REPORT OF

GEOTECHNICAL INVESTIGATION

CORNING 2000 PROJECT
GLASS CENTER ADDITION AND RENOVATION
CORNING, NEW YORK

FOR

CORNING INCORPORATED CORNING, NEW YORK

1995

CORNING INCORPORATED
OCT 1 1 1995
FIELD OFFICE

GEOTECHNICAL, ENVIRONMENTAL AND TESTING ENGINEERS SINCE 1921

CORPORATE CENTER 4120 AIRPORT ROAD CINCINNATI, OHIO 45226 (513) 321-5816 FAX (513) 321-0294

October 6, 1995

W. O. 02092.200 jg

CORNING INCORPORATED
OCT 1 1 1995

FILD OFICE

Mr. Suresh Shah, P.E. Corning Incorporated HP-CB-09 Houghton Park Corning, New York 14831

> RE: Geotechnical Investigation Corning 2000 Project

Glass Center Addition and Renovation Centerway at Museum Way

Corning, New York

Dear Mr. Shah:

In accordance with your request, we have completed a geotechnical investigation for the proposed Corning 2000 Glass Center addition and renovation. The purpose of this work was to obtain additional test borings at the general locations selected by Arup Consulting Engineers and to supplement data obtained in previous investigations near the Glass Center. This data was then used for our design recommendations.

This work was performed in general accordance with our proposal dated April 14, 1995 and as authorized by Mr. Shah. The drilling phase of this work was requested by Mr. Shah on August 24, 1995.

Generally, favorable subsurface conditions were encountered for building support. We have provided recommendations for shallow foundations and relatively short drilled pier foundations. The following report describes the subsurface conditions encountered, engineering analyses performed and presents recommendations for foundation design, underpinning considerations and lateral earth pressures.

We appreciate this opportunity of performing this investigation for you. We are available to meet with the Design Team to review this report or to provide additional information, as necessary.

Thank you for your consideration.

Respectfully submitted,

H. C. NUTTING COMPANY

George C. Webb, P.E.

Vice President

Dr. Andrew Bodocsi, P. E.

Senior Consultant

CC: Mr. Leo Argiris - Arup Consulting Engineers

Mr. John Conaty - Smith-Miller-Hawkinson Architects

TABLE OF CONTENTS

	PAGE
INTRODUCTION	1
PROJECT DESCRIPTION	1.
PREVIOUS WORK	2
SUBSURFACE INVESTIGATION	3
SUBSURFACE CONDITIONS	4
EXISTING FILL	4
NATURAL SOILS	5
DISCUSSION AND RECOMMENDATIONS	6
FOUNDATION DESIGN	6
INCREASED LOAD ON EXISTING FOOTINGS	9
RECESSED SEATING	10
FLOOR SLAB SUPPORT	10
RETAINING WALLS	11
SUBSURFACE DRAINAGE	12
LIMITATIONS OF LIABILITY	

APPENDIX

TEST BORING TERMINOLOGY

SOIL CLASSIFICATION

TEST BORING LOGS - BORINGS 95-1 THRU 95-6A, 77-4, 77-7 THRU 77-10,

84-1, 84-2, 84-3, 84-5

LABORATORY TEST DATA

SMITH-MILLER ISOMETRIC VIEW OF CONSTRUCTION

TEST BORING LOCATION PLAN (ON FOUNDATION PLAN)

TEST BORING LOCATION PLAN (ARUP PLAN)

PLATE 3 - GLASS CENTER FOUNDATION PLAN - SEPTEMBER, 1950

SUMMARY OF GEOTECHNICAL DATA

INTRODUCTION

This report presents the results of the geotechnical investigation performed for the Corning 2000 project in Corning, New York. This work was performed in general accordance with Arup's April 4, 1995 geotechnical investigation requirements, our proposal dated April 14, 1995 and as authorized by Mr. Suresh Shah, P.E. The drilling phase of this work was authorized on August 24, 1995.

The investigation included soil test borings, laboratory testing, review of previously completed work in the area, engineering analyses and preparation of this report. The primary concern of this investigation was to determine the depth and quality of existing fill, the thickness and quality of the anticipated, near-surface alluvial lean clay and the depth to competent outwash sand and gravel. The primary goals of this project were to provide recommendations for foundation and floor slab support, evaluate underpinning requirements in the auditorium, and provide lateral earth pressure recommendations for below grade structure.

PROJECT DESCRIPTION

The Corning 2000 project is a renovation/expansion of the existing Corning Glass Center located at the northwest corner of Centerway and Museum Way in Corning, New York. The attached Boring Location Plan shows the footprint of the proposed expansions on the east and west sides of the existing Glass Center. We have attached the architect's concept elevation views which illustrate proposed construction at the time of this report.

It is proposed to renovate the existing Corning Glass Center which will include construction of two additions and lowering the auditorium floor (for recessed seating). The "West Bridge" will be a two-story addition of steel frame construction which will be constructed on the west side of the existing Glass Center. Finish floor level is proposed at elevation 922, matching existing ground floor elevation. The "West Bridge" will be trapezoidal in shape, encompassing approximately 5500 sq. ft. Proposed building dimensions measure 212 ft. in the north-south direction by 9 ft. at the south end and by 40 ft. at the north end. Column loads less than 200 kips are expected.

The proposed "Visitor Center" will be a two-story steel frame structure constructed on the east side of the existing Glass Center. This building will be irregularly shaped, having maximum dimensions of 264'x54' and having an approximate 12,500 sq. ft. footprint. Large deep trusses having a maximum 70 ft. clear span are proposed. Relatively heavy column loads are anticipated, ranging from 200 to 800 kips (maximum load at column A-9).

The auditorium at the ground floor level of the existing Glass Center will be lowered approximately 5 ft. to accommodate the proposed recessed seating. Underpinning requirements of existing footings will be evaluated due to the proposed excavation.

