------|-----------------|------------------|-----------------|
| Arsenic | TP21-31                                     | 50.9                            | 13              | 16               | 16              |
| Lead    | TP21-24, TP21-28, TP21-34, TP21-36, TP21-38 | 69.6 to 356                     | 63              | 400              | 400             |



The laboratory analytical report is presented in Appendix 2. The approximate test pit sample locations are presented on Figure 2.

#### 4.4 CHLORINATED PESTICIDES

Laboratory chlorinated pesticides (pesticides) sample results from TP21-24, TP21-25, TP21-28, TP21-35, TP21-36, and TP21-38 indicate detection of five (5) pesticides that exceed UUSCOs levels and are below RRUSCOs. These pesticides include Aldrin, 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, and Dieldrin. The results for Dieldrin samples TP21-31 (11.0-11.5 ft.) and TP-40 (3.5-4.0 ft.) exceed the RRUSCO level 0.200 ppm. Results for samples TP21-37 (2.5-3.0 ft.) were non-detect above the method detection limits. The concentration of pesticides in the table below presents the range of pesticide concentrations That exceed UUSCO and RRUSCO levels. Pesticide results are summarized in attached Table 4 – Pesticide Analytical Summary. The laboratory results are presented in Appendix 2.

| Pesticide | Test Pit Location                               | Concentration Ran | UUSCOs | RRUSCO |
|-----------|-------------------------------------------------|-------------------|--------|--------|
|           |                                                 | (ppm)             | (ppm)  | (ppm)  |
| Aldrin    | TP21-38, TP21-31                                | 0.00645 to 0.0948 | 0.005  | 0.097  |
| 4,4'-DDD  | TP21-38, TP21-36, TP21-24, TP21-28,             | 0.00734 to 0.0151 | 0.0033 | 13     |
|           | TP21-35                                         |                   |        |        |
| 4,4'-DDE  | TP21-38, TP21-36, TP21-24, TP21-35              | 0.0051 to 0.00628 | 0.0033 | 8.9    |
| 4,4'-DDT  | TP21-28, TP21-35                                | 0.0036 to 0.0051  | 0.0033 | 7.9    |
| Dieldrin  | TP21-38, TP21-36, TP21-28, TP21-40, TP21-31, TP | 0.00832 to 0.649  | 0.005  | 0.2    |
|           | TP21-35                                         |                   |        |        |

The source(s) of the pesticides is likely from the former farming uses on the Site and from imported fill that has been landfilled based on detection of pesticides in shallow and deeper soil samples. Elevated pesticide levels are consistent with our Phase II ESA results and would also be addressed in a soil management plan. The laboratory reports are presented in Appendix 2. The test pit sample locations are presented on Figure 2.

#### 4.4 HERBICIDES

Laboratory herbicides sample results from TP20-7 (0.5 - 0.7 ft.), TP20-10 (5.0-5.5 ft.), TP20-11 (6.0-7.0 ft.), TP20-16 (8.0-8.5 ft.), and TP20-18 (0.5-0.7 ft.) indicate non-detection above the laboratory method detection limits.

#### 5.0 SUMMARY AND CONCLUSIONS

The following is a summary of the Site subsurface conclusions based upon the Supplemental Phase II ESA findings, observations, laboratory results and project Limitations – Appendix 3 Limitations.

1. The overburden soil deposits encountered include, buried topsoil, a fill deposit, a lacustrine deposit and a glacial till deposit. The buried topsoil was approximately 0.5 ft. in thickness and overlies the lacustrine deposit at TP21-37 that represents the original land surface. Significant fill soils/fill materials have been transported to the Site and landfilled that contain what appears to be urban fill materials, road work debris with construction and demolition (C&D) materials/debris. Theses fill materials range in thickness from approximately eight (8) to greater than fifteen (15) feet bgs and are generally distributed across the Site in a former ravine. Depths of fill materials are anticipated to be approximately twenty (20) feet bgs in some areas of the former ravine based on our review of historic topographic maps. This fill material has a wide range of descriptions that include brown GRAVEL, little coarse to fine sand, with wood, concrete, metal, plastic, and glass fragments to black coarse to fine sand, with boulders, slag, wood, metal, ash, and cinders. It appears that these fill materials are from many sources and primally from construction building debris and road construction waste that also



contains cinders, ash from urban fill based on observations. Overall, soil conditions are consistent with our Phase II ESA findings and confirms that the majority of the Site has been landfilled into the former ravine with fill materials from what appears to be varying sources. Native Lacustrine underlies the fill deposits and consist of light brown SAND, little silt, trace clay. Native glacial till underlies the lacustrine deposit and consist of redbrown GRAVEL, some silt, trace coarse to fine sand.

- 2. Total organic vapors measured with the PID ranged were ND to 0.2 ppm from soils screened at each Test pit location. However, petroleum nuisance odors were noted during the excavation of test pits TP20-2, TP20-14, and TP20-16 (solvent/petroleum) during the Phase II ESA and Acetone was detected during the Supplemental Phase II ESA in soils at levels that exceeds UUSCOs indicates that there is potential for a vapor intrusion condition and or vapor encroachment from vapors/gases within landfilled fill soils / fill materials into future Site buildings and or residential homes/apartments.
- 3. Levels of one (1) VOC (Acetone) were detected that exceed UUSCO levels in five (5) out of ten (10) sample locations. Levels of Acetone were below RRUSCO in each of the ten (10) soil samples.
- 4. Herbicides were not detected above the method detection limits and are below UUSCOs in the soil samples.
- 5. Concentrations of five (5) individual SVOCs were detected at levels that exceed UUSCOs and three (3) SVOCs exceeded RRSCOs in sample TP21-36 (2.5-3.0 ft.).
- 6. Levels of two (2) metals that include arsenic and lead exceed the UUSCOs. The concentration of arsenic also exceeded the CUSCOs in sample TP21-36 (2.5-3.0 ft.).
- 7. Levels of four (4) pesticides detected in soil samples exceed the UUSCOs that include 4,4'-DDD, 4,4'-DDE, 4,4'-DDT, and Dieldrin. Dieldrin also exceeded the RRUSCO in two test pits.
- 8. The sample laboratory results and visual observations from test pit excavations confirmed that the Site has been landfilled and impacted by the RECs presented in Bergmann's Phase I ESA regarding the potential for on-Site fill soils. The Phase II ESA and Supplemental Phase II ESA test pit excavations revealed substantial quantities of undocumented fill soils/fill materials with thicknesses grater than fifteen (15) feet. Fill soil/fill materials (landfilled materials) have been imported to the Site and landfilled into a former ravine that underlies the majority of the Site. The quantity of the landfilled materials is unknown.
- The results of the Supplemental Phase II ESA has completed the nature and extent of the fill materials in the proposed re-development area and their potential environmental impact for redevelopment of the Site for redistricted residential use.

#### 6.0 RECOMMENDATIONS

The following is our recommendations based upon the ESA findings, observations, and project Limitations – Appendix 3 Limitations.

1. The Phase II ESA and Supplemental Phase II ESA results would be used to evaluate remedial alternatives with subsequent preparation of a site management plan/site excavation plan.



2. Future subsurface investigations should be coordinated with New York State Department of Environmental Conservation (NYSDEC), New York State Department of Health (NYSDOH) and other agencies typically involved in NYSDEC Brownfield Cleanup Program (BCP) to allow for redevelopment of the Site to Restricted-Residential Site Cleanup Objectives.

I:\Providence Housing\0.14695.00 Providence Housing-Irondequioit Housing\3.0 Design\3.8 Reports\Supplemental Phase II ESA Report\Text\Supplemental Phase II ESA Providence Final report text 6.7 21.doc



#### **TABLES**

## Table 1 VOC Analytical Summary Phase II Environmental Site Assessment 2590 Culver Road Lot 1 Wambach Farm Property Providence Housing Town of Irondequoit, New York

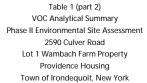


|                                                    |                  | Restricted       | 1                |              | nr                   | 1                    | ır               | T                  |                       |
|----------------------------------------------------|------------------|------------------|------------------|--------------|----------------------|----------------------|------------------|--------------------|-----------------------|
|                                                    | Unrestricted     | Residential      | Commercial       | NYSDEC CP    | TD21 20 (4.0.4 FC.)  | TD01 07 (05 000)     | TP21-36 (2.5-3.0 | TP21-34 (12.5-13.0 | TD21 24 (10 10 50 50) |
| Analyzed Parameters <sup>1</sup>                   | Use <sup>2</sup> | Use <sup>3</sup> | Use <sup>3</sup> | 51 Standards | 1P21-38 (4.0-4.5ft.) | TP21-37 (2.5-3.0ft.) | ft.)             | ft.)               | TP21-24 (18-18.5ft.)  |
| EPA 8260 - TCL Volatile Organics                   | use              | nze.             | use              | 31 Standards | <u>l</u>             |                      | <u>l</u>         | <u> </u>           |                       |
|                                                    | 0.68             | 100              | F00              | 1            | ND.                  | ND                   | ND               | ND                 | ND                    |
| 1,1,1-Trichloroethane<br>1,1,2,2-Tetrachloroethane | 0.68             | 100              | 500              |              | ND<br>ND             | ND<br>ND             | ND<br>ND         | ND<br>ND           | ND<br>ND              |
| 1,1,2-Trichloroethane                              | -                | -                | -                |              | ND                   | ND                   | ND               | ND                 | ND                    |
|                                                    | - 0.27           | -                | 240              | -            |                      |                      |                  |                    |                       |
| 1,1-Dichloroethane                                 | 0.27             | 26               | 240              |              | ND<br>ND             | ND                   | ND               | ND                 | ND                    |
| 1.1-Dichloroethene                                 | 0.33             | 100              | 500              |              | ND                   | ND<br>ND             | ND               | ND<br>ND           | ND                    |
| 1,2,3-Trichlorobenzene                             | -                | -                | - 100            | -            | ND                   |                      | ND               |                    | ND                    |
| 1,2,4-Trichlorobenzene                             | 3.6              | 52               | 190              |              | ND                   | ND                   | ND               | ND                 | ND                    |
| 1,2,4-Trimethylbenzene                             | 3.6              | 52               | 190              | 3.6          | ND                   | ND                   | ND               | ND                 | ND                    |
| 1,2-Dibromo-3-Chloropropane                        | -                | -                | -                | -            | ND                   | ND                   | ND               | ND                 | ND                    |
| 1,2-Dibromomethane                                 | -                | -                | -                | -            | ND                   | ND                   | ND               | ND                 | ND                    |
| 1,2-Dichlorobenzene                                | 1.1              | 500              | 500              | -            | ND                   | ND                   | ND               | ND                 | ND                    |
| 1,2-Dichloroethane                                 | 0.02             | 3.1              | 30               | -            | ND                   | ND                   | ND               | ND                 | ND                    |
| 1,2-Dichloropropane                                | -                | -                | -                | -            | ND                   | ND                   | ND               | ND                 | ND                    |
| 1,3-Dichlorobenzene                                | 1.8              | 100              | 500              | -            | ND                   | ND                   | ND               | ND                 | ND                    |
| 1,4-Dichlorobenzene                                | 1.8              | 130              | 130              | -            | ND                   | ND                   | ND               | ND                 | ND                    |
| 1,4-Dioxane                                        | 0.1              | 13               | 130              |              | ND                   | ND                   | ND               | ND                 | ND                    |
| 2-Butanone                                         | 0.12             | 100              | 500              |              | 0.042                | ND                   | ND               | ND                 | ND                    |
| 2-Hexanone                                         |                  | -                | -                | -            | ND                   | ND                   | ND               | ND                 | ND                    |
| 4-Methyl-2-pentanone                               | -                | -                | -                | -            | ND                   | ND                   | ND               | ND                 | ND                    |
| Acetone                                            | 0.05             | 100              | 500              |              | 0.252                | 0.959                | 0.121            | 0.169              | ND                    |
| Benzene                                            | 0.06             | 2.40             | 44               | 0.06         | ND                   | ND                   | ND               | ND                 | ND                    |
| Bromochloromethane                                 | -                | -                | -                | -            | ND                   | ND                   | ND               | ND                 | ND                    |
| Bromodichloromethane                               | -                | -                | -                | -            | ND                   | ND                   | ND               | ND                 | ND                    |
| Bromoform                                          | -                | -                | -                | -            | ND                   | ND                   | ND               | ND                 | ND                    |
| Bromomethane                                       | -                | -                | -                | -            | ND                   | ND                   | ND               | ND                 | ND                    |
| Carbon Disulfide                                   | -                | -                | -                | -            | ND                   | ND                   | ND               | ND                 | ND                    |
| Carbon Tetrachloride                               | 0.76             | 2.4              | 22               |              | ND                   | ND                   | ND               | ND                 | ND                    |
| Chlorobenzene                                      | -                | -                | -                | -            | ND                   | ND                   | ND               | ND                 | ND                    |
| Chloroethane                                       | -                | -                | -                | -            | ND                   | ND                   | ND               | ND                 | ND                    |
| Chloroform                                         | 0.37             | 49               | 350              |              | ND                   | ND                   | ND               | ND                 | ND                    |
| Chloromethane                                      | -                | -                | -                | -            | ND                   | ND                   | ND               | ND                 | ND                    |
| cis-1,2-Dichloroethene                             | 0.25             | 100              | 500              |              | ND                   | ND                   | ND               | ND                 | ND                    |
| cis-1,3-Dichloropropene                            | -                | -                | -                | -            | ND                   | ND                   | ND               | ND                 | ND                    |
| Cyclohexane                                        | -                | -                | -                | -            | ND                   | ND                   | ND               | ND                 | ND                    |
| Dibromochloromethane                               | -                | -                | -                | -            | ND                   | ND                   | ND               | ND                 | ND                    |
| Dichlorodifluoromethane                            | -                | -                | -                | -            | ND                   | ND                   | ND               | ND                 | ND                    |
| Ethylbenzene                                       | 1                | 41               | 390              | 1            | ND                   | ND                   | ND               | ND                 | ND                    |
| Freon 113                                          | -                | -                | -                | -            | ND                   | ND                   | ND               | ND                 | ND                    |
| Isopropylbenzene                                   | -                | -                | -                | 2.3          | ND                   | ND                   | ND               | ND                 | ND                    |
| m,p-Xylene                                         | -                | -                | -                | -            | ND                   | ND                   | ND               | ND                 | ND                    |
| Methyl acetate                                     | -                | -                | -                | -            | ND                   | ND                   | ND               | ND                 | ND                    |
| Methyl tert-butyl Ether                            | 0.93             | 100              | 500              | 0.93         | ND                   | ND                   | ND               | ND                 | ND                    |
| Methylcyclohexane                                  | -                | _                | _                |              | ND                   | ND                   | ND               | ND                 | ND                    |
| Methylene chloride                                 | 0.05             | 100              | 500              |              | ND                   | ND                   | ND               | ND                 | ND                    |
| Styrene                                            | -                | -                | -                | -            | ND                   | ND                   | ND               | ND                 | ND                    |
| Tetrachloroethene                                  | 1.3              | 150              | 150              |              | ND                   | ND                   | ND               | ND                 | ND                    |
| Toluene                                            | 0.7              | 100              | 500              | 0.7          | ND                   | ND                   | ND               | ND                 | ND                    |
| trans-1,2-Dichloroethene                           | -                | -                | -                | -            | ND                   | ND                   | ND               | ND                 | ND                    |
| trans-1,3-Dichloropropene                          | -                | -                | -                | -            | ND                   | ND                   | ND               | ND                 | ND                    |
| Trichloroethene                                    | 0.47             | 21               | 200              |              | ND                   | ND                   | ND               | ND                 | ND                    |
| Trichlorofluoromethane                             | -                | -                | -                |              | ND                   | ND                   | ND               | ND                 | ND                    |
| Vinyl Chloride                                     | 0.2              | 0.9              | 13               |              | ND                   | ND                   | ND               | ND                 | ND                    |
| N-Butylbenzene                                     | 12               | 100              | 500              | 12           | ND                   | ND                   | ND               | ND                 | ND                    |
| N-Propylbenzene                                    | 3.9              | 100              | 500              | 3.9          | ND                   | ND                   | ND               | ND                 | ND                    |
| Naphthalene                                        | 12               | 100              | 500              | 12           | ND                   | ND                   | ND               | ND                 | ND                    |
| o-Xylene                                           | -                | -                | -                | -            | ND                   | ND                   | ND               | ND                 | ND                    |
| p-Isopropyltoluene                                 | -                | -                | -                | 10           | ND                   | ND                   | ND               | ND                 | ND                    |
| sec-Butylbenzene                                   | 11               | 100              | 500              | 11           | ND                   | ND                   | ND               | ND                 | ND                    |
| Xylenes (mixed)                                    | 0.26             | 100              | 500              | 0.26         | ND                   | ND                   | ND               | ND                 | ND                    |
| Trichloroethene                                    | 0.47             | 21               | 200              | 0.20         | ND                   | ND                   | ND               | ND                 | ND                    |
|                                                    | 0.47             |                  | 200              |              | .10                  | .40                  | .,,,,            | .40                | .10                   |

All values presented in parts per million (ppm).

NA - Not analyzed

ND- Not detected above laboratory detection limits.


4 - Samples collected by Bergmann on May 7, 2021 and analysised by Paradigm Environmental Services, Inc. of Rochester, New York.



<sup>2 - 6</sup> NYCRR Part 375-6.8 - Table 375-6.8(a): Unrestricted Use Soil Cleanup Objectives levels in bold type exceed this standard.

<sup>3 - 6</sup> NYCRR Part 375-6.8 - Table 375-6.8(b): Restricted Residential Soil Cleanup Objectives levels shaded exceed this standard.

J - value is estimated





| Part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND N |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| PAR 2260 - TCL Volatile Organics   Use2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND ND ND ND ND ND ND ND ND               |
| PA 8260 - TCL Volatile Organics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND ND ND ND ND ND ND                     |
| 1,1,1-frichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND ND ND ND ND ND ND                     |
| 1.1.2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND ND ND ND ND ND ND                     |
| 11.2-Tickloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND<br>ND<br>ND<br>ND                     |
| 1.1-Dichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND<br>ND<br>ND                           |
| 1.1-Dichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND<br>ND<br>ND                           |
| 1,2,3-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND<br>ND                                 |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND                                       |
| 1,2,4-Trimethylbenzene         3.6         52         190         3.6         ND                               |                                          |
| 1,2-Dibromo-3-Chloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND                                       |
| 1.2-Dibromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                        |
| 1,2-Dichlorobenzene         1.1         500         500         -         ND         ND         ND         ND           1,2-Dichloroerthane         0.02         3.1         30         -         ND         ND <td>ND</td>             | ND                                       |
| 1,2-Dichloroethane         0,02         3,1         30         -         ND         ND         ND         ND           1,2-Dichloropropane         -         -         -         ND                               | ND                                       |
| 1,2-Dichloropropane         -         -         -         ND                             | ND                                       |
| 1.3-Dichlorobenzene         1.8         100         500         -         ND         ND </td <td>ND</td>       | ND                                       |
| 1.4-Dichlorobenzene         1.8         130         130         -         ND         ND </td <td>ND</td>       | ND                                       |
| 1.4-Dioxane         0.1         13         130         ND         O.114         2-Butanone         0.12         100         500         ND         <                  | ND                                       |
| 2-Butanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                       |
| 2-Hexanone         -         -         -         -         ND         ND <td< td=""><td>ND</td></td<>          | ND                                       |
| 2-Hexanone         -         -         -         -         ND         ND <td< td=""><td>0.114</td></td<>       | 0.114                                    |
| 4-Methyl-2-pentanone         -         -         -         ND                            | ND                                       |
| Acetone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                                       |
| Benzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.327                                    |
| Bromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                       |
| Bromodichloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                       |
| Bromoform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                       |
| Bromomethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND                                       |
| Carbon Disulfide         -         -         -         -         ND                                 | ND                                       |
| Carbon Tetrachloride         0.76         2.4         22         ND                      | ND                                       |
| Chlorobenzene         -         -         -         -         ND                                    | _                                        |
| Chloroethane         -         -         -         -         ND         <                           | ND                                       |
| Chloroform         0.37         49         350         ND                                | ND                                       |
| Chloromethane         -         -         -         -         ND                                    | ND                                       |
| cis-1,2-Dichloroethene         0.25         100         500         ND         ND <th< td=""><td>ND</td></th<> | ND                                       |
| cls-1,3-Dichloropropene         -         -         -         ND         ND <td>ND</td>             | ND                                       |
| Cyclohexane         -         -         -         -         ND         ND <t< td=""><td>ND</td></t<>           | ND                                       |
| Dibromochloromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                       |
| Dichlorodifluoromethane         -         -         -         -         ND         ND <td>ND</td>              | ND                                       |
| Ethylbenzene         1         41         390         1         ND         ND         ND         ND           Freon 113         -         -         -         -         ND                                        | ND                                       |
| Freon 113         -         -         -         -         ND         ND         ND         ND           Isopropylbenzene         -         -         -         2.3         ND         ND         ND         ND         ND           m.pXylene         -         -         -         -         ND         ND         ND         ND           Methyl acetate         -         -         -         ND         ND         ND         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                       |
| Isopropylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                       |
| m.pXylene ND ND ND ND ND Methyl acetate ND ND ND ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                       |
| Methyl acetate         -         -         -         ND         ND         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                       |
| Methyl acetate         -         -         -         ND         ND         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                       |
| Methyl tert-butyl Ether         0.93         100         500         0.93         ND         ND         ND         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                       |
| Methylcyclohexane ND ND ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                       |
| Methylene chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                       |
| Styrene ND ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND                                       |
| System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND                                       |
| Toluene 0.7 100 500 0.7 ND ND ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND                                       |
| trans-1,2-Dichloroethene ND ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                       |
| trans-1,3-Dichloropropene ND ND ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | _                                        |
| Trichloroethene         0.47         21         200         ND         ND         ND         ND           Teleblagefluggemethene         ND         ND         ND         ND         ND         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                                       |
| Trichlorofluoromethane ND ND ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                       |
| Vinyl Chloride         0.2         0.9         13         ND                             | ND                                       |
| N-Butylbenzene 12 100 500 12 ND ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND                                       |
| N-Propylbenzene 3.9 100 500 3.9 ND ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND                                       |
| Naphthalene         12         100         500         12         ND         ND         ND         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                       |
| o-Xylene ND ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                       |
| p-Isopropyltoluene 10 ND ND ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                       |
| sec-Butylbenzene 11 100 500 11 ND ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND                                       |
| Xylenes (mixed) 0.26 100 500 0.26 ND ND ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |
| Trichloroethene         0.47         21         200         ND         ND         ND         ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                       |

<sup>1 -</sup> All values presented in parts per million (ppm).

<sup>2 - 6</sup> NYCRR Part 375-6.8 - Table 375-6.8(a): Unrestricted Use Soil Cleanup Objectives levels in bold type exceed this standard.

<sup>3 - 6</sup> NYCRR Part 375-6.8 - Table 375-6.8(b): Restricted Residential Soil Cleanup Objectives levels shaded exceed this standard.

J - value is estimated

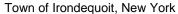
NA - Not analyzed

ND- Not detected above laboratory detection limits.

<sup>4 -</sup> Samples collected by Bergmann on May 7, 2021 and analysised by Paradigm Environmental Services, Inc. of Rochester, New York.

# Table 2 Soils Analytical Summary-SVOCs Supplemental Phase II Environmental Site Assessment 2590 Culver Road Lot 1 Wambach Farm Property Providence Housing Town of Inrondequoit




|                                            |                               | Restricted                   |                             |                      |                      |                      |                        |                         |                       |                       |                      |                      |                       |
|--------------------------------------------|-------------------------------|------------------------------|-----------------------------|----------------------|----------------------|----------------------|------------------------|-------------------------|-----------------------|-----------------------|----------------------|----------------------|-----------------------|
| Analyzed Parameters                        | Unrestricted Use <sup>2</sup> | Residential Use <sup>3</sup> | Commercial Use <sup>3</sup> | TP21-24 (18-18.5ft.) | TP21-25 (2.5-3.0ft.) | TP21-28 (5,0-5.5ft.) | TP21-31 (110-11.5 ft.) | TP21-34 (12.5-13.0 ft.) | TP21-35 (3.0-3.5 ft.) | TP21-36 (2.5-3.0 ft.) | TP21-37 (2.5-3.0ft.) | TP21-38 (4.0-4.5ft.) | TP21-40 (3.5-4.0 ft.) |
| EPA 8270 - TCL Semi-Volatile C             | rganics                       |                              |                             |                      |                      |                      |                        |                         |                       |                       |                      |                      |                       |
| 1,1-Biphenyl<br>1,2,4,5-Tetrachlorobenzene |                               | -                            | -                           | ND<br>ND             | ND<br>ND             | ND<br>ND             | ND<br>ND               | ND<br>ND                | ND<br>ND              | ND<br>ND              | ND<br>ND             | ND<br>ND             | ND<br>ND              |
|                                            | -                             | -                            | -                           |                      |                      |                      |                        |                         |                       |                       |                      |                      |                       |
| 1,2,4-Trichlorobenzene                     | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| 1,2-Dichlorobenzene                        | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND<br>ND                | ND<br>ND              | ND<br>ND              | ND                   | ND                   | ND                    |
| 1,3-Dichlorobenzene                        | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     |                         |                       |                       | ND                   | ND                   | ND                    |
| 1,4-Dichlorobenzene                        | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| 2,3,4,6-Tetrachlorophenol                  | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| 2,4,5-Trichlorophenol                      | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| 2,4,6-Trichlorophenol                      | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| 2,4-Dichlorophenol                         | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| 2,4-Dimethylphenol                         | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| 2,4-Dinitrophenol                          | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| 2,4-Dinitrotoluene                         | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| 2,6-Dinitrotoluene                         | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| 2-Chlorophthalene                          | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| 2-Chlorophenol                             |                               | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| 2-Methylnapthalene                         | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | 0.852                 | ND                   | ND                   | ND                    |
| 2-Methylphenol                             | -                             | _                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| 2-Nitroaniline                             | -                             | _                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| 2-Nitrophenol                              | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| 3&4-Methylphenol                           | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| 3,3'-Dichlorobenzidine                     | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| 3-Nitroaniline                             | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| 4,6-Dinitro-2-methylphenol                 | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| 4-Bromophenyl phenyl ether                 | -                             | _                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| 4-Chloro-3-methylphenol                    | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| 4-Chloroaniline                            | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| 4-Chlorophenyl phenyl ether                | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| 4-Nitroaniline                             | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| 4-Nitrophenol                              | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| Acenaphthene                               | 20                            | 100                          | 500                         | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| Acenaphthylene                             | 100                           | 100                          | 500                         | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| Acetophenone                               | -                             | -                            | -                           | ND                   | ND                   | ND                   | 6.47                   | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| Anthracene                                 | 100                           | 100                          | 500                         | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | 1.11                  | ND                   | ND                   | ND                    |
| Atrazine                                   | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | 0.391                | ND                    |
| Benzaldehyde                               | -                             | -                            | -                           | ND                   | ND                   | ND                   | 24.4                   | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| Benzo(a)anthracene                         | 1                             | 1                            | 5.6                         | 0.509                | 0.676                | 0.523                | ND                     | 0.67                    | ND                    | 1.94                  | ND                   | 0.701                | ND                    |
| Benzo(a)pyrene                             | 1                             | 1                            | 1                           | 0.513                | 0.75                 | 0.494                | ND                     | 0.67                    | ND                    | 1.56                  | ND                   | 0.724                | ND                    |
| Benzo(b)fluoranthene                       | 1                             | 1                            | 5.6                         | 0.424                | 0.693                | 0.32                 | ND                     | 0.619                   | ND                    | 1.2                   | ND                   | 0.612                | ND                    |
| Benzo(g,h,i)perylene                       | 100                           | 100                          | 500                         | 0.369                | 0.521                | 0.305                | ND                     | 0.439                   | ND                    | 0.785                 | ND                   | 0.443                | ND                    |
| Benzo(k)fluoranthene                       | 0.8                           | 3.9                          | 56                          | 0.385                | 0.465                | 0.36                 | ND                     | 0.419                   | ND                    | 1.2                   | ND                   | 0.435                | ND                    |
| Bis(2-chloroethoxy) methane                | -                             | •                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| Bis(2-chloroethyl) ether                   | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| Bis(2-chloroisopropyl) ether               | -                             | •                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| Bis(2-ethylhexyl) phthalate                | -                             | •                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| Butyl benzyl phthalate                     | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| Carprolactam                               |                               | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| Carbozole                                  | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | 0.399                 | ND                   | ND                   | ND                    |
| Chrysene                                   | 1                             | 3.9                          | 56                          | 0.531                | 0.62                 | 0.472                | ND                     | 0.659                   | ND                    | 1.68                  | ND                   | ND                   | ND                    |
| Dibenzo(a,h)anthracene                     | 0.33                          | 0.33                         | 0.56                        | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | 0.29                  | ND                   | ND                   | ND                    |
| Dibenzofuran                               | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | 1.21                  | ND                   | ND                   | ND                    |
| Diethyl phthalate                          | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| Dimethyl phthalate                         | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| Di-n-butyl phthalate                       | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| Di-n-octylphthalate                        | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| Fluoranthene                               | 100                           | 100                          | 500                         | 2.16                 | 1.22                 | 1.24                 | ND                     | 1.41                    | ND                    | 4.48                  | ND                   | 1.51                 | ND                    |
| Fluorene                                   | 30                            | 100                          | 500                         | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | 1.33                  | ND                   | 0.36                 | ND                    |
| Hexachlorobenzene                          | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| Hexachlorobutadiene                        | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| Hexachlorocyclopentadiene                  |                               | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| Hexachloroethane                           |                               | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| Indeno(1,2,3-cd)pyrene                     | 0.5                           | 0.5                          | 6                           | 1.385                | 0.595                | 0.34                 | ND                     | 0.485                   | ND                    | 0.939                 | ND                   | 0.437                | ND                    |
| Isophorone                                 |                               | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| Naphthalene                                | 12                            | 100                          | 500                         | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | 2.18                  | ND                   | ND                   | ND                    |
| Nitrobenzene                               | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| N-Nitroso-di-n-propylamine                 | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| N-Nitrosodiphenylamine                     | -                             | -                            | -                           | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| Pentachlorophenol                          | 0.8                           | 6.7                          | 6.7                         | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| Phenanthrene                               | 100                           | 100                          | 500                         | 1.523                | 0.495                | 0.882                | ND                     | 0.675                   | ND                    | 5.04                  | ND                   | 1.11                 | ND                    |
| Phenol                                     | 0.33                          | 100                          | 500                         | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
| Pyrene                                     | 100                           | 100                          | 500                         | 1.99                 | 1.07                 | 1.09                 | ND                     | 1.19                    | ND                    | 3.47                  | ND                   | 1.27                 | ND                    |
| Pyridine                                   | 100                           | 100                          | 500                         | ND                   | ND                   | ND                   | ND                     | ND                      | ND                    | ND                    | ND                   | ND                   | ND                    |
|                                            |                               |                              |                             |                      |                      |                      |                        |                         |                       |                       |                      |                      |                       |

- All values presented in parts per million (ppm).
   An VYCRR Part 375-6.8 Table 375-6.8(p): herestricted Use Soil Cleanup Objectives level Value Exceeds Unrestricted SCOs
   A NYCRR Part 375-6.8 Table 375-6.8(p): restricted Residential Soil Cleanup Objectives Value Exceeds Restricted Residential Use SCOs
   Sample or laboratory control sample results above Relative Percent Difference Limit. Value Exceeds Commercial Use SCOs
   NA Not analyzed
   ND- Not detected above laboratory detection limits.
   Samples collected by Bergmann on May 7, 2021 and analytised by Paradigm Environmental Services, Inc. of Rochester, New York.

## Table 3 RCRA 8 Metals Analytical Summary

## Supplemental Phase II Environmental Site Assessment 2590 Culver Road

### Providence Housing





| Analyzed Parameters <sup>1</sup> | Unrestricted Use <sup>2</sup> | Restricted<br>Residential Use <sup>3</sup> | Commercial Use <sup>3</sup> | TP21-24 (18-18.5ft.) | TP21-34 (12.5-13.0 ft.) | TP21-36 (2.5-3.0 ft.) | TP21-37 (2.5-3.0ft.) | TP21-38 (4.0-4.5ft.) |
|----------------------------------|-------------------------------|--------------------------------------------|-----------------------------|----------------------|-------------------------|-----------------------|----------------------|----------------------|
| Arsenic                          | 13                            | 16                                         | 16                          | 3.11                 | 2.86                    | 4.3                   | 2.62                 | 4.34                 |
| Barium                           | 350                           | 400                                        | 400                         | 47.9                 | 41.6                    | 74.6                  | 35.1                 | 44.5                 |
| Cadmium                          | 2.5                           | 4.3                                        | 9.3                         | 0.713                | 0.73                    | 0.874                 | 0.66                 | 0.754                |
| Chromium                         | 30                            | 180                                        | 1500                        | 9.02                 | 12.5                    | 9.71                  | 16.3                 | 9.93                 |
| Lead                             | 63                            | 400                                        | 1000                        | 356                  | 69.6                    | 82.7                  | 6.77                 | 80.9                 |
| Mercury                          | 0.18                          | 0.81                                       | 2.8                         | 0.163                | 0.0963                  | 0.089                 | 0.023                | 0.11                 |
| Selenium                         | 3.9                           | 180                                        | 1500                        | ND                   | 1.24                    | 1.23                  | 2.09                 | 1.21                 |
| Silver                           | 2                             | 180                                        | 1500                        | ND                   | ND                      | ND                    | ND                   | ND                   |

- 1 All values presented in parts per million (ppm).
- 2 6 NYCRR Part 375-6.8 Table 375-6.8(a): Unrestricted Use Soil Cleanup Objectives levels in bold type exceed this standard.
- 3 6 NYCRR Part 375-6.8 Table 375-6.8(b): Restricted Residential Soil Cleanup Objectives levels bold and shaded exceed this standard.
- J value is estimated
- NA Not analyzed
- ND- Not detected above laboratory detection limits.
- 4 Samples collected by Bergmann on May 7, 2021 and analyised by Paradigm Environmental Services, Inc. of Rochester, New York.

#### Table 3 (part 2)

## RCRA 8 Metals Analytical Summary Phase II Environmental Site Assessment

#### 2590 Culver Road

Lot 1 Wambach Farm Property

Town of Irondequoit, New York



| Analyzed Parameters <sup>1</sup> | Unrestricted Use <sup>2</sup> | Restricted<br>Residential Use <sup>3</sup> | Commercial Use <sup>3</sup> | TP21-25 (3.0-3.5ft.) | TP21-28 (5.0-5.5ft.) | TP21-31 (11.0-11.5ft.) | TP21-35 (3.0-3.5ft.) | TP21-40 (3.5-4.0ft.) |
|----------------------------------|-------------------------------|--------------------------------------------|-----------------------------|----------------------|----------------------|------------------------|----------------------|----------------------|
| Arsenic                          | 13                            | 16                                         | 16                          | 4.46                 | 3.47                 | 50.9                   | 3.01                 | 9.53                 |
| Barium                           | 350                           | 400                                        | 400                         | 45.2                 | 36                   | 42.3                   | 47.7                 | 39.4                 |
| Cadmium                          | 2.5                           | 4.3                                        | 9.3                         | 0.764                | 0.551                | ND                     | 0.665                | 0.65                 |
| Chromium                         | 30                            | 180                                        | 1500                        | 9.1                  | 8.47                 | 5                      | 8.18                 | 14.3                 |
| Lead                             | 63                            | 400                                        | 1000                        | 30                   | 79.9                 | 91.4                   | 41.3                 | 23.7                 |
| Mercury                          | 0.18                          | 0.81                                       | 2.8                         | 0.0476               | 0.0798               | 0.0769                 | 0.101                | 0.0203               |
| Selenium                         | 3.9                           | 180                                        | 1500                        | ND                   | ND                   | ND                     | ND                   | 2.24                 |
| Silver                           | 2                             | 180                                        | 1500                        | ND                   | ND                   | ND                     | 0.897                | ND                   |

- 1 All values presented in parts per million (ppm).
- 2 6 NYCRR Part 375-6.8 Table 375-6.8(a): Unrestricted Use Soil Cleanup Objectives levels in bold type exceed this standard.
- 3 6 NYCRR Part 375-6.8 Table 375-6.8(b): Restricted Residential Soil Cleanup Objectives levels bold and shaded exceed this standard.
- J value is estimated
- NA Not analyzed
- ND- Not detected above laboratory detection limits.
- 4 Samples collected by Bergmann on May 7, 2021 and analyised by Paradigm Environmental Services, Inc. of Rochester, New York.

#### Table 4 - Pesticides Analytical Summary Supplemental Phase II Environmental Site Assessment 2590 Culver Road Lot 1 of Wambach Farm Property Providence Housing Town of Irondequoit



|                              |                                  |                                        |                                |                         | I                       |                         |                           | ı .                        |                          |                          |                         |                         |                          |
|------------------------------|----------------------------------|----------------------------------------|--------------------------------|-------------------------|-------------------------|-------------------------|---------------------------|----------------------------|--------------------------|--------------------------|-------------------------|-------------------------|--------------------------|
| Analyzed Parameters          | Unrestricted<br>Use <sup>3</sup> | Restricted<br>Residential <sup>4</sup> | Commercial<br>Use <sup>4</sup> | TP21-24<br>(18-18.5ft.) | TP21-25<br>(2.5-3.0ft.) | TP21-28<br>(5,0-5.5ft.) | TP21-31<br>(110-11.5 ft.) | TP21-34<br>(12.5-13.0 ft.) | TP21-35<br>(3.0-3.5 ft.) | TP21-36<br>(2.5-3.0 ft.) | TP21-37<br>(2.5-3.0ft.) | TP21-38<br>(4.0-4.5ft.) | TP21-40<br>(3.5-4.0 ft.) |
| Table 3 - Pesticides Analyti | cal Summary - So                 | oils                                   |                                |                         |                         |                         |                           |                            |                          |                          |                         |                         |                          |
| Aldrin                       | 0.005                            | 0.097                                  | 0.680                          | ND                      | ND                      | ND                      | 0.0948                    | ND                         | ND                       | ND                       | ND                      | 0.00645                 | ND                       |
| Alpha-BHC                    | 0.02                             | 0.480                                  | 3.4                            | ND                      | ND                      | ND                      | ND                        | ND                         | ND                       | ND                       | ND                      | ND                      | ND                       |
| delta-BHC                    | -                                | -                                      | -                              | ND                      | ND                      | ND                      | ND                        | ND                         | ND                       | ND                       | ND                      | ND                      | ND                       |
| beta-BHC                     | 0.036                            | 0.360                                  | 3.0                            | ND                      | ND                      | ND                      | ND                        | ND                         | ND                       | ND                       | ND                      | ND                      | ND                       |
| 2,4,5-TP Acid (Silvex)       | 3.8                              | 100                                    | 500                            | ND                      | ND                      | ND                      | ND                        | ND                         | ND                       | ND                       | ND                      | ND                      | ND                       |
| 4,4'-DDD                     | 0.0033                           | 13                                     | 92                             | 0.00734                 | ND                      | 0.0151                  | ND                        | ND                         | ND                       | 0.00909                  | ND                      | 0.0149                  | ND                       |
| 4,4'-DDE                     | 0.0033                           | 8.9                                    | 62                             | 0.0052                  | ND                      | ND                      | ND                        | ND                         | 0.0056                   | 0.00628                  | ND                      | 0.00542                 | ND                       |
| 4,4'-DDT                     | 0.0033                           | 7.9                                    | 47                             | ND                      | ND                      | 0.00336                 | ND                        | ND                         | 0.0051                   | ND                       | ND                      | ND                      | ND                       |
| cis-Chlordane                | 0.094                            | 4.2                                    | 24                             | 0.00402                 | ND                      | 0.00472                 | ND                        | ND                         | 0.0048                   | 0.0277                   | ND                      | 0.00625                 | ND                       |
| trans-Chlordane              | 0.094                            | 4.2                                    | 24                             | 0.00485                 | ND                      | 0.00641                 | ND                        | ND                         | ND                       | 0.0536                   | ND                      | 0.00484                 | ND                       |
| Dieldrin                     | 0.005                            | 0.200                                  | 1.4                            | 0.00331                 | ND                      | 0.0104                  | 0.649                     | 0.00366                    | 0.0323                   | 0.00832                  | ND                      | 0.0282                  | 0.0243                   |
| Endosulfan I                 | 2.4                              | 24                                     | 200                            | ND                      | ND                      | ND                      | ND                        | ND                         | ND                       | ND                       | ND                      | ND                      | ND                       |
| Endosulfan II                | 2.4                              | 24                                     | 200                            | ND                      | ND                      | ND                      | ND                        | ND                         | ND                       | ND                       | ND                      | ND                      | ND                       |
| Endosulfan Sulfate           | 2.4                              | 24                                     | 200                            | ND                      | 0.00398                 | ND                      | ND                        | 0.00404                    | 0.00306                  | 0.00333                  | ND                      | ND                      | ND                       |
| Endrin                       | 0.014                            | 11                                     | 89                             | ND                      | ND                      | ND                      | ND                        | ND                         | ND                       | ND                       | ND                      | ND                      | ND                       |
| Endrin Aldelhyde             | -                                | 1                                      | -                              | ND                      | ND                      | ND                      | ND                        | ND                         | ND                       | ND                       | ND                      | ND                      | ND                       |
| Endrin Ketone                | -                                | 1                                      | -                              | ND                      | ND                      | ND                      | 0.243                     | ND                         | ND                       | ND                       | ND                      | ND                      | ND                       |
| gamma-BHC (Lindane)          | 0.1                              | 1.3                                    | 9.2                            | ND                      | ND                      | ND                      | ND                        | ND                         | ND                       | ND                       | ND                      | ND                      | ND                       |
| Heptachlor                   | -                                | -                                      | -                              | ND                      | ND                      | ND                      | ND                        | ND                         | ND                       | ND                       | ND                      | ND                      | ND                       |
| Heptachlor Epoxide           | -                                | -                                      | -                              | ND                      | ND                      | ND                      | ND                        | ND                         | 0.00314                  | 0.0124                   | ND                      | ND                      | ND                       |
| Methoxychlor <sup>5</sup>    | NC                               | 100                                    | NC                             | 0.00489                 | 0.00355                 | 0.00454                 | ND                        | ND                         | ND                       | 0.00669                  | ND                      | 0.00684                 | ND                       |
| Toxaphene                    | -                                | -                                      | -                              | ND                      | ND                      | ND                      | ND                        | ND                         | 0.00502                  | ND                       | ND                      | ND                      | ND                       |

<sup>1 -</sup> All values presented in parts per million (ppm).

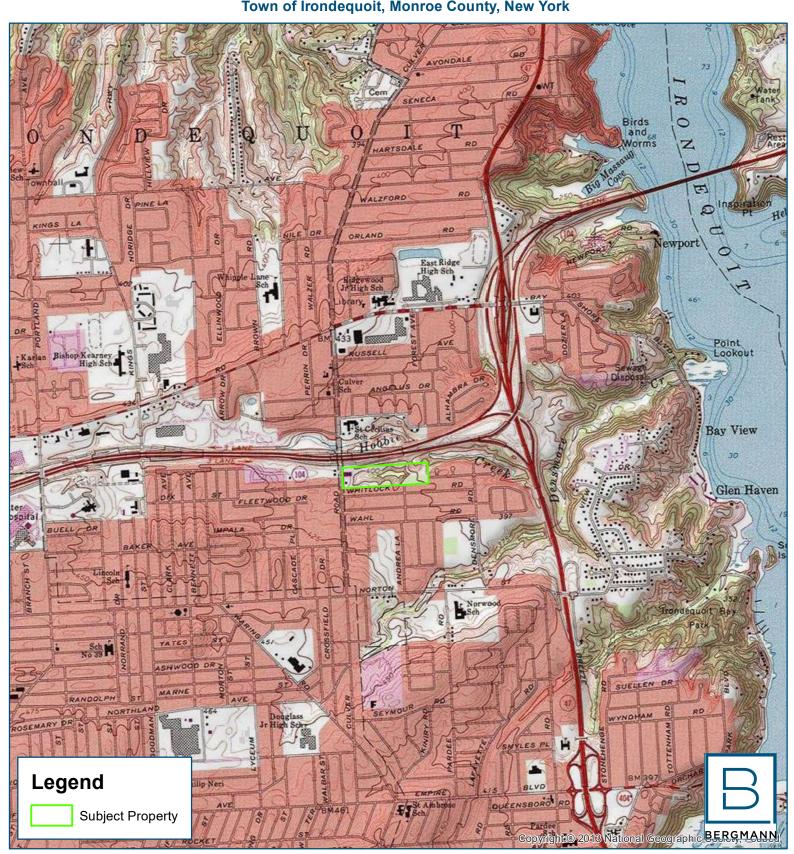
NA - Not analyzed

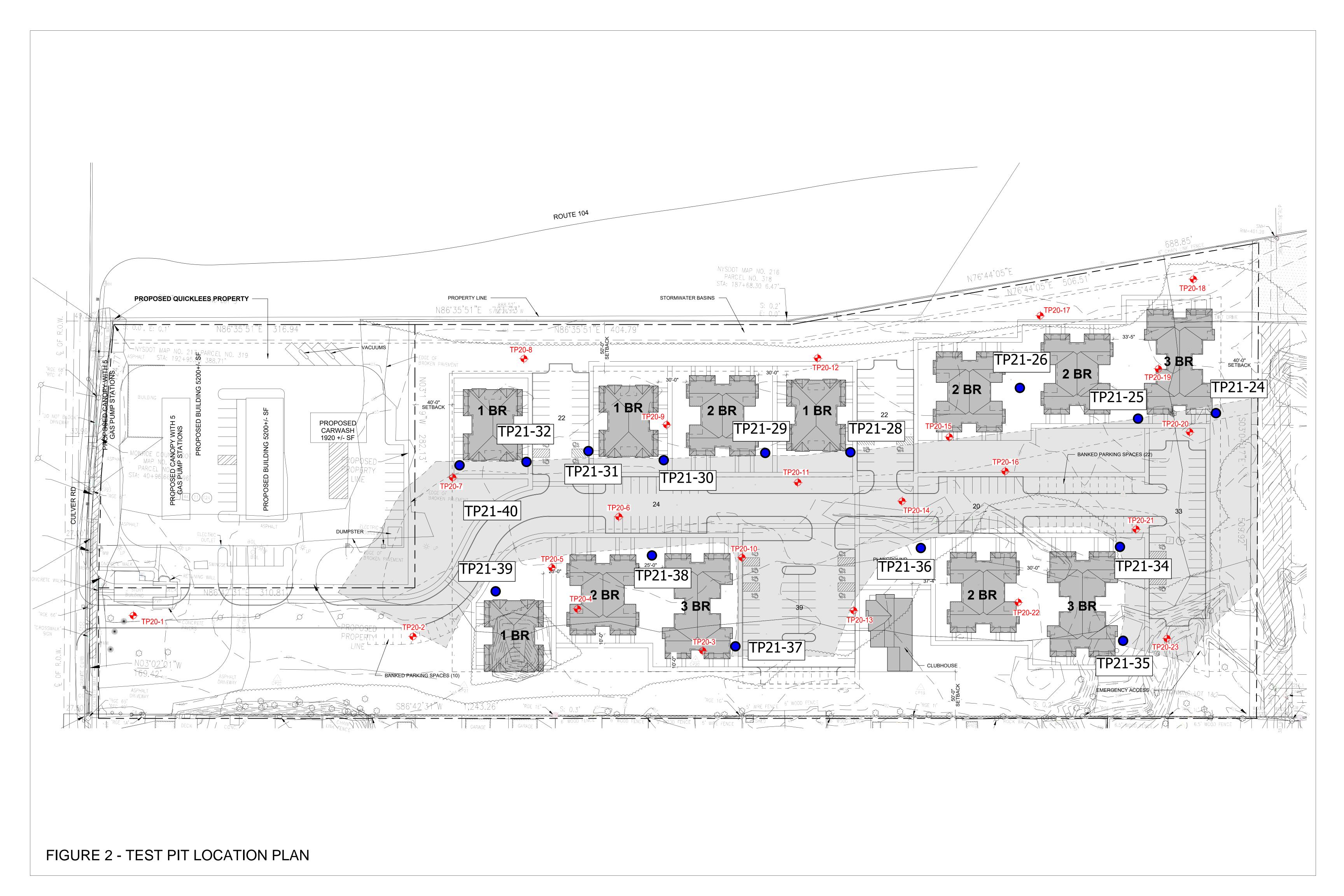
ND- Not detected above laboratory detection limits.

4 - Samples collected by Bergmann on May 7, 2021 and analysised by Paradigm Environmental Services, Inc. of Rochester, New York.

<sup>2 - 6</sup> NYCRR Part 375-6.8 - Table 375-6.8(a): Unrestricted Use Soil Cleanup Objectives levels in bold type exceed this standard.
3 - 6 NYCRR Part 375-6.8 - Table 375-6.8(b): Restricted Residential Soil Cleanup Objectives levels shaded exceed this standard.

