

September 25, 2009

Ms. Charlotte Theobald NY State Department of Environmental Conservation Division of Environmental Remediation, Region 8 6274 East Avon-Lima Road Avon, New York 14414-9519

Re: Site No. C849004 Seneca Market I, LLC Site Watkins Glen, New York Second Quarter 2009 Groundwater Monitoring

Dear Ms. Theobald:

On behalf of our client, Seneca Market I, LLC (Seneca Market), Benchmark Environmental Engineering & Science, PLLC (Benchmark) is herein transmitting the results from the May 2009 groundwater monitoring event at the Seneca Market Site in Watkins Glen, New York (Site; see Figure 1).

This groundwater monitoring event included sampling and analysis of MW-1SR, MW-3SR, MW-7S and MW-10S. MW-21S was not sampled during this groundwater monitoring event due to inaccessibility (a car was parked over the well location). Groundwater gauging of MW-4S and MW-9S was also completed. Groundwater samples from each of the sampled wells were analyzed for target compound list (TCL) volatile organic compounds (VOCs). The groundwater sample collected from MW-3SR was also analyzed for dissolved iron and manganese, nitrate, sulfate, sulfide, chloride, alkalinity, total organic carbon, metabolic acids and dissolved gases. Field parameters including pH, oxidation-reduction potential (ORP), dissolved oxygen (DO), temperature, turbidity, and specific conductance were also measured in each of the sampled monitoring wells. Table 1 (attached) summarizes the analytical and field results from the May 2009 groundwater monitoring event as well as historic groundwater monitoring events completed by Benchmark and the NYSDEC.

As shown on Table 1, chlorinated VOCs were not detected above NYSDEC Class GA groundwater quality standards (GWQS) as listed in NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1) in MW-3SR, MW-7S or MW10S. Sample results from MW-3SR, located in the area of VOC source soil removal by Seneca Market, has decreased from 6,203 micrograms per liter (ug/L) total chlorinated VOCs in June 2000 to less than 2 ug/L total chlorinated VOCs in May 2009. The results of the May 2009 sampling event also confirm that biodegradation of VOCs in groundwater is occurring. This is evidenced by the continued reduction in concentrations of chlorinated VOCs, the presence of tetrachloroethene (PCE) breakdown products, including trichloroethene (TCE),

www.benchmarkees.com

cis-1,2-DCE and vinyl chloride, the presence of methane, low oxidation-reduction potential (ORP) and low dissolved oxygen (DO).

Concentrations of petroleum VOCs, including, benzene, toluene, xylene and methyl tert butyl ether (MtBE), in MW-7S and MtBE in MW-3SR may be the result of on-Site migration of petroleum VOCs from the adjacent and up-gradient NYSDEC petroleum spill site (Spill No. 0651369) located at the corner of North Franklin Street and Division Street. We understand that environmental investigation and/or remediation is on-going at that site.

Monitoring well elevations of MW-1SR, MW-3SR, MW-7S, MW-10S, MW-4S and MW-9S and static groundwater elevations were recorded. Table 2 shows the relative groundwater elevations and Figure 1 includes estimated groundwater flow direction. The groundwater flow is generally consistent with historic groundwater gauging data.

The third quarterly groundwater sampling event for 2009 will be completed in September 2009. Please contact us with any questions or comments.

Sincerely, Benchmark Environmental Engineering & Science, PLLC

Michael Lesakowski Project Manager

Att.

c: P. Sheedy (Seneca Market I, LLC)

TABLES

TABLE 1 SUMMARY OF GROUNDWATER MONITORING RESULTS Second Quarter 2009 (05-20-09)

SENECA MARKET I, LLC SITE WATKINS GLEN, NEW YORK

														Sa	mple Loca	tion														
1			MW-1S R	!					MW-	3S R							MV	V-7S						MW	/-10S			MW	-21S	
Parameter	1/1/02 ²	4/1/022	11/21/08	02/27/09	05/20/09	1/1/022	4/4/022	2/16/003	6/22/004	10/20/005	11/21/08	02/27/09	05/20/09	1/1/022	4/1/022	2/16/003	6/22/004	10/20/005	11/21/08	02/27/09	05/20/09	1/1/022	4/4/02 ²	11/21/08	11/21/08 Blind	02/27/09	05/20/09	11/21/08	02/27/09	GWQS
	1/1/93	4/1/93	1.1.2.1.00	02/2//03	00/20/00	1/1/95	4/1/93	3/10/00	0/23/00	10/20/00	11/21/00	02/21/03	00/20/05	1/1/95	4/1/93	3/10/00	0/23/00	10/20/00	11/21/00	02/2//03	03/20/03	1/1/95	4/1/93	1.1.2.1.00	Duplicate	02/21/03	00/20/03	11/21/00	02/2//05	
TCL Volatile Organic Compounds (VOCs) - ug/L	L	-					-		-		-			-	-			-					-							
Acetone	ND	ND	1.4 J	ND	ND	R	R	ND	24	ND	ND	ND	ND	R	ND	ND	ND	ND	ND	ND	34	20	R	ND	ND	ND	ND	1.8 J	ND	50
Benzene	ND	ND	ND	ND	ND	ND	R	ND	2	ND	ND	ND	ND	6 J	R	7	11	ND	4.7	27	14	ND	R	ND	ND	ND	ND	ND	ND	1
Bromomethane (Methyl bromide)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.2 BJ	ND	ND	ND	ND	0.33 BJ	ND	ND	ND	ND	ND	5
2-Butanone (MEK)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	ND	ND	ND	ND	ND	ND	50
Carbon disulfide	ND	ND	0.2 J	ND	ND	ND	ND	ND	29	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Carbon tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	7
Chloromethane (Methyl chloride)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Cyclohexane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.8	21	12	ND	ND	ND	ND	ND	ND	ND	ND	
1,1-Dichloroethene	ND	ND	0.2 J	ND	ND	ND	ND	1	13	4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
cis-1,2-Dichloroethene	NA	NA	91	75	72	NA	NA	NA	NA	NA	13	3	1.8	NA	NA	NA	NA	NA	4.1	3.5	3	NA	NA	ND	ND	ND	ND	0.21 J	ND	5
trans-1,2-Dichloroethene	NA	NA	0.71 J	ND	ND	NA	NA	NA	NA	NA	0.24 J	ND	ND	NA	NA	NA	NA	NA	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	ND	5
Total 1,2-Dichloroethene	43	40	NA	ND	ND	770	87	1900	5500	2200	NA	ND	ND	ND	3 J	6	36	6	NA	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	5
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	6 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Isopropylbenzene (Cumene)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.4	ND	ND	ND	ND	ND	ND	ND	ND	5
Methylcyclohexane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.4	6.9	4.4	ND	ND	ND	ND	ND	ND	ND	ND	
Methylene chloride	R	ND	ND	ND	ND	R	ND	ND	ND	ND	ND	ND	ND	R	R	ND	ND	ND	ND	ND	ND	ND	3.1	ND	ND	ND	ND	ND	ND	5
4-methyl-2-pentanone (MIBK)	9.1	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND	20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Methyl tert butyl ether (MTBE)	ND	ND	1.8	1.6	2	ND	ND	ND	ND	ND	4.6	51	47		ND	ND	ND	ND	4.5	37	16	ND	ND	ND	ND	ND	ND	0.55	ND	10
Styrene	ND	ND		ND			ND	ND	ND	ND					ND	ND	ND	ND	H.J	ND		ND	061		ND	ND	ND	0.00 U	ND	930
1 1 2 2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4 1	ND	ND	ND	ND	ND	ND	5
	410	360	88	70	87	89	8	77	83	ND	24	ND	ND	ND	ND	ND	5	6	ND	ND	ND	61	+0 P	3.2	3.2	4	25	ND	ND	5
		ND	ND	ND		ND	ND	ND	ND	ND	24 ND	ND	ND		ND	ND	2	ND	0.60.1	57	57	ND	0.8.1	J.Z	J.Z		2.5		ND	5
Triphoroothono	22.1	26	21	17	21	100	20	02	200	14	77	ND	ND		ND	ND	2	2	0.09 J	5.7 ND	5.7 ND			ND	ND	ND	ND		ND	5
Vinul chloride		20	1.5	17	21	20 1	20	17	200	200	2.6	1.2	ND	ND	ND	1	4		1.2	1.1	ND	ND	ND	ND	ND	ND	ND	0.22.1		2
o-Yulonos	ND	ND	1.J	ND	ND		ND		420 ND	390 ND	2.0	1.2	ND		ND	ND	ND	ND			10	ND	ND	ND	ND	ND	ND	0.23 J	ND	5
	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	0.3.1	3.3	1.5	ND	ND	ND	ND	ND	ND		ND	5
	ND	ND	ND	ND	ND		ND	ND	6	ND	ND	ND	ND	ND	21	ND	ND	ND	0.5 J	3.3	0.5	ND	21	ND	ND	ND	ND		ND	5
	194	426	206	165	192	1096	115	2079	6277	2609	52		7	26	2 J	14	61	14	26	3.3	ND	26	20	ND 4	2	ND	2	2		
Total Chloringtod VOCg	404	420	200	164	103	1000	115	2078	6202	2000	32	9	2	20	2	7	40	14	20	70	00	20	20	4	3	4	3	3		<u> </u>
Water Quality Parameters (mg/L)	475	420	202	104	101	1060	115	2011	0203	2004	40	4	2	0	3		40	14	5	5	3	0	4	3	3	4	3	0		<u> </u>
Iron Soluble	NIA	NA	NA	NIA	NA	NA	NIA	NIA	NA	NA	ND	ND	ND	NA	NA	NA	NIA	NA	NIA	NA	NA	NA	NIA	NA	NA	NIA	NA	NA		200
Manganaga Salukla	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	1.04	ND	ND	NA NA	NA NA	INA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	300
Nitrato mg/L-N	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA		NA NA		4.94	0.49 ND	0.0	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA			NA NA	NA NA	NA NA		10
Nitrate, mg/L-N	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	10.2	ND	17	NA NA	NA NA	INA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA	10
Sulfide	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	18.3	17.1		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	250
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	NA NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	50
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	454	430	544	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.50E+08
	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	66	63	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Ethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Ethylene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.00082 J	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Methane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.051	0.049	0.13	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Total Alkalinity	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	334	333	314	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Total Organic Carbon	NA	NA	NA	NA	NA	NA	NA	6	36.6	23.9	4.26	2.6	3.5	NA	NA	9.5	8	12.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<u> </u>
Field Measurements (units as indicated)										1				1														1		
pH (units)			7.00	7.03	6.86		L		L		7.08	6.96	6.94				<u> </u>		7.15	7.13	7.01			7.02	7.02	7.01	6.98	7.25	6.78	6.5 - 8.5
Temperature (°C)			11.4	11.5	17.2		ļ		ļ		11.7	10.8	14.2				 		11	10.6	15.3			11.5	11.5	12	16.1	11.9	7.5	
Specific Conductance (uS)			2000	1663	1994		L		L		2016	2000	1987				<u> </u>		2966	3252	4081			1538	1538	1421	1153	1140	1510	
Turbidity (NTU)			214	311	39.9		L		L		9.04	20.4	7.62				<u> </u>		100	50.2	8.3			88.1	88.1	28.2	25	5.35	8.81	
ORP (mV)			58	51	63						41	24	15						-87	-117	-139			27	27	15	1	-99	-99	
DO (ppm)			1.53	1.45	1.61						1.38	1.3	1.48						1.47	2.27	1.36			1.35	1.35	2.15	3.56	1.04	1.18	

