

February 18, 2010

Ms. Charlotte Theobald NY State Department of Environmental Conservation Division of Environmental Remediation, Region 8 6274 East Avon-Lima Road Avon, New York 14414-9519

Re: Site No. C849004 Seneca Market I, LLC Site Watkins Glen, New York Third and Fourth Quarter 2009 Groundwater Monitoring Report

Dear Ms. Theobald:

On behalf of our client, Seneca Market I, LLC (Seneca Market), Benchmark Environmental Engineering & Science, PLLC (Benchmark) is herein transmitting the results from the September 2009 and December 2009 groundwater monitoring events at the Seneca Market Site in Watkins Glen, New York (Site; see Figure 1).

These groundwater monitoring events included sampling and analysis of MW-1SR, MW-3SR, MW-7S and MW-10S, MW-21s. Groundwater gauging of MW-4S and MW-9S was also completed. Groundwater samples from each of the sampled wells were analyzed for target compound list (TCL) volatile organic compounds (VOCs). The groundwater sample collected from MW-3SR was also analyzed for dissolved iron and manganese, nitrate, sulfate, sulfide, chloride, alkalinity, total organic carbon, metabolic acids and dissolved gases. Field parameters including pH, oxidation-reduction potential (ORP), dissolved oxygen (DO), temperature, turbidity, and specific conductance were also measured in each of the sampled monitoring wells. Table 1 summarizes the analytical and field results from the September and December 2009 groundwater monitoring events as well as historic groundwater monitoring events completed by Benchmark and the NYSDEC, laboratory analytical packages for the September and December 2009 groundwater monitoring events are in attachment 1.

As shown on Table 1, chlorinated VOCs were not detected above NYSDEC Class GA groundwater quality standards (GWQS) as listed in NYSDEC Division of Water Technical and Operational Guidance Series (TOGS) (1.1.1) in MW-10S or MW-21S. Minor concentrations of cis-1,2-Dichloroethene were detected above NYSDEC Class GA groundwater quality standards (GWQS) in MW-3SR. However, MW-3SR is located in the area of VOC source soil removal by Seneca Market and has decreased from 6,203 micrograms per liter (ug/L) total chlorinated VOCs in June 2000 to less than 15 ug/L total chlorinated VOCs in December 2009. The results of the September and December 2009 sampling event also confirm that biodegradation of VOCs in groundwater is occurring. This is evidenced by the relative low concentrations of chlorinated VOCs, the presence of tetrachloroethene (PCE) breakdown products, including trichloroethene (TCE), cis-1,2-DCE and vinyl chloride, the presence of methane and carbon dioxide, low oxidation-reduction potential (ORP) and low dissolved oxygen (DO).

www.benchmarkees.com

Concentrations of petroleum VOCs, including, benzene and xylene, in MW-7S and MtBE in MW-3SR, MW-1SR may be the result of on-Site migration of petroleum VOCs from the adjacent and upgradient NYSDEC petroleum spill site (Spill No. 0651369) located at the corner of North Franklin Street and Division Street. We understand that environmental investigation and/or remediation is on-going at that site.

Monitoring well elevations of MW-1SR, MW-3SR, MW-7S, MW-10S, MW-4S and MW-9S and static groundwater elevations were recorded. Table 2 shows the relative groundwater elevations and Figure 1 includes estimated groundwater flow direction for the fourth quarter 2009 event. The groundwater flow is generally consistent with historic groundwater gauging data.

Benchmark has completed the first year of quarterly groundwater monitoring for the Seneca Market I site. Based on previously completed source removal, strong evidence of continued biodegradation as a result of the HRC[®] application and continued natural attenuation, quarterly monitoring of the site is no longer necessary and sampling frequency should be performed on a semi-annual basis. Continued monitoring of water quality parameters at MW-3SR is longer necessary. We request future groundwater analysis be limited to target compound list (TCL) volatile organic compounds via method 8260B.

Furthermore, we request that future groundwater sampling methods be changed from low-flow sampling to the use of passive diffusion bags (PDBs). The PDB sampler is a semi-permeable, low-density polyethylene membrane designed to allow VOCs to flow into the PDB until equilibrium is reached between the formation and the PDB. Attached is a copy of Benchmark field operating procedures for passive diffusion bag sampling (See Attachment 2).

Please contact us with any questions or comments.

Sincerely, Benchmark Environmental Engineering & Science, PLLC

Michael Lesakowski Project Manager

Att.

c: P. Sheedy (Seneca Market I, LLC)

TABLES

TABLE 1 SUMMARY OF GROUNDWATER MONITORING RESULTS Third Quarter (9/23) and Fourth Quarter (12/14) 2009

SENECA MARKET I, LLC SITE WATKINS GLEN, NEW YORK

				1004 40				-1					00 D					i	Sai	nple Locat	ion		70									400				ı —				1
Parameter ¹	1/1/93 ²	4/1/93 ²	11/21/08	02/27/0	к 9 05/20/0	09 09/23	09 12/14/09	1/1/93 ²	4/1/93 ²	3/16/00 ³	6/23/00 ⁴	10/20/00 ⁵	11/21/08	02/27/09	05/20/09	09/23/09	12/14/09	1/1/93 ²	4/1/93 ²	3/16/00 ³	6/23/00 ⁴	10/20/00 ⁵	11/21/08	02/27/09	05/20/09	09/23/09	12/14/10	1/1/93 ²	4/1/93 ²	11/21/08	11/21/08 Blind	02/27/09	05/20/09	09/23/09	12/14/09	11/21/08	02/27/09	09/23/09	12/14/09	GWQS ⁶
TCL Volatile Organic Compounds (VOCs) - ug/	L									-		1	1									I									Duplicate									
Acetone	ND	ND	1.4 J	ND	ND	ND	ND	R	R	ND	24	ND	ND	ND	ND	ND	ND	R	ND	ND	ND	ND	ND	ND	34	41	35	20	R	ND	ND	ND	ND	ND	ND	1.8 J	ND	ND	ND	50
Benzene	ND	ND	ND	ND	ND	ND	ND	ND	R	ND	2	ND	ND	ND	ND	ND	ND	6 J	R	7	11	ND	4.7	27	14	8.2	6.5	ND	R	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1
Bromomethane (Methyl bromide)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.2 BJ	ND	ND	ND	ND	ND	ND	0.33 BJ	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
2-Butanone (MEK)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50
Carbon disulfide	ND	ND	0.2 J	ND	ND	ND	ND	ND	ND	ND	29	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
Carbon tetrachloride	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Chloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Chloroform	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	7
Chloromethane (Methyl chloride)	ND	ND	ND	ND	ND	1.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.6	ND	5
Cyclohexane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.8	21	12	11	12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	·
1,1-Dichloroethene	ND	ND	0.2 J	ND	ND	ND	ND	ND	ND	1	13	4	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
cis-1,2-Dichloroethene	NA	NA	91	75	72	71	79	NA	NA	NA	NA	NA	13	3	1.8	1.7	7.3	NA	NA	NA	NA	NA	4.1	3.5	3	7.5	2.7	NA	NA	ND	ND	ND	ND	ND	ND	0.21 J	ND	ND	ND	5
trans-1,2-Dichloroethene	NA	NA	0.71 J	ND	ND	ND	ND	NA	NA	NA	NA	NA	0.24 J	ND	ND	ND	ND	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Total 1,2-Dichloroethene	43	40	NA	NA	NA	NA	NA	770	87	1900	5500	2200	NA	NA	NA	NA	NA	ND	3 J	6	36	6	NA	NA	NA	NA	NA	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	5
Ethylbenzene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	6 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Isopropylbenzene (Cumene)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.4	1.7	1.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Methylcyclohexane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.4	6.9	4.4	5	5.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	-
Methylene chloride	R	ND	ND	ND	ND	ND	ND	R	ND	ND	ND	ND	ND	ND	ND	ND	ND	R	R	ND	ND	ND	ND	ND	ND	ND	ND	ND	3 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
4-methyl-2-pentanone (MIBK)	9 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	20	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	<u> </u>
Methyl tert butyl ether (MTBE)	ND	ND	1.8	1.6	2	1.7	1.7	ND	ND	ND	ND	ND	4.6	5.1	4.7	4	4.3	ND	ND	ND	ND	ND	4.5	3.7	1.6	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.55 J	ND	ND	ND	10
Styrene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.6 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
1,1,2,2-Tetrachloroethane	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Tetrachloroethene	410	360	88	70	87	83	87	88	8	77	83	ND	24	ND	ND	ND	4.2	ND	ND	ND	5	6	ND	ND	ND	ND	ND	6 J	R	3.2	3.2	4	2.5	2.5	3.7	ND	ND	ND	ND	5
Toluene	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2	ND	0.69 J	5.7	5.7	ND	ND	ND	0.8 J	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Irichloroethene	22 J	26	21	17	21	20	20	190	20	83	200	14	7.7	ND	ND	ND	1.8	ND	ND	ND	4	2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	5
Vinyi chloride	ND	ND	1.5	1.7	1.4	1.7	1.8	38 J	ND	17	420	390	2.6	1.2	ND	ND	ND	ND	ND	1	3	ND	1.3	1.1	ND	2.1	1.1	ND	ND	ND	ND	ND	ND	ND	ND	0.23 J	ND		ND	2
o-Xylenes	ND	ND	ND	ND	ND	NL	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.4	ND	ND	ND	ND	ND	ND	ND	1.9	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5
Tatal Vulana	ND	ND	ND	ND	ND	INL		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND		ND	ND	ND	0.3 J	3.3	0.0	5.0	3.0	ND		ND		ND	5							
	194 O	126 O	205.9	165.2	192	1 170	5 190.5	1096.0	115.0	2078.0	6277.0	2608.0	ND	0.2		ND	1.4	26.0	2 J	14.0	ND 61.0	14.0	0.3 J	3.3	0.0	0.0	3.0 67.5	26.0	2 J 20 4	2.5	2.2	10	2.0	2.5	2.7	2.9	ND	26	ND	${\vdash}$
Total Chlorinated VOCs	404.0	420.0	203.8	163.7	181/	1 175	7 187.8	1086.0	115.0	2078.0	6203.0	2008.0	47.5	9.5	2.0	1.7	13.0	20.0	3.0	7.0	48.0	14.0	20.0	12.2	3.0	02.3	3.8	20.0	20.4	3.0	3.2	4.0	3.0	2.5	3.7	2.0	0.0	2.0	0.0	\bowtie
Water Quality Parameters (mg/L)	473.0	420.0	202.2	105.7	101	+ 175.	101.0	1000.0	/ 113.0	2011.0	0203.0	2004.0	47.5	4.2	2.0	1.7	10.0	0.0	5.0	7.0	40.0	14.0	5.4	4.0	5.0	3.0	5.0	0.0	4.0	5.2	5.2	4.0	5.0	2.5	5.7	0.4	0.0	1.0	0.0	\sim
Iron- Soluble	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	300
Manganese- Soluble	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.94	5.49	5.6	4.91	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	300
Nitrate, mg/L-N	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	10
Sulfate	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	18.3	17.1	17	16.7	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	250
Sulfide	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	50
Chloride	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	454	430	544	415	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.50E+08
Carbon Dioxide	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	66	63	ND	52	67	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Ethane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Ethylene	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.0008 J	ND	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Methane	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.051	0.049	0.13	0.074	0.074	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Total Alkalinity	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	334	333	314	338	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Total Organic Carbon	NA	NA	NA	NA	NA	NA	NA	NA	NA	6	36.6	23.9	4.26	2.6	3.5	3.5	ND	NA	NA	9.5	8	12.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	(
Field Measurements (units as indicated)																																								
pH (units)			7.00	7.03	6.86	6.6	6.71						7.08	6.96	6.94	6.70	6.90						7.15	7.13	7.01	6.77	6.84			7.02	7.02	7.01	6.98	6.74	6.60	7.25	6.78	6.70	6.87	6.5 - 8.5
Temperature (°C)			11.4	11.5	17.2	18.	6 11.9						11.7	10.8	14.2	19.6	13.2						11	10.6	15.3	17.6	13.2			11.5	11.5	12	16.1	19.7	12.8	11.9	7.5	22.7	12.3	<u> </u>
Specific Conductance (uS)			2000	1663	1994	4 210	7 2113						2016	2000	1987	2028	2097						2966	3252	4081	3416	3227			1538	1538	1421	1153	1348	1569	1140	1510	1429	1440	<u> </u>
Turbidity (NTU)			214	311	39.9	7.0	2 18.8						9.04	20.4	7.62	5.26	22						100	50.2	8.3	4.38	15.3			88.1	88.1	28.2	25	7.8	9.83	5.35	8.81	1.53	1.7	<u> </u>
ORP (mV)			58	51	63	42	42						41	24	15	0	- 51						-87	-117	-139	- 140	- 113			27	27	15	1	13	22	-99	-99	-132	98	<u> </u>
DO (ppm)			1.53	1.45	1.61	1.3	3 1.7						1.38	1.3	1.48	1.33	1.79						1.47	2.27	1.36	0.97	1.3			1.35	1.35	2.15	3.56	2.2	1.66	1.04	1.18	1.14	1.54	1 -

Notes: 1. Only those parameters detected at a minimum of one sample location are presented in this table; all other compounds were reported as non-detect. 2. Results are from the 1993 RI/FS report prepared by URS. 3. Pre-injection groundwater sampling results from the 2001 URS report "Evaluation of Site Remediation by In-Situ Oxidation." 4. Between injection groundwater sampling results from the 2001 URS report "Evaluation of Site Remediation by In-Situ Oxidation." 5. Post-injection groundwater sampling results from the 2001 URS report "Evaluation of Site Remediation by In-Situ Oxidation." 6. Class "GA" Groundwater Quality Standards for NYSDEC Divisions of Water TOGS 1.1.1

Definitions: ND = Parameter not detected above laboratory detection limit. NA = Sample not analyzed for parameter. *-* = NG GWQS available. J = Estimated value; result is less than the sample quantitation limit but greater than zero. R = Data rejected. Excedeeds GWQS

TABLE 2

SUMMARY OF GROUNDWATER ELEVATIONS FOURTH QUARTER 2009 (12/14/09)

Seneca Market I, LLC Site Watkins Glen, New York

Location	TOR Elevation (fmsl)	DTW (fbTOR)	Groundwater Elevation (fmsl)
MW-1SR	451.39	6.00	445.39
MW-3SR	451.89	6.34	445.55
MW-4S	450.68	5.18	445.50
MW-7S	450.85	5.44	445.41
MW-9S	453.57	8.23	445.34
MW-10S	452.01	6.67	445.34
MW-21S	453.09	7.16	445.93

Notes:

- 1. DTW = depth to water, measured in feet below top of riser
- 2. fmsl = feet above mean sea level
- 3. fbTOR = feet below top of riser
- 4. TOR = Top of Riser; elevations surveyed on 02-27-2009

FIGURES

DATE: FEBRUARY 2010 DRAFTED BY: BCH/JCT

ATTACHMENT 1

LABORATORY ANALYTICAL DATA SEPTEMBER AND DECEMBER 2009 SAMPLING EVENT

1 Mustard Street, Suite 250, Rochester, NY 14609-6925 | 585.288.5380 | www.caslab.com

October 13, 2009

Service Request No: R0905428

Mr. Michael Lesakowski Benchmark Environmental Engineering 2558 Hamburg Turnpike Suite 300 Lackawanna, NY 14218

Laboratory Results for: Seneca Market

Dear Mr. Lesakowski:

Enclosed are the results of the sample(s) submitted to our laboratory on September 23, 2009. For your reference, these analyses have been assigned our service request number **R0905428**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 135. You may also contact me via email at JJaeger@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Janice Jaeger Client Services Manager

Page 1 of 32

CASE NARRATIVE

This report contains analytical results for the following samples: Service Request Number: R0905428

<u>Lab ID</u>	<u>Client ID</u>
R0905428-001	MW-21S
R0905428-002	MW-7S
R0905428-003	MW-1SR
R0905428-004	MW-10S
R0905428-005	MW-3SR
R0905428-006	MW-3SR DISSOLVED
R0905472-010	Batch QC
R0905472-018	Batch QC

All samples were received in good condition unless otherwise noted on the cooler receipt and preservation check form located at the end of this report.

All samples were preserved in accordance with approved analytical methods.

All samples have been analyzed by the approved methods cited on the analytical results pages.

All holding times and associated QC were within limits.

No analytical or QC problems were encountered.

All sampling activities performed by CAS personnel have been in accordance with "CAS Field Procedures and Measurements Manual" or by client specifications.

Samples have been subcontracted to the following laboratory(ies). The subcontractor's analytical report is attached:

Columbia Analytical Services, Inc. - SIMIVALLE Simi Valley, CA

00002

Columbia Analytical Services*

REPORT QUALIFIERS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- * Indicates that a quality control parameter has exceeded laboratory limits.
- # Spike was diluted out.
- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Pesticide/Aroclors: Concentration >40% (25% for CLP) difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (≥100% Difference between two GC columns).
- X See Case Narrative for discussion.

CAS/Rochester Lab ID # for State Certifications¹

NELAP Accredited Delaware Accredited Connecticut ID # PH0556 Florida ID # E87674 Illinois ID #200047 Maine ID #NY0032 Nebraska Accredited Navy Facilities Engineering Service Center Approved Nevada ID # NY-00032 New Jersey ID # NY004 New York ID # 10145 New Hampshire ID # 294100 A/B Pennsylvania ID# 68-786 Rhode Island ID # 158 West Virginia ID # 292

¹ Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable, except as noted in the laboratory case narrative provided. For a specific list of accredited analytes, refer to the certifications section at <u>www.caslab.com</u>.