J - value is estimated





## **FIGURES**

## Providence Housing 2590 Culver Road Phase I ESA

**SITE LOCATION MAP** 2,000 Feet

Town of Irondequoit, Monroe County, New York







## **APPENDIX 1**

| В                       | ERGI            | 3            | 2                          |               | Enviro                     | onme            | ent      | al Test Pit Log                                                        |                              | TP21-24                     |  |
|-------------------------|-----------------|--------------|----------------------------|---------------|----------------------------|-----------------|----------|------------------------------------------------------------------------|------------------------------|-----------------------------|--|
| Proj<br>Clie            |                 | Provide      | ene Housing                |               | Assessment - Lot ! Of      | Wambach Fa      | arm Pro  | perty, Town of Ironde                                                  | File No: Sheet No: Location: | 14695<br>1 of 1<br>See Plan |  |
| Con                     | illacioi        | Rusty IV     | Miller Excavatin           | 9             | T                          |                 | <u> </u> |                                                                        | Location.                    | See Plan                    |  |
| Iten                    | n               |              | Casing                     | Drive Sampler | Core Barre                 | el              |          | Excavation Equipment and Procedures                                    | Elevation:                   |                             |  |
| Туре:                   |                 |              | NA                         | NA            | NA                         |                 | Excava   | ator: CAT 250                                                          | Datum:                       |                             |  |
| Inside Diamet           |                 |              | NA                         | NA            | NA                         |                 | Reach:   |                                                                        | Start:                       | 5/7/2021                    |  |
| Hemmer Weig             |                 |              | NA                         | NA            | NA                         | Buc             |          | : 3.5 cubic yards                                                      | Finish                       | 5/7/2021                    |  |
| Hammer Fall (<br>Other: | (IN):           |              | NA<br>NA                   | NA<br>NA      | NA<br>NA                   |                 | Other:   |                                                                        | Operator:                    | R. Miller                   |  |
| Other.                  |                 |              | N/X                        | IVA           | l IVA                      |                 |          |                                                                        | Geologist                    | S. DeMeo                    |  |
| Depth<br>(FT)           | Samp<br>Depth ( |              | Sampler Blo<br>Per 6 Inche | l l           | Sample Number and Recovery | Strat<br>Change |          | Visual Classific                                                       | ification and Remarks        |                             |  |
| 0                       |                 |              |                            | ND            |                            |                 |          | Brown coarse to fine SAND, some gravel, tr                             | ace silt, damp.              |                             |  |
|                         |                 |              |                            |               |                            | 2.0             |          |                                                                        |                              |                             |  |
| 2                       |                 |              |                            |               |                            |                 |          | Gray road construction debris, brick,wood, a                           | ish, cinders, rock boulde    | ers, and pavement.          |  |
|                         |                 |              |                            |               |                            |                 |          |                                                                        | - FILL -                     |                             |  |
| 4                       |                 |              |                            | ND            |                            |                 |          |                                                                        |                              |                             |  |
| 6                       |                 |              |                            |               |                            |                 |          |                                                                        |                              |                             |  |
| 8                       |                 |              |                            | ND            |                            |                 |          | Same.                                                                  | - FILL-                      |                             |  |
| 10                      |                 |              |                            | ND            |                            |                 |          |                                                                        |                              |                             |  |
| 12                      |                 |              |                            | ND            |                            |                 |          | Same, with concrete slabs and rock.                                    |                              |                             |  |
| 14                      |                 |              |                            | ND            |                            |                 |          | Same, with tree stumps.                                                |                              |                             |  |
| 16                      |                 |              |                            |               |                            |                 |          |                                                                        |                              |                             |  |
| 18                      |                 |              |                            |               |                            | 19.5            |          |                                                                        | - FILL -                     |                             |  |
| 20                      |                 |              |                            |               |                            |                 |          | Red-brown SILT, some fine sand.                                        | · GLACIAL TILL -             |                             |  |
|                         |                 |              |                            |               |                            |                 |          | Bottom of test pit at 21.5 ft.  Backfilled test pit to ground surface. |                              |                             |  |
|                         |                 |              | Grou                       | ndwater Data  |                            |                 |          | Summary                                                                |                              |                             |  |
|                         | -               | 1            |                            | -             | Depth                      | _               | Overbu   | urden (Lin FT) 21.5                                                    |                              |                             |  |
| Date                    | Time            | Elapse<br>(H | R) Cas                     | ing Bottom O  |                            |                 | Rock C   | Cored (Lin FT) NA                                                      | BERGMA                       |                             |  |
| 5/7/2021                | NA              | N.           | A   N/                     | A 21.5 i      | π.   yes at                | 11.0 ft.        | <u> </u> |                                                                        | BERGMA                       | NA IA                       |  |

|                     | ERG          |                      |                       |                  |                         | TP21-25   |                    |         |                                              |                            |                     |
|---------------------|--------------|----------------------|-----------------------|------------------|-------------------------|-----------|--------------------|---------|----------------------------------------------|----------------------------|---------------------|
| Proj                |              |                      | hase II Envii         | ronmental Site A | ssessment - L           | ot! Of Wa | ambach Fa          | rm Prop | perty, Town of Ironde                        | File No:                   | 14695               |
| Clie                |              | Providene Hous       |                       |                  |                         |           |                    |         |                                              | Sheet No:                  | 1 of 1              |
| Con                 | tractor      | Rusty Miller Exc     | cavating              |                  |                         |           |                    |         |                                              | Location:                  | See Plan            |
|                     |              |                      |                       | T                |                         |           | Ţ                  |         |                                              |                            |                     |
| Iten                | า            | Casing               | Dr                    | ive Sampler      |                         | re Barrel |                    |         | Excavation Equipment and Procedures          | Elevation:                 |                     |
| e:                  | /15 C        | NA<br>NA             |                       | NA               |                         | NA        |                    |         | tor: CAT 250                                 | Datum:                     |                     |
| ide Diamet          |              | NA<br>NA             |                       | NA<br>NA         |                         | NA<br>NA  |                    | Reach:  | 21.5 feet                                    | Start:                     | 5/7/2021            |
| mmer Weig           |              | NA<br>NA             |                       | NA<br>NA         |                         | NA<br>NA  |                    | Bucket: | 3.5 cubic yards                              | Finish                     | 5/7/2021            |
| mmer Fall (<br>ner: | iiv).        | NA<br>NA             |                       | NA<br>NA         |                         | NA<br>NA  | ľ                  | Other:  |                                              | Operator:                  | R. Miller           |
|                     |              |                      |                       |                  |                         |           |                    |         |                                              | Geologist                  | S. DeMeo            |
| Depth<br>(FT)       | Sam<br>Depth |                      | ler Blows<br>6 Inches | Head Space (PPM) | Sample Nur<br>and Recov |           | Strata<br>Change ( |         | Visual Classifi                              | cation and Remarks         | •                   |
| 0                   |              |                      |                       | ND               |                         |           |                    |         | Brown coarse to fine SAND, some gravel, t    | race silt, damp.           |                     |
|                     |              |                      |                       |                  |                         |           |                    |         | _                                            | - FILL -                   |                     |
|                     |              |                      |                       |                  |                         |           | 2.0                |         |                                              |                            |                     |
| 2                   |              |                      |                       |                  |                         |           |                    |         | Brown to gray GRAVEL, some coarse to fir     | ne sand, trace silt with w | ood fragments, damp |
|                     |              |                      |                       |                  |                         |           |                    |         |                                              | - FILL -                   |                     |
|                     |              |                      |                       | ND               |                         |           |                    |         |                                              |                            |                     |
| 4                   |              |                      |                       |                  |                         |           | 4.0                |         |                                              | - FILL -                   |                     |
|                     |              |                      |                       |                  |                         |           |                    |         |                                              |                            |                     |
| 6                   |              |                      |                       |                  |                         |           |                    |         | Light brown medium to fine SAND, little silt | , damp.                    |                     |
|                     |              |                      |                       |                  |                         |           |                    |         | - LACUSTRINE -                               |                            |                     |
|                     |              |                      |                       |                  |                         |           |                    |         | Bottom of test pit at 7.0 ft.                |                            |                     |
| 8                   |              |                      |                       |                  |                         |           |                    |         |                                              |                            |                     |
|                     |              |                      |                       |                  |                         |           |                    |         | Backfilled test pit to ground surface.       |                            |                     |
|                     |              |                      |                       |                  |                         |           |                    |         |                                              |                            |                     |
| 10                  |              |                      |                       |                  |                         |           |                    |         |                                              |                            |                     |
|                     |              |                      |                       |                  |                         |           |                    |         |                                              |                            |                     |
| 12                  |              |                      |                       |                  |                         |           |                    |         |                                              |                            |                     |
|                     |              |                      |                       |                  |                         |           |                    |         |                                              |                            |                     |
|                     |              |                      |                       |                  |                         |           |                    |         |                                              |                            |                     |
| 14                  |              |                      |                       |                  |                         |           |                    |         |                                              |                            |                     |
|                     |              |                      |                       |                  |                         |           |                    |         |                                              |                            |                     |
|                     |              |                      |                       |                  |                         |           |                    |         |                                              |                            |                     |
| 16                  |              |                      |                       |                  |                         |           |                    |         |                                              |                            |                     |
|                     |              |                      |                       |                  |                         |           |                    |         |                                              |                            |                     |
|                     |              |                      |                       |                  |                         |           |                    |         |                                              |                            |                     |
| 18                  |              |                      |                       |                  |                         |           |                    |         |                                              |                            |                     |
|                     |              |                      |                       |                  |                         |           |                    |         |                                              |                            |                     |
| 20                  |              |                      |                       |                  |                         |           |                    |         |                                              |                            |                     |
|                     |              |                      |                       |                  |                         |           |                    |         |                                              |                            |                     |
|                     |              |                      |                       |                  |                         |           |                    |         |                                              |                            |                     |
|                     |              |                      | Groundwat             | or Data          |                         |           | 1                  |         | Summany                                      |                            |                     |
|                     |              |                      |                       |                  | Depth                   |           | (                  | Overbu  | Summary rden (Lin FT) 7.0                    |                            |                     |
| Date                | Time         | Elapsed Time<br>(HR) | Bottom Of<br>Casing   | Bottom Of        | Hole                    | Wate      | er I               | Rock C  | ored (Lin FT) NA                             |                            | 5                   |
| 5/7/2021            | NA           | NA NA                | NA                    | 7.0 ft.          |                         | No        |                    |         |                                              | BERGM                      | ANN                 |
|                     | -            |                      |                       |                  |                         |           |                    |         | - '                                          |                            |                     |

|                            | ERG      | 3            |              |                      | En           | virc       | al Test Pit Log |                  | TP21-26                                    |                             |                   |
|----------------------------|----------|--------------|--------------|----------------------|--------------|------------|-----------------|------------------|--------------------------------------------|-----------------------------|-------------------|
|                            | ject:    |              |              | Environmental Site A | Assessment - | Lot 1 Wai  | mbach Farr      | n Prope          | rty, Irondequoit, NY                       | File No:                    | 14695             |
| Clie                       | ent:     | Providene H  | lousing      |                      |              |            |                 |                  |                                            | Sheet No:                   | 1 of 1            |
| Cor                        | ntractor | Rusty Miller | Excavating   |                      |              |            |                 |                  |                                            | Location:                   | See Plan          |
| Iter                       | n        | Casir        | ng           | Drive Sampler        | Co           | ore Barrel |                 |                  | Excavation Equipment and Procedures        | Elevation:                  |                   |
| Гуре:                      |          | N/A          |              | NA                   |              | NA         |                 | Excava           | ator: CAT 250                              | Datum:                      |                   |
| nside Diamet               |          | NA           |              | NA                   |              | NA         |                 | Reach            |                                            | Start:                      | 5/7/2021          |
| Hemmer Weig<br>Hammer Fall |          | NA<br>NA     |              | NA<br>NA             |              | NA<br>NA   |                 | Bucket<br>Other: | •                                          | Finish                      | 5/7/2021          |
| Other:                     | (114).   | NA<br>NA     |              | NA NA                |              | NA         |                 | Otrici.          |                                            | Operator:                   | R. Miller         |
| Depth                      | Sam      |              | ampler Blow  | /s   Head Space      | Sample Nu    | umbor      | Strat           |                  | Г                                          | Geologist                   | S. DeMeo          |
| (FT)                       | Depth    |              | Per 6 Inches | · · · · · ·          | and Reco     |            | Change          |                  | Visual Classi                              | fication and Remarks        |                   |
| 0                          |          |              |              | ND                   |              |            |                 |                  | Brown coarse to fine SAND, some gravel,    | trace silt, damp.           |                   |
|                            |          |              |              |                      |              |            |                 |                  |                                            | - FILL -                    |                   |
|                            |          |              |              |                      |              |            | 2.0             |                  | l                                          | - FILL -                    |                   |
| 2                          |          |              |              |                      |              |            |                 |                  | Gray road construction debris, brick,wood  | , ash, cinders, rock boulde | rs, and pavement. |
|                            |          |              |              |                      |              |            |                 |                  |                                            | - FILL -                    |                   |
|                            |          |              |              | ND                   |              |            |                 |                  |                                            |                             |                   |
| 4                          |          |              |              |                      |              |            |                 |                  |                                            |                             |                   |
|                            |          |              |              |                      |              |            |                 |                  |                                            |                             |                   |
|                            |          |              |              |                      |              |            |                 |                  |                                            |                             |                   |
| 6                          |          |              |              |                      |              |            |                 |                  |                                            |                             |                   |
|                            |          |              |              |                      |              |            |                 |                  |                                            |                             |                   |
|                            |          |              |              |                      |              |            |                 |                  |                                            |                             |                   |
| 8                          |          |              |              |                      |              |            |                 |                  | Same.                                      | - FILL-                     |                   |
|                            |          |              |              | ND                   |              |            |                 |                  |                                            |                             |                   |
|                            |          |              |              |                      |              |            |                 |                  |                                            |                             |                   |
|                            |          |              |              |                      |              |            |                 |                  |                                            |                             |                   |
| 10                         |          |              |              |                      |              |            |                 |                  |                                            |                             |                   |
|                            |          |              |              |                      |              |            |                 |                  | Refusal of excavator on concrete slab at 1 | 0 ft. and bottom of Test P  | it.               |
|                            |          |              |              |                      |              |            |                 |                  | Bottom of Test Pit at 10.0 ft.             |                             |                   |
| 12                         |          |              |              |                      |              |            |                 |                  |                                            |                             |                   |
|                            |          |              |              |                      |              |            |                 |                  |                                            |                             |                   |
|                            |          |              |              |                      |              |            |                 |                  |                                            |                             |                   |
| 14                         |          |              |              |                      |              |            |                 |                  |                                            |                             |                   |
|                            |          |              |              |                      |              |            |                 |                  |                                            |                             |                   |
|                            |          |              |              |                      |              |            |                 |                  |                                            |                             |                   |
| 16                         |          |              |              |                      |              |            |                 |                  |                                            |                             |                   |
|                            |          |              |              |                      |              |            |                 |                  |                                            |                             |                   |
|                            |          |              |              |                      |              |            |                 |                  |                                            |                             |                   |
| 18                         |          |              |              |                      |              |            |                 |                  |                                            |                             |                   |
| .0                         |          |              |              |                      |              |            |                 |                  |                                            |                             |                   |
|                            |          |              |              |                      |              |            |                 |                  |                                            |                             |                   |
| 20                         |          |              |              |                      |              |            |                 |                  |                                            |                             |                   |
| 20                         |          |              |              |                      |              |            |                 |                  |                                            |                             |                   |
|                            |          |              |              |                      |              |            |                 |                  |                                            |                             |                   |
|                            |          |              |              |                      |              |            |                 |                  |                                            |                             |                   |
|                            | <u> </u> |              | 0            | duator Data          |              |            | <u> </u>        | Ι                | Summan                                     |                             |                   |
|                            |          |              | Ground       | dwater Data          | Depth        |            |                 | Overb            | Summary<br>urden (Lin FT) 10.0             |                             |                   |
| Date                       | Time     | Elapsed Tim  | ne Bottom    | Of Bottom Of         |              | Wa         | ıter            | 1                | Cored (Lin FT) NA                          | $\sqcup$                    | . [               |
| <del></del>                |          | (HR)         | Casir        | ng                   |              |            |                 |                  | , ,                                        |                             | _                 |
| 5/7/2021                   | NA       | NA           | NA           | 10.0                 |              | nor        | ne              | <u> </u>         |                                            | BERGMA                      | NN                |
|                            |          |              |              |                      |              |            |                 |                  |                                            |                             |                   |
|                            |          |              | _            |                      |              | <u>-</u>   |                 |                  |                                            |                             |                   |

| B                                                 | ERGI      | 3              |                |          |                  | E          | nviro        | onme        | enta     | al Test Pit Log                                                                                         |                                  | TP 21-28     |
|---------------------------------------------------|-----------|----------------|----------------|----------|------------------|------------|--------------|-------------|----------|---------------------------------------------------------------------------------------------------------|----------------------------------|--------------|
| Proje                                             | ect:      | Supplime       | ental Phase II | Environn | mental Site As   | sessment - | - Lot 1 Waml | bach Farm P | roperty  | Irondequoit, New Yo                                                                                     | File No:                         | 14695        |
| Clier                                             | nt:       | Providen       | e Housing      |          |                  |            |              |             |          |                                                                                                         | Sheet No:                        | 1 of 1       |
| Con                                               | tractor   | Rusty Mil      | ller Excavatin | g        |                  |            |              |             |          |                                                                                                         | Location:                        | See Plan     |
|                                                   |           |                |                |          |                  |            |              |             |          |                                                                                                         |                                  |              |
| Item                                              | า         | С              | asing          | Drive    | e Sampler        |            | Core Barrel  | l           |          | Excavation Equipment and Procedures                                                                     | Elevation:                       |              |
| Туре:                                             |           |                | NA             |          | NA               |            | NA           |             | Excava   | tor: CAT 250                                                                                            | Datum:                           |              |
| Inside Diamete                                    | er (IN):  |                | NA             |          | NA               |            | NA           |             | Reach:   | 16 feet                                                                                                 | Start:                           | 5/7/2021     |
| Hemmer Weig                                       | ıht (LB): |                | NA             |          | NA               |            | NA           |             | Bucket:  | 3.5 cubic yards                                                                                         | Finish                           | 5/7/2021     |
| Hammer Fall (I                                    | IN):      |                | NA             |          | NA               |            | NA           |             | Other:   |                                                                                                         | _                                |              |
| Other:                                            |           |                | NA             |          | NA               |            | NA           |             |          |                                                                                                         | Operator:                        | R. Miller    |
| Depth                                             | Samp      | le             | Sampler Blo    | ws F     | Head Space       | Sample     | Number       | Strata      | a        |                                                                                                         | Geologist                        | S. DeMeo     |
| (FT)                                              | Depth (   | FT)            | Per 6 Inche    |          | (PPM)            | -          | ecovery      | Change      | (FT)     | Visual Classific                                                                                        | cation and Remarks               |              |
| <ul><li>0</li><li>2</li><li>4</li><li>6</li></ul> |           |                |                |          | ND<br>0.2<br>0.3 |            |              | 4.0         |          | Coarse to fine SAND, with wood and pavem  - f  Same.  - F  Brick and shot rock, wood plastic and metal. | ILL - ent fragments with rock fr |              |
| 8                                                 |           |                |                |          | ND<br>ND         |            |              |             |          | - I                                                                                                     | FILL -                           |              |
| 12                                                |           |                |                |          | ND               |            |              | 11          |          | Light gray SILT, little fine sand.                                                                      | FILL -                           |              |
| 14                                                |           |                |                |          |                  |            |              |             |          | - L                                                                                                     | ACUSTRINE -                      |              |
| 16<br>18                                          |           |                |                |          |                  |            |              |             |          | Bottom of test pit at 14.0 ft.  Backfilled test pit to ground surface                                   |                                  |              |
| 20                                                |           |                |                |          |                  |            |              |             |          |                                                                                                         |                                  |              |
|                                                   |           |                | Grou           | ndwater  | Data             |            |              |             |          | Summary                                                                                                 |                                  | _            |
| Date                                              | Time      | Elapsed<br>(HR | ) Cas          | ing      | Bottom Of        |            |              | ater        |          | ored (Lin FT) 14.0                                                                                      | BERGMA                           |              |
| 5/7/2021                                          | NA        | NA             | . N            | r1       | 14.0 ft          |            | N            | U           | <u> </u> |                                                                                                         |                                  | <del>-</del> |

| В              | ERGI            | 3                  |                             | TP21-29              |                               |                 |          |                                        |             |                        |            |
|----------------|-----------------|--------------------|-----------------------------|----------------------|-------------------------------|-----------------|----------|----------------------------------------|-------------|------------------------|------------|
| Proje          | ect:            | Supplemen          | ntal Phase II               | Environmental Site A | Assessment - Lot 1 W          | ambach Farr     | n Prope  | rty, Irondequoit, New                  |             | File No:               | 14695      |
| Clier          | nt:             | Providene          | Housing                     |                      |                               |                 |          |                                        |             | Sheet No:              | 1 of 1     |
| Cont           | tractor         | Rusty Mille        | er Excavatino               | g                    |                               |                 |          |                                        |             | Location:              | See Plan   |
|                |                 |                    |                             |                      |                               |                 |          |                                        |             |                        |            |
| Item           | 1               |                    | sing                        | Drive Sampler        | Core Barr                     |                 |          | Excavation Equipment and Procedu       |             | Elevation:             |            |
| Туре:          |                 |                    | NA                          | NA                   | NA                            |                 |          | tor: CAT 250                           |             | Datum:                 |            |
| Inside Diamete |                 |                    | NA                          | NA                   | NA                            |                 | Reach:   |                                        |             | Start:                 | 5/7/2021   |
| Hemmer Weig    |                 |                    | NA                          | NA                   | NA                            |                 | Bucket   | : 3.5 cubic yards                      |             | Finish                 | 5/7/2021   |
| Hammer Fall (I | IN):            |                    | NA<br>NA                    | NA<br>NA             | NA                            |                 | Other:   |                                        |             | Operator               | R. Miller  |
| Other:         |                 | l N                | 1A                          | INA                  | NA                            |                 |          |                                        |             | Operator:<br>Geologist | S. DeMeo   |
| Depth<br>(FT)  | Samp<br>Depth ( |                    | Sampler Blow<br>Per 6 Inche |                      | Sample Number<br>and Recovery | Strat<br>Change |          | Visual C                               | lassificati | on and Remarks         | C. Delvico |
| 0              |                 |                    |                             | ND                   |                               |                 |          | Light brown SILT, little fine sand, da | ımp.        |                        |            |
|                |                 |                    |                             |                      |                               |                 |          | g a. a a a a a a a a a a               |             |                        |            |
|                |                 |                    |                             |                      |                               | 2.5             |          | <br>                                   | - FILL      | . <del>-</del>         |            |
|                |                 |                    |                             |                      |                               | 2.5             |          | Dark gray road rock and wood.          |             |                        |            |
| 2              |                 |                    |                             |                      |                               |                 |          | Dark gray road rock and wood.          |             |                        |            |
|                |                 |                    |                             |                      |                               |                 |          |                                        | -           | FILL -                 |            |
|                |                 |                    |                             | ND                   |                               |                 |          |                                        |             |                        |            |
| 4              |                 |                    |                             | I ND                 |                               |                 |          |                                        |             |                        |            |
| 4              |                 |                    |                             |                      |                               |                 |          |                                        |             |                        |            |
|                |                 |                    |                             |                      |                               |                 |          |                                        |             |                        |            |
|                |                 |                    |                             |                      |                               |                 |          |                                        |             |                        |            |
| 6              |                 |                    |                             |                      |                               |                 |          |                                        |             |                        |            |
|                |                 |                    |                             |                      |                               |                 |          |                                        |             |                        |            |
|                |                 |                    |                             |                      |                               |                 |          |                                        |             |                        |            |
|                |                 |                    |                             |                      |                               |                 |          | Same.                                  |             | - FILL-                |            |
| 8              |                 |                    |                             |                      |                               |                 |          |                                        |             |                        |            |
|                |                 |                    |                             | ND                   |                               |                 |          |                                        |             |                        |            |
|                |                 |                    |                             |                      |                               |                 |          |                                        |             |                        |            |
|                |                 |                    |                             |                      |                               |                 |          |                                        |             |                        |            |
| 10             |                 |                    |                             |                      |                               |                 |          |                                        |             |                        |            |
|                |                 |                    |                             | ND                   |                               |                 |          |                                        |             |                        |            |
|                |                 |                    |                             |                      |                               |                 |          |                                        |             |                        |            |
|                |                 |                    |                             |                      |                               |                 |          | Same.                                  |             |                        |            |
| 12             |                 |                    |                             |                      |                               |                 |          |                                        |             |                        |            |
|                |                 |                    |                             |                      |                               |                 |          |                                        |             |                        |            |
|                |                 |                    |                             |                      |                               |                 |          |                                        |             |                        |            |
|                |                 |                    |                             |                      |                               |                 |          |                                        |             |                        |            |
| 14             |                 |                    |                             | ND                   |                               | 14              |          |                                        |             |                        |            |
|                |                 |                    |                             |                      |                               |                 |          | Gray SILT, trace silt, moist.          | - L         | ACUSTRINE -            |            |
|                |                 |                    |                             |                      |                               |                 |          |                                        |             |                        |            |
| 16             |                 |                    |                             |                      |                               |                 |          |                                        |             |                        |            |
|                |                 |                    |                             |                      |                               |                 |          |                                        |             |                        |            |
|                |                 |                    |                             |                      |                               |                 |          |                                        |             |                        |            |
|                |                 |                    |                             |                      |                               |                 |          | Bottom of Test Pit at 16.0 ft.         |             |                        |            |
| 18             |                 |                    |                             |                      |                               |                 |          |                                        |             |                        |            |
|                |                 |                    |                             |                      |                               |                 |          |                                        |             |                        |            |
|                |                 |                    |                             |                      |                               |                 |          | Backfilled Test Pit to ground su       | urface.     |                        |            |
|                |                 |                    |                             |                      |                               |                 |          |                                        |             |                        |            |
| 20             |                 |                    |                             |                      |                               |                 |          |                                        |             |                        |            |
|                |                 |                    |                             |                      |                               |                 |          |                                        |             |                        |            |
|                |                 |                    |                             |                      |                               |                 |          |                                        |             |                        |            |
|                |                 |                    |                             |                      |                               |                 |          |                                        |             |                        |            |
|                |                 |                    |                             |                      |                               |                 |          |                                        | Т           |                        |            |
|                |                 |                    | Grour                       | ndwater Data         |                               |                 |          | Summary                                |             |                        | _          |
|                |                 | le                 |                             |                      | Depth                         |                 | Overbu   | orden (Lin FT) 16.0                    |             |                        |            |
| Date           | Time            | Elapsed Ti<br>(HR) | ime Botton<br>Casi          |                      | Hole W                        | /ater           | Rock C   | fored (Lin FT) NA                      |             |                        |            |
|                |                 |                    |                             |                      |                               |                 |          |                                        |             | 252511                 |            |
| 5/7/2021       | NA              | NA                 | NA                          | A 16 ft.             | not o                         | bserved         | <u> </u> |                                        | 1           | BERGMA                 | 1414       |
|                |                 |                    |                             |                      |                               |                 |          |                                        |             |                        |            |

| В              | ERGI     | 3               |               |                    | E           | nviro        | onme           | =<br>ent |                                             | TP 21-30      |                     |                       |
|----------------|----------|-----------------|---------------|--------------------|-------------|--------------|----------------|----------|---------------------------------------------|---------------|---------------------|-----------------------|
| Proj           | ect:     | Supplimental    | Phase II Envi | ironmental Site As | ssessment - | - Lot 1 Wamł | bach Farm F    | roperty  | , Irondequoit, New Yc                       |               | File No:            | 14695                 |
| Clie           | nt:      | Providene Ho    | ousing        |                    |             |              |                |          |                                             |               | Sheet No:           | 1 of 1                |
| Con            | tractor  | Rusty Miller Ex | Excavating    |                    |             |              |                |          |                                             |               | Location:           | See Plan              |
|                |          |                 |               |                    |             |              |                |          |                                             |               |                     |                       |
| Item           | 1        | Casing          | g C           | Drive Sampler      |             | Core Barrel  |                |          | Excavation Equipment and Procedures         |               | Elevation:          |                       |
| Type:          |          | NA              |               | NA                 |             | NA           |                |          | tor: CAT 250                                |               | Datum:              |                       |
| Inside Diamete |          | NA              |               | NA                 |             | NA           |                | Reach:   |                                             |               | Start:              | 5/7/2021              |
| Hemmer Weig    |          | NA              |               | NA                 |             | NA           |                | Bucket:  | 3.5 cubic yards                             | :             | Finish              | 5/7/2021              |
| Hammer Fall (I | IN):     | NA<br>NA        |               | NA                 |             | NA           |                | Other:   |                                             | <u>.</u>      | 0                   |                       |
| Other:         |          | NA              |               | NA                 |             | NA           |                |          |                                             | <b>!</b>      | Operator: Geologist | R. Miller<br>S. DeMeo |
| Depth          | Sampl    | le San          | mpler Blows   | Head Space         | Sample      | e Number     | Strata         | a        |                                             |               | Geologist           | 3. Delvieo            |
| (FT)           | Depth (F | FT) Pe          | er 6 Inches   | (PPM)              | and R       | ecovery      | Change         | (FT)     | Visual Clas                                 | sificati      | on and Remarks      |                       |
| 0              |          |                 |               | ND                 |             |              |                |          | Light brown GRAVEL, some coarse to fi       | ne sand,      | with pavment fragme | ents, damp.           |
|                | 1        |                 |               |                    |             |              | 2.0            |          |                                             |               |                     |                       |
| 2              |          |                 |               |                    |             |              |                |          |                                             | <u>- FILL</u> | :                   |                       |
|                | 1        |                 |               |                    |             |              |                |          | Gray GRAVEL, with brick, metal and pav      | vment fra     | agments, damp.      |                       |
|                |          |                 |               | 0.1                |             |              |                |          | Light brown medium to fine sand, little sil |               |                     |                       |
| 4              |          |                 |               |                    |             |              |                |          |                                             | - FILL        | _                   |                       |
|                |          |                 |               |                    |             |              |                |          |                                             | -1166         |                     |                       |
|                |          |                 |               | 0.1                |             |              |                |          |                                             |               |                     |                       |
| 6              |          |                 |               |                    |             |              |                |          |                                             |               |                     |                       |
| 6              |          |                 |               |                    |             |              |                |          |                                             |               |                     |                       |
|                | 1        |                 |               |                    |             |              |                |          |                                             |               |                     |                       |
|                | 1        |                 |               |                    |             |              |                |          |                                             |               |                     |                       |
| 8              |          |                 |               |                    |             |              |                |          | Same.                                       |               |                     |                       |
| -              |          |                 |               |                    |             |              |                |          |                                             | - FIL         | L -                 |                       |
|                |          |                 |               |                    |             |              |                |          |                                             |               |                     |                       |
|                |          |                 |               |                    |             |              |                |          |                                             |               |                     |                       |
| 10             |          |                 |               |                    |             |              |                |          | Bottom of Test Pit at 9.0 ft.               |               |                     |                       |
| . •            |          |                 |               |                    |             |              |                |          | Dottom of 10001 if all one in               |               |                     |                       |
|                |          |                 |               |                    |             |              |                |          | Backfilled Test Pit to ground surface.      |               |                     |                       |
|                | 1        |                 |               |                    |             |              | 1              |          |                                             |               |                     |                       |
| 12             |          |                 |               |                    |             |              |                |          |                                             |               |                     |                       |
|                | 1        |                 |               |                    |             |              | 1              |          |                                             |               |                     |                       |
|                | 1        |                 |               |                    |             |              |                |          |                                             |               |                     |                       |
|                | 1        |                 |               |                    |             |              |                |          |                                             |               |                     |                       |
| 14             | 1        |                 |               |                    |             |              |                |          |                                             |               |                     |                       |
|                | 1        |                 |               |                    |             |              |                |          |                                             |               |                     |                       |
|                | 1        |                 |               |                    |             |              |                |          |                                             |               |                     |                       |
|                |          |                 |               |                    |             |              |                |          |                                             |               |                     |                       |
| 16             | 1        |                 |               |                    |             |              |                |          |                                             |               |                     |                       |
|                | 1        |                 |               |                    |             |              |                |          |                                             |               |                     |                       |
|                | 1        |                 |               |                    |             |              |                |          |                                             |               |                     |                       |
|                | 1        |                 |               |                    |             |              |                |          |                                             |               |                     |                       |
| 18             | 1        |                 |               |                    |             |              |                |          |                                             |               |                     |                       |
|                | 1        |                 |               |                    |             |              | 1              |          |                                             |               |                     |                       |
|                | 1        |                 |               |                    |             |              | 1              |          |                                             |               |                     |                       |
|                | 1        |                 |               |                    |             |              | 1              |          |                                             |               |                     |                       |
| 20             | 1        |                 |               |                    |             |              | 1              |          |                                             |               |                     |                       |
|                | 1        |                 |               |                    |             |              | 1              |          |                                             |               |                     |                       |
|                | 1        |                 |               |                    |             |              |                |          |                                             |               |                     |                       |
|                | 1        |                 |               |                    |             |              |                |          |                                             |               |                     |                       |
|                | <u> </u> |                 | Croundu       | rotor Doto         |             |              | <u> </u>       | <u></u>  | Summoru                                     |               |                     |                       |
|                |          |                 | Groundwa      |                    | Depth       |              |                | Overho   | Summary 9.0                                 |               |                     |                       |
| <b>.</b>       |          | Elapsed Time    | e Bottom Of   | ıf                 |             |              |                |          |                                             |               | $\square$           |                       |
| Date           | Time     | (HR)            | Casing        |                    | Hole        | Wa           | iter           | Rock C   | ored (Lin FT) NA                            |               |                     | ' <b> </b>            |
| 5/7/2021       | NA       | NA              | NA            | 9.0 ft             | ,           | Ye           | 29             |          |                                             |               | BERGMA              | 77                    |
| J, . / = V = 1 |          | . 4/ 1          | 1 14/1        |                    |             |              | · <del>-</del> |          | 1                                           |               |                     |                       |

| Popular   Color   Co   | В        | ERGI      | 3            |               |                    | Er           | nviro      | onmo       | ent     | al Test Pit Log                             |                          | TP21-31   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|--------------|---------------|--------------------|--------------|------------|------------|---------|---------------------------------------------|--------------------------|-----------|
| Marco Nation   Marco Nation Recording   Marco Nation Natio    | Proj     | ject:     | Supplement   | al Phase II I | Environmental Site | Assessment - | · Lot 1 Wa | mbach Fari | m Prope | erty, Irondequoit, New                      | File No:                 | 14695     |
| Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |           |              |               |                    |              |            |            |         |                                             | Sheet No:                | 1 of 1    |
| Sect   Mark      | Con      | ntractor  | Rusty Miller | Excavating    |                    |              |            |            |         |                                             | Location:                | See Plan  |
| Sect   Mark      |          |           |              | T             | 5: 0 .             |              |            |            |         |                                             |                          |           |
| Mark   December 100    No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | m         | 1            |               | -                  | С            |            | l          | Even.   |                                             |                          |           |
| Normal   N   |          | ter (IN)· |              |               |                    |              |            |            |         |                                             |                          | 5/7/2021  |
| Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |           |              |               |                    |              |            |            |         |                                             |                          |           |
| Companies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |           |              |               | NA                 |              | NA         |            |         |                                             |                          |           |
| Depth (PT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Other:   |           | NA.          | ١             | NA                 |              | NA         |            |         |                                             |                          | R. Miller |
| Change   C   | Denth    | I Samr    | ole I Sa     | ampler Blow   | s I Head Space     | Sample N     | lumher     | l Strat    | · 2     | T                                           | Geologist                | S. DeMeo  |
| 20 Dark gray metal wire, concrete nables, not boulders, and wood, dump.  FILL-  Dark gray metal wire, concrete nables, not boulders, and wood, dump.  FILL-  FILL-  Same.  FILL-  Same.  FILL-  Same.  FILL-  Oray SILT, lace five sand, wet - LACUSTRINE -  Dattorn of Teat Pit to ground surface  Dattorn of Teat Pit to ground surface  Dattorn of Teat Pit to ground surface  Same to the pit to ground surface  Dattorn of Teat Pit to ground surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1        |           |              |               |                    |              |            |            |         | Visual Classific                            | cation and Remarks       |           |
| 20 Dark gray metal wire, concrete nables, not boulders, and wood, dump.  FILL-  Dark gray metal wire, concrete nables, not boulders, and wood, dump.  FILL-  FILL-  Same.  FILL-  Same.  FILL-  Same.  FILL-  Oray SILT, lace five sand, wet - LACUSTRINE -  Dattorn of Teat Pit to ground surface  Dattorn of Teat Pit to ground surface  Dattorn of Teat Pit to ground surface  Same to the pit to ground surface  Dattorn of Teat Pit to ground surface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0        |           |              |               | ND                 |              |            |            |         | Light brown GRAVEL with bricks wood me      | etal and concrete damp   |           |
| 2.0 Ourk gray metal wire, concrete rubble, rick basiders, and wreat, damp.  - FILL-  ND  ND  10  ND  11  Same.  - FILL-  Same. |          |           |              |               |                    |              |            |            |         | Light brown Crowner, with brioks, wood, me  | star and concrete, damp. |           |
| Desk gray metal wire, concrete nable, ook boulders, and wood, damp.   FILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |           |              |               |                    |              |            | 2.0        | 1       | ļ                                           | FILL -                   |           |
| - FILL -  |          |           |              |               |                    |              |            | 2.0        | ,       | Dark gray metal wire, concrete rubble, rock | boulders, and wood, dar  | mp.       |
| NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2        |           |              |               |                    |              |            |            |         |                                             |                          | •         |
| SurveFILL-  NO  NO  10  NO  NO  12  SurveF  Groy SILT, trace fire sared, wet - LACASTRINE -  14  16  17  8  8  8  8  8  8  8  8  8  8  8  8  8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |           |              |               |                    |              |            |            |         |                                             | - FILL -                 |           |
| SameFILL-  10  10  11  12  SimpF  Gray SILT, trace line sand, wet - LACUSTRINE -  14  16  Bettorn of Test Pit at 14.0 ft.  Beschilled Test Pit to ground surface  18  20  Summary  Overburden (Lin FT) 14.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |           |              |               | ND                 |              |            |            |         |                                             |                          |           |
| SameFILL-  ND  ND  12  SameF  Grey SILT, trace fine sand, wet - LACUSTRINE -  14  16  17  18  20  SameF  SameF  Grey SILT, trace fine sand, wet - LACUSTRINE -  Backfilled Test Pit to ground surface  Sackfilled Test Pit to ground surface  Time Eliapsed Time Coverture of the Coverture o             | 4        |           |              |               |                    |              |            |            |         |                                             |                          |           |
| SameFILL-  ND  ND  12  SameF  Grey SILT, trace fine sand, wet - LACUSTRINE -  14  16  17  18  20  SameF  SameF  Grey SILT, trace fine sand, wet - LACUSTRINE -  Backfilled Test Pit to ground surface  Sackfilled Test Pit to ground surface  Time Eliapsed Time Coverture of the Coverture o             |          |           |              |               |                    |              |            |            |         |                                             |                          |           |
| SameFILL-  ND  ND  12  SameF  Grey SILT, trace fine sand, wet - LACUSTRINE -  14  16  17  18  20  SameF  SameF  Grey SILT, trace fine sand, wet - LACUSTRINE -  Backfilled Test Pit to ground surface  Sackfilled Test Pit to ground surface  Time Eliapsed Time Coverture of the Coverture o             |          |           |              |               |                    |              |            |            |         |                                             |                          |           |
| SameFILL-  ND  ND  12  SameF  Grey SILT, trace fine sand, wet - LACUSTRINE -  14  16  17  18  20  SameF  SameF  Grey SILT, trace fine sand, wet - LACUSTRINE -  Backfilled Test Pit to ground surface  Sackfilled Test Pit to ground surface  Time Eliapsed Time Coverture of the Coverture o             | 6        |           |              |               |                    |              |            |            |         |                                             |                          |           |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |           |              |               |                    |              |            |            |         |                                             |                          |           |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |           |              |               |                    |              |            |            |         |                                             |                          |           |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |           |              |               |                    |              |            |            |         | Same.                                       | - FILL-                  |           |
| 10 ND 12 SameF  Gray SILT, trace fine sand, wet - LACUSTRINE -  14 Bottom of Test Pit at 14.0 ft.  Backfilled Test Pit to ground surface  18 Summary  Groundwater Data  Date Time Elapsed Time Bottom Of Hole Water Rock Cored (Lin FT) NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8        |           |              |               |                    |              |            |            |         |                                             |                          |           |
| 12 SameF  Gray SILT, trace fine sand, wet - LACUSTRINE -  14 Bottom of Test Pit at 14.0 ft.  Backfilled Test Pit to ground surface  18 Summary  Overburden (Lin FT) 14.0  Date Time Elapsed Time Bottom of Hole Water Rock Cored (Lin FT) NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |           |              |               | ND                 |              |            |            |         |                                             |                          |           |
| 12 SameF  Gray SILT, trace fine sand, wet - LACUSTRINE -  14 Bottom of Test Pit at 14.0 ft.  Backfilled Test Pit to ground surface  18 Summary  Overburden (Lin FT) 14.0  Date Time Elapsed Time Bottom of Hole Water Rock Cored (Lin FT) NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |           |              |               |                    |              |            |            |         |                                             |                          |           |
| 12 SameF  Gray SILT, trace fine sand, wet - LACUSTRINE -  14 Bottom of Test Pit at 14.0 ft.  Backfilled Test Pit to ground surface  18 Summary  Overburden (Lin FT) 14.0  Date Time Elapsed Time Bottom of Hole Water Rock Cored (Lin FT) NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |           |              |               |                    |              |            |            |         |                                             |                          |           |
| 12   SameF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10       |           |              |               |                    |              |            |            |         |                                             |                          |           |
| Gray SILT, trace fine sand, wet - LACUSTRINE -  14  Bottom of Test Pit at 14.0 ft.  Backfilled Test Pit to ground surface  18  20  Groundwater Data  Summary  Overburden (Lin FT)  Date  Time  Elapsed Time (HR)  Bottom Of Hole  Water  Overburden (Lin FT)  NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |           |              |               | ND                 |              |            |            |         |                                             |                          |           |
| Gray SILT, trace fine sand, wet - LACUSTRINE -  14  Bottom of Test Pit at 14.0 ft.  Backfilled Test Pit to ground surface  18  20  Groundwater Data  Summary  Overburden (Lin FT)  Date  Time  Elapsed Time (HR)  Bottom Of Hole  Water  Overburden (Lin FT)  NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |           |              |               |                    |              |            |            |         | 5                                           |                          |           |
| Bottom of Test Pit at 14.0 ft.  Backfilled Test Pit to ground surface  18 20  Groundwater Data  Depth Overburden (Lin FT) 14.0  Rock Cored (Lin FT) NA  Rock Cored (Lin FT) NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12       |           |              |               |                    |              |            | 12         |         | Same F                                      |                          |           |
| Bottom of Test Pit at 14.0 ft.  Backfilled Test Pit to ground surface  18 20  Groundwater Data  Depth Overburden (Lin FT) 14.0  Rock Cored (Lin FT) NA  Rock Cored (Lin FT) NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |           |              |               |                    |              |            |            |         |                                             |                          |           |
| Bottom of Test Pit at 14.0 ft.  Backfilled Test Pit to ground surface  18 20  Groundwater Data  Depth Overburden (Lin FT) 14.0  Rock Cored (Lin FT) NA  Rock Cored (Lin FT) NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |           |              |               |                    |              |            |            |         | Gray SILT trace fine sand wet - LACID       | STRINE -                 |           |
| Bottom of Test Pit at 14.0 ft.  Backfilled Test Pit to ground surface.  Backfilled Test Pit to ground surface.  Summary  Overburden (Lin FT)  Date Time Elapsed Time (HR)  Bottom Of Hole Water  Rock Cored (Lin FT)  NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |           |              |               |                    |              |            |            |         | Gray Sill I, trace fine Sand, wet - LACO    | STRINE -                 |           |
| Backfilled Test Pit to ground surface  18  20  Groundwater Data Summary  Depth Overburden (Lin FT) 14.0  Date Time Elapsed Time Bottom Of Casing Bottom Of Hole Water Rock Cored (Lin FT) NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14       |           |              |               |                    |              |            |            |         |                                             |                          |           |
| Backfilled Test Pit to ground surface  18  20  Groundwater Data Summary  Depth Overburden (Lin FT) 14.0  Date Time Elapsed Time Bottom Of Casing Bottom Of Hole Water Rock Cored (Lin FT) NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |           |              |               |                    |              |            |            |         |                                             |                          |           |
| Backfilled Test Pit to ground surface  18  20  Groundwater Data Summary  Depth Overburden (Lin FT) 14.0  Date Time Elapsed Time Bottom Of Casing Bottom Of Hole Water Rock Cored (Lin FT) NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |           |              |               |                    |              |            |            |         |                                             |                          |           |
| Backfilled Test Pit to ground surface    18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16       |           |              |               |                    |              |            |            |         | Bottom of Test Pit at 14.0 ft.              |                          |           |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10       |           |              |               |                    |              |            |            |         |                                             |                          |           |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |           |              |               |                    |              |            |            |         |                                             |                          |           |
| 20  Groundwater Data Summary  Depth Overburden (Lin FT) 14.0  Rock Cored (Lin FT) NA  Bate Time Elapsed Time (HR) Bottom Of Hole Water Rock Cored (Lin FT) NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |           |              |               |                    |              |            |            |         | Backfilled Test Pit to ground surface       |                          |           |
| Groundwater Data Summary  Depth Overburden (Lin FT) 14.0  Date Time Elapsed Time (HR) Bottom Of Casing Bottom Of Hole Water Rock Cored (Lin FT) NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18       |           |              |               |                    |              |            |            |         |                                             |                          |           |
| Groundwater Data Summary  Depth Overburden (Lin FT) 14.0  Date Time Elapsed Time (HR) Bottom Of Casing Bottom Of Hole Water Rock Cored (Lin FT) NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |           |              |               |                    |              |            |            |         |                                             |                          |           |
| Groundwater Data Summary  Depth Overburden (Lin FT) 14.0  Date Time Elapsed Time (HR) Bottom Of Casing Bottom Of Hole Water Rock Cored (Lin FT) NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |           |              |               |                    |              |            |            |         |                                             |                          |           |
| Groundwater Data Summary  Depth Overburden (Lin FT) 14.0  Date Time Elapsed Time (HR) Bottom Of Casing Bottom Of Hole Water Rock Cored (Lin FT) NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |           |              |               |                    |              |            |            |         |                                             |                          |           |
| Depth Overburden (Lin FT) 14.0  Date Time Elapsed Time (HR) Bottom Of Casing Bottom Of Hole Water Rock Cored (Lin FT) NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20       |           |              |               |                    |              |            |            |         |                                             |                          |           |
| Depth Overburden (Lin FT) 14.0  Date Time Elapsed Time (HR) Bottom Of Casing Bottom Of Hole Water Rock Cored (Lin FT) NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |           |              |               |                    |              |            |            |         |                                             |                          |           |
| Depth Overburden (Lin FT) 14.0  Date Time Elapsed Time (HR) Bottom Of Casing Bottom Of Hole Water Rock Cored (Lin FT) NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |           |              |               |                    |              |            |            |         |                                             |                          |           |
| Depth Overburden (Lin FT) 14.0  Date Time Elapsed Time (HR) Bottom Of Casing Bottom Of Hole Water Rock Cored (Lin FT) NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |           |              |               |                    |              |            |            |         |                                             |                          |           |
| Depth Overburden (Lin FT) 14.0  Date Time Elapsed Time (HR) Bottom Of Casing Bottom Of Hole Water Rock Cored (Lin FT) NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          | 1         | <u> </u>     | Ground        | dwater Data        | <u> </u>     |            | <u> </u>   |         | Summary                                     |                          |           |
| Date Time Elapsed Time Bottom Of Casing Bottom Of Hole Water Rock Cored (Lin FT) NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |           |              |               |                    | Depth        |            |            | Overbu  |                                             |                          |           |
| (HR) Casing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Date     | Time      |              |               |                    | f Hole       | Wa         | ater       | 1       |                                             |                          |           |
| 5/7/2021         NA         NA         14 ft.         Yes at 9 ft.             BERGMANN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |           | (HK)         | Casin         | iy                 |              |            |            | 1       |                                             |                          | _1        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5/7/2021 | NA        | NA           | NA            | 14 ft              |              | Yes a      | at 9 ft.   |         |                                             | BERGMA                   | NN        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |              |               |                    |              |            |            |         |                                             |                          |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |              |               |                    |              |            |            |         |                                             |                          |           |