Notes:
1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect.
2. Results are from the 1993 RI/FS report prepared by URS.
3. Pre-injection groundwater sampling results from the 2001 URS report "Evaluation of Site Remediation by In-Situ Oxidation."
4. Between injection groundwater sampling results from the 2001 URS report "Evaluation of Site Remediation by In-Situ Oxidation."
5. Post-injection groundwater sampling results from the 2001 URS report "Evaluation of Site Remediation by In-Situ Oxidation."
6. Class "GA" Groundwater Quality Standards for NYSDEC Divisions of Water TOGS 1.1.1

Definitions: ND = Parameter not detected above laboratory detection limit. NA = Sample not analyzed for parameter. *-* = No GWQS available. J = Estimated value; result is less than the sample quantitation limit but greater than zero. R = Data rejected.

TABLE 2

SUMMARY OF GROUNDWATER ELEVATIONS SECOND QUARTER 2009 (05-20-09)

Seneca Market I, LLC Site Watkins Glen, New York

Location	TOR Elevation (fmsl)	DTW (fbTOR)	Groundwater Elevation (fmsl)
MW-1SR	451.39	5.62	445.77
MW-3SR	451.89	5.94	445.95
MW-4S	450.68	4.83	445.85
MW-7S	450.85	5.05	445.80
MW-9S	453.57	7.82	445.75
MW-10S	452.01	6.28	445.73

Notes:

- 1. DTW = depth to water, measured in feet below top of riser
- 2. fmsl = feet above mean sea level
- 3. fbTOR = feet below top of riser
- 4. TOR = Top of Riser; elevations surveyed on 02-27-2009

FIGURES

QUARTERLY MONITORING REPORT May 2009 Sampling Event Seneca Market I, LLC Site

ATTACHMENT 1

LABORATORY ANALYTICAL DATA May 2009 Sampling Event

JUN 2 2 2009

June 10, 2009

Service Request No: R0902871

Mr. Michael Lesakowski Benchmark Environmental Engineering 726 Exchange Street Suite 624 Buffalo, NY 14210

Laboratory Results for: Seneca Market

Dear Mr. Lesakowski:

Enclosed are the results of the sample(s) submitted to our laboratory on May 21, 2009. For your reference, these analyses have been assigned our service request number **R0902871**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 135. You may also contact me via email at JJaeger@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Janice Jaeger Client Services Manager

Page 1 of 32

CASE NARRATIVE

This report contains analytical results for the following samples: Service Request Number: R0902871

Lab ID	<u>Client ID</u>
R0902871-001	MW-10S
R0902871-002	MW-1SR
R0902871-003	MW-7S
R0902871-004	MW-3SR
R0902871-005	MW-3SR

All samples were received in good condition unless otherwise noted on the cooler receipt and preservation check form located at the end of this report.

All samples were preserved in accordance with approved analytical methods.

All samples have been analyzed by the approved methods cited on the analytical results pages.

All holding times and associated QC were within limits.

No analytical or QC problems were encountered.

All sampling activities performed by CAS personnel have been in accordance with "CAS Field Procedures and Measurements Manual" or by client specifications.

Samples have been subcontracted to the following laboratory(ies). The subcontractor's analytical report is attached:

Columbia Analytical Services, Inc. - SIMIVALLE Simi Valley, CA

REPORT QUALIFIERS

- U Indicates compound was analyzed for but not detected. The sample quantitation limit must be corrected for dilution and for percent moisture.
- J Indicates an estimated value. The flag is used either when estimating a concentration for tentatively identified compounds, or when the concentration is less than the reporting limit and greater than the MDL (concentrations are not verified within the initial calibration range).

For DoD reports, the J-flag may also be used to indicate that the concentration between two columns for pesticides/Aroclors is greater than 40% difference.

- B Indicates this compound was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- B- Metals Indicates an estimated value. The concentration is less than the reporting limit and greater than the MDL (concentrations are not verified within the initial calibration range).
- E Indicates that the sample concentration had exceeded the calibration range for that specific analysis.
- D Indicates the sample concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range.
- * Indicates that a quality control parameter has exceeded laboratory limits.
- X See Case Narrative for discussion.
- P This flag is used for a pesticide/Aroclor target concentration when there is a greater than 40% (25% for CLP) difference for detected concentrations between the two GC columns.

For DoD reports, the J-flag is used instead of "P".

- # Spike was diluted out.
- N Inorganics- Indicates the matrix spike recovery was outside laboratory limits.
- N- Organics- Indicates presumptive evidence of a compound (reported as a tentatively identified compound) based on the mass spectral library search.

CAS/Rochester Lab ID # for State Certifications¹

NELAP Accredited Delaware Accredited Connecticut ID # PH0556 Florida ID # E87674 Illinois ID #200047 Maine ID #NY0032 Nebraska Accredited Navy Facilities Engineering Service Center Approved Nevada ID # NY-00032 New Jersey ID # NY004 New York ID # 10145 New Hampshire ID # 294100 A/B Pennsylvania ID# 68-786 Rhode Island ID # 158 West Virginia ID # 292

¹ Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable, except as noted in the laboratory case narrative provided. For a specific list of accredited analytes, refer to the certifications section at <u>www.caslab.com</u>.