Analytical Report

Client:Benchmark Environmental EngineeringProject:Seneca MarketSample Matrix:WaterSample Name:MW-21SLab Code:R0905428-001

Service Request: R0905428 Date Collected: 9/23/09 1325 Date Received: 9/23/09

> Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot Note
1,1,1-Trichloroethane (TCA)	1.0	U	1.0	1	NA	9/30/09 19:18	172647
1,1,2,2-Tetrachloroethane	1.0	U	1.0	1	NA	9/30/09 19:18	172647
1,1,2-Trichloroethane	1.0	U	1.0	1	NA	9/30/09 19:18	172647
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	1	NA	9/30/09 19:18	172647
1,1-Dichloroethane (1,1-DCA)	1.0	U	1.0	1	NA	9/30/09 19:18	172647
1,1-Dichloroethene (1,1-DCE)	1.0	U	1.0	1	NA	9/30/09 19:18	172647
1,2,4-Trichlorobenzene	1.0	U	1.0	1	NA	9/30/09 19:18	172647
1,2-Dibromo-3-chloropropane (DBCP)	2.0	U	2.0	1	NA	9/30/09 19:18	172647
1,2-Dibromoethane	1.0	U	1.0	1	NA	9/30/09 19:18	172647
1,2-Dichlorobenzene	1.0	U	1,0	1	NA	9/30/09 19:18	172647
1,2-Dichloroethane	1.0	U	1.0	1	NA	9/30/09 19:18	172647
1,2-Dichloropropane	1.0	U	1.0	1	NA	9/30/09 19:18	172647
1,3-Dichlorobenzene	1.0	U	1.0	1	NA	9/30/09 19:18	172647
1,4-Dichlorobenzene	1.0	U	1.0	1	NA	9/30/09 19:18	172647
2-Butanone (MEK)	5.0	U	5.0	1	NA	9/30/09 19:18	172647
2-Hexanone	5.0	U	5.0	1	NA	9/30/09 19:18	172647
4-Methyl-2-pentanone	5.0	U	5.0	1	NA	9/30/09 19:18	172647
Acetone	5.0	U	5.0	1	NA	9/30/09 19:18	172647
Benzene	1.0	U	1.0	1	NA	9/30/09 19:18	172647
Bromodichloromethane	1.0	U	1.0	1	NA	9/30/09 19:18	172647
Bromoform	1.0	U	1.0	1	NA	9/30/09 19:18	172647
Bromomethane	1.0	U	1.0	1	NA	9/30/09 19:18	172647
Carbon Disulfide	1.0	U	1.0	1	NA	9/30/09 19:18	172647
Carbon Tetrachloride	1.0	U	1.0	1	NA	9/30/09 19:18	172647
Chlorobenzene	1.0	U	1.0	1	NA	9/30/09 19:18	172647
Chloroethane	1.0	U	1.0	1	NA	9/30/09 19:18	172647
Chloroform	1.0	U	1.0	1	NA	9/30/09 19:18	172647
Chloromethane	1.6		1.0	1	NA	9/30/09 19:18	172647
Cyclohexane	1.0	U	1.0	1	NA	9/30/09 19:18	172647
Dibromochloromethane	1.0	U	1.0	1	NA	9/30/09 19:18	172647
Dichlorodifluoromethane (CFC 12)	1.0	U	1.0	1	NA	9/30/09 19:18	172647
Dichloromethane	1.0	U	1.0	1	NA	9/30/09 19:18	172647
Ethylbenzene	1.0	U	1.0	1	NA	9/30/09 19:18	172647

Analytical Report

Client:Benchmark Environmental EngineeringProject:Seneca MarketSample Matrix:WaterSample Name:MW-21SLab Code:R0905428-001

Service Request: R0905428 Date Collected: 9/23/09 1325 Date Received: 9/23/09

> Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction A Lot	nalysi: Lot	s Note
Isopropylbenzene (Cumene)	1.0 U	1.0	1	NA	9/30/09 19:18	1	72647	
Methyl Acetate	2.0 U	2.0	1	NA	9/30/09 19:18	1	72647	
Methyl tert-Butyl Ether	1.0 U	1.0	1	NA	9/30/09 19:18	; 1'	72647	
Methylcyclohexane	1.0 U	1.0	1	NA	9/30/09 19:18	; 1'	72647	
Styrene	1.0 U	1.0	1	NA	9/30/09 19:18	1	72647	
Tetrachloroethene (PCE)	1.0 U	1.0	1	NA	9/30/09 19:18	1	72647	
Toluene	1.0 U	1.0	1	NA	9/30/09 19:18	1	72647	
Trichloroethene (TCE)	1.0 U	1.0	1	NA	9/30/09 19:18	1	72647	
Trichlorofluoromethane (CFC 11)	1.0 U	1.0	1	NA	9/30/09 19:18	1	72647	
Vinyl Chloride	1.0	1.0	I	NA	9/30/09 19:18	1	72647	
cis-1,2-Dichloroethene	1.0 U	1.0	1	NA	9/30/09 19:18	1	72647	
cis-1,3-Dichloropropene	1.0 U	1.0	1	NA	9/30/09 19:18	1	72647	
m,p-Xylenes	2.0 U	2.0	1	NA	9/30/09 19:18	1	72647	
o-Xylene	1.0 U	1.0	1	NA	9/30/09 19:18	1´	72647	
trans-1,2-Dichloroethene	1.0 U	1.0	1	NA	9/30/09 19:18	1	72647	
trans-1,3-Dichloropropene	1.0 U	1.0	1	NA	9/30/09 19:18	l	72647	

		Control	Date			
Surrogate Name	%Rec	Limits	Analyzed	Q	Note	
4-Bromofluorobenzene	101	85-122	9/30/09 19:18			
Dibromofluoromethane	109	89-119	9/30/09 19:18			
Toluene-d8	104	87-121	9/30/09 19:18			

Analytical Report

Client: Benchmark Environmental Engineering **Project:** Seneca Market Sample Matrix: Water Sample Name: MW-7S Lab Code: R0905428-002

Service Request: R0905428 Date Collected: 9/23/09 1250 Date Received: 9/23/09

> Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot Not
1,1,1-Trichloroethane (TCA)	1.0	U	1.0	1	NA	9/30/09 19:49	172647
1,1,2,2-Tetrachloroethane	1.0	U	1.0	1	NA	9/30/09 19:49	172647
1,1,2-Trichloroethane	1.0	U	1.0	1	NA	9/30/09 19:49	172647
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	1	NA	9/30/09 19:49	172647
1,1-Dichloroethane (1,1-DCA)	1.0	U	1.0	1	NA	9/30/09 19:49	172647
1,1-Dichloroethene (1,1-DCE)	1.0	U	1.0	1	NA	9/30/09 19:49	172647
1,2,4-Trichlorobenzene	1.0	U	1.0	1	NA	9/30/09 19:49	172647
1,2-Dibromo-3-chloropropane (DBCP)	2.0	U	2.0	1	NA	9/30/09 19:49	172647
1,2-Dibromoethane	1.0	U	1.0	1	NA	9/30/09 19:49	172647
1,2-Dichlorobenzene	1.0	U	1.0	1	NA	9/30/09 19:49	172647
1,2-Dichloroethane	1.0	U	1.0	1	NA	9/30/09 19:49	172647
1,2-Dichloropropane	1.0	U	1.0	1	NA	9/30/09 19:49	172647
1,3-Dichlorobenzene	1.0	U	1.0	1	NA	9/30/09 19:49	172647
1,4-Dichlorobenzene	1.0	U	1.0	1	NA	9/30/09 19:49	172647
2-Butanone (MEK)	5.0	U	5.0	1	NA	9/30/09 19:49	172647
2-Hexanone	5.0	U	5.0	1	NA	9/30/09 19:49	172647
4-Methyl-2-pentanone	5.0	U	5.0	1	NA	9/30/09 19:49	172647
Acetone	41		5,0	1	NA	9/30/09 19:49	172647
Benzene	8.2		1.0	1	NA	9/30/09 19:49	172647
Bromodichloromethane	1.0	U	1.0	1	NA	9/30/09 19:49	172647
Bromoform	1.0	U	1.0	1	NA	9/30/09 19:49	172647
Bromomethane	1.0	U	1.0	1	NA	9/30/09 19:49	172647
Carbon Disulfide	1.0	U	1.0	1	NA	9/30/09 19:49	172647
Carbon Tetrachloride	1.0	U	1.0	1	NA	9/30/09 19:49	172647
Chlorobenzene	1.0	U	1.0	1	NA	9/30/09 19:49	172647
Chloroethane	1.0	U	1.0	1	NA	9/30/09 19:49	172647
Chloroform	1.0	U	1.0	1	NA	9/30/09 19:49	172647
Chloromethane	1.0	U	1.0	1	NA	9/30/09 19:49	172647
Cyclohexane	11		1.0	1	NA	9/30/09 19:49	172647
Dibromochloromethane	1.0	U	1.0	1	NA	9/30/09 19:49	172647
Dichlorodifluoromethane (CFC 12)	1.0	U	1.0	1	NA	9/30/09 19:49	172647
Dichloromethane	1.0	U	1.0	1	NA	9/30/09 19:49	172647
Ethylbenzene	1.0	U	1.0	1	NA	9/30/09 19:49	172647

Comments:

06886

Analytical Report

Client: Benchmark Environmental Engineering **Project:** Seneca Market Sample Matrix: Water Sample Name: MW-7S Lab Code: R0905428-002

Service Request: R0905428 Date Collected: 9/23/09 1250 Date Received: 9/23/09

> Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysi Lot	s Note
Isopropylbenzene (Cumene)	1.7	1.0	1	NA	9/30/09 19:49)	172647	
Methyl Acetate	2.0 U	2.0	1	NA	9/30/09 19:49)	172647	
Methyl tert-Butyl Ether	1.0 U	1.0	1	NA	9/30/09 19:49)	172647	
Methylcyclohexane	5.0	1.0	1	NA	9/30/09 19:49)	172647	
Styrene	1.0 U	1.0	1	NA	9/30/09 19:49)	172647	
Tetrachloroethene (PCE)	1.0 U	1.0	1	NA	9/30/09 19:49)	172647	
Toluene	1.0 U	1.0	1	NA	9/30/09 19:49)	172647	
Trichloroethene (TCE)	1.0 U	1.0	1	NA	9/30/09 19:49	1	172647	
Trichlorofluoromethane (CFC 11)	1.0 U	1.0	1	NA	9/30/09 19:49)	172647	
Vinyl Chloride	2.1	1.0	1	NA	9/30/09 19:49)	172647	
cis-1,2-Dichloroethene	7.5	1.0	1	NA	9/30/09 19:49	1	172647	
cis-1,3-Dichloropropene	1.0 U	1.0	1	NA	9/30/09 19:49)	172647	
m,p-Xylenes	5.8	2.0	1	NA	9/30/09 19:49)	172647	
o-Xylene	1.0 U	1.0	1	NA	9/30/09 19:49)	172647	
trans-1,2-Dichloroethene	1.0 U	1.0	1	NA	9/30/09 19:49	1	172647	
trans-1,3-Dichloropropene	1.0 U	1.0	1	NA	9/30/09 19:49)	172647	

		Control	Date	
Surrogate Name	%Rec	Limits	Analyzed Q	Note
4-Bromofluorobenzene	104	85-122	9/30/09 19:49	
Dibromofluoromethane	108	89-119	9/30/09 19:49	
Toluene-d8	103	87-121	9/30/09 19:49	

Analytical Report

Client: Benchmark Environmental Engineering **Project:** Seneca Market Sample Matrix: Water Sample Name: MW-1SR Lab Code: R0905428-003

Service Request: R0905428 Date Collected: 9/23/09 1222 Date Received: 9/23/09

> Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysi Lot	s Note
1,1,1-Trichloroethane (TCA)	1.0	U	1.0	1	NA	9/30/09 20:20		172647	
1,1,2,2-Tetrachloroethane	1.0	U	1.0	1	NA	9/30/09 20:20		172647	
1,1,2-Trichloroethane	1.0	U	1.0	1	NA	9/30/09 20:20		172647	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	1	NA	9/30/09 20:20		172647	
1,1-Dichloroethane (1,1-DCA)	1.0	U	1.0	1	NA	9/30/09 20:20		172647	
1,1-Dichloroethene (1,1-DCE)	1.0	U	1.0	1	NA	9/30/09 20:20		172647	
1,2,4-Trichlorobenzene	1.0	U	1.0	1	NA	9/30/09 20:20		172647	
1,2-Dibromo-3-chloropropane (DBCP)	2.0	U	2.0	1	NA	9/30/09 20:20		172647	
1,2-Dibromoethane	1.0	U	1.0	1	NA	9/30/09 20:20		172647	
1,2-Dichlorobenzene	1.0	U	1.0	1	NA	9/30/09 20:20		172647	
1,2-Dichloroethane	1.0	U	1.0	1	NA	9/30/09 20:20		172647	
1,2-Dichloropropane	1.0	U	1.0	1	NA	9/30/09 20:20		172647	
1,3-Dichlorobenzene	1.0	U	1.0	1	NA	9/30/09 20:20		172647	
1,4-Dichlorobenzene	1.0	U	1.0	1	NA	9/30/09 20:20		172647	
2-Butanone (MEK)	5.0	U	5.0	1	NA	9/30/09 20:20		172647	
2-Hexanone	5.0	U	5.0	1	NA	9/30/09 20:20		172647	
4-Methyl-2-pentanone	5.0	U	5.0	1	NA	9/30/09 20:20		172647	
Acetone	5.0	U	5.0	1	NA	9/30/09 20:20		172647	
Benzene	1.0	U	1.0	1	NA	9/30/09 20:20		172647	
Bromodichloromethane	1.0	U	1.0	1	NA	9/30/09 20:20		172647	
Bromoform	1.0	U	1.0	1	NA	9/30/09 20:20		172647	
Bromomethane	1.0	U	1.0	1	NA	9/30/09 20:20		172647	
Carbon Disulfide	1.0	U	1.0	1	NA	9/30/09 20:20		172647	
Carbon Tetrachloride	1.0	U	1.0	1	NA	9/30/09 20:20		172647	
Chlorobenzene	1.0	U	1.0	1	NA	9/30/09 20:20		172647	
Chloroethane	1.0	U	1.0	1	NA	9/30/09 20:20		172647	
Chloroform	1.0	U	1.0	1	NA	9/30/09 20:20		172647	
Chloromethane	1.1		1.0	1	NA	9/30/09 20:20		172647	
Cyclohexane	1.0	U	1.0	1	NA	9/30/09 20:20		172647	
Dibromochloromethane	1.0	U	1.0	1	NA	9/30/09 20:20		172647	
Dichlorodifluoromethane (CFC 12)	1.0	U	1.0	1	NA	9/30/09 20:20		172647	
Dichloromethane	1.0	U	1.0	1	NA	9/30/09 20:20		172647	
Ethylbenzene	1.0	U	1.0	1	NA	9/30/09 20:20		172647	

Analytical Report

Client: Benchmark Environmental Engineering **Project:** Seneca Market Sample Matrix: Water Sample Name: MW-1SR Lab Code: R0905428-003

Service Request: R0905428 Date Collected: 9/23/09 1222 Date Received: 9/23/09

> Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction An Lot	alysi. Lot	s Note
Isopropylbenzene (Cumene)	1.0 U	1.0	1	NA	9/30/09 20:20) 17	2647	
Methyl Acetate	2.0 U	2.0	1	NA	9/30/09 20:20) 17	2647	
Methyl tert-Butyl Ether	.1.7	1.0	1	NA	9/30/09 20:20	17	2647	
Methylcyclohexane	1.0 U	1.0	1	NA	9/30/09 20:20	17	2647	
Styrene	1.0 U	1.0	1	NA	9/30/09 20:20) 17	2647	
Tetrachloroethene (PCE)	83	1.0	1	NA	9/30/09 20:20	17	2647	
Toluene	1.0 U	1.0	1	NA	9/30/09 20:20	17	2647	
Trichloroethene (TCE)	20	1.0	1	NA	9/30/09 20:20	17	2647	
Trichlorofluoromethane (CFC 11)	1.0 U	1.0	1	NA	9/30/09 20:20	17	2647	
Vinyl Chloride	1.7	1.0	1	NA	9/30/09 20:20	17	2647	
cis-1,2-Dichloroethene	71	1.0	1	NA	9/30/09 20:20	17	2647	
cis-1,3-Dichloropropene	1.0 U	1.0	1	NA	9/30/09 20:20	17	2647	
m,p-Xylenes	2.0 U	2.0	1	NA	9/30/09 20:20	17.	2647	
o-Xylene	1.0 U	1.0	1	NA	9/30/09 20:20	17	2647	
trans-1,2-Dichloroethene	1.0 U	1.0	1	NA	9/30/09 20:20	17:	2647	
trans-1,3-Dichloropropene	1.0 U	1.0	1	NA	9/30/09 20:20	17	2647	

	Control	Date		
Surrogate Name %Rec	Limits	Analyzed	Q	Note
4-Bromofluorobenzene 102	85-122	9/30/09 20:20		
Dibromofluoromethane 110	89-119	9/30/09 20:20		
Toluene-d8 105	87-121	9/30/09 20:20		

Analytical Report

Client: Benchmark Environmental Engineering , **Project:** Seneca Market Sample Matrix: Water Sample Name: **MW-10S** Lab Code: R0905428-004

Service Request: R0905428 Date Collected: 9/23/09 1157 Date Received: 9/23/09

> Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction . Lot	Analysi Lot	is Note
1,1,1-Trichloroethane (TCA)	1.0	U	1.0	1	NA	9/30/09 20:51		172647	
1,1,2,2-Tetrachloroethane	1.0	U	1.0	1	NA	9/30/09 20:51		172647	
1,1,2-Trichloroethane	1.0	U	1.0	1	NA	9/30/09 20:51		172647	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	1	NA	9/30/09 20:51		172647	
1,1-Dichloroethane (1,1-DCA)	1.0	U	1.0	1	NA	9/30/09 20:51		172647	
1,1-Dichloroethene (1,1-DCE)	1.0	U	1.0	1	NA	9/30/09 20:51		172647	
1,2,4-Trichlorobenzene	1.0	U	1.0	1	NA	9/30/09 20:51		172647	
1,2-Dibromo-3-chloropropane (DBCP)	2.0	U	2.0	1	NA	9/30/09 20:51		172647	
1,2-Dibromoethane	1.0	U	1.0	1	NA	9/30/09 20:51		172647	
1,2-Dichlorobenzene	1.0	U	1.0	1	NA	9/30/09 20:51	·	172647	
1,2-Dichloroethane	1.0	U	1.0	1	NA	9/30/09 20:51		172647	
1,2-Dichloropropane	1.0	U	1.0	1	NA	9/30/09 20:51		172647	
1,3-Dichlorobenzene	1.0	U	1.0	1	NA	9/30/09 20:51		172647	
1,4-Dichlorobenzene	1.0	U	1.0	1	NA	9/30/09 20:51		172647	
2-Butanone (MEK)	5.0	U	5.0	1	NA	9/30/09 20:51		172647	
2-Hexanone	5.0	U	5.0	1	NA	9/30/09 20:51		172647	
4-Methyl-2-pentanone	5.0	U	5.0	1	NA	9/30/09 20:51		172647	
Acetone	5.0	U	5.0	1	NA	9/30/09 20:51		172647	
Benzene	1.0	U	1.0	1	NA	9/30/09 20:51		172647	
Bromodichloromethane	1.0	U	1.0	1	NA	9/30/09 20:51		172647	
Bromoform	1.0	U	1.0	1	NA	9/30/09 20:51		172647	
Bromomethane	1.0	U	1.0	1	NA	9/30/09 20:51		172647	
Carbon Disulfide	1.0	U	1.0	1	NA	9/30/09 20:51		172647	
Carbon Tetrachloride	1.0	U	1.0	1	NA	9/30/09 20:51		172647	
Chlorobenzene	1.0	U	1.0	1	NA	9/30/09 20:51		172647	
Chloroethane	1.0	U	1.0	1	NA	9/30/09 20:51		172647	
Chloroform	1.0	U	1.0	1	NA	9/30/09 20:51		172647	
Chloromethane	1.0	U	1.0	1	NA	9/30/09 20:51		172647	
Cyclohexane	1.0	U	1.0	1	NA	9/30/09 20:51		172647	
Dibromochloromethane	1.0	U	1.0	1	NA	9/30/09 20:51		172647	
Dichlorodifluoromethane (CFC 12)	1.0	U	1.0	1	NA	9/30/09 20:51		172647	
Dichloromethane	1.0	U	1.0	1	NA	9/30/09 20:51		172647	
Ethylbenzene	1.0	U	1.0	1	NA	9/30/09 20:51		172647	

Analytical Report

Client: Benchmark Environmental Engineering **Project:** Seneca Market Sample Matrix: Water Sample Name: **MW-10S** Lab Code: R0905428-004

Service Request: R0905428 Date Collected: 9/23/09 1157 Date Received: 9/23/09

> Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysi Lot	s Note
Isopropylbenzene (Cumene)	1.0 U	1.0	1	NA	9/30/09 20:51		172647	
Methyl Acetate	2.0 U	2.0	1	NA	9/30/09 20:51		172647	
Methyl tert-Butyl Ether	1.0 U	1.0	1	NA	9/30/09 20:51		172647	
Methylcyclohexane	1.0 U	1.0	1	NA	9/30/09 20:51		172647	
Styrene	1.0 U	1.0	1	NA	9/30/09 20:51		172647	
Tetrachloroethene (PCE)	2.5	1.0	1	NA	9/30/09 20:51		172647	
Toluene	1.0 U	1.0	1	NA	9/30/09 20:51		172647	
Trichloroethene (TCE)	1.0 U	1.0	1	NA	9/30/09 20:51		172647	
Trichlorofluoromethane (CFC 11)	1.0 U	1.0	1	NA	9/30/09 20:51		172647	
Vinyl Chloride	1.0 U	1.0	1	NA	9/30/09 20:51		172647	
cis-1,2-Dichloroethene	1.0 U	1.0	1	NA	9/30/09 20:51		172647	
cis-1,3-Dichloropropene	1.0 U	1.0	1	NA	9/30/09 20:51		172647	
m,p-Xylenes	2.0 U	2.0	1	NA	9/30/09 20:51		172647	
o-Xylene	1.0 U	1.0	1	NA	9/30/09 20:51		172647	
trans-1,2-Dichloroethene	1.0 U	1.0	1	NA	9/30/09 20:51		172647	
trans-1,3-Dichloropropene	1.0 U	1.0	1	NA	9/30/09 20:51		172647	

		Control	Date			
Surrogate Name	%Rec	Limits	Analyzed	Q	Note	
4-Bromofluorobenzene	103	85-122	9/30/09 20:51			
Dibromofluoromethane	108	89-119	9/30/09 20:51			
Toluene-d8	104	87-121	9/30/09 20:51			

Analytical Report

Client:	Benchmark Environmental Engineering
Project:	Seneca Market
Sample Matrix:	Water
Sample Name:	MW-3SR
Lab Code:	R0905428-005

Service Request: R0905428 **Date Collected:** 9/23/09 1351 **Date Received:** 9/23/09