|                       | ERGI     | 3              |             |                    | Envir                | onm         | ent     | al Test Pit Log                             |                          | TP21-32   |
|-----------------------|----------|----------------|-------------|--------------------|----------------------|-------------|---------|---------------------------------------------|--------------------------|-----------|
|                       | ject:    |                | Phase II En | vironmental Site A | Assessment - Lot 1 W | /ambach Far | m Prope | erty, Irondequoit, New                      | File No:                 | 14695     |
| Clie                  |          | Providene Ho   |             |                    |                      |             |         | <u> </u>                                    | Sheet No:                | 1 of 1    |
| Cor                   | ntractor | Rusty Miller E | xcavating   |                    |                      |             |         |                                             | Location:                | See Plan  |
|                       |          | <u>-</u>       |             | T                  |                      |             |         |                                             |                          |           |
| Iter                  | m        | Casing         | , [         | Drive Sampler      | Core Barr            | rel         |         | Excavation Equipment and Procedures         | Elevation:               |           |
| Type:                 |          | NA             |             | NA                 | NA                   |             | 1       | ator: CAT 250                               | Datum:                   |           |
| Inside Diamet         |          | NA<br>         |             | NA<br>             | NA                   |             | Reach   |                                             | Start:                   | 5/7/2021  |
| Hemmer Wei            |          | NA<br>NA       |             | NA<br>NA           | NA                   |             | Bucket  |                                             | Finish                   | 5/7/2021  |
| Hammer Fall<br>Other: | (IIN):   | NA<br>NA       |             | NA<br>NA           | NA<br>NA             |             | Other:  |                                             | Operator:                | R. Miller |
| Curior:               |          |                |             |                    |                      |             |         |                                             | Geologist                | S. DeMeo  |
| Depth                 | Samp     | <b>I</b>       | pler Blows  | Head Space         | Sample Number        | Stra        |         | Vigual Classific                            | ation and Remarks        |           |
| (FT)                  | Depth (  | (FI) Pe        | r 6 Inches  | (PPM)              | and Recovery         | Change      | e (F1)  | Visual Classific                            | ation and Nemarks        |           |
| 0                     |          |                |             | ND                 |                      |             |         | Light brown GRAVEL, with bricks, wood, me   | etal and concrete, damp. |           |
|                       |          |                |             |                    |                      |             |         | F                                           | ILL -                    |           |
|                       |          |                |             |                    |                      | 2.0         | )       | ·                                           |                          |           |
| 2                     |          |                |             |                    |                      |             |         | Dark gray metal wire, concrete rubble, rock | ooulders, and wood, dar  | np.       |
| 2                     |          |                |             |                    |                      |             |         |                                             | - FILL -                 |           |
|                       |          |                |             |                    |                      |             |         |                                             |                          |           |
|                       |          |                |             | ND                 |                      |             |         |                                             |                          |           |
| 4                     |          |                |             |                    |                      |             |         |                                             |                          |           |
|                       |          |                |             |                    |                      |             |         |                                             |                          |           |
|                       |          |                |             |                    |                      |             |         |                                             |                          |           |
| 6                     |          |                |             |                    |                      |             |         |                                             |                          |           |
|                       |          |                |             |                    |                      |             |         |                                             |                          |           |
|                       |          |                |             |                    |                      |             |         |                                             |                          |           |
|                       |          |                |             |                    |                      |             |         | Same.                                       | - FILL-                  |           |
| 8                     |          |                |             |                    |                      |             |         |                                             |                          |           |
|                       |          |                |             | ND                 |                      |             |         |                                             |                          |           |
|                       |          |                |             |                    |                      |             |         |                                             |                          |           |
|                       |          |                |             |                    |                      |             |         |                                             |                          |           |
| 10                    |          |                |             |                    |                      |             |         |                                             |                          |           |
|                       |          |                |             | ND                 |                      |             |         |                                             |                          |           |
|                       |          |                |             |                    |                      |             |         |                                             |                          |           |
| 12                    |          |                |             |                    |                      | 12          | 2       | Same F                                      |                          |           |
| 12                    |          |                |             |                    |                      |             |         |                                             |                          |           |
|                       |          |                |             |                    |                      |             |         |                                             |                          |           |
|                       |          |                |             |                    |                      |             |         | Gray SILT, trace fine sand, wet - LACUS     | STRINE -                 |           |
| 14                    |          |                |             |                    |                      |             |         |                                             |                          |           |
| 17                    |          |                |             |                    |                      |             |         |                                             |                          |           |
|                       |          |                |             |                    |                      |             |         |                                             |                          |           |
|                       |          |                |             |                    |                      |             |         | Bottom of Test Pit at 14.0 ft.              |                          |           |
| 16                    |          |                |             |                    |                      |             |         | 25 5. 100t 1 it at 17.0 it.                 |                          |           |
|                       |          |                |             |                    |                      |             |         |                                             |                          |           |
|                       |          |                |             |                    |                      |             |         | Backfilled Test Pit to ground surface       |                          |           |
|                       |          |                |             |                    |                      |             |         | Dashing 1996 Fit to ground sunace.          |                          |           |
| 18                    |          |                |             |                    |                      |             |         |                                             |                          |           |
|                       |          |                |             |                    |                      |             |         |                                             |                          |           |
|                       |          |                |             |                    |                      |             |         |                                             |                          |           |
| 20                    |          |                |             |                    |                      |             |         |                                             |                          |           |
| 20                    |          |                |             |                    |                      |             |         |                                             |                          |           |
|                       |          |                |             |                    |                      |             |         |                                             |                          |           |
|                       |          |                |             |                    |                      |             |         |                                             |                          |           |
|                       |          |                |             |                    |                      |             |         |                                             |                          |           |
|                       | 1        | <u> </u>       | Groundw     | rater Data         |                      | 1           |         | Summary                                     |                          |           |
|                       |          |                |             |                    | Depth                |             | Overbu  | urden (Lin FT) 14.0                         |                          |           |
| Date                  | Time     | Elapsed Time   |             | of Bottom Of       |                      | /ater       | 1       | Cored (Lin FT) NA                           | $\square$                |           |
|                       |          | (HR)           | Casing      |                    | -                    | -           | -       | ` '                                         |                          | _1        |
| 5/7/2021              | NA       | NA             | NA          | 14 ft.             | Yes                  | at 9 ft.    |         |                                             | BERGMA                   | NN        |
|                       |          |                |             |                    |                      |             |         |                                             |                          |           |
|                       |          |                |             |                    |                      |             |         |                                             |                          |           |
|                       |          |                |             |                    |                      |             |         |                                             |                          |           |

| В             | ERGI      | 3                                                | Ž               |                | Enviro                | onme       | ent      | al Test Pit Log                                                                       |                    | TP21-34               |
|---------------|-----------|--------------------------------------------------|-----------------|----------------|-----------------------|------------|----------|---------------------------------------------------------------------------------------|--------------------|-----------------------|
| Proj<br>Clie  | ent:      | Provider                                         | ne Housing      |                | Assessment - Lot 1 Wa | mbach Farn | n Prope  | rty, Irondequoit, New                                                                 | File No: Sheet No: | 14695<br>1 of 1       |
| Con           | tractor   | Rusty IVI                                        | iller Excavatin | 9              |                       |            | T        |                                                                                       | Location:          | See Plan              |
| Iten          | n         | c                                                | Casing          | Drive Sampler  | Core Barre            | I          |          | Excavation Equipment and Procedures                                                   | Elevation:         |                       |
| Туре:         |           |                                                  | NA              | NA             | NA                    |            | Excava   | tor: CAT 250                                                                          | Datum:             |                       |
| Inside Diamet | er (IN):  |                                                  | NA              | NA             | NA                    |            | Reach:   | 16 feet                                                                               | Start:             | 5/7/2021              |
| Hemmer Weig   | ght (LB): |                                                  | NA              | NA             | NA                    |            | Bucket   | 3.5 cubic yards                                                                       | Finish             | 5/7/2021              |
| Hammer Fall ( | (IN):     |                                                  | NA              | NA             | NA                    |            | Other:   |                                                                                       |                    |                       |
| Other:        |           |                                                  | NA              | NA             | NA                    |            |          |                                                                                       | Operator:          | R. Miller<br>S. DeMeo |
| Depth         | Samp      |                                                  | Sampler Blo     |                | Sample Number         | Strat      |          | VF 1 O                                                                                | Geologist          | S. Deivieo            |
| (FT)          | Depth (   | <u>(F1)                                     </u> | Per 6 Inche     |                | and Recovery          | Change     | (FT)     |                                                                                       | cation and Remarks |                       |
| 0             |           |                                                  |                 | ND             |                       |            |          | Light brown GRAVEL, some coarse to fine : - I Brown GRAVEL, some coarse to fine sand, | FILL -             | ·                     |
| 2             |           |                                                  |                 |                |                       |            |          |                                                                                       | - FILL -           |                       |
| 4             |           |                                                  |                 | ND             |                       |            |          |                                                                                       |                    |                       |
| 6             |           |                                                  |                 |                |                       |            |          |                                                                                       |                    |                       |
| 8             |           |                                                  |                 | ND             |                       |            |          | Same.                                                                                 | - FILL-            |                       |
| 10            |           |                                                  |                 | ND             |                       | 10.0       |          | Gray to dark gray concrete rubble.                                                    |                    |                       |
| 12            |           |                                                  |                 |                |                       |            |          | Same FIL                                                                              |                    |                       |
| 14            |           |                                                  |                 | ND             |                       |            |          | Wood, concrete, metal and bricks Fl                                                   | LL -               |                       |
| 16            |           |                                                  |                 | ND             |                       |            |          |                                                                                       |                    |                       |
| 18            |           |                                                  |                 |                |                       |            |          | Same                                                                                  | FILL -             |                       |
| 20            |           |                                                  |                 |                |                       |            |          | Bottom of Test Pit at 20.0 ft.  Backfilled test pit to ground surface.                |                    |                       |
|               | <u> </u>  | L                                                | Grou            | ndwater Data   |                       | <u> </u>   |          | Summary                                                                               |                    |                       |
|               |           |                                                  | Giodi           |                | Depth                 |            | Overbu   | rden (Lin FT) 20.0                                                                    |                    |                       |
| Date          | Time      | Elapsed<br>(HR                                   | R) Cas          | m Of Bottom Of | Hole Wa               | ater       |          | ored (Lin FT) NA                                                                      | BERGMA             |                       |
| 5/7/2021      | NA        | NA<br>NA                                         | A N             | A 20 ft        | .   Yes a             | t 18 ft.   | <u> </u> |                                                                                       | BERGMA             | TIMIN                 |

| В                       | ERGI            | 3              | 72                            |                      | E                | nviro             | onme             | TP21-35          |                                            |                            |                       |
|-------------------------|-----------------|----------------|-------------------------------|----------------------|------------------|-------------------|------------------|------------------|--------------------------------------------|----------------------------|-----------------------|
| Proje                   | •               |                |                               | I Environmental Site | Assessmer        | nt - Lot 1 Wa     | mbach Farn       | n Prope          | rty, Irondequoit, New                      | File No:                   | 14695                 |
| Clie                    | •               |                | ene Housing  Miller Excavatin | a                    |                  |                   |                  |                  |                                            | Sheet No:<br>Location:     | 1 of 1<br>See Plan    |
| 0011                    | liactoi         | rtusty iv      | miler Excavation              | 9                    | <u> </u>         |                   |                  |                  |                                            | Location.                  | See Fian              |
| ltem                    | 1               | (              | Casing                        | Drive Sampler        |                  | Core Barre        |                  | _                | Excavation Equipment and Procedures        | Elevation:                 |                       |
| Type:<br>Inside Diamete | er (IN):        |                | NA<br>NA                      | NA<br>NA             |                  | NA<br>NA          |                  | Excava<br>Reach: | tor: CAT 250<br>16 feet                    | Datum:<br>Start:           | 5/7/2021              |
| Hemmer Weig             |                 |                | NA<br>NA                      | NA                   |                  | NA                |                  | Bucket           |                                            | Finish                     | 5/7/2021              |
| Hammer Fall (           | IN):            |                | NA                            | NA                   |                  | NA                |                  | Other:           |                                            |                            |                       |
| Other:                  |                 |                | NA                            | NA                   |                  | NA                |                  |                  |                                            | Operator:<br>Geologist     | R. Miller<br>S. DeMeo |
| Depth<br>(FT)           | Samp<br>Depth ( |                | Sampler Blo<br>Per 6 Inche    |                      | 1                | Number<br>ecovery | Strata<br>Change |                  | Visual Classific                           | cation and Remarks         | S. Delvieo            |
| 0                       |                 |                |                               | ND                   |                  |                   |                  |                  | Light brown GRAVEL, some coarse to fine    | sand, trace silt, with woo | d and concrete, damp. |
| 2                       |                 |                |                               |                      |                  |                   | 2.0              |                  | Brown GRAVEL, some coarse to fine sand,    |                            | oulders, and metal.   |
| 2                       |                 |                |                               |                      |                  |                   |                  |                  |                                            | - FILL -                   |                       |
| 4                       |                 |                |                               | ND                   |                  |                   |                  |                  |                                            |                            |                       |
| 6                       |                 |                |                               |                      |                  |                   |                  |                  |                                            |                            |                       |
| 8                       |                 |                |                               | ND                   |                  |                   |                  |                  | Same.                                      | - FILL-                    |                       |
| 10                      |                 |                |                               | ND                   |                  |                   |                  |                  |                                            |                            |                       |
| 12                      |                 |                |                               |                      |                  |                   |                  |                  | Same FIL                                   |                            |                       |
| 14                      |                 |                |                               | ND                   |                  |                   |                  |                  | Construction debris, wood, concrete, metal | and bricks FILL -          |                       |
| 16                      |                 |                |                               | ND                   |                  |                   | 16               |                  | Red-brown GRAVEL, some silt, moist to      | o wet GLACIAL TIL          | L -                   |
| 18                      |                 |                |                               |                      |                  |                   |                  |                  | Bottom to Test Pit at 17.0 ft.             |                            |                       |
| 20                      |                 |                |                               |                      |                  |                   |                  |                  | Backfilled test pit to ground surface.     |                            |                       |
|                         |                 |                |                               |                      |                  |                   |                  |                  |                                            |                            |                       |
|                         |                 |                | Grou                          | ndwater Data         |                  |                   |                  |                  | Summary                                    |                            |                       |
| Date                    | Time            | Elapsed<br>(Hi | d Time Bottor<br>R) Cas       | m Of Bottom O        | Depth<br>of Hole | Wa                |                  |                  | ored (Lin FT) 17.0 NA                      |                            |                       |
| 5/7/2021                | NA              | N.             | A N                           | A 17 ft              | t.               | Yes at            | 16 ft.           |                  |                                            | BERGMA                     | . 77                  |

| В              | ERGN     | 3               |                |                  | E          | nviro        | onme        | ent      | al Test Pit Log                                  |                          | TP 21-36              |
|----------------|----------|-----------------|----------------|------------------|------------|--------------|-------------|----------|--------------------------------------------------|--------------------------|-----------------------|
| Proj           | •        | Supplimental P  | hase II Enviro | onmental Site As | sessment - | - Lot 1 Waml | bach Farm F | Property | , Irondequoit, New Yo                            | File No:                 | 14695                 |
| Clie           | •        | Providene Hou   | sing           |                  |            |              |             |          |                                                  | Sheet No:                | 1 of 1                |
| Con            | tractor  | Rusty Miller Ex | cavating       |                  |            |              |             |          |                                                  | Location:                | See Plan              |
| ltem           | ١        | Casing          | Dr             | rive Sampler     |            | Core Barrel  | I           |          | Excavation Equipment and Procedures              | Elevation:               |                       |
| Туре:          |          | NA              |                | NA               |            | NA           |             | Excava   | ator: CAT 250                                    | Datum:                   |                       |
| Inside Diamete | er (IN): | NA              |                | NA               |            | NA           |             | Reach:   | 16 feet                                          | Start:                   | 5/7/2021              |
| Hemmer Weig    | , ,      | NA              |                | NA               |            | NA           |             | Bucket   | : 3.5 cubic yards                                | Finish                   | 5/7/2021              |
| Hammer Fall (I | IN):     | NA<br>NA        |                | NA<br>NA         |            | NA<br>NA     |             | Other:   |                                                  | Operator                 | R. Miller             |
| Other:         |          | INA             |                | INA              |            | INA          |             |          |                                                  | Operator: Geologist      | S. DeMeo              |
| Depth          | Samp     |                 | pler Blows     | Head Space       | •          | Number       | Strata      |          | Vieual Classifies                                | tion and Remarks         |                       |
| (FT)           | Depth (  | ri) Per         | 6 Inches       | (PPM)            | anu K      | ecovery      | Change      |          |                                                  |                          |                       |
| 0              |          |                 |                | ND               |            |              | 1.5         |          | Red brown GRAVEL, some coarse to fine sand       | d, trace silt, damp.     | - <u>FILL -</u>       |
|                |          |                 |                |                  |            |              |             |          | Dark gray to black concrete and rock fragment    | s, with cinders, ash, wo | od, steel wire, damp. |
|                |          |                 |                |                  |            |              |             |          | Coarse to fine SAND, with wood and pavemen       | t fragments with rock fr | agments, damp.        |
| 2              |          |                 |                |                  |            |              |             |          |                                                  |                          | agmonto, damp.        |
|                |          |                 |                |                  |            |              |             |          | - FIL                                            | .L -                     |                       |
|                |          |                 |                | ND               |            |              |             |          |                                                  |                          |                       |
| 4              |          |                 |                |                  |            |              |             |          | Same FIL                                         | L -                      |                       |
|                |          |                 |                |                  |            |              |             |          |                                                  |                          |                       |
|                |          |                 |                | ND               |            |              | 4.9         |          |                                                  |                          |                       |
| 6              |          |                 |                |                  |            |              |             |          | Brown to gray SILT, damp.                        |                          |                       |
|                |          |                 |                |                  |            |              |             |          | - LACU                                           | STRINE -                 |                       |
|                |          |                 |                | ND               |            |              |             |          |                                                  |                          |                       |
| 8              |          |                 |                | ND               |            |              |             |          |                                                  |                          |                       |
|                |          |                 |                |                  |            |              |             |          |                                                  |                          |                       |
|                |          |                 |                |                  |            |              | 8.7         |          |                                                  |                          |                       |
| 10             |          |                 |                |                  |            |              |             |          | Light brown madium to fine CAND little cities    | int                      |                       |
| 10             |          |                 |                |                  |            |              |             |          | Light brown medium to fine SAND, little sitl, mo | nst.                     |                       |
|                |          |                 |                |                  |            |              |             |          | - LACUS                                          | STRINE -                 |                       |
|                |          |                 |                |                  |            |              |             |          |                                                  |                          |                       |
| 12             |          |                 |                |                  |            |              |             |          | Bottom of test pit at 10.6 ft.                   |                          |                       |
|                |          |                 |                |                  |            |              |             |          |                                                  |                          |                       |
|                |          |                 |                |                  |            |              |             |          |                                                  |                          |                       |
| 14             |          |                 |                |                  |            |              |             |          | Backfilled test pit to ground surface.           |                          |                       |
|                |          |                 |                |                  |            |              |             |          |                                                  |                          |                       |
|                |          |                 |                |                  |            |              |             |          |                                                  |                          |                       |
| 16             |          |                 |                |                  |            |              |             |          |                                                  |                          |                       |
|                |          |                 |                |                  |            |              |             |          |                                                  |                          |                       |
|                |          |                 |                |                  |            |              |             |          |                                                  |                          |                       |
| 40             |          |                 |                |                  |            |              |             |          |                                                  |                          |                       |
| 18             |          |                 |                |                  |            |              |             |          |                                                  |                          |                       |
|                |          |                 |                |                  |            |              |             |          |                                                  |                          |                       |
|                |          |                 |                |                  |            |              |             |          |                                                  |                          |                       |
| 20             |          |                 |                |                  |            |              |             |          |                                                  |                          |                       |
|                |          |                 |                |                  |            |              |             |          |                                                  |                          |                       |
|                |          |                 |                |                  |            |              |             |          |                                                  |                          |                       |
|                |          |                 |                |                  |            |              |             |          |                                                  |                          |                       |
|                |          |                 | Groundwat      |                  | D          |              |             | <u> </u> | Summary                                          |                          | _                     |
| Doto           | T:       | Elapsed Time    | Bottom Of      |                  | Depth      | 147          |             |          | orden (Lin FT) 10.6                              |                          |                       |
| Date           | Time     | (HR)            | Casing         | Bottom Of        | ⊓ule       | Wa           | alel        | KUCK C   | fored (Lin FT) NA                                |                          | <b></b> [             |
| 5/7/2021       | NA       | NA              | NA             | 10.6 f           | +          | N            | lo          |          |                                                  | BERGMA                   | NN                    |

| В                        | ERGI    | 3                    |                        |                     | E                                            | nviro             | onme        | ent      | al Test Pit Lo                         | 9                          | TP 21-37  |
|--------------------------|---------|----------------------|------------------------|---------------------|----------------------------------------------|-------------------|-------------|----------|----------------------------------------|----------------------------|-----------|
| Proje                    | ect:    | Supplimental P       | hase II Envir          | ronmental Site As   | sessment -                                   | - Lot 1 Waml      | oach Farm F | Property | , Irondequoit, New Yc                  | File No:                   | 14695     |
| Clier                    | nt:     | Providene Hou        | sing                   |                     |                                              |                   |             |          |                                        | Sheet No:                  | 1 of 1    |
| Con                      | tractor | Rusty Miller Exc     | cavating               |                     |                                              |                   |             |          |                                        | Location:                  | See Plan  |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
| Item                     | 1       | Casing               | D                      | Prive Sampler       |                                              | Core Barrel       |             |          | Excavation Equipment and Procedur      |                            |           |
| Type:                    | <i></i> | NA                   |                        | NA                  |                                              | NA                |             |          | tor: CAT 250                           | Datum:                     |           |
| Inside Diamete           |         | NA                   |                        | NA<br>NA            |                                              | NA                |             | Reach:   |                                        | Start:                     | 5/7/2021  |
| Hemmer Weig              |         | NA                   |                        | NA<br>NA            |                                              | NA                |             | Bucket   | 3.5 cubic yards                        | Finish                     | 5/7/2021  |
| Hammer Fall (I<br>Other: | IIN):   | NA<br>NA             |                        | NA<br>NA            |                                              | NA<br>NA          |             | Other:   |                                        | Operator:                  | R. Miller |
| Other.                   |         | IVA                  |                        | IVA                 |                                              | IVA               |             |          |                                        | Geologist                  | S. DeMeo  |
| Depth<br>(ET)            | Samp    |                      | pler Blows<br>6 Inches | Head Space<br>(PPM) | -                                            | Number<br>ecovery | Strata      |          | Visual C                               | lassification and Remarks  |           |
| (FT)                     | Depth ( | ri) rei              | o inches               |                     | and K                                        | ecovery           | Change      |          |                                        |                            |           |
| 0                        |         |                      |                        | ND                  |                                              |                   | 1.5         |          | Brown GRAVEL, some coarse to fine      | sand, trace silt, damp FIL | <u>L-</u> |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
| 2                        |         |                      |                        |                     |                                              |                   |             |          | Wood and pavement fragments with       | rock fragments, damp.      |           |
| 2                        |         |                      |                        |                     |                                              |                   | 2.9         |          |                                        | - FILL -                   |           |
|                          |         |                      |                        | ND                  |                                              |                   |             |          | Cray Oll Turith root file are down.    |                            |           |
| 4                        |         |                      |                        | ND                  |                                              |                   |             |          | Gray SILT with root fibers, damp B     | uried TOPSOIL -            |           |
| 4                        |         |                      |                        |                     |                                              |                   |             |          | Light brown coarse to fine SAND, trac  | ce silt, damp LACUSTRINE - |           |
|                          |         |                      |                        | ND                  |                                              |                   |             |          |                                        |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
| 6                        |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        | - LACUSTRINE -             |           |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
| 8                        |         |                      |                        | ND                  |                                              |                   |             |          |                                        |                            |           |
| O                        |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             |          | <u> </u>                               |                            |           |
| 10                       |         |                      |                        |                     |                                              |                   |             |          | Bottom of test pit at 8.6 ft.          |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
| 40                       |         |                      |                        |                     |                                              |                   |             |          | Backfilled test pit to ground surface. |                            |           |
| 12                       |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
| 14                       |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
| 14                       |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
| 16                       |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
| 18                       |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
| 20                       |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
| 20                       |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             | T        |                                        |                            |           |
|                          |         |                      | Groundwa               |                     |                                              |                   |             |          | Summary                                |                            | <b>-</b>  |
|                          |         | Florood Tire-        | Bottom Of              |                     | Depth                                        |                   |             | 1        | rden (Lin FT) 8.6                      |                            |           |
| Date                     | Time    | Elapsed Time<br>(HR) | Casing                 | Bottom Of           | Hole                                         | Wa                | ter         | Rock C   | ored (Lin FT) NA                       |                            | ·         |
| 5/7/2021                 | NA      | NA                   | NA                     | 8.6 ft              | <u>.                                    </u> | N                 | 0_          |          |                                        | BERGMA                     | 722       |

| В                        | ERGI    | 3                    |                        |                     | E                                            | nviro             | onme        | ent      | al Test Pit Lo                         | 9                          | TP 21-37  |
|--------------------------|---------|----------------------|------------------------|---------------------|----------------------------------------------|-------------------|-------------|----------|----------------------------------------|----------------------------|-----------|
| Proje                    | ect:    | Supplimental P       | hase II Envir          | ronmental Site As   | sessment -                                   | - Lot 1 Waml      | oach Farm F | Property | , Irondequoit, New Yc                  | File No:                   | 14695     |
| Clier                    | nt:     | Providene Hou        | sing                   |                     |                                              |                   |             |          |                                        | Sheet No:                  | 1 of 1    |
| Con                      | tractor | Rusty Miller Exc     | cavating               |                     |                                              |                   |             |          |                                        | Location:                  | See Plan  |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
| Item                     | 1       | Casing               | D                      | Prive Sampler       |                                              | Core Barrel       |             |          | Excavation Equipment and Procedur      |                            |           |
| Type:                    | <i></i> | NA                   |                        | NA                  |                                              | NA                |             |          | tor: CAT 250                           | Datum:                     |           |
| Inside Diamete           |         | NA                   |                        | NA<br>NA            |                                              | NA                |             | Reach:   |                                        | Start:                     | 5/7/2021  |
| Hemmer Weig              |         | NA                   |                        | NA<br>NA            |                                              | NA                |             | Bucket   | 3.5 cubic yards                        | Finish                     | 5/7/2021  |
| Hammer Fall (I<br>Other: | IIN):   | NA<br>NA             |                        | NA<br>NA            |                                              | NA<br>NA          |             | Other:   |                                        | Operator:                  | R. Miller |
| Other.                   |         | IVA                  |                        | IVA                 |                                              | IVA               |             |          |                                        | Geologist                  | S. DeMeo  |
| Depth<br>(ET)            | Samp    |                      | pler Blows<br>6 Inches | Head Space<br>(PPM) | -                                            | Number<br>ecovery | Strata      |          | Visual C                               | lassification and Remarks  |           |
| (FT)                     | Depth ( | ri) rei              | o inches               |                     | and K                                        | ecovery           | Change      |          |                                        |                            |           |
| 0                        |         |                      |                        | ND                  |                                              |                   | 1.5         |          | Brown GRAVEL, some coarse to fine      | sand, trace silt, damp FIL | <u>L-</u> |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
| 2                        |         |                      |                        |                     |                                              |                   |             |          | Wood and pavement fragments with       | rock fragments, damp.      |           |
| 2                        |         |                      |                        |                     |                                              |                   | 2.9         |          |                                        | - FILL -                   |           |
|                          |         |                      |                        | ND                  |                                              |                   |             |          | Cray Oll Turith root file are down.    |                            |           |
| 4                        |         |                      |                        | ND                  |                                              |                   |             |          | Gray SILT with root fibers, damp B     | uried TOPSOIL -            |           |
| 4                        |         |                      |                        |                     |                                              |                   |             |          | Light brown coarse to fine SAND, trac  | ce silt, damp LACUSTRINE - |           |
|                          |         |                      |                        | ND                  |                                              |                   |             |          |                                        |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
| 6                        |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        | - LACUSTRINE -             |           |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
| 8                        |         |                      |                        | ND                  |                                              |                   |             |          |                                        |                            |           |
| O                        |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             |          | <u> </u>                               |                            |           |
| 10                       |         |                      |                        |                     |                                              |                   |             |          | Bottom of test pit at 8.6 ft.          |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
| 40                       |         |                      |                        |                     |                                              |                   |             |          | Backfilled test pit to ground surface. |                            |           |
| 12                       |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
| 14                       |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
| 14                       |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
| 16                       |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
| 18                       |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
| 20                       |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
| 20                       |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             |          |                                        |                            |           |
|                          |         |                      |                        |                     |                                              |                   |             | T        |                                        |                            |           |
|                          |         |                      | Groundwa               |                     |                                              |                   |             |          | Summary                                |                            | <b>-</b>  |
|                          |         | Florood Tire-        | Bottom Of              |                     | Depth                                        |                   |             | 1        | rden (Lin FT) 8.6                      |                            |           |
| Date                     | Time    | Elapsed Time<br>(HR) | Casing                 | Bottom Of           | Hole                                         | Wa                | ter         | Rock C   | ored (Lin FT) NA                       |                            | ·         |
| 5/7/2021                 | NA      | NA                   | NA                     | 8.6 ft              | <u>.                                    </u> | N                 | 0_          |          |                                        | BERGMA                     | 722       |

| В                                 | ERGI                  | 3            | 7              |                                       | TP21-38              |          |                                     |                                           |                              |                   |  |  |
|-----------------------------------|-----------------------|--------------|----------------|---------------------------------------|----------------------|----------|-------------------------------------|-------------------------------------------|------------------------------|-------------------|--|--|
| Proje                             |                       | Suppleme     | ental Phase II | Environmental Site A                  | Assessment - Lot 1 W | File No: | 14695                               |                                           |                              |                   |  |  |
| Client:                           |                       | Providene    | e Housing      |                                       |                      |          |                                     |                                           | Sheet No:                    | 1 of 1            |  |  |
| Contractor Rusty Miller Excavatin |                       |              |                | g                                     |                      |          |                                     |                                           | Location:                    | See Plan          |  |  |
| Item Casing                       |                       | asing        | Drive Sampler  | Core Barr                             | ام                   |          | Excavation Equipment and Procedures | Elevation:                                |                              |                   |  |  |
| Туре:                             |                       | <b>†</b>     | NA             | NA NA                                 | NA                   | Ci       | Excava                              | ator: CAT 250                             | Datum:                       |                   |  |  |
|                                   | Inside Diameter (IN): |              | NA             | NA                                    | NA                   |          | Reach: 16 feet                      |                                           | Start:                       | 5/7/2021          |  |  |
| Hemmer Weig                       |                       |              | NA             | NA                                    | NA                   |          | Bucket                              | t: 3.5 cubic yards                        | Finish                       | 5/7/2021          |  |  |
| Hammer Fall (IN):                 |                       |              | NA             | NA                                    | NA                   |          | Other:                              |                                           |                              |                   |  |  |
| Other:                            |                       |              | NA             | NA                                    | NA                   |          |                                     |                                           | Operator:                    | R. Miller         |  |  |
| Depth                             | Depth Samp            |              | Sampler Blows  | ws   Head Space                       | Sample Number        | Strat    | ta .                                | T                                         | Geologist                    | S. DeMeo          |  |  |
| (FT)                              | Depth (               |              |                | · · · · · · · · · · · · · · · · · · · | and Recovery         | Change   |                                     | Visual Classification and Remarks         |                              |                   |  |  |
| 0                                 |                       |              |                | ND                                    |                      |          |                                     | Light brown GRAVEL, some coarse to fi     | ne sand, trace silt, damp.   |                   |  |  |
|                                   |                       |              |                |                                       |                      | 2.0      | )                                   |                                           |                              |                   |  |  |
| 2                                 |                       |              |                |                                       |                      |          |                                     | Gray road construction debris, brick,woo  | d, ash, cinders, rock boulde | rs, and pavement. |  |  |
|                                   |                       |              |                |                                       |                      |          |                                     |                                           | - FILL -                     |                   |  |  |
|                                   |                       |              |                |                                       |                      |          |                                     |                                           |                              |                   |  |  |
|                                   |                       |              |                | ND                                    |                      |          |                                     |                                           |                              |                   |  |  |
| 4                                 |                       |              |                |                                       |                      |          |                                     |                                           |                              |                   |  |  |
|                                   |                       |              |                |                                       |                      |          |                                     |                                           |                              |                   |  |  |
|                                   |                       |              |                |                                       |                      |          |                                     |                                           |                              |                   |  |  |
| 6                                 |                       |              |                |                                       |                      |          |                                     |                                           |                              |                   |  |  |
|                                   |                       |              |                |                                       |                      |          |                                     |                                           |                              |                   |  |  |
|                                   |                       |              |                |                                       |                      |          |                                     |                                           |                              |                   |  |  |
| 0                                 |                       |              |                |                                       |                      |          |                                     | Same.                                     | - FILL-                      |                   |  |  |
| 8                                 |                       |              |                | ND                                    |                      |          |                                     |                                           |                              |                   |  |  |
|                                   |                       |              |                | ND                                    |                      |          |                                     |                                           |                              |                   |  |  |
|                                   |                       |              |                |                                       |                      |          |                                     |                                           |                              |                   |  |  |
| 10                                |                       |              |                |                                       |                      |          |                                     |                                           |                              |                   |  |  |
| 10                                |                       |              |                |                                       |                      |          |                                     |                                           |                              |                   |  |  |
|                                   |                       |              |                | ND                                    |                      |          |                                     |                                           |                              |                   |  |  |
|                                   |                       |              |                |                                       |                      |          |                                     | Same FIL                                  |                              |                   |  |  |
| 12                                |                       |              |                |                                       |                      |          |                                     | ound.                                     |                              |                   |  |  |
|                                   |                       |              |                |                                       |                      |          |                                     |                                           |                              |                   |  |  |
|                                   |                       |              |                |                                       |                      |          |                                     |                                           |                              |                   |  |  |
|                                   |                       |              |                |                                       |                      |          |                                     |                                           |                              |                   |  |  |
| 14                                |                       |              |                | ND                                    |                      |          |                                     | Construction debris, wood, concrete, me   | etal and bricks.             |                   |  |  |
|                                   |                       |              |                |                                       |                      |          |                                     |                                           |                              |                   |  |  |
|                                   |                       |              |                |                                       |                      |          |                                     |                                           |                              |                   |  |  |
| 16                                |                       |              |                |                                       |                      |          |                                     |                                           |                              |                   |  |  |
| 10                                |                       |              |                | ND                                    |                      |          |                                     |                                           |                              |                   |  |  |
|                                   |                       |              |                |                                       |                      |          |                                     |                                           |                              |                   |  |  |
|                                   |                       |              |                |                                       |                      |          |                                     |                                           |                              |                   |  |  |
| 18                                |                       |              |                |                                       |                      |          |                                     | Possible native soils at approximaterly 1 | 8 ft.                        |                   |  |  |
|                                   |                       |              |                |                                       |                      | 1        |                                     |                                           |                              |                   |  |  |
|                                   |                       |              |                |                                       |                      |          |                                     |                                           |                              |                   |  |  |
|                                   |                       |              |                |                                       |                      |          |                                     | Bottom of test Pit at 18.0 ft.            |                              |                   |  |  |
| 20                                |                       |              |                |                                       |                      |          |                                     |                                           |                              |                   |  |  |
|                                   |                       |              |                |                                       |                      |          |                                     | Backfilled test pit to ground surface.    |                              |                   |  |  |
|                                   |                       |              |                |                                       |                      |          |                                     |                                           |                              |                   |  |  |
|                                   |                       |              |                |                                       |                      |          |                                     |                                           |                              |                   |  |  |
|                                   | <u> </u>              |              | Grou           | ndwater Data                          |                      | 1        | Ī                                   | Summary                                   |                              |                   |  |  |
| Glou                              |                       |              |                |                                       | Depth                |          | Overbu                              | Overburden (Lin FT) 18.0                  |                              |                   |  |  |
| Date                              | Time                  | Elapsed (HR) |                | m Of Bottom Of                        | 1                    | /ater    | 1                                   | Cored (Lin FT) NA                         | $-$ I $\mapsto$              |                   |  |  |
|                                   | Tille                 |              | Casi           | ing                                   | <del>-  </del>       |          | -                                   | ` '                                       |                              | _1                |  |  |
| 5/7/2021                          | NA                    | NA           | N/             | A 18 ft.                              | Yes                  | at 8 ft. |                                     |                                           | BERGMA                       | NN                |  |  |
|                                   |                       |              |                |                                       |                      |          |                                     |                                           |                              |                   |  |  |

ı

| В                              | ERGI     | 3                    |                                 |                  | E         | nviro        |             | TP 21-39       |                                                  |                    |           |  |
|--------------------------------|----------|----------------------|---------------------------------|------------------|-----------|--------------|-------------|----------------|--------------------------------------------------|--------------------|-----------|--|
| Project: Supplimental Phase II |          |                      |                                 | onmental Site As | ssessment | - Lot 1 Waml | bach Farm F | roperty,       | , Irondequoit, New Yo                            | File No:           | 14695     |  |
| Client:                        |          | Providene Hou        | ısing                           |                  |           |              |             |                |                                                  | Sheet No:          | 1 of 1    |  |
| Con                            | tractor  | Rusty Miller Ex      | cavating                        |                  |           |              |             |                |                                                  | Location:          | See Plan  |  |
| No. 10                         |          |                      |                                 | rive Sampler     |           | Core Barrel  | 1           |                | Evacuation Equipment and Procedures              | Elevation:         |           |  |
| Item<br>Type:                  | 1        | Casing D<br>NA       |                                 | NA NA            |           | NA           |             | Excava         | Excavation Equipment and Procedures tor: CAT 250 | Datum:             |           |  |
| Inside Diamete                 | er (IN): | NA NA                |                                 | NA               |           |              |             | Reach: 16 feet |                                                  | Start:             | 5/7/2021  |  |
| Hemmer Weig                    |          | NA                   |                                 |                  | NA        |              |             |                | 3.5 cubic yards                                  | Finish             | 5/7/2021  |  |
| Hammer Fall (                  | IN):     | NA                   |                                 | NA               |           | NA           |             | Other:         |                                                  |                    |           |  |
| Other:                         |          | NA                   |                                 | NA               |           | NA           |             |                |                                                  | Operator:          | R. Miller |  |
| Depth                          | Samp     | le I Sam             | pler Blows                      | Head Space       | Sample    | Number       | Strata      | a              |                                                  | Geologist          | S. DeMeo  |  |
| (FT)                           | Depth (  |                      | 6 Inches                        | (PPM)            | _         | ecovery      | Change      |                | Visual Classific                                 | cation and Remarks |           |  |
| 0                              |          |                      |                                 | ND               |           |              | 2.0         |                | Dark brown SILT, trace coarse to fine sand, p    |                    | D.        |  |
| 2                              |          |                      |                                 |                  |           |              |             |                |                                                  | FILL               |           |  |
|                                |          |                      |                                 |                  |           |              |             |                |                                                  |                    |           |  |
|                                |          |                      |                                 | ND               |           |              |             |                | Light brown medium to fine sand, little silt, da | mp.                |           |  |
| 4                              |          |                      |                                 |                  |           |              |             |                | - LACU                                           | STRINE -           |           |  |
|                                |          |                      |                                 | 0.1              |           |              |             |                |                                                  |                    |           |  |
| 6                              |          |                      |                                 |                  |           |              |             |                |                                                  |                    |           |  |
|                                |          |                      |                                 |                  |           |              |             |                |                                                  |                    |           |  |
| 8                              |          |                      |                                 |                  |           |              |             |                | Bottom of test pit at 7.0 ft.                    |                    |           |  |
|                                |          |                      |                                 |                  |           |              |             |                | Backfilled test pit to ground surface.           |                    |           |  |
|                                |          |                      |                                 |                  |           |              |             |                |                                                  |                    |           |  |
| 10                             |          |                      |                                 |                  |           |              |             |                |                                                  |                    |           |  |
|                                |          |                      |                                 |                  |           |              |             |                |                                                  |                    |           |  |
| 12                             |          |                      |                                 |                  |           |              |             |                |                                                  |                    |           |  |
|                                |          |                      |                                 |                  |           |              |             |                |                                                  |                    |           |  |
|                                |          |                      |                                 |                  |           |              |             |                |                                                  |                    |           |  |
| 14                             |          |                      |                                 |                  |           |              |             |                |                                                  |                    |           |  |
|                                |          |                      |                                 |                  |           |              |             |                |                                                  |                    |           |  |
| 16                             |          |                      |                                 |                  |           |              |             |                |                                                  |                    |           |  |
|                                |          |                      |                                 |                  |           |              |             |                |                                                  |                    |           |  |
|                                |          |                      |                                 |                  |           |              |             |                |                                                  |                    |           |  |
| 18                             |          |                      |                                 |                  |           |              |             |                |                                                  |                    |           |  |
|                                |          |                      |                                 |                  |           |              |             |                |                                                  |                    |           |  |
| 20                             |          |                      |                                 |                  |           |              |             |                |                                                  |                    |           |  |
|                                |          |                      |                                 |                  |           |              |             |                |                                                  |                    |           |  |
|                                |          |                      |                                 |                  |           |              |             |                |                                                  |                    |           |  |
|                                |          |                      | Groundwa                        | ter Data         | Summary   |              |             |                |                                                  |                    |           |  |
|                                |          |                      |                                 |                  | Depth     |              |             | Overbu         | rden (Lin FT) 7.0                                |                    |           |  |
| Date                           | Time     | Elapsed Time<br>(HR) | Bottom Of Casing Bottom Of Hole |                  |           |              |             | ľ              | ored (Lin FT) NA                                 |                    |           |  |
| 5/7/2021                       | NA       | NA                   | NA                              | 7.0 ft           | . No      |              | lo          |                |                                                  | BERGMANN           |           |  |

|                                                                                   | ERGI            | 3    |            |                            |                     | E        | nvirc         | onme             | enta                           | al Test Pit Log                                                 | Pit Log    |                    |           |  |
|-----------------------------------------------------------------------------------|-----------------|------|------------|----------------------------|---------------------|----------|---------------|------------------|--------------------------------|-----------------------------------------------------------------|------------|--------------------|-----------|--|
| Project: Supplimental Phase II Environmental Site Assessment - Lot 1 Wambach Farm |                 |      |            |                            |                     |          |               | bach Farm F      | Property.                      | Irondequoit. New Yc                                             | Fi         | ile No:            | 14695     |  |
| Client:                                                                           |                 |      | ne Housing | 2                          | - Internal One / Ic |          | 200 1 11 4111 |                  | Toperty, Ironaequoit, New TC   |                                                                 |            | heet No:           | 1 of 1    |  |
| Contractor Rusty Miller Excavating                                                |                 |      |            |                            |                     |          |               |                  |                                |                                                                 |            | ocation:           | See Plan  |  |
|                                                                                   | •               |      |            | j<br>I                     |                     |          |               |                  |                                |                                                                 |            |                    |           |  |
| Item                                                                              |                 | С    | Casing     | Dri                        | ve Sampler          |          | Core Barrel   | Core Barrel      |                                | Excavation Equipment and Procedures                             | E          | levation:          |           |  |
| Type:                                                                             |                 |      | NA         |                            | NA                  |          |               |                  |                                | tor: CAT 250                                                    |            | atum:              |           |  |
| Inside Diamete                                                                    |                 |      | NA<br>NA   |                            | NA                  | NA<br>NA |               | Reach:           |                                |                                                                 | tart:      | 5/7/2021           |           |  |
| Hemmer Weight (LB):                                                               |                 |      | NA<br>NA   | NA<br>NA                   |                     | NA<br>NA |               |                  | Bucket: 3.5 cubic yards Other: |                                                                 | F          | inish              | 5/7/2021  |  |
| Hammer Fall (IN):<br>Other:                                                       |                 |      | NA<br>NA   | NA<br>NA                   |                     |          | NA<br>NA      |                  | Other.                         |                                                                 | 0          | perator:           | R. Miller |  |
| Other.                                                                            |                 |      |            |                            |                     |          |               |                  |                                |                                                                 |            | Seologist          | S. DeMeo  |  |
| Depth<br>(FT)                                                                     | Samp<br>Depth ( | ·    |            |                            | Head Space<br>(PPM) | ·        |               | Strata<br>Change |                                |                                                                 | sification | cation and Remarks |           |  |
| 0                                                                                 |                 |      |            |                            | ND                  |          |               | 0.5              |                                | Light brown SILT, trace fine sand, damp Re-graded native soil - |            |                    |           |  |
|                                                                                   |                 |      |            |                            |                     |          |               |                  |                                | Light brown medium to fine sand, little silt,                   | , damp.    |                    |           |  |
| 2                                                                                 |                 |      |            |                            |                     |          |               |                  |                                |                                                                 | - LACU     | STRINE             |           |  |
|                                                                                   |                 |      |            |                            | ND                  |          |               |                  |                                |                                                                 |            |                    |           |  |
| 4                                                                                 |                 |      |            |                            |                     |          |               |                  |                                | Same.                                                           |            |                    |           |  |
| 4                                                                                 |                 |      |            |                            |                     |          |               |                  |                                |                                                                 | - LACUS    | TRINE -            |           |  |
|                                                                                   |                 |      |            |                            |                     |          |               |                  |                                |                                                                 |            |                    |           |  |
| 6                                                                                 |                 |      |            |                            |                     |          |               |                  |                                | Bottom of Test Pit at 4.0 Ft.                                   |            |                    |           |  |
|                                                                                   |                 |      |            |                            |                     |          |               |                  |                                | Backfilled Test Pit to ground surface.                          |            |                    |           |  |
| 8                                                                                 |                 |      |            |                            |                     |          |               |                  |                                |                                                                 |            |                    |           |  |
|                                                                                   |                 |      |            |                            |                     |          |               |                  |                                |                                                                 |            |                    |           |  |
|                                                                                   |                 |      |            |                            |                     |          |               |                  |                                |                                                                 |            |                    |           |  |
| 10                                                                                |                 |      |            |                            |                     |          |               |                  |                                |                                                                 |            |                    |           |  |
|                                                                                   |                 |      |            |                            |                     |          |               |                  |                                |                                                                 |            |                    |           |  |
| 12                                                                                |                 |      |            |                            |                     |          |               |                  |                                |                                                                 |            |                    |           |  |
|                                                                                   |                 |      |            |                            |                     |          |               |                  |                                |                                                                 |            |                    |           |  |
| 14                                                                                |                 |      |            |                            |                     |          |               |                  |                                |                                                                 |            |                    |           |  |
|                                                                                   |                 |      |            |                            |                     |          |               |                  |                                |                                                                 |            |                    |           |  |
|                                                                                   |                 |      |            |                            |                     |          |               |                  |                                |                                                                 |            |                    |           |  |
| 16                                                                                |                 |      |            |                            |                     |          |               |                  |                                |                                                                 |            |                    |           |  |
|                                                                                   |                 |      |            |                            |                     |          |               |                  |                                |                                                                 |            |                    |           |  |
| 18                                                                                |                 |      |            |                            |                     |          |               |                  |                                |                                                                 |            |                    |           |  |
|                                                                                   |                 |      |            |                            |                     |          |               |                  |                                |                                                                 |            |                    |           |  |
|                                                                                   |                 |      |            |                            |                     |          |               |                  |                                |                                                                 |            |                    |           |  |
| 20                                                                                |                 |      |            |                            |                     |          |               |                  |                                |                                                                 |            |                    |           |  |
|                                                                                   |                 |      |            |                            |                     |          |               |                  |                                |                                                                 |            |                    |           |  |
|                                                                                   |                 |      |            |                            |                     |          |               |                  |                                |                                                                 |            |                    |           |  |
| Groundwater Data                                                                  |                 |      |            |                            |                     |          |               |                  |                                | Summary                                                         |            |                    |           |  |
|                                                                                   |                 | Гіст | IT         | m 0′                       | Depth               |          |               |                  | Overburden (Lin FT) 4.0        |                                                                 |            |                    |           |  |
| Date                                                                              | Time            |      |            | ne Bottom Of Casing Bottom |                     |          | f Hole Water  |                  |                                | ored (Lin FT) NA                                                |            |                    |           |  |
| 5/7/2021                                                                          | NA              | NA   | A   N      | IA                         | 4.0 ft              | . No     |               |                  |                                |                                                                 | BERGMANN   |                    |           |  |



# **APPENDIX 2**



# Analytical Report For

# **Bergmann Associates**

For Lab Project ID

211960

Referencing

Wambach Site Culver Road Providence Irondequoit

\*Prepared\*

Tuesday, May 18, 2021

Any noncompliant QC parameters or other notes impacting data interpretation are flagged or documented on the final report or are noted below.

Certifies that this report has been approved by the Technical Director or Designee

179 Lake Avenue • Rochester, NY 14608 • (585) 647-2530 • Fax (585) 647-3311 • ELAP ID# 10958



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-38 (4.0-4.5 ft.)

Lab Sample ID:211960-01Date Sampled:5/7/2021Matrix:SoilDate Received:5/10/2021

## **Herbicides**

| <u>Analyte</u>    | <u>Result</u> | <u>Units</u> | <b>Qualifier</b> | <b>Date Analyzed</b> |
|-------------------|---------------|--------------|------------------|----------------------|
| 2,4,5-T           | <347          | ug/Kg        |                  | 5/12/2021            |
| 2,4,5-TP (Silvex) | <347          | ug/Kg        |                  | 5/12/2021            |
| 2,4-D             | <1390         | ug/Kg        |                  | 5/12/2021            |

Method Reference(s): EPA 8321B Subcontractor ELAP ID: 10709

#### **Mercury**

| <u>Analyte</u> | Result | <u>Units</u> | <u>Qualifier</u> | <b>Date Analyzed</b> |  |
|----------------|--------|--------------|------------------|----------------------|--|
| Mercury        | 0.106  | mg/Kg        |                  | 5/14/2021 10:07      |  |

Method Reference(s):EPA 7471BPreparation Date:5/13/2021Data File:Hg210514C

# RCRA Metals (ICP)

| <u>Analyte</u> | Result  | <u>Units</u> | Qualifier | <b>Date Analyzed</b> |
|----------------|---------|--------------|-----------|----------------------|
| Arsenic        | 4.34    | mg/Kg        |           | 5/12/2021 17:25      |
| Barium         | 44.5    | mg/Kg        | D         | 5/12/2021 17:25      |
| Cadmium        | 0.754   | mg/Kg        |           | 5/12/2021 17:25      |
| Chromium       | 9.93    | mg/Kg        |           | 5/12/2021 17:25      |
| Lead           | 80.9    | mg/Kg        | M         | 5/12/2021 17:25      |
| Selenium       | 1.21    | mg/Kg        |           | 5/12/2021 17:25      |
| Silver         | < 0.567 | mg/Kg        |           | 5/12/2021 17:25      |
|                |         |              |           |                      |

Method Reference(s):EPA 6010CEPA 3050BPreparation Date:5/11/2021

**Data File:** 5/11/202

# **PCBs**

| <u>Analyte</u> | <u>Result</u> | <u>Units</u> | <b>Qualifier</b> | <b>Date Analyzed</b> |
|----------------|---------------|--------------|------------------|----------------------|
| PCB-1016       | < 0.0278      | mg/Kg        |                  | 5/13/2021 15:40      |

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Page 2 of 79



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-38 (4.0-4.5 ft.)