H:\FORMS\QUALIFIERS routine reports.DOC

Analytical Report

 Service Request:
 R0902871

 Date Collected:
 5/20/09 1153

 Date Received:
 5/21/09

 Units:
 μg/L

Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysi Lot	s Note
1,1,1-Trichloroethane (TCA)	1.0	U	1.0	1	NA	5/30/09 02:33		155589	
1,1,2,2-Tetrachloroethane	1.0	U	1.0	1	NA	5/30/09 02:33		155589	
1,1,2-Trichloroethane	1.0	U	1.0	1	NA	5/30/09 02:33		155589	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	1	NA	5/30/09 02:33		155589	
1,1-Dichloroethane (1,1-DCA)	1.0	U	1.0	1	NA	5/30/09 02:33		155589	
1,1-Dichloroethene (1,1-DCE)	1.0	U	1.0	1	NA	5/30/09 02:33		155589	
1,2,4-Trichlorobenzene	1.0	U	1.0	1	NA	5/30/09 02:33	-	155589	
1,2-Dibromo-3-chloropropane (DBCP)	2.0	U	2.0	1	NA	5/30/09 02:33	;	155589	
1,2-Dibromoethanc	1.0	U	1.0	1	NA	5/30/09 02:33	;	155589	
1,2-Dichlorobenzene	1.0	U	1.0	1	NA	5/30/09 02:33	;	155589	
1,2-Dichloroethane	1.0	U	1.0	1	NA	5/30/09 02:33	}	155589	I
1,2-Dichloropropane	1.0	U	1.0	1	NA	5/30/09 02:33	3	155589	
1.3-Dichlorobenzene	1.0	U	1.0	1	NA	5/30/09 02:33	3	155589	
1,4-Dichlorobenzene	1.0	U	1.0	1	NA	5/30/09 02:33	3	155589)
2-Butanone (MEK)	5.0	U	5.0	1	NA	5/30/09 02:33	3	155589	
2-Hexanone	5.0	U	5.0	1	NA	5/30/09 02:33	3	155589)
4-Methyl-2-pentanone	5.0	U	5.0	1	NA	5/30/09 02:33	3	155589)
Acetone	5.0	U	5.0	1	NA	5/30/09 02:33	3	155589)
Benzene	1.0	U	1.0	1	NA	5/30/09 02:33	3	155589)
Bromodichloromethane	1.0	U	1.0	1	NA	5/30/09 02:33	3	155589)
Bromoform	1.0	U	1.0	1	NA	5/30/09 02:33	3	155589)
Bromomethane	1.0	U	1.0	1	NA	5/30/09 02:33	3	155589)
Carbon Disulfide	1.0	U	1.0	1	NA	5/30/09 02:33	3	155589)
Carbon Tetrachloride	1.0	U	1.0	1	NA	5/30/09 02:33	3	155589)
Chlorobenzene	1.0	U	1.0	1	NA	5/30/09 02:33	3	155589)
Chloroethane	1.0	U	1.0	1	NA	5/30/09 02:33	3	155589)
Chloroform	1.0	U	1.0	1	NA	5/30/09 02:33	3	155589)
Chloromethane	1.0	U	1.0	1	NA	5/30/09 02:33	3	155589)
Cyclohexane	1.0	U	1.0	1	NA	5/30/09 02:33	3	155589)
Dibromochloromethane	1.0	U	1.0	1	NA	5/30/09 02:33	3	155589)
Dichlorodifluoromethane (CFC 12)	1.0	U	1.0	1	NA	5/30/09 02:33	3	155589)
Dichloromethane	1.0	U	1.0	1	NA	5/30/09 02:33	3	155589)
Ethylbenzene	1.0	U	1.0	1	NA	5/30/09 02:33	3	155589)

Analytical Report

Client:	Benchmark Environmental Engineering
Project:	Seneca Market
Sample Matrix:	Water
Sample Name:	MW-10S
Lab Code:	R0902871-001

 Service Request:
 R0902871

 Date Collected:
 5/20/09 1153

 Date Received:
 5/21/09

 Units:
 μg/L

Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysi Lot	s Note
Isopropylbenzene (Cumene)	1.0 U	1.0	1	NA	5/30/09 02:33	}	155589)
Methyl Acetate	2.0 U	2.0	1	NA	5/30/09 02:33	3	155589)
Methyl tert-Butyl Ether	1.0 U	1.0	1	NA	5/30/09 02:33	3	155589)
Methylcyclohexane	1.0 U	1.0	1	NA	5/30/09 02:33	3	155589)
Styrene	1.0 U	1.0	1	NA	5/30/09 02:33	3	155589)
Tetrachloroethene (PCE)	2.5	1.0	1	NA	5/30/09 02:33	3	155589)
Toluene	1.0 U	1.0	1	NA	5/30/09 02:33	3	155589)
Trichloroethene (TCE)	1.0 U	1.0	1	NA	5/30/09 02:33	3	155589)
Trichlorofluoromethane (CFC 11)	1.0 U	1.0	1	NA	5/30/09 02:33	3	155589)
Vinyl Chloride	1.0 U	1.0	1	NA	5/30/09 02:33	3	155589)
cis-1.2-Dichloroethene	1.0 U	1.0	1	NA	5/30/09 02:33	3	155589)
cis-1,3-Dichloropropene	1.0 U	1.0	1	NA	5/30/09 02:33	3	155589)
m.p-Xylcnes	2.0 U	2.0	1	NA	5/30/09 02:33	3	155589)
o-Xvlene	1.0 U	1.0	1	NA	5/30/09 02:33	3	155589)
trans-1,2-Dichloroethene	1.0 U	1.0	1	NA	5/30/09 02:33	3	155589)
trans-1,3-Dichloropropene	1.0 U	1.0	1	NA	5/30/09 02:33	3	155589)

		Control	Date			
Surrogate Name	%Rec	Limits	Analyzed	Q	Note	
4-Bromofluorobenzene	107	80-123	5/30/09 02:33			
Dibromofluoromethane	106	89-115	5/30/09 02:33			
Toluene-d8	106	88-124	5/30/09 02:33			

Analytical Report

Client:Benchmark Environmental EngineeringProject:Seneca MarketSample Matrix:WaterSample Name:MW-1SRLab Code:R0902871-002

 Service Request:
 R0902871

 Date Collected:
 5/20/09 1242

 Date Received:
 5/21/09

 Units:
 μg/L

Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Analyzed	Lot Lot Note
1,1,1-Trichloroethane (TCA)	1.0	U	1.0	1	NA	5/30/09 03:03	155589
1,1,2,2-Tetrachloroethane	1.0	U	1.0	1	NA	5/30/09 03:03	155589
1,1,2-Trichloroethane	1.0	U	1.0	1	NA	5/30/09 03:03	155589
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	1	NA	5/30/09 03:03	155589
1,1-Dichloroethane (1,1-DCA)	1.0	U	1.0	1	NA	5/30/09 03:03	155589
1,1-Dichloroethene (1,1-DCE)	1.0	U	1.0	1	NA	5/30/09 03:03	155589
1,2,4-Trichlorobenzene	1.0	U	1.0	1	NA	5/30/09 03:03	155589
1,2-Dibromo-3-chloropropane (DBCP)	2.0	U	2.0	1	NA	5/30/09 03:03	155589
1,2-Dibromoethane	1.0	U	1.0	1	NA	5/30/09 03:03	155589
1,2-Dichlorobenzene	1.0	U	1.0	1	NA	5/30/09 03:03	155589
1,2-Dichloroethane	1.0	U	1.0	1	NA	5/30/09 03:03	155589
1,2-Dichloropropane	1.0	U	1.0	1	NA	5/30/09 03:03	155589
1.3-Dichlorobenzene	1.0	U	1.0	1	NA	5/30/09 03:03	155589
1,4-Dichlorobenzene	1.0	U	1.0	1	NA	5/30/09 03:03	155589
2-Butanone (MEK)	5.0	U	5.0	1	NA	5/30/09 03:03	155589
2-Hexanone	5.0	U	5.0	1	NA	5/30/09 03:03	155589
4-Methyl-2-pentanone	5.0	U	5.0	1	NA	5/30/09 03:03	155589
Acetone	5.0	U	5.0	1	NA	5/30/09 03:03	155589
Benzene	1.0	U	1.0	1	NA	5/30/09 03:03	155589
Bromodichloromethane	1.0	U	1.0	1	NA	5/30/09 03:03	155589
Bromoform	1.0	U	1.0	1	NA	5/30/09 03:03	155589
Bromomethane	1.0	U	1.0	1	NA	5/30/09 03:03	155589
Carbon Disulfide	1.0	U	1.0	1	NA	5/30/09 03:03	155589
Carbon Tetrachloride	1.0	U	1.0	1	NA	5/30/09 03:03	155589
Chlorobenzene	1.0	U	1.0	1	NA	5/30/09 03:03	155589
Chloroethane	1.0	U	1.0	1	NA	5/30/09 03:03	155589
Chloroform	1.0	U	1.0	1	NA	5/30/09 03:03	155589
Chloromethane	1.0	U	1.0	1	NA	5/30/09 03:03	155589
Cyclohexane	1.0	U	1.0	1	NA	5/30/09 03:03	155589
Dibromochloromethane	1.0	U	1.0	1	NA	5/30/09 03:03	155589
Dichlorodifluoromethane (CFC 12)	1.0	U	1.0	1	NA	5/30/09 03:03	155589
Dichloromethane	1.0	U	1.0	1	NA	5/30/09 03:03	155589
Ethylbenzene	1.0	U	1.0	1	NA	5/30/09 03:03	155589

Comments:

SuperSet Reference: 09-0000104612 rev 00

Analytical Report

Client:	Benchmark Environmental Engineering
Project:	Seneca Market
Sample Matrix:	Water
Sample Name:	MW-1SR
Lab Code:	R0902871-002

 Service Request:
 R0902871

 Date Collected:
 5/20/09 1242

 Date Received:
 5/21/09

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot	Note
Isopropylbenzene (Cumene)	1.0 U	1.0	1	NA	5/30/09 03:03	3 155589	
Methyl Acetate	2.0 U	2.0	1	NA	5/30/09 03:03	3 155589	
Methyl tert-Butyl Ether	2.0	1.0	1	NA	5/30/09 03:03	3 155589	
Methylcyclohexane	1.0 U	1.0	1	NA	5/30/09 03:03	3 155589	
Styrene	1.0 U	1.0	1	NA	5/30/09 03:03	3 155589	
Tetrachloroethene (PCE)	87	1.0	1	NA	5/30/09 03:03	3 155589	
Toluenc	1.0 U	1.0	1	NA	5/30/09 03:03	3 155589	
Trichloroethene (TCE)	21	1.0	1	NA	5/30/09 03:03	3 155589	
Trichlorofluoromethane (CFC 11)	1.0 U	1.0	1	NA	5/30/09 03:03	3 155589	
Vinyl Chloride	1.4	1.0	1	NA	5/30/09 03:03	3 155589	
cis-1.2-Dichloroethene	72	1.0	1	NA	5/30/09 03:03	3 155589	
cis-1,3-Dichloropropene	1.0 U	1.0	1	NA	5/30/09 03:03	3 155589	
m,p-Xylenes	2.0 U	2.0	1	NA	5/30/09 03:03	3 155589	
o-Xylene	1.0 U	1.0	1	NA	5/30/09 03:03	3 155589	
trans-1,2-Dichloroethene	1.0 U	1.0	1	NA	5/30/09 03:03	3 155589	
trans-1,3-Dichloropropene	1.0 U	1.0	1	NA	5/30/09 03:03	3 155589	