PREVIOUS WORK

The existing Glass Center was constructed in 1950. Attached on Plate 3 is a reduced copy of the Corning original foundation drawing 12668-350. This drawing shows as-built bottom of footing elevations which indicate significant lowering of footings was performed in order to bear directly on the basement outwash sand and gravel. Bottom of footing elevations vary from 911.5 to 919, indicating that up to 10.5 ft. undercut was made to expose the bearing stratum.

We have searched our archives and no geotechnical investigation was found for the original Glass Center construction. However, several subsequent subsurface investigations have been performed in the general vicinity and appropriate borings have been plotted on the location plan and used in this investigation. These previous investigations include:

- 1966 Nutting geotechnical investigation for "B" Building addition
- 1977 Nutting geotechnical investigation for the Museum of Glass
- 1984 Empire soil test borings for Steuben Glass expansion

Complete copies of these reports were recently submitted to Corning for review.

SUBSURFACE INVESTIGATION

The existing test boring data was supplemented by an additional 7 test borings which were completed at the locations shown on the attached Boring Location Plan. The borings were drilled at general locations requested by Arup Consulting Engineers with the exception of eliminating the boring scheduled at the south end of the "West Bridge", due to previous borings 77-7 and 77-8. Also, as requested, a boring was added at the southeast corner of the existing Glass Center, for future expansion purposes.

Test boring locations were staked in the field by Evans Surveying, Corning, New York. Test boring elevations were interpolated by the writer from the December, 1994 Evans topographic survey, which has numerous spot elevations and 1 ft. contours.

The test borings were drilled by CMT Laboratories, State College, Pennsylvania under the direction of H. C. Nutting. The drilling work was subcontracted to CMT to minimize mobilization cost. Test boring depth was originally scheduled at 26.5 ft., however refusal condition was encountered at shallower depths in 5 of the borings, at approximately 22 ft. below grade.

The borings were drilled using a truck-mounted drill rig between September 5 through 7, 1995. The borings were advanced between samples using 3.25" ID hollow-stem augers. Continuous soil sampling was taken through the existing fill and then at 2.5 ft. intervals to 21.5 ft. Below 21.5 ft., samples were obtained at 5 ft. intervals or when auger refusal was met. One Shelby tube sample was recovered from the upper cohesive alluvium.

The recovered soil samples were placed and sealed in glass jars which were shipped to our Soil Mechanics Laboratory in Cincinnati. The relatively undisturbed Shelby tube sample was returned to the CMT Lab in State College, Pennsylvania for triaxial and consolidation testing.

Laboratory testing was performed on representative samples to determine the soil index properties. Laboratory testing included natural moisture content, Atterberg

Limits, loss on ignition, a UU triaxial compression test and a consolidation test. The laboratory test results are shown both on the attached test boring logs and in tabular form. We have also included a consolidation test which was performed in the 1977 Glass Museum investigation.

The attached logs were reclassified according to USCS Classification by the project engineer using the lab data, driller's notes and review of the soil samples. Attached in the Appendix of this report is important information describing the purpose and methods used in this investigation, including the basis and limitations.

SUBSURFACE CONDITIONS

The proposed Glass Center additions are located in relatively flat, landscaped lawn and paved areas surrounding the existing Glass Center. Generally, the site is located within an ancestral valley containing alluvium outwash sand and gravel.

Somewhat variable near-surface conditions were encountered at the boring locations. Specifically, the soils encountered in the test borings consist of existing fill soil, alluvial silt and lean clays, alluvial clayey fine sand and outwash sand, and gravel. We have graphically shown the results of the recent test borings and 9 previous vicinity borings on the attached Summary of Geotechnical Data sheet. This drawing is available on AutoCAD 12 disk, if needed.

EXISTING FILL

Existing fill was encountered in each of the 16 test borings drilled in the general study area. The fill is variable, including firm fine to coarse sand and gravel, cinders loose organic silt with glass fragments and wood. The fill thickness ranged from 2.5 to 8.5 ft. with standard penetration N-values ranging from 8 to 41, indicating significant variation within the existing fill soil.

A substantial 12" thick concrete slab (the West Glass Center apron) was encountered in both borings 95-1 and 95-2 in the vicinity of the "West Bridge". The reason for its thickness is not clear, unless designed for anticipated heavy truck loading.

NATURAL SOILS

The fill is typically underlain by cohesive alluvial soils with the exception of borings 95-2 and 77-7. The thickness of the cohesive alluvium varied from 0.8 ft. (boring 77-9) to 9.5 ft. (borings 95-5, 95-6 and 96-6A). This alluvium is typically of low plasticity, ranging from a clayey silt to a lean clay. Atterberg limits show a liquid limit ranging from 26% to 29% and a plasticity index of 6 to 8. The soil ranges in consistency from medium stiff to very stiff. Pocket penetrometer values vary from 1 to 4.5+ tsf. A UU triaxial test was performed on Shelby tube samples from borings 95-4 and 77-3. Both laboratory tests showed a compressive strength of approximately 1 tsf. Consolidation tests performed on this soil showed a preconsolidation pressure of approximately 1.3 to 1.6 tsf. This cohesive alluvium is considered to be moderately compressible.

The cohesive alluvium is locally underlain by a loose to medium dense silty fine sand alluvium, as encountered only in borings 95-3 and 95-4. Otherwise, the alluvium is underlain by medium dense to very dense fine to coarse sand and gravel outwash. This outwash deposit has a greater silt content near the surface and becomes coarser with depth. The outwash contains cobbles and boulders as indicated by high blow counts and refusal condition at several of the borings. Standard penetration N-values range from 6 to 163, or refusal condition. The lower N-values could be related to disturbance caused by heave within the augers when drilling below the water table.