Basis: NA

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	Date Extracted	Date Analyzed
Alkalinity as CaCO3, Total	SM 2320 B	338	mg/L	2.0	1	NA	10/5/09 09:45
Carbon, Total Organic (TOC)	SM20 5310 C	3.5	mg/L	1.0	1	NA	10/5/09 15:45
Chloride	9056	415	mg/L	20	100	NA	10/8/09 10:24
Nitrate as Nitrogen	9056	0.50 U	mg/L	0.50	10	NA	9/24/09 14:28
Sulfate	9056	16.7	mg/L	2.0	10	NA	9/24/09 14:28
Sulfide, Total	SM 4500-S2- F	0.97 U	mg/L	0.97	1	NA	9/29/09 11:00

Analytical Report

Client: Benchmark Environmental Engineering **Project:** Seneca Market Sample Matrix: Water Sample Name: MW-3SR Lab Code: R0905428-005

Service Request: R0905428 Date Collected: 9/23/09 1351 Date Received: 9/23/09

> Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot Note
1,1,1-Trichloroethane (TCA)	1.0	U	1.0	1	NA	9/30/09 21:22	172647
1,1,2,2-Tetrachloroethane	1.0	U	1.0	1	NA	9/30/09 21:22	172647
1,1,2-Trichloroethane	1.0	U	1.0	1	NA	9/30/09 21:22	. 172647
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	1	NA	9/30/09 21:22	172647
1,1-Dichloroethane (1,1-DCA)	1.0	U	1.0	1	NA	9/30/09 21:22	172647
1,1-Dichloroethene (1,1-DCE)	1.0	U	1.0	1	NA	9/30/09 21:22	172647
1,2,4-Trichlorobenzene	1.0	U	1.0	1	NA	9/30/09 21:22	172647
1,2-Dibromo-3-chloropropane (DBCP)	2.0	U	2.0	1	NA	9/30/09 21:22	172647
1,2-Dibromoethane	1.0	U	1.0	1	NA	9/30/09 21:22	172647
1,2-Dichlorobenzene	1.0	U	1.0	1	NA	9/30/09 21:22	172647
1,2-Dichloroethane	1.0	U	1.0	1	NA	9/30/09 21:22	172647
1,2-Dichloropropane	1.0	U	1.0	1	NA	9/30/09 21:22	172647
1,3-Dichlorobenzene	1.0	U	1.0	1	NA	9/30/09 21:22	172647
1,4-Dichlorobenzene	1.0	U	1.0	1	NA	9/30/09 21:22	172647
2-Butanone (MEK)	5.0	U	5.0	1	NA	9/30/09 21:22	172647
2-Hexanone	5.0	U	5.0	1	NA	9/30/09 21:22	172647
4-Methyl-2-pentanone	5.0	U	5.0	1	NA	9/30/09 21:22	172647
Acetone	5.0	U	5.0	1	NA	9/30/09 21:22	172647
Benzene	1.0	U	1.0	1	NA	9/30/09 21:22	172647
Bromodichloromethane	1.0	U	1.0	1	NA	9/30/09 21:22	172647
Bromoform	1.0	U	1.0	1	NA	9/30/09 21:22	172647
Bromomethane	1.0	U	1.0	1	NA	9/30/09 21:22	172647
Carbon Disulfide	1.0	U	1.0	1	NA	9/30/09 21:22	172647
Carbon Tetrachloride	1.0	U	1.0	1	NA	9/30/09 21:22	172647
Chlorobenzene	1.0	U	1.0	1	NA	9/30/09 21:22	172647
Chloroethane	1.0	U	1.0	1	NA	9/30/09 21:22	172647
Chloroform	1.0	U	1.0	1	NA	9/30/09 21:22	172647
Chloromethane	1.0	U	1.0	1	NA	9/30/09 21:22	172647
Cyclohexane	1.0	U	1.0	1	NA	9/30/09 21:22	172647
Dibromochloromethane	1.0	U	1.0	1	NA	9/30/09 21:22	172647
Dichlorodifluoromethane (CFC 12)	1.0	U	1.0	1	NA	9/30/09 21:22	172647
Dichloromethane	1.0	U	1.0	1	NA	9/30/09 21:22	172647
Ethylbenzene	1.0	U	1.0	1	NA	9/30/09 21:22	172647

Analytical Report

Client: Benchmark Environmental Engineering **Project:** Seneca Market Sample Matrix: Water Sample Name: MW-3SR Lab Code: R0905428-005

Service Request: R0905428 Date Collected: 9/23/09 1351 Date Received: 9/23/09

> Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analysis Lot Lot Not
Isopropylbenzene (Cumene)	1.0 U	1.0	1	NA	9/30/09 21:22	172647
Methyl Acetate	2.0 U	2.0	1	NA	9/30/09 21:22	172647
Methyl tert-Butyl Ether	4.0	1.0	1	NA	9/30/09 21:22	172647
Methylcyclohexane	1.0 U	1.0	1	NA	9/30/09 21:22	172647
Styrene	1.0 U	1.0	1	NA	9/30/09 21:22	172647
Tetrachloroethene (PCE)	1.0 U	1.0	1	NA	9/30/09 21:22	172647
Toluene	1.0 U	1.0	1	NA	9/30/09 21:22	172647
Trichloroethene (TCE)	1.0 U	1.0	1	NA	9/30/09 21:22	172647
Trichlorofluoromethane (CFC 11)	1.0 U	1.0	1	NA	9/30/09 21:22	. 172647
Vinyl Chloride	1.0 U	1.0	1	NA	9/30/09 21:22	172647
cis-1,2-Dichloroethene	1.7	1.0	1	NA	9/30/09 21:22	172647
cis-1,3-Dichloropropene	1.0 U	1.0	1	NA	9/30/09 21:22	172647
m,p-Xylenes	2.0 U	2.0	1	NA	9/30/09 21:22	172647
o-Xylene	1.0 U	1.0	1	NA	9/30/09 21:22	172647
trans-1,2-Dichloroethene	1.0 U	1.0	1	NA	9/30/09 21:22	172647
trans-1,3-Dichloropropene	1.0 U	1.0	1	NA	9/30/09 21:22	172647

		Control	Date			
Surrogate Name	%Rec	Limits	Analyzed	Q	Note	
4-Bromofluorobenzene	103	85-122	9/30/09 21:22			
Dibromofluoromethane	109	89-119	9/30/09 21:22			
Toluene-d8	106	87-121	9/30/09 21:22			

Comments:

,

Analytical Report

Client:	Benchmark Environmental Engineering
Project:	Seneca Market
Sample Matrix:	Water
Sample Name:	MW-3SR
Lab Code:	R0905428-005

Service Request: R0905428 **Date Collected:** 9/23/09 1351 **Date Received:** 9/23/09

> Units: µg/L Basis: NA

Dissolved Gases by GC/FID

Analytical Method: RSK 175

			Dilution	Date	Date	Extraction	n Analysis				
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Lot	Note			
Ethane	1.0 U	1.0	1	NA	9/25/09 12:47	1	172020)			
Ethene	1.0 U	1.0	1	NA	9/25/09 12:47	7	172020)			
Methane	74	2.0	1	NA	9/25/09 12:47	1	172020)			

Analytical Report

Client:	Benchmark Environmental Engineering	Service Request:	R0905428
Project:	Seneca Market	Date Collected:	9/23/09 1351
Sample Matrix:	Water	Date Received:	9/23/09
Sample Name:	MW-3SR	Units:	mg/L
Lab Code:	R0905428-005	Basis:	NA

Organic Acids in Aqueous Matrices by High Performance Liquid Chromatography (HPLC)

Analytical Method: Organic Acids

			Dilution Date Date Ext				raction Analysis		
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Lot	Note	
Pyruvic Acid	0.50 U	0.50	1	NA	10/7/09 11:18	;	173434		
Acetic Acid	1.0 U	1.0	1	NA	10/7/09 11:18	5	173434		
Butanoic Acid (Butyric Acid)	2.0 U	2.0	1	NA	10/7/09 11:18	;	173434		
Lactic Acid	1.0 U	1.0	1	NA	10/7/09 11:18	3	173434		
Propionic Acid	1.0 U	1.0	1	NA	10/7/09 11:18	3	173434		

Analytical Report

Client:	Benchmark Environmental Engineering
Project:	Seneca Market
Sample Matrix:	Water
Sample Name:	MW-3SR DISSOLVED
Lab Code:	R0905428-006

 Service Request:
 R0905428

 Date Collected:
 9/23/09
 1351

 Date Received:
 9/23/09

Basis: NA

Inorganic Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	Date Extracted	Date Analyzed
Iron, Dissolved	6010B	100 U	μg/L	100	1	9/29/09	10/6/09 14:40
Manganese, Dissolved	6010B	4910	μg/L	10	1	9/29/09	10/8/09 09:33

Analytical Report

Client:	Benchmark Environmental Engineering
Project:	Seneca Market
Sample Matrix:	Water
Sample Name:	Method Blank
Lab Code:	R0905428-MB

Service Request: R0905428 Date Collected: NA Date Received: NA

Basis: NA

General Chemistry Parameters

Analyte Name	Method	Result	Q	Units	MRL	Dilution Factor	Date Extracted	Date Analyzed
Alkalinity as CaCO3, Total	SM 2320 B	2.0	U	mg/L	2.0	1	NA	10/5/09 09:45
Carbon, Total Organic (TOC)	SM20 5310 C	1.0	U	mg/L	1.0	1	NA	10/5/09 14:50
Chloride	9056	0.20	U	mg/L	0.20	1	NA	10/8/09 09:09
Nitrate as Nitrogen	9056	0.050	U	mg/L	0.050	1	NA	9/24/09 10:16
Sulfate	9056	0.20	U	mg/L	0.20	1	NA	9/24/09 10:16
Sulfide, Total	SM 4500-S2- F	1.0	U	mg/L	1.0	1	NA	9/29/09 11:00

Analytical Report

Client: Project:	Benchmark Environmental Engineering Seneca Market
Sample Matrix:	Water
Lab Code:	R0905428-MB

Service Request: R0905428 Date Collected: NA Date Received: NA

Basis: NA

		Inorganic Pa					
Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	Date Extracted	Date Analyzed
Iron, Dissolved Manganese, Dissolved	6010B 6010B	100 U 10 U	μg/L μg/L	100 10	1 1	9/29/09 9/29/09	10/8/09 09:03 10/8/09 09:03

Analytical Report

Client: Benchmark Environmental Engineering **Project:** Seneca Market Sample Matrix: Water

Sample Name: Method Blank Lab Code: RQ0909318-03 Service Request: R0905428 Date Collected: NA Date Received: NA

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysi Lot	s Note
1,1,1-Trichloroethane (TCA)	1.0	U	1.0	1	NA	9/30/09 12:56		172647	
1,1,2,2-Tetrachloroethane	1.0	U	1.0	1	NA	9/30/09 12:56		172647	
1,1,2-Trichloroethane	1.0	U	1.0	1	NA	9/30/09 12:56		172647	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	1	NA	9/30/09 12:56		172647	
1,1-Dichloroethane (1,1-DCA)	1.0	U	1.0	1	NA	9/30/09 12:56		172647	
1,1-Dichloroethene (1,1-DCE)	1.0	U	1.0	1	NA	9/30/09 12:56		172647	
1,2,4-Trichlorobenzene	1.0	U	1.0	1	NA	9/30/09 12:56		172647	
1,2-Dibromo-3-chloropropane (DBCP)	2.0	U	2.0	1	NA	9/30/09 12:56		172647	
1,2-Dibromoethane	1.0	U	1.0	1	NA	9/30/09 12:56		172647	
1,2-Dichlorobenzene	1.0	U	1.0	1	NA	9/30/09 12:56		172647	
1,2-Dichloroethane	1.0	U	1.0	1	NA	9/30/09 12:56		172647	
1,2-Dichloropropane	1.0	U	1.0	1	NA	9/30/09 12:56		172647	
1,3-Dichlorobenzene	1.0	U	1.0	1	NA	9/30/09 12:56		172647	
1,4-Dichlorobenzene	1.0	U	1.0	1	NA	9/30/09 12:56		172647	
2-Butanone (MEK)	5.0	U	5.0	1	NA	9/30/09 12:56		172647	
2-Hexanone	5.0	U	5.0	1	NA	9/30/09 12:56		172647	
4-Methyl-2-pentanone	5.0	U	5.0	1	NA	9/30/09 12:56		172647	
Acetone	5.0	U	5.0	1	NA	9/30/09 12:56		172647	
Benzene	1.0	U	1.0	1	NA	9/30/09 12:56		172647	
Bromodichloromethane	1.0	U	1.0	1	NA	9/30/09 12:56		172647	
Bromoform	1.0	U	1.0	1	NA	9/30/09 12:56		172647	
Bromomethane	1.0	U	1.0	1	NA	9/30/09 12:56		172647	
Carbon Disulfide	1.0	U	1.0	1	NA	9/30/09 12:56		172647	
Carbon Tetrachloride	1.0	U	1.0	1	NA	9/30/09 12:56		172647	
Chlorobenzene	1.0	U	1.0	1	NA	9/30/09 12:56		172647	
Chloroethane	1.0	U	1.0	1	NA	9/30/09 12:56		172647	
Chloroform	1.0	U	1.0	1	NA	9/30/09 12:56		172647	
Chloromethane	1.0	U	1.0	1	NA	9/30/09 12:56		172647	
Cyclohexane	1.0	U	1.0	1	NA	9/30/09 12:56		172647	
Dibromochloromethane	1.0	U	1.0	1	NA	9/30/09 12:56		172647	
Dichlorodifluoromethane (CFC 12)	1.0	U	1.0	1	NA	9/30/09 12:56		172647	
Dichloromethane	1.0	U	1.0	1	NA	9/30/09 12:56		172647	
Ethylbenzene	1.0	U	1.0	1	NA	9/30/09 12:56		172647	

Analytical Report

Client:	Benchmark Environmental Engineering
Project:	Seneca Market
Sample Matrix:	Water
Sample Name:	Method Blank
Lab Code:	RQ0909318-03

Service Request: R0905428 Date Collected: NA Date Received: NA

> Units: $\mu g/L$ Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysi Lot	s Note
Isopropylbenzene (Cumene)	1.0 U	1.0	1	NA	9/30/09 12:56	 ;	172647	
Methyl Acetate	2.0 U	2.0	1	NA	9/30/09 12:56	i	172647	
Methyl tert-Butyl Ether	1.0 U	1.0	1	NA	9/30/09 12:56	I	172647	
Methylcyclohexane	1.0 U	1.0	1	NA	9/30/09 12:56	1	172647	
Styrene	1.0 U	1.0	1	NA	9/30/09 12:56	, ,	172647	
Tetrachloroethene (PCE)	1.0 U	1.0	1	NA	9/30/09 12:56	i	172647	
Toluene	1.0 U	1.0	1	NA	9/30/09 12:56	i i i i	172647	
Trichloroethene (TCE)	1.0 U	1.0	1	NA	9/30/09 12:56	i i	172647	
Trichlorofluoromethane (CFC 11)	1.0 U	1.0	1	NA	9/30/09 12:56		172647	
Vinyl Chloride	1.0 U	1.0	1	NA	9/30/09 12:56		172647	
cis-1,2-Dichloroethene	1.0 U	1.0	1	NA	9/30/09 12:56	5	172647	
cis-1,3-Dichloropropene	1.0 U	1.0	1	NA	9/30/09 12:56	i	172647	
m,p-Xylenes	2.0 U	2.0	1	NA	9/30/09 12:56		172647	
o-Xylene	1.0 U	1.0	1	NA	9/30/09 12:56		172647	
trans-1,2-Dichloroethene	1.0 U	1.0	1	NA	9/30/09 12:56	•	172647	
trans-1,3-Dichloropropene	1.0 U	1.0	1	NA	9/30/09 12:56		172647	

		Control	Date			
Surrogate Name	%Rec	Limits	Analyzed	Q	Note	
4-Bromofluorobenzene	101	85-122	9/30/09 12:56			
Dibromofluoromethane	106	89-119	9/30/09 12:56			
Toluene-d8	104	87-121	9/30/09 12:56			

Analytical Report

Client:	Benchmark Environmental Engineering
Project:	Seneca Market
Sample Matrix:	Water
Sample Name:	Method Blank
Lab Code:	RQ0909150-01

Service Request:R0905428Date Collected:NADate Received:NA

Units: µg/L Basis: NA

Dissolved Gases by GC/FID

Analytical Method: RSK 175

			Dilution	Date	Date	Extraction Analysis		
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Lot Note	
Ethane	1.0 U	1.0	1	NA	9/25/09 12:07	,	172020	
Ethene	1.0 U	1.0	1	ΝA	9/25/09 12:07		172020	
Methane	2.0 U	2.0	1	NA	9/25/09 12:07		172020	

Analytical Report

Client:	Benchmark Environmental Engineering	Service Request:	R0905428
Project:	Seneca Market	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA
Sample Name:	Method Blank	Units:	mg/L
Lab Code:	RQ0909549-01	Basis:	NA

Organic Acids in Aqueous Matrices by High Performance Liquid Chromatography (HPLC)

Analytical Method: Organic Acids

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysi Lot	is Note
Pyruvic Acid	0,50 U	0.50	1	NA	10/7/09 09:43	;	173434	
Acetic Acid	1.0 U	1.0	1	NA	10/7/09 09:43	5	173434	
Butanoic Acid (Butyric Acid)	2.0 U	2.0	1	NA	10/7/09 09:43	5	173434	
Lactic Acid	1.0 U	1.0	1	NA	10/7/09 09:43	;	173434	
Propionic Acid	1.0 U	1.0	1	NA	10/7/09 09:43	}	173434	

QA/QC Report

Client:Benchmark Environmental EngineeringProject:Seneca MarketSample Matrix:Water

Service Request: R0905428 Date Analyzed: 9/29/09

Lab Control Sample Summary Sulfide, Iodometric 20th Ed.

Units: mg/L Basis: NA

		Lab Control Sample I		Duplicate Lab Control Sample						
		R09	05428-LC	S1	R090.	5428-DLC	S1	% Rec		RPD
Analyte Name	Method	Result	Expected	% Rec	Result	Expected	i % Rec	Limits	RPD	Limit
Sulfide, Total	SM 4500-S2- F	3.69	3.5	104	3.64	3,5	103	56 - 138	1	20

Comments:

٠

QA/QC Report

Client:Benchmark Environmental EngineeringProject:Seneca MarketSample Matrix:Water

Lab Control Sample Summary General Chemistry Parameters

Service Request: R0905428 Date Analyzed: 9/24/09 -10/ 8/09

> Units: mg/L Basis: NA

	Lab Control Sample R0905428-LCS2					
Analyte Name	Method	Result	Expected	1% Rec	Limits	
Carbon, Total Organic (TOC) Chloride Sulfate Alkalinity as CaCO3, Total Nitrate as Nitrogen	SM20 5310 C 9056 9056 SM 2320 B 9056	9.55 1.93 2.03 19.0 0.950	10.0 2.00 2.00 20.0 1.00	95 96 102 95 95	86 - 117 90 - 110 90 - 110 90 - 108 90 - 110	

QA/QC Report

Client:Benchmark Environmental EngineeringProject:Seneca MarketSample Matrix:Water

Lab Control Sample Summary Inorganic Parameters

Service Request: R0905428 Date Analyzed: 10/ 8/09

> Units: μg/L Basis: NA

		Lab Control Sample			96 Dag
Analyte Name	Method	Result	Expected	1% Rec	Limits
Iron, Dissolved Manganese, Dissolved	6010B 6010B	1020 502	1000 500	102 100	80 - 120 80 - 120

Comments:

.