Lab Sample ID:211960-01Date Sampled:5/7/2021Matrix:SoilDate Received:5/10/2021

| PCB-1221             | < 0.0278      | mg/Kg              |               |                 | 5/13/2021         | 15:40      |
|----------------------|---------------|--------------------|---------------|-----------------|-------------------|------------|
| PCB-1232             | < 0.0278      | mg/Kg              |               |                 | 5/13/2021         | 15:40      |
| PCB-1242             | < 0.0278      | mg/Kg              |               |                 | 5/13/2021         | 15:40      |
| PCB-1248             | < 0.0278      | mg/Kg              |               |                 | 5/13/2021         | 15:40      |
| PCB-1254             | < 0.0278      | mg/Kg              |               |                 | 5/13/2021         | 15:40      |
| PCB-1260             | < 0.0278      | mg/Kg              |               |                 | 5/13/2021         | 15:40      |
| PCB-1262             | < 0.0278      | mg/Kg              |               |                 | 5/13/2021         | 15:40      |
| PCB-1268             | < 0.0278      | mg/Kg              |               |                 | 5/13/2021         | 15:40      |
| <u>Surrogate</u>     | <u>Percen</u> | <u>it Recovery</u> | <u>Limits</u> | <b>Outliers</b> | <b>Date Analy</b> | <u>zed</u> |
| Tetrachloro-m-xylene | 1             | 66.9               | 16.4 - 99.1   |                 | 5/13/2021         | 15:40      |

**Method Reference(s):** EPA 8082A EPA 3546

5/12/2021

#### **Chlorinated Pesticides**

**Preparation Date:** 

| <u>Analyte</u>     | <u>Result</u> | <u>Units</u> | <b>Qualifier</b> | <b>Date Analyzed</b> |
|--------------------|---------------|--------------|------------------|----------------------|
| 4,4-DDD            | 14.9          | ug/Kg        |                  | 5/13/2021 16:06      |
| 4,4-DDE            | 5.42          | ug/Kg        |                  | 5/13/2021 16:06      |
| 4,4-DDT            | < 2.78        | ug/Kg        |                  | 5/13/2021 16:06      |
| Aldrin             | 6.45          | ug/Kg        |                  | 5/13/2021 16:06      |
| alpha-BHC          | < 2.78        | ug/Kg        |                  | 5/13/2021 16:06      |
| beta-BHC           | < 2.78        | ug/Kg        |                  | 5/13/2021 16:06      |
| cis-Chlordane      | 6.25          | ug/Kg        |                  | 5/13/2021 16:06      |
| delta-BHC          | < 2.78        | ug/Kg        |                  | 5/13/2021 16:06      |
| Dieldrin           | 28.2          | ug/Kg        |                  | 5/13/2021 16:06      |
| Endosulfan I       | < 2.78        | ug/Kg        |                  | 5/13/2021 16:06      |
| Endosulfan II      | < 2.78        | ug/Kg        |                  | 5/13/2021 16:06      |
| Endosulfan Sulfate | < 2.78        | ug/Kg        |                  | 5/13/2021 16:06      |
| Endrin             | < 2.78        | ug/Kg        |                  | 5/13/2021 16:06      |
| Endrin Aldehyde    | < 2.78        | ug/Kg        |                  | 5/13/2021 16:06      |
| Endrin Ketone      | < 2.78        | ug/Kg        |                  | 5/13/2021 16:06      |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-38 (4.0-4.5 ft.)

Lab Sample ID:211960-01Date Sampled:5/7/2021Matrix:SoilDate Received:5/10/2021

| gamma-BHC (Lindane)      | < 2.78       | ug/Kg            |             |                 | 5/13/2021         | 16:06      |
|--------------------------|--------------|------------------|-------------|-----------------|-------------------|------------|
| Heptachlor               | < 2.78       | ug/Kg            |             |                 | 5/13/2021         | 16:06      |
| Heptachlor Epoxide       | < 2.78       | ug/Kg            |             |                 | 5/13/2021         | 16:06      |
| Methoxychlor             | 6.84         | ug/Kg            |             | P               | 5/13/2021         | 16:06      |
| Toxaphene                | < 27.8       | ug/Kg            |             |                 | 5/13/2021         | 16:06      |
| trans-Chlordane          | 4.84         | ug/Kg            |             |                 | 5/13/2021         | 16:06      |
| <u>Surrogate</u>         | <u>Perce</u> | Percent Recovery |             | <u>Outliers</u> | <b>Date Analy</b> | <u>zed</u> |
| Decachlorobiphenyl (1)   |              | 129              | 10 - 134    |                 | 5/13/2021         | 16:06      |
| Tetrachloro-m-xylene (1) |              | 71.4             | 26.3 - 99.8 |                 | 5/13/2021         | 16:06      |

**Method Reference(s):** EPA 8081B

EPA 3546

**Preparation Date:** 5/12/2021

# Semi-Volatile Organics (Base Neutrals)

| <u>Result</u> | <u>Units</u>                                                                                                            | Qualifier Date Analyzed |       |
|---------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------|-------|
| < 295         | ug/Kg                                                                                                                   | 5/12/2021 19:0          | )7    |
| < 295         | ug/Kg                                                                                                                   | 5/12/2021 19:0          | )7    |
| < 295         | ug/Kg                                                                                                                   | 5/12/2021 19:0          | )7    |
| < 295         | ug/Kg                                                                                                                   | 5/12/2021 19:0          | )7    |
| < 295         | ug/Kg                                                                                                                   | 5/12/2021 19:0          | )7    |
| < 295         | ug/Kg                                                                                                                   | 5/12/2021 19:0          | )7    |
| < 295         | ug/Kg                                                                                                                   | 5/12/2021 19:0          | )7    |
| < 295         | ug/Kg                                                                                                                   | 5/12/2021 19:0          | )7    |
| < 295         | ug/Kg                                                                                                                   | 5/12/2021 19:0          | )7    |
| < 295         | ug/Kg                                                                                                                   | 5/12/2021 19:0          | )7    |
| < 295         | ug/Kg                                                                                                                   | 5/12/2021 19:0          | )7    |
| < 295         | ug/Kg                                                                                                                   | 5/12/2021 19:0          | )7    |
| < 295         | ug/Kg                                                                                                                   | 5/12/2021 19:0          | )7    |
| < 295         | ug/Kg                                                                                                                   | 5/12/2021 19:0          | )7    |
| < 295         | ug/Kg                                                                                                                   | 5/12/2021 19:0          | )7    |
| < 295         | ug/Kg                                                                                                                   | 5/12/2021 19:0          | )7    |
|               | < 295 < 295 < 295 < 295 < 295 < 295 < 295 < 295 < 295 < 295 < 295 < 295 < 295 < 295 < 295 < 295 < 295 < 295 < 295 < 295 | < 295                   | < 295 |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-38 (4.0-4.5 ft.)

Lab Sample ID:211960-01Date Sampled:5/7/2021Matrix:SoilDate Received:5/10/2021

|                              |       |       | · · · · · · · · · · · · · · · · · · · |       |
|------------------------------|-------|-------|---------------------------------------|-------|
|                              |       |       |                                       |       |
| 4-Chlorophenyl phenyl ether  | < 295 | ug/Kg | 5/12/2021                             | 19:07 |
| 4-Nitroaniline               | < 295 | ug/Kg | 5/12/2021                             | 19:07 |
| Acenaphthene                 | < 295 | ug/Kg | 5/12/2021                             | 19:07 |
| Acenaphthylene               | < 295 | ug/Kg | 5/12/2021                             | 19:07 |
| Acetophenone                 | < 295 | ug/Kg | 5/12/2021                             | 19:07 |
| Anthracene                   | 391   | ug/Kg | 5/12/2021                             | 19:07 |
| Atrazine                     | < 295 | ug/Kg | 5/12/2021                             | 19:07 |
| Benzaldehyde                 | < 295 | ug/Kg | 5/12/2021                             | 19:07 |
| Benzo (a) anthracene         | 701   | ug/Kg | 5/12/2021                             | 19:07 |
| Benzo (a) pyrene             | 724   | ug/Kg | 5/12/2021                             | 19:07 |
| Benzo (b) fluoranthene       | 612   | ug/Kg | 5/12/2021                             | 19:07 |
| Benzo (g,h,i) perylene       | 443   | ug/Kg | 5/12/2021                             | 19:07 |
| Benzo (k) fluoranthene       | 435   | ug/Kg | 5/12/2021                             | 19:07 |
| Bis (2-chloroethoxy) methane | < 295 | ug/Kg | 5/12/2021                             | 19:07 |
| Bis (2-chloroethyl) ether    | < 295 | ug/Kg | 5/12/2021                             | 19:07 |
| Bis (2-ethylhexyl) phthalate | < 295 | ug/Kg | 5/12/2021                             | 19:07 |
| Butylbenzylphthalate         | < 295 | ug/Kg | 5/12/2021                             | 19:07 |
| Caprolactam                  | < 295 | ug/Kg | 5/12/2021                             | 19:07 |
| Carbazole                    | < 295 | ug/Kg | 5/12/2021                             | 19:07 |
| Chrysene                     | 652   | ug/Kg | 5/12/2021                             | 19:07 |
| Dibenz (a,h) anthracene      | < 295 | ug/Kg | 5/12/2021                             | 19:07 |
| Dibenzofuran                 | < 295 | ug/Kg | 5/12/2021                             | 19:07 |
| Diethyl phthalate            | < 295 | ug/Kg | 5/12/2021                             | 19:07 |
| Dimethyl phthalate           | < 295 | ug/Kg | 5/12/2021                             | 19:07 |
| Di-n-butyl phthalate         | < 295 | ug/Kg | 5/12/2021                             | 19:07 |
| Di-n-octylphthalate          | < 295 | ug/Kg | 5/12/2021                             | 19:07 |
| Fluoranthene                 | 1510  | ug/Kg | 5/12/2021                             | 19:07 |
| Fluorene                     | 360   | ug/Kg | 5/12/2021                             | 19:07 |
| Hexachlorobenzene            | < 295 | ug/Kg | 5/12/2021                             | 19:07 |
| Hexachlorobutadiene          | < 295 | ug/Kg | 5/12/2021                             | 19:07 |
|                              |       |       |                                       |       |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-38 (4.0-4.5 ft.)

 Lab Sample ID:
 211960-01
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

| Hexachlorocyclopentadiene  | < 1180      | ug/Kg        |               |                 | 5/12/2021         | 19:07      |
|----------------------------|-------------|--------------|---------------|-----------------|-------------------|------------|
| Hexachloroethane           | < 295       | ug/Kg        |               |                 | 5/12/2021         | 19:07      |
| Indeno (1,2,3-cd) pyrene   | 437         | ug/Kg        |               |                 | 5/12/2021         | 19:07      |
| Isophorone                 | < 295       | ug/Kg        |               |                 | 5/12/2021         | 19:07      |
| Naphthalene                | 578         | ug/Kg        |               |                 | 5/12/2021         | 19:07      |
| Nitrobenzene               | < 295       | ug/Kg        |               |                 | 5/12/2021         | 19:07      |
| N-Nitroso-di-n-propylamine | < 295       | ug/Kg        |               |                 | 5/12/2021         | 19:07      |
| N-Nitrosodiphenylamine     | < 295       | ug/Kg        |               |                 | 5/12/2021         | 19:07      |
| Phenanthrene               | 1110        | ug/Kg        |               |                 | 5/12/2021         | 19:07      |
| Pyrene                     | 1270        | ug/Kg        |               |                 | 5/12/2021         | 19:07      |
| <u>Surrogate</u>           | <u>Perc</u> | ent Recovery | <u>Limits</u> | <b>Outliers</b> | <b>Date Analy</b> | <u>zed</u> |
| 2-Fluorobiphenyl           |             | 53.8         | 34.6 - 83.9   |                 | 5/12/2021         | 19:07      |
| Nitrobenzene-d5            |             | 50.9         | 32.4 - 76     |                 | 5/12/2021         | 19:07      |

57.9

38.2 - 88.8

Method Reference(s): EPA 8270D

EPA 3546

 Preparation Date:
 5/11/2021

 Data File:
 B54067.D

# **Volatile Organics**

Terphenyl-d14

| Analyte                     | Result | <u>Units</u> | <b>Qualifier</b> | Date Analyzed   |
|-----------------------------|--------|--------------|------------------|-----------------|
| 1,1,1-Trichloroethane       | < 8.03 | ug/Kg        |                  | 5/11/2021 14:59 |
| 1,1,2,2-Tetrachloroethane   | < 8.03 | ug/Kg        |                  | 5/11/2021 14:59 |
| 1,1,2-Trichloroethane       | < 8.03 | ug/Kg        |                  | 5/11/2021 14:59 |
| 1,1-Dichloroethane          | < 8.03 | ug/Kg        |                  | 5/11/2021 14:59 |
| 1,1-Dichloroethene          | < 8.03 | ug/Kg        |                  | 5/11/2021 14:59 |
| 1,2,3-Trichlorobenzene      | < 20.1 | ug/Kg        |                  | 5/11/2021 14:59 |
| 1,2,4-Trichlorobenzene      | < 20.1 | ug/Kg        |                  | 5/11/2021 14:59 |
| 1,2-Dibromo-3-Chloropropane | < 40.1 | ug/Kg        |                  | 5/11/2021 14:59 |
| 1,2-Dibromoethane           | < 8.03 | ug/Kg        |                  | 5/11/2021 14:59 |
| 1,2-Dichlorobenzene         | < 8.03 | ug/Kg        |                  | 5/11/2021 14:59 |
| 1,2-Dichloroethane          | < 8.03 | ug/Kg        |                  | 5/11/2021 14:59 |
|                             |        |              |                  |                 |

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

5/12/2021

19:07



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-38 (4.0-4.5 ft.)

Lab Sample ID:211960-01Date Sampled:5/7/2021Matrix:SoilDate Received:5/10/2021

|                         |        |       | •         |       |
|-------------------------|--------|-------|-----------|-------|
|                         |        |       |           |       |
| 1,2-Dichloropropane     | < 8.03 | ug/Kg | 5/11/2021 | 14:59 |
| 1,3-Dichlorobenzene     | < 8.03 | ug/Kg | 5/11/2021 | 14:59 |
| 1,4-Dichlorobenzene     | < 8.03 | ug/Kg | 5/11/2021 | 14:59 |
| 1,4-Dioxane             | < 40.1 | ug/Kg | 5/11/2021 | 14:59 |
| 2-Butanone              | 42.3   | ug/Kg | 5/11/2021 | 14:59 |
| 2-Hexanone              | < 20.1 | ug/Kg | 5/11/2021 | 14:59 |
| 4-Methyl-2-pentanone    | < 20.1 | ug/Kg | 5/11/2021 | 14:59 |
| Acetone                 | 252    | ug/Kg | 5/11/2021 | 14:59 |
| Benzene                 | < 8.03 | ug/Kg | 5/11/2021 | 14:59 |
| Bromochloromethane      | < 20.1 | ug/Kg | 5/11/2021 | 14:59 |
| Bromodichloromethane    | < 8.03 | ug/Kg | 5/11/2021 | 14:59 |
| Bromoform               | < 20.1 | ug/Kg | 5/11/2021 | 14:59 |
| Bromomethane            | < 8.03 | ug/Kg | 5/11/2021 | 14:59 |
| Carbon disulfide        | < 8.03 | ug/Kg | 5/11/2021 | 14:59 |
| Carbon Tetrachloride    | < 8.03 | ug/Kg | 5/11/2021 | 14:59 |
| Chlorobenzene           | < 8.03 | ug/Kg | 5/11/2021 | 14:59 |
| Chloroethane            | < 8.03 | ug/Kg | 5/11/2021 | 14:59 |
| Chloroform              | < 8.03 | ug/Kg | 5/11/2021 | 14:59 |
| Chloromethane           | < 8.03 | ug/Kg | 5/11/2021 | 14:59 |
| cis-1,2-Dichloroethene  | < 8.03 | ug/Kg | 5/11/2021 | 14:59 |
| cis-1,3-Dichloropropene | < 8.03 | ug/Kg | 5/11/2021 | 14:59 |
| Cyclohexane             | < 40.1 | ug/Kg | 5/11/2021 | 14:59 |
| Dibromochloromethane    | < 8.03 | ug/Kg | 5/11/2021 | 14:59 |
| Dichlorodifluoromethane | < 8.03 | ug/Kg | 5/11/2021 | 14:59 |
| Ethylbenzene            | < 8.03 | ug/Kg | 5/11/2021 | 14:59 |
| Freon 113               | < 8.03 | ug/Kg | 5/11/2021 | 14:59 |
| Isopropylbenzene        | < 8.03 | ug/Kg | 5/11/2021 | 14:59 |
| m,p-Xylene              | < 8.03 | ug/Kg | 5/11/2021 | 14:59 |
| Methyl acetate          | < 8.03 | ug/Kg | 5/11/2021 | 14:59 |
| Methyl tert-butyl Ether | < 8.03 | ug/Kg | 5/11/2021 | 14:59 |
|                         |        |       |           |       |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-38 (4.0-4.5 ft.)

 Lab Sample ID:
 211960-01
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

| Methylcyclohexane         | < 8.03 | ug/Kg        |               |                 | 5/11/2021         | 14:59 |
|---------------------------|--------|--------------|---------------|-----------------|-------------------|-------|
| Methylene chloride        | < 20.1 | ug/Kg        |               |                 | 5/11/2021         | 14:59 |
| o-Xylene                  | < 8.03 | ug/Kg        |               |                 | 5/11/2021         | 14:59 |
| Styrene                   | < 20.1 | ug/Kg        |               |                 | 5/11/2021         | 14:59 |
| Tetrachloroethene         | < 8.03 | ug/Kg        |               |                 | 5/11/2021         | 14:59 |
| Toluene                   | < 8.03 | ug/Kg        |               |                 | 5/11/2021         | 14:59 |
| trans-1,2-Dichloroethene  | < 8.03 | ug/Kg        |               |                 | 5/11/2021         | 14:59 |
| trans-1,3-Dichloropropene | < 8.03 | ug/Kg        |               |                 | 5/11/2021         | 14:59 |
| Trichloroethene           | < 8.03 | ug/Kg        |               |                 | 5/11/2021         | 14:59 |
| Trichlorofluoromethane    | < 8.03 | ug/Kg        |               |                 | 5/11/2021         | 14:59 |
| Vinyl chloride            | < 8.03 | ug/Kg        |               |                 | 5/11/2021         | 14:59 |
| Surrogate                 | Perce  | ent Recovery | <u>Limits</u> | <u>Outliers</u> | <b>Date Analy</b> | zed   |
| 1,2-Dichloroethane-d4     |        | 99.5         | 52.5 - 151    |                 | 5/11/2021         | 14:59 |

92.2

96.7

96.5

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: z01495.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

37.7 - 146

92.1 - 115

74 - 120

# **Total Cvanide**

4-Bromofluorobenzene

Pentafluorobenzene

Toluene-D8

| <u>Analyte</u> | <u>Result</u> | <u>Units</u> | <b>Qualifier</b> | <b>Date Analyzed</b> |
|----------------|---------------|--------------|------------------|----------------------|
| Cvanide. Total | < 0.507       | mg/Kg        |                  | 5/12/2021            |

Method Reference(s): EPA 9014
EPA 9010C
Preparation Date: 5/12/2021

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

5/11/2021

5/11/2021

5/11/2021

14:59

14:59

14:59



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-37 (2.5-3.0 ft.)

Lab Sample ID:211960-02Date Sampled:5/7/2021Matrix:SoilDate Received:5/10/2021

## **Herbicides**

| <u>Analyte</u>    | <u>Result</u> | <u>Units</u> | <b>Qualifier</b> | <b>Date Analyzed</b> |
|-------------------|---------------|--------------|------------------|----------------------|
| 2,4,5-T           | <360          | ug/Kg        |                  | 5/12/2021            |
| 2,4,5-TP (Silvex) | <360          | ug/Kg        |                  | 5/12/2021            |
| 2,4-D             | <1440         | ug/Kg        |                  | 5/12/2021            |

**Method Reference(s):** EPA 8321B **Subcontractor ELAP ID:** 10709

## **Mercury**

| <u>Analyte</u> | Result | <u>Units</u> | Qualifier | <b>Date Analyzed</b> |
|----------------|--------|--------------|-----------|----------------------|
| Mercury        | 0.0230 | mg/Kg        |           | 5/14/2021 10:08      |

Method Reference(s):EPA 7471BPreparation Date:5/13/2021Data File:Hg210514C

# RCRA Metals (ICP)

| <u>Analyte</u> | Result  | <u>Units</u> | <b>Qualifier</b> | <b>Date Analyzed</b> |
|----------------|---------|--------------|------------------|----------------------|
| Arsenic        | 2.67    | mg/Kg        |                  | 5/12/2021 17:39      |
| Barium         | 35.1    | mg/Kg        |                  | 5/12/2021 17:39      |
| Cadmium        | 0.655   | mg/Kg        |                  | 5/12/2021 17:39      |
| Chromium       | 16.3    | mg/Kg        |                  | 5/12/2021 17:39      |
| Lead           | 6.77    | mg/Kg        |                  | 5/12/2021 17:39      |
| Selenium       | 2.09    | mg/Kg        |                  | 5/12/2021 17:39      |
| Silver         | < 0.577 | mg/Kg        |                  | 5/12/2021 17:39      |
|                |         |              |                  |                      |

Method Reference(s):EPA 6010CEPA 3050BPreparation Date:5/11/2021

Data File: 5/11/202

# **PCBs**

| <u>Analyte</u> | <u>Result</u> | <u>Units</u> | <u>Qualifier</u> | <b>Date Analyzed</b> |
|----------------|---------------|--------------|------------------|----------------------|
| PCB-1016       | < 0.0291      | mg/Kg        |                  | 5/13/2021 03:05      |

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Page 9 of 79



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-37 (2.5-3.0 ft.)

Lab Sample ID:211960-02Date Sampled:5/7/2021Matrix:SoilDate Received:5/10/2021

| PCB-1221             | < 0.0291      | mg/Kg       |               |                 | 5/13/2021         | 03:05      |
|----------------------|---------------|-------------|---------------|-----------------|-------------------|------------|
| PCB-1232             | < 0.0291      | mg/Kg       |               |                 | 5/13/2021         | 03:05      |
| PCB-1242             | < 0.0291      | mg/Kg       |               |                 | 5/13/2021         | 03:05      |
| PCB-1248             | < 0.0291      | mg/Kg       |               |                 | 5/13/2021         | 03:05      |
| PCB-1254             | < 0.0291      | mg/Kg       |               |                 | 5/13/2021         | 03:05      |
| PCB-1260             | < 0.0291      | mg/Kg       |               |                 | 5/13/2021         | 03:05      |
| PCB-1262             | < 0.0291      | mg/Kg       |               |                 | 5/13/2021         | 03:05      |
| PCB-1268             | < 0.0291      | mg/Kg       |               |                 | 5/13/2021         | 03:05      |
| <u>Surrogate</u>     | <u>Percer</u> | nt Recovery | <u>Limits</u> | <b>Outliers</b> | <b>Date Analy</b> | <u>zed</u> |
| Tetrachloro-m-xylene |               | 42.0        | 16.4 - 99.1   |                 | 5/13/2021         | 03:05      |

**Method Reference(s):** EPA 8082A EPA 3546

**Preparation Date:** 5/12/2021

#### **Chlorinated Pesticides**

| <u>Analyte</u>     | <u>Result</u> | <u>Units</u> | <b>Qualifier</b> | <b>Date Analyzed</b> |
|--------------------|---------------|--------------|------------------|----------------------|
| 4,4-DDD            | < 2.91        | ug/Kg        |                  | 5/12/2021 18:45      |
| 4,4-DDE            | < 2.91        | ug/Kg        |                  | 5/12/2021 18:45      |
| 4,4-DDT            | < 2.91        | ug/Kg        |                  | 5/12/2021 18:45      |
| Aldrin             | < 2.91        | ug/Kg        |                  | 5/12/2021 18:45      |
| alpha-BHC          | < 2.91        | ug/Kg        |                  | 5/12/2021 18:45      |
| beta-BHC           | < 2.91        | ug/Kg        |                  | 5/12/2021 18:45      |
| cis-Chlordane      | < 2.91        | ug/Kg        |                  | 5/12/2021 18:45      |
| delta-BHC          | < 2.91        | ug/Kg        |                  | 5/12/2021 18:45      |
| Dieldrin           | < 2.91        | ug/Kg        |                  | 5/12/2021 18:45      |
| Endosulfan I       | < 2.91        | ug/Kg        |                  | 5/12/2021 18:45      |
| Endosulfan II      | < 2.91        | ug/Kg        |                  | 5/12/2021 18:45      |
| Endosulfan Sulfate | < 2.91        | ug/Kg        |                  | 5/12/2021 18:45      |
| Endrin             | < 2.91        | ug/Kg        |                  | 5/12/2021 18:45      |
| Endrin Aldehyde    | < 2.91        | ug/Kg        |                  | 5/12/2021 18:45      |
| Endrin Ketone      | < 2.91        | ug/Kg        |                  | 5/12/2021 18:45      |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-37 (2.5-3.0 ft.)

Lab Sample ID:211960-02Date Sampled:5/7/2021Matrix:SoilDate Received:5/10/2021

| gamma-BHC (Lindane)      | < 2.91 | ug/Kg            |             |                 | 5/12/2021         | 18:45      |
|--------------------------|--------|------------------|-------------|-----------------|-------------------|------------|
| Heptachlor               | < 2.91 | ug/Kg            |             |                 | 5/12/2021         | 18:45      |
| Heptachlor Epoxide       | < 2.91 | ug/Kg            |             |                 | 5/12/2021         | 18:45      |
| Methoxychlor             | < 2.91 | ug/Kg            |             |                 | 5/12/2021         | 18:45      |
| Toxaphene                | < 29.1 | ug/Kg            |             |                 | 5/12/2021         | 18:45      |
| trans-Chlordane          | < 2.91 | ug/Kg            |             |                 | 5/12/2021         | 18:45      |
| <u>Surrogate</u>         | Perce  | Percent Recovery |             | <u>Outliers</u> | <b>Date Analy</b> | <u>zed</u> |
| Decachlorobiphenyl (1)   |        | 41.6             | 10 - 134    |                 | 5/12/2021         | 18:45      |
| Tetrachloro-m-xylene (1) |        | 53.5             | 26.3 - 99.8 |                 | 5/12/2021         | 18:45      |

**Method Reference(s):** EPA 8081B

EPA 3546

**Preparation Date:** 5/12/2021

# Semi-Volatile Organics (Base Neutrals)

| <u>Result</u> | <u>Units</u>                                                                                                                  | Qualifier | Date Analyz         | zed   |
|---------------|-------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------|-------|
| < 324         | ug/Kg                                                                                                                         |           | 5/12/2021           | 19:35 |
| < 324         | ug/Kg                                                                                                                         |           | 5/12/2021           | 19:35 |
| < 324         | ug/Kg                                                                                                                         |           | 5/12/2021           | 19:35 |
| < 324         | ug/Kg                                                                                                                         |           | 5/12/2021           | 19:35 |
| < 324         | ug/Kg                                                                                                                         |           | 5/12/2021           | 19:35 |
| < 324         | ug/Kg                                                                                                                         |           | 5/12/2021           | 19:35 |
| < 324         | ug/Kg                                                                                                                         |           | 5/12/2021           | 19:35 |
| < 324         | ug/Kg                                                                                                                         |           | 5/12/2021           | 19:35 |
| < 324         | ug/Kg                                                                                                                         |           | 5/12/2021           | 19:35 |
| < 324         | ug/Kg                                                                                                                         |           | 5/12/2021           | 19:35 |
| < 324         | ug/Kg                                                                                                                         |           | 5/12/2021           | 19:35 |
| < 324         | ug/Kg                                                                                                                         |           | 5/12/2021           | 19:35 |
| < 324         | ug/Kg                                                                                                                         |           | 5/12/2021           | 19:35 |
| < 324         | ug/Kg                                                                                                                         |           | 5/12/2021           | 19:35 |
| < 324         | ug/Kg                                                                                                                         |           | 5/12/2021           | 19:35 |
| < 324         | ug/Kg                                                                                                                         |           | 5/12/2021           | 19:35 |
|               | < 324 < 324 < 324 < 324 < 324 < 324 < 324 < 324 < 324 < 324 < 324 < 324 < 324 < 324 < 324 < 324 < 324 < 324 < 324 < 324 < 324 | < 324     | <pre>&lt; 324</pre> | < 324 |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-37 (2.5-3.0 ft.)

Lab Sample ID:211960-02Date Sampled:5/7/2021Matrix:SoilDate Received:5/10/2021

| 4-Chlorophenyl phenyl ether  | < 324 | ug/Kg | 5/12/2021 19:35 |
|------------------------------|-------|-------|-----------------|
| 4-Nitroaniline               | < 324 | ug/Kg | 5/12/2021 19:35 |
| Acenaphthene                 | < 324 | ug/Kg | 5/12/2021 19:35 |
| Acenaphthylene               | < 324 | ug/Kg | 5/12/2021 19:35 |
| Acetophenone                 | < 324 | ug/Kg | 5/12/2021 19:35 |
| Anthracene                   | < 324 | ug/Kg | 5/12/2021 19:35 |
| Atrazine                     | < 324 | ug/Kg | 5/12/2021 19:35 |
| Benzaldehyde                 | < 324 | ug/Kg | 5/12/2021 19:35 |
| Benzo (a) anthracene         | < 324 | ug/Kg | 5/12/2021 19:35 |
| Benzo (a) pyrene             | < 324 | ug/Kg | 5/12/2021 19:35 |
| Benzo (b) fluoranthene       | < 324 | ug/Kg | 5/12/2021 19:35 |
| Benzo (g,h,i) perylene       | < 324 | ug/Kg | 5/12/2021 19:35 |
| Benzo (k) fluoranthene       | < 324 | ug/Kg | 5/12/2021 19:35 |
| Bis (2-chloroethoxy) methane | < 324 | ug/Kg | 5/12/2021 19:35 |
| Bis (2-chloroethyl) ether    | < 324 | ug/Kg | 5/12/2021 19:35 |
| Bis (2-ethylhexyl) phthalate | < 324 | ug/Kg | 5/12/2021 19:35 |
| Butylbenzylphthalate         | < 324 | ug/Kg | 5/12/2021 19:35 |
| Caprolactam                  | < 324 | ug/Kg | 5/12/2021 19:35 |
| Carbazole                    | < 324 | ug/Kg | 5/12/2021 19:35 |
| Chrysene                     | < 324 | ug/Kg | 5/12/2021 19:35 |
| Dibenz (a,h) anthracene      | < 324 | ug/Kg | 5/12/2021 19:35 |
| Dibenzofuran                 | < 324 | ug/Kg | 5/12/2021 19:35 |
| Diethyl phthalate            | < 324 | ug/Kg | 5/12/2021 19:35 |
| Dimethyl phthalate           | < 324 | ug/Kg | 5/12/2021 19:35 |
| Di-n-butyl phthalate         | < 324 | ug/Kg | 5/12/2021 19:35 |
| Di-n-octylphthalate          | < 324 | ug/Kg | 5/12/2021 19:35 |
| Fluoranthene                 | < 324 | ug/Kg | 5/12/2021 19:35 |
| Fluorene                     | < 324 | ug/Kg | 5/12/2021 19:35 |
| Hexachlorobenzene            | < 324 | ug/Kg | 5/12/2021 19:35 |
| Hexachlorobutadiene          | < 324 | ug/Kg | 5/12/2021 19:35 |
|                              |       |       |                 |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-37 (2.5-3.0 ft.)

 Lab Sample ID:
 211960-02
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

| Hexachlorocyclopentadiene  | < 1300       | ug/Kg        |               |                 | 5/12/2021         | 19:35 |
|----------------------------|--------------|--------------|---------------|-----------------|-------------------|-------|
| Hexachloroethane           | < 324        | ug/Kg        |               |                 | 5/12/2021         | 19:35 |
| Indeno (1,2,3-cd) pyrene   | < 324        | ug/Kg        |               |                 | 5/12/2021         | 19:35 |
| Isophorone                 | < 324        | ug/Kg        |               |                 | 5/12/2021         | 19:35 |
| Naphthalene                | < 324        | ug/Kg        |               |                 | 5/12/2021         | 19:35 |
| Nitrobenzene               | < 324        | ug/Kg        |               |                 | 5/12/2021         | 19:35 |
| N-Nitroso-di-n-propylamine | < 324        | ug/Kg        |               |                 | 5/12/2021         | 19:35 |
| N-Nitrosodiphenylamine     | < 324        | ug/Kg        |               |                 | 5/12/2021         | 19:35 |
| Phenanthrene               | < 324        | ug/Kg        |               |                 | 5/12/2021         | 19:35 |
| Pyrene                     | < 324        | ug/Kg        |               |                 | 5/12/2021         | 19:35 |
| <u>Surrogate</u>           | <u>Perce</u> | ent Recovery | <u>Limits</u> | <b>Outliers</b> | <b>Date Analy</b> | zed   |
| 2-Fluorobiphenyl           |              | 75.7         | 34.6 - 83.9   |                 | 5/12/2021         | 19:35 |

|                  |      |             | <br>      |       |
|------------------|------|-------------|-----------|-------|
| 2-Fluorobiphenyl | 75.7 | 34.6 - 83.9 | 5/12/2021 | 19:35 |
| Nitrobenzene-d5  | 70.7 | 32.4 - 76   | 5/12/2021 | 19:35 |
| Terphenyl-d14    | 86.7 | 38.2 - 88.8 | 5/12/2021 | 19:35 |

**Method Reference(s):** EPA 8270D

EPA 3546

 Preparation Date:
 5/11/2021

 Data File:
 B54068.D

# **Volatile Organics**

| <u>Analyte</u>              | Result | <u>Units</u> | Qualifier | <b>Date Analy</b> | zed   |
|-----------------------------|--------|--------------|-----------|-------------------|-------|
| 1,1,1-Trichloroethane       | < 9.92 | ug/Kg        |           | 5/11/2021         | 15:18 |
| 1,1,2,2-Tetrachloroethane   | < 9.92 | ug/Kg        |           | 5/11/2021         | 15:18 |
| 1,1,2-Trichloroethane       | < 9.92 | ug/Kg        |           | 5/11/2021         | 15:18 |
| 1,1-Dichloroethane          | < 9.92 | ug/Kg        |           | 5/11/2021         | 15:18 |
| 1,1-Dichloroethene          | < 9.92 | ug/Kg        |           | 5/11/2021         | 15:18 |
| 1,2,3-Trichlorobenzene      | < 24.8 | ug/Kg        |           | 5/11/2021         | 15:18 |
| 1,2,4-Trichlorobenzene      | < 24.8 | ug/Kg        |           | 5/11/2021         | 15:18 |
| 1,2-Dibromo-3-Chloropropane | < 49.6 | ug/Kg        |           | 5/11/2021         | 15:18 |
| 1,2-Dibromoethane           | < 9.92 | ug/Kg        |           | 5/11/2021         | 15:18 |
| 1,2-Dichlorobenzene         | < 9.92 | ug/Kg        |           | 5/11/2021         | 15:18 |
| 1,2-Dichloroethane          | < 9.92 | ug/Kg        |           | 5/11/2021         | 15:18 |

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Page 13 of 79



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-37 (2.5-3.0 ft.)

Lab Sample ID:211960-02Date Sampled:5/7/2021Matrix:SoilDate Received:5/10/2021

|                         |        |       | 7 - 7 -   |       |
|-------------------------|--------|-------|-----------|-------|
|                         |        |       |           |       |
| 1,2-Dichloropropane     | < 9.92 | ug/Kg | 5/11/2021 | 15:18 |
| 1,3-Dichlorobenzene     | < 9.92 | ug/Kg | 5/11/2021 | 15:18 |
| 1,4-Dichlorobenzene     | < 9.92 | ug/Kg | 5/11/2021 | 15:18 |
| 1,4-Dioxane             | < 49.6 | ug/Kg | 5/11/2021 | 15:18 |
| 2-Butanone              | < 49.6 | ug/Kg | 5/11/2021 | 15:18 |
| 2-Hexanone              | < 24.8 | ug/Kg | 5/11/2021 | 15:18 |
| 4-Methyl-2-pentanone    | < 24.8 | ug/Kg | 5/11/2021 | 15:18 |
| Acetone                 | 959    | ug/Kg | 5/11/2021 | 15:18 |
| Benzene                 | < 9.92 | ug/Kg | 5/11/2021 | 15:18 |
| Bromochloromethane      | < 24.8 | ug/Kg | 5/11/2021 | 15:18 |
| Bromodichloromethane    | < 9.92 | ug/Kg | 5/11/2021 | 15:18 |
| Bromoform               | < 24.8 | ug/Kg | 5/11/2021 | 15:18 |
| Bromomethane            | < 9.92 | ug/Kg | 5/11/2021 | 15:18 |
| Carbon disulfide        | < 9.92 | ug/Kg | 5/11/2021 | 15:18 |
| Carbon Tetrachloride    | < 9.92 | ug/Kg | 5/11/2021 | 15:18 |
| Chlorobenzene           | < 9.92 | ug/Kg | 5/11/2021 | 15:18 |
| Chloroethane            | < 9.92 | ug/Kg | 5/11/2021 | 15:18 |
| Chloroform              | < 9.92 | ug/Kg | 5/11/2021 | 15:18 |
| Chloromethane           | < 9.92 | ug/Kg | 5/11/2021 | 15:18 |
| cis-1,2-Dichloroethene  | < 9.92 | ug/Kg | 5/11/2021 | 15:18 |
| cis-1,3-Dichloropropene | < 9.92 | ug/Kg | 5/11/2021 | 15:18 |
| Cyclohexane             | < 49.6 | ug/Kg | 5/11/2021 | 15:18 |
| Dibromochloromethane    | < 9.92 | ug/Kg | 5/11/2021 | 15:18 |
| Dichlorodifluoromethane | < 9.92 | ug/Kg | 5/11/2021 | 15:18 |
| Ethylbenzene            | < 9.92 | ug/Kg | 5/11/2021 | 15:18 |
| Freon 113               | < 9.92 | ug/Kg | 5/11/2021 | 15:18 |
| Isopropylbenzene        | < 9.92 | ug/Kg | 5/11/2021 | 15:18 |
| m,p-Xylene              | < 9.92 | ug/Kg | 5/11/2021 | 15:18 |
| Methyl acetate          | < 9.92 | ug/Kg | 5/11/2021 | 15:18 |
| Methyl tert-butyl Ether | < 9.92 | ug/Kg | 5/11/2021 | 15:18 |
|                         |        |       |           |       |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-37 (2.5-3.0 ft.)

 Lab Sample ID:
 211960-02
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

| Methylcyclohexane         | < 9.92 | ug/Kg              |               |                 | 5/11/2021 15:18      |
|---------------------------|--------|--------------------|---------------|-----------------|----------------------|
| Methylene chloride        | < 24.8 | ug/Kg              |               |                 | 5/11/2021 15:18      |
| o-Xylene                  | < 9.92 | ug/Kg              |               |                 | 5/11/2021 15:18      |
| Styrene                   | < 24.8 | ug/Kg              |               |                 | 5/11/2021 15:18      |
| Tetrachloroethene         | < 9.92 | ug/Kg              |               |                 | 5/11/2021 15:18      |
| Toluene                   | < 9.92 | ug/Kg              |               |                 | 5/11/2021 15:18      |
| trans-1,2-Dichloroethene  | < 9.92 | ug/Kg              |               |                 | 5/11/2021 15:18      |
| trans-1,3-Dichloropropene | < 9.92 | ug/Kg              |               |                 | 5/11/2021 15:18      |
| Trichloroethene           | < 9.92 | ug/Kg              |               |                 | 5/11/2021 15:18      |
| Trichlorofluoromethane    | < 9.92 | ug/Kg              |               |                 | 5/11/2021 15:18      |
| Vinyl chloride            | < 9.92 | ug/Kg              |               |                 | 5/11/2021 15:18      |
| <u>Surrogate</u>          | Percer | <u>it Recovery</u> | <b>Limits</b> | <b>Outliers</b> | <b>Date Analyzed</b> |

| <u>Surrogate</u>      | <u>Percent Recovery</u> | <u>Limits</u> | <u>Outliers</u> | Date Analy | zed   |
|-----------------------|-------------------------|---------------|-----------------|------------|-------|
| 1,2-Dichloroethane-d4 | 104                     | 52.5 - 151    |                 | 5/11/2021  | 15:18 |
| 4-Bromofluorobenzene  | 95.6                    | 37.7 - 146    |                 | 5/11/2021  | 15:18 |
| Pentafluorobenzene    | 95.8                    | 92.1 - 115    |                 | 5/11/2021  | 15:18 |
| Toluene-D8            | 103                     | 74 - 120      |                 | 5/11/2021  | 15:18 |

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: z01496.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

# **Total Cyanide**

| <u>Analyte</u> | <u>Result</u> | <u>Units</u> | <u>Qualifier</u> | <b>Date Analyzed</b> |
|----------------|---------------|--------------|------------------|----------------------|
| Cvanide. Total | < 0.588       | mg/Kg        |                  | 5/12/2021            |

Method Reference(s): EPA 9014
EPA 9010C
Preparation Date: 5/12/2021



Client: **Bergmann Associates** 

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

Sample Identifier: TP21-36 (2.5-3.0 ft.)

Lab Sample ID: 211960-03 **Date Sampled:** 5/7/2021 **Matrix:** Soil **Date Received:** 5/10/2021

## **Herbicides**

| <u>Analyte</u>    | <u>Result</u> | <u>Units</u> | <b>Qualifier</b> | <b>Date Analyzed</b> |
|-------------------|---------------|--------------|------------------|----------------------|
| 2,4,5-T           | <333          | ug/Kg        |                  | 5/12/2021            |
| 2,4,5-TP (Silvex) | <333          | ug/Kg        |                  | 5/12/2021            |
| 2,4-D             | <1333         | ug/Kg        |                  | 5/12/2021            |

Method Reference(s): EPA 8321B **Subcontractor ELAP ID:** 10709

#### **Mercury**

| <b>Analyte</b> | Result | <u>Units</u> | Qualifier | <b>Date Analyzed</b> |
|----------------|--------|--------------|-----------|----------------------|
| Mercury        | 0.0893 | mg/Kg        |           | 5/14/2021 10:10      |

Method Reference(s): EPA 7471B **Preparation Date:** 5/13/2021 Data File: Hg210514C

# RCRA Metals (ICP)

| <u>Analyte</u> | Result  | <u>Units</u> | Qualifier | <b>Date Analyzed</b> |   |
|----------------|---------|--------------|-----------|----------------------|---|
| Arsenic        | 4.30    | mg/Kg        |           | 5/12/2021 17:43      | } |
| Barium         | 74.6    | mg/Kg        |           | 5/12/2021 17:43      | } |
| Cadmium        | 0.874   | mg/Kg        |           | 5/12/2021 17:43      | } |
| Chromium       | 9.71    | mg/Kg        |           | 5/12/2021 17:43      | } |
| Lead           | 82.7    | mg/Kg        |           | 5/12/2021 17:43      | } |
| Selenium       | 1.23    | mg/Kg        |           | 5/13/2021 16:28      | } |
| Silver         | < 0.545 | mg/Kg        |           | 5/12/2021 17:43      | } |
|                |         |              |           |                      |   |

Method Reference(s): EPA 6010C EPA 3050B **Preparation Date:** 5/11/2021

Data File: 210512B

## **PCBs**

| <u>Analyte</u> | <u>Result</u> | <u>Units</u> | <b>Qualifier</b> | <b>Date Analyzed</b> |
|----------------|---------------|--------------|------------------|----------------------|
| PCB-1016       | < 0.0291      | mg/Kg        |                  | 5/13/2021 16:04      |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-36 (2.5-3.0 ft.)

Lab Sample ID:211960-03Date Sampled:5/7/2021Matrix:SoilDate Received:5/10/2021

| PCB-1221             | < 0.0291      | mg/Kg      |               |                 | 5/13/2021         | 16:04      |
|----------------------|---------------|------------|---------------|-----------------|-------------------|------------|
| PCB-1232             | < 0.0291      | mg/Kg      |               |                 | 5/13/2021         | 16:04      |
| PCB-1242             | < 0.0291      | mg/Kg      |               |                 | 5/13/2021         | 16:04      |
| PCB-1248             | < 0.0291      | mg/Kg      |               |                 | 5/13/2021         | 16:04      |
| PCB-1254             | < 0.0291      | mg/Kg      |               |                 | 5/13/2021         | 16:04      |
| PCB-1260             | < 0.0291      | mg/Kg      |               |                 | 5/13/2021         | 16:04      |
| PCB-1262             | < 0.0291      | mg/Kg      |               |                 | 5/13/2021         | 16:04      |
| PCB-1268             | < 0.0291      | mg/Kg      |               |                 | 5/13/2021         | 16:04      |
| <u>Surrogate</u>     | <u>Percen</u> | t Recovery | <u>Limits</u> | <u>Outliers</u> | <b>Date Analy</b> | <u>zed</u> |
| Tetrachloro-m-xylene | Ţ             | 57.0       | 16.4 - 99.1   |                 | 5/13/2021         | 16:04      |

Method Reference(s): EPA 8082A

EPA 3546

**Preparation Date:** 5/12/2021

#### **Chlorinated Pesticides**

| <u>Analyte</u>     | <u>Result</u> | <u>Units</u> | <b>Qualifier</b> | <b>Date Analyzed</b> |
|--------------------|---------------|--------------|------------------|----------------------|
| 4,4-DDD            | 9.09          | ug/Kg        |                  | 5/13/2021 16:22      |
| 4,4-DDE            | 6.28          | ug/Kg        |                  | 5/13/2021 16:22      |
| 4,4-DDT            | < 2.91        | ug/Kg        |                  | 5/13/2021 16:22      |
| Aldrin             | < 2.91        | ug/Kg        |                  | 5/13/2021 16:22      |
| alpha-BHC          | < 2.91        | ug/Kg        |                  | 5/13/2021 16:22      |
| beta-BHC           | < 2.91        | ug/Kg        |                  | 5/13/2021 16:22      |
| cis-Chlordane      | 27.7          | ug/Kg        | P                | 5/13/2021 16:22      |
| delta-BHC          | < 2.91        | ug/Kg        |                  | 5/13/2021 16:22      |
| Dieldrin           | 8.32          | ug/Kg        | P                | 5/13/2021 16:22      |
| Endosulfan I       | < 2.91        | ug/Kg        |                  | 5/13/2021 16:22      |
| Endosulfan II      | < 2.91        | ug/Kg        |                  | 5/13/2021 16:22      |
| Endosulfan Sulfate | 3.33          | ug/Kg        | P                | 5/13/2021 16:22      |
| Endrin             | < 2.91        | ug/Kg        |                  | 5/13/2021 16:22      |
| Endrin Aldehyde    | < 2.91        | ug/Kg        |                  | 5/13/2021 16:22      |
| Endrin Ketone      | < 2.91        | ug/Kg        |                  | 5/13/2021 16:22      |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-36 (2.5-3.0 ft.)

 Lab Sample ID:
 211960-03
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

| gamma-BHC (Lindane)      | < 2.91       | ug/Kg            |             |                 | 5/13/2021         | 16:22      |
|--------------------------|--------------|------------------|-------------|-----------------|-------------------|------------|
| Heptachlor               | < 2.91       | ug/Kg            |             |                 | 5/13/2021         | 16:22      |
| Heptachlor Epoxide       | 12.4         | ug/Kg            |             |                 | 5/13/2021         | 16:22      |
| Methoxychlor             | 6.69         | ug/Kg            |             | P               | 5/13/2021         | 16:22      |
| Toxaphene                | < 29.1       | ug/Kg            |             |                 | 5/13/2021         | 16:22      |
| trans-Chlordane          | 53.6         | ug/Kg            |             |                 | 5/13/2021         | 16:22      |
| <u>Surrogate</u>         | <u>Perce</u> | Percent Recovery |             | <u>Outliers</u> | <b>Date Analy</b> | <u>zed</u> |
| Decachlorobiphenyl (1)   |              | 83.9             | 10 - 134    |                 | 5/13/2021         | 16:22      |
| Tetrachloro-m-xylene (1) |              | 71.6             | 26.3 - 99.8 |                 | 5/13/2021         | 16:22      |

Method Reference(s): EPA 8081B

EPA 3546

**Preparation Date:** 5/12/2021

# Semi-Volatile Organics (Base Neutrals)

| <u>Analyte</u>               | <u>Result</u> | <u>Units</u> | Qualifier | <b>Date Analyzed</b> |
|------------------------------|---------------|--------------|-----------|----------------------|
| 1,1-Biphenyl                 | < 289         | ug/Kg        |           | 5/12/2021 20:04      |
| 1,2,4,5-Tetrachlorobenzene   | < 289         | ug/Kg        |           | 5/12/2021 20:04      |
| 1,2,4-Trichlorobenzene       | < 289         | ug/Kg        |           | 5/12/2021 20:04      |
| 1,2-Dichlorobenzene          | < 289         | ug/Kg        |           | 5/12/2021 20:04      |
| 1,3-Dichlorobenzene          | < 289         | ug/Kg        |           | 5/12/2021 20:04      |
| 1,4-Dichlorobenzene          | < 289         | ug/Kg        |           | 5/12/2021 20:04      |
| 2,2-Oxybis (1-chloropropane) | < 289         | ug/Kg        |           | 5/12/2021 20:04      |
| 2,4-Dinitrotoluene           | < 289         | ug/Kg        |           | 5/12/2021 20:04      |
| 2,6-Dinitrotoluene           | < 289         | ug/Kg        |           | 5/12/2021 20:04      |
| 2-Chloronaphthalene          | < 289         | ug/Kg        |           | 5/12/2021 20:04      |
| 2-Methylnapthalene           | 852           | ug/Kg        |           | 5/12/2021 20:04      |
| 2-Nitroaniline               | < 289         | ug/Kg        |           | 5/12/2021 20:04      |
| 3,3'-Dichlorobenzidine       | < 289         | ug/Kg        |           | 5/12/2021 20:04      |
| 3-Nitroaniline               | < 289         | ug/Kg        |           | 5/12/2021 20:04      |
| 4-Bromophenyl phenyl ether   | < 289         | ug/Kg        |           | 5/12/2021 20:04      |
| 4-Chloroaniline              | < 289         | ug/Kg        |           | 5/12/2021 20:04      |

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Page 18 of 79



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-36 (2.5-3.0 ft.)