Groundwater levels were recorded but were variable during the different periods of drilling. Fluctuation of the water table is largely related to the Chemung River, located approximately 1000 ft. south of the Corning 2000 project. The test borings drilled in this investigation (September) showed water levels ranging from elevation 903 to 906. However, water levels between elevation 914 to 915 were recorded in borings drilled in March and May, when river stage is normally high. Rapid fluctuation of the water table with the rise and fall of the Chemung River is expected due to the high permeability of the outwash. Our records show Buildings "A", "B" and "C", the Corning Credit Union and the northwest portion of

the Glass Center have basements. Any flooding or seepage experienced into these basements could also be helpful when evaluating the impact of seasonal water table fluctuations.

No piezometer was installed due to the high permeability of the outwash sand and gravel and the fast rate of equilibrating of water table in the boreholes.

DISCUSSION AND RECOMMENDATIONS

The presence of the existing fill on locally weak alluvium will adversely impact foundation design and construction. Several foundation options have been provided for consideration.

FOUNDATION DESIGN

Both shallow spread footing foundations and shallow drilled pier foundations can be considered for building support. Four options are presented.

A. Shallow foundations bearing on lean clay.

All foundations must extend through the existing fill due to its variability and compressibility. However, at many locations the fill soil is encountered above the proposed finish floor elevation and will be removed during the course of construction.

Shallow footings bearing directly on stiff to very stiff lean clay alluvium can be based on a net allowable bearing capacity of 4000 psf. As noted above, the consistency of this alluvium is variable, which will likely require some local undercutting to extend below weaker, wetter natural soils to expose the stiff to very stiff lean clay alluvium.

Settlement calculations performed on conditions represented by boring 95-6 with a bottom of footing elevation 919, showed an approximate 1½" to 2" of settlement should be expected from an 800 kip column load. These calculations considered a sustained load of 75 percent of the total column load.

The natural clayey silts and lean clays have a low plasticity and are therefore easily disturbed under construction traffic, especially in wet conditions. Natural soils disturbed during construction will require undercutting to minimize differential settlement.

B. Shallow foundations bearing on outwash sand and gravel.

Alternately, footings could be lowered to bear directly on undisturbed outwash sand and gravel. This will result in variable footing depths. Footings bearing directly on medium dense outwash sand and gravel can be designed for a net allowable bearing capacity of 6000 psf. Settlement calculations performed at boring 95-6 indicate less than ½" settlement would be expected under an 800 kip column load.

C. Shallow footings on controlled fill.

Alternately, the existing cohesive alluvium could be excavated at the column footing locations and be replaced with flowable fill (CLSM) or quality controlled compacted sand and gravel which is locally available. The fill should be compacted to a minimum of 98% Standard Proctor (ASTM D 698) which would allow footings to be designed for an allowable bearing capacity of 6000 psf. This option would require overexcavation such that the bottom of excavation measures the footing width plus the depth below bottom of footing. This overexcavation is recommended to allow for pressure distribution and dissipation below the footing. This alternative would allow for a more uniform minimum bottom of footing elevation.

D. Shallow drilled piers

A fourth option would include straight shaft drilled piers which would extend the building loads to the underlying outwash sand and gravel. Minimum 30" diameter drilled piers are recommended. Drilled piers extending a minimum of 1 pier diameter into the bearing stratum can be designed for a net allowable bearing pressure of 8000 psf. Belling in the sand and gravel would not be possible due to caving. Similarly, temporary casing might be required

for maintaining the pier hole during construction, especially through granular fill or loose fine sand alluvium. Difficulties could be encountered in establishing proposed pier tip elevations if construction is performed in the spring when groundwater levels are high.

Tabulated below are the recommended minimum bearing elevations for the various foundation alternatives.

BORING NO.	PROPOSED FINISH FLOOR ELEVATION	MINIMUM BOTTOM OF FOOTING FOR 4000 psf	MINIMUM BOTTOM OF FOOTING FOR 6000 psf	MINIMUM PIER TIP ELEVATION FOR 8000 psf
95.1	922	918	917	914
95.2	922	* NA	916	913
95.3	922	* NA	919	916
95.4	922	* NA	917	914
95.5	922	919	916	913
95.6	922	919	915	912
95.6A	922	919	916	913
77-4	922	918	916	913
77-7	922	* NA	919	915
77-8	922	* NA	920	910
77-9	922	* NA	920	913

^{*} NA = Not Applicable

Exterior footings should extend a minimum of 48" below exterior grade, for frost protection.

Generally, we recommend that shallow foundations bearing directly on the outwash sand and gravel be used, to minimize differential settlement. This is the approach which was successfully used during the original construction, as noted on the original foundation drawings.

If shallow foundations are used for support, the exposed bearing soil should be inspected by a qualified geotechnical representative to confirm that an adequate bearing stratum is exposed for footing support. Construction drawings will need to clearly identify the bearing soil upon which footings are designed. Inspection should include visual examination and hand auger borings to confirm consistency of the bearing stratum. Hand auger borings should extend at least 3 ft. below

bottom of footing. Local areas of undercut should be expected. Minimum footing subgrade elevation can be reestablished in undercut areas using either lean concrete or quality controlled compacted backfill which is uniformly compacted to at least 98% Standard Proctor.

INCREASING LOAD ON EXISTING FOOTINGS

The 1950 foundation drawings indicate the existing footings were lowered to bear on natural sand and gravel and were designed based on an allowable bearing capacity of 4000 psf.

Analyses performed in this investigation indicate footings bearing in the natural medium dense alluvial sand and gravel can be sized for an allowable bearing capacity of 6000 psf. Higher capacities are available within the dense outwash sand and gravel. Negligible settlement (less than 1/4") is expected if footing loads are increased from 4000 to 6000 psf and the footings are bearing on sand.

Footings which will receive additional load should be inspected or at least probed during construction to confirm that they are bearing on firm natural sand. This could be accomplished by hand digging along side of the footing to expose the bearing soil. Alternately, the footing depth could be probed with a No. 4 rebar to determine top of footing elevation. A hand auger boring could then be made outside the footing to determine the bearing soil at footing subgrade elevation.