QA/QC Report

Client:Benchmark Environmental EngineeringProject:Seneca MarketSample Matrix:Water

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Units: µg/L

Service Request: R0905428

Date Analyzed: 9/30/09

Analysis Lot: 172647

	Lab Control Sample					
	I	% Rec				
Analyte Name	Result	Expected	% Rec	Limits		
1,1,1-Trichloroethane (TCA)	23.3	20.0	116	70 - 130		
1,1,2,2-Tetrachloroethane	21.4	20.0	107	70 - 130		
1,1,2-Trichloroethane	21.4	20.0	107	70 - 130		
1,1,2-Trichloro-1,2,2-trifluoroethane	23.1	20.0	115	70 - 130		
1,1-Dichloroethane (1,1-DCA)	20,9	20.0	104	70 - 130		
1,1-Dichloroethene (1,1-DCE)	22.9	20.0	114	70 - 130		
1,2,4-Trichlorobenzene	21,6	20.0	108	70 - 130		
1,2-Dibromo-3-chloropropane (DBCP)	20.6	20.0	103	50 - 150		
1,2-Dibromoethane	21.0	20.0	105	70 - 130		
1,2-Dichlorobenzene	21.6	20.0	108	70 - 130		
1,2-Dichloroethane	21.3	20.0	106	70 - 130		
1,2-Dichloropropane	21.7	20.0	108	70 - 130		
1,3-Dichlorobenzene	21.7	20.0	108	70 - 130		
1,4-Dichlorobenzene	21.4	20.0	107	70 - 130		
2-Butanone (MEK)	19,3	20.0	96	50 - 150		
2-Hexanone	20.9	20.0	105	70 - 130		
4-Methyl-2-pentanone	21.3	20.0	107	70 - 130		
Acetone	22.1	20.0	110	50 - 150		
Benzene	20.7	20.0	104	70 - 130		
Bromodichloromethane	21.7	20.0	109	70 - 130		
Bromoform	22.9	20.0	115	70 - 130		
Bromomethane	13.9	20.0	70	50 - 150		
Carbon Disulfide	18.6	20.0	93	70 - 130		
Carbon Tetrachloride	23.1	20,0	115	70 - 130		
Chlorobenzene	21.7	20,0	108	70 - 130		
Chloroethane	20.7	20.0	103	70 - 130		
Chloroform	21.2	20.0	106	70 - 130		
Chloromethane	20.9	20.0	105	70 - 130		
Cyclohexane	20.9	20.0	104	50 - 150		
Dibromochloromethane	22.0	20.0	110	70 - 130		
Dichlorodifluoromethane (CFC 12)	21.8	20.0	109	70 - 130		
Dichloromethane	20.3	20.0	102	70 - 130		
Ethylbenzene	21.8	20.0	109	70 - 130		
Isopropylbenzene (Cumene)	23.3	20.0	117	70 - 130		
Methyl Acetate	26.2	20.0	131	50 - 150		
Methyl tert-Butyl Ether	21.7	20.0	109	70 - 130		

QA/QC Report

Client:Benchmark Environmental EngineeringProject:Seneca MarketSample Matrix:Water

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Service Request: R0905428 Date Analyzed: 9/30/09

> Units: μg/L Basis: NA

Analysis Lot: 172647

	Lab	04 Dag			
Analyte Name	Result	Expected	% Rec	Limits	
Methylcyclohexane	20.2	20.0	101	50 - 150	
Styrene	22.4	20.0	112	70 - 130	
Tetrachloroethene (PCE)	22.4	20.0	112	70 - 130	
Toluene	21.5	20.0	107	70 - 130	
Trichloroethene (TCE)	21.0	20.0	105	70 - 130	
Trichlorofluoromethane (CFC 11)	23.7	20.0	119	70 - 130	
Vinyl Chloride	23.0	20.0	115	70 - 130	
cis-1,2-Dichloroethene	20.6	20.0	103	70 - 130	
cis-1,3-Dichloropropene	22.3	20,0	111	70 - 130	
m,p-Xylenes	45.7	40.0	114	70 - 130	
o-Xylene	22,4	20.0	112	70 - 130	
trans-1,2-Dichloroethene	21.0	20.0	105	70 - 130	
trans-1,3-Dichloropropene	23.0	20.0	115	70 - 130	

QA/QC Report

Client: Benchmark Environmental Engineering **Project:** Seneca Market Sample Matrix: Water

Service Request: R0905428 Date Analyzed: 9/25/09

Lab Control Sample Summary **Dissolved Ga**

Analytical Method: RSK 175

sampie	Summar y
ases by	GC/FID

Units:	μg/L
Basis:	NA
Analysis Lot:	172020

	Lab H	Control Sar RQ0909150-0	nple 2	Duplicat F	e Lab Contro Q0909150-0	ol Sample 3	% Rec		RPD
Analyte Name	Result	Expected	% Rec	Result	Expected	% Rec	Limits	RPD	Limit
Ethane	24.4	26.1	94	24.4	26.1	94	57 - 150	0	30
Ethene	23.5	24.3	97	23.7	24.3	98	52 - 149	1	30
Methane	24.7	26.3	94	24.6	26.3	94	44 - 157	0	30

QA/QC Report

Client:Benchmark Environmental EngineeringProject:Seneca MarketSample Matrix:Water

Service Request: R0905428 Date Analyzed: 10/ 7/09

Lab Control Sample Summary

Organic Acids in Aqueous Matrices by High Performance Liquid Chromatography (HPLC)

Analytical Method: Organic Acids

Units:	mg/L
Basis:	NA

Analysis Lot: 173434

	Lab H	Control Sar RO0909549-0	nple 2	Duplicat I	e Lab Contro 200909549-0	ol Sample	% Rec		RPD
Analyte Name	Result	Expected	% Rec	Result	Expected	% Rec	Limits	RPD	Limit
Pyruvic Acid	1.10	1.01	109	1.19	1.01	117	70 - 130	8	30
Acetic Acid	10.0	11.1	90	10.4	11.1	93	70 - 135	4	30
Butanoic Acid (Butyric Acid)	9,39	10.2	92	9.72	10.2	95	82 - 118	3	30
Lactic Acid	11.2	11.1	100	11.5	11.1	103	70 - 117	3	30
Propionic Acid	10.3	10.1	102	10.3	10.1	102	80 - 125	0	30

ANALYS
PRESERVATIVE
CONTRINERS
CONSTOCATORS
М r
~ r
1 M
m
Z4 h
REQUESTE
REQUEST
S: Y N
Signature
Printed N
Firm

ゲ				Cooler Receit	ot And :	Preservation	ı Check	Form			
Project/Cl	lient B	enc	hm	ark	Subi	nission Num	ber				
Cooler red	ceived on_	1-23	-09	by: PC	OURII	ER: CAS	UPS	FEDEX	VELOCI	TY CLIENT	
1. W 2. W 3. D 4. D 5. W 6. W 7. T	Were custody seals on outside of cooler? Were custody papers properly filled out (ink, signed, etc.)? Did all bottles arrive in good condition (unbroken)? Did any VOA vials have significant* air bubbles? Were Ice or Ice packs present? Where did the bottles originate? Temperature of cooler(s) upon receipt: $\frac{17^{\circ}}{17}$										
Is	s the tempe	ratur	e witi	hin 0° - 6° C?:	Ye	s Yes		Yes	Yes	Yes	
I	f No, Expl	ain B	elow	,	No	> No		No	No	No	
Б)ate/Time]	Temp	eratu	res Taken:	7-23-	-09 @	17:2	5			
- т	Thermometer ID: 161 / IR GUN#2 (IR GUN#3) Reading From (Temp Blank) / Sample Bottle										
If out of PC Second Cooler H 1. V 2. I 3. V 4. A Explain	Temperat ndary Revi Breakdown: Were all bo Did all bott Were correct Air Sample any discrep	ture, ew: Da ttle la le lab ct cor s: C pancie	te :	complete (<i>i.e.</i> an nd tags agree with ers used for the te ttes / Tubes Intac	alysis, p h custoc t Ca	Client App 3/2/12/10/ by preservation, ty papers? cated? anisters Press	etc.)?	Run Sam (YES (YES) (YES) (YES) (YES) (YES) (YES)	NO NO NO Bags Inf	lated NAR.	
pH	Reagent	YES	NO	Lot Received	Exp	Sample ID	Vol. Added	Lot Addec	I Final	Yes = All samples OK	
≥12	NaOH									No =	
<u>≤2</u>	HNO3									Samples	
≤2 Residual Chlorine	For TCN and Phenol			If present, contact add ascorbic acid	PM to					were preserved at lab as listed	
	Na ₂ S ₂ O ₃	-	-			*Not to be te	sted befo	re analysis -	- pH	PM OK to	
	Zn Aceta	-	-			on a separate	coraea by workshe	et	Jenemenn	Adjust:	
	HCI	*	*		<u> </u>	,					

Bottle lot numbers:_ Other Comments:

 \sim

July 10/12/09 PC Secondary Review:

*significant air bubbles are greater than 5-6 mm

H:\SMODOCS\Cooler Receipt 2.doc

00032

2655 Park Center Drive, Suite A

I Simi Valley, CA 93065

61 I 805,526,7270 fax

www.caslab.com

LABORATORY REPORT

October 9, 2009

Columbia

Analytical Services*

Michael Lesakowski Benchmark Environmental Engineering 2558 Hamburg Turnpike Suite 300 Lackawanna, NY 14218

RE: Seneca Market

Dear Michael:

Enclosed are the results of the sample submitted to our laboratory on September 23, 2009. For your reference, these analyses have been assigned our service request number R0905428.

All analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein. Your report contains _____ pages.

Columbia Analytical Services, Inc. is certified by the California Department of Health Services, NELAP Laboratory Certificate No. 02115CA; Arizona Department of Health Services, Certificate No. AZ0694; Florida Department of Health, NELAP Certification E871020; New Jersey Department of Environmental Protection, NELAP Laboratory Certification ID #CA009; New York State Department of Health, NELAP NY Lab ID No: 11221; Oregon Environmental Laboratory Accreditation Program, NELAP ID: CA20007; The American Industrial Hygiene Association, Laboratory #101661; Department of the Navy (NFESC); Pennsylvania Registration No. 68-03307; TX Commission of Environmental Quality, NELAP ID T104704413-09-TX; Minnesota Department of Health, Certificate No. 11495AA. Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact me for information corresponding to a particular certification.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

Columbia Analytical Services, Inc.

Kote Speit

Kate Aguilera Project Manager

Columbia Analytical Services*	2655 Park Center Drive, Suite A	ł	Simi Valley, CA 9306
· · · · <i>· · ·</i> · · · · · · · · · · · ·			

t	805.526.7161	1	805,5
I.	000.020,7101		003,5

Client:	Benchmark Environmental Engineering	CAS Project No:	R0905428
Project:	Seneca Market	New York Lab ID:	11221

CASE NARRATIVE

The sample was received intact under chain of custody on September 23, 2009 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the sample at the time of sample receipt.

Carbon Dioxide Analysis

The sample was analyzed for carbon dioxide using a gas chromatograph equipped with a thermal conductivity detector (TCD). A known amount of liquid was displaced by injecting 8.0 milliliters of helium creating a headspace in the sample vial. Each sample vial was agitated using a sonic disrupter for fifteen minutes and then allowed to equilibrate for at least four hours. A volume of the headspace was withdrawn using a gas-tight syringe and analyzed using a manual injection technique. The amount of dissolved gas (carbon dioxide) in the original sample was calculated using Henry's Law. This method was performed with guidance from RSK 175.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for utilization of less than the complete report.

						r			ן ר	age
st: Janice Jaeger				· · · · · · · · · · · · · · · · · · ·	Invoice Information	#Ca	R0905428	Bill to		ď
CAS Contac			1		t Requirements	C Summarics	C and Calibration Summaries tion Report with Raw Data	~ ~	ill Number;	
5-288-8475	SL Z	1 אצא כס:	H		Repor Results Only	l. Results + QC	ll. Results + Q V. Data Valida		Airb	
Custody 8-5380 • FAX 58		Send To	SIMIVALLEY					60 EDD	gulor 1	
1ain of 4609 • 585-28		Date Received	9/23/09		l Requiremen	charges Apply E WORK D4	3 4 5 D	bate:	eer i	
ork Cl ester, NY 1-		nple Time	1351		urnaround	RUSH (Sur SE CIRCL	1 2 STANDAR	sted FAX D sted Report	the second	
ra-Netwo Suite 250 • Roch		Sar Date	9/23/09			PLEA	X	Reque	IBY LUC	
Int Mustard Street, 3		Matrix	Water						Received	
-	ttal Engincering	# of Cont.							10-1-04 10-1-04	
	Seneca Market Michaeł Lesakowski Benchmark Environmer	Client Sample ID	MW-3SR		ns/Comments				L'IN (" MANUN	7
	Project Name: Project Number: Project Manager: Company:	Lab Code	R0905428-005		Special Instructio				telinquished By	

Columbia Analytical Services, Inc. Sample Acceptance Check Form

Client:	Benchmark En	vironmental Engineer	ing			Work order:	R0905428			
Project:	Seneca Market									
Sample(s	s) received on:	10/2/09]	Date opened:	10/2/09	by:	MZAN	IORA	<u></u>
Note: This form is used for all samples received by CAS. The use of this form for custody seals is strictly meant to indicate presence/absence and not as										1 of
compliance	or nonconformity.	Thermal preservation and	pH will only be o	valuated either at	the request of th	ne client and/or as rec	uired by the meth	.od/SOP. <u>Yes</u>	<u>No</u>	<u>N/A</u>
1	Were sample	containers properly n	arked with cl	ient sample ID	?			X		
2	Container(s) s	upplied by CAS?						Х		
3	Did sample co	ontainers arrive in goo	od condition?					X		
4	Was a chain-o	f-custody provided?						X		
5	Was the chain	-of-custody properly	completed?					X		
6	Did sample co	ntainer labels and/or	tags agree wi	th custody pap	ers?			X		
7	Was sample v		Х							
8	Are samples w		\mathbf{X}							
9	Was proper te	mperature (thermal p	reservation) o	f cooler at rec	eipt adhered t	o?		X		
	C	ooler Temperature		°C Blank T	emperature	3	°C			
10	Was a trip bla	nk received?							X	
	Trip blank sı	pplied by CAS:	· · · · · · · · · · · · · · · · · · ·				_			
11	Were custody	seals on outside of co	oler/Box?						X	
	Location of :	seal(s)?					Sealing Lid?			X
	Were signatı	re and date included?								\mathbf{X}
	Were seals in	itact?								X
	Were custody	seals on outside of sar	nple container	?					X	
	Location of s	seal(s)?					Sealing Lid?			X
	Were signatı	ire and date included?								X
	Were seals in	ntact?								X
12	Do containers	have appropriate pres	servation, acc	ording to metl	od/SOP or C	lient specified in	formation?	X		
	Is there a clier	it indication that the s	ubmitted sam	oles are pH p	reserved?			X		
	Were <u>VOA vi</u>	als checked for prese	nce/absence of	f air bubbles?				X		
	Does the clier	t/method/SOP require	e that the analy	st check the s	ample pH and	l <u>if necessary</u> alt	er it?	X		
13	Tubes:	Are the tubes cap	ped and intact	?						X
		Do they contain m	oisture?							X
14	Badges:	Are the badges p	coperly capped	1 and intact?						X
	-	Are dual bed badg	es separated a	nd individuall	y capped and	intact?				\mathbf{X}
Luby	Samule ID	Container	Required	Beceived	Adjusted	VOA Headspace	Recein	of / Presi	ervatior	
End	Sumple D	Description	pH *	pH	pH	(Presence/Absence)		Commen	its	
R090542	8-005.04	40ml VOA HCL				A				
R090542	8-005.05	40ml VOA HCL				A				
R090542	8-005.16	40ml VOA HCL				P .			<u> </u>	
R090542	8-005.17	40mL VOA NP		6		A				
1KU7U3428	o-003.18	40mL VOA NP				i A	1			

Explain any discrepancies: (include lab sample ID numbers):

*Required pH: Phenols/COD/NH3/TOC/TOX/NO3+NO2/TKN/T.PHOS, H2SO4 (pH<2); Metals, HNO3 (pH<2); CN (NaOH or NaOH/Ase Acid) (pH>12);

Diss. Sulfide, NaOH (pH>12); T. Sulfide, NaOH/ZriAc (pH>12) R0903428_Benchmark Environmental Engineering_Senera Market - Page 1 of 1

RESULTS OF ANALYSIS Page 1 of 1

Client: Client Project ID:	Benchmark Environment Seneca Market	al Engineering		CAS Project ID: R0905428			
		Carbon I	Dioxide				
Test Code: Instrument ID: Analyst: Matrix: Test Notes:	RSK 175 HP5890A/GC10/TCD Wade Henton Water			Date(s) Collected: 9/2 Date Received: 9/2 Date Analyzed: 10/	23/09 23/09 76/09		
Client Sample ID	CAS Sample ID	Injection Volume ml(s)	Result µg/L	MRL µg/L	Data Qualifier		
MW-3SR	R0905428-005	0.10	52,000	1,000			

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

P091006-MB

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

ND

1,000

0.10

Method Control Sample

LABORATORY CONTROL SAMPLE / DUPLICATE LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Client:	Benchmark Environmental Engineering	
Client Sample ID:	Duplicate Lab Control Sample	CAS Project ID: R0905428
Client Project ID:	Seneca Market	CAS Sample ID: P091006-DLCS
Test Code:	RSK 175	Date Collected: NA
Instrument ID:	HP5890A/GC10/TCD	Date Received: NA
Analyst:	Wade Henton	Date Analyzed: 10/06/09
Matrix:	Water	Volume(s) Analyzed: NA ml(s)
Test Notes:		

		Spike Amount	Result,		CAS					
CAS #	Compound	LCS / DLCS	LCS	DLCS	% Re	covery	Acceptance	RPD	RPD	Data
		ug/L	ug/L	ug/L	LCS	DLCS	Limits		Limit	Qualifier
124-38-9	Carbon Dioxide	23,000	17,700	15,900	77	69	50-150	11	30	

₁ = The concentration shown includes a substration of the Method Control Sample value, even if the result is less than the MRL.

December 31, 2009

Service Request No: R0907065

Mr. Michael Lesakowski Benchmark Environmental Engineering 2558 Hamburg Turnpike Suite 300 Lackawanna, NY 14218

Laboratory Results for: Seneca Market

Dear Mr. Lesakowski:

Enclosed are the results of the sample(s) submitted to our laboratory on December 14, 2009. For your reference, these analyses have been assigned our service request number **R0907065**.

All analyses were performed according to our laboratory's quality assurance program. The test results meet requirements of the NELAP standards except as noted in the case narrative report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for use of less than the complete report. Results apply only to the items submitted to the laboratory for analysis and individual items (samples) analyzed, as listed in the report.

Please contact me if you have any questions. My extension is 135. You may also contact me via email at JJaeger@caslab.com.

Respectfully submitted,

Columbia Analytical Services, Inc.

Janice Jaeger Client Services Manager

Page 1 of 3()

CASE NARRATIVE

COMPANY: Benchmark Environmental Engineering Seneca Market SERVICE REQUEST #: R0907065

Benchmark samples were collected on 12/14/09 and received at CAS on 12/14/09 in good condition. The Trip blank was received in vials that were possibly contaminated with Chloromethane by the manufacturer.

INORGANICS

One water sample was analyzed for a site specific list of inorganics. Please see attached data pages for method numbers.

Site specific QC was not requested for these samples. All Blank spike recoveries were within limits.

The Laboratory blanks associated with these analyses were free of contamination.

No other analytical or QC problems were encountered.

VOLATILE ORGANICS

Six water samples were analyzed for a site specific list of Volatiles by Methods 5030/8260B from SW-846.

All the initial and continuing calibration criteria were met for all analytes.

All internal standard areas were within QC limits.

All surrogate standard recoveries were within limits.

Site specific QC was not requested for these samples. All Reference spike recoveries were within limits except Carbon disulfide was outside limits high on the 12/21/09 LCS and has been flagged with an "*". No data was affected.

The Laboratory blanks associated with these samples were free of contamination.

All samples were analyzed within required holding times.

No other analytical or QC problems were encountered.

<u>RSK-175</u>

One water soil sample was analyzed for Methane, Ethane and Ethene by modified method RSK-175.

All the initial and continuing calibration criteria were met for all analytes.

Site specific QC was not requested for these samples. All Blank spike recoveries were within limits.

Benchmark – service request #R0907065 – page 2

The Laboratory Blanks associated with these analyses were free of contamination.

All samples were analyzed within holding times.

No other analytical or QC problems were encountered.

METABOLIC ACIDS

One water sample was analyzed for a site specific list of Metabolic Acids by HPLC.

All the initial and continuing calibration criteria.

Site specific QC was not requested for these samples. All Blank spike/Blank spike duplicate recoveries were within limits

The Laboratory Blanks associated with these analyses were free of contamination.

All samples were extracted and analyzed within required holding times.

No other analytical or QC problems were encountered.

CARBON DIOXIDE

One water sample was subcontracted to CAS-Simi Valley in California. Their complete report has been included.