 Lab Sample ID:
 211960-03
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

| _ |                              |       |       |                 |
|---|------------------------------|-------|-------|-----------------|
|   |                              |       |       |                 |
|   | 4-Chlorophenyl phenyl ether  | < 289 | ug/Kg | 5/12/2021 20:04 |
|   | 4-Nitroaniline               | < 289 | ug/Kg | 5/12/2021 20:04 |
|   | Acenaphthene                 | 916   | ug/Kg | 5/12/2021 20:04 |
|   | Acenaphthylene               | < 289 | ug/Kg | 5/12/2021 20:04 |
|   | Acetophenone                 | < 289 | ug/Kg | 5/12/2021 20:04 |
|   | Anthracene                   | 1110  | ug/Kg | 5/12/2021 20:04 |
|   | Atrazine                     | < 289 | ug/Kg | 5/12/2021 20:04 |
|   | Benzaldehyde                 | < 289 | ug/Kg | 5/12/2021 20:04 |
|   | Benzo (a) anthracene         | 1940  | ug/Kg | 5/12/2021 20:04 |
|   | Benzo (a) pyrene             | 1560  | ug/Kg | 5/12/2021 20:04 |
|   | Benzo (b) fluoranthene       | 1200  | ug/Kg | 5/12/2021 20:04 |
|   | Benzo (g,h,i) perylene       | 785   | ug/Kg | 5/12/2021 20:04 |
|   | Benzo (k) fluoranthene       | 1230  | ug/Kg | 5/12/2021 20:04 |
|   | Bis (2-chloroethoxy) methane | < 289 | ug/Kg | 5/12/2021 20:04 |
|   | Bis (2-chloroethyl) ether    | < 289 | ug/Kg | 5/12/2021 20:04 |
|   | Bis (2-ethylhexyl) phthalate | < 289 | ug/Kg | 5/12/2021 20:04 |
|   | Butylbenzylphthalate         | < 289 | ug/Kg | 5/12/2021 20:04 |
|   | Caprolactam                  | < 289 | ug/Kg | 5/12/2021 20:04 |
|   | Carbazole                    | 399   | ug/Kg | 5/12/2021 20:04 |
|   | Chrysene                     | 1680  | ug/Kg | 5/12/2021 20:04 |
|   | Dibenz (a,h) anthracene      | 290   | ug/Kg | 5/12/2021 20:04 |
|   | Dibenzofuran                 | 1210  | ug/Kg | 5/12/2021 20:04 |
|   | Diethyl phthalate            | < 289 | ug/Kg | 5/12/2021 20:04 |
|   | Dimethyl phthalate           | < 289 | ug/Kg | 5/12/2021 20:04 |
|   | Di-n-butyl phthalate         | < 289 | ug/Kg | 5/12/2021 20:04 |
|   | Di-n-octylphthalate          | < 289 | ug/Kg | 5/12/2021 20:04 |
|   | Fluoranthene                 | 4480  | ug/Kg | 5/12/2021 20:04 |
|   | Fluorene                     | 1330  | ug/Kg | 5/12/2021 20:04 |
|   | Hexachlorobenzene            | < 289 | ug/Kg | 5/12/2021 20:04 |
|   | Hexachlorobutadiene          | < 289 | ug/Kg | 5/12/2021 20:04 |
|   |                              |       |       |                 |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-36 (2.5-3.0 ft.)

 Lab Sample ID:
 211960-03
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

| <u>Surrogate</u>           | <u>Perce</u> | ent Recovery | <u>Limits</u> | <b>Outliers</b> | <b>Date Analyzed</b> |
|----------------------------|--------------|--------------|---------------|-----------------|----------------------|
| Pyrene                     | 3470         | ug/Kg        |               |                 | 5/12/2021 20:04      |
| Phenanthrene               | 5040         | ug/Kg        |               |                 | 5/12/2021 20:04      |
| N-Nitrosodiphenylamine     | < 289        | ug/Kg        |               |                 | 5/12/2021 20:04      |
| N-Nitroso-di-n-propylamine | < 289        | ug/Kg        |               |                 | 5/12/2021 20:04      |
| Nitrobenzene               | < 289        | ug/Kg        |               |                 | 5/12/2021 20:04      |
| Naphthalene                | 2180         | ug/Kg        |               |                 | 5/12/2021 20:04      |
| Isophorone                 | < 289        | ug/Kg        |               |                 | 5/12/2021 20:04      |
| Indeno (1,2,3-cd) pyrene   | 939          | ug/Kg        |               |                 | 5/12/2021 20:04      |
| Hexachloroethane           | < 289        | ug/Kg        |               |                 | 5/12/2021 20:04      |
| Hexachlorocyclopentadiene  | < 1160       | ug/Kg        |               |                 | 5/12/2021 20:04      |
|                            |              |              |               |                 |                      |

| 1 CICCHE RECOVERY | <u> Dimires</u> | <u>outile15</u>                               | <u>Dute many</u>                              | <u> </u>                                                                            |
|-------------------|-----------------|-----------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------|
| 63.1              | 34.6 - 83.9     |                                               | 5/12/2021                                     | 20:04                                                                               |
| 62.6              | 32.4 - 76       |                                               | 5/12/2021                                     | 20:04                                                                               |
| 71.0              | 38.2 - 88.8     |                                               | 5/12/2021                                     | 20:04                                                                               |
|                   | 63.1<br>62.6    | <b>63.1</b> 34.6 - 83.9 <b>62.6</b> 32.4 - 76 | <b>63.1</b> 34.6 - 83.9 <b>62.6</b> 32.4 - 76 | 63.1       34.6 - 83.9       5/12/2021         62.6       32.4 - 76       5/12/2021 |

**Method Reference(s):** EPA 8270D

EPA 3546

 Preparation Date:
 5/11/2021

 Data File:
 B54069.D

# **Volatile Organics**

| Analyte                     | Result | <u>Units</u> | Qualifier | Date Analyze | ed   |
|-----------------------------|--------|--------------|-----------|--------------|------|
| 1,1,1-Trichloroethane       | < 6.78 | ug/Kg        |           | 5/11/2021 15 | 5:38 |
| 1,1,2,2-Tetrachloroethane   | < 6.78 | ug/Kg        |           | 5/11/2021 15 | 5:38 |
| 1,1,2-Trichloroethane       | < 6.78 | ug/Kg        |           | 5/11/2021 15 | 5:38 |
| 1,1-Dichloroethane          | < 6.78 | ug/Kg        |           | 5/11/2021 15 | 5:38 |
| 1,1-Dichloroethene          | < 6.78 | ug/Kg        |           | 5/11/2021 15 | 5:38 |
| 1,2,3-Trichlorobenzene      | < 16.9 | ug/Kg        |           | 5/11/2021 15 | 5:38 |
| 1,2,4-Trichlorobenzene      | < 16.9 | ug/Kg        |           | 5/11/2021 15 | 5:38 |
| 1,2-Dibromo-3-Chloropropane | < 33.9 | ug/Kg        |           | 5/11/2021 15 | 5:38 |
| 1,2-Dibromoethane           | < 6.78 | ug/Kg        |           | 5/11/2021 15 | 5:38 |
| 1,2-Dichlorobenzene         | < 6.78 | ug/Kg        |           | 5/11/2021 15 | 5:38 |
| 1,2-Dichloroethane          | < 6.78 | ug/Kg        |           | 5/11/2021 15 | 5:38 |

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Page 20 of 79



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-36 (2.5-3.0 ft.)

Lab Sample ID:211960-03Date Sampled:5/7/2021Matrix:SoilDate Received:5/10/2021

| 141 | <b>4011A.</b> 5011      |        |       | Date Received. | 3/10/2021    |      |
|-----|-------------------------|--------|-------|----------------|--------------|------|
|     |                         |        |       |                |              |      |
|     | 1,2-Dichloropropane     | < 6.78 | ug/Kg |                | 5/11/2021 15 | 5:38 |
|     | 1,3-Dichlorobenzene     | < 6.78 | ug/Kg |                | 5/11/2021 15 | 5:38 |
|     | 1,4-Dichlorobenzene     | < 6.78 | ug/Kg |                | 5/11/2021 15 | 5:38 |
|     | 1,4-Dioxane             | < 33.9 | ug/Kg |                | 5/11/2021 15 | 5:38 |
|     | 2-Butanone              | < 33.9 | ug/Kg |                | 5/11/2021 15 | 5:38 |
|     | 2-Hexanone              | < 16.9 | ug/Kg |                | 5/11/2021 15 | 5:38 |
|     | 4-Methyl-2-pentanone    | < 16.9 | ug/Kg |                | 5/11/2021 15 | 5:38 |
|     | Acetone                 | 121    | ug/Kg |                | 5/11/2021 15 | 5:38 |
|     | Benzene                 | < 6.78 | ug/Kg |                | 5/11/2021 15 | 5:38 |
|     | Bromochloromethane      | < 16.9 | ug/Kg |                | 5/11/2021 15 | 5:38 |
|     | Bromodichloromethane    | < 6.78 | ug/Kg |                | 5/11/2021 15 | 5:38 |
|     | Bromoform               | < 16.9 | ug/Kg |                | 5/11/2021 15 | 5:38 |
|     | Bromomethane            | < 6.78 | ug/Kg |                | 5/11/2021 15 | 5:38 |
|     | Carbon disulfide        | < 6.78 | ug/Kg |                | 5/11/2021 15 | 5:38 |
|     | Carbon Tetrachloride    | < 6.78 | ug/Kg |                | 5/11/2021 15 | 5:38 |
|     | Chlorobenzene           | < 6.78 | ug/Kg |                | 5/11/2021 15 | 5:38 |
|     | Chloroethane            | < 6.78 | ug/Kg |                | 5/11/2021 15 | 5:38 |
|     | Chloroform              | < 6.78 | ug/Kg |                | 5/11/2021 15 | 5:38 |
|     | Chloromethane           | < 6.78 | ug/Kg |                | 5/11/2021 15 | 5:38 |
|     | cis-1,2-Dichloroethene  | < 6.78 | ug/Kg |                | 5/11/2021 15 | 5:38 |
|     | cis-1,3-Dichloropropene | < 6.78 | ug/Kg |                | 5/11/2021 15 | 5:38 |
|     | Cyclohexane             | < 33.9 | ug/Kg |                | 5/11/2021 15 | 5:38 |
|     | Dibromochloromethane    | < 6.78 | ug/Kg |                | 5/11/2021 15 | 5:38 |
|     | Dichlorodifluoromethane | < 6.78 | ug/Kg |                | 5/11/2021 15 | 5:38 |
|     | Ethylbenzene            | < 6.78 | ug/Kg |                | 5/11/2021 15 | 5:38 |
|     | Freon 113               | < 6.78 | ug/Kg |                | 5/11/2021 15 | 5:38 |
|     | Isopropylbenzene        | < 6.78 | ug/Kg |                | 5/11/2021 15 | 5:38 |
|     | m,p-Xylene              | < 6.78 | ug/Kg |                | 5/11/2021 15 | 5:38 |
|     | Methyl acetate          | < 6.78 | ug/Kg |                | 5/11/2021 15 | 5:38 |
|     | Methyl tert-butyl Ether | < 6.78 | ug/Kg |                | 5/11/2021 15 | 5:38 |
|     |                         |        |       |                |              |      |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-36 (2.5-3.0 ft.)

 Lab Sample ID:
 211960-03
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

| Methylcyclohexane         | < 6.78           | ug/Kg |               |                 | 5/11/2021         | 15:38 |
|---------------------------|------------------|-------|---------------|-----------------|-------------------|-------|
| Methylene chloride        | < 16.9           | ug/Kg |               |                 | 5/11/2021         | 15:38 |
| o-Xylene                  | < 6.78           | ug/Kg |               |                 | 5/11/2021         | 15:38 |
| Styrene                   | < 16.9           | ug/Kg |               |                 | 5/11/2021         | 15:38 |
| Tetrachloroethene         | < 6.78           | ug/Kg |               |                 | 5/11/2021         | 15:38 |
| Toluene                   | < 6.78           | ug/Kg |               |                 | 5/11/2021         | 15:38 |
| trans-1,2-Dichloroethene  | < 6.78           | ug/Kg |               |                 | 5/11/2021         | 15:38 |
| trans-1,3-Dichloropropene | < 6.78           | ug/Kg |               |                 | 5/11/2021         | 15:38 |
| Trichloroethene           | < 6.78           | ug/Kg |               |                 | 5/11/2021         | 15:38 |
| Trichlorofluoromethane    | < 6.78           | ug/Kg |               |                 | 5/11/2021         | 15:38 |
| Vinyl chloride            | < 6.78           | ug/Kg |               |                 | 5/11/2021         | 15:38 |
| <u>Surrogate</u>          | Percent Recovery |       | <b>Limits</b> | <u>Outliers</u> | <b>Date Analy</b> | zed   |

| <u>Surrogate</u>      | r creent necovery | <u> Limits</u> | <u>outilets</u> | Date Amary | <u> ZCu</u> |
|-----------------------|-------------------|----------------|-----------------|------------|-------------|
| 1,2-Dichloroethane-d4 | 100               | 52.5 - 151     |                 | 5/11/2021  | 15:38       |
| 4-Bromofluorobenzene  | 91.2              | 37.7 - 146     |                 | 5/11/2021  | 15:38       |
| Pentafluorobenzene    | 97.7              | 92.1 - 115     |                 | 5/11/2021  | 15:38       |
| Toluene-D8            | 96.2              | 74 - 120       |                 | 5/11/2021  | 15:38       |
|                       |                   |                |                 |            |             |

**Method Reference(s):** EPA 8260C

EPA 5035A - L

Data File: z01497.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

# **Total Cyanide**

| <u>Analyte</u> | <u>Result</u> | <u>Units</u> | <u>Qualifier</u> | <b>Date Analyzed</b> |
|----------------|---------------|--------------|------------------|----------------------|
| Cyanide, Total | < 0.467       | mg/Kg        |                  | 5/12/2021            |

Method Reference(s): EPA 9014
EPA 9010C
Preparation Date: 5/12/2021



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-34 (12.5-13 ft.)

Lab Sample ID:211960-04Date Sampled:5/7/2021Matrix:SoilDate Received:5/10/2021

## **Herbicides**

| <u>Analyte</u>    | <u>Result</u> | <u>Units</u> | Qualifier Date A | nalyzed |
|-------------------|---------------|--------------|------------------|---------|
| 2,4,5-T           | <354          | ug/Kg        | 5/12/20          | 021     |
| 2,4,5-TP (Silvex) | <354          | ug/Kg        | 5/12/20          | 021     |
| 2,4-D             | <1420         | ug/Kg        | 5/12/20          | 021     |

Method Reference(s):EPA 8321BSubcontractor ELAP ID:10709

#### **Mercury**

| <u>Analyte</u> | <u>Result</u> | <u>Units</u> | <u>Qualifier</u> | <b>Date Analyzed</b> |
|----------------|---------------|--------------|------------------|----------------------|
| Mercury        | 0.0963        | mg/Kg        |                  | 5/14/2021 10:11      |

Method Reference(s):EPA 7471BPreparation Date:5/13/2021Data File:Hg210514C

# RCRA Metals (ICP)

| <u>Analyte</u> | Result  | <u>Units</u> | <b>Qualifier</b> | <b>Date Analyzed</b> |
|----------------|---------|--------------|------------------|----------------------|
| Arsenic        | 2.86    | mg/Kg        |                  | 5/12/2021 17:48      |
| Barium         | 41.6    | mg/Kg        |                  | 5/12/2021 17:48      |
| Cadmium        | 0.730   | mg/Kg        |                  | 5/12/2021 17:48      |
| Chromium       | 12.5    | mg/Kg        |                  | 5/12/2021 17:48      |
| Lead           | 69.6    | mg/Kg        |                  | 5/12/2021 17:48      |
| Selenium       | 1.24    | mg/Kg        |                  | 5/12/2021 17:48      |
| Silver         | < 0.572 | mg/Kg        |                  | 5/12/2021 17:48      |
|                |         |              |                  |                      |

Method Reference(s):EPA 6010CEPA 3050BPreparation Date:5/11/2021

**Data File:** 210512B

# **PCBs**

| <u>Analyte</u> | <b>Result</b> | <u>Units</u> | Qualifier | <b>Date Analyzed</b> |
|----------------|---------------|--------------|-----------|----------------------|
| PCB-1016       | < 0.0276      | mg/Kg        |           | 5/13/2021 16:28      |

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Page 23 of 79



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-34 (12.5-13 ft.)

 Lab Sample ID:
 211960-04
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

| PCB-1221             | < 0.0276      | mg/Kg            |             |                 | 5/13/2021         | 16:28      |
|----------------------|---------------|------------------|-------------|-----------------|-------------------|------------|
| PCB-1232             | < 0.0276      | mg/Kg            |             |                 | 5/13/2021         | 16:28      |
| PCB-1242             | < 0.0276      | mg/Kg            |             |                 | 5/13/2021         | 16:28      |
| PCB-1248             | < 0.0276      | mg/Kg            |             |                 | 5/13/2021         | 16:28      |
| PCB-1254             | < 0.0276      | mg/Kg            |             |                 | 5/13/2021         | 16:28      |
| PCB-1260             | < 0.0276      | mg/Kg            |             |                 | 5/13/2021         | 16:28      |
| PCB-1262             | < 0.0276      | mg/Kg            |             |                 | 5/13/2021         | 16:28      |
| PCB-1268             | < 0.0276      | mg/Kg            |             |                 | 5/13/2021         | 16:28      |
| <u>Surrogate</u>     | <u>Percen</u> | Percent Recovery |             | <u>Outliers</u> | <b>Date Analy</b> | <u>zed</u> |
| Tetrachloro-m-xylene | 4             | 41.5             | 16.4 - 99.1 |                 | 5/13/2021         | 16:28      |

**Method Reference(s):** EPA 8082A EPA 3546

**Preparation Date:** 5/12/2021

#### **Chlorinated Pesticides**

| <u>Analyte</u>     | <u>Result</u> | <u>Units</u> | <b>Qualifier</b> | <b>Date Analyzed</b> |
|--------------------|---------------|--------------|------------------|----------------------|
| 4,4-DDD            | < 2.76        | ug/Kg        |                  | 5/13/2021 16:38      |
| 4,4-DDE            | < 2.76        | ug/Kg        |                  | 5/13/2021 16:38      |
| 4,4-DDT            | < 2.76        | ug/Kg        |                  | 5/13/2021 16:38      |
| Aldrin             | < 2.76        | ug/Kg        |                  | 5/13/2021 16:38      |
| alpha-BHC          | < 2.76        | ug/Kg        |                  | 5/13/2021 16:38      |
| beta-BHC           | < 2.76        | ug/Kg        |                  | 5/13/2021 16:38      |
| cis-Chlordane      | < 2.76        | ug/Kg        |                  | 5/13/2021 16:38      |
| delta-BHC          | < 2.76        | ug/Kg        |                  | 5/13/2021 16:38      |
| Dieldrin           | 3.66          | ug/Kg        | P                | 5/13/2021 16:38      |
| Endosulfan I       | < 2.76        | ug/Kg        |                  | 5/13/2021 16:38      |
| Endosulfan II      | < 2.76        | ug/Kg        |                  | 5/13/2021 16:38      |
| Endosulfan Sulfate | 4.04          | ug/Kg        | P                | 5/13/2021 16:38      |
| Endrin             | < 2.76        | ug/Kg        |                  | 5/13/2021 16:38      |
| Endrin Aldehyde    | < 2.76        | ug/Kg        |                  | 5/13/2021 16:38      |
| Endrin Ketone      | < 2.76        | ug/Kg        |                  | 5/13/2021 16:38      |

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Page 24 of 79



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-34 (12.5-13 ft.)

 Lab Sample ID:
 211960-04
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

| gamma-BHC (Lindane)      | < 2.76     | ug/Kg         |               |                 | 5/13/2021         | 16:38      |
|--------------------------|------------|---------------|---------------|-----------------|-------------------|------------|
| Heptachlor               | < 2.76     | ug/Kg         |               |                 | 5/13/2021         | 16:38      |
| Heptachlor Epoxide       | < 2.76     | ug/Kg         |               |                 | 5/13/2021         | 16:38      |
| Methoxychlor             | < 2.76     | ug/Kg         |               |                 | 5/13/2021         | 16:38      |
| Toxaphene                | < 27.6     | ug/Kg         |               |                 | 5/13/2021         | 16:38      |
| trans-Chlordane          | < 2.76     | ug/Kg         |               |                 | 5/13/2021         | 16:38      |
| <u>Surrogate</u>         | <u>Per</u> | cent Recovery | <u>Limits</u> | <b>Outliers</b> | <b>Date Analy</b> | <u>zed</u> |
| Decachlorobiphenyl (1)   |            | 166           | 10 - 134      | *               | 5/13/2021         | 16:38      |
| Tetrachloro-m-xylene (1) |            | 89.7          | 26.3 - 99.8   |                 | 5/13/2021         | 16:38      |

Method Reference(s): EPA 8081B

EPA 3546

**Preparation Date:** 5/12/2021

# Semi-Volatile Organics (Base Neutrals)

| <u>Analyte</u>               | Result | <u>Units</u> | Qualifier | <b>Date Analyzed</b> |
|------------------------------|--------|--------------|-----------|----------------------|
| 1,1-Biphenyl                 | < 319  | ug/Kg        |           | 5/12/2021 20:33      |
| 1,2,4,5-Tetrachlorobenzene   | < 319  | ug/Kg        |           | 5/12/2021 20:33      |
| 1,2,4-Trichlorobenzene       | < 319  | ug/Kg        |           | 5/12/2021 20:33      |
| 1,2-Dichlorobenzene          | < 319  | ug/Kg        |           | 5/12/2021 20:33      |
| 1,3-Dichlorobenzene          | < 319  | ug/Kg        |           | 5/12/2021 20:33      |
| 1,4-Dichlorobenzene          | < 319  | ug/Kg        |           | 5/12/2021 20:33      |
| 2,2-Oxybis (1-chloropropane) | < 319  | ug/Kg        |           | 5/12/2021 20:33      |
| 2,4-Dinitrotoluene           | < 319  | ug/Kg        |           | 5/12/2021 20:33      |
| 2,6-Dinitrotoluene           | < 319  | ug/Kg        |           | 5/12/2021 20:33      |
| 2-Chloronaphthalene          | < 319  | ug/Kg        |           | 5/12/2021 20:33      |
| 2-Methylnapthalene           | < 319  | ug/Kg        |           | 5/12/2021 20:33      |
| 2-Nitroaniline               | < 319  | ug/Kg        |           | 5/12/2021 20:33      |
| 3,3'-Dichlorobenzidine       | < 319  | ug/Kg        |           | 5/12/2021 20:33      |
| 3-Nitroaniline               | < 319  | ug/Kg        |           | 5/12/2021 20:33      |
| 4-Bromophenyl phenyl ether   | < 319  | ug/Kg        |           | 5/12/2021 20:33      |
| 4-Chloroaniline              | < 319  | ug/Kg        |           | 5/12/2021 20:33      |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-34 (12.5-13 ft.)

 Lab Sample ID:
 211960-04
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

| 4-Chlorophenyl phenyl ether  | < 319 | ug/Kg | 5/12/2021 20:33 |
|------------------------------|-------|-------|-----------------|
| 4-Nitroaniline               | < 319 | ug/Kg | 5/12/2021 20:33 |
| Acenaphthene                 | < 319 | ug/Kg | 5/12/2021 20:33 |
| Acenaphthylene               | < 319 | ug/Kg | 5/12/2021 20:33 |
| Acetophenone                 | < 319 | ug/Kg | 5/12/2021 20:33 |
| Anthracene                   | < 319 | ug/Kg | 5/12/2021 20:33 |
| Atrazine                     | < 319 | ug/Kg | 5/12/2021 20:33 |
| Benzaldehyde                 | < 319 | ug/Kg | 5/12/2021 20:33 |
| Benzo (a) anthracene         | 670   | ug/Kg | 5/12/2021 20:33 |
| Benzo (a) pyrene             | 670   | ug/Kg | 5/12/2021 20:33 |
| Benzo (b) fluoranthene       | 619   | ug/Kg | 5/12/2021 20:33 |
| Benzo (g,h,i) perylene       | 439   | ug/Kg | 5/12/2021 20:33 |
| Benzo (k) fluoranthene       | 419   | ug/Kg | 5/12/2021 20:33 |
| Bis (2-chloroethoxy) methane | < 319 | ug/Kg | 5/12/2021 20:33 |
| Bis (2-chloroethyl) ether    | < 319 | ug/Kg | 5/12/2021 20:33 |
| Bis (2-ethylhexyl) phthalate | < 319 | ug/Kg | 5/12/2021 20:33 |
| Butylbenzylphthalate         | < 319 | ug/Kg | 5/12/2021 20:33 |
| Caprolactam                  | < 319 | ug/Kg | 5/12/2021 20:33 |
| Carbazole                    | < 319 | ug/Kg | 5/12/2021 20:33 |
| Chrysene                     | 659   | ug/Kg | 5/12/2021 20:33 |
| Dibenz (a,h) anthracene      | < 319 | ug/Kg | 5/12/2021 20:33 |
| Dibenzofuran                 | < 319 | ug/Kg | 5/12/2021 20:33 |
| Diethyl phthalate            | < 319 | ug/Kg | 5/12/2021 20:33 |
| Dimethyl phthalate           | < 319 | ug/Kg | 5/12/2021 20:33 |
| Di-n-butyl phthalate         | < 319 | ug/Kg | 5/12/2021 20:33 |
| Di-n-octylphthalate          | < 319 | ug/Kg | 5/12/2021 20:33 |
| Fluoranthene                 | 1410  | ug/Kg | 5/12/2021 20:33 |
| Fluorene                     | < 319 | ug/Kg | 5/12/2021 20:33 |
| Hexachlorobenzene            | < 319 | ug/Kg | 5/12/2021 20:33 |
| Hexachlorobutadiene          | < 319 | ug/Kg | 5/12/2021 20:33 |
|                              |       |       |                 |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-34 (12.5-13 ft.)

 Lab Sample ID:
 211960-04
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

| <u>Surrogate</u>           | <u>Perce</u> | Percent Recovery |  | <u>Outliers</u> | <b>Date Analyzed</b> |
|----------------------------|--------------|------------------|--|-----------------|----------------------|
| Pyrene                     | 1190         | ug/Kg            |  |                 | 5/12/2021 20:33      |
| Phenanthrene               | 675          | ug/Kg            |  |                 | 5/12/2021 20:33      |
| N-Nitrosodiphenylamine     | < 319        | ug/Kg            |  |                 | 5/12/2021 20:33      |
| N-Nitroso-di-n-propylamine | < 319        | ug/Kg            |  |                 | 5/12/2021 20:33      |
| Nitrobenzene               | < 319        | ug/Kg            |  |                 | 5/12/2021 20:33      |
| Naphthalene                | < 319        | ug/Kg            |  |                 | 5/12/2021 20:33      |
| Isophorone                 | < 319        | ug/Kg            |  |                 | 5/12/2021 20:33      |
| Indeno (1,2,3-cd) pyrene   | 485          | ug/Kg            |  |                 | 5/12/2021 20:33      |
| Hexachloroethane           | < 319        | ug/Kg            |  |                 | 5/12/2021 20:33      |
| Hexachlorocyclopentadiene  | < 1270       | ug/Kg            |  |                 | 5/12/2021 20:33      |
|                            |              |                  |  |                 |                      |

| <u>Surrogate</u> | Percent Recovery | LIIIILS     | <u>outilers</u> | Date Aliaiy | <u>zeu</u> |
|------------------|------------------|-------------|-----------------|-------------|------------|
| 2-Fluorobiphenyl | 72.3             | 34.6 - 83.9 |                 | 5/12/2021   | 20:33      |
| Nitrobenzene-d5  | 68.1             | 32.4 - 76   |                 | 5/12/2021   | 20:33      |
| Terphenyl-d14    | 80.3             | 38.2 - 88.8 |                 | 5/12/2021   | 20:33      |

**Method Reference(s):** EPA 8270D

EPA 3546

 Preparation Date:
 5/11/2021

 Data File:
 B54070.D

# **Volatile Organics**

| <u>Analyte</u>              | Result | <u>Units</u> | Qualifier | <b>Date Analyzed</b> |
|-----------------------------|--------|--------------|-----------|----------------------|
| 1,1,1-Trichloroethane       | < 17.2 | ug/Kg        |           | 5/12/2021 22:39      |
| 1,1,2,2-Tetrachloroethane   | < 17.2 | ug/Kg        |           | 5/12/2021 22:39      |
| 1,1,2-Trichloroethane       | < 17.2 | ug/Kg        |           | 5/12/2021 22:39      |
| 1,1-Dichloroethane          | < 17.2 | ug/Kg        |           | 5/12/2021 22:39      |
| 1,1-Dichloroethene          | < 17.2 | ug/Kg        |           | 5/12/2021 22:39      |
| 1,2,3-Trichlorobenzene      | < 42.9 | ug/Kg        |           | 5/12/2021 22:39      |
| 1,2,4-Trichlorobenzene      | < 42.9 | ug/Kg        |           | 5/12/2021 22:39      |
| 1,2-Dibromo-3-Chloropropane | < 85.8 | ug/Kg        |           | 5/12/2021 22:39      |
| 1,2-Dibromoethane           | < 17.2 | ug/Kg        |           | 5/12/2021 22:39      |
| 1,2-Dichlorobenzene         | < 17.2 | ug/Kg        |           | 5/12/2021 22:39      |
| 1,2-Dichloroethane          | < 17.2 | ug/Kg        |           | 5/12/2021 22:39      |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-34 (12.5-13 ft.)

Lab Sample ID:211960-04Date Sampled:5/7/2021Matrix:SoilDate Received:5/10/2021

| Mau ix:                 | 3011   |       | Date Received: | 5/10/2021 |       |
|-------------------------|--------|-------|----------------|-----------|-------|
|                         |        |       |                |           |       |
| 1,2-Dichloropropane     | < 17.2 | ug/Kg |                | 5/12/2021 | 22:39 |
| 1,3-Dichlorobenzene     | < 17.2 | ug/Kg |                | 5/12/2021 | 22:39 |
| 1,4-Dichlorobenzene     | < 17.2 | ug/Kg |                | 5/12/2021 | 22:39 |
| 1,4-Dioxane             | < 85.8 | ug/Kg |                | 5/12/2021 | 22:39 |
| 2-Butanone              | < 85.8 | ug/Kg |                | 5/12/2021 | 22:39 |
| 2-Hexanone              | < 42.9 | ug/Kg |                | 5/12/2021 | 22:39 |
| 4-Methyl-2-pentanone    | < 42.9 | ug/Kg |                | 5/12/2021 | 22:39 |
| Acetone                 | 169    | ug/Kg |                | 5/12/2021 | 22:39 |
| Benzene                 | < 17.2 | ug/Kg |                | 5/12/2021 | 22:39 |
| Bromochloromethane      | < 42.9 | ug/Kg |                | 5/12/2021 | 22:39 |
| Bromodichloromethane    | < 17.2 | ug/Kg |                | 5/12/2021 | 22:39 |
| Bromoform               | < 42.9 | ug/Kg |                | 5/12/2021 | 22:39 |
| Bromomethane            | < 17.2 | ug/Kg |                | 5/12/2021 | 22:39 |
| Carbon disulfide        | < 17.2 | ug/Kg |                | 5/12/2021 | 22:39 |
| Carbon Tetrachloride    | < 17.2 | ug/Kg |                | 5/12/2021 | 22:39 |
| Chlorobenzene           | < 17.2 | ug/Kg |                | 5/12/2021 | 22:39 |
| Chloroethane            | < 17.2 | ug/Kg |                | 5/12/2021 | 22:39 |
| Chloroform              | < 17.2 | ug/Kg |                | 5/12/2021 | 22:39 |
| Chloromethane           | < 17.2 | ug/Kg |                | 5/12/2021 | 22:39 |
| cis-1,2-Dichloroethene  | < 17.2 | ug/Kg |                | 5/12/2021 | 22:39 |
| cis-1,3-Dichloropropene | < 17.2 | ug/Kg |                | 5/12/2021 | 22:39 |
| Cyclohexane             | < 85.8 | ug/Kg |                | 5/12/2021 | 22:39 |
| Dibromochloromethane    | < 17.2 | ug/Kg |                | 5/12/2021 | 22:39 |
| Dichlorodifluoromethane | < 17.2 | ug/Kg |                | 5/12/2021 | 22:39 |
| Ethylbenzene            | < 17.2 | ug/Kg |                | 5/12/2021 | 22:39 |
| Freon 113               | < 17.2 | ug/Kg |                | 5/12/2021 | 22:39 |
| Isopropylbenzene        | < 17.2 | ug/Kg |                | 5/12/2021 | 22:39 |
| m,p-Xylene              | < 17.2 | ug/Kg |                | 5/12/2021 | 22:39 |
| Methyl acetate          | < 17.2 | ug/Kg |                | 5/12/2021 | 22:39 |
| Methyl tert-butyl Ether | < 17.2 | ug/Kg |                | 5/12/2021 | 22:39 |
|                         |        |       |                |           |       |



Methylcvclohexane

Lab Project ID: 211960

5/12/2021 22:39

5/12/2021

5/12/2021

22:39

22:39

Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

< 17.2

**Sample Identifier:** TP21-34 (12.5-13 ft.)

 Lab Sample ID:
 211960-04
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

|          | Methylene chloride        | < 42.9 | 9         | ug/Kg   |               |                 | 5/12/2021         | 22:39 |
|----------|---------------------------|--------|-----------|---------|---------------|-----------------|-------------------|-------|
|          | o-Xylene                  | < 17.2 | 2         | ug/Kg   |               |                 | 5/12/2021         | 22:39 |
|          | Styrene                   | < 42.9 | 9         | ug/Kg   |               |                 | 5/12/2021         | 22:39 |
|          | Tetrachloroethene         | < 17.2 | 2         | ug/Kg   |               |                 | 5/12/2021         | 22:39 |
|          | Toluene                   | < 17.2 | 2         | ug/Kg   |               |                 | 5/12/2021         | 22:39 |
|          | trans-1,2-Dichloroethene  | < 17.2 | 2         | ug/Kg   |               |                 | 5/12/2021         | 22:39 |
|          | trans-1,3-Dichloropropene | < 17.2 | 2         | ug/Kg   |               |                 | 5/12/2021         | 22:39 |
|          | Trichloroethene           | < 17.2 | 2         | ug/Kg   |               |                 | 5/12/2021         | 22:39 |
|          | Trichlorofluoromethane    | < 17.2 | 2         | ug/Kg   |               |                 | 5/12/2021         | 22:39 |
|          | Vinyl chloride            | < 17.2 | 2         | ug/Kg   |               |                 | 5/12/2021         | 22:39 |
| <u>S</u> | urrogate                  |        | Percent R | ecovery | <u>Limits</u> | <u>Outliers</u> | <b>Date Analy</b> | zed   |
|          | 1,2-Dichloroethane-d4     |        | 106       | 5       | 52.5 - 151    |                 | 5/12/2021         | 22:39 |
|          | 4-Bromofluorobenzene      |        | 96.8      | 8       | 37.7 - 146    |                 | 5/12/2021         | 22:39 |
|          |                           |        |           |         |               |                 |                   |       |

86.3

105

ug/Kg

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: z01555.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

92.1 - 115

74 - 120

# **Total Cvanide**

Pentafluorobenzene

Toluene-D8

| <u>Analyte</u> | <u>Result</u> | <u>Units</u> | Qualifier | <b>Date Analyzed</b> |
|----------------|---------------|--------------|-----------|----------------------|
| Cyanide, Total | < 0.590       | mg/Kg        |           | 5/12/2021            |

Method Reference(s): EPA 9014
EPA 9010C
Preparation Date: 5/12/2021



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-24 (18.0-18.5 ft.)

Lab Sample ID:211960-05Date Sampled:5/7/2021Matrix:SoilDate Received:5/10/2021

## **Herbicides**

| <u>Analyte</u>    | <u>Result</u> | <u>Units</u> | <b>Qualifier</b> | <b>Date Analyzed</b> |
|-------------------|---------------|--------------|------------------|----------------------|
| 2,4,5-T           | <341          | ug/Kg        |                  | 5/12/2021            |
| 2,4,5-TP (Silvex) | <341          | ug/Kg        |                  | 5/12/2021            |
| 2,4-D             | <1360         | ug/Kg        |                  | 5/12/2021            |

Method Reference(s):EPA 8321BSubcontractor ELAP ID:10709

#### **Mercury**

| <u>Analyte</u> | <u>Result</u> | <u>Units</u> | Qualifier | <b>Date Analyzed</b> |
|----------------|---------------|--------------|-----------|----------------------|
| Mercury        | 0.163         | mg/Kg        |           | 5/14/2021 10:13      |

Method Reference(s):EPA 7471BPreparation Date:5/13/2021Data File:Hg210514C

# RCRA Metals (ICP)

| Analyte  | Result  | <u>Units</u> | <b>Qualifier</b> | <b>Date Analy</b> | zed   |
|----------|---------|--------------|------------------|-------------------|-------|
| Arsenic  | 3.11    | mg/Kg        |                  | 5/12/2021         | 18:02 |
| Barium   | 47.9    | mg/Kg        |                  | 5/12/2021         | 18:02 |
| Cadmium  | 0.713   | mg/Kg        |                  | 5/12/2021         | 18:02 |
| Chromium | 9.02    | mg/Kg        |                  | 5/12/2021         | 18:02 |
| Lead     | 356     | mg/Kg        |                  | 5/12/2021         | 18:02 |
| Selenium | < 1.04  | mg/Kg        |                  | 5/13/2021         | 16:33 |
| Silver   | < 0.521 | mg/Kg        |                  | 5/12/2021         | 18:02 |

Method Reference(s):EPA 6010CEPA 3050BPreparation Date:5/11/2021

Data File: 5/11/202

# **PCBs**

| <u>Analyte</u> | Result   | <u>Units</u> | Qualifier | <b>Date Analyzed</b> |
|----------------|----------|--------------|-----------|----------------------|
| PCB-1016       | < 0.0321 | mg/Kg        |           | 5/13/2021 16:52      |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-24 (18.0-18.5 ft.)

 Lab Sample ID:
 211960-05
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

| Surrogate Tetrachloro-m-xylene |          | nt Recovery<br>61.5 | <u>Limits</u><br>16.4 - 99.1 | <u>Outliers</u> | <b>Date Analy</b> 5/13/2021 | zed<br>16:52 |
|--------------------------------|----------|---------------------|------------------------------|-----------------|-----------------------------|--------------|
| PCB-1268                       | < 0.0321 | mg/Kg               |                              |                 | 5/13/2021                   |              |
| PCB-1262                       | < 0.0321 | mg/Kg               |                              |                 | 5/13/2021                   | 16:52        |
| PCB-1260                       | < 0.0321 | mg/Kg               |                              |                 | 5/13/2021                   | 16:52        |
| PCB-1254                       | < 0.0321 | mg/Kg               |                              |                 | 5/13/2021                   | 16:52        |
| PCB-1248                       | < 0.0321 | mg/Kg               |                              |                 | 5/13/2021                   | 16:52        |
| PCB-1242                       | < 0.0321 | mg/Kg               |                              |                 | 5/13/2021                   | 16:52        |
| PCB-1232                       | < 0.0321 | mg/Kg               |                              |                 | 5/13/2021                   | 16:52        |
| PCB-1221                       | < 0.0321 | mg/Kg               |                              |                 | 5/13/2021                   | 16:52        |
|                                |          |                     |                              |                 |                             |              |

Method Reference(s): EPA 8082A EPA 3546

**Preparation Date:** 5/12/2021

#### **Chlorinated Pesticides**

| <u>Analyte</u>     | <u>Result</u> | <u>Units</u> | <b>Qualifier</b> | <b>Date Analyzed</b> |
|--------------------|---------------|--------------|------------------|----------------------|
| 4,4-DDD            | 7.34          | ug/Kg        | P                | 5/13/2021 16:55      |
| 4,4-DDE            | 5.20          | ug/Kg        |                  | 5/13/2021 16:55      |
| 4,4-DDT            | < 3.21        | ug/Kg        |                  | 5/13/2021 16:55      |
| Aldrin             | < 3.21        | ug/Kg        |                  | 5/13/2021 16:55      |
| alpha-BHC          | < 3.21        | ug/Kg        |                  | 5/13/2021 16:55      |
| beta-BHC           | < 3.21        | ug/Kg        |                  | 5/13/2021 16:55      |
| cis-Chlordane      | 4.02          | ug/Kg        |                  | 5/13/2021 16:55      |
| delta-BHC          | < 3.21        | ug/Kg        |                  | 5/13/2021 16:55      |
| Dieldrin           | 3.31          | ug/Kg        |                  | 5/13/2021 16:55      |
| Endosulfan I       | < 3.21        | ug/Kg        |                  | 5/13/2021 16:55      |
| Endosulfan II      | < 3.21        | ug/Kg        |                  | 5/13/2021 16:55      |
| Endosulfan Sulfate | < 3.21        | ug/Kg        |                  | 5/13/2021 16:55      |
| Endrin             | < 3.21        | ug/Kg        |                  | 5/13/2021 16:55      |
| Endrin Aldehyde    | < 3.21        | ug/Kg        |                  | 5/13/2021 16:55      |
| Endrin Ketone      | < 3.21        | ug/Kg        |                  | 5/13/2021 16:55      |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-24 (18.0-18.5 ft.)

 Lab Sample ID:
 211960-05
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

| gamma-BHC (Lindane)      | < 3.21       | ug/Kg        |               |                 | 5/13/2021         | 16:55      |
|--------------------------|--------------|--------------|---------------|-----------------|-------------------|------------|
| Heptachlor               | < 3.21       | ug/Kg        |               |                 | 5/13/2021         | 16:55      |
| Heptachlor Epoxide       | < 3.21       | ug/Kg        |               |                 | 5/13/2021         | 16:55      |
| Methoxychlor             | 4.89         | ug/Kg        |               | P               | 5/13/2021         | 16:55      |
| Toxaphene                | < 32.1       | ug/Kg        |               |                 | 5/13/2021         | 16:55      |
| trans-Chlordane          | 4.85         | ug/Kg        |               |                 | 5/13/2021         | 16:55      |
| <u>Surrogate</u>         | <u>Perce</u> | ent Recovery | <u>Limits</u> | <b>Outliers</b> | <b>Date Analy</b> | <u>zed</u> |
| Decachlorobiphenyl (1)   |              | 99.1         | 10 - 134      |                 | 5/13/2021         | 16:55      |
| Tetrachloro-m-xylene (1) |              | 77.8         | 26.3 - 99.8   |                 | 5/13/2021         | 16:55      |

**Method Reference(s):** EPA 8081B

EPA 3546

**Preparation Date:** 5/12/2021

# Semi-Volatile Organics (Base Neutrals)

| Analyte                      | Result | <u>Units</u> | Qualifier | Date Analyz | <u>ed</u> |
|------------------------------|--------|--------------|-----------|-------------|-----------|
| 1,1-Biphenyl                 | < 314  | ug/Kg        |           | 5/13/2021 0 | 0:24      |
| 1,2,4,5-Tetrachlorobenzene   | < 314  | ug/Kg        |           | 5/13/2021 0 | 0:24      |
| 1,2,4-Trichlorobenzene       | < 314  | ug/Kg        |           | 5/13/2021 0 | 0:24      |
| 1,2-Dichlorobenzene          | < 314  | ug/Kg        |           | 5/13/2021 0 | 0:24      |
| 1,3-Dichlorobenzene          | < 314  | ug/Kg        |           | 5/13/2021 0 | 0:24      |
| 1,4-Dichlorobenzene          | < 314  | ug/Kg        |           | 5/13/2021 0 | 0:24      |
| 2,2-Oxybis (1-chloropropane) | < 314  | ug/Kg        |           | 5/13/2021 0 | 0:24      |
| 2,4-Dinitrotoluene           | < 314  | ug/Kg        |           | 5/13/2021 0 | 0:24      |
| 2,6-Dinitrotoluene           | < 314  | ug/Kg        |           | 5/13/2021 0 | 0:24      |
| 2-Chloronaphthalene          | < 314  | ug/Kg        |           | 5/13/2021 0 | 0:24      |
| 2-Methylnapthalene           | < 314  | ug/Kg        |           | 5/13/2021 0 | 0:24      |
| 2-Nitroaniline               | < 314  | ug/Kg        |           | 5/13/2021 0 | 0:24      |
| 3,3'-Dichlorobenzidine       | < 314  | ug/Kg        |           | 5/13/2021 0 | 0:24      |
| 3-Nitroaniline               | < 314  | ug/Kg        |           | 5/13/2021 0 | 0:24      |
| 4-Bromophenyl phenyl ether   | < 314  | ug/Kg        |           | 5/13/2021 0 | 0:24      |
| 4-Chloroaniline              | < 314  | ug/Kg        |           | 5/13/2021 0 | 0:24      |
|                              |        |              |           |             |           |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-24 (18.0-18.5 ft.)

Lab Sample ID:211960-05Date Sampled:5/7/2021Matrix:SoilDate Received:5/10/2021

|                              |       |       | · · · · · · · · · · · · · · · · · · · |       |
|------------------------------|-------|-------|---------------------------------------|-------|
|                              |       |       |                                       |       |
| 4-Chlorophenyl phenyl ether  | < 314 | ug/Kg | 5/13/2021                             | 00:24 |
| 4-Nitroaniline               | < 314 | ug/Kg | 5/13/2021                             | 00:24 |
| Acenaphthene                 | < 314 | ug/Kg | 5/13/2021                             | 00:24 |
| Acenaphthylene               | < 314 | ug/Kg | 5/13/2021                             | 00:24 |
| Acetophenone                 | < 314 | ug/Kg | 5/13/2021                             | 00:24 |
| Anthracene                   | < 314 | ug/Kg | 5/13/2021                             | 00:24 |
| Atrazine                     | < 314 | ug/Kg | 5/13/2021                             | 00:24 |
| Benzaldehyde                 | < 314 | ug/Kg | 5/13/2021                             | 00:24 |
| Benzo (a) anthracene         | 509   | ug/Kg | 5/13/2021                             | 00:24 |
| Benzo (a) pyrene             | 513   | ug/Kg | 5/13/2021                             | 00:24 |
| Benzo (b) fluoranthene       | 424   | ug/Kg | 5/13/2021                             | 00:24 |
| Benzo (g,h,i) perylene       | 369   | ug/Kg | 5/13/2021                             | 00:24 |
| Benzo (k) fluoranthene       | 385   | ug/Kg | 5/13/2021                             | 00:24 |
| Bis (2-chloroethoxy) methane | < 314 | ug/Kg | 5/13/2021                             | 00:24 |
| Bis (2-chloroethyl) ether    | < 314 | ug/Kg | 5/13/2021                             | 00:24 |
| Bis (2-ethylhexyl) phthalate | < 314 | ug/Kg | 5/13/2021                             | 00:24 |
| Butylbenzylphthalate         | < 314 | ug/Kg | 5/13/2021                             | 00:24 |
| Caprolactam                  | < 314 | ug/Kg | 5/13/2021                             | 00:24 |
| Carbazole                    | < 314 | ug/Kg | 5/13/2021                             | 00:24 |
| Chrysene                     | 531   | ug/Kg | 5/13/2021                             | 00:24 |
| Dibenz (a,h) anthracene      | < 314 | ug/Kg | 5/13/2021                             | 00:24 |
| Dibenzofuran                 | < 314 | ug/Kg | 5/13/2021                             | 00:24 |
| Diethyl phthalate            | < 314 | ug/Kg | 5/13/2021                             | 00:24 |
| Dimethyl phthalate           | < 314 | ug/Kg | 5/13/2021                             | 00:24 |
| Di-n-butyl phthalate         | < 314 | ug/Kg | 5/13/2021                             | 00:24 |
| Di-n-octylphthalate          | < 314 | ug/Kg | 5/13/2021                             | 00:24 |
| Fluoranthene                 | 1160  | ug/Kg | 5/13/2021                             | 00:24 |
| Fluorene                     | < 314 | ug/Kg | 5/13/2021                             | 00:24 |
| Hexachlorobenzene            | < 314 | ug/Kg | 5/13/2021                             | 00:24 |
| Hexachlorobutadiene          | < 314 | ug/Kg | 5/13/2021                             | 00:24 |
|                              |       |       |                                       |       |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-24 (18.0-18.5 ft.)