If the existing footing is bearing on natural clay, a greater amount of settlement would be expected from additional load. We are available to evaluate each footing_which will have an increased load, when that information becomes available. However, due to the variable thickness of the lean clay alluvium, it will be difficult to determine with confidence the bearing soil.

It is our recommendation to base design on the assumption that all footings have extended to sand and gravel, as indicated on the 1950 foundation drawings. If clay soils are encountered during construction then the existing footings can either be underpinned to the sand and gravel or factual data be determined on the thickness of the cohesive soil such that settlement due to additional loading can be calculated.

RECESSED SEATING

An 80'x20' recessed seating area is proposed between columns F-3.4 to F-7.2 in the existing auditorium. Floor level in the pit has been established at elevation 918.5. This construction will be within 2 ft. of the existing column F-3 and 13 ft. south of existing column F-8.

The original foundation drawings show an elevation 918.6 subgrade for the existing footings. Test borings 95-1, 95-3, 95-6A, 77-8 and 77-10 (closest borings to this area) show variable soil conditions. Borings 95-1 and 95-6A show stiff to very stiff lean clay at elevation 918.6 whereas the other 3 borings show a medium dense sand and gravel.

Because of the expected granular bearing soil, underpinning requirements should be determined wherever the edge of the excavation is within a 2H:1V projection from bottom of footing. This relatively gentle slope is due to the raveling potential of the founding sand and gravel and is in compliance with current BOCA Code.

Additional exploration should be made during demolition/renovation to expose and determine actual bottom of footing elevation at footings F-3 and F-8. Because the proposed bottom of footing is so close to the proposed bottom of pit elevation, significant underpinning is not expected. If underpinning is required, simple mass concrete pit underpinning would be appropriate to lower the 2H:1V projection.

A new column F-7.5 is proposed immediately north of the recessed pit. This footing should extend a minimum of 1 ft. below pit subgrade elevation to bear on undisturbed sand and gravel.

FLOOR SLAB SUPPORT

The proposed construction will remove the majority of the existing fill to expose either outwash sand and gravel or alluvial lean clays at floor slab subgrade elevation. All existing fill should be undercut within the building additiona footprint. The exposed soil should be evaluated by a qualified geotechnical representative

to determine local areas of undercut. The subgrade surface should be proof rolled and compacted as needed in order to provide a non-yielding floor slab subgrade.

It is recommended that a minimum 6" thick layer of free-draining granular base (sand and gravel) be provided above the floor slab subgrade soil in order to provide a capillary break and to allow for a uniform floor slab thickness. Alternately, a 6" thick lift of compacted crushed stone could be used to establish floor slab subgrade. The benefit of using the crushed stone is that a higher design modulus of subgrade reaction would be available for support and it would also allow concrete truck traffic with minimum disturbance, and pumping of the floor slab concrete would be avoided.

If a crushed stone aggregate base is used, it is recommended that it be compacted to at least 98% Standard Proctor. This aggregate base would have a modulus of subgrade reaction of 200 pci. If crushed some was not used, the compacted cohesive soil subgrade would have a subgrade modulus of 120 pci.

RETAINING WALLS

Lateral earth pressures will be dependent on the type of backfill as well as the amount of movement which can be tolerated in the retaining wall.

Basement wall design should be based on a non-yielding wall which is fixed both at the top and bottom of the wall. Free-draining granular backfill should be placed behind the basement wall. It is recommended that a minimum 4 to 5 ft. wide blanket be placed behind the wall to minimize lateral earth pressures. Granular backfill which is compacted to at least 95% Standard Proctor Density would result in a uniform lateral earth pressure of 30H (psf). The bankrun sand and gravel should be placed concurrent with structural fill. Field control should be provided such that hand operated vibratory plate or hand operated vibratory roller equipment is used within 4 ft. of basement walls. The use of heavy self-propelled compaction equipment immediately against basement walls should not be permitted as it will exert lateral earth pressure significantly higher than those recommended for design.

Cantilever retaining walls which are free to move at the top would have a lower lateral earth pressure. It is recommended that cantilever retaining walls be designed for an equivalent fluid pressure of 40 pcf provided a minimum of 4 ft. of free-draining granular backfill as placed behind the wall. Further, lateral pressures acting on the wall due to surcharge should be calculated based on ½ of the surcharge load acting horizontally.

Specific recommendations can be provided for conditions which develop during final design.

SUBSURFACE DRAINAGE

It is recommended that perimeter drainage systems be constructed for any below grade construction. The drainage system should consist of 4" diameter perforated or slotted rigid PVC pipe which is placed on the outside wall and is drained in a positive fashion. The purpose of this drain would be collect surface water which travels along the outside of the building wall during snow melt or wet weather. The quantity of flow is expected to be minimal, but positive relief is recommended to avoid hydrostatic pressures acting on the basement or retaining wall.

LIMITATIONS OF LIABILITY

OUR WARRANTY

We warrant that the services performed by The H. C. Nutting Company are conducted in a manner consistent with that level of care and skill ordinarily exercised by members of the profession currently practicing under similar conditions. NO OTHER WARRANTIES, EXPRESSED OR IMPLIED, ARE MADE. While the services of The H. C. Nutting Company are a valuable and integral part of the design and construction teams, we do not warrant, guarantee, or insure the quality or completeness of services provided by other members of those teams, the quality, completeness, or satisfactory performance of construction plans and specifications which we have not prepared, nor the ultimate performance of building site materials.

SUBSURFACE EXPLORATION

Subsurface exploration is normally accomplished by test borings; test pits are sometimes employed. The method of determining the boring location and the surface elevation at the boring is noted in the report. This information is represented on a drawing or on the boring log. The location and elevation of the boring should be considered accurate only to the degree inherent with the method used.