CASE NARRATIVE

This report contains analytical results for the following samples: Service Request Number: R0907065

<u>Lab ID</u>	<u>Client ID</u>
R0907065-001	MW-10S
R0907065-002	MW-1SR
R0907065-003	MW-7S
R0907065-004	MW-21S
R0907065-005	MW-3SR
R0907065-006	TRIP BLANK

Samples have been subcontracted to the following laboratory(ies). The subcontractor's analytical report is attached:

Analytical Services

REPORT QUALIFIERS

- U Analyte was analyzed for but not detected. The sample quantitation limit has been corrected for dilution and for percent moisture, unless otherwise noted in the case narrative.
- J Estimated value due to either being a Tentatively Identified Compound (TIC) or that the concentration is between the MRL and the MDL. Concentrations are not verified within the linear range of the calibration. For DoD: concentration >40% difference between two GC columns (pesticides/Arclors).
- B Analyte was also detected in the associated method blank at a concentration that may have contributed to the sample result.
- E Inorganics- Concentration is estimated due to the serial dilution was outside control limits.
- E Organics- Concentration has exceeded the calibration range for that specific analysis.
- D Concentration is a result of a dilution, typically a secondary analysis of the sample due to exceeding the calibration range or that a surrogate has been diluted out of the sample and cannot be assessed.
- Indicates that a quality control parameter has exceeded laboratory limits.
- # Spike was diluted out.
- + Correlation coefficient for MSA is <0.995.
- N Inorganics- Matrix spike recovery was outside laboratory limits.
- N Organics- Presumptive evidence of a compound (reported as a TIC) based on the MS library search.
- S Concentration has been determined using Method of Standard Additions (MSA).
- W Post-Digestion Spike recovery is outside control limits and the sample absorbance is <50% of the spike absorbance.
- P Pesticide/Aroclors: Concentration >40% (25% for CLP) difference between the two GC columns.
- C Confirmed by GC/MS
- Q DoD reports: indicates a pesticide/Aroclor is not confirmed (≥100% Difference between two GC columns).
- X See Case Narrative for discussion.

CAS/Rochester Lab ID # for State Certifications¹

NELAP Accredited Delaware Accredited Connecticut ID # PH0556 Florida ID # E87674 Illinois ID #200047 Maine ID #NY0032 Nebraska Accredited Navy Facilities Engineering Service Center Approved Nevada ID # NY-00032 New Jersey ID # NY004 New York ID # 10145 New Hampshire ID # 294100 A/B Pennsylvania ID# 68-786 Rhode Island ID # 158 West Virginia ID # 292

¹ Analyses were performed according to our laboratory's NELAP-approved quality assurance program and any applicable state requirements. The test results meet requirements of the current NELAP standards or state requirements, where applicable, except as noted in the laboratory case narrative provided. For a specific list of accredited analytes, refer to the certifications section at <u>www.caslab.com</u>.

Analytical Report

Client:Benchmark Environmental EngineeringProject:Seneca MarketSample Matrix:Water

Sample Name: Lab Code: MW-10S R0907065-001 Service Request: R0907065 Date Collected: 12/14/09 1040 Date Received: 12/14/09

> Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysi Lot	s Note
1,1,1-Trichloroethane (TCA)	1.0	U	1.0	1	NA	12/21/09 16:2	4	183841	
1,1,2,2-Tetrachloroethane	1.0	U	1.0	1	NA	12/21/09 16:24	4	183841	
1,1,2-Trichloroethane	1.0	U	1.0	1	NA	12/21/09 16:24	4	183841	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	1	NA	12/21/09 16:24	4	183841	
1,1-Dichloroethane (1,1-DCA)	1.0	U	1.0	1	NA	12/21/09 16:24	4	183841	
1,1-Dichloroethene (1,1-DCE)	1.0	U	1.0	1	NA	12/21/09 16:24	4	183841	
1,2,4-Trichlorobenzene	1.0	U	1.0	1	NA	12/21/09 16:24	4	183841	
1,2-Dibromo-3-chloropropane (DBCP)	2.0	U	2.0	1	NA	12/21/09 16:24	4	183841	
1,2-Dibromoethane	1.0	U	1.0	1	NA	12/21/09 16:24	4	183841	
1,2-Dichlorobenzene	1.0	U	1.0	1	NA	12/21/09 16:24	4	183841	
1,2-Dichloroethane	1.0	U	1.0	1	NA	12/21/09 16:24	4	183841	
1,2-Dichloropropane	1.0	U	1.0	1	NA	12/21/09 16:24	4	183841	
1,3-Dichlorobenzene	1.0	U	1.0	1	NA	12/21/09 16:24	4	183841	
1,4-Dichlorobenzene	1.0	U	1.0	1	NA	12/21/09 16:24	4	183841	
2-Butanone (MEK)	5.0	U	5.0	1	NA	12/21/09 16:24	4	183841	
2-Hexanone	5.0	U	5.0	1	NA	12/21/09 16:24	4	183841	
4-Methyl-2-pentanone	5.0	U	5.0	1	NA	12/21/09 16:24	4	183841	
Acetone	5.0	U	5.0	1	NA	12/21/09 16:24	4	183841	
Benzene	1.0	U	1.0	1	NA	12/21/09 16:24	4	183841	
Bromodichloromethane	1.0	U	1.0	1	NA	12/21/09 16:24	4	183841	
Bromoform	1.0	U	1.0	1	NA	12/21/09 16:24	4	183841	
Bromomethane	1.0	U	1.0	1	NA	12/21/09 16:24	4	183841	
Carbon Disulfide	1.0	U	1.0	1	NA	12/21/09 16:24	4	183841	
Carbon Tetrachloride	1.0	U	1.0	1	NA	12/21/09 16:24	4	183841	
Chlorobenzene	1.0	U	1.0	1	NA	12/21/09 16:24	4	183841	
Chloroethane	1.0	U	1.0	1	NA	12/21/09 16:24	1	183841	
Chloroform	1.0	U	1.0	1	NA	12/21/09 16:24	1	183841	
Chloromethane	1.0	U	1.0	1	NA	12/21/09 16:24	4	183841	
Cyclohexane	1.0	U	1.0	1	NA	12/21/09 16:24	4	183841	
Dibromochloromethane	1.0	U	1.0	1	NA	12/21/09 16:24	ŧ	183841	
Dichlorodifluoromethane (CFC 12)	1.0	U	1.0	1	NA	12/21/09 16:24	1	183841	
Dichloromethane	1.0	U	1.0	1	NA	12/21/09 16:24	1	183841	
Ethylbenzene	1.0	U	1.0	1	, NA	12/21/09 16:24	1	183841	

Comments:

00006

Analytical Report

Client:Benchmark Environmental EngineeringProject:Seneca MarketSample Matrix:Water

Sample Name:MW-10SLab Code:R0907065-001

Service Request: R0907065 Date Collected: 12/14/09 1040 Date Received: 12/14/09

> Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysi Lot	s Note
Isopropylbenzene (Cumene)	1.0 U	1.0	1	NA	12/21/09 16:24	4	183841	
Methyl Acetate	2.0 U	2.0	1	NA	12/21/09 16:24	4	183841	
Methyl tert-Butyl Ether	1.0 U	1,0	1	NA	12/21/09 16:24	4	183841	
Methylcyclohexane	1.0 U	1.0	1	NA	12/21/09 16:24	4	183841	
Styrene	1.0 U	1.0	1	NA	12/21/09 16:24	4	183841	
Tetrachloroethene (PCE)	3.7	1.0	1	NA	12/21/09 16:24	4	183841	
Toluene	1.0 U	1.0	1	NA	12/21/09 16:24	4	183841	
Trichloroethene (TCE)	1.0 U	1.0	1	NA	12/21/09 16:24	4	183841	
Trichlorofluoromethane (CFC 11)	1.0 U	1.0	1	NA	12/21/09 16:24	4	183841	
Vinyl Chloride	1.0 U	1.0	1	NA	12/21/09 16:24	4	183841	
cis-1,2-Dichloroethene	1.0 U	1.0	1	NA	12/21/09 16:24	4	183841	
cis-1,3-Dichloropropene	1.0 U	1.0	1	NA	12/21/09 16:24	4	183841	
m,p-Xylenes	2.0 U	2.0	1	NA	12/21/09 16:24	4	183841	
o-Xylene	1.0 U	1.0	1	NA	12/21/09 16:24	4	183841	
trans-1,2-Dichloroethene	1.0 U	1.0	1	NA	12/21/09 16:24	4	183841	
trans-1,3-Dichloropropene	1.0 U	1.0	1	NA	12/21/09 16:24	4	183841	

		Control	Date		
Surrogate Name	%Rec	Limits	Analyzed	Q Note	
4-Bromofluorobenzene	105	85-122	12/21/09 16:24		
Dibromofluoromethane	107	89-119	12/21/09 16:24		
Toluene-d8	109	87-121	12/21/09 16:24		

Analytical Report

Client:Benchmark Environmental EngineeringProject:Seneca MarketSample Matrix:Water

Sample Name:MW-1SRLab Code:R0907065-002

Service Request: R0907065 Date Collected: 12/14/09 1056 Date Received: 12/14/09

> Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Analys Lot Lot	sis Note
1,1,1-Trichloroethane (TCA)	1.0	U	1.0	1	NA	12/21/09 16:57	7 18384	1
1,1,2,2-Tetrachloroethane	1.0	U	1.0	1	NA	12/21/09 16:52	7 18384	1
1,1,2-Trichloroethane	1.0	U	1.0	1	NA	12/21/09 16:57	7 18384	1
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	1	NA	12/21/09 16:57	7 18384	1
1,1-Dichloroethane (1,1-DCA)	1.0	U	1.0	1	NA	12/21/09 16:57	7 18384	1
1,1-Dichloroethene (1,1-DCE)	1.0	U	1.0	1	NA	12/21/09 16:57	7 18384	1
1,2,4-Trichlorobenzene	1.0	U	1.0	1	NA	12/21/09 16:57	7 18384	1
1,2-Dibromo-3-chloropropane (DBCP)	2.0	U	2.0	1	NA	12/21/09 16:57	7 18384	1
1,2-Dibromoethane	1.0	U	1.0	1	NA	12/21/09 16:53	7 18384	1
1,2-Dichlorobenzene	1.0	U	1.0	1	NA	12/21/09 16:53	7 18384	1
1,2-Dichloroethane	1.0	U	1.0	1	NA	12/21/09 16:57	7 18384	1
1,2-Dichloropropane	1.0	U	1.0	1	NA	12/21/09 16:53	7 18384	1
1,3-Dichlorobenzene	1.0	U	1.0	1	NA	12/21/09 16:53	7 18384	1
1,4-Dichlorobenzene	1.0	U	1.0	1	NA	12/21/09 16:53	7 18384	1
2-Butanone (MEK)	5.0	U	5.0	1	NA	12/21/09 16:57	7 18384	1
2-Hexanone	5.0	U	5.0	1	NA	12/21/09 16:57	7 18384	1
4-Methyl-2-pentanone	5.0	U	5.0	1	NA	12/21/09 16:52	7 18384	1
Acetone	5.0	U	5.0	1	NA	12/21/09 16:57	7 18384	1
Benzene	1.0	U	1.0	1	NA	12/21/09 16:57	7 18384	1
Bromodichloromethane	1.0	U	1.0	1	NA	12/21/09 16:57	7 18384	1
Bromoform	1.0	U	1.0	1	NA	12/21/09 16:57	18384	1
Bromomethane	1.0	U	1.0	1	NA	12/21/09 16:52	7 18384	1
Carbon Disulfide	1.0	U	1.0	1	NA	12/21/09 16:57	7 18384	1
Carbon Tetrachloride	1.0	U	1.0	1	NA	12/21/09 16:57	7 18384	1
Chlorobenzene	1.0	U	1.0	1	NA	12/21/09 16:57	7 18384	1
Chloroethane	1.0	U	1.0	1	NA	12/21/09 16:57	7 18384	I
Chloroform	1.0	U	1.0	1	NA	12/21/09 16:57	7 18384	1
Chloromethane	1.0	U	1.0	1	NA	12/21/09 16:57	7 18384	1
Cyclohexane	1.0	U	1.0	1	NA	12/21/09 16:57	7 18384	l
Dibromochloromethane	1.0	U	1.0	1	NA	12/21/09 16:57	7 18384	1
Dichlorodifluoromethane (CFC 12)	1.0	U	1.0	1	NA	12/21/09 16:57	7 18384	[
Dichloromethane	1.0	U	1.0	1	NA	12/21/09 16:57	7 18384	l
Ethylbenzene	1.0	U	1.0	1	NA	12/21/09 16:57	18384	L

Analytical Report

Client:Benchmark Environmental EngineeringProject:Seneca MarketSample Matrix:Water

Sample Name:MW-1SRLab Code:R0907065-002

Service Request: R0907065 Date Collected: 12/14/09 1056 Date Received: 12/14/09

> Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysi Lot	s Note
Isopropylbenzene (Cumene)	1.0 U	1.0	1	NA	12/21/09 16:5	7	183841	
Methyl Acetate	2.0 U	2.0	1	NA	12/21/09 16:5	7	183841	
Methyl tert-Butyl Ether	1.7	1.0	1	NA	12/21/09 16:5	7	183841	
Methylcyclohexane	1.0 U	1.0	1	NA	12/21/09 16:5	7	183841	
Styrene	1.0 U	1.0	1	NA	12/21/09 16:5	7	183841	
Tetrachloroethene (PCE)	87	1.0	1	NA	12/21/09 16:5	7	183841	
Toluene	1.0 U	1.0	1	NA	12/21/09 16:5	7	183841	
Trichloroethene (TCE)	20	1.0	1	NA	12/21/09 16:5	7	183841	
Trichlorofluoromethane (CFC 11)	1.0 U	1.0	1	NA	12/21/09 16:5	7	183841	
Vinyl Chloride	1,8	1.0	1	NA	12/21/09 16:5	7	183841	
cis-1,2-Dichloroethene	79	1.0	1	NA	12/21/09 16:5	7	183841	
cis-1,3-Dichloropropene	1.0 U	1.0	1	NA	12/21/09 16:5	7	183841	
m,p-Xylenes	2.0 U	2.0	1	NA	12/21/09 16:5	7	183841	
o-Xylene	1.0 U	1.0	1	NA	12/21/09 16:5	7	183841	
trans-1,2-Dichloroethene	1.0 U	1,0	1	NA	12/21/09 16:5	7	183841	
trans-1,3-Dichloropropene	1.0 U	1.0	1	NA	12/21/09 16:5	7	183841	

		Control	Date		
Surrogate Name	%Rec	Limits	Analyzed Q	Note	
4-Bromofluorobenzene	107	85-122	12/21/09 16:57	·······	<u>.</u>
Dibromofluoromethane	109	89-119	12/21/09 16:57		
Toluene-d8	111	87~121	12/21/09 16:57		

Analytical Report

Benchmark Environmental Engineering **Client: Project:** Seneca Market Sample Matrix: Water

MW-7S

Sample Name: Lab Code: R0907065-003 Service Request: R0907065 Date Collected: 12/14/09 1123 Date Received: 12/14/09

> Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction . Lot	Analysi Lot	s Note
1,1,1-Trichloroethane (TCA)	1.0	U	1.0	1	NA	12/21/09 17:2)	183841	
1,1,2,2-Tetrachloroethane	1.0	U	1.0	1	NA	12/21/09 17:29	9	183841	
1,1,2-Trichloroethane	1.0	U	1.0	1	NA	12/21/09 17:29)	183841	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	1	NA	12/21/09 17:29)	183841	
1,1-Dichloroethane (1,1-DCA)	1.0	U	1.0	1	NA	12/21/09 17:29)	183841	
1,1-Dichloroethene (1,1-DCE)	1.0	U	1.0	1	NA	12/21/09 17:29)	183841	
1,2,4-Trichlorobenzene	1.0	U	1.0	1	NA	12/21/09 17:29)	183841	
1,2-Dibromo-3-chloropropane (DBCP)	2.0	U	2.0	1	NA	12/21/09 17:29)	183841	
1,2-Dibromoethane	1.0	U	1.0	1	NA	12/21/09 17:29)	183841	
1,2-Dichlorobenzene	1.0	U	1.0	1	NA	12/21/09 17:29)	183841	
1,2-Dichloroethane	1.0	U	1.0	1	NA	12/21/09 17:29)	183841	
1,2-Dichloropropane	1.0	U	1.0	1	NA	12/21/09 17:29)	183841	
1,3-Dichlorobenzene	1.0	U	1.0	1	NA	12/21/09 17:29)	18384 1	
1,4-Dichlorobenzene	1.0	U	1.0	1	NA	12/21/09 17:29)	183841	
2-Butanone (MEK)	5.0	U	5.0	1	NA	12/21/09 17:29)	183841	
2-Нехапопе	5.0	U	5.0	1	NA	12/21/09 17:29)	183841	
4-Methyl-2-pentanone	5.0	U	5.0	1	NA	12/21/09 17:29)	183841	
Acetone	35		5.0	1	NA	12/21/09 17:29)	183841	
Benzene	6.5		1.0	1	NA	12/21/09 17:29)	183841	
Bromodichloromethane	1.0	U	1.0	1	NA	12/21/09 17:29)	183841	
Bromoform	1.0	U	1.0	1	NA	12/21/09 17:29)	183841	
Bromomethane	1.0	U	1.0	1	NA	12/21/09 17:29)	183841	
Carbon Disulfide	1.0	U	1.0	1	NA	12/21/09 17:29)	183841	
Carbon Tetrachloride	1.0	U	1.0	1	NA	12/21/09 17:29)	183841	
Chlorobenzene	1.0	U	1.0	1	NA	12/21/09 17:29)	183841	
Chloroethane	1.0	U	1.0	1	NA	12/21/09 17:29)	183841	
Chloroform	1.0	U	1.0	1	NA	12/21/09 17:29)	183841	
Chloromethane	1.0	U	1.0	1	NA	12/21/09 17:29)	183841	
Cyclohexane	12		1.0	1	NA	12/21/09 17:29)	183841	
Dibromochloromethane	1.0	U	1.0	1	NA	12/21/09 17:29)	183841	
Dichlorodifluoromethane (CFC 12)	1.0	U	1.0	1	NA	12/21/09 17:29)	183841	
Dichloromethane	1.0	U	1.0	1	NA	12/21/09 17:29	1	183841	
Ethylbenzene	1.0	U	1.0	1	NA	12/21/09 17:29)	183841	

Comments;

Analytical Report

Client:Benchmark Environmental EngineeringProject:Seneca MarketSample Matrix:WaterSample Name:MW-7S

R0907065-003

Service Request: R0907065 Date Collected: 12/14/09 1123 Date Received: 12/14/09

> Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Lab Code:

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction . Lot	Analysi Lot	s Note
Isopropylbenzene (Cumene)	1.3	1.0	1	NA	12/21/09 17:29	9	183841	
Methyl Acetate	2.0 U	2.0	1	NA	12/21/09 17:29	9	183841	
Methyl tert-Butyl Ether	1.0 U	1.0	1	NA	12/21/09 17:29	9	183841	
Methylcyclohexane	5.1	1.0	1	NA	12/21/09 17:29	9	183841	
Styrene	1.0 U	1.0	1	NA	12/21/09 17:29	9	183841	
Tetrachloroethene (PCE)	1.0 U	1.0	· 1	NA	12/21/09 17:29	9	183841	
Toluene	1.0 U	1.0	1	NA	12/21/09 17:29)	183841	
Trichloroethene (TCE)	1.0 U	1.0	1	NA	12/21/09 17:29)	183841	
Trichlorofluoromethane (CFC 11)	1.0 U	1.0	1	NA	12/21/09 17:29	Ð	183841	
Vinyl Chloride	1,1	1.0	1	NA	12/21/09 17:29)	183841	<u> </u>
cis-1,2-Dichloroethene	2.7	1.0	1	NA	12/21/09 17:29)	183841	
cis-1,3-Dichloropropene	1.0 U	1.0	1	NA	12/21/09 17:29	9	183841	
m,p-Xylenes	3.8	2.0	1	NA	12/21/09 17:29)	183841	
o-Xylene	1.0 U	1.0	1	NA	12/21/09 17:29	Ð	183841	
trans-1,2-Dichloroethene	1.0 U	1.0	1	NA	12/21/09 17:29)	183841	
trans-1,3-Dichloropropene	1.0 U	1.0	1	NA	12/21/09 17:29)	183841	