 Lab Sample ID:
 211960-05
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

| 2-Fluorobiphenyl           |              | 72.2         | 34.6 - 83.9   |                 | 5/13/2021         | 00:24      |
|----------------------------|--------------|--------------|---------------|-----------------|-------------------|------------|
| <u>Surrogate</u>           | <u>Perce</u> | ent Recovery | <u>Limits</u> | <b>Outliers</b> | <b>Date Analy</b> | <u>zed</u> |
| Pyrene                     | 990          | ug/Kg        |               |                 | 5/13/2021         | 00:24      |
| Phenanthrene               | <b>523</b>   | ug/Kg        |               |                 | 5/13/2021         | 00:24      |
| N-Nitrosodiphenylamine     | < 314        | ug/Kg        |               |                 | 5/13/2021         | 00:24      |
| N-Nitroso-di-n-propylamine | < 314        | ug/Kg        |               |                 | 5/13/2021         | 00:24      |
| Nitrobenzene               | < 314        | ug/Kg        |               |                 | 5/13/2021         | 00:24      |
| Naphthalene                | < 314        | ug/Kg        |               |                 | 5/13/2021         | 00:24      |
| Isophorone                 | < 314        | ug/Kg        |               |                 | 5/13/2021         | 00:24      |
| Indeno (1,2,3-cd) pyrene   | 385          | ug/Kg        |               |                 | 5/13/2021         | 00:24      |
| Hexachloroethane           | < 314        | ug/Kg        |               |                 | 5/13/2021         | 00:24      |
| Hexachlorocyclopentadiene  | < 1250       | ug/Kg        |               |                 | 5/13/2021         | 00:24      |
|                            |              |              |               |                 |                   |            |

 2-Fluorobiphenyl
 72.2
 34.6 - 83.9
 5/13/2021
 00:24

 Nitrobenzene-d5
 67.1
 32.4 - 76
 5/13/2021
 00:24

 Terphenyl-d14
 80.3
 38.2 - 88.8
 5/13/2021
 00:24

**Method Reference(s):** EPA 8270D

EPA 3546

 Preparation Date:
 5/11/2021

 Data File:
 B54078.D

# **Volatile Organics**

| esult <u>Units</u> | Qualifier                                                                                                         | Date Analyzed                                                                                                                                         |
|--------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 87 ug/Kg           |                                                                                                                   | 5/11/2021 16:16                                                                                                                                       |
| 2.2 ug/Kg          |                                                                                                                   | 5/11/2021 16:16                                                                                                                                       |
| 2.2 ug/Kg          |                                                                                                                   | 5/11/2021 16:16                                                                                                                                       |
| 4.3 ug/Kg          |                                                                                                                   | 5/11/2021 16:16                                                                                                                                       |
| 87 ug/Kg           |                                                                                                                   | 5/11/2021 16:16                                                                                                                                       |
| 87 ug/Kg           |                                                                                                                   | 5/11/2021 16:16                                                                                                                                       |
| 87 ug/Kg           |                                                                                                                   | 5/11/2021 16:16                                                                                                                                       |
|                    | ug/Kg | ug/Kg |

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Page 34 of 79



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-24 (18.0-18.5 ft.)

Lab Sample ID:211960-05Date Sampled:5/7/2021Matrix:SoilDate Received:5/10/2021

|                         |        |       | -1 -1 -         |
|-------------------------|--------|-------|-----------------|
|                         |        |       |                 |
| 1,2-Dichloropropane     | < 8.87 | ug/Kg | 5/11/2021 16:16 |
| 1,3-Dichlorobenzene     | < 8.87 | ug/Kg | 5/11/2021 16:16 |
| 1,4-Dichlorobenzene     | < 8.87 | ug/Kg | 5/11/2021 16:16 |
| 1,4-Dioxane             | < 44.3 | ug/Kg | 5/11/2021 16:16 |
| 2-Butanone              | < 44.3 | ug/Kg | 5/11/2021 16:16 |
| 2-Hexanone              | < 22.2 | ug/Kg | 5/11/2021 16:16 |
| 4-Methyl-2-pentanone    | < 22.2 | ug/Kg | 5/11/2021 16:16 |
| Acetone                 | < 44.3 | ug/Kg | 5/11/2021 16:16 |
| Benzene                 | < 8.87 | ug/Kg | 5/11/2021 16:16 |
| Bromochloromethane      | < 22.2 | ug/Kg | 5/11/2021 16:16 |
| Bromodichloromethane    | < 8.87 | ug/Kg | 5/11/2021 16:16 |
| Bromoform               | < 22.2 | ug/Kg | 5/11/2021 16:16 |
| Bromomethane            | < 8.87 | ug/Kg | 5/11/2021 16:16 |
| Carbon disulfide        | < 8.87 | ug/Kg | 5/11/2021 16:16 |
| Carbon Tetrachloride    | < 8.87 | ug/Kg | 5/11/2021 16:16 |
| Chlorobenzene           | < 8.87 | ug/Kg | 5/11/2021 16:16 |
| Chloroethane            | < 8.87 | ug/Kg | 5/11/2021 16:16 |
| Chloroform              | < 8.87 | ug/Kg | 5/11/2021 16:16 |
| Chloromethane           | < 8.87 | ug/Kg | 5/11/2021 16:16 |
| cis-1,2-Dichloroethene  | < 8.87 | ug/Kg | 5/11/2021 16:16 |
| cis-1,3-Dichloropropene | < 8.87 | ug/Kg | 5/11/2021 16:16 |
| Cyclohexane             | < 44.3 | ug/Kg | 5/11/2021 16:16 |
| Dibromochloromethane    | < 8.87 | ug/Kg | 5/11/2021 16:16 |
| Dichlorodifluoromethane | < 8.87 | ug/Kg | 5/11/2021 16:16 |
| Ethylbenzene            | < 8.87 | ug/Kg | 5/11/2021 16:16 |
| Freon 113               | < 8.87 | ug/Kg | 5/11/2021 16:16 |
| Isopropylbenzene        | < 8.87 | ug/Kg | 5/11/2021 16:16 |
| m,p-Xylene              | < 8.87 | ug/Kg | 5/11/2021 16:16 |
| Methyl acetate          | < 8.87 | ug/Kg | 5/11/2021 16:16 |
| Methyl tert-butyl Ether | < 8.87 | ug/Kg | 5/11/2021 16:16 |
|                         |        |       |                 |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-24 (18.0-18.5 ft.)

 Lab Sample ID:
 211960-05
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

| Methylcyclohexane         | < 8.87 | ug/Kg        |               |                 | 5/11/2021         | 16:16 |
|---------------------------|--------|--------------|---------------|-----------------|-------------------|-------|
| Methylene chloride        | < 22.2 | ug/Kg        |               |                 | 5/11/2021         | 16:16 |
| o-Xylene                  | < 8.87 | ug/Kg        |               |                 | 5/11/2021         | 16:16 |
| Styrene                   | < 22.2 | ug/Kg        |               |                 | 5/11/2021         | 16:16 |
| Tetrachloroethene         | < 8.87 | ug/Kg        |               |                 | 5/11/2021         | 16:16 |
| Toluene                   | < 8.87 | ug/Kg        |               |                 | 5/11/2021         | 16:16 |
| trans-1,2-Dichloroethene  | < 8.87 | ug/Kg        |               |                 | 5/11/2021         | 16:16 |
| trans-1,3-Dichloropropene | < 8.87 | ug/Kg        |               |                 | 5/11/2021         | 16:16 |
| Trichloroethene           | < 8.87 | ug/Kg        |               |                 | 5/11/2021         | 16:16 |
| Trichlorofluoromethane    | < 8.87 | ug/Kg        |               |                 | 5/11/2021         | 16:16 |
| Vinyl chloride            | < 8.87 | ug/Kg        |               |                 | 5/11/2021         | 16:16 |
| <u>Surrogate</u>          | Perce  | ent Recovery | <u>Limits</u> | <b>Outliers</b> | <b>Date Analy</b> | zed   |
| 1,2-Dichloroethane-d4     |        | 101          | 52.5 - 151    |                 | 5/11/2021         | 16:16 |

| 1,2-Dichloroethane-d4 | 101  | 52.5 - 151 | 5/11/2021 | 16:16 |
|-----------------------|------|------------|-----------|-------|
| 4-Bromofluorobenzene  | 106  | 37.7 - 146 | 5/11/2021 | 16:16 |
| Pentafluorobenzene    | 97.1 | 92.1 - 115 | 5/11/2021 | 16:16 |
| Toluene-D8            | 108  | 74 - 120   | 5/11/2021 | 16:16 |
|                       |      |            |           |       |

**Method Reference(s):** EPA 8260C

EPA 5035A - L

Data File: z01499.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

# **Total Cyanide**

| <u>Analyte</u> | Result  | <u>Units</u> | <b>Qualifier</b> | <b>Date Analyzed</b> |
|----------------|---------|--------------|------------------|----------------------|
| Cyanide, Total | < 0.477 | mg/Kg        |                  | 5/14/2021            |

Method Reference(s): EPA 9014
EPA 9010C
Preparation Date: 5/13/2021



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-25 (3.0-3.5 ft.)

Lab Sample ID:211960-06Date Sampled:5/7/2021Matrix:SoilDate Received:5/10/2021

## **Herbicides**

| <u>Analyte</u>    | <b>Result</b> | <u>Units</u> | <b>Qualifier</b> | <b>Date Analyzed</b> |
|-------------------|---------------|--------------|------------------|----------------------|
| 2,4,5-T           | <336          | ug/Kg        |                  | 5/13/2021            |
| 2,4,5-TP (Silvex) | <336          | ug/Kg        |                  | 5/13/2021            |
| 2,4-D             | <1340         | ug/Kg        |                  | 5/13/2021            |

**Method Reference(s):** EPA 8321B **Subcontractor ELAP ID:** 10709

### **Mercury**

| <u>Analyte</u> | Result | <u>Units</u> | <b>Qualifier</b> | <b>Date Analyzed</b> |
|----------------|--------|--------------|------------------|----------------------|
| Mercury        | 0.0476 | mg/Kg        |                  | 5/14/2021 10:14      |

Method Reference(s):EPA 7471BPreparation Date:5/13/2021Data File:Hg210514C

# RCRA Metals (ICP)

| Analyte  | Result  | <u>Units</u> | Qualifier | Date Analyzed | l  |
|----------|---------|--------------|-----------|---------------|----|
| Arsenic  | 4.46    | mg/Kg        |           | 5/12/2021 18: | 06 |
| Barium   | 45.2    | mg/Kg        |           | 5/12/2021 18: | 06 |
| Cadmium  | 0.764   | mg/Kg        |           | 5/12/2021 18: | 06 |
| Chromium | 9.10    | mg/Kg        |           | 5/12/2021 18: | 06 |
| Lead     | 30.0    | mg/Kg        |           | 5/12/2021 18: | 06 |
| Selenium | < 1.07  | mg/Kg        |           | 5/12/2021 18: | 06 |
| Silver   | < 0.533 | mg/Kg        |           | 5/12/2021 18: | 06 |

Method Reference(s):EPA 6010CEPA 3050BPreparation Date:5/11/2021

**Data File:** 5/11/202

# **PCBs**

| <u>Analyte</u> | Result   | <u>Units</u> | <b>Qualifier</b> | <b>Date Analyzed</b> |
|----------------|----------|--------------|------------------|----------------------|
| PCB-1016       | < 0.0274 | mg/Kg        |                  | 5/13/2021 17:15      |

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Report Prepared Tuesday, May 18, 2021



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-25 (3.0-3.5 ft.)

 Lab Sample ID:
 211960-06
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

| PCB-1221             | < 0.0274      | mg/Kg      |               |                 | 5/13/2021         | 17:15      |
|----------------------|---------------|------------|---------------|-----------------|-------------------|------------|
| PCB-1232             | < 0.0274      | mg/Kg      |               |                 | 5/13/2021         | 17:15      |
| PCB-1242             | < 0.0274      | mg/Kg      |               |                 | 5/13/2021         | 17:15      |
| PCB-1248             | < 0.0274      | mg/Kg      |               |                 | 5/13/2021         | 17:15      |
| PCB-1254             | < 0.0274      | mg/Kg      |               |                 | 5/13/2021         | 17:15      |
| PCB-1260             | < 0.0274      | mg/Kg      |               |                 | 5/13/2021         | 17:15      |
| PCB-1262             | < 0.0274      | mg/Kg      |               |                 | 5/13/2021         | 17:15      |
| PCB-1268             | < 0.0274      | mg/Kg      |               |                 | 5/13/2021         | 17:15      |
| <u>Surrogate</u>     | <u>Percen</u> | t Recovery | <u>Limits</u> | <b>Outliers</b> | <b>Date Analy</b> | <u>zed</u> |
| Tetrachloro-m-xylene | •             | 60.3       | 16.4 - 99.1   |                 | 5/13/2021         | 17:15      |

Method Reference(s): EPA 8082A EPA 3546 Preparation Date: 5/12/2021

Chlorinated Pesticides

# Analyte Result Units Qualifier Date Analyzed 4 4-DDD < 2.74</td> ug/Kg 5/13/2021 17:1

| 4,4-DDD            | < 2.74 | ug/Kg |   | 5/13/2021 | 17:11 |
|--------------------|--------|-------|---|-----------|-------|
| 4,4-DDE            | < 2.74 | ug/Kg |   | 5/13/2021 | 17:11 |
| 4,4-DDT            | < 2.74 | ug/Kg |   | 5/13/2021 | 17:11 |
| Aldrin             | < 2.74 | ug/Kg |   | 5/13/2021 | 17:11 |
| alpha-BHC          | < 2.74 | ug/Kg |   | 5/13/2021 | 17:11 |
| beta-BHC           | < 2.74 | ug/Kg |   | 5/13/2021 | 17:11 |
| cis-Chlordane      | < 2.74 | ug/Kg |   | 5/13/2021 | 17:11 |
| delta-BHC          | < 2.74 | ug/Kg |   | 5/13/2021 | 17:11 |
| Dieldrin           | < 2.74 | ug/Kg |   | 5/13/2021 | 17:11 |
| Endosulfan I       | < 2.74 | ug/Kg |   | 5/13/2021 | 17:11 |
| Endosulfan II      | < 2.74 | ug/Kg |   | 5/13/2021 | 17:11 |
| Endosulfan Sulfate | 3.98   | ug/Kg | P | 5/13/2021 | 17:11 |
| Endrin             | < 2.74 | ug/Kg |   | 5/13/2021 | 17:11 |
| Endrin Aldehyde    | < 2.74 | ug/Kg |   | 5/13/2021 | 17:11 |
| Endrin Ketone      | < 2.74 | ug/Kg |   | 5/13/2021 | 17:11 |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-25 (3.0-3.5 ft.)

Lab Sample ID:211960-06Date Sampled:5/7/2021Matrix:SoilDate Received:5/10/2021

| gamma-BHC (Lindane)      | < 2.74       | ug/Kg            |             |                 | 5/13/2021         | 17:11      |
|--------------------------|--------------|------------------|-------------|-----------------|-------------------|------------|
| Heptachlor               | < 2.74       | ug/Kg            |             |                 | 5/13/2021         | 17:11      |
| Heptachlor Epoxide       | < 2.74       | ug/Kg            |             |                 | 5/13/2021         | 17:11      |
| Methoxychlor             | 3.55         | ug/Kg            |             | P               | 5/13/2021         | 17:11      |
| Toxaphene                | < 27.4       | ug/Kg            |             |                 | 5/13/2021         | 17:11      |
| trans-Chlordane          | < 2.74       | ug/Kg            |             |                 | 5/13/2021         | 17:11      |
| <u>Surrogate</u>         | <u>Perce</u> | Percent Recovery |             | <u>Outliers</u> | <b>Date Analy</b> | <u>zed</u> |
| Decachlorobiphenyl (1)   |              | 152              | 10 - 134    | *               | 5/13/2021         | 17:11      |
| Tetrachloro-m-xylene (1) |              | 74.9             | 26.3 - 99.8 |                 | 5/13/2021         | 17:11      |

**Method Reference(s):** EPA 8081B

EPA 3546

**Preparation Date:** 5/12/2021

# Semi-Volatile Organics (Base Neutrals)

| Result | <u>Units</u>                                                                                                            | Qualifier | <b>Date Analy</b>   | zed   |
|--------|-------------------------------------------------------------------------------------------------------------------------|-----------|---------------------|-------|
| < 296  | ug/Kg                                                                                                                   |           | 5/13/2021           | 00:53 |
| < 296  | ug/Kg                                                                                                                   |           | 5/13/2021           | 00:53 |
| < 296  | ug/Kg                                                                                                                   |           | 5/13/2021           | 00:53 |
| < 296  | ug/Kg                                                                                                                   |           | 5/13/2021           | 00:53 |
| < 296  | ug/Kg                                                                                                                   |           | 5/13/2021           | 00:53 |
| < 296  | ug/Kg                                                                                                                   |           | 5/13/2021           | 00:53 |
| < 296  | ug/Kg                                                                                                                   |           | 5/13/2021           | 00:53 |
| < 296  | ug/Kg                                                                                                                   |           | 5/13/2021           | 00:53 |
| < 296  | ug/Kg                                                                                                                   |           | 5/13/2021           | 00:53 |
| < 296  | ug/Kg                                                                                                                   |           | 5/13/2021           | 00:53 |
| < 296  | ug/Kg                                                                                                                   |           | 5/13/2021           | 00:53 |
| < 296  | ug/Kg                                                                                                                   |           | 5/13/2021           | 00:53 |
| < 296  | ug/Kg                                                                                                                   |           | 5/13/2021           | 00:53 |
| < 296  | ug/Kg                                                                                                                   |           | 5/13/2021           | 00:53 |
| < 296  | ug/Kg                                                                                                                   |           | 5/13/2021           | 00:53 |
| < 296  | ug/Kg                                                                                                                   |           | 5/13/2021           | 00:53 |
|        | < 296 < 296 < 296 < 296 < 296 < 296 < 296 < 296 < 296 < 296 < 296 < 296 < 296 < 296 < 296 < 296 < 296 < 296 < 296 < 296 | < 296     | <pre>&lt; 296</pre> | < 296 |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-25 (3.0-3.5 ft.)

 Lab Sample ID:
 211960-06
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

| 4-Chlorophenyl phenyl ether  | < 296 | ug/Kg | 5/13/2021 00:53 |
|------------------------------|-------|-------|-----------------|
| 4-Nitroaniline               | < 296 | ug/Kg | 5/13/2021 00:53 |
| Acenaphthene                 | < 296 | ug/Kg | 5/13/2021 00:53 |
| Acenaphthylene               | < 296 | ug/Kg | 5/13/2021 00:53 |
| Acetophenone                 | < 296 | ug/Kg | 5/13/2021 00:53 |
| Anthracene                   | < 296 | ug/Kg | 5/13/2021 00:53 |
| Atrazine                     | < 296 | ug/Kg | 5/13/2021 00:53 |
| Benzaldehyde                 | < 296 | ug/Kg | 5/13/2021 00:53 |
| Benzo (a) anthracene         | 676   | ug/Kg | 5/13/2021 00:53 |
| Benzo (a) pyrene             | 750   | ug/Kg | 5/13/2021 00:53 |
| Benzo (b) fluoranthene       | 693   | ug/Kg | 5/13/2021 00:53 |
| Benzo (g,h,i) perylene       | 521   | ug/Kg | 5/13/2021 00:53 |
| Benzo (k) fluoranthene       | 465   | ug/Kg | 5/13/2021 00:53 |
| Bis (2-chloroethoxy) methane | < 296 | ug/Kg | 5/13/2021 00:53 |
| Bis (2-chloroethyl) ether    | < 296 | ug/Kg | 5/13/2021 00:53 |
| Bis (2-ethylhexyl) phthalate | < 296 | ug/Kg | 5/13/2021 00:53 |
| Butylbenzylphthalate         | < 296 | ug/Kg | 5/13/2021 00:53 |
| Caprolactam                  | < 296 | ug/Kg | 5/13/2021 00:53 |
| Carbazole                    | < 296 | ug/Kg | 5/13/2021 00:53 |
| Chrysene                     | 620   | ug/Kg | 5/13/2021 00:53 |
| Dibenz (a,h) anthracene      | < 296 | ug/Kg | 5/13/2021 00:53 |
| Dibenzofuran                 | < 296 | ug/Kg | 5/13/2021 00:53 |
| Diethyl phthalate            | < 296 | ug/Kg | 5/13/2021 00:53 |
| Dimethyl phthalate           | < 296 | ug/Kg | 5/13/2021 00:53 |
| Di-n-butyl phthalate         | < 296 | ug/Kg | 5/13/2021 00:53 |
| Di-n-octylphthalate          | < 296 | ug/Kg | 5/13/2021 00:53 |
| Fluoranthene                 | 1220  | ug/Kg | 5/13/2021 00:53 |
| Fluorene                     | < 296 | ug/Kg | 5/13/2021 00:53 |
| Hexachlorobenzene            | < 296 | ug/Kg | 5/13/2021 00:53 |
| Hexachlorobutadiene          | < 296 | ug/Kg | 5/13/2021 00:53 |
|                              |       |       |                 |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-25 (3.0-3.5 ft.)

 Lab Sample ID:
 211960-06
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

| <u>Surrogate</u>           | <u>Perce</u> | nt Recovery | <u>Limits</u> | <u>Outliers</u> | <b>Date Analyzed</b> |
|----------------------------|--------------|-------------|---------------|-----------------|----------------------|
| Pyrene                     | 1070         | ug/Kg       |               |                 | 5/13/2021 00:53      |
| Phenanthrene               | 499          | ug/Kg       |               |                 | 5/13/2021 00:53      |
| N-Nitrosodiphenylamine     | < 296        | ug/Kg       |               |                 | 5/13/2021 00:53      |
| N-Nitroso-di-n-propylamine | < 296        | ug/Kg       |               |                 | 5/13/2021 00:53      |
| Nitrobenzene               | < 296        | ug/Kg       |               |                 | 5/13/2021 00:53      |
| Naphthalene                | < 296        | ug/Kg       |               |                 | 5/13/2021 00:53      |
| Isophorone                 | < 296        | ug/Kg       |               |                 | 5/13/2021 00:53      |
| Indeno (1,2,3-cd) pyrene   | 595          | ug/Kg       |               |                 | 5/13/2021 00:53      |
| Hexachloroethane           | < 296        | ug/Kg       |               |                 | 5/13/2021 00:53      |
| Hexachlorocyclopentadiene  | < 1180       | ug/Kg       |               |                 | 5/13/2021 00:53      |
|                            |              |             |               |                 |                      |

| <u>Surrogate</u> | Percent Recovery | <u>LIIIILS</u> | <u>outilers</u> | <u>Date Aliai</u> y | <u>zeu</u> |
|------------------|------------------|----------------|-----------------|---------------------|------------|
| 2-Fluorobiphenyl | 74.3             | 34.6 - 83.9    |                 | 5/13/2021           | 00:53      |
| Nitrobenzene-d5  | 70.6             | 32.4 - 76      |                 | 5/13/2021           | 00:53      |
| Terphenyl-d14    | 85.0             | 38.2 - 88.8    |                 | 5/13/2021           | 00:53      |

**Method Reference(s):** EPA 8270D

EPA 3546

Preparation Date: 5/11/2021

Data File: B54079.D

# **Volatile Organics**

| <u>Analyte</u>              | Result | <u>Units</u> | Qualifier | <b>Date Analyzed</b> |
|-----------------------------|--------|--------------|-----------|----------------------|
| 1,1,1-Trichloroethane       | < 7.93 | ug/Kg        |           | 5/11/2021 16:36      |
| 1,1,2,2-Tetrachloroethane   | < 7.93 | ug/Kg        |           | 5/11/2021 16:36      |
| 1,1,2-Trichloroethane       | < 7.93 | ug/Kg        |           | 5/11/2021 16:36      |
| 1,1-Dichloroethane          | < 7.93 | ug/Kg        |           | 5/11/2021 16:36      |
| 1,1-Dichloroethene          | < 7.93 | ug/Kg        |           | 5/11/2021 16:36      |
| 1,2,3-Trichlorobenzene      | < 19.8 | ug/Kg        |           | 5/11/2021 16:36      |
| 1,2,4-Trichlorobenzene      | < 19.8 | ug/Kg        |           | 5/11/2021 16:36      |
| 1,2-Dibromo-3-Chloropropane | < 39.7 | ug/Kg        |           | 5/11/2021 16:36      |
| 1,2-Dibromoethane           | < 7.93 | ug/Kg        |           | 5/11/2021 16:36      |
| 1,2-Dichlorobenzene         | < 7.93 | ug/Kg        |           | 5/11/2021 16:36      |
| 1,2-Dichloroethane          | < 7.93 | ug/Kg        |           | 5/11/2021 16:36      |

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Page 41 of 79



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-25 (3.0-3.5 ft.)

Lab Sample ID:211960-06Date Sampled:5/7/2021Matrix:SoilDate Received:5/10/2021

| Matrix:                 | 3011   |       | Date Received: | 5/10/2021 |       |
|-------------------------|--------|-------|----------------|-----------|-------|
|                         |        |       |                |           |       |
| 1,2-Dichloropropane     | < 7.93 | ug/Kg |                | 5/11/2021 | 16:36 |
| 1,3-Dichlorobenzene     | < 7.93 | ug/Kg |                | 5/11/2021 | 16:36 |
| 1,4-Dichlorobenzene     | < 7.93 | ug/Kg |                | 5/11/2021 | 16:36 |
| 1,4-Dioxane             | < 39.7 | ug/Kg |                | 5/11/2021 | 16:36 |
| 2-Butanone              | < 39.7 | ug/Kg |                | 5/11/2021 | 16:36 |
| 2-Hexanone              | < 19.8 | ug/Kg |                | 5/11/2021 | 16:36 |
| 4-Methyl-2-pentanone    | < 19.8 | ug/Kg |                | 5/11/2021 | 16:36 |
| Acetone                 | < 39.7 | ug/Kg |                | 5/11/2021 | 16:36 |
| Benzene                 | < 7.93 | ug/Kg |                | 5/11/2021 | 16:36 |
| Bromochloromethane      | < 19.8 | ug/Kg |                | 5/11/2021 | 16:36 |
| Bromodichloromethane    | < 7.93 | ug/Kg |                | 5/11/2021 | 16:36 |
| Bromoform               | < 19.8 | ug/Kg |                | 5/11/2021 | 16:36 |
| Bromomethane            | < 7.93 | ug/Kg |                | 5/11/2021 | 16:36 |
| Carbon disulfide        | < 7.93 | ug/Kg |                | 5/11/2021 | 16:36 |
| Carbon Tetrachloride    | < 7.93 | ug/Kg |                | 5/11/2021 | 16:36 |
| Chlorobenzene           | < 7.93 | ug/Kg |                | 5/11/2021 | 16:36 |
| Chloroethane            | < 7.93 | ug/Kg |                | 5/11/2021 | 16:36 |
| Chloroform              | < 7.93 | ug/Kg |                | 5/11/2021 | 16:36 |
| Chloromethane           | < 7.93 | ug/Kg |                | 5/11/2021 | 16:36 |
| cis-1,2-Dichloroethene  | < 7.93 | ug/Kg |                | 5/11/2021 | 16:36 |
| cis-1,3-Dichloropropene | < 7.93 | ug/Kg |                | 5/11/2021 | 16:36 |
| Cyclohexane             | < 39.7 | ug/Kg |                | 5/11/2021 | 16:36 |
| Dibromochloromethane    | < 7.93 | ug/Kg |                | 5/11/2021 | 16:36 |
| Dichlorodifluoromethane | < 7.93 | ug/Kg |                | 5/11/2021 | 16:36 |
| Ethylbenzene            | < 7.93 | ug/Kg |                | 5/11/2021 | 16:36 |
| Freon 113               | < 7.93 | ug/Kg |                | 5/11/2021 | 16:36 |
| Isopropylbenzene        | < 7.93 | ug/Kg |                | 5/11/2021 | 16:36 |
| m,p-Xylene              | < 7.93 | ug/Kg |                | 5/11/2021 | 16:36 |
| Methyl acetate          | < 7.93 | ug/Kg |                | 5/11/2021 | 16:36 |
| Methyl tert-butyl Ether | < 7.93 | ug/Kg |                | 5/11/2021 | 16:36 |
|                         |        |       |                |           |       |



5/11/2021

5/11/2021

5/11/2021

16:36

16:36

16:36

Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-25 (3.0-3.5 ft.)

 Lab Sample ID:
 211960-06
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

| Methylcyclohexane         | < 7.93 | ug/Kg        |               |                 | 5/11/2021         | 16:36 |
|---------------------------|--------|--------------|---------------|-----------------|-------------------|-------|
| Methylene chloride        | < 19.8 | ug/Kg        |               |                 | 5/11/2021         | 16:36 |
| o-Xylene                  | < 7.93 | ug/Kg        |               |                 | 5/11/2021         | 16:36 |
| Styrene                   | < 19.8 | ug/Kg        |               |                 | 5/11/2021         | 16:36 |
| Tetrachloroethene         | < 7.93 | ug/Kg        |               |                 | 5/11/2021         | 16:36 |
| Toluene                   | < 7.93 | ug/Kg        |               |                 | 5/11/2021         | 16:36 |
| trans-1,2-Dichloroethene  | < 7.93 | ug/Kg        |               |                 | 5/11/2021         | 16:36 |
| trans-1,3-Dichloropropene | < 7.93 | ug/Kg        |               |                 | 5/11/2021         | 16:36 |
| Trichloroethene           | < 7.93 | ug/Kg        |               |                 | 5/11/2021         | 16:36 |
| Trichlorofluoromethane    | < 7.93 | ug/Kg        |               |                 | 5/11/2021         | 16:36 |
| Vinyl chloride            | < 7.93 | ug/Kg        |               |                 | 5/11/2021         | 16:36 |
| <u>Surrogate</u>          | Perc   | ent Recovery | <u>Limits</u> | <b>Outliers</b> | <b>Date Analy</b> | zed   |
| 1,2-Dichloroethane-d4     |        | 99.6         | 52.5 - 151    |                 | 5/11/2021         | 16:36 |

99.7

93.0

94.5

**Method Reference(s):** EPA 8260C EPA 5035A - L

Data File: z01500.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

37.7 - 146

92.1 - 115

74 - 120

# **Total Cvanide**

4-Bromofluorobenzene

Pentafluorobenzene

Toluene-D8

| <u>Analyte</u> | <u>Result</u> | <u>Units</u> | Qualifier | <b>Date Analyzed</b> |
|----------------|---------------|--------------|-----------|----------------------|
| Cvanide. Total | < 0.518       | mg/Kg        |           | 5/14/2021            |

Method Reference(s): EPA 9014
EPA 9010C
Preparation Date: 5/13/2021



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-28 (5.0-5.5 ft.)

Lab Sample ID:211960-07Date Sampled:5/7/2021Matrix:SoilDate Received:5/10/2021

## **Herbicides**

| <u>Analyte</u>    | <u>Result</u> | <u>Units</u> | <u>Qualifier</u> | <b>Date Analyzed</b> |
|-------------------|---------------|--------------|------------------|----------------------|
| 2,4,5-T           | <326          | ug/Kg        |                  | 5/13/2021            |
| 2,4,5-TP (Silvex) | <326          | ug/Kg        |                  | 5/13/2021            |
| 2,4-D             | <1300         | ug/Kg        |                  | 5/13/2021            |

Surrogate outliers indicate matrix effects.

Method Reference(s): EPA 8321B

Subcontractor ELAP ID: 10709

# **Mercury**

| <u>Analyte</u> | <u>Result</u> | <u>Units</u> | <u>Qualifier</u> | <b>Date Analyzed</b> |
|----------------|---------------|--------------|------------------|----------------------|
| Mercury        | 0.0798        | mg/Kg        |                  | 5/14/2021 10:16      |

Method Reference(s):EPA 7471BPreparation Date:5/13/2021Data File:Hg210514C

# RCRA Metals (ICP)

| <u>Analyte</u> | <u>Result</u> | Result Units |  | <b>Date Analy</b> | zed   |
|----------------|---------------|--------------|--|-------------------|-------|
| Arsenic        | 3.47          | mg/Kg        |  | 5/12/2021         | 18:11 |
| Barium         | 36.0          | mg/Kg        |  | 5/12/2021         | 18:11 |
| Cadmium        | 0.551         | mg/Kg        |  | 5/12/2021         | 18:11 |
| Chromium       | 8.47          | mg/Kg        |  | 5/12/2021         | 18:11 |
| Lead           | 79.9          | mg/Kg        |  | 5/12/2021         | 18:11 |
| Selenium       | < 1.03        | mg/Kg        |  | 5/13/2021         | 16:37 |
| Silver         | < 0.517       | mg/Kg        |  | 5/12/2021         | 18:11 |

**Method Reference(s):** EPA 6010C

EPA 3050B

 Preparation Date:
 5/11/2021

 Data File:
 210512B



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-28 (5.0-5.5 ft.)

 Lab Sample ID:
 211960-07
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

## **PCBs**

| <u>Analyte</u>       | <b>Result</b>    | <u>Units</u> |               | <b>Qualifier</b> | <b>Date Analy</b> | <u>vzed</u> |
|----------------------|------------------|--------------|---------------|------------------|-------------------|-------------|
| PCB-1016             | < 0.0303         | mg/Kg        |               |                  | 5/13/2021         | 17:39       |
| PCB-1221             | < 0.0303         | mg/Kg        |               |                  | 5/13/2021         | 17:39       |
| PCB-1232             | < 0.0303         | mg/Kg        |               |                  | 5/13/2021         | 17:39       |
| PCB-1242             | 0.0681           | mg/Kg        |               |                  | 5/13/2021         | 17:39       |
| PCB-1248             | < 0.0303         | mg/Kg        |               |                  | 5/13/2021         | 17:39       |
| PCB-1254             | < 0.0303         | mg/Kg        |               |                  | 5/13/2021         | 17:39       |
| PCB-1260             | < 0.0303         | mg/Kg        |               |                  | 5/13/2021         | 17:39       |
| PCB-1262             | < 0.0303         | mg/Kg        |               |                  | 5/13/2021         | 17:39       |
| PCB-1268             | < 0.0303         | mg/Kg        |               |                  | 5/13/2021         | 17:39       |
| <u>Surrogate</u>     | Percent Recovery |              | <u>Limits</u> | <u>Outliers</u>  | <b>Date Analy</b> | zed         |
| Tetrachloro-m-xylene |                  | 70.5         | 16.4 - 99.1   |                  | 5/13/2021         | 17:39       |

Method Reference(s): EPA 8082A EPA 3546
Preparation Date: 5/12/2021

# **Chlorinated Pesticides**

| <u>Analyte</u>     | Result | <u>Units</u> | <b>Qualifier</b> | <b>Date Analyzed</b> |
|--------------------|--------|--------------|------------------|----------------------|
| 4,4-DDD            | 15.1   | ug/Kg        |                  | 5/13/2021 17:28      |
| 4,4-DDE            | < 3.03 | ug/Kg        |                  | 5/13/2021 17:28      |
| 4,4-DDT            | 3.36   | ug/Kg        | P                | 5/13/2021 17:28      |
| Aldrin             | < 3.03 | ug/Kg        |                  | 5/13/2021 17:28      |
| alpha-BHC          | < 3.03 | ug/Kg        |                  | 5/13/2021 17:28      |
| beta-BHC           | < 3.03 | ug/Kg        |                  | 5/13/2021 17:28      |
| cis-Chlordane      | 4.72   | ug/Kg        | P                | 5/13/2021 17:28      |
| delta-BHC          | < 3.03 | ug/Kg        |                  | 5/13/2021 17:28      |
| Dieldrin           | 10.4   | ug/Kg        |                  | 5/13/2021 17:28      |
| Endosulfan I       | < 3.03 | ug/Kg        |                  | 5/13/2021 17:28      |
| Endosulfan II      | < 3.03 | ug/Kg        |                  | 5/13/2021 17:28      |
| Endosulfan Sulfate | < 3.03 | ug/Kg        |                  | 5/13/2021 17:28      |

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Page 45 of 79



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-28 (5.0-5.5 ft.)

 Lab Sample ID:
 211960-07
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

| Endrin                   | < 3.03 | ug/Kg        |               |                 | 5/13/2021         | 17:28 |
|--------------------------|--------|--------------|---------------|-----------------|-------------------|-------|
| Endrin Aldehyde          | < 3.03 | ug/Kg        |               |                 | 5/13/2021         | 17:28 |
| Endrin Ketone            | < 3.03 | ug/Kg        |               |                 | 5/13/2021         | 17:28 |
| gamma-BHC (Lindane)      | < 3.03 | ug/Kg        |               |                 | 5/13/2021         | 17:28 |
| Heptachlor               | < 3.03 | ug/Kg        |               |                 | 5/13/2021         | 17:28 |
| Heptachlor Epoxide       | < 3.03 | ug/Kg        |               |                 | 5/13/2021         | 17:28 |
| Methoxychlor             | 4.54   | ug/Kg        |               |                 | 5/13/2021         | 17:28 |
| Toxaphene                | < 30.3 | ug/Kg        |               |                 | 5/13/2021         | 17:28 |
| trans-Chlordane          | 6.41   | ug/Kg        |               |                 | 5/13/2021         | 17:28 |
| <u>Surrogate</u>         | Perce  | ent Recovery | <u>Limits</u> | <b>Outliers</b> | <b>Date Analy</b> | zed   |
| Decachlorobiphenyl (1)   |        | 99.6         | 10 - 134      |                 | 5/13/2021         | 17:28 |
| Tetrachloro-m-xylene (1) |        | 76.7         | 26.3 - 99.8   |                 | 5/13/2021         | 17:28 |

Method Reference(s): EPA 8081B

EPA 3546

**Preparation Date:** 5/12/2021

# Semi-Volatile Organics (Base Neutrals)

| <u>Analyte</u>               | <u>Result</u> | <u>Units</u> | Qualifier | <b>Date Analyzed</b> |
|------------------------------|---------------|--------------|-----------|----------------------|
| 1,1-Biphenyl                 | < 305         | ug/Kg        |           | 5/13/2021 01:22      |
| 1,2,4,5-Tetrachlorobenzene   | < 305         | ug/Kg        |           | 5/13/2021 01:22      |
| 1,2,4-Trichlorobenzene       | < 305         | ug/Kg        |           | 5/13/2021 01:22      |
| 1,2-Dichlorobenzene          | < 305         | ug/Kg        |           | 5/13/2021 01:22      |
| 1,3-Dichlorobenzene          | < 305         | ug/Kg        |           | 5/13/2021 01:22      |
| 1,4-Dichlorobenzene          | < 305         | ug/Kg        |           | 5/13/2021 01:22      |
| 2,2-Oxybis (1-chloropropane) | < 305         | ug/Kg        |           | 5/13/2021 01:22      |
| 2,4-Dinitrotoluene           | < 305         | ug/Kg        |           | 5/13/2021 01:22      |
| 2,6-Dinitrotoluene           | < 305         | ug/Kg        |           | 5/13/2021 01:22      |
| 2-Chloronaphthalene          | < 305         | ug/Kg        |           | 5/13/2021 01:22      |
| 2-Methylnapthalene           | < 305         | ug/Kg        |           | 5/13/2021 01:22      |
| 2-Nitroaniline               | < 305         | ug/Kg        |           | 5/13/2021 01:22      |
| 3,3'-Dichlorobenzidine       | < 305         | ug/Kg        |           | 5/13/2021 01:22      |

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Page 46 of 79



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-28 (5.0-5.5 ft.)

Lab Sample ID:211960-07Date Sampled:5/7/2021Matrix:SoilDate Received:5/10/2021

|                              |       |       | -1 -1 -         |
|------------------------------|-------|-------|-----------------|
|                              |       |       |                 |
| 3-Nitroaniline               | < 305 | ug/Kg | 5/13/2021 01:22 |
| 4-Bromophenyl phenyl ether   | < 305 | ug/Kg | 5/13/2021 01:22 |
| 4-Chloroaniline              | < 305 | ug/Kg | 5/13/2021 01:22 |
| 4-Chlorophenyl phenyl ether  | < 305 | ug/Kg | 5/13/2021 01:22 |
| 4-Nitroaniline               | < 305 | ug/Kg | 5/13/2021 01:22 |
| Acenaphthene                 | < 305 | ug/Kg | 5/13/2021 01:22 |
| Acenaphthylene               | < 305 | ug/Kg | 5/13/2021 01:22 |
| Acetophenone                 | < 305 | ug/Kg | 5/13/2021 01:22 |
| Anthracene                   | < 305 | ug/Kg | 5/13/2021 01:22 |
| Atrazine                     | < 305 | ug/Kg | 5/13/2021 01:22 |
| Benzaldehyde                 | < 305 | ug/Kg | 5/13/2021 01:22 |
| Benzo (a) anthracene         | 523   | ug/Kg | 5/13/2021 01:22 |
| Benzo (a) pyrene             | 494   | ug/Kg | 5/13/2021 01:22 |
| Benzo (b) fluoranthene       | 320   | ug/Kg | 5/13/2021 01:22 |
| Benzo (g,h,i) perylene       | 305   | ug/Kg | 5/13/2021 01:22 |
| Benzo (k) fluoranthene       | 360   | ug/Kg | 5/13/2021 01:22 |
| Bis (2-chloroethoxy) methane | < 305 | ug/Kg | 5/13/2021 01:22 |
| Bis (2-chloroethyl) ether    | < 305 | ug/Kg | 5/13/2021 01:22 |
| Bis (2-ethylhexyl) phthalate | < 305 | ug/Kg | 5/13/2021 01:22 |
| Butylbenzylphthalate         | < 305 | ug/Kg | 5/13/2021 01:22 |
| Caprolactam                  | < 305 | ug/Kg | 5/13/2021 01:22 |
| Carbazole                    | < 305 | ug/Kg | 5/13/2021 01:22 |
| Chrysene                     | 472   | ug/Kg | 5/13/2021 01:22 |
| Dibenz (a,h) anthracene      | < 305 | ug/Kg | 5/13/2021 01:22 |
| Dibenzofuran                 | < 305 | ug/Kg | 5/13/2021 01:22 |
| Diethyl phthalate            | < 305 | ug/Kg | 5/13/2021 01:22 |
| Dimethyl phthalate           | < 305 | ug/Kg | 5/13/2021 01:22 |
| Di-n-butyl phthalate         | < 305 | ug/Kg | 5/13/2021 01:22 |
| Di-n-octylphthalate          | < 305 | ug/Kg | 5/13/2021 01:22 |
| Fluoranthene                 | 1240  | ug/Kg | 5/13/2021 01:22 |
|                              |       |       |                 |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-28 (5.0-5.5 ft.)

 Lab Sample ID:
 211960-07
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

| Fluorene                   | < 305  | ug/Kg        |               |                 | 5/13/2021         | 01:22 |
|----------------------------|--------|--------------|---------------|-----------------|-------------------|-------|
| Hexachlorobenzene          | < 305  | ug/Kg        |               |                 | 5/13/2021         | 01:22 |
| Hexachlorobutadiene        | < 305  | ug/Kg        |               |                 | 5/13/2021         | 01:22 |
| Hexachlorocyclopentadiene  | < 1220 | ug/Kg        |               |                 | 5/13/2021         | 01:22 |
| Hexachloroethane           | < 305  | ug/Kg        |               |                 | 5/13/2021         | 01:22 |
| Indeno (1,2,3-cd) pyrene   | 340    | ug/Kg        |               |                 | 5/13/2021         | 01:22 |
| Isophorone                 | < 305  | ug/Kg        |               |                 | 5/13/2021         | 01:22 |
| Naphthalene                | < 305  | ug/Kg        |               |                 | 5/13/2021         | 01:22 |
| Nitrobenzene               | < 305  | ug/Kg        |               |                 | 5/13/2021         | 01:22 |
| N-Nitroso-di-n-propylamine | < 305  | ug/Kg        |               |                 | 5/13/2021         | 01:22 |
| N-Nitrosodiphenylamine     | < 305  | ug/Kg        |               |                 | 5/13/2021         | 01:22 |
| Phenanthrene               | 822    | ug/Kg        |               |                 | 5/13/2021         | 01:22 |
| Pyrene                     | 1090   | ug/Kg        |               |                 | 5/13/2021         | 01:22 |
| <u>Surrogate</u>           | Perc   | ent Recovery | <u>Limits</u> | <b>Outliers</b> | <b>Date Analy</b> | zed   |
| 2-Fluorobiphenyl           |        | 50.0         | 34.6 - 83.9   |                 | 5/13/2021         | 01:22 |
| Nitrobenzene-d5            |        | 49.5         | 32.4 - 76     |                 | 5/13/2021         | 01:22 |

Method Reference(s): EPA 8270D
EPA 3546
Preparation Date: 5/11/2021
Data File: B54080.D

#### **Volatile Organics**

Terphenyl-d14

| <u>Analyte</u>              | <u>Result</u> | <u>Units</u> | <b>Qualifier</b> | <b>Date Analyzed</b> |
|-----------------------------|---------------|--------------|------------------|----------------------|
| 1,1,1-Trichloroethane       | < 8.10        | ug/Kg        |                  | 5/11/2021 16:55      |
| 1,1,2,2-Tetrachloroethane   | < 8.10        | ug/Kg        |                  | 5/11/2021 16:55      |
| 1,1,2-Trichloroethane       | < 8.10        | ug/Kg        |                  | 5/11/2021 16:55      |
| 1,1-Dichloroethane          | < 8.10        | ug/Kg        |                  | 5/11/2021 16:55      |
| 1,1-Dichloroethene          | < 8.10        | ug/Kg        |                  | 5/11/2021 16:55      |
| 1,2,3-Trichlorobenzene      | < 20.3        | ug/Kg        |                  | 5/11/2021 16:55      |
| 1,2,4-Trichlorobenzene      | < 20.3        | ug/Kg        |                  | 5/11/2021 16:55      |
| 1,2-Dibromo-3-Chloropropane | < 40.5        | ug/Kg        |                  | 5/11/2021 16:55      |

53.4

38.2 - 88.8

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

5/13/2021

01:22



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-28 (5.0-5.5 ft.)

 Lab Sample ID:
 211960-07
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

| Mau IX:                 | 3011     |       | Date Receiveu: | 5/10/2021 |       |
|-------------------------|----------|-------|----------------|-----------|-------|
|                         |          |       |                |           |       |
| 1,2-Dibromoethane       | < 8.10   | ug/Kg |                | 5/11/2021 | 16:55 |
| 1,2-Dichlorobenzene     | < 8.10   | ug/Kg |                | 5/11/2021 | 16:55 |
| 1,2-Dichloroethane      | < 8.10   | ug/Kg |                | 5/11/2021 | 16:55 |
| 1,2-Dichloropropane     | < 8.10   | ug/Kg |                | 5/11/2021 | 16:55 |
| 1,3-Dichlorobenzene     | < 8.10   | ug/Kg |                | 5/11/2021 | 16:55 |
| 1,4-Dichlorobenzene     | < 8.10   | ug/Kg |                | 5/11/2021 | 16:55 |
| 1,4-Dioxane             | < 40.5   | ug/Kg |                | 5/11/2021 | 16:55 |
| 2-Butanone              | < 40.5   | ug/Kg |                | 5/11/2021 | 16:55 |
| 2-Hexanone              | < 20.3   | ug/Kg |                | 5/11/2021 | 16:55 |
| 4-Methyl-2-pentanone    | < 20.3   | ug/Kg |                | 5/11/2021 | 16:55 |
| Acetone                 | 92.0     | ug/Kg |                | 5/11/2021 | 16:55 |
| Benzene                 | < 8.10   | ug/Kg |                | 5/11/2021 | 16:55 |
| Bromochloromethane      | < 20.3   | ug/Kg |                | 5/11/2021 | 16:55 |
| Bromodichloromethane    | < 8.10   | ug/Kg |                | 5/11/2021 | 16:55 |
| Bromoform               | < 20.3   | ug/Kg |                | 5/11/2021 | 16:55 |
| Bromomethane            | < 8.10   | ug/Kg |                | 5/11/2021 | 16:55 |
| Carbon disulfide        | < 8.10   | ug/Kg |                | 5/11/2021 | 16:55 |
| Carbon Tetrachloride    | < 8.10   | ug/Kg |                | 5/11/2021 | 16:55 |
| Chlorobenzene           | < 8.10   | ug/Kg |                | 5/11/2021 | 16:55 |
| Chloroethane            | < 8.10   | ug/Kg |                | 5/11/2021 | 16:55 |
| Chloroform              | < 8.10   | ug/Kg |                | 5/11/2021 | 16:55 |
| Chloromethane           | < 8.10   | ug/Kg |                | 5/11/2021 | 16:55 |
| cis-1,2-Dichloroethene  | < 8.10   | ug/Kg |                | 5/11/2021 | 16:55 |
| cis-1,3-Dichloropropene | < 8.10   | ug/Kg |                | 5/11/2021 | 16:55 |
| Cyclohexane             | < 40.5   | ug/Kg |                | 5/11/2021 | 16:55 |
| Dibromochloromethane    | < 8.10   | ug/Kg |                | 5/11/2021 | 16:55 |
| Dichlorodifluoromethan  | e < 8.10 | ug/Kg |                | 5/11/2021 | 16:55 |
| Ethylbenzene            | < 8.10   | ug/Kg |                | 5/11/2021 | 16:55 |
| Freon 113               | < 8.10   | ug/Kg |                | 5/11/2021 | 16:55 |
| Isopropylbenzene        | < 8.10   | ug/Kg |                | 5/11/2021 | 16:55 |
|                         |          |       |                |           |       |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-28 (5.0-5.5 ft.)