The boring log includes sampling information, description of the materials recovered, approximate depth of boundaries between soil and rock strata and groundwater data. The log represents conditions specifically at the location and time the boring was made. The boundaries between different soil strata are indicated at specific depths; however, these depths are in fact approximate and dependent upon the frequency of sampling. The transition between soil strata is often gradual. Water level readings are made at the times and under conditions stated on the boring logs. Water levels change with time and season. The borehole does not always remain open sufficiently long for the measured water level to coincide with the groundwater table.

LABORATORY AND FIELD TESTS

Tests are performed in accordance with specific ASTM Standards unless otherwise indicated. All determinations included in a given ASTM Standard are not always required and performed. Each test report indicates the measurements and determinations actually made.

ANALYSIS AND RECOMMENDATIONS

The geotechnical report is prepared primarily to aid in the design of site work and structural foundations. Although the information in the report is expected to be sufficient for these purposes, it is not intended to determine the cost of construction or to stand alone as a construction specification.

Report recommendations are based primarily on data from test borings made at the locations shown on a boring location drawing included. Soil variations may exist between borings and these variations may not become evident until construction. If significant variations are then noted, the geotechnical engineer should be contacted so that field conditions can be examined and recommendations revised if necessary.

The geotechnical report states our understanding as to the location, dimensions and structural features proposed for the site. Any significant changes in the nature, design, or location of the site improvements MUST be communicated to the geotechnical engineer so that the geotechnical analysis, conclusions, and recommendations can be appropriately adjusted.

The geotechnical engineer should be given the opportunity to review all drawings that have been prepared based on his recommendations.

CONSTRUCTION MONITORING

Construction monitoring is a vital element of complete geotechnical services. The field engineer / inspector is the owner's "representative" observing the work of the contractor, performing tests as required in the specifications, and reporting data developed from such tests and observations. THE FIELD ENGINEER OR INSPECTOR DOES NOT DIRECT THE CONTRACTOR'S CONSTRUC-TION MEANS, METHODS, OPERATIONS OR PER-SONNEL. He does not interfere with the relationship between the owner and the contractor and, except as an observer, does not become a substitute owner on site. He is responsible for his own safety but has no responsibility for the safety of other personnel at the site. He is an important member of a team whose responsibility is to watch and test the work being done and report to the owner whether that work is being carried out in general conformance with the plans and specifications.

APPENDIX

TEST BORING TERMINOLOGY

SOIL CLASSIFICATION

TEST BORING LOGS - BORINGS 95-1 THRU 95-6A, 77-4, 77-7 THRU 77-10, 84-1, 84-2, 84-3, 84-5

LABORATORY TEST DATA

SMITH-MILLER ISOMETRIC VIEW OF CONSTRUCTION

TEST BORING LOCATION PLAN (ON FOUNDATION PLAN)

TEST BORING LOCATION PLAN (ARUP PLAN)

PLATE 3 - GLASS CENTER FOUNDATION PLAN - SEPTEMBER, 1950

SUMMARY OF GEOTECHNICAL DATA

A description of terminology and symbols used in the logs of test borings, and a copy of ASTM D 2487, "Classification of Soils for Engineering Purposes", are included in the following two pages.

Readers of this report who wish an in-depth discussion on the basis for geotechnics, including procedures used in subsurface exploration, laboratory testing, and geotechnical analyses are referred to the H. C. Nutting Geotechnical and Test Engineering Manual. Those readers not having a copy of this manual may obtain one at nominal cost by contacting the H. C. Nutting Company at (513) 321-5816.

STANDARD PENETRATION TEST

THE PENETRATION RESISTANCE, OR N-VALUE AS IT IS COMMONLY REFERRED TO, IS THE SUMMATION OF THE NUMBER OF BLOWS REQUIRED TO EFFECT TWO SUCCESSIVE 6" PENETRATIONS OF THE 2" SPLIT BARREL SAMPLER. THE SAMPLER IS DRIVEN WITH A 140 LB. WEIGHT FALLING 30" AND IS SEATED TO A DEPTH OF 6" BEFORE COMMENCING THE STANDARD

THE STANDARD PENETRATION TEST IS PERFORMED IN COMPLIANCE WITH PROCEDURES AS SET FORTH IN ASTM D-1586.

TERMINOLOGY

GRAIN SIZE

SOIL FRA	CTION	PARTICLE SIZE	U.S. STANDARD SIEVE SIZE
BOULDE		LARGER THAN 12"	LARGER THAN 12"
COBBLE!	ŝ	3/4° TO 3°	3/4° TO 3°
GRAVEL	: COARSE	3/4" TO 12"	3/4" TO 12"
	FINE	4.75 mm TO 3/4"	# 4 to 3/4"
SAND:	COARSE	2.00 mm TO 4.75 mm	# 10TO #4
. •	MEDIUM	0.425 mm TO 2.0 mm	#.40 TO #10
	FINE	0.075 mm TO 0.425 mm	# 200 TO #40
FINES:	(SILTS & CLAYS)	SMALLER THAN 0.075 mm	SMALLER THAN NO. 200

PLASTICITY CHARACTERISTICS DIFFERENTIATE BETWEEN SILTS AND CLAYS

RELATIVE DENSITY

TERM*	'N' VALUE
VERY LOOSE	0 - 4
LOOSE	4 - 10
MEDIUM DENSE	10 - 30
DENSE	30 - 50
VERY DENSE	OVER 50

^{*} THESE ARE USUALLY BASED ON AN EXAMINATION OF SOIL SAMPLES PENETRATION RESISTANCE AND SOIL DENSITY DATA.