		Control	Date	
Surrogate Name	%Rec	Limits	Analyzed Q	Note
4-Bromofluorobenzene	106	85-122	12/21/09 17:29	
Dibromofluoromethane	107	89-119	12/21/09 17:29	
Toluene-d8	107	87-121	12/21/09 17:29	

Analytical Report

Client: Benchmark Environmental Engineering **Project:** Seneca Market Sample Matrix: Water

Sample Name: MW-21S Lab Code: R0907065-004 Service Request: R0907065 Date Collected: 12/14/09 1150 Date Received: 12/14/09

> Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result (Q MR	Dilution L Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysi Lot	s Note
1,1,1-Trichloroethane (TCA)	1.0 U	J 1.0	1	NA	12/21/09 18:01	1	183841	
1,1,2,2-Tetrachloroethane	1.0 T	J 1.0	1	NA	12/21/09 18:01	l	183841	
1,1,2-Trichloroethane	1.0 T	J 1.0	1	NA	12/21/09 18:01	I	183841	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0 U	J 1.0	1	NA	12/21/09 18:01	1	183841	
1,1-Dichloroethane (1,1-DCA)	1.0 T	J 1.0	1	NA	12/21/09 18:01	L	183841	
1,1-Dichloroethene (1,1-DCE)	1.0 T	J 1.0	1	NA	12/21/09 18:01	1	183841	
1,2,4-Trichlorobenzene	1.0 T	U 1.0	1	NA	12/21/09 18:01	1	183841	
1,2-Dibromo-3-chloropropane (DBCP)	2.0 T	J 2.0	1	NA	12/21/09 18:01	1	183841	
1,2-Dibromoethane	1.0 U	J 1.0	1	NA	12/21/09 18:01	1	183841	
1,2-Dichlorobenzene	1.0 U	J 1.0	1	NA	12/21/09 18:03	1	183841	
1,2-Dichloroethane	1.0 U	J 1.0	1	NA	12/21/09 18:01	l	183841	
1,2-Dichloropropane	1.0 U	J 1.0	1	NA	12/21/09 18:01	L	183841	
1,3-Dichlorobenzene	1.0 T	J 1.0	1	NA	12/21/09 18:01	l	183841	
1,4-Dichlorobenzene	1,0 U	J 1.0	1	NA	12/21/09 18:01	L	183841	
2-Butanone (MEK)	5.0 U	J 5.0	1	NA	12/21/09 18:01	l	1838 41	
2-Hexanone	5.0 U	J 5.0	1	NA	12/21/09 18:01	[183841	
4-Methyl-2-pentanone	5.0 U	J 5.0	1	NA	12/21/09 18:01	l	183841	
Acetone	5.0 L	J 5.0	1	NA	12/21/09 18:01	L	183841	
Benzene	1.0 U	J 1.0	1	NA	12/21/09 18:01	l	183841	
Bromodichloromethane	1.0 U	J 1.0	1	NA	12/21/09 18:01	l	183841	
Bromoform	1.0 U	J 1.0	1	NA	12/21/09 18:01	l	183841	
Bromomethane	1.0 U	J 1.0	1	NA	12/21/09 18:01		183841	
Carbon Disulfide	1.0 L	J 1.0	1	NA	12/21/09 18:01	Ľ	183841	
Carbon Tetrachloride	1.0 L	J <u>1.0</u>	1	NA	12/21/09 18:01	· ·	183841	
Chlorobenzene	1.0 L	J 1.0	I	NA	12/21/09 18:01	l	183841	
Chloroethane	1.0 L	J 1.0	1	NA	12/21/09 18:01	L	183841	
Chloroform	1.0 U	J 1.0	1	NA	12/21/09 18:01	l	183841	
Chloromethane	1.0 L	J 1.0	1	NA	12/21/09 18:01		183841	
Cyclohexane	1.0 L	J 1.0	1	NA	12/21/09 18:01	l	183841	
Dibromochloromethane	1.0 L	J 1.0	1	NA	12/21/09 18:01	l	18384 1	
Dichlorodifluoromethane (CFC 12)	1.0 L	J 1.0	1	NA	12/21/09 18:01		183841	
Dichloromethane	1.0 U	J 1.0	1	NA	12/21/09 18:01	•	183841	
Ethylbenzene	1.0 U	J 1.0	1	NA	12/21/09 18:01	-	183841	

Analytical Report

Client: Benchmark Environmental Engineering **Project:** Seneca Market Sample Matrix: Water

R0907065-004

MW-21S

Sample Name: Lab Code:

Service Request: R0907065 Date Collected: 12/14/09 1150 Date Received: 12/14/09

> Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysi Lot	s Note
Isopropylbenzene (Cumene)	1.0 U	1.0	1	NA	12/21/09 18:0	1	183841	
Methyl Acetate	2.0 U	2.0	1	NA	12/21/09 18:0	1	183841	
Methyl tert-Butyl Ether	1.0 U	1.0	1	NA	12/21/09 18:0	1	183841	
Methylcyclohexane	1.0 U	1.0	1	NA	12/21/09 18:0	1	183841	
Styrene	1.0 U	1.0	I	NA	12/21/09 18:0	1	183841	
Tetrachloroethene (PCE)	1.0 U	1.0	1	NA	12/21/09 18:0	1	1 83841	
Toluene	1.0 U	1.0	1	NA	12/21/09 18:0	1	183841	
Trichloroethene (TCE)	1.0 U	1.0	1	NA	12/21/09 18:0	1	183841	
Trichlorofluoromethane (CFC 11)	1.0 U	1.0	1	NA	12/21/09 18:0	1	183841	
Vinyl Chloride	1.0 U	1.0	1	NA	12/21/09 18:0	1	183841	
cis-1,2-Dichloroethene	1.0 U	1.0	1	NA	12/21/09 18:0	1	183841	
cis-1,3-Dichloropropene	1.0 U	1.0	1	NA	12/21/09 18:0	1	183841	
m,p-Xylenes	2.0 U	2.0	1	NA	12/21/09 18:0	1	183841	
o-Xylene	1.0 U	1.0	1	NA	12/21/09 18:0	1	183841	
trans-1,2-Dichloroethene	1.0 U	1.0	1	NA	12/21/09 18:0	1	183841	
trans-1,3-Dichloropropene	1.0 U	1.0	1	NA	12/21/09 18:0	1	183841	

		Control	Date		
Surrogate Name	%Rec	Limits	Analyzed Q	Note	
4-Bromofluorobenzene	106	85-122	12/21/09 18:01		
Dibromofluoromethane	108	89-119	12/21/09 18:01		
Toluene-d8	105	87-121	12/21/09 18:01		

Analytical Report

Client:Benchmark Environmental EngineeringProject:Seneca MarketSample Matrix:WaterSample Name:MW-3SR

Service Request: R0907065 Date Collected: 12/14/09 1218 Date Received: 12/14/09

Sample Name:MW-3SRLab Code:R0907065-005

Basis: NA

General Chemistry Parameters

Analyte Name	Method	Result Q	Units	MRL	Dilution Factor	Date Extracted	Date Analyzed
Alkalinity as CaCO3, Total	SM 2320 B	333	mg/L	2.0	1	NA	12/22/09 09:27
Carbon, Total Organic (TOC)	SM20 5310 C	3.6	mg/L	1.0	1	NA	12/18/09 00:57
Chloride	9056	42 0	mg/L	20	100	NA	12/15/09 21:12
Nitrate as Nitrogen	9056	0.50 U	mg/L	0.50	10	NA	12/15/09 12:01
Sulfate	9056	15.8	mg/L	2.0	10	NA	12/15/09 12:01
Sulfide, Total	SM 4500-S2- F	0.96 U	mg/L	0.96	1	NA	12/15/09 08:30

Analytical Report

Client:Benchmark Environmental EngineeringProject:Seneca MarketSample Matrix:WaterSample Name:MW-3SRLab Code:R0907065-005

Service Request: R0907065 Date Collected: 12/14/09 1218 Date Received: 12/14/09

Basis: NA

		Inorgan	ic Pa	rameters				
Analyte Name	Method	Result	Q	Units	MRL	Dilution Factor	Date Extracted	Date Analyzed
Iron, Dissolved	6010B	100	U	μg/L	100	1	12/15/09	12/18/09 01:07
Manganese, Dissolved	6010B	4490		μg/L	10	1	12/15/09	12/18/09 01:07

Analytical Report

Client:Benchmark Environmental EngineeringProject:Seneca MarketSample Matrix:Water

R0907065-005

MW-3SR

Sample Name: Lab Code: Service Request: R0907065 Date Collected: 12/14/09 1218 Date Received: 12/14/09

> Units: μg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction A Lot	nalysi Lot	s Note
1,1,1-Trichloroethane (TCA)	1.0	U	1.0	1	NA	12/21/09 18:33	3 1	83841	
1,1,2,2-Tetrachloroethane	1.0	U	1.0	1	NA	12/21/09 18:33	3 1	83841	
1,1,2-Trichloroethane	1.0	U	1.0	1	NA	12/21/09 18:33	3 1	83841	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	1	NA	12/21/09 18:33	3 1	83841	
1,1-Dichloroethane (1,1-DCA)	1.0	U	1.0	1	NA	12/21/09 18:33	3 1	83841	
1,1-Dichloroethene (1,1-DCE)	1.0	U	1.0	1	NA	12/21/09 18:33	3 1	83841	
1,2,4-Trichlorobenzene	1.0	U	1.0	1	NA	12/21/09 18:33	3 1	83841	
1,2-Dibromo-3-chloropropane (DBCP)	2.0	U	2.0	1	NA	12/21/09 18:33	3 1	83841	
1,2-Dibromoethane	1.0	U	1.0	1	NA	12/21/09 18:33	3 1	83841	
1,2-Dichlorobenzene	1.0	U	1.0	1	NA	12/21/09 18:33	3 1	83841	
1,2-Dichloroethane	1.0	U	1.0	1	NA	12/21/09 18:33	3 1	83841	
1,2-Dichloropropane	1.0	U	1.0	1	NA	12/21/09 18:33	3 1	83841	
1,3-Dichlorobenzene	1.0	U	1.0	1	NA	12/21/09 18:33	3 1	83841	
1,4-Dichlorobenzene	1.0	U	1.0	1	NA	12/21/09 18:33	3 1	83841	
2-Butanone (MEK)	5.0	U	5.0	1	NA	12/21/09 18:33	3 1	83841	
2-Hexanone	5.0	U	5.0	1	NA	12/21/09 18:33	3 1	83841	
4-Methyl-2-pentanone	5.0	U	5.0	1	NA	12/21/09 18:33	3 1	83841	
Acetone	5.0	U	5.0	1	NA	12/21/09 18:33	3 1	83841	
Benzene	1.0	U	1.0	1	NA	12/21/09 18:33	3 1	83841	
Bromodichloromethane	1.0	U	1.0	1	NA	12/21/09 18:33	3 1	83841	
Bromoform	1.0	U	1.0	1	NA	12/21/09 18:33	3 1	83841	_
Bromomethane	1.0	U	1.0	1	NA	12/21/09 18:33	3 1	83841	
Carbon Disulfide	1.0	U	1.0	1	NA	12/21/09 18:33	3 1	83841	
Carbon Tetrachloride	1.0	U	1.0	1	NA	12/21/09 18:33	3 1	83841	
Chlorobenzene	1.0	U	1.0	1	NA	12/21/09 18:33	3 1	83841	
Chloroethane	1.0	U	1.0	1	NA	12/21/09 18:33	3 1	83841	
Chloroform	1.0	U	1.0	1	NA	12/21/09 18:33	1	83841	
Chloromethane	1.0	U	1.0	1	NA	12/21/09 18:33	5 1	83841	
Cyclohexane	1.0	U	1.0	1	NA	12/21/09 18:33	1	83841	
Dibromochloromethane	1.0	U	1.0	1	NA	12/21/09 18:33	5 1	83841	
Dichlorodifluoromethane (CFC 12)	1.0	U	1.0	1	NA	12/21/09 18:33	1	83841	
Dichloromethane	1.0	U	1.0	1	NA	12/21/09 18:33	1	83841	
Ethylbenzene	1.0	U	1.0	1	NA	12/21/09 18:33	1	83841	

Analytical Report

Client:Benchmark Environmental EngineeringProject:Seneca MarketSample Matrix:WaterSample Name:MW-3SRLab Code:R0907065-005

Service Request: R0907065 Date Collected: 12/14/09 1218 Date Received: 12/14/09

> Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Anal Lot Lo	ysis ot Note
Isopropylbenzene (Cumene)	1.0 U	1.0	1	NA	12/21/09 18:3	3 1838	41
Methyl Acetate	2.0 U	2.0	1	NA	12/21/09 18:3	3 1838	41
Methyl tert-Butyl Ether	4.3	1.0	1	NA	12/21/09 18:3	3 1838	41
Methylcyclohexane	1.0 U	1.0	1	NA	12/21/09 18:33	3 1838	41
Styrene	1.0 U	1.0	1	NA	12/21/09 18:3:	3 1838	41
Tetrachloroethene (PCE)	4.2	1.0	1	NA	12/21/09 18:33	3 1838	41
Toluene	1.0 U	1.0	1	NA	12/21/09 18:33	3 1838	41
Trichloroethene (TCE)	1.8	1.0	1	NA	12/21/09 18:33	3 1838	41
Trichlorofluoromethane (CFC 11)	1.0 U	1.0	1	NA	12/21/09 18:33	3 1838	41
Vinyl Chloride	1.4	1.0	1	NA	12/21/09 18:33	3 1838	41
cis-1,2-Dichloroethene	7,3	1.0	1	NA	12/21/09 18:33	3 1838	41
cis-1,3-Dichloropropene	1.0 U	1.0	1	NA	12/21/09 18:33	3 1838	41
m,p-Xylenes	2.0 U	2.0	1	NA	12/21/09 18:33	3 1838	41
o-Xylene	1.0 U	1.0	1	NA	12/21/09 18:33	3 1838	41
trans-1,2-Dichloroethene	1.0 U	1.0	1	NA	12/21/09 18:33	3 1838	41
trans-1,3-Dichloropropene	1.0 U	1.0	1	NA	12/21/09 18:3	3 1838	41

		Control	Date		
Surrogate Name	%Rec	Limits	Analyzed Q	Note	
4-Bromofluorobenzene	106	85-122	12/21/09 18:33		
Dibromofluoromethane	107	89-119	12/21/09 18:33		
Toluene-d8	111	87-121	12/21/09 18:33		

Analytical Report

Client:	Benchmark Environmental Engineering
Project:	Seneca Market
Sample Matrix:	Water
Sample Name:	MW-3SR

Lab Code: R0907065-005

Service Request: R0907065 Date Collected: 12/14/09 1218 Date Received: 12/14/09

> Units: µg/L Basis: NA

Dissolved Gases by GC/FID

Analytical Method: RSK 175

			Dilution	Date	Date	Extraction	Analysi	is
Analyte Name	Result Q	MRL	Factor	Extracted	Analyzed	Lot	Lot	Note
Ethane	1.0 U	1,0	1	NA	12/15/09 11:4	1	183240	,
Ethene	1.0 U	1.0	1	NA	12/15/09 11:4	1	183240	
Methane	74	2.0	1	NA	12/15/09 11:4	1	183240	I

٤

Analytical Report

Client:	Benchmark Environmental Engineering	Service Request: R0907	065
Project:	Seneca Market	Date Collected: 12/14/	09 1218
Sample Matrix:	Water	Date Received: 12/14/	09
Sample Name:	MW-3SR	Units: mg/L	
Lab Code:	R0907065-005	Basis: NA	

Organic Acids in Aqueous Matrices by High Performance Liquid Chromatography (HPLC)

Analytical Method: Organic Acids

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysi Lot	s Note
Pyruvic Acid	0.50 U	0.50	1	NA	12/15/09 13:42	2	183159	
Acetic Acid	1.0 U	1.0	1	NA	12/15/09 13:4:	2	183159	
Butanoic Acid (Butyric Acid)	2.0 U	2.0	1	NA	12/15/09 13:42	2	183159	
Lactic Acid	1.0 U	1.0	1	NA	12/15/09 13:42	2	183159	
Propionic Acid	1.0 U	1.0	1	NA	12/15/09 13:42	2	183159	

Analytical Report

Client: Benchmark Environmental Engineering Project: Seneca Market Sample Matrix: Water

TRIP BLANK Sample Name: Lab Code: R0907065-006 Service Request: R0907065 Date Collected: 12/14/09 Date Received: 12/14/09

> Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result	Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysi Lot	s Note
1,1,1-Trichloroethane (TCA)	1.0	U	1.0	1	NA	12/21/09 19:05	5	183841	
1,1,2,2-Tetrachloroethane	1.0	U	1.0	1	NA	12/21/09 19:05	5	183841	
1,1,2-Trichloroethane	1.0	U	1.0	1	NA	12/21/09 19:05	5	183841	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0	U	1.0	1	NA	12/21/09 19:0:	5	183841	
1,1-Dichloroethane (1,1-DCA)	1.0	U	1.0	1	NA	12/21/09 19:03	5	183841	
1,1-Dichloroethene (1,1-DCE)	1.0	U	1.0	1	NA	12/21/09 19:05	5	183841	
1,2,4-Trichlorobenzene	1.0	U	1.0	1	NA	12/21/09 19:05	5	183841	
1,2-Dibromo-3-chloropropane (DBCP)	2.0	U	2.0	1	NA	12/21/09 19:05	5	183841	
1,2-Dibromoethane	1.0	U	1.0	1	NA	12/21/09 19:0:	5	183841	
1,2-Dichlorobenzene	1.0	U	1.0	1	NA	12/21/09 19:0	5	183841	
1,2-Dichloroethane	1.0	U	1.0	1	NA	12/21/09 19:05	5	183841	
1,2-Dichloropropane	1.0	U	1.0	1	NA	12/21/09 19:05	5	183841	
1,3-Dichlorobenzene	1.0	U	1.0	1	NA	12/21/09 19:05	5	183841	
1,4-Dichlorobenzene	1.0	U	1.0	1	NA	12/21/09 19:0:	5	183841	
2-Butanone (MEK)	5.0	U	5.0	1	NA	12/21/09 19:03	5	183841	
2-Hexanone	5.0	U	5.0	1	NA	12/21/09 19:0:	5	183841	
4-Methyl-2-pentanone	5.0	U	5.0	1	NA	12/21/09 19:0:	5	183841	
Acetone	5.0	U	5.0	1	NA	12/21/09 19:05	5	183841	
Benzene	1.0	U	1.0	1	NA	12/21/09 19:03	5	183841	
Bromodichloromethane	1.0	U	1.0	1	NA	12/21/09 19:05	5	183841	
Bromoform	1.0	U	1.0	1	NA	12/21/09 19:05	5	183841	
Bromomethane	1.0	U	1.0	1	NA	12/21/09 19:05	5	183841	
Carbon Disulfide	1.0	U	1.0	1	NA	12/21/09 19:05	5	183841	
Carbon Tetrachloride	1.0	U	1.0	1	NA	12/21/09 19:05	5	183841	
Chlorobenzene	1.0	U	1.0	1	NA	12/21/09 19:05	5	183841	
Chloroethane	1.0	U	1.0	1	NA	12/21/09 19:05	5	183841	
Chloroform	1.0	U	1.0	1	NA	12/21/09 19:05	5	183841	
Chloromethane	2.4		1.0	1	NA	12/21/09 19:05	5	183841	
Cyclohexane	1.0	U	1.0	1	NA	12/21/09 19:05	5	183841	
Dibromochloromethane	1.0	U	1.0	1	NA	12/21/09 19:05	5	183841	
Dichlorodifluoromethane (CFC 12)	1.0	U	1.0	1	NA	12/21/09 19:05	5	183841	
Dichloromethane	1.0	U	1.0	1	NA	12/21/09 19:05	5	183841	
Ethylbenzene	1.0	U	1.0	1	NA	12/21/09 19:05	5	183841	

Comments:

00020

Analytical Report

Client:Benchmark Environmental EngineeringProject:Seneca MarketSample Matrix:WaterSample Name:TRIP BLANK