		Control	Date		
Surrogate Name	%Rec	Limits	Analyzed Q	Note	
4-Bromofluorobenzene	107	80-123	5/30/09 03:03		
Dibromofluoromethane	106	89-115	5/30/09 03:03		
Toluene-d8	107	88-124	5/30/09 03:03		

Analytical Report

Client:	Benchmark Environmental Engineering
Project:	Seneca Market
Sample Matrix:	Water
Sample Name:	MW-7S
Lab Code:	R0902871-003

 Service Request:
 R0902871

 Date Collected:
 5/20/09 1312

 Date Received:
 5/21/09

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysi Lot	s Note
1,1,1-Trichloroethane (TCA)	1.0	U	1.0	1	NA	5/30/09 03:33		155589	
1,1,2,2-Tetrachloroethane	1.0	U	1.0	1	NA	5/30/09 03:33	•	155589	
1,1,2-Trichloroethane	1.0	U	1.0	1	NA	5/30/09 03:33		155589	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	1	NA	5/30/09 03:33	5	155589	
1,1-Dichloroethane (1,1-DCA)	1.0	U	1.0	1	NA	5/30/09 03:33	5	155589	
1,1-Dichloroethene (1,1-DCE)	1.0	U	1.0	1	NA	5/30/09 03:33	3	155589	
1,2,4-Trichlorobenzene	1.0	U	1.0	1	NA	5/30/09 03:33	3	155589	
1,2-Dibromo-3-chloropropane (DBCP)	2.0	U	2.0	1	NA	5/30/09 03:33	5	155589	
1,2-Dibromoethane	1.0	U	1.0	1	NA	5/30/09 03:33	3	155589	
1,2-Dichlorobenzene	1.0	U	1.0	1	NA	5/30/09 03:33	3	155589	
1,2-Dichloroethane	1.0	U	1.0	1	NA	5/30/09 03:33	3	155589	
1,2-Dichloropropane	1.0	U	1.0	1	NA	5/30/09 03:33	3	155589	
1.3-Dichlorobenzene	1.0	U	1.0	1	NA	5/30/09 03:33	3	155589	
1,4-Dichlorobenzene	1.0	U	1.0	1	NA	5/30/09 03:33	3	155589	
2-Butanone (MEK)	5.0	U	5.0	1	NA	5/30/09 03:33	3	155589	
2-Hexanone	5.0	U	5.0	1	NA	5/30/09 03:33	3	155589	
4-Methyl-2-pentanone	5.0	U	5.0	1	NA	5/30/09 03:33	3	155589	
Acetone	34		5.0	1	NA	5/30/09 03:33	3	155589	
Benzene	14		1.0	1	NA	5/30/09 03:33	3	155589	I
Bromodichloromethane	1.0	U	1.0	1	NA	5/30/09 03:33	3	155589	1
Bromoform	1.0	U	1.0	1	NA	5/30/09 03:33	3	155589	
Bromomethane	1.0	U	1.0	1	NA	5/30/09 03:33	3	155589	1
Carbon Disulfide	1.0	U	1.0	1	NA	5/30/09 03:33	3	155589	1
Carbon Tetrachloride	1.0	U	1.0	1	NA	5/30/09 03:33	3	155589	
Chlorobenzene	1.0	U	1.0	1	NA	5/30/09 03:33	3	155589)
Chloroethane	1.0	U	1.0	1	NA	5/30/09 03:33	3	155589)
Chloroform	1.0	U	1.0	1	NA	5/30/09 03:33	3	155589	t
Chloromethane	1.0	U	1.0	1	NA	5/30/09 03:33	3	155589)
Cyclohexane	12		1.0	1	NA	5/30/09 03:33	3	155589)
Dibromochloromethane	1.0	U	1.0	1	NA	5/30/09 03:33	3	155589)
Dichlorodifluoromethane (CFC 12)	1.0	U	1.0	1	NA	5/30/09 03:33	3	155589)
Dichloromethane	1.0	U	1.0	1	NA	5/30/09 03:33	3	155589)
Ethylbenzene	1.0	U	1.0	1	NA	5/30/09 03:33	3	155589)

Comments:

09-0000104612 rev 00

Analytical Report

Client:	Benchmark Environmental Engineering
Project:	Seneca Market
Sample Matrix:	Water
Sample Name:	MW-7S
Lab Code:	R0902871-003

 Service Request:
 R0902871

 Date Collected:
 5/20/09 1312

 Date Received:
 5/21/09

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction A Lot	nalysi Lot	s Note
Isopropylbenzene (Cumene)	1.4	1.0	1	NA	5/30/09 03:33	3 1	55589	
Methyl Acetate	2.0 U	2.0	1	NA	5/30/09 03:33	5 1	55589	
Methyl tert-Butyl Ether	1.6	1.0	1	NA	5/30/09 03:33	5 1	55589	
Methylcyclohexane	4.4	1.0	1	NA	5/30/09 03:33	3 1	55589	
Styrene	1.0 U	1.0	1	NA	5/30/09 03:33	; 1	55589	
Tetrachloroethene (PCE)	1.0 U	1.0	1	NA	5/30/09 03:33	3 1	55589	
Toluene	5.7	1.0	1	NA	5/30/09 03:33	3 1	55589	
Trichloroethene (TCE)	1.0 U	1.0	1	NA	5/30/09 03:33	3 1	55589	
Trichlorofluoromethane (CFC 11)	1.0 U	1.0	1	NA	5/30/09 03:33	5 1	55589	
Vinyl Chloride	1.0 U	1.0	1	NA	5/30/09 03:33	3 1	55589	
cis-1,2-Dichloroethene	3.0	1.0	1	NA	5/30/09 03:33	3 1	55589	
cis-1,3-Dichloropropene	1.0 U	1.0	1	NA	5/30/09 03:33	3 1	55589	
m,p-Xylenes	8.3	2.0	1	NA	5/30/09 03:33	3 1	55589	
o-Xylene	1.9	1.0	1	NA	5/30/09 03:33	3 1	55589	
trans-1,2-Dichloroethene	1.0 U	1.0	1	NA	5/30/09 03:33	3 1	55589	
trans-1,3-Dichloropropene	1.0 U	1.0	1	NA	5/30/09 03:33	3 1	55589	

		Control	Date			
Surrogate Name	%Rec	Limits	Analyzed	Q	Note	
4-Bromofluorobenzene	111	80-123	5/30/09 03:33			
Dibromofluoromethane	107	89-115	5/30/09 03:33			
Toluene-d8	108	88-124	5/30/09 03:33			

Analytical Report

Client:	Benchmark Environmental Engineering
Project:	Seneca Market
Sample Matrix:	Water
Sample Name:	MW-3SR
Lab Code:	R0902871-004

 Service Request:
 R0902871

 Date Collected:
 5/20/09 1339

 Date Received:
 5/21/09

Basis: NA

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	Date Extracted	Date Analyzed
Alkalinity as CaCO3, Total	SM 2320 B	314	mg/L	13	1	NA	5/28/09 09:30
Carbon, Total Organic (TOC)	415.1	3.5	mg/L	1.0	1	NA	5/28/09 15:56
Chloride	9056	544	mg/L	20	100	NA	5/22/09 22:06
Nitrate as Nitrogen	9056	0.50 U	mg/L	0.50	10	NA	5/22/09 06:42
Sulfate	9056	17.0	mg/L	2.0	10	NA	5/22/09 06:42
Sulfide, Total	SM 4500-S2- F	0.98 U	mg/L	0.98	1	NA	5/27/09 09:00