 Lab Sample ID:
 211960-07
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

| m,p-Xylene                | < 8.10 | ug/Kg | 5/11/2021 16:55 |
|---------------------------|--------|-------|-----------------|
| Methyl acetate            | < 8.10 | ug/Kg | 5/11/2021 16:55 |
| Methyl tert-butyl Ether   | < 8.10 | ug/Kg | 5/11/2021 16:55 |
| Methylcyclohexane         | < 8.10 | ug/Kg | 5/11/2021 16:55 |
| Methylene chloride        | < 20.3 | ug/Kg | 5/11/2021 16:55 |
| o-Xylene                  | < 8.10 | ug/Kg | 5/11/2021 16:55 |
| Styrene                   | < 20.3 | ug/Kg | 5/11/2021 16:55 |
| Tetrachloroethene         | < 8.10 | ug/Kg | 5/11/2021 16:55 |
| Toluene                   | < 8.10 | ug/Kg | 5/11/2021 16:55 |
| trans-1,2-Dichloroethene  | < 8.10 | ug/Kg | 5/11/2021 16:55 |
| trans-1,3-Dichloropropene | < 8.10 | ug/Kg | 5/11/2021 16:55 |
| Trichloroethene           | < 8.10 | ug/Kg | 5/11/2021 16:55 |
| Trichlorofluoromethane    | < 8.10 | ug/Kg | 5/11/2021 16:55 |
| Vinyl chloride            | < 8.10 | ug/Kg | 5/11/2021 16:55 |
|                           |        |       |                 |

| <u>Surrogate</u>      | Percent Recovery | <u>Limits</u> | <u>Outliers</u> | <b>Date Analyzed</b> |       |
|-----------------------|------------------|---------------|-----------------|----------------------|-------|
| 1,2-Dichloroethane-d4 | 98.9             | 52.5 - 151    |                 | 5/11/2021            | 16:55 |
| 4-Bromofluorobenzene  | 89.1             | 37.7 - 146    |                 | 5/11/2021            | 16:55 |
| Pentafluorobenzene    | 88.9             | 92.1 - 115    | *               | 5/11/2021            | 16:55 |
| Toluene-D8            | 91.7             | 74 - 120      |                 | 5/11/2021            | 16:55 |

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: z01501.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

# **Total Cvanide**

| <u>Analyte</u> | <u>Result</u> | <u>Units</u> | <b>Qualifier</b> | <b>Date Analyzed</b> |
|----------------|---------------|--------------|------------------|----------------------|
| Cyanide, Total | < 0.380       | mg/Kg        |                  | 5/14/2021            |

Method Reference(s): EPA 9014
EPA 9010C
Preparation Date: 5/13/2021



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-40 (3.5-4.0 ft.)

Lab Sample ID:211960-08Date Sampled:5/7/2021Matrix:SoilDate Received:5/10/2021

## **Herbicides**

| <u>Analyte</u>    | <u>Result</u> | <u>Units</u> | <u>Qualifier</u> | <b>Date Analyzed</b> |
|-------------------|---------------|--------------|------------------|----------------------|
| 2,4,5-T           | <365          | ug/Kg        |                  | 5/13/2021            |
| 2,4,5-TP (Silvex) | <365          | ug/Kg        |                  | 5/13/2021            |
| 2,4-D             | <1460         | ug/Kg        |                  | 5/13/2021            |

Method Reference(s):EPA 8321BSubcontractor ELAP ID:10709

### **Mercury**

| <u>Analyte</u> | <u>Result</u> | <u>Units</u> | <u>Qualifier</u> | Date Analyzed   |
|----------------|---------------|--------------|------------------|-----------------|
| Mercury        | 0.0203        | mg/Kg        |                  | 5/14/2021 10:21 |

Method Reference(s):EPA 7471BPreparation Date:5/13/2021Data File:Hg210514C

# RCRA Metals (ICP)

| <u>Analyte</u> | Result  | <u>Units</u> | <b>Qualifier</b> | <b>Date Analy</b> | zed   |
|----------------|---------|--------------|------------------|-------------------|-------|
| Arsenic        | 9.53    | mg/Kg        |                  | 5/12/2021         | 18:16 |
| Barium         | 39.4    | mg/Kg        |                  | 5/12/2021         | 18:16 |
| Cadmium        | 0.650   | mg/Kg        |                  | 5/12/2021         | 18:16 |
| Chromium       | 14.3    | mg/Kg        |                  | 5/12/2021         | 18:16 |
| Lead           | 23.7    | mg/Kg        |                  | 5/12/2021         | 18:16 |
| Selenium       | 2.24    | mg/Kg        |                  | 5/12/2021         | 18:16 |
| Silver         | < 0.591 | mg/Kg        |                  | 5/12/2021         | 18:16 |
|                |         |              |                  |                   |       |

Method Reference(s):EPA 6010CEPA 3050BPreparation Date:5/11/2021

Data File: 5/11/202

# **PCBs**

| <u>Analyte</u> | <u>Result</u> | <u>Units</u> | <b>Qualifier</b> | <b>Date Analyzed</b> |
|----------------|---------------|--------------|------------------|----------------------|
| PCB-1016       | < 0.0346      | mg/Kg        |                  | 5/13/2021 18:26      |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-40 (3.5-4.0 ft.)

 Lab Sample ID:
 211960-08
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

| PCB-1221             | < 0.0346      | mg/Kg       |               |                 | 5/13/2021         | 18:26      |
|----------------------|---------------|-------------|---------------|-----------------|-------------------|------------|
| PCB-1232             | < 0.0346      | mg/Kg       |               |                 | 5/13/2021         | 18:26      |
| PCB-1242             | < 0.0346      | mg/Kg       |               |                 | 5/13/2021         | 18:26      |
| PCB-1248             | < 0.0346      | mg/Kg       |               |                 | 5/13/2021         | 18:26      |
| PCB-1254             | < 0.0346      | mg/Kg       |               |                 | 5/13/2021         | 18:26      |
| PCB-1260             | < 0.0346      | mg/Kg       |               |                 | 5/13/2021         | 18:26      |
| PCB-1262             | < 0.0346      | mg/Kg       |               |                 | 5/13/2021         | 18:26      |
| PCB-1268             | < 0.0346      | mg/Kg       |               |                 | 5/13/2021         | 18:26      |
| <u>Surrogate</u>     | <u>Percer</u> | nt Recovery | <u>Limits</u> | <b>Outliers</b> | <b>Date Analy</b> | <u>zed</u> |
| Tetrachloro-m-xylene |               | 67.0        | 16.4 - 99.1   |                 | 5/13/2021         | 18:26      |

Method Reference(s): EPA 8082A EPA 3546

**Preparation Date:** 5/12/2021

#### **Chlorinated Pesticides**

| <u>Analyte</u>     | <u>Result</u> | <u>Units</u> | Qualifier Date Analyzed |
|--------------------|---------------|--------------|-------------------------|
| 4,4-DDD            | < 3.46        | ug/Kg        | 5/13/2021 14:11         |
| 4,4-DDE            | < 3.46        | ug/Kg        | 5/13/2021 14:11         |
| 4,4-DDT            | < 3.46        | ug/Kg        | 5/13/2021 14:11         |
| Aldrin             | < 3.46        | ug/Kg        | 5/13/2021 14:11         |
| alpha-BHC          | < 3.46        | ug/Kg        | 5/13/2021 14:11         |
| beta-BHC           | < 3.46        | ug/Kg        | 5/13/2021 14:11         |
| cis-Chlordane      | < 3.46        | ug/Kg        | 5/13/2021 14:11         |
| delta-BHC          | < 3.46        | ug/Kg        | 5/13/2021 14:11         |
| Dieldrin           | 24.3          | ug/Kg        | 5/13/2021 14:11         |
| Endosulfan I       | < 3.46        | ug/Kg        | 5/13/2021 14:11         |
| Endosulfan II      | < 3.46        | ug/Kg        | 5/13/2021 14:11         |
| Endosulfan Sulfate | < 3.46        | ug/Kg        | 5/13/2021 14:11         |
| Endrin             | < 3.46        | ug/Kg        | 5/13/2021 14:11         |
| Endrin Aldehyde    | < 3.46        | ug/Kg        | 5/13/2021 14:11         |
| Endrin Ketone      | < 3.46        | ug/Kg        | 5/13/2021 14:11         |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-40 (3.5-4.0 ft.)

 Lab Sample ID:
 211960-08
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

| gamma-BHC (Lindane)      | < 3.46     | ug/Kg         |               |                 | 5/13/2021         | 14.11 |
|--------------------------|------------|---------------|---------------|-----------------|-------------------|-------|
|                          |            |               |               |                 |                   |       |
| Heptachlor               | < 3.46     | ug/Kg         |               |                 | 5/13/2021         | 14:11 |
| Heptachlor Epoxide       | < 3.46     | ug/Kg         |               |                 | 5/13/2021         | 14:11 |
| Methoxychlor             | < 3.46     | ug/Kg         |               |                 | 5/13/2021         | 14:11 |
| Toxaphene                | < 34.6     | ug/Kg         |               |                 | 5/13/2021         | 14:11 |
| trans-Chlordane          | < 3.46     | ug/Kg         |               |                 | 5/13/2021         | 14:11 |
| <u>Surrogate</u>         | <u>Per</u> | cent Recovery | <u>Limits</u> | <u>Outliers</u> | <b>Date Analy</b> | zed   |
| Decachlorobiphenyl (1)   |            | 127           | 10 - 134      |                 | 5/13/2021         | 14:11 |
| Tetrachloro-m-xylene (1) |            | 97.3          | 26.3 - 99.8   |                 | 5/13/2021         | 14:11 |

**Method Reference(s):** EPA 8081B

EPA 3546

**Preparation Date:** 5/12/2021

# Semi-Volatile Organics (Base Neutrals)

| <u>Result</u> | <u>Units</u>                                                                                                      | Qualifier | <b>Date Analyzed</b> |
|---------------|-------------------------------------------------------------------------------------------------------------------|-----------|----------------------|
| < 308         | ug/Kg                                                                                                             |           | 5/13/2021 01:50      |
| < 308         | ug/Kg                                                                                                             |           | 5/13/2021 01:50      |
| < 308         | ug/Kg                                                                                                             |           | 5/13/2021 01:50      |
| < 308         | ug/Kg                                                                                                             |           | 5/13/2021 01:50      |
| < 308         | ug/Kg                                                                                                             |           | 5/13/2021 01:50      |
| < 308         | ug/Kg                                                                                                             |           | 5/13/2021 01:50      |
| < 308         | ug/Kg                                                                                                             |           | 5/13/2021 01:50      |
| < 308         | ug/Kg                                                                                                             |           | 5/13/2021 01:50      |
| < 308         | ug/Kg                                                                                                             |           | 5/13/2021 01:50      |
| < 308         | ug/Kg                                                                                                             |           | 5/13/2021 01:50      |
| < 308         | ug/Kg                                                                                                             |           | 5/13/2021 01:50      |
| < 308         | ug/Kg                                                                                                             |           | 5/13/2021 01:50      |
| < 308         | ug/Kg                                                                                                             |           | 5/13/2021 01:50      |
| < 308         | ug/Kg                                                                                                             |           | 5/13/2021 01:50      |
| < 308         | ug/Kg                                                                                                             |           | 5/13/2021 01:50      |
| < 308         | ug/Kg                                                                                                             |           | 5/13/2021 01:50      |
|               | < 308 < 308 < 308 < 308 < 308 < 308 < 308 < 308 < 308 < 308 < 308 < 308 < 308 < 308 < 308 < 308 < 308 < 308 < 308 | <308      | <pre>&lt; 308</pre>  |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-40 (3.5-4.0 ft.)

 Lab Sample ID:
 211960-08
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

| _ |                              |       |       |                 |
|---|------------------------------|-------|-------|-----------------|
|   |                              |       |       |                 |
|   | 4-Chlorophenyl phenyl ether  | < 308 | ug/Kg | 5/13/2021 01:50 |
|   | 4-Nitroaniline               | < 308 | ug/Kg | 5/13/2021 01:50 |
|   | Acenaphthene                 | < 308 | ug/Kg | 5/13/2021 01:50 |
|   | Acenaphthylene               | < 308 | ug/Kg | 5/13/2021 01:50 |
|   | Acetophenone                 | < 308 | ug/Kg | 5/13/2021 01:50 |
|   | Anthracene                   | < 308 | ug/Kg | 5/13/2021 01:50 |
|   | Atrazine                     | < 308 | ug/Kg | 5/13/2021 01:50 |
|   | Benzaldehyde                 | < 308 | ug/Kg | 5/13/2021 01:50 |
|   | Benzo (a) anthracene         | < 308 | ug/Kg | 5/13/2021 01:50 |
|   | Benzo (a) pyrene             | < 308 | ug/Kg | 5/13/2021 01:50 |
|   | Benzo (b) fluoranthene       | < 308 | ug/Kg | 5/13/2021 01:50 |
|   | Benzo (g,h,i) perylene       | < 308 | ug/Kg | 5/13/2021 01:50 |
|   | Benzo (k) fluoranthene       | < 308 | ug/Kg | 5/13/2021 01:50 |
|   | Bis (2-chloroethoxy) methane | < 308 | ug/Kg | 5/13/2021 01:50 |
|   | Bis (2-chloroethyl) ether    | < 308 | ug/Kg | 5/13/2021 01:50 |
|   | Bis (2-ethylhexyl) phthalate | < 308 | ug/Kg | 5/13/2021 01:50 |
|   | Butylbenzylphthalate         | < 308 | ug/Kg | 5/13/2021 01:50 |
|   | Caprolactam                  | < 308 | ug/Kg | 5/13/2021 01:50 |
|   | Carbazole                    | < 308 | ug/Kg | 5/13/2021 01:50 |
|   | Chrysene                     | < 308 | ug/Kg | 5/13/2021 01:50 |
|   | Dibenz (a,h) anthracene      | < 308 | ug/Kg | 5/13/2021 01:50 |
|   | Dibenzofuran                 | < 308 | ug/Kg | 5/13/2021 01:50 |
|   | Diethyl phthalate            | < 308 | ug/Kg | 5/13/2021 01:50 |
|   | Dimethyl phthalate           | < 308 | ug/Kg | 5/13/2021 01:50 |
|   | Di-n-butyl phthalate         | < 308 | ug/Kg | 5/13/2021 01:50 |
|   | Di-n-octylphthalate          | < 308 | ug/Kg | 5/13/2021 01:50 |
|   | Fluoranthene                 | < 308 | ug/Kg | 5/13/2021 01:50 |
|   | Fluorene                     | < 308 | ug/Kg | 5/13/2021 01:50 |
|   | Hexachlorobenzene            | < 308 | ug/Kg | 5/13/2021 01:50 |
|   | Hexachlorobutadiene          | < 308 | ug/Kg | 5/13/2021 01:50 |
|   |                              |       |       |                 |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-40 (3.5-4.0 ft.)

 Lab Sample ID:
 211960-08
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

| Surrogate                  | <u>Perce</u> | ent Recovery | <u>Limits</u> | <u>Outliers</u> | Date Analy | <u>zed</u> |
|----------------------------|--------------|--------------|---------------|-----------------|------------|------------|
| Pyrene                     | < 308        | ug/Kg        |               |                 | 5/13/2021  |            |
| Phenanthrene               | < 308        | ug/Kg        |               |                 | 5/13/2021  | 01:50      |
| N-Nitrosodiphenylamine     | < 308        | ug/Kg        |               |                 | 5/13/2021  | 01:50      |
| N-Nitroso-di-n-propylamine | < 308        | ug/Kg        |               |                 | 5/13/2021  | 01:50      |
| Nitrobenzene               | < 308        | ug/Kg        |               |                 | 5/13/2021  | 01:50      |
| Naphthalene                | < 308        | ug/Kg        |               |                 | 5/13/2021  | 01:50      |
| Isophorone                 | < 308        | ug/Kg        |               |                 | 5/13/2021  | 01:50      |
| Indeno (1,2,3-cd) pyrene   | < 308        | ug/Kg        |               |                 | 5/13/2021  | 01:50      |
| Hexachloroethane           | < 308        | ug/Kg        |               |                 | 5/13/2021  | 01:50      |
| Hexachlorocyclopentadiene  | < 1230       | ug/Kg        |               |                 | 5/13/2021  | 01:50      |
|                            |              |              |               |                 |            |            |

| <u>Sui i ogate</u> | <u>Percent Recovery</u> | <u>LIIIIILS</u> | <u>outilets</u> | Date Aliai | <u>/zeu</u> |
|--------------------|-------------------------|-----------------|-----------------|------------|-------------|
| 2-Fluorobiphenyl   | 63.6                    | 34.6 - 83.9     |                 | 5/13/2021  | 01:50       |
| Nitrobenzene-d5    | 57.9                    | 32.4 - 76       |                 | 5/13/2021  | 01:50       |
| Terphenyl-d14      | 74.1                    | 38.2 - 88.8     |                 | 5/13/2021  | 01:50       |

**Method Reference(s):** EPA 8270D

EPA 3546

 Preparation Date:
 5/11/2021

 Data File:
 B54081.D

# **Volatile Organics**

| Analyte                     | Result | <u>Units</u> | Qualifier | <b>Date Analy</b> | zed   |
|-----------------------------|--------|--------------|-----------|-------------------|-------|
| 1,1,1-Trichloroethane       | < 6.25 | ug/Kg        |           | 5/11/2021         | 17:14 |
| 1,1,2,2-Tetrachloroethane   | < 6.25 | ug/Kg        |           | 5/11/2021         | 17:14 |
| 1,1,2-Trichloroethane       | < 6.25 | ug/Kg        |           | 5/11/2021         | 17:14 |
| 1,1-Dichloroethane          | < 6.25 | ug/Kg        |           | 5/11/2021         | 17:14 |
| 1,1-Dichloroethene          | < 6.25 | ug/Kg        |           | 5/11/2021         | 17:14 |
| 1,2,3-Trichlorobenzene      | < 15.6 | ug/Kg        |           | 5/11/2021         | 17:14 |
| 1,2,4-Trichlorobenzene      | < 15.6 | ug/Kg        |           | 5/11/2021         | 17:14 |
| 1,2-Dibromo-3-Chloropropane | < 31.2 | ug/Kg        |           | 5/11/2021         | 17:14 |
| 1,2-Dibromoethane           | < 6.25 | ug/Kg        |           | 5/11/2021         | 17:14 |
| 1,2-Dichlorobenzene         | < 6.25 | ug/Kg        |           | 5/11/2021         | 17:14 |
| 1,2-Dichloroethane          | < 6.25 | ug/Kg        |           | 5/11/2021         | 17:14 |

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Page 55 of 79



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-40 (3.5-4.0 ft.)

Lab Sample ID:211960-08Date Sampled:5/7/2021Matrix:SoilDate Received:5/10/2021

|                         |        |       | -1 -1 -         |
|-------------------------|--------|-------|-----------------|
|                         |        |       |                 |
| 1,2-Dichloropropane     | < 6.25 | ug/Kg | 5/11/2021 17:14 |
| 1,3-Dichlorobenzene     | < 6.25 | ug/Kg | 5/11/2021 17:14 |
| 1,4-Dichlorobenzene     | < 6.25 | ug/Kg | 5/11/2021 17:14 |
| 1,4-Dioxane             | < 31.2 | ug/Kg | 5/11/2021 17:14 |
| 2-Butanone              | < 31.2 | ug/Kg | 5/11/2021 17:14 |
| 2-Hexanone              | < 15.6 | ug/Kg | 5/11/2021 17:14 |
| 4-Methyl-2-pentanone    | < 15.6 | ug/Kg | 5/11/2021 17:14 |
| Acetone                 | < 31.2 | ug/Kg | 5/11/2021 17:14 |
| Benzene                 | < 6.25 | ug/Kg | 5/11/2021 17:14 |
| Bromochloromethane      | < 15.6 | ug/Kg | 5/11/2021 17:14 |
| Bromodichloromethane    | < 6.25 | ug/Kg | 5/11/2021 17:14 |
| Bromoform               | < 15.6 | ug/Kg | 5/11/2021 17:14 |
| Bromomethane            | < 6.25 | ug/Kg | 5/11/2021 17:14 |
| Carbon disulfide        | < 6.25 | ug/Kg | 5/11/2021 17:14 |
| Carbon Tetrachloride    | < 6.25 | ug/Kg | 5/11/2021 17:14 |
| Chlorobenzene           | < 6.25 | ug/Kg | 5/11/2021 17:14 |
| Chloroethane            | < 6.25 | ug/Kg | 5/11/2021 17:14 |
| Chloroform              | < 6.25 | ug/Kg | 5/11/2021 17:14 |
| Chloromethane           | < 6.25 | ug/Kg | 5/11/2021 17:14 |
| cis-1,2-Dichloroethene  | < 6.25 | ug/Kg | 5/11/2021 17:14 |
| cis-1,3-Dichloropropene | < 6.25 | ug/Kg | 5/11/2021 17:14 |
| Cyclohexane             | < 31.2 | ug/Kg | 5/11/2021 17:14 |
| Dibromochloromethane    | < 6.25 | ug/Kg | 5/11/2021 17:14 |
| Dichlorodifluoromethane | < 6.25 | ug/Kg | 5/11/2021 17:14 |
| Ethylbenzene            | < 6.25 | ug/Kg | 5/11/2021 17:14 |
| Freon 113               | < 6.25 | ug/Kg | 5/11/2021 17:14 |
| Isopropylbenzene        | < 6.25 | ug/Kg | 5/11/2021 17:14 |
| m,p-Xylene              | < 6.25 | ug/Kg | 5/11/2021 17:14 |
| Methyl acetate          | < 6.25 | ug/Kg | 5/11/2021 17:14 |
| Methyl tert-butyl Ether | < 6.25 | ug/Kg | 5/11/2021 17:14 |
|                         |        |       |                 |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-40 (3.5-4.0 ft.)

Lab Sample ID:211960-08Date Sampled:5/7/2021Matrix:SoilDate Received:5/10/2021

| Methylcyclohexane         | < 6.25            | ug/Kg |               |                 | 5/11/2021 17:14      |
|---------------------------|-------------------|-------|---------------|-----------------|----------------------|
| Methylene chloride        | < 15.6            | ug/Kg |               |                 | 5/11/2021 17:14      |
| o-Xylene                  | < 6.25            | ug/Kg |               |                 | 5/11/2021 17:14      |
| Styrene                   | < 15.6            | ug/Kg |               |                 | 5/11/2021 17:14      |
| Tetrachloroethene         | < 6.25            | ug/Kg |               |                 | 5/11/2021 17:14      |
| Toluene                   | < 6.25            | ug/Kg |               |                 | 5/11/2021 17:14      |
| trans-1,2-Dichloroethene  | < 6.25            | ug/Kg |               |                 | 5/11/2021 17:14      |
| trans-1,3-Dichloropropene | < 6.25            | ug/Kg |               |                 | 5/11/2021 17:14      |
| Trichloroethene           | < 6.25            | ug/Kg |               |                 | 5/11/2021 17:14      |
| Trichlorofluoromethane    | < 6.25            | ug/Kg |               |                 | 5/11/2021 17:14      |
| Vinyl chloride            | < 6.25            | ug/Kg |               |                 | 5/11/2021 17:14      |
| Surrogate                 | rrogate Percent l |       | <b>Limits</b> | <u>Outliers</u> | <b>Date Analyzed</b> |

| <del>Dai i Ugate</del> | r creent necestery | Limites    | Outhers | Dute many | LCu   |
|------------------------|--------------------|------------|---------|-----------|-------|
| 1,2-Dichloroethane-d4  | 96.0               | 52.5 - 151 |         | 5/11/2021 | 17:14 |
| 4-Bromofluorobenzene   | 96.9               | 37.7 - 146 |         | 5/11/2021 | 17:14 |
| Pentafluorobenzene     | 84.8               | 92.1 - 115 | *       | 5/11/2021 | 17:14 |
| Toluene-D8             | 93.8               | 74 - 120   |         | 5/11/2021 | 17:14 |
|                        |                    |            |         |           |       |

**Method Reference(s):** EPA 8260C

EPA 5035A - L

Data File: z01502.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

# **Total Cyanide**

| <u>Analyte</u> | <b>Result</b> | <u>Units</u> | Qualifier | <b>Date Analyzed</b> |
|----------------|---------------|--------------|-----------|----------------------|
| Cyanide, Total | < 0.508       | mg/Kg        |           | 5/14/2021            |

Method Reference(s): EPA 9014
EPA 9010C
Preparation Date: 5/13/2021



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-31 (11.0-11.5 ft.)

Lab Sample ID:211960-09Date Sampled:5/7/2021Matrix:SoilDate Received:5/10/2021

#### **Herbicides**

| <u>Analyte</u>    | <u>Result</u> | <u>Units</u> | <b>Qualifier</b> | <b>Date Analyzed</b> |
|-------------------|---------------|--------------|------------------|----------------------|
| 2,4,5-T           | <3880         | ug/Kg        |                  | 5/13/2021            |
| 2,4,5-TP (Silvex) | <3880         | ug/Kg        |                  | 5/13/2021            |
| 2,4-D             | <16800        | ug/Kg        |                  | 5/13/2021            |

**Method Reference(s):** EPA 8321B **Subcontractor ELAP ID:** 10709

### **Mercury**

| <u>Analyte</u> | Result | <u>Units</u> | Qualifier | <b>Date Analyzed</b> |
|----------------|--------|--------------|-----------|----------------------|
| Mercury        | 0.0769 | mg/Kg        |           | 5/14/2021 10:22      |

Method Reference(s):EPA 7471BPreparation Date:5/13/2021Data File:Hg210514C

# RCRA Metals (ICP)

| <u>Analyte</u> | Result  | <u>Units</u> | <b>Qualifier</b> | <b>Date Analyzed</b> |
|----------------|---------|--------------|------------------|----------------------|
| Arsenic        | 50.9    | mg/Kg        |                  | 5/12/2021 18:20      |
| Barium         | 42.3    | mg/Kg        |                  | 5/12/2021 18:20      |
| Cadmium        | < 0.771 | mg/Kg        |                  | 5/12/2021 18:20      |
| Chromium       | 5.00    | mg/Kg        |                  | 5/12/2021 18:20      |
| Lead           | 91.4    | mg/Kg        |                  | 5/12/2021 18:20      |
| Selenium       | < 3.08  | mg/Kg        |                  | 5/12/2021 18:20      |
| Silver         | < 1.54  | mg/Kg        |                  | 5/12/2021 18:20      |
|                |         |              |                  |                      |

Method Reference(s):EPA 6010CEPA 3050BPreparation Date:5/11/2021

Data File: 5/11/202

# **PCBs**

| <u>Analyte</u> | <b>Result</b> | <u>Units</u> | <u>Qualifier</u> | <b>Date Analyzed</b> |
|----------------|---------------|--------------|------------------|----------------------|
| PCB-1016       | < 0.0889      | mg/Kg        |                  | 5/13/2021 19:37      |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-31 (11.0-11.5 ft.)

 Lab Sample ID:
 211960-09
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

| PCB-1221             | < 0.0889     | mg/Kg       |               |                 | 5/13/2021         | 19:37      |
|----------------------|--------------|-------------|---------------|-----------------|-------------------|------------|
| PCB-1232             | < 0.0889     | mg/Kg       |               |                 | 5/13/2021         | 19:37      |
| PCB-1242             | < 0.0889     | mg/Kg       |               |                 | 5/13/2021         | 19:37      |
| PCB-1248             | < 0.0889     | mg/Kg       |               |                 | 5/13/2021         | 19:37      |
| PCB-1254             | < 0.0889     | mg/Kg       |               |                 | 5/13/2021         | 19:37      |
| PCB-1260             | < 0.0889     | mg/Kg       |               |                 | 5/13/2021         | 19:37      |
| PCB-1262             | < 0.0889     | mg/Kg       |               |                 | 5/13/2021         | 19:37      |
| PCB-1268             | < 0.0889     | mg/Kg       |               |                 | 5/13/2021         | 19:37      |
| <u>Surrogate</u>     | <u>Perce</u> | nt Recovery | <u>Limits</u> | <b>Outliers</b> | <b>Date Analy</b> | <u>zed</u> |
| Tetrachloro-m-xylene |              | 63.1        | 16.4 - 99.1   |                 | 5/13/2021         | 19:37      |

Method Reference(s): EPA 8082A EPA 3546

**Preparation Date:** 5/12/2021

#### **Chlorinated Pesticides**

| <u>Analyte</u>     | <u>Result</u> | <u>Units</u> | <b>Qualifier</b> | <b>Date Analyzed</b> |
|--------------------|---------------|--------------|------------------|----------------------|
| 4,4-DDD            | < 88.9        | ug/Kg        |                  | 5/14/2021 14:30      |
| 4,4-DDE            | < 88.9        | ug/Kg        |                  | 5/14/2021 14:30      |
| 4,4-DDT            | < 88.9        | ug/Kg        |                  | 5/14/2021 14:30      |
| Aldrin             | 94.8          | ug/Kg        |                  | 5/14/2021 14:30      |
| alpha-BHC          | < 88.9        | ug/Kg        |                  | 5/14/2021 14:30      |
| beta-BHC           | < 88.9        | ug/Kg        |                  | 5/14/2021 14:30      |
| cis-Chlordane      | < 88.9        | ug/Kg        |                  | 5/14/2021 14:30      |
| delta-BHC          | < 88.9        | ug/Kg        |                  | 5/14/2021 14:30      |
| Dieldrin           | 649           | ug/Kg        |                  | 5/14/2021 14:30      |
| Endosulfan I       | < 88.9        | ug/Kg        |                  | 5/14/2021 14:30      |
| Endosulfan II      | < 88.9        | ug/Kg        |                  | 5/14/2021 14:30      |
| Endosulfan Sulfate | < 88.9        | ug/Kg        |                  | 5/14/2021 14:30      |
| Endrin             | < 88.9        | ug/Kg        |                  | 5/14/2021 14:30      |
| Endrin Aldehyde    | < 88.9        | ug/Kg        |                  | 5/14/2021 14:30      |
| Endrin Ketone      | 243           | ug/Kg        |                  | 5/14/2021 14:30      |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-31 (11.0-11.5 ft.)

 Lab Sample ID:
 211960-09
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

|          | Tetrachloro-m-xylene (1) | N                | С     | 26.3 - 99.8   |                 | 5/14/2021         | 14:30      |
|----------|--------------------------|------------------|-------|---------------|-----------------|-------------------|------------|
|          | Decachlorobiphenyl (1)   | N                | C     | 10 - 134      |                 | 5/14/2021         | 14:30      |
| <u>S</u> | <u>urrogate</u>          | Percent Recovery |       | <u>Limits</u> | <b>Outliers</b> | <b>Date Analy</b> | <u>zed</u> |
|          | trans-Chlordane          | < 88.9           | ug/Kg |               |                 | 5/14/2021         | 14:30      |
|          | Toxaphene                | < 889            | ug/Kg |               |                 | 5/14/2021         | 14:30      |
|          | Methoxychlor             | < 88.9           | ug/Kg |               |                 | 5/14/2021         | 14:30      |
|          | Heptachlor Epoxide       | < 88.9           | ug/Kg |               |                 | 5/14/2021         | 14:30      |
|          | Heptachlor               | < 88.9           | ug/Kg |               |                 | 5/14/2021         | 14:30      |
|          | gamma-BHC (Lindane)      | < 88.9           | ug/Kg |               |                 | 5/14/2021         | 14:30      |
|          |                          |                  |       |               |                 |                   |            |

Method Reference(s): EPA 8081B

EPA 3546

**Preparation Date:** 5/12/2021

# Semi-Volatile Organics (Base Neutrals)

| <u>Analyte</u>               | <u>Result</u> | <u>Units</u> | Qualifier | <b>Date Analyzed</b> |
|------------------------------|---------------|--------------|-----------|----------------------|
| 1,1-Biphenyl                 | < 875         | ug/Kg        |           | 5/14/2021 22:08      |
| 1,2,4,5-Tetrachlorobenzene   | < 875         | ug/Kg        |           | 5/14/2021 22:08      |
| 1,2,4-Trichlorobenzene       | < 875         | ug/Kg        |           | 5/14/2021 22:08      |
| 1,2-Dichlorobenzene          | < 875         | ug/Kg        |           | 5/14/2021 22:08      |
| 1,3-Dichlorobenzene          | < 875         | ug/Kg        |           | 5/14/2021 22:08      |
| 1,4-Dichlorobenzene          | < 875         | ug/Kg        |           | 5/14/2021 22:08      |
| 2,2-0xybis (1-chloropropane) | < 875         | ug/Kg        |           | 5/14/2021 22:08      |
| 2,4-Dinitrotoluene           | < 875         | ug/Kg        |           | 5/14/2021 22:08      |
| 2,6-Dinitrotoluene           | < 875         | ug/Kg        |           | 5/14/2021 22:08      |
| 2-Chloronaphthalene          | < 875         | ug/Kg        |           | 5/14/2021 22:08      |
| 2-Methylnapthalene           | < 875         | ug/Kg        |           | 5/14/2021 22:08      |
| 2-Nitroaniline               | < 875         | ug/Kg        |           | 5/14/2021 22:08      |
| 3,3'-Dichlorobenzidine       | < 875         | ug/Kg        |           | 5/14/2021 22:08      |
| 3-Nitroaniline               | < 875         | ug/Kg        |           | 5/14/2021 22:08      |
| 4-Bromophenyl phenyl ether   | < 875         | ug/Kg        |           | 5/14/2021 22:08      |
| 4-Chloroaniline              | < 875         | ug/Kg        |           | 5/14/2021 22:08      |
|                              |               |              |           |                      |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-31 (11.0-11.5 ft.)

 Lab Sample ID:
 211960-09
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

| 4-C | hlorophenyl phenyl ether | < 875 | ug/Kg | 5/14/2021 | 22:08 |
|-----|--------------------------|-------|-------|-----------|-------|
| 4-N | litroaniline             | < 875 | ug/Kg | 5/14/2021 | 22:08 |
| Ace | enaphthene               | < 875 | ug/Kg | 5/14/2021 | 22:08 |
| Ace | enaphthylene             | < 875 | ug/Kg | 5/14/2021 | 22:08 |
| Ace | etophenone               | 6470  | ug/Kg | 5/14/2021 | 22:08 |
| Ant | thracene                 | < 875 | ug/Kg | 5/14/2021 | 22:08 |
| Atr | azine                    | < 875 | ug/Kg | 5/14/2021 | 22:08 |
| Ber | nzaldehyde               | 24400 | ug/Kg | 5/14/2021 | 22:08 |
| Ber | nzo (a) anthracene       | < 875 | ug/Kg | 5/14/2021 | 22:08 |
| Ber | nzo (a) pyrene           | < 875 | ug/Kg | 5/14/2021 | 22:08 |
| Ber | nzo (b) fluoranthene     | < 875 | ug/Kg | 5/14/2021 | 22:08 |
| Ber | nzo (g,h,i) perylene     | < 875 | ug/Kg | 5/14/2021 | 22:08 |
| Ber | nzo (k) fluoranthene     | < 875 | ug/Kg | 5/14/2021 | 22:08 |
| Bis | (2-chloroethoxy) methane | < 875 | ug/Kg | 5/14/2021 | 22:08 |
| Bis | (2-chloroethyl) ether    | < 875 | ug/Kg | 5/14/2021 | 22:08 |
| Bis | (2-ethylhexyl) phthalate | < 875 | ug/Kg | 5/14/2021 | 22:08 |
| But | tylbenzylphthalate       | < 875 | ug/Kg | 5/14/2021 | 22:08 |
| Cap | orolactam                | < 875 | ug/Kg | 5/14/2021 | 22:08 |
| Car | bazole                   | < 875 | ug/Kg | 5/14/2021 | 22:08 |
| Chr | ysene                    | < 875 | ug/Kg | 5/14/2021 | 22:08 |
| Dib | enz (a,h) anthracene     | < 875 | ug/Kg | 5/14/2021 | 22:08 |
| Dib | enzofuran                | < 875 | ug/Kg | 5/14/2021 | 22:08 |
| Die | thyl phthalate           | < 875 | ug/Kg | 5/14/2021 | 22:08 |
| Din | nethyl phthalate         | < 875 | ug/Kg | 5/14/2021 | 22:08 |
| Di- | n-butyl phthalate        | < 875 | ug/Kg | 5/14/2021 | 22:08 |
| Di- | n-octylphthalate         | < 875 | ug/Kg | 5/14/2021 | 22:08 |
| Flu | oranthene                | < 875 | ug/Kg | 5/14/2021 | 22:08 |
| Flu | orene                    | < 875 | ug/Kg | 5/14/2021 | 22:08 |
| Hex | xachlorobenzene          | < 875 | ug/Kg | 5/14/2021 | 22:08 |
| Hex | xachlorobutadiene        | < 875 | ug/Kg | 5/14/2021 | 22:08 |
|     |                          |       |       |           |       |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-31 (11.0-11.5 ft.)

 Lab Sample ID:
 211960-09
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

| <u>Surrogate</u>           | Perce  | nt Recovery | <u>Limits</u> | <b>Outliers</b> | <b>Date Analyzed</b> |
|----------------------------|--------|-------------|---------------|-----------------|----------------------|
| Pyrene                     | < 875  | ug/Kg       |               |                 | 5/14/2021 22:08      |
| Phenanthrene               | < 875  | ug/Kg       |               |                 | 5/14/2021 22:08      |
| N-Nitrosodiphenylamine     | < 875  | ug/Kg       |               |                 | 5/14/2021 22:08      |
| N-Nitroso-di-n-propylamine | < 875  | ug/Kg       |               |                 | 5/14/2021 22:08      |
| Nitrobenzene               | < 875  | ug/Kg       |               |                 | 5/14/2021 22:08      |
| Naphthalene                | < 875  | ug/Kg       |               |                 | 5/14/2021 22:08      |
| Isophorone                 | < 875  | ug/Kg       |               |                 | 5/14/2021 22:08      |
| Indeno (1,2,3-cd) pyrene   | < 875  | ug/Kg       |               |                 | 5/14/2021 22:08      |
| Hexachloroethane           | < 875  | ug/Kg       |               |                 | 5/14/2021 22:08      |
| Hexachlorocyclopentadiene  | < 3500 | ug/Kg       |               |                 | 5/14/2021 22:08      |
|                            |        |             |               |                 |                      |

| <u>Surrogate</u> | Percent Recovery | <u>Limits</u> | <u>Outliers</u> | <b>Date Analy</b> | <u>zed</u> |
|------------------|------------------|---------------|-----------------|-------------------|------------|
| 2-Fluorobiphenyl | 63.6             | 34.6 - 83.9   |                 | 5/14/2021         | 22:08      |
| Nitrobenzene-d5  | 57.8             | 32.4 - 76     |                 | 5/14/2021         | 22:08      |
| Terphenyl-d14    | 67.5             | 38.2 - 88.8   |                 | 5/14/2021         | 22:08      |

**Method Reference(s):** EPA 8270D

EPA 3546

 Preparation Date:
 5/11/2021

 Data File:
 B54169.D

# **Volatile Organics**

| <u>Analyte</u>              | Result | <u>Units</u> | <b>Qualifier</b> | <b>Date Analyzed</b> |
|-----------------------------|--------|--------------|------------------|----------------------|
| 1,1,1-Trichloroethane       | < 21.9 | ug/Kg        |                  | 5/11/2021 17:33      |
| 1,1,2,2-Tetrachloroethane   | < 21.9 | ug/Kg        |                  | 5/11/2021 17:33      |
| 1,1,2-Trichloroethane       | < 21.9 | ug/Kg        |                  | 5/11/2021 17:33      |
| 1,1-Dichloroethane          | < 21.9 | ug/Kg        |                  | 5/11/2021 17:33      |
| 1,1-Dichloroethene          | < 21.9 | ug/Kg        |                  | 5/11/2021 17:33      |
| 1,2,3-Trichlorobenzene      | < 54.7 | ug/Kg        |                  | 5/11/2021 17:33      |
| 1,2,4-Trichlorobenzene      | < 54.7 | ug/Kg        |                  | 5/11/2021 17:33      |
| 1,2-Dibromo-3-Chloropropane | < 109  | ug/Kg        |                  | 5/11/2021 17:33      |
| 1,2-Dibromoethane           | < 21.9 | ug/Kg        |                  | 5/11/2021 17:33      |
| 1,2-Dichlorobenzene         | < 21.9 | ug/Kg        |                  | 5/11/2021 17:33      |
| 1,2-Dichloroethane          | < 21.9 | ug/Kg        |                  | 5/11/2021 17:33      |

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Page 62 of 79



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-31 (11.0-11.5 ft.)

Lab Sample ID:211960-09Date Sampled:5/7/2021Matrix:SoilDate Received:5/10/2021

| Mau ix:                 | 5011   |       | Date Receiveu: | 5/10/2021 |       |
|-------------------------|--------|-------|----------------|-----------|-------|
|                         |        |       |                |           |       |
| 1,2-Dichloropropane     | < 21.9 | ug/Kg |                | 5/11/2021 | 17:33 |
| 1,3-Dichlorobenzene     | < 21.9 | ug/Kg |                | 5/11/2021 | 17:33 |
| 1,4-Dichlorobenzene     | < 21.9 | ug/Kg |                | 5/11/2021 | 17:33 |
| 1,4-Dioxane             | < 109  | ug/Kg |                | 5/11/2021 | 17:33 |
| 2-Butanone              | 114    | ug/Kg |                | 5/11/2021 | 17:33 |
| 2-Hexanone              | < 54.7 | ug/Kg |                | 5/11/2021 | 17:33 |
| 4-Methyl-2-pentanone    | < 54.7 | ug/Kg |                | 5/11/2021 | 17:33 |
| Acetone                 | 327    | ug/Kg |                | 5/11/2021 | 17:33 |
| Benzene                 | < 21.9 | ug/Kg |                | 5/11/2021 | 17:33 |
| Bromochloromethane      | < 54.7 | ug/Kg |                | 5/11/2021 | 17:33 |
| Bromodichloromethane    | < 21.9 | ug/Kg |                | 5/11/2021 | 17:33 |
| Bromoform               | < 54.7 | ug/Kg |                | 5/11/2021 | 17:33 |
| Bromomethane            | < 21.9 | ug/Kg |                | 5/11/2021 | 17:33 |
| Carbon disulfide        | < 21.9 | ug/Kg |                | 5/11/2021 | 17:33 |
| Carbon Tetrachloride    | < 21.9 | ug/Kg |                | 5/11/2021 | 17:33 |
| Chlorobenzene           | < 21.9 | ug/Kg |                | 5/11/2021 | 17:33 |
| Chloroethane            | < 21.9 | ug/Kg |                | 5/11/2021 | 17:33 |
| Chloroform              | < 21.9 | ug/Kg |                | 5/11/2021 | 17:33 |
| Chloromethane           | < 21.9 | ug/Kg |                | 5/11/2021 | 17:33 |
| cis-1,2-Dichloroethene  | < 21.9 | ug/Kg |                | 5/11/2021 | 17:33 |
| cis-1,3-Dichloropropene | < 21.9 | ug/Kg |                | 5/11/2021 | 17:33 |
| Cyclohexane             | < 109  | ug/Kg |                | 5/11/2021 | 17:33 |
| Dibromochloromethane    | < 21.9 | ug/Kg |                | 5/11/2021 | 17:33 |
| Dichlorodifluoromethane | < 21.9 | ug/Kg |                | 5/11/2021 | 17:33 |
| Ethylbenzene            | < 21.9 | ug/Kg |                | 5/11/2021 | 17:33 |
| Freon 113               | < 21.9 | ug/Kg |                | 5/11/2021 | 17:33 |
| Isopropylbenzene        | < 21.9 | ug/Kg |                | 5/11/2021 | 17:33 |
| m,p-Xylene              | < 21.9 | ug/Kg |                | 5/11/2021 | 17:33 |
| Methyl acetate          | < 21.9 | ug/Kg |                | 5/11/2021 | 17:33 |
| Methyl tert-butyl Ether | < 21.9 | ug/Kg |                | 5/11/2021 | 17:33 |
|                         |        |       |                |           |       |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-31 (11.0-11.5 ft.)

 Lab Sample ID:
 211960-09
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

| 40 0 11 14                |        | 400          | E0 E 4 E 4    |                 | E /4.4 /0.004      | 4 = 00 |
|---------------------------|--------|--------------|---------------|-----------------|--------------------|--------|
| <b>Surrogate</b>          | Perce  | ent Recovery | <u>Limits</u> | <u>Outliers</u> | <b>Date Analyz</b> | zed    |
| Vinyl chloride            | < 21.9 | ug/Kg        |               |                 | 5/11/2021          | 17:33  |
| Trichlorofluoromethane    | < 21.9 | ug/Kg        |               |                 | 5/11/2021          | 17:33  |
| Trichloroethene           | < 21.9 | ug/Kg        |               |                 | 5/11/2021          | 17:33  |
| trans-1,3-Dichloropropene | < 21.9 | ug/Kg        |               |                 | 5/11/2021          | 17:33  |
| trans-1,2-Dichloroethene  | < 21.9 | ug/Kg        |               |                 | 5/11/2021          | 17:33  |
| Toluene                   | < 21.9 | ug/Kg        |               |                 | 5/11/2021          | 17:33  |
| Tetrachloroethene         | < 21.9 | ug/Kg        |               |                 | 5/11/2021          | 17:33  |
| Styrene                   | < 54.7 | ug/Kg        |               |                 | 5/11/2021          | 17:33  |
| o-Xylene                  | < 21.9 | ug/Kg        |               |                 | 5/11/2021          | 17:33  |
| Methylene chloride        | < 54.7 | ug/Kg        |               |                 | 5/11/2021          | 17:33  |
| Methylcyclohexane         | < 21.9 | ug/Kg        |               |                 | 5/11/2021          | 17:33  |
|                           |        |              |               |                 |                    |        |

| 1,2-Dichloroethane-d4 | 108  | 52.5 - 151 | 5/11/2021 | 17:33 |
|-----------------------|------|------------|-----------|-------|
| 4-Bromofluorobenzene  | 97.7 | 37.7 - 146 | 5/11/2021 | 17:33 |
| Pentafluorobenzene    | 93.8 | 92.1 - 115 | 5/11/2021 | 17:33 |
| Toluene-D8            | 100  | 74 - 120   | 5/11/2021 | 17:33 |
| Totache Bo            | 100  | , 1 120    | 0/11/2021 | 17100 |

Method Reference(s): EPA 8260C

EPA 5035A - L **Data File:** z01503.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

# **Total Cyanide**

| <u>Analyte</u> | <u>Result</u> | <u>Units</u> | <b>Qualifier</b> | <b>Date Analyzed</b> |
|----------------|---------------|--------------|------------------|----------------------|
| Cyanide, Total | < 1.41        | mg/Kg        |                  | 5/14/2021            |

Method Reference(s): EPA 9014
EPA 9010C
Preparation Date: 5/13/2021



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-35 (3.0-3.5 ft.)

Lab Sample ID:211960-10Date Sampled:5/7/2021Matrix:SoilDate Received:5/10/2021

## **Herbicides**

| <u>Analyte</u>    | <u>Result</u> | <u>Units</u> | <b>Qualifier</b> | <b>Date Analyzed</b> |
|-------------------|---------------|--------------|------------------|----------------------|
| 2,4,5-T           | <342          | ug/Kg        |                  | 5/13/2021            |
| 2,4,5-TP (Silvex) | <342          | ug/Kg        |                  | 5/13/2021            |
| 2,4-D             | <1370         | ug/Kg        |                  | 5/13/2021            |

Surrogate outliers indicate matrix effects.

Method Reference(s): EPA 8321B

Subcontractor ELAP ID: 10709

# **Mercury**

| <u>Analyte</u> | <u>Result</u> | <u>Units</u> | <u>Qualifier</u> | <b>Date Analyzed</b> |
|----------------|---------------|--------------|------------------|----------------------|
| Mercury        | 0.101         | mg/Kg        |                  | 5/14/2021 10:24      |

Method Reference(s):EPA 7471BPreparation Date:5/13/2021Data File:Hg210514C

# RCRA Metals (ICP)

| <u>Analyte</u> | Result | <u>Units</u> | Qualifier | <b>Date Analy</b> | vzed  |
|----------------|--------|--------------|-----------|-------------------|-------|
| Arsenic        | 3.01   | mg/Kg        |           | 5/12/2021         | 18:25 |
| Barium         | 47.7   | mg/Kg        |           | 5/12/2021         | 18:25 |
| Cadmium        | 0.665  | mg/Kg        |           | 5/12/2021         | 18:25 |
| Chromium       | 8.18   | mg/Kg        |           | 5/12/2021         | 18:25 |
| Lead           | 41.3   | mg/Kg        |           | 5/12/2021         | 18:25 |
| Selenium       | < 1.11 | mg/Kg        |           | 5/12/2021         | 18:25 |
| Silver         | 0.897  | mg/Kg        |           | 5/12/2021         | 18:25 |

**Method Reference(s):** EPA 6010C

EPA 3050B

Preparation Date: 5/11/2021 Data File: 210512B



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-35 (3.0-3.5 ft.)