 Service Request:
 R0907065

 Date Collected:
 12/14/09

 Date Received:
 12/14/09

Sample Name:TRIP BLANKLab Code:R0907065-006

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction A	Analysi Lot	s Note
Isopropylbenzene (Cumene)	1.0 U	1.0	1	NA	12/21/09 19:0	5	183841	
Methyl Acetate	2.0 U	2.0	1	NA	12/21/09 19:0:	5	183841	
Methyl tert-Butyl Ether	1.0 U	1.0	1	NA	12/21/09 19:0	5	183841	
Methylcyclohexane	1.0 U	1.0	1	NA	12/21/09 19:0	5	183841	
Styrene	1.0 U	1.0	1	NA	12/21/09 19:0	5	183841	
Tetrachloroethene (PCE)	1.0 U	1.0	1	NA	12/21/09 19:03	5	183841	
Toluene	1.0 U	1.0	1	NA	12/21/09 19:0:	5	183841	
Trichloroethene (TCE)	1.0 U	1.0	1	NA	12/21/09 19:03	5	183841	
Trichlorofluoromethane (CFC 11)	1.0 U	1.0	1	NA	12/21/09 19:03	5	183841	
Vinyl Chloride	1.0 U	1.0	1	NA	12/21/09 19:0:	5	183841	
cis-1,2-Dichloroethene	1.0 U	1.0	1	NA	12/21/09 19:0:	5	183841	
cis-1,3-Dichloropropene	1.0 U	1.0	1	NA	12/21/09 19:0:	5	183841	
m,p-Xylenes	2.0 U	2.0	1	NA	12/21/09 19:0:	5	183841	
o-Xylene	1.0 U	1.0	1	NA	12/21/09 19:0:	5	183841	
trans-1,2-Dichloroethene	1.0 U	1.0	1	NA	12/21/09 19:0:	5	183841	
trans-1,3-Dichloropropene	1.0 U	1.0	1	NA	12/21/09 19:0:	5	183841	

		Control	Date		
Surrogate Name	%Rec	Limits	Analyzed Q	Note	
4-Bromofluorobenzene	107	85-122	12/21/09 19:05		
Dibromofluoromethane	108	89-119	12/21/09 19:05		
Toluene-d8	111	87-121	12/21/09 19:05		

Analytical Report

Client: Project: Sample Matrix:	Benchmark Environmental Engineering Seneca Market Water
Sample Name:	Method Blank
Lab Code:	R0907065-MB

Service Request: R0907065 Date Collected: NA Date Received: NA

Basis: NA

General Chemistry Parameters

Analyte Name	Method	Result	Q	Units	MRL	Dilution Factor	Date Extracted	Date Analyzed
Alkalinity as CaCO3, Total	SM 2320 B	2.0	U	mg/L	2.0	1	NA	12/22/09 09:27
Carbon, Total Organic (TOC)	SM20 5310 C	1.0	U	mg/L	1.0	1	NA	12/17/09 16:17
Chloride	9056	0.20	U	mg/L	0.20	1	NA	12/15/09 17:47
Nitrate as Nitrogen	9056	0.050	U	mg/L	0.050	1	NA	12/15/09 11:29
Sulfate	9056	0.20	U	mg/L	0.20	1	NA	12/15/09 11:29
Sulfide, Total	SM 4500-S2- F	1.0	U	mg/L	1.0	1	NA	12/15/09 08:30

Analytical Report

Client:	Benchmark Environmental Engineering
Project:	Seneca Market
Sample Matrix:	Water
Sample Name:	Method Blank
Lab Code:	R0907065-MB

Service Request: R0907065 Date Collected: NA Date Received: NA

Basis: NA

Analyte Name	Method	Result Q	Units	MRL	Dilution Date Date Factor Extracted Analyzed
Iron, Dissolved	6010B	100 U	μg/L	100	1 12/15/09 12/17/09 21:54
Manganese, Dissolved	6010B	10 U	μg/L	10	1 12/15/09 12/17/09 21:54

Analytical Report

Client: Benchmark Environmental Engineering **Project:** Seneca Market Sample Matrix: Water

Service Request: R0907065 Date Collected: NA Date Received: NA

Sample Name: Lab Code:

Method Blank RQ0912583-01

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysi Lot	s Note
1,1,1-Trichloroethane (TCA)	1.0 U	1.0	1	NA	12/21/09 13:37	7	183841	
1,1,2,2-Tetrachloroethane	1.0 U	1.0	1	NA	12/21/09 13:33	7	183841	
1,1,2-Trichloroethane	1.0 U	1.0	1	NA	12/21/09 13:33	7	183841	
1,1,2-Trichloro-1,2,2-trifluoroethane	1.0 U	1.0	1	NA	12/21/09 13:37	7	183841	
1,1-Dichloroethane (1,1-DCA)	1.0 U	1.0	1	NA	12/21/09 13:37	7	183841	
1,1-Dichloroethene (1,1-DCE)	1.0 U	1.0	1	NA	12/21/09 13:37	7	183841	
1,2,4-Trichlorobenzene	1.0 U	1.0	1	NA	12/21/09 13:37	7	183841	
1,2-Dibromo-3-chloropropane (DBCP)	2.0 U	2.0	1	NA	12/21/09 13:33	7	183841	
1,2-Dibromoethane	1.0 U	1.0	1	NA	12/21/09 13:37	7	183841	
1,2-Dichlorobenzene	1.0 U	1.0	1	NA	12/21/09 13:37	7	183841	
1,2-Dichloroethane	1.0 U	1.0	1	NA	12/21/09 13:33	7	183841	
1,2-Dichloropropane	1.0 U	1.0	1	NA	12/21/09 13:37	7	183841	
1,3-Dichlorobenzene	1.0 U	1.0	1	NA	12/21/09 13:37	7	183841	
1,4-Dichlorobenzene	1.0 U	1.0	1	NA	12/21/09 13:37	7	183841	
2-Butanone (MEK)	5.0 U	5.0	1	NA	12/21/09 13:37	7	183841	
2-Hexanone	5.0 U	5.0	1	NA	12/21/09 13:37	7	183841	
4-Methyl-2-pentanone	5.0 U	5.0	1	NA	12/21/09 13:37	7	183841	
Acetone	5.0 U	5.0	1	NA	12/21/09 13:37	7	183841	
Benzene	1.0 U	1.0	1	NA	12/21/09 13:37	7	183841	
Bromodichloromethane	1.0 U	1.0	1	NA	12/21/09 13:37	7	183841	
Bromoform	1.0 U	1.0	1	NA	12/21/09 13:37	7	183841	
Bromomethane	1.0 U	1.0	1	NA	12/21/09 13:37	7	183841	
Carbon Disulfide	1.0 U	1.0	1	NA	12/21/09 13:37	7	183841	
Carbon Tetrachloride	1.0 U	1.0	1	NA	12/21/09 13:37	7	183841	
Chlorobenzene	1.0 U	1.0	1	NA	12/21/09 13:37	7	183841	
Chloroethane	1.0 U	1.0	1	NA	12/21/09 13:37	7	183841	
Chloroform	1.0 U	1.0	1	NA	12/21/09 13:37	7	183841	
Chloromethane	1.0 U	1.0	1	NA	12/21/09 13:37	7	183841	
Cyclohexane	1.0 U	1.0	1	NA	12/21/09 13:37	7	183841	
Dibromochloromethane	1.0 U	1.0	1	NA	12/21/09 13:37	7	183841	
Dichlorodifluoromethane (CFC 12)	1.0 U	1.0	1	NA	12/21/09 13:37	,	183841	
Dichloromethane	1.0 U	1.0	1	NA	12/21/09 13:37	7	183841	
Ethylbenzene	1.0 U	1.0	1	NA	12/21/09 13:37	7	183841	

Analytical Report

Client:Benchmark Environmental EngineeringProject:Seneca MarketSample Matrix:WaterSample Name:Method Blank

Sample Name:Method BlankLab Code:RQ0912583-01

Service Request: R0907065 Date Collected: NA Date Received: NA

Units: µg/L Basis: NA

Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysi Lot	s Note
Isopropylbenzene (Cumene)	1.0 U	1.0	1	NA	12/21/09 13:3	7	183841	
Methyl Acetate	2.0 U	2.0	1	NA	12/21/09 13:3	7	183841	
Methyl tert-Butyl Ether	1.0 U	1.0	1	NA	12/21/09 13:3	7	183841	
Methylcyclohexane	1.0 U	1.0	1	NA	12/21/09 13:3	7	183841	
Styrene	1.0 U	1.0	1	NA	12/21/09 13:3	7	183841	
Tetrachloroethene (PCE)	1.0 U	1.0	1	NA	12/21/09 13:3	7	183841	
Toluene	1.0 U	1.0	1	NA	12/21/09 13:3	7	183841	
Trichloroethene (TCE)	1.0 U	1.0	1	NA	12/21/09 13:3	7	183841	
Trichlorofluoromethane (CFC 11)	1.0 U	1.0	1	NA	12/21/09 13:3	7	183841	
Vinyl Chloride	1.0 U	1.0	1	NA	12/21/09 13:3	7	183841	
cis-1,2-Dichloroethene	1.0 U	1.0	1	NA	12/21/09 13:3	7	183841	
cis-1,3-Dichloropropene	1.0 U	1.0	1	NA	12/21/09 13:3	7	183841	
m,p-Xylenes	2.0 U	2.0	1	NA	12/21/09 13:3	7	183841	
o-Xylene	1.0 U	1.0	1	NA	12/21/09 13:3	7	183841	
trans-1,2-Dichloroethene	1.0 U	1.0	1	NA	12/21/09 13:3	7	183841	
trans-1,3-Dichloropropene	1.0 U	1.0	1	NA	12/21/09 13:3	7	183841	

		Control	Date		
Surrogate Name	%Rec	Limits	Analyzed Q	Note	
4-Bromofluorobenzene	106	85-122	12/21/09 13:37		
Dibromofluoromethane	108	89-119	12/21/09 13:37		
Toluene-d8	110	87-121	12/21/09 13:37		

Analytical Report

Client:	Benchmark Environmental Engineering
Project:	Seneca Market
Sample Matrix:	Water
Sample Name:	Method Blank

RQ0912439-01

Service Request: R0907065 Date Collected: NA Date Received: NA

Dissolved Gases by GC/FID

Analytical Method: RSK 175

Lab Code:

Analyte Name		MRL	Dilution	Date Extracted	Date	Extraction	Analys	nalysis	
	Result Q		Factor		Analyzed	Lot	Lot	Note	
Ethane	1.0 U	1.0	1	NA	12/15/09 08:2	7	183240		
Ethene	1.0 U	1.0	1	NA	12/15/09 08:22	7	183240)	
Methane	2.0 U	2.0	1	NA	12/15/09 08:2	7	183240)	

Analytical Report

Client:	Benchmark Environmental Engineering	Service Request:	R0907065
Project:	Seneca Market	Date Collected:	NA
Sample Matrix:	Water	Date Received:	NA
Sample Name:	Method Blank	Units:	mg/L
Lab Code:	RQ0912430-01	Basis:	NA

Organic Acids in Aqueous Matrices by High Performance Liquid Chromatography (HPLC)

Analytical Method: Organic Acids

Analyte Name	Result Q	MRL	Dilution Factor	Date Extracted	Date Analyzed	Extraction Lot	Analysi Lot	s Note
Pyruvic Acid	0.50 U	0.50	1	NA	12/15/09 11:52	2	183159	<u> </u>
Acetic Acid	1.0 U	1.0	1	NA	12/15/09 11:52	2	183159	
Butanoic Acid (Butyric Acid)	2.0 U	2.0	1	NA	12/15/09 11:52	2	183159	
Lactic Acid	1.0 U	1.0	1	NA	12/15/09 11:52	2	183159	
Propionic Acid	1.0 U	1,0	1	NA	12/15/09 11:52	2	183159	

QA/QC Report

Client: Project: Sample Matrix:	Benchmark Environmental Engineering Seneca Market Water	Service Request: Date Analyzed:	R0907065 12/15/09
	Lab Control Sample Summary Sulfide, Iodometric 20th Ed.		

								Units: m Basis: N	g/L A	
		Lab (Control Sa	mple	Duplicate L	ab Contro	l Sample			
		R09	07065-LC	CS1	R090	7065-DLC	CS1	% Rec		RPD
Analyte Name	Method	Result	Expecte	d % Rea	e Result	Expecte	d % Rec	Limits	RPD	Limit
Sulfide, Total	SM 4500-S2- F	4.33	4.5	97	4,30	4.5	96	56 - 138	1	20

QA/QC Report

Client:Benchmark Environmental EngineeringProject:Seneca MarketSample Matrix:Water

Lab Control Sample Summary General Chemistry Parameters

Service Request: R0907065 Date Analyzed: 12/15/09 -12/22/09

> Units: mg/L Basis: NA

•		Lab (R09	Control Sar 07065-LC	nple S2	% Rec
Analyte Name	Method	Result	Expected	l % Rec	Limits
Carbon, Total Organic (TOC)	SM20 5310 C	9.96	10.0	100	86 - 117
Chloride	9056	1.87	2.00	94	90 - 110
Sulfate	9056	1.95	2.00	98	90 - 110
Alkalinity as CaCO3, Total	SM 2320 B	18.0	20,0	90	90 - 108
Nitrate as Nitrogen	9056	0.952	1.00	95	90 - 110

Comments:

Lab Control Sample Summary

SuperSet Reference: 09-0000129793 rev 00

QA/QC Report

Client:Benchmark Environmental EngineeringProject:Seneca MarketSample Matrix:Water

Lab Control Sample Summary Inorganic Parameters

Service Request: R0907065 Date Analyzed: 12/17/09

> Units: µg/L Basis: NA

		Lab (Control Sar	nple	
		RO	907065 -LC	S	% Rec
Analyte Name	Method	Result	Expected	1% Rec	Limits
Iron, Dissolved	6010B	972	1000	97	80 - 120
Manganese, Dissolved	6010B	482	500	96	80 - 120

QA/QC Report

Client:Benchmark Environmental EngineeringProject:Seneca MarketSample Matrix:Water

Service Request: R0907065 Date Analyzed: 12/21/09

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Units: µg/L Basis: NA

Analysis Lot: 183841

	Lab	Control San	nple	
	F	Q0912583-0	2	% Rec
Analyte Name	Result	Expected	% Rec	Limits
1,1,1-Trichloroethane (TCA)	19.9	20.0	100	70 - 130
1,1,2,2-Tetrachloroethane	22.1	20.0	111	70 - 130
1,1,2-Trichloroethane	21.1	20.0	106	70 - 130
1,1,2-Trichloro-1,2,2-trifluoroethane	21.4	20.0	107	70 - 130
1,1-Dichloroethane (1,1-DCA)	20.2	20.0	101	70 - 130
1,1-Dichloroethene (1,1-DCE)	19.2	20.0	96	70 - 130
1,2,4-Trichlorobenzene	20.7	20.0	103	70 - 130
1,2-Dibromo-3-chloropropane (DBCP)	20.3	20.0	101	50 - 150
1,2-Dibromoethane	22.4	20.0	112	70 - 130
1,2-Dichlorobenzene	20.8	20,0	104	70 - 130
1,2-Dichloroethane	21.0	20.0	105	70 - 130
1,2-Dichloropropane	20.6	20.0	103	70 - 130
1,3-Dichlorobenzene	20,1	20.0	101	70 - 130
1,4-Dichlorobenzene	19.7	20.0	99	70 - 130
2-Butanone (MEK)	21.7	20.0	108	50 - 150
2-Hexanone	21.3	20.0	106	70 - 130
4-Methyl-2-pentanone	22.5	20.0	113	70 - 130
Acetone	22.5	20.0	113	50 - 150
Benzene	19.1	20.0	95	70 - 130
Bromodichloromethane	20.8	20.0	104	70 - 130
Bromoform	25.1	20.0	125	70 - 130
Bromomethane	21.2	20.0	106	50 - 150
Carbon Disulfide	29.5	20.0	148 *	70 - 130
Carbon Tetrachloride	19.8	20.0	99	70 - 130
Chlorobenzene	19.8	20.0	99	70 - 130
Chloroethane	19.7	20.0	99	70 - 130
Chloroform	20.0	20.0	100	70 - 130
Chloromethane	20.0	20.0	100	70 - 130
Cyclohexane	19.8	20.0	99	50 - 150
Dibromochloromethane	23.4	20.0	117	70 - 130
Dichlorodifluoromethane (CFC 12)	21.2	20.0	106	70 - 130
Dichloromethane	20.7	20.0	103	70 - 130
Ethylbenzene	19.6	20.0	98	70 - 130
Isopropylbenzene (Cumene)	20.4	20.0	102	70 - 130
Methyl Acetate	21.4	20.0	107	50 - 150
Methyl tert-Butyl Ether	22.6	20.0	113	70 - 130

QA/QC Report

Client:	Benchmark Environmental Engineering
Project:	Seneca Market
Sample Matrix:	Water

Service Request: R0907065 Date Analyzed: 12/21/09

Lab Control Sample Summary Volatile Organic Compounds by GC/MS

Analytical Method: 8260B

Units: µg/L Basis: NA

Analysis Lot: 183841

	Lab F	Control San CO0912583-0	nple 2	% Rec
Analyte Name	Result	Expected	% Rec	Limits
Methylcyclohexane	19.6	20.0	98	50 - 150
Styrene	20.5	20.0	103	70 - 130
Tetrachloroethene (PCE)	18.9	20.0	94	70 - 130
Toluene	19.6	20.0	98	70 - 130
Trichloroethene (TCE)	19.0	20.0	95	70 - 130
Trichlorofluoromethane (CFC 11)	20.7	20.0	103	70 - 130
Vinyl Chloride	20.7	20.0	103	70 - 130
cis-1,2-Dichloroethene	19.7	20.0	99	70 - 130
cis-1,3-Dichloropropene	20.9	20.0	104	70 - 130
m,p-Xylenes	40.6	40.0	101	70 - 130
o-Xylene	20,3	20.0	102	70 - 130
trans-1,2-Dichloroethene	19.2	20.0	96	70 - 130
trans-1,3-Dichloropropene	19.6	20.0	98	70 - 130

QA/QC Report

Lab Control Sample Summary Dissolved Gases by GC/FID

Analytical Method: RSK 175

Service Request: R0907065 Date Analyzed: 12/15/09

> Units: µg/L Basis: NA

Analysis Lot: 183240

	Lab) Control Sar	nple	
	Ι	RQ0912439-0	2	% Rec
Analyte Name	Result	Expected	% Rec	Limits
Ethane	23.1	26.1	88	57 - 150
Ethene	21.2	24.3	87	52 - 149
Methane	23.0	26.3	88	44 - 157

QA/QC Report

Client:Benchmark Environmental EngineeringProject:Seneca MarketSample Matrix:Water

Service Request: R0907065 Date Analyzed: 12/15/09

Lab Control Sample Summary

Organic Acids in Aqueous Matrices by High Performance Liquid Chromatography (HPLC)

Analytical Method: Organic Acids

Units: mg/L Basis: NA

Analysis Lot: 183159

	Lab	Control Sar	nple	Duplicat	e Lab Contro	ol Sample			
	F	RQ0912430-0	2	F	RQ0912430-0	3	% Rec		RPD
Analyte Name	Result	Expected	% Rec	Result	Expected	% Rec	Limits	RPD	Limit
Pyruvic Acid	1.11	1.01	110	1.12	1.01	111	70 - 130	1	30
Acetic Acid	10.0	11.1	90	10.1	11.1	91	70 - 135	1	30
Butanoic Acid (Butyric Acid)	8.59	10.2	84	8.71	10.2	85	82 - 118	1	30
Lactic Acid	11.3	11,1	102	11.5	11.1	103	70 - 117	1	30
Propionic Acid	10.4	10.1	103	10.4	10.1	103	80 - 125	0	30