RELATIVE PROPORTIONS OF COHESIONLESS SOILS

PROPORTIONAL	
TERM	

DEFINING RANGE BY PERCENTAGE OF WEIGHT

TRACE

8%-14% 15%-29% MAJOR CONSTITUENT GREATER THAN 30 %

CONSISTENCY

TERM

INDENTIFICATION PROCEDURE

SOFT

EASILY PENETRATED SEVERAL INCHES

BY THUMB

MEDIUM STIFF

PENETRATED SEVERAL INCHES BY THUMB WITH MODERATE EFFORT

STIFF

READILY INDENTED BY THUMB, BUT PENETRATED ONLY WITH GREAT EFFORT

VERY STIFF

READILY INDENTED BY THUMBNAIL

HARD

INDENTED WITH DIFFICULITY BY

THUMBNAIL

RELATIVE MOISTURE DESCRIPTION

DRY MOIST APPROPRIATE FOR SOIL WHICH IS NOTICEABLY BELOW OPTIMUM MOISTURE

SOIL NEAR OPTIMUM MOISTURE BUT OBVIOUSLY LESS THAN THE LIQUID LIMIT

WET

MOISTURE CONTENT NEAR OR EXCEEDING THE LIQUID LIMIT

SATURATED

APPROPRIATE FOR SOIL WHICH LIES BELOW THE WATER TABLE

SYMBOLS

DRILLING AND SAMPLING

RC - ROCK CORING: SIZE AW, BW, NW, NX, 2' W

RQD - ROCK QUALITY DESIGNATOR

FT - FISH TAIL

DC - DROVE CASING

C - CASING: SIZE 2-1/2", NW, 4", HW

CW - CLEAR WATER DM - DRILLING MUD

HSA - HOLLOW STEM AUGER

FA - FUGHT AUGER

HA - HAND AUGER COA - CLEAN-OUT AUGER

SS - 2" DIAMETER SPLIT BARREL SAMPLE

ST - 3" DIAMETER THIN-WALLED TUBE SAMPLE

PT - 3" DIAMETER PISTON TUBE SAMPLE

AS - AUGER SAMPLE

WS - WASH SAMPLE

PTS - PEAT SAMPLE PS - PITCHER SAMPLE

NR - NO RECOVERY

S - SOUNDING

PMT - BOREHOLE PRESSUREMETER TEST

VS - VANE SHEAR TEST

WPT - WATER PRESSURE TEST

ATV - ALL TERRAIN VEHICLE

R - REFUSAL CONDITION

LABORATORY TESTS

PP - PENETROMETER READING, TONS/SQ. FT.

QC - UNCONFINED STRENGTH TONS/SQ. FT.

W - MOISTURE CONTENT, %

LL - LIQUID LIMIT, %

PL - PLASTIC LIMIT, %

SL - SHRINKAGE LIMIT. %

LL - LOSS ON IGNITION, %

D - DRY UNIT WEIGHT, LBS./CU. FT.

PH - MEASURE OF SOIL ALKALINITY OR ACIDITY

WATER LEVEL **MEASUREMENT**

NW - NO WATER ENCOUNTERED

WD - WHILE DRILLING

BCR - BEFORE CASING REMOVAL ACR - AFTER CASING REMOVAL

CM - CAVED AND MOIST

BF - BACKFILLED UPON COMPLETION

CLASSIFICATION OF SOILS FOR ENGINEERING PURPOSES

		M Designation: D 2		,	
		Unified Soil Classifi		Soil C	Classification
	Criteria for Assigning G	iroup Symbols and Group Na	ames Using Laboratory Tests ^A	Group Symbol	Group Name ⁸
Coarse-Grained Soils More than 50% retained on	Gravels More than 50% coarse	Clean Gravels Less than 5% fines ^C	Cu≥4 and 1≤Cc≤3 [£]	GW	Well graded gravel ^f
No. 200 sieve	fraction retained on No. 4 sieve	Less than 5% tines*	Cu<4 and/or 1>Cc>3 ^E	GP	Poorly graded grave
		Gravels with Fines More than 12% fines ^C	Fines classify as ML or MH	GM	Silty gravel ^{F,G,H}
		More tright 1270 lates	Fines classify as CL or CH	GC	Clayey gravel ^{F,G,H}
	Sands 50% or more of coarse	Clean Sands Less than 5% fines ^D	Cu≥6 and 1≤ Cc≤3 [£]	sw	Well-graded sand
	fraction passes No. 4 sieve	Less man 5% mes	Cu<6 and/or 1>Cc>3 ^E	SP	Poorly graded sand
	4 516ve	Sands with Fines More than 12% fines	Fines classify as ML or MH	SM	Sifty sand ^{G,H,I}
		More man 12% mes	Fines classify as CL or CH	sc	Clayey sand ^{G,H,I}
Fine-Grained Soils 50% or more passes the No. 200 sieve	Silts and Clays Liquid limit less than 50	inorganic	PI > 7 and plots on or above "A" line"	CL	Lean clay ^{K,L,M}
140. 200 Sieve			PI <4 or plots below "A" line ^J	ML.	Sint ^{K L,M}
		organic	Liquid limit - oven dried <0.75 Liquid limit - not dried	OŁ.	Organic clay ^{K,L,M,N} Organic silt ^{K,L,M,O}
	Sifts and Clays Liquid limit 50 or more	inorganic	Pl plots on or above "A" fine	СН	Fat clay ^{K L M}
	Equid with 50 of Those		PI plots below "A" line	мн	Elastic silt ^{K L M}
	·	organic	Liquid limit - oven dried <0.75	он	Organic clay ^{K,L,M,P}
	•		Liquid limit - not dried	3 () () () () () () () () () (Organic silt ^{K L M O}
ighly organic soils	Primarily c	organic matter, dark in color,	and organic odor	PT	Peat

^ABased on the material passing the 3-in, (75-mm) sieve ^Bif field sample contained cobbles or boulders, or both, add

with cobbles or boulders, or both" to group name.