Analytical Report

 Service Request:
 R0902871

 Date Collected:
 5/20/09 1339

 Date Received:
 5/21/09

 Units:
 μg/L

Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result	Q	MRL	Dilution Factor	n Date Extracted	Date Analyzed	Extraction . Lot	Analysi Lot	s Note
I, I, I-Trichloroethane (TCA)	1.0	U	1.0	1	NA	5/30/09 04:02	2	155589	
1,1,2,2-Tetrachloroethane	1.0	U	1.0	1	NA	5/30/09 04:02	2	155589	
1,1,2-Trichloroethane	1.0	U	1.0	1	NA	5/30/09 04:02	2	155589	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	1	NA	5/30/09 04:02	2	155589	
1,1-Dichloroethane (1,1-DCA)	1.0	U	1.0	1	NA	5/30/09 04:02	2	155589	
1,1-Dichloroethene (1,1-DCE)	1.0	U	1.0	1	NA	5/30/09 04:02	2	155589	
1,2,4-Trichlorobenzene	1.0	U	1.0	1	NA	5/30/09 04:02	2	155589	
1,2-Dibromo-3-chloropropane (DBCP)	2.0	U	2.0	1	NA	5/30/09 04:02	2	155589	
1,2-Dibromoethane	1.0	U	1.0	1	NA	5/30/09 04:02	2	155589	
1,2-Dichlorobenzene	1.0	U	1.0	1	NA	5/30/09 04:02	2	155589	
1,2-Dichloroethane	1.0	U	1.0	1	NA	5/30/09 04:02	2	155589	
1,2-Dichloropropane	1.0	U	1.0	1	NA	5/30/09 04:02	2	155589	
1,3-Dichlorobenzene	1.0	U	1.0	1	NA	5/30/09 04:02	2	155589	
1,4-Dichlorobenzene	1.0	U	1.0	1	NA	5/30/09 04:02	2	155589	
2-Butanone (MEK)	5.0	U	5.0	1	NA	5/30/09 04:02	2	155589	
2-Hexanone	5.0	U	5.0	1	NA	5/30/09 04:02	2	155589	
4-Methyl-2-pentanone	5.0	U	5.0	1	NA	5/30/09 04:02	2	155589	
Acetone	5.0	U	5.0	1	NA	5/30/09 04:02	2	155589	
Benzenc	1.0	U	1.0	1	NA	5/30/09 04:02	2	155589	
Bromodichloromethane	1.0	U	1.0	1	NA	5/30/09 04:02	2	155589	
Bromoform	1.0	U	1.0	1	NA	5/30/09 04:02	2	155589	
Bromomethane	1.0	U	1.0	1	NA	5/30/09 04:02	2	155589	
Carbon Disulfide	1.0	U	1.0	1	NA	5/30/09 04:02	2	155589	
Carbon Tetrachloride	1.0	U	1.0	1	NA	5/30/09 04:02	2	155589	
Chlorobenzene	1.0	U	1.0	1	NA	5/30/09 04:02	2	155589	
Chloroethane	1.0	U	1.0	1	NA	5/30/09 04:02	2	155589	
Chloroform	1.0	U	1.0	1	NA	5/30/09 04:02	2	155589	
Chloromethane	1.0	U	1.0	1	NA	5/30/09 04:02	2	155589	
Cyclohexane	1.0	U	1.0	1	NA	5/30/09 04:02	2	155589	
Dibromochloromethane	1.0	U	1.0	1	NA	5/30/09 04:02	2	155589	
Dichlorodifluoromethane (CFC 12)	1.0	U	1.0	1	NA	5/30/09 04:02	2	155589	
Dichloromethane	1.0	U	1.0	1	NA	5/30/09 04:02	2	155589	
Ethylbenzene	1.0	U	1.0	1	NA	5/30/09 04:02	2	155589	

Comments:

09-0000104612 rev 00

Analytical Report

 Service Request:
 R0902871

 Date Collected:
 5/20/09 1339

 Date Received:
 5/21/09

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analys Lot Lot	is Note
Isopropylbenzene (Cumene)	1.0 U	1.0	1	NA	5/30/09 04:02	2 155589)
Methyl Acctate	2.0 U	2.0	1	NA	5/30/09 04:02	2 155589)
Methyl tert-Butyl Ether	4.7	1.0	1	NA	5/30/09 04:02	155589)
Methylcyclohexane	1.0 U	1.0	1	NA	5/30/09 04:02	2 155589)
Styrene	1.0 U	1.0	1	NA	5/30/09 04:02	155589)
Tetrachloroethene (PCE)	1.0 U	1.0	1	NA	5/30/09 04:02	2 155589)
Toluene	1.0 U	1.0	1	NA	5/30/09 04:02	2 155589)
Trichloroethene (TCE)	1.0 U	1.0	1	NA	5/30/09 04:02	155589)
Trichlorofluoromethane (CFC 11)	1.0 U	1.0	1	NA	5/30/09 04:02	2 155589)
Vinyl Chloride	1.0 U	1.0	1	NA	5/30/09 04:02	2 155589)
cis-1,2-Dichloroethene	1.8	1.0	1	NA	5/30/09 04:02	155589)
cis-1,3-Dichloropropene	1.0 U	1.0	1	NA	5/30/09 04:02	2 155589)
m,p-Xylencs	2.0 U	2.0	1	NA	5/30/09 04:02	2 155589)
o-Xylene	1.0 U	1.0	1	NA	5/30/09 04:02	2 155589)
trans-1,2-Dichloroethene	1.0 U	1.0	1	NA	5/30/09 04:02	2 155589)
trans-1,3-Dichloropropene	1.0 U	1.0	1	NA	5/30/09 04:02	2 155589)

Surrogate Name	%Rec	Control Limits	Date Analyzed	0	Note	
4-Bromofluorobenzene	106	80-123	5/30/09 04:02	<u>×</u>		<u> </u>
Dibromofluoromethane	107	89-115	5/30/09 04:02			
Toluene-d8	107	88-124	5/30/09 04:02			

Analytical Report

Client:	Benchmark Environmental Engineering
Project:	Seneca Market
Sample Matrix:	Water
Sample Name:	MW-3SR
Lab Code:	R0902871-004

 Service Request:
 R0902871

 Date Collected:
 5/20/09 1339

 Date Received:
 5/21/09

Units: μg/L Basis: NA

Dissolved Gases by GC/FID

Analytical Method: RSK 175

			Dilution	Date	Date	Extraction Analysis	
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Lot Not
Ethane	2.0 U	2.0	2	NA	5/27/09 13:30)	155221
Ethene	2.0 U	2.0	2	NA	5/27/09 13:30)	155221
Methane	130	4.0	2	NA	5/27/09 13:30)	155221

Analytical Report

Client:	Benchmark Environmental Engineering	Service Request:	R0902871
Project:	Seneca Market	Date Collected:	5/20/09 1339
Sample Matrix:	Water	Date Received:	5/21/09
Sample Name:	MW-3SR	Units:	mg/L
Lab Code:	R0902871-004	Basis:	NA

Organic Acids in Aqueous Matrices by High Performance Liquid Chromatography (HPLC)

Analytical Method: Organic Acids

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysi Lot	s Note
Pyruvic Acid	0.50 U	0.50	1	NA	6/4/09 18:52		156328	
Acetic Acid	1.0 U	1.0	1	NA	6/4/09 18:52		156328	
Butanoic Acid (Butyric Acid)	2.0 U	2.0	1	NA	6/4/09 18:52		156328	
Lactic Acid	1.0 U	1.0	1	NA	6/4/09 18:52		156328	
Propionic Acid	1.0 U	1.0	1	NA	6/4/09 18:52		156328	

Analytical Report

Client:	Benchmark Environmental Engineering	Service Request:	R0902871
Project:	Seneca Market	Date Collected:	5/20/09 1339
Sample Matrix:	Water	Date Received:	5/21/09
Sample Name:	MW-3SR		
Lab Code:	R0902871-005	Basis:	NA

Inorganic Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Date Factor Extracted Analyzed
Iron, Dissolved	6010B	100 U	μg/L	100	1 5/26/09 5/28/09 05:18
Manganese, Dissolved	6010B	5600	μg/L	10	1 5/26/09 5/28/09 05:18

Analytical Report

Client: Project:	Benchmark Environmental Engineering Seneca Market	Service Request: R0902871 Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name: Lab Code:	R0902871-MB	Basis: NA

General Chemistry Parameters

Analyte Name	Method	Result	Q	Units	MRL	Dilution Factor	Date Extracted	Date Analyzed
Alkalinity as CaCO3, Total	SM 2320 B	2.0	U	mg/L	2.0	1	NA	5/28/09 09:30
Carbon, Total Organic (TOC)	415.1	1.0	U	mg/L	1.0	1	NA	5/28/09 15:20
Chloride	9056	0.20	U	mg/L	0.20	1	NA	5/22/09 17:53
Nitrate as Nitrogen	9056	0.050	U	mg/L	0.050	1	NA	5/22/09 01:04
Sulfate	9056	0.20	U	mg/L	0.20	1	NA	5/22/09 01:04
Sulfide, Total	SM 4500-S2- F	1.0	U	mg/L	1.0	1	NA	5/27/09 09:00

Analytical Report

Client:	Benchmark Environmental Engineering	Service Request: R0902871
Project:	Seneca Market	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name:	Method Blank	
Lab Code:	R0902871-MB	Basis: NA

Inorganic Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Date Factor Extracted Analyzed
Iron, Dissolved	6010B	100 U	μg/L	100	1 5/26/09 5/28/09 03:28
Manganese, Dissolved	6010B	10 U	μg/L	10	1 5/26/09 5/28/09 03:28

Analytical Report

Client: Project:	Benchmark Environmental Engineering Seneca Market
Sample Matrix:	Water
Sample Name:	Method Blank

RQ0904357-01

Service Request: R0902871 Date Collected: NA Date Received: NA

Units: $\mu g/L$ Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Lab Code:

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot N	Note
1,1,1-Trichloroethane (TCA)	1.0	U	1.0	1	NA	5/30/09 02:04	155589	
1,1,2,2-Tetrachloroethane	1.0	U	1.0	1	NA	5/30/09 02:04	155589	
1,1,2-Trichloroethane	1.0	U	1.0	1	NA	5/30/09 02:04	155589	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	1	NA	5/30/09 02:04	155589	
1,1-Dichloroethane (1,1-DCA)	1.0	U	1.0	1	NA	5/30/09 02:04	155589	
1,1-Dichloroethene (1,1-DCE)	1.0	U	1.0	1	NA	5/30/09 02:04	155589	
1,2,4-Trichlorobenzene	1.0	U	1.0	1	NA	5/30/09 02:04	155589	
1,2-Dibromo-3-chloropropane (DBCP)	2.0	U	2.0	1	NA	5/30/09 02:04	155589	
1,2-Dibromoethane	1.0	U	1.0	1	NA	5/30/09 02:04	155589	
1,2-Dichlorobenzene	1.0	U	1.0	1	NA	5/30/09 02:04	155589	
1,2-Dichloroethane	1.0	U	1.0	1	NA	5/30/09 02:04	155589	
1,2-Dichloropropane	1.0	U	1.0	1	NA	5/30/09 02:04	155589	
1,3-Dichlorobenzene	1.0	U	1.0	1	NA	5/30/09 02:04	155589	
1,4-Dichlorobenzene	1.0	U	1.0	1	NA	5/30/09 02:04	155589	
2-Butanone (MEK)	5.0	U	5.0	1	NA	5/30/09 02:04	155589	
2-Hexanone	5.0	U	5.0	1	NA	5/30/09 02:04	155589	
4-Methyl-2-pentanone	5.0	U	5.0	1	NA	5/30/09 02:04	155589	
Acetone	5.0	U	5.0	1	NA	5/30/09 02:04	155589	
Benzene	1.0	U	1.0	1	NA	5/30/09 02:04	155589	
Bromodichloromethane	1.0	U	1.0	1	NA	5/30/09 02:04	155589	
Bromoform	1.0	U	1.0	1	NA	5/30/09 02:04	155589	
Bromomethane	1.0	U	1.0	1	NA	5/30/09 02:04	155589	
Carbon Disulfide	1.0	U	1.0	1	NA	5/30/09 02:04	155589	
Carbon Tetrachloride	1.0	U	1.0	1	NA	5/30/09 02:04	155589	
Chlorobenzene	1.0	U	1.0	1	NA	5/30/09 02:04	155589	
Chloroethane	1.0	U	1.0	1	NA	5/30/09 02:04	155589	
Chloroform	1.0	U	1.0	1	NA	5/30/09 02:04	155589	
Chloromethane	1.0	U	1.0	1	NA	5/30/09 02:04	155589	
Cyclohexane	1.0	U	1.0	1	NA	5/30/09 02:04	155589	
Dibromochloromethane	1.0	U	1.0	1	NA	5/30/09 02:04	155589	
Dichlorodifluoromethane (CFC 12)	1.0	U	1.0	1	NA	5/30/09 02:04	155589	
Dichloromethane	1.0	U	1.0	1	NA	5/30/09 02:04	155589	
Ethylbenzene	1.0	U	1.0	1	NA	5/30/09 02:04	155589	

Comments:

09-0000104612 rev 00

Analytical Report

Client:	Benchmark Environmental Engineering
Project:	Sencca Market
Sample Matrix:	Water
Sample Name:	Method Blank
Lab Code:	RQ0904357-01

Service Request: R0902871 Date Collected: NA Date Received: NA

Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot	Note
Isopropylbenzene (Cumene)	1.0 U	1.0	l	NA	5/30/09 02:04	155589	
Methyl Acetate	2.0 U	2.0	1	NA	5/30/09 02:04	155589	
Methyl tert-Butyl Ether	1.0 U	1.0	1	NA	5/30/09 02:04	155589	
Methylcyclohexane	1.0 U	1.0	1	NA	5/30/09 02:04	155589	
Styrene	1.0 U	1.0	1	NA	5/30/09 02:04	155589	
Tetrachloroethene (PCE)	1.0 U	1.0	1	NA	5/30/09 02:04	155589	
Toluene	1.0 U	1.0	1	NA	5/30/09 02:04	155589	
Trichloroethene (TCE)	1.0 U	1.0	1	NA	5/30/09 02:04	155589	
Trichlorofluoromethane (CFC 11)	1.0 U	1.0	1	NA	5/30/09 02:04	155589	
Vinyl Chloride	1.0 U	1.0	1	NA	5/30/09 02:04	155589	
cis-1,2-Dichloroethene	1.0 U	1.0	1	NA	5/30/09 02:04	155589	
cis-1,3-Dichloropropene	1.0 U	1.0	1	NA	5/30/09 02:04	155589	
m,p-Xylenes	2.0 U	2.0	1	NA	5/30/09 02:04	155589	
o-Xylene	1.0 U	1.0	1	NA	5/30/09 02:04	155589	
trans-1,2-Dichloroethene	1.0 U	1.0	1	NA	5/30/09 02:04	155589	
trans-1,3-Dichloropropene	1.0 U	1.0	1	NA	5/30/09 02:04	155589	

		Control	Date		
Surrogate Name	%Rec	Limits	Analyzed Q	Note	
4-Bromofluorobenzene	107	80-123	5/30/09 02:04		
Dibromofluoromethane	106	89-115	5/30/09 02:04		
Toluene-d8	107	88-124	5/30/09 02:04		

Analytical Report

Client:	Benchmark Environmental Engineering
Project:	Seneca Market
Sample Matrix:	Water
Sample Name:	Method Blank
Lab Code:	RQ0904058-01

Service Request: R0902871 Date Collected: NA Date Received: NA

Units: μg/L Basis: NA

Dissolved Gases by GC/FID

Analytical Method: RSK 175

			Dilution	Date	Date	Extraction Analysis		
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Lot 1	Note
Ethane	1.0 U	1.0	1	NA	5/27/09 12:30)	155221	
Ethene	1.0 U	1.0	1	NA	5/27/09 12:30)	155221	
Methane	2.0 U	2.0	1	NA	5/27/09 12:30)	155221	

Analytical Report

Client:	Benchmark Environmental Engineering	Service Request: R0902871
Project:	Seneca Market	Date Collected: NA
Sample Matrix:	Water	Date Received: NA
Sample Name:	Method Blank	Units: mg/L
Lab Code:	RQ0904353-01	Basis: NA

Organic Acids in Aqueous Matrices by High Performance Liquid Chromatography (HPLC)

Analytical Method: Organic Acids

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysis Lot	s Note
Pyruvic Acid	0.50 U	0.50	l	NA	6/4/09 10:56		156328	
Acetic Acid	1.0 U	1.0	1	NA	6/4/09 10:56		156328	
Butanoic Acid (Butyric Acid)	2.0 U	2.0	1	NA	6/4/09 10:56		156328	
Lactic Acid	1.0 U	1.0	1	NA	6/4/09 10:56		156328	
Propionic Acid	1.0 U	1.0	1	NA	6/4/09 10:56		156328	

QA/QC Report

Client:Benchmark Environmental EngineeringProject:Seneca MarketSample Matrix:Water

Service Request: R0902871 Date Analyzed: 5/27/09

Lab Control Sample Summary Sulfide, Iodometric 20th Ed.

								Units: Basis:	mg/L NA	
		Lab C	Control San	nple	Duplicate L	ab Contro	l Sample			
		R09	02871-LC	S1	R0902	2871-DLC	S1	% Rec		RPD
Analyte Name	Method	Result	Expected	l % Rec	e Result	Expected	i % Rec	Limits	RPD	Limit
Sulfide, Total	SM 4500-S2- F	5.74	5.8	98	5.54	5.8	95	56 - 138	3	20

QA/QC Report

Client: Benchmark Environmental Engineering **Project:** Seneca Market Sample Matrix: Water

Lab Control Sample Summary **General Chemistry Parameters**

Service Request: R0902871 Date Analyzed: 5/22/09 -5/28/09

> Units: mg/L Basis: NA

Analyte Name		nple			
		R09	% Rec		
	Method	Result	Expected	1 % Rec	Limits
Carbon, Total Organic (TOC)	415.1	9.61	10.0	96	86 - 117
Chloride	9056	2.04	2.00	102	90 - 110
Sulfate	9056	1.88	2.00	94	90 - 110
Alkalinity as CaCO3, Total	SM 2320 B	19.1	20.0	95	90 - 108
Nitrate as Nitrogen	9056	1.00	1.00	100	90 - 110

Comments:

QA/QC Report

Client:

Sample Matrix:

Project:

Benchmark Environmental Engineering Seneca Market Water

Lab Control Sample Summary Inorganic Parameters

Service Request: R0902871 Date Analyzed: 5/28/09

> Units: µg/L Basis: NA

		Lab (R09	Control Sar 902871-LC	nple CS	% Rec
Analyte Name	Method	Result	Expected	i % Rec	Limits
Iron, Dissolved Manganese, Dissolved	6010B 6010B	1030 502	1000 500	103 100	80 - 120 80 - 120

QA/QC Report

Client:Benchmark Environmental EngineeringProject:Seneca MarketSample Matrix:Water

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Service Request: R0902871 Date Analyzed: 5/30/09