Lab Sample ID:211960-10Date Sampled:5/7/2021Matrix:SoilDate Received:5/10/2021

## **PCBs**

| <u>Analyte</u>       | <u>Result</u> | <u>Units</u> |               | <b>Qualifier</b> | <b>Date Analy</b> | vzed  |
|----------------------|---------------|--------------|---------------|------------------|-------------------|-------|
| PCB-1016             | < 0.0295      | mg/Kg        |               |                  | 5/13/2021         | 18:02 |
| PCB-1221             | < 0.0295      | mg/Kg        |               |                  | 5/13/2021         | 18:02 |
| PCB-1232             | < 0.0295      | mg/Kg        |               |                  | 5/13/2021         | 18:02 |
| PCB-1242             | < 0.0295      | mg/Kg        |               |                  | 5/13/2021         | 18:02 |
| PCB-1248             | < 0.0295      | mg/Kg        |               |                  | 5/13/2021         | 18:02 |
| PCB-1254             | < 0.0295      | mg/Kg        |               |                  | 5/13/2021         | 18:02 |
| PCB-1260             | < 0.0295      | mg/Kg        |               |                  | 5/13/2021         | 18:02 |
| PCB-1262             | < 0.0295      | mg/Kg        |               |                  | 5/13/2021         | 18:02 |
| PCB-1268             | < 0.0295      | mg/Kg        |               |                  | 5/13/2021         | 18:02 |
| <u>Surrogate</u>     | Perce         | nt Recovery  | <u>Limits</u> | <u>Outliers</u>  | <b>Date Analy</b> | zed   |
| Tetrachloro-m-xylene |               | 54.7         | 16.4 - 99.1   |                  | 5/13/2021         | 18:02 |

Method Reference(s): EPA 8082A EPA 3546
Preparation Date: 5/12/2021

#### **Chlorinated Pesticides**

| <u>Analyte</u>     | Result | <u>Units</u> | <b>Qualifier</b> | <b>Date Analyzed</b> |
|--------------------|--------|--------------|------------------|----------------------|
| 4,4-DDD            | < 2.95 | ug/Kg        |                  | 5/13/2021 17:44      |
| 4,4-DDE            | 5.60   | ug/Kg        |                  | 5/13/2021 17:44      |
| 4,4-DDT            | 5.10   | ug/Kg        |                  | 5/13/2021 17:44      |
| Aldrin             | < 2.95 | ug/Kg        |                  | 5/13/2021 17:44      |
| alpha-BHC          | < 2.95 | ug/Kg        |                  | 5/13/2021 17:44      |
| beta-BHC           | < 2.95 | ug/Kg        |                  | 5/13/2021 17:44      |
| cis-Chlordane      | 4.80   | ug/Kg        | P                | 5/13/2021 17:44      |
| delta-BHC          | < 2.95 | ug/Kg        |                  | 5/13/2021 17:44      |
| Dieldrin           | 32.3   | ug/Kg        |                  | 5/13/2021 17:44      |
| Endosulfan I       | < 2.95 | ug/Kg        |                  | 5/13/2021 17:44      |
| Endosulfan II      | < 2.95 | ug/Kg        |                  | 5/13/2021 17:44      |
| Endosulfan Sulfate | 3.06   | ug/Kg        | P                | 5/13/2021 17:44      |

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Page 66 of 79



**Bergmann Associates** Client:

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

Sample Identifier: TP21-35 (3.0-3.5 ft.)

**Date Sampled:** Lab Sample ID: 211960-10 5/7/2021 **Matrix:** Soil **Date Received:** 5/10/2021

| Endrin                   | < 2.95      | ug/Kg         |               |                 | 5/13/2021         | 17:44 |
|--------------------------|-------------|---------------|---------------|-----------------|-------------------|-------|
| Endrin Aldehyde          | < 2.95      | ug/Kg         |               |                 | 5/13/2021         | 17:44 |
| Endrin Ketone            | < 2.95      | ug/Kg         |               |                 | 5/13/2021         | 17:44 |
| gamma-BHC (Lindane)      | < 2.95      | ug/Kg         |               |                 | 5/13/2021         | 17:44 |
| Heptachlor               | < 2.95      | ug/Kg         |               |                 | 5/13/2021         | 17:44 |
| Heptachlor Epoxide       | 3.14        | ug/Kg         |               |                 | 5/13/2021         | 17:44 |
| Methoxychlor             | < 2.95      | ug/Kg         |               |                 | 5/13/2021         | 17:44 |
| Toxaphene                | < 29.5      | ug/Kg         |               |                 | 5/13/2021         | 17:44 |
| trans-Chlordane          | 5.02        | ug/Kg         |               |                 | 5/13/2021         | 17:44 |
| <u>Surrogate</u>         | <u>Pe</u> i | cent Recovery | <u>Limits</u> | <b>Outliers</b> | <b>Date Analy</b> | zed   |
| Decachlorobiphenyl (1)   |             | 64.4          | 10 - 134      |                 | 5/13/2021         | 17:44 |
| Tetrachloro-m-xylene (1) |             | 69.7          | 26.3 - 99.8   |                 | 5/13/2021         | 17:44 |
|                          |             |               |               |                 |                   |       |

Method Reference(s): EPA 8081B

EPA 3546

**Preparation Date:** 5/12/2021

# Semi-Volatile Organics (Base Neutrals)

| <u>Analyte</u>               | Result | <u>Units</u> | <b>Qualifier</b> | <b>Date Analyzed</b> |
|------------------------------|--------|--------------|------------------|----------------------|
| 1,1-Biphenyl                 | < 305  | ug/Kg        |                  | 5/13/2021 02:48      |
| 1,2,4,5-Tetrachlorobenzene   | < 305  | ug/Kg        |                  | 5/13/2021 02:48      |
| 1,2,4-Trichlorobenzene       | < 305  | ug/Kg        |                  | 5/13/2021 02:48      |
| 1,2-Dichlorobenzene          | < 305  | ug/Kg        |                  | 5/13/2021 02:48      |
| 1,3-Dichlorobenzene          | < 305  | ug/Kg        |                  | 5/13/2021 02:48      |
| 1,4-Dichlorobenzene          | < 305  | ug/Kg        |                  | 5/13/2021 02:48      |
| 2,2-Oxybis (1-chloropropane) | < 305  | ug/Kg        |                  | 5/13/2021 02:48      |
| 2,4-Dinitrotoluene           | < 305  | ug/Kg        |                  | 5/13/2021 02:48      |
| 2,6-Dinitrotoluene           | < 305  | ug/Kg        |                  | 5/13/2021 02:48      |
| 2-Chloronaphthalene          | < 305  | ug/Kg        |                  | 5/13/2021 02:48      |
| 2-Methylnapthalene           | < 305  | ug/Kg        |                  | 5/13/2021 02:48      |
| 2-Nitroaniline               | < 305  | ug/Kg        |                  | 5/13/2021 02:48      |
| 3,3'-Dichlorobenzidine       | < 305  | ug/Kg        |                  | 5/13/2021 02:48      |
|                              |        |              |                  |                      |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-35 (3.0-3.5 ft.)

 Lab Sample ID:
 211960-10
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

|                              |       |       | <u> </u>        |
|------------------------------|-------|-------|-----------------|
|                              |       |       |                 |
| 3-Nitroaniline               | < 305 | ug/Kg | 5/13/2021 02:48 |
| 4-Bromophenyl phenyl ether   | < 305 | ug/Kg | 5/13/2021 02:48 |
| 4-Chloroaniline              | < 305 | ug/Kg | 5/13/2021 02:48 |
| 4-Chlorophenyl phenyl ether  | < 305 | ug/Kg | 5/13/2021 02:48 |
| 4-Nitroaniline               | < 305 | ug/Kg | 5/13/2021 02:48 |
| Acenaphthene                 | < 305 | ug/Kg | 5/13/2021 02:48 |
| Acenaphthylene               | < 305 | ug/Kg | 5/13/2021 02:48 |
| Acetophenone                 | < 305 | ug/Kg | 5/13/2021 02:48 |
| Anthracene                   | < 305 | ug/Kg | 5/13/2021 02:48 |
| Atrazine                     | < 305 | ug/Kg | 5/13/2021 02:48 |
| Benzaldehyde                 | < 305 | ug/Kg | 5/13/2021 02:48 |
| Benzo (a) anthracene         | 655   | ug/Kg | 5/13/2021 02:48 |
| Benzo (a) pyrene             | 712   | ug/Kg | 5/13/2021 02:48 |
| Benzo (b) fluoranthene       | 670   | ug/Kg | 5/13/2021 02:48 |
| Benzo (g,h,i) perylene       | 482   | ug/Kg | 5/13/2021 02:48 |
| Benzo (k) fluoranthene       | 413   | ug/Kg | 5/13/2021 02:48 |
| Bis (2-chloroethoxy) methane | < 305 | ug/Kg | 5/13/2021 02:48 |
| Bis (2-chloroethyl) ether    | < 305 | ug/Kg | 5/13/2021 02:48 |
| Bis (2-ethylhexyl) phthalate | < 305 | ug/Kg | 5/13/2021 02:48 |
| Butylbenzylphthalate         | < 305 | ug/Kg | 5/13/2021 02:48 |
| Caprolactam                  | < 305 | ug/Kg | 5/13/2021 02:48 |
| Carbazole                    | < 305 | ug/Kg | 5/13/2021 02:48 |
| Chrysene                     | 647   | ug/Kg | 5/13/2021 02:48 |
| Dibenz (a,h) anthracene      | < 305 | ug/Kg | 5/13/2021 02:48 |
| Dibenzofuran                 | < 305 | ug/Kg | 5/13/2021 02:48 |
| Diethyl phthalate            | < 305 | ug/Kg | 5/13/2021 02:48 |
| Dimethyl phthalate           | < 305 | ug/Kg | 5/13/2021 02:48 |
| Di-n-butyl phthalate         | < 305 | ug/Kg | 5/13/2021 02:48 |
| Di-n-octylphthalate          | < 305 | ug/Kg | 5/13/2021 02:48 |
| Fluoranthene                 | 1280  | ug/Kg | 5/13/2021 02:48 |
|                              |       |       |                 |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-35 (3.0-3.5 ft.)

 Lab Sample ID:
 211960-10
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

| Fluorene                   | < 305     | ug/Kg    |               |                 | 5/13/2021         | 02:48 |
|----------------------------|-----------|----------|---------------|-----------------|-------------------|-------|
| Hexachlorobenzene          | < 305     | ug/Kg    |               |                 | 5/13/2021         | 02:48 |
| Hexachlorobutadiene        | < 305     | ug/Kg    |               |                 | 5/13/2021         | 02:48 |
| Hexachlorocyclopentadiene  | < 1220    | ug/Kg    |               |                 | 5/13/2021         | 02:48 |
| Hexachloroethane           | < 305     | ug/Kg    |               |                 | 5/13/2021         | 02:48 |
| Indeno (1,2,3-cd) pyrene   | 541       | ug/Kg    |               |                 | 5/13/2021         | 02:48 |
| Isophorone                 | < 305     | ug/Kg    |               |                 | 5/13/2021         | 02:48 |
| Naphthalene                | < 305     | ug/Kg    |               |                 | 5/13/2021         | 02:48 |
| Nitrobenzene               | < 305     | ug/Kg    |               |                 | 5/13/2021         | 02:48 |
| N-Nitroso-di-n-propylamine | < 305     | ug/Kg    |               |                 | 5/13/2021         | 02:48 |
| N-Nitrosodiphenylamine     | < 305     | ug/Kg    |               |                 | 5/13/2021         | 02:48 |
| Phenanthrene               | 706       | ug/Kg    |               |                 | 5/13/2021         | 02:48 |
| Pyrene                     | 1010      | ug/Kg    |               |                 | 5/13/2021         | 02:48 |
| Surrogate                  | Percent 1 | Recovery | <u>Limits</u> | <u>Outliers</u> | <b>Date Analy</b> | zed   |
| 2-Fluorobiphenyl           | 70        | .5       | 34.6 - 83.9   | !               | 5/13/2021         | 02:48 |
| Nitrobenzene-d5            | 65        | 8.8      | 32.4 - 76     | į               | 5/13/2021         | 02:48 |

Method Reference(s): EPA 8270D
EPA 3546
Preparation Date: 5/11/2021
Data File: B54083.D

#### **Volatile Organics**

Terphenyl-d14

| <u>Analyte</u>              | Result | <u>Units</u> | Qualifier | <b>Date Analyzed</b> |
|-----------------------------|--------|--------------|-----------|----------------------|
| 1,1,1-Trichloroethane       | < 6.40 | ug/Kg        |           | 5/11/2021 17:53      |
| 1,1,2,2-Tetrachloroethane   | < 6.40 | ug/Kg        |           | 5/11/2021 17:53      |
| 1,1,2-Trichloroethane       | < 6.40 | ug/Kg        |           | 5/11/2021 17:53      |
| 1,1-Dichloroethane          | < 6.40 | ug/Kg        |           | 5/11/2021 17:53      |
| 1,1-Dichloroethene          | < 6.40 | ug/Kg        |           | 5/11/2021 17:53      |
| 1,2,3-Trichlorobenzene      | < 16.0 | ug/Kg        |           | 5/11/2021 17:53      |
| 1,2,4-Trichlorobenzene      | < 16.0 | ug/Kg        |           | 5/11/2021 17:53      |
| 1,2-Dibromo-3-Chloropropane | < 32.0 | ug/Kg        |           | 5/11/2021 17:53      |

76.3

38.2 - 88.8

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Page 69 of 79

5/13/2021

02:48



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-35 (3.0-3.5 ft.)

 Lab Sample ID:
 211960-10
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

| matrix:               | 5011 |        |       | Date Received: | 5/10/2021 |       |
|-----------------------|------|--------|-------|----------------|-----------|-------|
|                       |      |        |       |                |           |       |
| 1,2-Dibromoethane     |      | < 6.40 | ug/Kg |                | 5/11/2021 | 17:53 |
| 1,2-Dichlorobenzene   |      | < 6.40 | ug/Kg |                | 5/11/2021 | 17:53 |
| 1,2-Dichloroethane    |      | < 6.40 | ug/Kg |                | 5/11/2021 | 17:53 |
| 1,2-Dichloropropane   |      | < 6.40 | ug/Kg |                | 5/11/2021 | 17:53 |
| 1,3-Dichlorobenzene   |      | < 6.40 | ug/Kg |                | 5/11/2021 | 17:53 |
| 1,4-Dichlorobenzene   |      | < 6.40 | ug/Kg |                | 5/11/2021 | 17:53 |
| 1,4-Dioxane           |      | < 32.0 | ug/Kg |                | 5/11/2021 | 17:53 |
| 2-Butanone            |      | < 32.0 | ug/Kg |                | 5/11/2021 | 17:53 |
| 2-Hexanone            |      | < 16.0 | ug/Kg |                | 5/11/2021 | 17:53 |
| 4-Methyl-2-pentanor   | ne   | < 16.0 | ug/Kg |                | 5/11/2021 | 17:53 |
| Acetone               |      | < 32.0 | ug/Kg |                | 5/11/2021 | 17:53 |
| Benzene               |      | < 6.40 | ug/Kg |                | 5/11/2021 | 17:53 |
| Bromochloromethan     | e    | < 16.0 | ug/Kg |                | 5/11/2021 | 17:53 |
| Bromodichlorometha    | ane  | < 6.40 | ug/Kg |                | 5/11/2021 | 17:53 |
| Bromoform             |      | < 16.0 | ug/Kg |                | 5/11/2021 | 17:53 |
| Bromomethane          |      | < 6.40 | ug/Kg |                | 5/11/2021 | 17:53 |
| Carbon disulfide      |      | < 6.40 | ug/Kg |                | 5/11/2021 | 17:53 |
| Carbon Tetrachloride  | 2    | < 6.40 | ug/Kg |                | 5/11/2021 | 17:53 |
| Chlorobenzene         |      | < 6.40 | ug/Kg |                | 5/11/2021 | 17:53 |
| Chloroethane          |      | < 6.40 | ug/Kg |                | 5/11/2021 | 17:53 |
| Chloroform            |      | < 6.40 | ug/Kg |                | 5/11/2021 | 17:53 |
| Chloromethane         |      | < 6.40 | ug/Kg |                | 5/11/2021 | 17:53 |
| cis-1,2-Dichloroether | ne   | < 6.40 | ug/Kg |                | 5/11/2021 | 17:53 |
| cis-1,3-Dichloroprop  | ene  | < 6.40 | ug/Kg |                | 5/11/2021 | 17:53 |
| Cyclohexane           |      | < 32.0 | ug/Kg |                | 5/11/2021 | 17:53 |
| Dibromochlorometha    | ane  | < 6.40 | ug/Kg |                | 5/11/2021 | 17:53 |
| Dichlorodifluorometl  | hane | < 6.40 | ug/Kg |                | 5/11/2021 | 17:53 |
| Ethylbenzene          |      | < 6.40 | ug/Kg |                | 5/11/2021 | 17:53 |
| Freon 113             |      | < 6.40 | ug/Kg |                | 5/11/2021 | 17:53 |
| Isopropylbenzene      |      | < 6.40 | ug/Kg |                | 5/11/2021 | 17:53 |
|                       |      |        |       |                |           |       |



Client: Bergmann Associates

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Sample Identifier:** TP21-35 (3.0-3.5 ft.)

 Lab Sample ID:
 211960-10
 Date Sampled:
 5/7/2021

 Matrix:
 Soil
 Date Received:
 5/10/2021

| m,p-Xylene                | < 6.40 | ug/Kg | 5/11/2021 17:53 |
|---------------------------|--------|-------|-----------------|
| Methyl acetate            | < 6.40 | ug/Kg | 5/11/2021 17:53 |
| Methyl tert-butyl Ether   | < 6.40 | ug/Kg | 5/11/2021 17:53 |
| Methylcyclohexane         | < 6.40 | ug/Kg | 5/11/2021 17:53 |
| Methylene chloride        | < 16.0 | ug/Kg | 5/11/2021 17:53 |
| o-Xylene                  | < 6.40 | ug/Kg | 5/11/2021 17:53 |
| Styrene                   | < 16.0 | ug/Kg | 5/11/2021 17:53 |
| Tetrachloroethene         | < 6.40 | ug/Kg | 5/11/2021 17:53 |
| Toluene                   | < 6.40 | ug/Kg | 5/11/2021 17:53 |
| trans-1,2-Dichloroethene  | < 6.40 | ug/Kg | 5/11/2021 17:53 |
| trans-1,3-Dichloropropene | < 6.40 | ug/Kg | 5/11/2021 17:53 |
| Trichloroethene           | < 6.40 | ug/Kg | 5/11/2021 17:53 |
| Trichlorofluoromethane    | < 6.40 | ug/Kg | 5/11/2021 17:53 |
| Vinyl chloride            | < 6.40 | ug/Kg | 5/11/2021 17:53 |
|                           |        |       |                 |

| Surrogate             | Percent Recovery | <u>Limits</u> | <u>Outliers</u> | Date Analy | zed   |
|-----------------------|------------------|---------------|-----------------|------------|-------|
| 1,2-Dichloroethane-d4 | 101              | 52.5 - 151    |                 | 5/11/2021  | 17:53 |
| 4-Bromofluorobenzene  | 95.7             | 37.7 - 146    |                 | 5/11/2021  | 17:53 |
| Pentafluorobenzene    | 92.8             | 92.1 - 115    |                 | 5/11/2021  | 17:53 |
| Toluene-D8            | 99.2             | 74 - 120      |                 | 5/11/2021  | 17:53 |

Method Reference(s): EPA 8260C

EPA 5035A - L

Data File: z01504.D

This sample was not collected following SW846 5035A specifications. Accordingly, any Volatiles soil results that are less than 200 ug/Kg, including Non Detects, may be biased low, per ELAP method 5035 guidance document from 11/15/2012.

# **Total Cvanide**

| <u>Analyte</u>       | <u>Result</u> | <u>Units</u> | <b>Qualifier</b> | <b>Date Analyzed</b> |
|----------------------|---------------|--------------|------------------|----------------------|
| Cyanide, Total       | < 0.508       | mg/Kg        | M                | 5/14/2021            |
| Method Reference(s): | EPA 9014      |              |                  |                      |
|                      | EPA 9010C     |              |                  |                      |
| Prenaration Date     | 5/13/2021     |              |                  |                      |



### **Method Blank Report**

Client:

**Bergmann Associates** 

**Project Reference:** 

Wambach Site Culver Road Providence Irondequoit

Lab Project ID:

211960

Matrix:

Soil

#### RCRA Metals (ICP)

| <u>Analyte</u> |   | Result  | <u>Units</u> | Qualifier | <b>Date Analyzed</b> |       |  |  |
|----------------|---|---------|--------------|-----------|----------------------|-------|--|--|
|                |   |         |              |           |                      |       |  |  |
| Arsenic        |   | <0.481  | mg/Kg        |           | 5/12/2021            | 17:07 |  |  |
| Barium         |   | <4.81   | mg/Kg        |           | 5/12/2021            | 17:07 |  |  |
| Cadmium        | ä | < 0.240 | mg/Kg        |           | 5/12/2021            | 17:07 |  |  |
| Chromium       | # | < 0.481 | mg/Kg        |           | 5/12/2021            | 17:07 |  |  |
| Lead           |   | < 0.481 | mg/Kg        |           | 5/12/2021            | 17:07 |  |  |
| Selenium       |   | < 0.962 | mg/Kg        |           | 5/12/2021            | 17:07 |  |  |
| Silver         |   | < 0.481 | mg/Kg        |           | 5/12/2021            | 17:07 |  |  |

Method Reference(s):

EPA 6010C

EPA 3050B

Preparation Date:

5/11/2021

Data File:

210512B

QC Batch ID:

QC210511Soil2

QC Number:

Blk 1

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.



### QC Report for Laboratory Control Sample and Control Sample Duplicate

Client:

**Bergmann Associates** 

**Project Reference:** 

Wambach Site Culver Road Providence Irondequoit

**Lab Project ID:** 

211960

**Matrix:** 

Soil

#### RCRA Metals (ICP)

|                | <u>LCS</u>   | LCSD         | <u>Spike</u> | LCS    | LCSD   | LCS %    | LCSD %   | % Rec         | <u>LCS</u>      | <u>LCSD</u>     | Relative %        | RPD   | RPD             | <u>Date</u>     |
|----------------|--------------|--------------|--------------|--------|--------|----------|----------|---------------|-----------------|-----------------|-------------------|-------|-----------------|-----------------|
| <u>Analyte</u> | <u>Added</u> | <u>Added</u> | <u>Units</u> | Result | Result | Recovery | Recovery | <u>Limits</u> | <u>Outliers</u> | <u>Outliers</u> | <u>Difference</u> | Limit | <b>Outliers</b> | <b>Analyzed</b> |
|                |              |              |              |        |        |          |          |               |                 |                 |                   |       |                 |                 |
| Arsenic        | 121          | 124          | mg/Kg        | 116    | 118    | 95.6     | 95.3     | 80 - 120      |                 |                 | 0.388             | 20    |                 | 5/12/2021       |
| Barium         | 121          | 124          | mg/Kg        | 129    | 132    | 107      | 107      | 80 - 120      |                 |                 | 0.0618            | 20    |                 | 5/12/2021       |
| Cadmium        | 48.5         | 49.5         | mg/Kg        | 50.6   | 51.8   | 104      | 105      | 80 - 120      |                 |                 | 0.425             | 20    |                 | 5/12/2021       |
| Chromium       | 121          | 124          | mg/Kg        | 123    | 126    | 102      | 102      | 80 - 120      |                 |                 | 0.0974            | 20    |                 | 5/12/2021       |
| Lead           | 121          | 124          | mg/Kg        | 126    | 128    | 104      | 104      | 80 - 120      |                 |                 | 0.193             | 20    |                 | 5/12/2021       |
| Selenium       | 121          | 124          | mg/Kg        | 111    | 113    | 91.9     | 91.4     | 80 - 120      |                 |                 | 0.515             | 20    |                 | 5/12/2021       |
| Silver         | 12.1         | 12.4         | mg/Kg        | 11.3   | 11.6   | 92.8     | 93.8     | 80 - 120      |                 |                 | 1.11              | 20    |                 | 5/12/2021       |

Method Reference(s):

EPA 6010C

EPA 3050B

Preparation Date:

5/11/2021

Data File:

210512B

QC Number:

1

QC Batch ID:

QC210511Soil2

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.



#### OC Report for Sample Spike and Sample Duplicate

Client: **Bergmann Associates** Lab Project ID: 211960

**Project Reference:** Wambach Site Culver Road Providence Irondequoit

**Lab Sample ID:** 211960-01

**Date Sampled:** 5/7/2021 **Date Received:** 5/10/2021 Sample Identifier: TP21-38 (4.0-4.5 ft.)

Matrix: Soil

#### RCRA Metals (ICP)

| <u>Analyte</u> | <u>Sample</u><br><u>Results</u> | Result<br>Units | <u>Spike</u><br>Added | <u>Spike</u><br><u>Result</u> | Spike %<br>Recovery | % Rec<br>Limits | <u>Spike</u><br>Outliers | <u>Duplicate</u><br><u>Result</u> | Relative %<br>Difference | RPD<br>Limit | RPD<br>Outliers | <u>Date</u><br>Analyzed |
|----------------|---------------------------------|-----------------|-----------------------|-------------------------------|---------------------|-----------------|--------------------------|-----------------------------------|--------------------------|--------------|-----------------|-------------------------|
| Arsenic        | 4.34                            | mg/Kg           | 142                   | 126                           | 85.7                | 75 - 125        |                          | 4.59                              | 5.49                     | 20           |                 | 5/12/2021               |
| Barium         | 44.5                            | mg/Kg           | 142                   | 175                           | 91.9                | 75 - 125        |                          | 103                               | 79.6                     | 20           | *               | 5/12/2021               |
| Cadmium        | 0.754                           | mg/Kg           | 56.7                  | 47.6                          | 82.6                | 75 - 125        |                          | 0.901                             | 17.8                     | 20           |                 | 5/12/2021               |
| Chromium       | 9.93                            | mg/Kg           | 142                   | 131                           | 85.3                | 75 - 125        |                          | 11.0                              | 10.6                     | 20           |                 | 5/12/2021               |
| Lead           | 80.9                            | mg/Kg           | 142                   | 184                           | 72.7                | 75 - 125        | *                        | 89.0                              | 9.44                     | 20           |                 | 5/12/2021               |
| Selenium       | 1.21                            | mg/Kg           | 142                   | 120                           | 83.7                | 75 - 125        |                          | <1.09                             | NC                       | 20           |                 | 5/12/2021               |
| Silver         | < 0.567                         | mg/Kg           | 14.2                  | 13.0                          | 91.4                | 75 <b>-</b> 125 |                          | < 0.545                           | NC                       | 20           |                 | 5/12/2021               |

Method Reference(s):

EPA 6010C EPA 3050B

**Preparation Date:** 5/11/2021

210512B

QC Batch ID: QC210511Soil2

NC = Not Calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Page 74 of 79 Report Prepared Tuesday, May 18, 2021



## **Analytical Report Appendix**

The reported results relate only to the samples as they have been received by the laboratory.

Each page of this document is part of a multipage report. This document may not be reproduced except in its entirety, without the prior consent of Paradigm Environmental Services, Inc.

All soil/sludge samples have been reported on a dry weight basis, unless qualified "reported as received". Other solids are reported as received.

Low level Volatiles blank reports for soil/solid matrix are based on a nominal 5 gram weight. Sample results and reporting limits are based on actual weight, which may be more or less than 5 grams.

The Chain of Custody provides additional information, including compliance with sample condition requirements upon receipt. Sample condition requirements are defined under the 2003 NELAC Standard, sections 5.5.8.3.1 and 5.5.8.3.2.

NYSDOH ELAP does not certify for all parameters. Paradigm Environmental Services or the indicated subcontracted laboratory does hold certification for all analytes where certification is offered by ELAP unless otherwise specified. Aliquots separated for certain tests, such as TCLP, are indicated on the Chain of Custody and final reports with an "A" suffix.

Data qualifiers are used, when necessary, to provide additional information about the data. This information may be communicated as a flag or as text at the bottom of the report. Please refer to the following list of analyte-specific, frequently used data flags and their meaning:

- "<" = Analyzed for but not detected at or above the quantitation limit.
- "E" = Result has been estimated, calibration limit exceeded.
- "Z" = See case narrative.
- "D" = Sample, Laboratory Control Sample, or Matrix Spike Duplicate results above Relative Percent Difference limit.
- "M" = Matrix spike recoveries outside QC limits. Matrix bias indicated.
- "B" = Method blank contained trace levels of analyte. Refer to included method blank report.
- "I" = Result estimated between the quantitation limit and half the quantitation limit.
- "L" = Laboratory Control Sample recovery outside accepted QC limits.
- "P" = Concentration differs by more than 40% between the primary and secondary analytical columns.
- "NC" = Not calculable. Applicable to RPD if sample or duplicate result is non-detect or estimated (see primary report for data flags). Applicable to MS if sample is greater or equal to ten times the spike added. Applicable to sample surrogates or MS if sample dilution is 10x or higher.
- "\*" = Indicates any recoveries outside associated acceptance windows. Surrogate outliers in samples are presumed matrix effects. LCS demonstrates method compliance unless otherwise noted.
- "(1)" = Indicates data from primary column used for QC calculation.
- "A" = denotes a parameter for which ELAP does not offer approval as part of their laboratory certification program.
- "F" = denotes a parameter for which Paradigm does not carry certification, the results for which should therefore only be used where ELAP certification is not required, such as personal exposure assessment.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt.

Page 75 of 79

### GENERAL TERMS AND CONDITIONS LABORATORY SERVICES

These Terms and Conditions embody the whole agreement of the parties in the absence of a signed and executed contract between the Laboratory (LAB) and Client. They shall supersede all previous communications, representations, or agreements, either verbal or written, between the parties. The LAB specifically rejects all additional, inconsistent, or conflicting terms, whether printed or otherwise set forth in any purchase order or other communication from the Client to the LAB. The invalidity or unenforceability in whole or in part of any provision, tern or condition hereof shall not affect in any way the validity or enforceability of the remainder of the Terms and Conditions. No waiver by LAB of any provision, term, or condition hereof or of any breach by or obligation of the Client hereunder shall constitute a waiver of such provision, term, or condition on any other occasion or a waiver of any other breach by or obligation of the Client. This agreement shall be administered and interpreted under the laws of the state which services are procured.

Warranty.

Recognizing that the nature of many samples is unknown and that some may contain potentially hazardous components, LAB warrants only that it will perform testing services, obtain findings, and prepare reports in accordance with generally accepted analytical laboratory principles and practices at the time of performance of services. LAB makes no other warranty, express or implied.

Scope and Compensation. LAB agrees to perform the services described in the chain of custody to which these terms and conditions are attached. Unless the parties agree in writing to the contrary, the duties of LAB shall not be construed to exceed the services specifically described. LAB wi use LAB default method for all tests unless specified otherwise on the Work Order.

Payment terms are net 30 days from the date of invoice. All overdue payments are subject to an interest charge of one and one-half percent (1-1/2%) per month or a portion thereof. Client shall also be responsible for costs of collection, including payment of reasonable attorney fees if such expense is incurred. The prices, unless stated, do not include any sale, use or other taxes. Such taxes will be added to invoice prices when required.

Prices.

Compensation for services performed will be based on the current Lab Analytical Fee Schedule or on quotations agreed to in writing by the parties. Turnaround time based charges are determined from the time of resolution of all work order questions. Testimony, court appearances or data compilation for legal action will be charged separately. Evaluation and reporting of initial screening runs may incur additional fees.

Limitations of Liability.

In the event of any error, omission, or other professional negligence, the sole and exclusive responsibility of LAB shall be to reperform the deficient work at its own expense and LAB shall have no other liability whatsoever. All claims shall be deemed waived unless made in writing and received by LAB within ninety (90) days following completion of services.

LAB shall have no liability, obligation, or responsibility of any kind for losses, costs, expenses, or other damages (including but not limited to any special, direct, incidental or consequential damages) with respect to LAB's services or results.

All results provided by LAB are strictly for the use of its clients and LAB is in no way responsible for the use of such results by clients or third parties. All reports should be considered in their entirety, and LAB is not responsible for the separation, detachment, or other use of any portion of these reports. Client may not assign the lab report without the written consent of the LAB. Client covenants and agrees, at its/his/her sole expense, to indemnify, protect, defend, and save harmless the LAB from and against

any and all damages, losses, liabilities, obligations, penalties, claims, litigation, demands, defenses, judgments, suits, actions, proceedings, costs, disbursements and/or expenses (including, without limitation attorneys' and experts' fees and disbursements) of any kind whatsoever which may at any time be imposed upon, incurred by or asserted or awarded against client relating to, resulting from or arising out of (a) the breach of this agreement by this client, (b) the negligence of the client in handling, delivering or disclosing any hazardous substance, (c) the violation of the Client of any applicable law, (d) non-compliance by the Client with any

environmental permit or (e) a material misrepresentation in disclosing the materials to be tested.

Hazard Disclosure.

Client represents and warrants that any sample delivered to LAB will be preceded or accompanied by complete written disclosure of the presence of any hazardous substances known or suspected by Client. Client further warrants that any sample containing any hazardous substance that is to be delivered to LAB will be packaged, labeled, transported, and delivered properly and in accordance with applicable laws.

Sample Handling.

Prior to LAB's acceptance of any sample (or after any revocation of acceptance), the entire risk of loss or of damage to such sample remains with Client. Samples are accepted when receipt is acknowledged on chain of custody documentation. In no event will LAB have any responsibility for the action or inaction of any carrier shipping or delivering any sample to or from LAB premises. Client authorizes LAB to proceed with the analysis of samples as received by the laboratory, recognizing that any samples not in compliance with all current DOH-ELAP-NELAP requirements for containers, preservation or holding time will be noted as such on the final report.

Disposal of hazardous waste samples is the responsibility of the Client. If the Client does not wish such samples returned, LAB may add storage and disposal fees to the final invoice. Maximum storage time for samples is 30 days after completion of analysis unless modified by applicable state or federal laws. Client will be required to give the LAB written instructions concerning disposal of these samples.

LAB reserves the absolute right, exercisable at any time, to refuse to receive delivery of, refuse to accept, or revoke acceptance of any sample, which, in the sole judgment of LAB (a) is of unsuitable volume, (b) may be or become unsuitable for or may pose a risk in handling, transport, or processing for any health, safety, environmental or other reason whether or not due to the presence in the sample of any hazardous substance, and whether or not such presence has been disclosed to LAB by Client or (c) if the condition or sample date make the sample unsuitable for analysis.

Legal Responsibility. LAB is solely responsible for performance of this contract, and no affiliated company, director, officer, employee, or agent shall have any legal responsibility hereunder, whether in contract or tort including negligence.

Assignment.

LAB may assign its performance obligations under this contract to other parties, as it deems necessary. LAB shall disclose to Client any assignee (subcontractor) by ELAP ID # on the submitted final report.

Force Majeure.

LAB shall have no responsibility or liability to the Client for any failure or delay in performance by LAB, which results in whole or in part from any cause or circumstance beyond the reasonable control of LAB. Such causes and circumstances shall include, but not limited to, acts of God, acts or orders of any government authority, strikes or other labor disputes, natural disasters, accidents, wars, civil disturbances, difficulties or delays in transportation, mail or delivery services, inability to obtain sufficient services or supplies from LAB's usual suppliers, or any other cause beyond LAB's reasonable control.

Law.

This contract shall be continued under the laws of the State of New York without regard to its conflicts of laws provision.

This report is part of a multipage document and should only be evaluated in its entirety. The Chain of Custody provides additional sample information, including compliance with the sample condition requirements upon receipt. Page 76 of 79

## 1.82

# **CHAIN OF CUSTODY**

| PAR                       | ADIG              | М                     | CLIENT: 0        | REPOR                              | TTO:     | A SHE          |                       | OI IFINE           |                                    | INVOIC                      |                |                        | -          | -11                                  | 11.0                    |                                  |
|---------------------------|-------------------|-----------------------|------------------|------------------------------------|----------|----------------|-----------------------|--------------------|------------------------------------|-----------------------------|----------------|------------------------|------------|--------------------------------------|-------------------------|----------------------------------|
| and the said              | and survey        | ing                   | ADDRESS: 204     | mann                               | 10       | 1. 4           |                       | CLIENT:<br>ADDRESS |                                    | me                          |                |                        |            | 211                                  | LAB PROJECT             | ID                               |
| 1                         |                   |                       | CITY: O          | OFIRM                              | ATE:     |                |                       | CITY:              |                                    | ST                          | ATE:           | ZIP:                   |            | a ll                                 |                         |                                  |
|                           |                   |                       | PHONE: CASON     | SVL N                              | 7        | 1460           | 14                    | PHONE:             |                                    |                             |                |                        | mail:      |                                      |                         |                                  |
| BDO IE                    | T DEEED!          | -NOE                  | ATTN: 58         | N 44                               | 2391     | 0              |                       | ATTN:              |                                    |                             |                |                        |            | maii:                                |                         |                                  |
| twanhal                   | T REFERE          | tup Road              | Matrix Code      | & Demo                             | 0        |                |                       |                    |                                    |                             |                |                        |            |                                      |                         |                                  |
| Row Bance                 | 7 100             |                       | AQ - A           | queous Liquid<br>on-Aqueous Liquid | d        | WA - W         | ater<br>roundwat      |                    |                                    | inking Wate                 | er             | SO - Soil<br>SL - Slud |            | <b>D</b> - Solid<br><b>T</b> - Paint | WP - Wipe<br>CK - Caulk | OL - Oil<br>AR - Air             |
| <i>kowernce</i>           | wondey            | wire                  | 146 - 14         | ori-Aqueous Liqui                  | <u>.</u> | <b>VVG</b> - G | roundwat              | er                 | REQUE                              | _                           | NALVSI         |                        | ige P      | I - Paint                            | CR - Caulk              | AR - All                         |
| DATE COLLECTED            | TIME<br>COLLECTED | C O M P G R A B I T E |                  | SAMPLE IDENTI                      | FIER     |                | M C A O T D R E I S X | NO UNT BAINER ORS  | 72410C8240<br>8270 BN<br>Pest 8081 | Helb. 8151<br>1000-10010/74 | Cyanole 901    |                        | 50350      | -                                    | hon                     | PARADIGM LAB<br>SAMPLE<br>NUMBER |
| 5/7/21                    | 750               | X                     | TP21             | -39/4.0                            | -4.5.    | ft. \          | 50                    | 5                  | XXX                                | XXX                         | W_             |                        |            |                                      | hodter                  | 6                                |
| 3/7/RI                    | 830               | X                     | TP21-            | 37 (2                              | 5-3.1    | off()          | SO                    | 5                  | XXX                                | $\times$                    | ××_            | Ш                      |            |                                      | 10 C826                 | 6 1                              |
| 5/7/21                    | 930               | X,                    | TPZ -            | 36 (219                            | -310     | ff.            | 50                    | 5                  | XXX                                | CKK                         | 44             | $\sqcup \sqcup$        | - Not by   | rosen                                | w/in 480                |                                  |
| 5/1/21                    | 1030              | X                     | 7/21-            | 34 (121                            | 5-13-    | (4, )          | 90                    | 5                  | $\triangle$                        | XXX                         |                | $\vdash\vdash\vdash$   | Collect    | ion, U                               | Se Ja-                  | 04                               |
| 5/7/21                    | 1130              | X                     | 7821-            | 24 (18                             | 10-18    | 15 H.          | 30                    | 5                  | XXX                                | YY                          | 4              | $\vdash$               | per S      | S. DeMce                             | verba!                  | 05                               |
| 51712                     | 1230              | X                     | 712/-2           | 25 (3.0)                           | 73.5     | 7)             | 50                    | 5                  | XXX                                | XX                          |                | $\vdash$               | SD         | 5/10/21                              | *                       | 06                               |
| 2/1/21                    | 200               | X                     | 1021-            | 10/20                              | 2.5      |                | /                     | 2                  | $\times$ $\times$ $\times$         |                             |                | $\vdash$               |            |                                      | 95-                     | 07                               |
| 5/1/61                    | 230               |                       | TP21-            | 70 (315                            | -11.3    | -01            | 50                    | 7                  |                                    |                             |                |                        |            |                                      |                         | 08                               |
| 5/1/21                    | 955               | \\ \times \           | TD21-2           | 35 (3,0.                           |          |                | 50                    | 1                  | V V X                              | W/K                         |                | $\vdash$               |            |                                      |                         | 09                               |
| 5/1/4                     | 600               |                       | 1121-            | 5 (210                             | 7,54     | 7.             | 17                    |                    | 1 11                               | W.                          |                |                        |            |                                      |                         | 10                               |
| Turnaroun                 | d Time            |                       | Report Supp      | olements                           |          | Ste            | pier                  | 1U,                | DeMu                               | 3/                          | 7/21           | •                      |            |                                      |                         |                                  |
| Availabi                  | lity continger    | t upon lab appr       | oval; additional | fees may apply.                    |          |                | -/                    |                    |                                    |                             |                |                        |            |                                      |                         |                                  |
| Standard 5 day            | X                 | None Required         |                  | None Required                      |          | Sample         | Me                    | 1                  | 5/10/2                             | 1112                        | Date/Ti        | me                     |            | T                                    | otal Cost:              |                                  |
| 10 day                    |                   | Batch QC              |                  | Basic EDD                          |          | Reling         | Ished B               | у                  | 7-1                                | 1                           | Date/Ti        | me                     |            |                                      | /\                      |                                  |
| Rush 3 day                |                   | Category A            |                  | NYSDEC EDD                         |          |                | to                    |                    |                                    | 5/10                        | 121            |                        | 1/20       |                                      |                         |                                  |
| Rush 2 day                |                   | Category B            |                  |                                    |          | Receiv         | ed By                 |                    | _                                  | -1.                         | Date/Ti        | me                     | 11:39      | F                                    | P.I.F.                  |                                  |
| Rush 1 day                |                   |                       |                  |                                    |          | Receiv         | ed @ Lat              | Ву                 |                                    | 5/1                         | o /2 \ Date/Ti | me                     | 11.31      |                                      | L_                      |                                  |
| Date Needed               |                   | Other                 |                  | Other EDD                          |          |                |                       | 2                  | 0/21/11                            | 123                         |                |                        |            |                                      |                         |                                  |
| please indicate date need | ed:               | please indicate pack  | age needed:      | please indicate EDD                | needed : |                |                       |                    |                                    |                             | aradigi        |                        | and Condit | _                                    | -                       |                                  |
| 0====                     |                   | 3                     |                  | -                                  |          |                |                       |                    |                                    |                             |                | 54                     | e addition | al nage f                            | P<br>or sample c        | age 77 of 79                     |

See additional page for sample conditions.



# Chain of Custody Supplement

| Client:                                                   | Bergmann Associates                     | Completed by:                            | Glenn Pezzulo       |
|-----------------------------------------------------------|-----------------------------------------|------------------------------------------|---------------------|
| Lab Project ID:                                           | 211960                                  | Date:                                    | 5/10/21             |
|                                                           | <b>Sample Condi</b> t<br>Per NELAC/ELAP | tion Requirements<br>210/241/242/243/244 |                     |
| Condition                                                 | NELAC compliance with the sample<br>Yes | le condition requirements i<br>No        | upon receipt<br>N/A |
| Container Type                                            |                                         | 5035                                     |                     |
| Comments                                                  | :                                       |                                          | ;                   |
| Transferred to method-<br>compliant container             |                                         |                                          |                     |
| Headspace<br>(<1 mL)<br>Comments                          |                                         |                                          |                     |
| <b>Preservation</b> Comments                              |                                         |                                          |                     |
| Chlorine Absent<br>(<0.10 ppm per test strip)<br>Comments |                                         |                                          |                     |
| Holding Time  Comments                                    |                                         |                                          |                     |
| <b>Comments</b>                                           | 3'Ciced                                 |                                          | Metals              |
| Compliant Sample Quantity/T  Comments                     | уре                                     |                                          |                     |
|                                                           |                                         |                                          |                     |

# 10f1

# **CHAIN OF CUSTODY**

ADIRONDACK: ELAP I

|           | PA       | RADIC                       | Mr                                        | COMPANY          | <sup>√</sup> : Para | REPORT TO:<br>digm Environ | mental                                |                       | COMPANY:            | Sa    | ame   | AB PROJECT #: | CLIEN                 | IT P          |            |            |           |            |    |                |
|-----------|----------|-----------------------------|-------------------------------------------|------------------|---------------------|----------------------------|---------------------------------------|-----------------------|---------------------|-------|-------|---------------|-----------------------|---------------|------------|------------|-----------|------------|----|----------------|
| N.        |          |                             |                                           | ADDRESS          |                     |                            |                                       |                       | ADDRESS:            |       |       |               |                       |               |            |            |           |            |    |                |
|           |          |                             | 1                                         | CITY:            |                     | STATE:                     | ZIP                                   | :                     | CITY:               |       |       | STA           | : т                   | JRNAROUND TIM | E: (WORKIN | 3 D        |           | <u> </u>   |    |                |
|           |          |                             |                                           | PHONE:           |                     | PHONE:                     | · · · · · · · · · · · · · · · · · · · |                       | FAX:                |       |       |               |                       | 5             | STI =      | O E        | 0511008   |            |    |                |
| PROJECT N | AME/SIT  | E NAME:                     |                                           | ATTN:            | Repo                | orting                     | ATTN:                                 | Acco                  | unts Pa             | yable |       |               |                       | 1 2           | 3          | <u> </u>   |           | <b>=</b> 5 |    |                |
|           |          |                             |                                           | COMMEN.          | rs: Pleas           | se email result            | ts to reporti                         | ing@pa                | radigmer            | v.com |       | -             |                       |               |            | ate Due:   | 5/18      | ) <b>=</b> |    | = <sup>2</sup> |
|           |          | 197                         |                                           | l                | 1                   |                            |                                       |                       |                     | REQU  | ESTED | ANAL          | YSIS                  |               | L-         | nill San S |           |            |    |                |
| DAT       | E        | TIME                        | C<br>O<br>M<br>P<br>O<br>S<br>I<br>T<br>E | G<br>R<br>A<br>B | SAN                 | MPLE LOCATION/FIEL         |                                       | M<br>A<br>T<br>R<br>I | CONTAINER<br>NUMBER |       |       |               |                       |               | f          | REMARKS    |           |            |    |                |
| 15/       | 7/21     | 07:50                       |                                           | X                | 21                  | 1960                       | -01                                   | Soil                  | 1 >                 | 4     |       | <u> </u>      |                       |               |            |            |           | $\bot$     | 11 | _              |
| 2         |          | 08:30                       |                                           |                  |                     | [                          | -03                                   |                       | 1                   |       |       |               |                       |               |            |            |           |            |    |                |
| 3         |          | 09:30                       |                                           |                  |                     |                            | - 03_                                 |                       |                     |       |       |               |                       |               |            |            |           |            |    |                |
| 4         |          | 10:30                       |                                           |                  |                     | _                          | - 04                                  |                       |                     |       |       |               |                       |               |            |            |           | $\bot$     |    |                |
| 5         |          | 11:30                       |                                           |                  | -                   | _                          | 05                                    |                       |                     |       |       |               |                       |               |            |            |           |            |    |                |
| 6         |          | 12:30                       |                                           |                  |                     |                            | 06                                    |                       |                     |       |       |               |                       |               |            |            |           |            |    |                |
| 7         |          | 13:30                       |                                           |                  |                     |                            | 07                                    |                       |                     |       |       |               |                       |               |            |            |           |            |    |                |
| 8         | <u> </u> | .14:00                      |                                           |                  |                     |                            | - 08                                  |                       |                     |       |       |               |                       |               |            |            |           |            |    |                |
| 9         |          | 14:30                       |                                           |                  |                     |                            | 09                                    |                       |                     |       |       |               |                       |               |            |            |           |            |    |                |
|           |          | 14:55                       |                                           | 1                | J                   |                            | . 10                                  | 1                     | + 1                 |       |       |               |                       |               |            |            |           |            |    |                |
| **LAB I   | USEC     | NLY BELO                    | OW THIS LII                               | NE**             |                     |                            |                                       |                       |                     | 1 1   |       | , ,           |                       |               |            |            |           |            |    |                |
| Sample (  | Conditio | on: Per NELA<br>Receipt Par | C/ELAP 210/2                              | 41/242/24        |                     | Compliance                 | 7                                     |                       |                     |       |       |               |                       |               |            |            |           |            |    |                |
| Comments: | · N      | Container T                 |                                           |                  | Y                   | N                          | Sample                                | Client                |                     |       |       | 1 1           | te/Time               |               |            |            | tal Cost: | :          |    |                |
| Comments: | :        | Preservati                  | ion:                                      |                  | Υ 🔲                 | N                          | Relinq                                | uished B              | у                   |       | 5 /   |               | ∂ \<br>te/Time        |               | 08:3 c     |            |           |            |    |                |
| Comments  | :        | Holding Ti                  | me:                                       |                  | Y 🔲                 | N                          | Receiv                                | red By                |                     | ····  |       |               | te/Time               |               |            | P.I        | .F. [     | -1         | 1  |                |
| Comments  | :        | Temperati                   | ure: 5, 2                                 | °C               | Y 🔲                 | N                          | Receiv                                | red @ La              | b By                |       |       |               | <u>/2/</u><br>te/Time |               | 3:55 gm    | <b>\</b>   | Page      | <br>79 of  | 79 |                |



# **APPENDIX 3**



#### LIMITATIONS FOR INVESTIGATION PROJECT WORK

- 1. While additional explorations will always better define the nature and extent of contamination at any given site, it is our professional opinion that soil at the site has been sampled and analyzed for VOCs, SVOCs, Metals, Pesticides, and Hebicides at limited locations.
- 2. Environmental impairment of a property may result from activities such as illegal, unreported dumping, or sudden spilling of hazardous waste or materials. It should be noted that the presence of contaminants at a particular property may not always be apparent to the fullest extent, and the completion of a Phase I or Phase II Environmental Site Assessment at select areas and sample intervals cannot provide a guarantee that contamination and or hazardous waste or regulated materials do not exist in media tested or at other areas on the Site that were not investigated or tested.
- 3. It should be noted that no subsurface exploration can be thorough enough to exclude the possible presence of, variation of chemical compounds, hazardous materials or wastes at a given site. In cases where contaminants have not been discovered though exploration, this should not be construed as a guarantee that contaminants do not exist. At a given site, environmental conditions may exist that cannot be identified by visual observation. Where sample collection and testing have been performed, Bergmann's professional opinions are based in part on the interpretation of data from discrete sampling locations that may not represent conditions at unsampled locations.
- 4. It is the nature of environmental site assessment work for soil conditions observed during future remediation to vary from the conditions identified during the site assessment explorations, even when the exploration program conforms to industry standards.



# **PHOTOGRAPHS**



Test Pit TP21-37 fill soils and fill materials



TP22-34 view looking east





TP21-38 landfilled materials



TP21-39 landfilled fill soils over lacustrine native soils





TP21-39 water in test pit



TP21-31 water in test pit