^CGravels with 5 to 12% lines require dual symbols:

GW-GM well-graded gravel with sitt GW-GC well-graded gravel with clay GP-GM poorly graded gravel with sit

GP-GC poorly graded gravel with clay

DSands with 5 to 12% fines require dual symbols:

SW-SM well-graded sand with silt

SW-SC well-graded sand with clay

SP-SM poorly graded sand with sittle several series and series series series and with clay

 E Cu = D_{60}/D_{10} Cc = $\frac{(O_{30})^{2}}{D_{10} * D_{60}}$

^FIf soit contains≥15% sand, add "with sand" to group name

 $^{G}\mbox{H}$ times classify as CL-ML, use dual symbol GC-GM, or SC-SM

 $^{\it H}$ If times are organic, add "with organic fines" to group name.

If soil contains≥15% gravel, add "with gravel" to group name

^JIf Atterberg limits plot in hatched area, soil is a CL-ML, silty clay.

KII soil contains 15 to 29% plus No. 200, add "with sand" or "with gravet," whichever is predominant.

Lift soif contains≥30% plus no. 200, predominantly sand, add "sandy" to to group name.

Mit soil contains≥30% plus No. 200, predominantly gravel, add "gravelty" to group name.

^NPi≥4 and plots on or above "A" line

OPt≪4 or plots below "A" line.

PI plots on or above "A" line.

OPI plots below "A" line

 $C_{u} = \frac{D_{40}}{D_{10}} = \frac{15}{0.075} = 200 \qquad C_{c} = \frac{\left(D_{50}\right)^{2}}{D_{10} \times D_{40}} = \frac{\left(2.5\right)^{2}}{0.075 \times 15} = 5.6$

Reorder No. 106-0253

CORPORATE CENTER - 4120 AIRPORT ROAD CINCINNATI, OH 45226 (513) 321-5816 FAX: (513) 321-0294

EMPLOYEE OWNED

GEOTECHNICAL, ENVIRONMENTAL AND TESTING ENGINEERS SINCE 1921

LOG OF TEST BORING

APPALACHIAN REGION 912 MORRIS STREET CHARLESTON, WV 25031 (304) 344-0821 FAX: (304) 342-4711

BLUEGRASS REGION 3940 OLYMPIC BLVD, STE 350 ERLANGER, KY 41018 (606) 283-9914 FAX: (606) 282-5415

CENTRAL OHIO REGION CENTRAL OHIO REGION 790 MORRISON ROAD COLUMBUS, OH 43004 (614) 863-3113 FAX: (614) 863-0475

CLIENT:

Corning, Inc.

BORING NO.:

95-1

PROJECT:

DATE STARTED:

9-7-95

BORING LOCATION:

Corning 2000 Project (Glass Center Addition) As shown on plan

DATE COMPLETED:

9-7-95

ELEVATION REFERENCE:

Evans Survey dated December 1994

(1' contour interval)

WORK ORDER NO.:

						SAM	PLE		SOII	L PROPE	RTIES
ELEV (Feet)	DEPTH (Feet)		DESCRIPTION OF MATERIALS	*	TYPE	DEPTH (Feet)	BLOW PER 6 INCHES	RECOVERY (Inches)	W (%)	LL/PL (%)	PP* (tsf)
921.9	0.0	1.0'	Concrete slab	1	ss	0.0-1.0					
920.9	1.0	2.0'	Brown silty fine to coarse sand and	1a	ss	1.0-3.0	9-21-22-19	24			
918.9	3.0	1.5'	gravel (fill), moist-dense Brownish gray SILTY CLAY, moist-very	2	SS	3.0-4.5	19-8-9	18			4
917.4	4.5	- 1.5'	stiff Brown and gray silty fine to coarse	3	SS	4.5-6.0	14-15-17	18			
915.9	6.0	5.0'	SAND AND GRAVEL, moist-dense Brown fine to coarse SAND AND GRAVEL, moist-medium dense	4 5 6	SS SS SS	6.0-7.5 7.5-9.0 9.0-11.0	14-12-12 11-8-10 7-8-10-7	18 18 24	9		
910.9	11.0	1.5'	Brown and gray fine to coarse SAND AND GRAVEL, little silt, wet-medium	7	SS	11.0-12.5	10-14-14	18			
909.4	12.5	3.5'	dense Brown fine to coarse SAND AND	8 9	SS SS	12.5-14.0 14.0-16.0	24-30-27 18-20-14-16	18 24	8		
905.9	16.0	1.5'	GRAVEL, moist-very dense to dense Brown fine to coarse SAND AND	10	ss	16.0-17.5	8-12-10	18			
904.4	17.5	1.5'	GRAVEL, saturated-medium dense Gray fine to medium GRAVEL with coarse SAND, wet-medium dense	11	SS	17.5-19.0	9-11-13	18	11		
902.9	19.0	7.5'	Gray fine to medium GRAVEL with	12	SS	19.0-21.0	8-12-12-19	18			
895.4	26.5		coarse SAND, saturated-dense TEST BORING COMPLETED	13	SS	25.0-26.5	22-18-22	18			

Ger	neral Notes	Remarks	Water Level Obs	Water Level Observations				
Driller	R. Rager, K. Goss - CMT		łmmediate	- 19 Ft.				
Rig No.	MU-2	Drilling performed by CMT Laboratories, State College, Pa.	At Completion	19 Ft.				
Rig Type	Truck		After 24 Hours	BF Ft.				
Method	4" HSA		Water Used in drilling	None Fi				
Sampling	2" SS							
ia			(Measured from grou	nd surface)				

CORPORATE CENTER - 4120 AIRPORT ROAD CINCINNATI, OH 45226 (513) 321-5816 FAX: (513) 321-0294

EMPLOYEE OWNED

GEOTECHNICAL, ENVIRONMENTAL AND TESTING ENGINEERS SINCE 1921

LOG OF TEST BORING

APPALACHIAN REGION 912 MORRIS STREET CHARLESTON, WV 25031 (304) 344-0821 FAX: (304) 342-4711 BLUEGRASS REGION 3940 OLYMPIC BLVD, STE 350 ERLANGER, KY 41018 (606) 253-8914 FAX: (606) 282-5415 CENTRAL OHIO REGION 790 MORRISON ROAD COLUMBUS, OH 43004 (614) 863-3113 FAX: (614) 863-0475

CLIENT:

Corning, Inc.