> Units: μg/L Basis: NA

Analysis Lot: 155589

	Lab	Lab Control Sample					
	F	RQ0904357-0	2	% Rec			
Analyte Name	Result	Expected	% Rec	Limits			
1,1,1-Trichlorocthane (TCA)	20.2	20.0	101	70 - 130			
1,1,2,2-Tetrachloroethane	18.1	20.0	91	70 - 130			
1,1,2-Trichloroethane	20.3	20.0	101	70 - 130			
1,1,2-Trichloro-1,2,2-trifluoroethane	19.1	20.0	95	70 - 130			
1,1-Dichloroethane (1,1-DCA)	18.4	20.0	92	70 - 130			
1,1-Dichloroethene (1,1-DCE)	19.1	20.0	95	70 - 130			
1,2,4-Trichlorobenzene	18.9	20.0	94	70 - 130			
1,2-Dibromo-3-chloropropane (DBCP)	20.0	20.0	100	50 - 150			
1,2-Dibromoethane	21.3	20.0	107	70 - 130			
1,2-Dichlorobenzene	19.9	20.0	99	70 - 130			
1,2-Dichloroethane	20.4	20.0	102	70 - 130			
1,2-Dichloropropane	19.5	20.0	98	70 - 130			
1,3-Dichlorobenzene	19.6	20.0	98	70 - 130			
1,4-Dichlorobenzene	19.1	20.0	96	70 - 130			
2-Butanone (MEK)	16.3	20.0	82	50 - 150			
2-Hexanone	18.5	20.0	92	70 - 130			
4-Methyl-2-pentanone	18.2	20.0	91	70 - 130			
Acetone	20.2	20.0	101	50 - 150			
Benzene	18.8	20.0	94	70 - 130			
Bromodichloromethane	20.8	20.0	104	70 - 130			
Bromoform	21.3	20.0	106	70 - 130			
Bromomethane	19.1	20.0	95	50 - 150			
Carbon Disulfide	18.1	20.0	90	70 - 130			
Carbon Tetrachloride	20.8	20.0	104	70 - 130			
Chlorobenzene	19.5	20.0	97	70 - 130			
Chloroethane	18.6	20.0	93	70 - 130			
Chloroform	19.7	20.0	99	70 - 130			
Chloromethane	17.8	20.0	89	70 - 130			
Cyclohexane	15.7	20.0	78	50 - 150			
Dibromochloromethane	21.9	20.0	110	70 - 130			
Dichlorodifluoromethane (CFC 12)	18. 7	20.0	94	70 - 130			
Dichloromethane	18. 7	20.0	94	70 - 130			
Ethylbenzene	19.4	20.0	97	70 - 130			
Isopropylbenzene (Cumene)	20.5	20.0	102	70 - 130			
Methyl Acetate	17.0	20.0	85	50 - 150			
Methyl tert-Butyl Ether	20.2	20.0	101	70 - 130			

QA/QC Report

Client:Benchmark Environmental EngineeringProject:Seneca MarketSample Matrix:Water

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Service Request: R0902871 Date Analyzed: 5/30/09

> Units: μg/L Basis: NA

Analysis Lot: 155589

Lab Control Sample						
RQ0904357-02						
Result	Expected	% Rec	Limits			
16.6	20.0	83	50 - 150			
22.4	20.0	112	70 - 130			
20.4	20.0	102	70 - 130			
19.4	20.0	97	70 - 130			
20.7	20.0	104	70 - 130			
20.5	20.0	103	70 - 130			
18.2	20.0	91	70 - 130			
19.0	20.0	95	70 - 130			
20.2	20.0	101	70 - 130			
40.9	40.0	102	70 - 130			
20.8	20.0	104	70 - 130			
17.9	20.0	90	70 - 130			
20.1	20.0	101	70 - 130			
	Lab F Result 16.6 22.4 20.4 19.4 20.7 20.5 18.2 19.0 20.2 40.9 20.8 17.9 20.1	Lab Control Sar RQ0904357-0 Result Expected 16.6 20.0 22.4 20.0 20.4 20.0 20.7 20.0 20.5 20.0 18.2 20.0 19.0 20.0 20.2 20.0 19.0 20.0 20.2 20.0 19.0 20.0 20.8 20.0 17.9 20.0 20.1 20.0	Lab Control Sample RQ0904357-02 Result Expected % Rec 16.6 20.0 83 22.4 20.0 112 20.4 20.0 102 19.4 20.0 97 20.7 20.0 104 20.5 20.0 103 18.2 20.0 91 19.0 20.0 95 20.2 20.0 101 40.9 40.0 102 20.8 20.0 90 20.1 20.0 104			

Comments:

09-0000104612 rev 00

OA/OC Report

Client: Benchmark Environmental Engineering **Project:** Seneca Market Sample Matrix: Water

Service Request: R0902871 Date Analyzed: 5/30/09

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

		Uni Bas	its:	μg/L NA
		<i>b</i> a		1 42 1
	-			

155589 **Analysis Lot:** Lab Control Sample **Duplicate Lab Control Sample** RQ0904357-03 RQ0904357-04 % Rec RPD Analyte Name Result Expected % Rec Expected % Rec Limits RPD Result Limit 50.0 1,1,1-Trichloroethane (TCA) 54.5 109 60.7 50.0 121 70 - 13011 30 1,1,2,2-Tetrachloroethane 38.8 50.0 78 44.9 50.0 90 70 - 130 15 30 1.1.2-Trichloroethane 49.6 50.0 99 52.3 50.0 105 70 - 130 5 30 1,1,2-Trichloro-1,2,2-trifluoroethane 95 70 - 130 47.5 50.0 54.7 50.0 109 14 30 1,1-Dichloroethane (1,1-DCA) 50.0 94 70 - 130 47.2 52.7 50.0 105 11 30 1,1-Dichloroethene (1,1-DCE) 47.8 50.0 96 56.3 50.0 70 - 130 30 113 16 1.2.4-Trichlorobenzene 50.0 90 103 70 - 130 44.8 51.3 50.0 13 30 1,2-Dibromo-3-chloropropane (DBCP) 50.0 88 48.4 97 50 - 15044.1 50.0 9 30 1,2-Dibromoethane 70 - 130 9 50.0 50.0 100 54.9 50.0 110 30 1.2-Dichlorobenzene 46.7 50.0 93 52.0 50.0 104 70 - 130 11 30 50.0 108 70 - 130 1.2-Dichloroethane 54.2 56.0 50.0 112 3 30 50.0 100 50.0 30 1.2-Dichloropropane 49.8 53.0 106 70 - 130 6 70 - 130 1,3-Dichlorobenzene 50.0 93 53.1 50.0 106 13 30 46.7 1.4-Dichlorobenzene 50.0 91 51.5 50.0 103 70 - 130 13 30 45.3 50.0 75 40.2 50.0 80 50 - 150 30 2-Butanone (MEK) 37.7 6 2-Hexanone 45.3 50.0 91 47.1 50.0 94 70 - 130 4 30 50.0 93 48.5 50.0 97 70 - 130 4-Methyl-2-pentanone 46.6 4 30 50 - 150 50.0 105 51.3 50.0 103 30 Acetone 52.7 3 50.0 98 50.0 107 70 - 130 9 30 Benzene 49.1 53.6 Bromodichloromethane 50.0 113 59.7 50.0 119 70 - 130 5 30 56.7 Bromoform 54.2 50.0 108 57.7 50.0 115 70 - 130 6 30 50.0 99 Bromomethane 43.6 87 49.7 50.0 50 - 15013 30 107 50.0 95 50.0 70 - 130 12 Carbon Disulfide 47.7 53.6 30 Carbon Tetrachloride 50.0 116 63.5 50.0 127 70 - 130 9 30 58.1 Chlorobenzene 50.0 97 53.6 50.0 107 70 - 13010 30 48.5 Chloroethane 48.1 50.0 96 54.1 50.0 108 70 - 130 12 30 Chloroform 50.0 106 56.8 50.0 114 70 - 1307 30 53.1 70 - 130 13 Chloromethane 50.0 89 50.4 50.0 101 30 44.3

Dibromochloromethane 55.7 Dichlorodifluoromethane (CFC 12) 49.5 50.0 99 54.5 50.0 Dichloromethane 46.4 50.0 93 50.5 50.0 50.0 100 50.0 Ethylbenzene 49.8 56.6 Isopropylbenzene (Cumene) 53.3 50.0 107 60.8 50.0 Methyl Acetate 44.1 48.0 92 45.3 48.0 Methyl tert-Butyl Ether 49.0 50.0 98 53.8 50.0

45.8

48.0

50.0

Comments:

Cyclohexane

95

111

48.5

59.8

48.0

50.0

SuperSet Reference:

101

120

109

101

113

122

94

108

09-0000104612 rev 00

50 - 150

70 - 130

70 - 130

70 - 130

70 - 130

70 - 130

50 - 150

70 - 130

6

7

10

8

13

13

3

9

30

30

30

30

30

30

30

30

QA/QC Report

Client:Benchmark Environmental EngineeringProject:Seneca MarketSample Matrix:Water