Columbia Columbia Analytical Services CHAIN OF	CUSTODY/LAB	DRATORY ANALYSIS RE		
www.castab.com One Mustard St., Suite 250 • Rochester, NY 14	4609-0859(585) 288-5380 • 800-6	95-7222 x11 • FAX (585) 288-8475 PAGE		contact
EDREL MUTCHE GUM BOG 2-0	002-200	ANALYSIS REQUESTED (II	nclude Method Number and Container	Preservative)
Project Manager Lows Li Report CC		PRESERVATIVE	21150	000
company deriver le Environmental				A Preservative Key
2555 Humburg Twopille	· Sufe 300			2: HNO3 3: H3S04 5: Zn. Acetate
Phone # EAX#				T. NaHSO4
(716) 5856-0599 (716) 85	2-0553			8. Other
Samplers Statute // / http:// Samplers Samplers Samplers Mane	Werthman		2 × / × / × / × / × / × / ×</td <td>100</td>	100
CLIENT SAMPLE ID LAB ID D	SAMPLING DATE TIME MATRIX	1 / W = 1 / W	12/0/A/A/2/2/	ALTERNATE DESCRIPTION
mw-10> 12	114 10:40 GW	3		
MW-1SR	10:56 GW	<u>60</u>		
mw-7s	(1:23 6W	60		
Mw - 21 S	11:50 6W	2		
mur 32R	F 12:19 GW	3	1 1 1 2 2 2	/
Trip Bluck)			
				-
			REPORT REQUIREMENTS	INVOICE INFORMATION
Metals Solvable Iron + Mangane	ese (trelation	TE red RUSH (SURCHARGES APPLY)	I. Results Only	
Metabolic Acids - lactic. Su	inchie gratic		II. Results + QC Summaries (LCS, DUP, MS/MSD as required)	PO#
Propionic and huturic		REQUESTED FAX DATE	III: Results + QC and Calibration Summaries	BILL TO:
		HEQUESTED REPORT DATE	IV. Data Validation Report with Raw	0907065
See QAPP			V. Specialized Forms / Custom Rei	ca Market Market Market Engineering
SAMPLE RECEIPT: CONDITION/COOLER TEMP:	CUSTODY SEALS	ν×	EdataYesNo	
A fail White Minuk mand	RELINQUISHED BY	RECEIVED BY	RELINQUISHED BY	HEVE
Signature // Signature //	Signature	Signature	Signature	Signature
Finded Wind Werthman Phylogonane	Printed Name	Printed Name	Printed Name	Printed Name
Firm Bercharark 13/14/00/1549	Fin	Firm	Firm	Firm
12-19-07 Date/ime	Date/Time	Date/Time	Date/Time	Date/Time
Distribution: White - Return to Originator; Yellow - Lab Copy; Pink - Retained by Client				SCOC-1102-08

Cooler Receipt And Preservation Check Form

Project/	Client Ba	<u>nch</u> n	uik		Sı	ıbmissi	ion Nur	nberRø	907065		
		2/10	10901	nund							
Cooler	received o	n_ <u>[2</u> /	la 1	by: <u>D</u> fw	COUR	IER:	CAS	UPS	FEDEX	VELOC	CITY_CLIENT
1. 2. 3. 4. 5. 6. 7.	Were cust Were cust Did all bo Did any V Were Ice Where did Temperatu	ody s ody p ttles a OA v or Ice the t ure of	eals aper arrive vials pac pottle	on outside of coc s properly filled e in good condition have significant* eks present? es originate? ler(s) upon receip	oler? out (ink, on (unbro ' air bubl	signed oken)? bles?	l, etc.)?		VES YES YES VES CASR	NO NO NO NO NO NO	N/A ENT
	Is the temp	beratu	ire w	vithin 0° - 6° C?:	X	es	Yes		Yes	Yes	Yes
	If No, Exp	olain	Belo)W	N	0	No		No	No	No
	Date/Time	Tem	ipera	tures Taken: 12	114/00/	/1600					
	Thermome	eter II	للر :C	R GUN#3 / IR (GUN#4	Rea	ding Fr	om: T	emp Blank	/ Şamp	le Bottle
If out o PC Seco Cooler I 1. 2.	f Tempera ondary Rev Breakdowr Were all bo Did all bot	ature view: n: Da ottle l tle lai	ate : label bels	te packing/ice co 12/14/09 s complete (i.e. a and tags agree with	ndition	Clien	t Appi by: vation, o ers?	roval to <u>DPw</u> etc.)?	Run Samj	NO NO	
3. 4.	were corre Air Sample	ect co	ntair Cass	ters used for the terms of t	tests indi	icated?	Drecor	mizod	XES Todlar®	NO Baga Ind	flotod XIA
Explain	any discre	panci	ies: _								
pH	Reagent	YES	NO	Lot Received	Exp	Samp	le ID	Vol. Added	Lot Added	Final pH	Yes = All samples OK
<2	HNO			BORDLARD		┨────					N
<2	H ₂ SO4	<u> </u>		10/09/06/10					· ···		Samples
Residual Chlorine (-)	For TCN and Phenol			If present, contact add ascorbic acid	1 <i>0/18</i> t PM to					_	were preserved at lab as listed
	$Na_2S_2O_3$	-	-			*Not	to be tes	ted befor	e analysis – p	H J	PM OK to
	Zn Aceta	-		Weazad E	08110] tested	and reco	orded by	VOAs or Ge	nChem	Adjust:
1	HCI	*	*	Hozau	1110		eparate v	worksnee	ગ		<u> </u>
Bottle lot	numbers: <u>d'</u>	3844	16 ou	92809-1Mm, q.	-253-a	1,1090	<u>A-255</u>				

Other Comments: MW - 33 35R, and trip blank kase in the contaminated VOA Vial lot.

PC Secondary Review: MM 12 22 09

*significant air bubbles are greater than 5-6 mm

H:\SMODOCS\Cooler Receipt 2.doc

00036

Columbia Analytical Services* 200

2655 Park Center Drive, Suite A I Simi Valley, CA 93065 I 805.526.7161 I 805.526.7270 fax I

www.casiab.com

LABORATORY REPORT

December 22, 2009

Michael Lesakowski Benchmark Environmental Engineering 2558 Hamburg Turnpike Suite 300 Lackawanna, NY 14218

RE: Seneca Market

Dear Michael:

Enclosed are the results of the sample submitted to our laboratory on December 14, 2009. For your reference, these analyses have been assigned our service request number R0907065.

All analyses were performed according to our laboratory's NELAP-approved quality assurance program. The test results meet requirements of the current NELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP-accredited analytes, refer to the certifications section at www.caslab.com. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein. Your report contains _____ pages.

Columbia Analytical Services, Inc. is certified by the California Department of Health Services, NELAP Laboratory Certificate No. 02115CA; Arizona Department of Health Services, Certificate No. AZ0694; Florida Department of Health, NELAP Certification E871020; New Jersey Department of Environmental Protection, NELAP Laboratory Certification ID #CA009; New York State Department of Health, NELAP NY Lab ID No: 11221; Oregon Environmental Laboratory Accreditation Program, NELAP ID: CA20007; The American Industrial Hygiene Association, Laboratory #101661; Department of the Navy (NFESC); Pennsylvania Registration No. 68-03307; TX Commission of Environmental Quality, NELAP ID T104704413-09-TX; Minnesota Department of Health, Certificate No. 11495AA. Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact me for information corresponding to a particular certification.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

Columbia Analytical Services, Inc.

att Speules

Kate Aguilera Project Manager

2655 Park Center Drive, Suite A

Sini Valley, CA 93065

Client: Project: Benchmark Environmental Engineering Seneca Market

CAS Project No: R0907065 New York Lab ID: 11221

CASE NARRATIVE

The sample was received intact under chain of custody on December 14, 2009 and was stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the sample at the time of sample receipt.

Carbon Dioxide Analysis

The sample was analyzed for carbon dioxide using a gas chromatograph equipped with a thermal conductivity detector (TCD). A known amount of liquid was displaced by injecting 8.0 milliliters of helium creating a headspace in the sample vial. Each sample vial was agitated using a sonic disrupter for fifteen minutes and then allowed to equilibrate for at least four hours. A volume of the headspace was withdrawn using a gas-tight syringe and analyzed using a manual injection technique. The amount of dissolved gases (carbon dioxide and oxygen/argon) in the original sample was calculated using Henry's Law. This method was performed with guidance from RSK 175.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and Columbia Analytical Services, Inc. (CAS) is not responsible for utilization of less than the complete report.

SAMPLE CROSS-REFERENCE

CLIENT SAMPLE ID	<u>DATE</u>	<u>TIME</u>
MW-10S	12/14/09	10:40
MW-1SR	12/14/09	10:56
MW-7S	12/14/09	11:23
MW-21S	12/14/09	11:50
MW-3SR	12/14/09	12:18
TRIP BLANK	12/14/09	
	CLIENT SAMPLE ID MW-10S MW-1SR MW-7S MW-21S MW-3SR TRIP BLANK	CLIENT SAMPLE ID DATE MW-10S 12/14/09 MW-1SR 12/14/09 MW-7S 12/14/09 MW-21S 12/14/09 MW-3SR 12/14/09 TRIP BLANK 12/14/09

.

ct: Janice Jaeger			Invoice Information	PO# R0907065	Bill to	
475 Conta	۶८۱ אצע 200		teport Requirements Only : + QC Summaries	s + QC and Calibration Summaries Validation Report with Raw Data	N N	Airbill Number:
f Custody 288-5380 • Fax 585-288-5	Send To Send To	SIMIVALLEY	ints I. Results	III. Result	PQL/MDL/F	12/15/20 1202
etwork Chain 0	Sample Date Date Time Received	2/14/09 1218 12/14/09	Turnaround Requireme RUSH (Surcharges App PI EASE CIRCL E WORK 1	1 2 3 4 5 STANDARD	Requested FAX Date:	NHECHNIKL
Intra-N 1 Mustard Street, Suite 251	Matrix	Water				ZOO Received By:
	vski ronmental Enginecring # of Cont.	τΩ.				22 12/14/07 18
	time: Sencea Market Limber: Michael L.esakow Benchmark Envir	5-005 MW-3SR	astructions/Comments			1 By: And
	Project Na Project Nu Project Mt Company: Lab Codd	R0907061	Special In			Relinquishee

page

Columbia Analytical Services, Inc. Sample Acceptance Check Form

Client	: Benchmark E	Environmental Enginee	ring			Work order:	R0907065			
Project	: Seneca Mark	et								
Sample	(s) received on	: <u>12/15/2009</u>		_	Date opened:	12/15/2009	_ by:	MZAN	10RA	
Note: This	s form is used fo <u>r a</u>	all samples received by CAS	. The use of this	form for custody :	seals is strictly m	eant to indicate pres	ence/absence and 1	iot as an	indicatio	n of
compliance	e or nonconformity	y. Thermal preservation and	pH will only be	evaluated either a	t the request of th	he client and/or as re-	quired by the meth	od/SOP.	No	NIA
1	Were sample	o containers properly r	narked with cl	ient comple ID	19				<u></u>	
2	Container(s)	supplied by CAS?		dent sautpie 11					m	
2	Did sample containers arrive in good condition?									
4	Uld sample containers arrive in good condition?							رکا ا		
5	Was the chai	n-of-custody provided?	completed?						n	
6	was use channet customy property completed? Did sample container labels and/or tags agree with custody papers?							\mathbf{X}		
7	Was sample	volume received adequ	ate for analys	is?				X		
8	Are samples	within specified holdin	g times?					X		
9	Was proper t	emperature (thermal p	oreservation) o	of cooler at rec	eipt adhered (io?		\mathbf{X}		
	(Cooler Temperature		°C Blank T	Femperature	4	°C			
10	Was a trip bl	lank received?					-		X	
	Trip blank s	supplied by CAS:								
11	Were custody	y seals on outside of co	oler/Box?					X		
	Location of	seal(s)?	Front of cool	er, covering op	ening.		_Sealing Lid?	×		
	Were signat	ture and date included?)					X		
	Were seals	intact?						\mathbf{X}		
	Were custody	v seals on outside of sau	nple containe	r?					×	
	Location of	seal(s)?		.			Sealing Lid?			\mathbf{X}
	Were signat	ture and date included?	•							\mathbf{X}
	Were seals:	intact?								X
12	Do containers	s have appropriate pre	servation, acc	ording to metl	10d/SOP or C	lient specified in	formation?			X
	is there a clie	ent indication that the s	ubmitted samp	ples are pH p	reserved?					\mathbf{X}
	Were <u>VOA v</u>	vials checked for prese	nce/absence o	f air bubbles?						X
	Does the clic	ent/method/SOP require	e that the analy	yst check the s	ample pH and	l <u>if necessary</u> alt	ter it?			\mathbf{X}
13	Tubes:	Are the tubes cap	ped and intact	?						\mathbf{X}
		Do they contain m	oisture?							\mathbf{X}
14	Badges:	Are the badges p	roperly capped	d and intact?						\mathbf{X}
		Are dual bed badg	es separated a	nd individuall	y capped and	intact?				
Lab	Sample ID	Container	Required	Received	Adjusted	VOA Headspace	Receip	t / Pres	ervatior	1
		Description	pH *	pН	pН	(Presence/Absence)	6	Commics	its	
R090706	5-005.14	40mL VOA NP		6		A				
R090706	5-005.15	40mL VOA NP				A				
R090706	5-005.16	40mL VOA NP	· · · · · ·			A	ļ			
					· · ·					
		· · · · · · · · · · · · · · · · · · ·					<u> </u>		<u></u>	
77. 1		// 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1					1	<u> </u>		<u></u>

Explain any discrepancies: (include lab sample ID numbers):

*Required pH: Phenols/COD/NH3/TOC/TOX/NO3+NO2/TKN/T.PHOS, H28O4 (pH<2); Metals, HNO3 (pH<2); CN (NaOH or NaOH/Ase Acid) (pH>12); Diss. Sulfice, NaOH (pH>12); T. Sulfice, NaOH/ZnAc (pH>12); WWW/KS_Bendmank Edvaronmental Engineering_Senice Market - Page 1 of 1 RSK - MEEPP, HCL (pH<2); RSK - CO2, (pH 5-8); Sulfur (pH>4)

RESULTS OF ANALYSIS Page 1 of 1

Client: Client Project ID:	Benchmark Environmen Seneca Market	tal Engineering		CAS Project ID: RO	0907065
		Carbon I	Dioxide		
Test Code: Instrument ID: Analyst: Matrix: Test Notes:	RSK 175 HP5890A/GC10/TCD Wade Henton Water			Date(s) Collected: 12 Date Received: 12 Date Analyzed: 12	/14/09 /14/09 /16/09
Client Sample ID	CAS Sample ID	Injection Volume ml(s)	Result µg/L	MRL µg/L	Data Qualifier
MW-3SR	R0907065-005	0.10	67,000	1,000	······································
Memod Control Sam	pie P091216-MB	0.10	ND	1.000	

ND = Compound was analyzed for, but not detected above the laboratory reporting limit.

.

.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

Date: 12/18/04 TCD_ALL.XLT - Page No.: Verified By:__

R0907065_RSK175-TCD_0912180919_SS.xis - RSK - TCD

.

LABORATORY CONTROL SAMPLE / DUPLICATE LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Client:	Benchmark Environmental Engineering	
Client Sample ID:	Duplicate Lab Control Sample	CAS Project ID: R0907065
Client Project ID:	Seneca Market	CAS Sample ID: P091216-DLCS
Test Code:	RSK 175	Date Collected: NA

Date Collected:	NA
Date Received:	NA
Date Analyzed:	12/16/09
Volume(s) Analyzed:	NA ml(s)

		Spike Amount	Res	sult ₁			CAS			
CAS #	Compound	LCS/DLCS	LCS	DLCS	% Re	covery	Acceptance	RPD	RPD	Data
		ug/L	ug/L	ug/L	LCS	DLCS	Limits		Limit	Qualifier
124-38-9	Carbon Dioxide	23,000	22,400	20,000	97	87	50-150	11	30	

 $_{1}$ = The concentration shown includes a substration of the Method Control Sample value, even if the result is less than the MRL.

R0907065_RSK175-TCD_0912180919_SS.xls - DLCS

Instrument ID:

Analyst:

Matrix:

Test Notes:

HP5890A/GC10/TCD

.

Wade Henton

Water

_____Date:____2/18/07 TCD_ALLXLT - Page No.:

ATTACHMENT 2

PASSIVE DIFFUSION BAG FIELD OPERATING PROCEDURE

GROUNDWATER SAMPLE COLLECTION PROCEDURES FOR PASSIVE DIFFUSION BAG SAMPLERS

PURPOSE

This procedure describes the methods for collecting volatile organic compound (VOC) groundwater samples from monitoring wells and domestic supply wells using passive diffusion bag samplers (PDBs). The PDB sampler is a semi-permeable low-density polyethylene membrane designed to allow VOCs to flow into the bag until equilibrium is maintained between the VOCs in the formation and in the PDB.

STORAGE & HANDLING INFORMATION

The bags will be pre-filled by an NYSDOH-ELAP Certified laboratory with 220 mL of certified laboratory grade (analyte free & deionized) water. Keep bags stored in the shipping pouch, in a dry clean volatile free area to prevent accidental contamination. Do not keep bags in the storage area for longer then two weeks. If additional storage time is required, contact the laboratory for Mylar pouches. Handle each PDB separately with clean nitrile gloves. Always change gloves before handling a new PDB. Avoid handling bags barehanded.

INSTALLATION

Prior to placement of the PDB into the monitoring well, record bag serial/identification numbers and sample location. Each bag will be equipped with a stainless steel weight and harness line (stainless steel or 3/16 inch twisted polypropylene rope) that will be firmly attached to the protective casing of the monitoring well. Calculate the approximate amount of line needed so the PDB can be suspended at the center of the well screen interval (if using 3/16 inch twisted polypropylene rope take into account any stretching that might occur over

GROUNDWATER SAMPLE COLLECTION PROCEDURES FOR PASSIVE DIFFUSION BAG SAMPLERS

time). After the correct amount of line is calculated, slowly lower the PDB into monitoring well to prevent the PDB from getting caught or hung up in the well casing. After installation note the time and date, carefully lock the monitoring well and proceed to the next location. Laboratory tests have demonstrated that two weeks is the minimum time that is needed for most VOCs in the groundwater formation to reach equilibrium with the analyte free, deionized water in the diffusion bag. After this initial equilibrium period has occurred there is no specific recovery time, thus when the next round of scheduled sampling is needed PDBs from the previous round can be recovered and be replaced by a new PDB.

RECOVERY

After the minimum two week equilibrium period has passed, return to the monitoring well, and carefully unlock well. Note time, date and well ID. Don a new pair of disposable nitrile gloves, and slowly begin to remove PDB; the line should be carefully spooled together and placed in a clean plastic bag large enough to contain all of the retrieval line. The line should not be allowed to contact the ground surface. Upon retrieval of PDB and harness, inspect bag carefully damage, and check serial number or bag ID against previously recorded numbers. The PDB can be opened by removing the threaded screw cap. If PDBs have no threaded screw cap, a pair of scissors can be used to cut a forty-five degree angle at corner of bag. If this type of bag has been supplied, make sure scissors are thoroughly pre-cleaned with Alconox and distilled water between sample locations.

Once bag has been opened, the laboratory supplied 40 ml HCL pre - preserved vial must be filled immediately. PDBs should not be allowed to come into contact with other PDBs, as cross contamination can occur between bags. The vials must be held at a slight

GROUNDWATER SAMPLE COLLECTION PROCEDURES FOR PASSIVE DIFFUSION BAG SAMPLERS

angle and filled slowly so little to no aeration of the groundwater can occur. Vials must be filled with zero headspace (no air bubbles) in the sample. To ensure this, after the vial has been filled, twist cap on tightly; turn vial upside down and lightly tap. If no air bubbles are visible, proceed with filling the next vial. After each vial bottle for that specific monitoring well have been filled, take remaining groundwater (if any) and record groundwater quality for pH, temperature, conductivity and ORP (oxidation reduction potential).

Following sampling, the empty PDBs can be disposed of as solid waste. If additional sampling events are being performed at the site, the PDBs for the next round of sampling can be placed into the well following the same procedures described above.

Page 3 of 4

GROUNDWATER SAMPLE COLLECTION PROCEDURES FOR PASSIVE DIFFUSION BAG SAMPLERS

Science, PLLC	PDB COLLECTION & RECOVERY LOG (PASSIVE DIFFUSION BAG)
Project Name:	WELL NUMBER:
Project Number:	Sample Matrix: Water
Client:	Weather:
WELL DATA:	
Casing Diameter (inches):	Casing Material:
Screened interval (fbTOR):	Screen Material:
Static Water Level (fbTOR):	Bottom Depth (fbTOR):
Elevation Top of Well Riser (fmsl):	Ground Surface Elevation (fm 500.86
Elevation Top of Screen (fmsl):	Stick-up (feet):
Depth of PDR in well (fbTOR):	Is PDR harness and line degrated to sample location? yes no
Condition of Well	Is PDB included at enter of screep?
Field Personnel	
Retrieval: Date of PDB retrieval. Time of PDB retrieval: Condition of PDB: If PDB contains visible adiment, COMMENTS:	check PDB integrity and re-sample.
	PREPARED BY:

Page 4 of 4