Service Request: R0902871 Date Analyzed: 5/30/09

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Unit	ts: μg/L
Basi	is: NA

Analysis Lot: 155589

	Lab	Lab Control SampleDuplicate Lab Control Sample							
Analyte Name	H	RQ0904357-03			RQ0904357-04				RPD
	Result	Expected	% Rec	Result	Expected	% Rec	Limits	RPD	Limit
Methylcyclohexane	48.5	48.0	101	51.7	48.0	108	50 - 150	6	30
Styrene	57.3	50.0	115	63. 7	50.0	127	70 - 130	11	30
Tetrachloroethene (PCE)	49.1	50.0	98	56.4	50.0	113	70 - 130	14	30
Toluene	50.0	50.0	100	55.7	50.0	111	70 - 130	11	30
Trichloroethene (TCE)	54.2	50.0	108	58.8	50.0	118	70 - 130	8	30
Trichlorofluoromethane (CFC 11)	55.7	50.0	111	61.1	50.0	122	70 - 130	9	30
Vinyl Chloride	48.3	50.0	97	54.1	50.0	108	70 - 130	11	30
cis-1,2-Dichloroethene	48.6	50.0	97	53.8	50.0	108	70 - 130	10	30
cis-1,3-Dichloropropene	50.6	50.0	101	54.5	50.0	109	70 - 130	7	30
m,p-Xylenes	101	100	101	115	100	115	70 - 130	13	30
o-Xylene	52.3	50.0	105	59.0	50.0	118	70 - 130	12	30
trans-1,2-Dichloroethene	46.8	50.0	94	51.7	50.0	103	70 - 130	10	30
trans-1,3-Dichloropropene	51.2	50.0	102	54.9	50.0	110	70 - 130	7	30

QA/QC Report

Lab Control Sample Summary Dissolved Gases by GC/FID

Analytical Method: RSK 175

Service Request: R0902871 Date Analyzed: 5/27/09

> Units: µg/L Basis: NA

Analysis Lot: 155221

	Lab Control Sample							
	RQ0904058-02							
Analyte Name	Result	Expected	% Rec	Limits				
Ethane	32.7	25.5	129	50 - 150				
Ethene	32.1	24.8	129	50 - 150				
Methane	31.6	24.7	128	50 - 150				

Comments:

*aa*acco

QA/QC Report

Client:Benchmark Environmental EngineeringProject:Seneca MarketSample Matrix:Water

Service Request: R0902871 Date Analyzed: 6/ 4/09

Lab Control Sample Summary

Organic Acids in Aqueous Matrices by High Performance Liquid Chromatography (HPLC)

Analytical Method: Organic Acids

Units: mg/L Basis: NA

Analysis Lot: 156328

	Lah F	Lab Control Sample RQ0904353-02			Duplicate Lab Control Sample RQ0904353-03				RPD
Analyte Name	Result	Expected	% Rec	Result	Expected	% Rec	Limits	RPD	PD Limit
Pyruvic Acid	1.24	1.07	116	1.30	1.07	121	50 - 150	5	30
Acetic Acid	10.2	11.1	91	10.4	11.1	93	50 - 150	2	30
Butanoic Acid (Butyric Acid)	9.52	10.2	93	9.62	10.2	94	50 - 150	1	30
Lactic Acid	9.88	11.1	89	10.1	11.1	91	50 - 150	2	30
Propionic Acid	9.27	10.1	92	9.46	10.1	94	50 - 150	2	30

Comments:

aaase

Columbia Services w An Employer - Owned Company

0
ш
S
Ш
Ξ
2
G
Ш
~
S
<u> </u>
S
>
◄
4
4
\sim
0
\simeq
\sim
Ц
Ο
ň
4
~
Ľ
0
Ē
'n
Ľ.
<u> </u>
C
-
Ľ,
0
_
Z
7
4
I
\mathbf{O}

CHAIN OF CUSTODY/LABORAT	ORY ANALYSIS REQUEST	FORM SR #	
An Linglewer - Ownerd Companies One Mustard St., Suite 250 • Rochester, NY 14609-0859 • (585) 288-5380 • 800-695 www.castata.com	-7222 x11 • FAX (585) 288-8475 PAGE (F CAS Contact	
Proper Number	ANALYSIS REQUESTED (Includ	Method Number and Container Preservative)	
Project Manager Mile Lesuper Les	PRESERVATIVE		
Beachmirk Enc		Preservativ	e Key
2558 Humburg turn Pile, Suit 300	, , , , , , , , , , , , , , , , , , ,	1. HGL	
Lackewanny NY 1421	CONTA CLP CLP CLP CLP CLP CLP CLP	NACOTA NACOTA DE ZIACO NACOTA NACOTA NACOTA	ate
Partie FAX# FAX#		NaHSO	
Sampler's Signature Sampler's Printed Name			
CLIENT SAMPLE ID FOR OFFICE USE ONLY SAMPLING LAB ID DATE TIME MATRIX	C C C C C C C C C C C C C C C C C C C	2 I al of it is by it was	
MW-10 > Spulsy 1153 6W	3 4 4 7 4		ION
WW-150 1242			
MW - 75	(V)		
MW-35R + 1331 +	-		
		-	
SPECIAL INSTRUCTIONS/COMMENTS			
Metals	TURNAROUND REQUIREMENTS	EPORT REQUIREMENTS INVOICE INFORMATION lesuits Only	
moubolic Acidis Inculter - Partic, pyravity aco	24 hr 24 hr 5 day 1	4sults + QC Summaries S. DUP, MS/MSD as required)	
Mill Prepienic une butyrie	REQUESTED FAX DATE	Results + OC and Calibration mmarks	
The survey of the state	REQUESTED REPORT DATE	Data Validation Report with Ra R090.36.4	
See OAPP D Field Filterde	N N	pecialized Forms / Custom R, Senechmark Environmental Engineering	
SAMPLE RECEIPT: CONDITION/COOLER TEMP: BELIND/INSHED BY CUSTODY SEALS	N X X	ataYes Z	()(B) (1000
	RECEIVED BY		
Signature Signature	Signature Signature	Signature	
Linewane Behind Name	Printed Name	ne Printed Name	
Brenchow (- or Determine Case) Film	Firm	Firm	
$\frac{57}{5}/2/\rho_1$ Date Time Date Time	Date/Time	Date/Time	
Distribution: White - Return to Originator; Yellow - Lab Copy; Pink - Retained by Client			

SCOC-1102-08

					•					
Project/C	lient	P	DEILC	hmark	Sul	omission Nun	nber	<u> </u>	·	
Cooler re	eceived on	512	1100	by: <u>P</u>	COURI	IER: CAS	UPS	FEDEX	VELOCI	TY CLIENT
1. V 2. V 3. E 4. E 5. V 6. V 7. T	Were custo Were custo Did all bott Did any VC Were did t Where did t	dy se dy pa les ar)A vi lee he bo he bo	als of pers rive als l pac ottle	on outside of cool s properly filled of in good condition have significant* ks present? receipt s originate? er(s) upon receipt	ler? out (ink, : n (unbro air bubb دمصعه t:	signed, etc.)? ken)? les?	<u> </u>	YES YES YES CASTRO	NO NO NO NO NO	N/A NT
I	s the tempe	eratu	e W	ithin 0° - 6° C?:	Ye	es Yes		Yes	Yes	Yes
I	f No, Expl	lain]	Belo	W	N) No	ン	No	No	No
Ι	Date/Time	Tem	perat	tures Taken:	512	1109 153	5		•	
-	Thermomet	er ID): 16	51 / IR GUN#2	/ RGI	JN#3 Rea	ding Fro	om: Temp	Blank /	Sample Bottle
lf out of	Tempera	ture,	not	e packing/ice co	ndition,	, Client App	roval to	Run Sam	ples:	
PC Seco	ondary Rev	iew:		- CHING -	ILOJ -			HS		
Cooler H	Breakdown	: Da	te :	(j - j)	-09	by	:			
י 1. ז כ	Were all both	nie lai	abels	s complete (<i>i.e.</i> at and tags agree with	nalysis, j	preservation, dy papers?	etc.)?	YES	NO	
3. 1	Were corre	ct co	ntain	ers used for the t	tests indi	cated?		YES	NO	
2. 4. /	Air Sample	s: (lasse	ettes / Tubes Intag	ct Ca	anisters Press	urized	Tedlard	Rage Inf	lated NI/A
Explain	any discrep	panci	es: _							
ъH	Reagent	YES	NO	Lot Received	Exp	Sample ID	Vol. Added	Lot Added	l Final pH	Yes = All samples OK
≥12	NaOH			1 + 0 > 1 00 T						Sumples OR
<u> 2</u>	HNO3	1		PDB361912	04/10			ļ		No =
<u>52</u>	H ₂ SO ₄			If any other states of the sta				ļ		were
Chlorine	and Phenol			add ascorbic acid	I PM to					preserved at lab as listed
<u></u>	Na ₂ S ₂ O ₃	-	•		1	*Not to be te	sted befo	ore analysis -	- pH	PM OK to
	Zn Aceta	-	-			tested and re	corded b	y VOAs or C	GenChem	Adjust:
	HCI	*	*	G45A01	04/12	on a separate	worksne	eet		
Bottle lot	numbers:)4]]	369-	20,011209-1	B, 9-0	112-002 9	-014-	00]		···· ·
		-).	Nc.	Poured MES	5-22-09					
	Meta	holi		vids alique	+ Pour	rd out e	of I.	C_ (AMPI	rzerval	bottle int
L	aur	ml	UNA.	1. Sample her	nt int	+ How labe	ANPres	eval.		
	$\mathcal{O}(\mathcal{H})$	(14)	6 121	· Jumpio wei		v reat 10008°	• • • • •			
				1	115					
C Seco	ndary Rev	iew:		CHUS UIL	1151	*significant	air bub	bles are gr	eater than	5-6 mm
יישאטאי	- IOCS\Cooler	Recei	int 2.d		Τ.	-		0	and a	300 <u>7</u> 2

Cooler Receipt And Preservation Check Form

PC Secondary Review: _______