BORING NO.:

95-2

PROJECT:

Corning 2000 Project (Glass Center Addition)

DATE STARTED:

BORING LOCATION:

As shown on plan

9-7**-**95 9-7**-**95

ELEVATION REFERENCE:

Evans Survey dated December 1994

(1' contour interval)

WORK ORDER NO.:

DATE COMPLETED:

				.,		SAM	PLE		SOII	PROPE	RTIES
ELEV (Feet)	DEPTH (Feet)		DESCRIPTION OF MATERIALS	#	TYPE	DEPTH (Feet)	BLOW PER 6 INCHES	RECOVERY (Inches)	W (%)	LL/PL (%)	PP* (tsf)
922.0	0.0	1.0'	Concrete slab	1	ss	0.0-1.0	•				
		,,,	501104 510 5100	·							
921.0	1.0	2.0'	Brown silty fine to coarse sand and gravel (fill), moist-dense	1a	SS	1.0-3.0	18-21-20-15	24			
919.0	3.0		graver (my, moior derioe	2	SS	3.0-4.5	11-6-8	18			
5,5,0	0.0	3.0	Brown fine to coarse SAND AND	3	SS	4.5-6.0	6-4-4	18			
		3.0	GRAVEL, medium dense to loose	3	33	4.5-0.0		10			
916.0	6.0			4	SS	6.0-7.5	4-4-8	18	13		
		-3.0'	Brown and gray silty fine to coarse SAND AND GRAVEL, medium dense	5	SS	7.5-9.0	8-9-8	18			
913.0	9.0		5. 1. 15 7. 1. 5 5. 5 1. 5 L. 5 . 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	6	SS	9.0-11.0	8-9-10-8	24			
0.0.0	5.0	2.0'	Brown and gray silty fine to coarse SAND AND GRAVEL, wet-medium dense			0.0 11.0	0.0.10.0	6-T			
911.0	11.0			7	SS	11.0-12.5	8-10-11	18	20	26/20	
] - 11.	, ,,,	5.0'	Grayish brown silty fine to coarse	8	SS	12.5-14.0	15-15-11	18		20,20	
		3.0	SAND AND GRAVEL, dark gray, medium stiff lean clay seam noted at 13.5' and 14.5'	9	SS	14.0-16.0	8-14-11-11	24			
906.0	16.0			10	SS	16.0-17.5	11-5-8	18			
		3.0'	Gray fine to coarse GRAVEL with SAND, wet-medium dense	11	SS	17.5-19.0	10-12-10	18			
903.0	19.0		-,, ,	12	SS	19.0-21.0	17-12-16-17	24	10		
		7.5'	Gray fine to coarse GRAVEL with	'-	SS	21.0-25.0		- '			
895.5	26.5		coarse SAND, dense	13	SS	25.0-26.5	33-22-16	18			:
895.5	25.5		TEST BORING COMPLETED								
			,		-	,		:			
							l .				
İ											:

Ger	ieral Notes	Remarks	Water Level Observations				
Driller	R. Rager, K. Goss - CMT		Immediate	16	Ft.		
Rig No.	MU-2	Drilling performed by CMT Laboratories, State College, Pa.	At Completion	16	Ft.		
Rig Type	Truck		After 24 Hours	BF	Ft.		
Method	4" HSA		Water Used in drilling	None	Ft.		
Sampling	2" SS						
ia			(Measured from arou	nd surfa	ce)		

CORPORATE CENTER - 4120 AIRPORT ROAD CINCINNATI, OH 45226 (513) 321-5816 FAX: (513) 321-0294

EMPLOYEE OWNED

GEOTECHNICAL, ENVIRONMENTAL AND TESTING ENGINEERS SINCE 1921

LOG OF TEST BORING

APPALACHIAN REGION 912 MORRIS STREET CHARLESTON, WV 25031 (304) 344-0821 FAX: (304) 342-4711 BLUEGRASS REGION 3940 OLYMPIC BLVD, STE 350 ERLANGER, KY 41018 (606) 283-8914 FAX: (606) 282-5415 CENTRAL OHIO REGION 790 MORRISON ROAD COLUMBUS, OH 43004 (614) 863-3113 FAX: (614) 863-0475

CLIENT:

Corning, Inc.

PROJECT:

Corning 2000 Project (Glass Museum Addition)

BORING LOCATION:

As shown on plan

ELEVATION REFERENCE:

Evans Survey dated December 1994

(1' contour interval)

BORING NO.:

DATE STARTED:

95-3 9-5-95

DATE COMPLETED:

9-5-95

WORK ORDER NO .:

						SAN	PLE		SOII	PROPE	RTIES
ELEV (Feet)	DEPTH (Feet)		DESCRIPTION OF MATERIALS	#	TYPE	DEPTH (Feet)	BLOW PER 6 INCHES	RECOVERY (inches)	W (%)	LL/PL (%)	pp" (tsf)
928.2	0.0	3.0	Brown to dark brown lean clay to silty	1	ss	0.0-1.5	9-8-10	18			
			clay, trace roots hairs, (Fill), dry to moist-stiff	2	SS	1.5-3.0	6-5-8	18			2.0
925.2	3.0	2.5'	Brown LEAN CLAY, trace sand, moist- stiff	3	SS	3.0-5.0	9-6-6-7	24	21		1.75
923.2	5.5	2.0'	Brown silty fine to medium SAND, trace gravel, occasional silty clay seams, medium dense	4	SS	5.5-7.0	5-5-5	18		:	
921.2	7.5	1.0	Brown and gray silty fine to coarse SAND AND GRAVEL, wet-medium dense	5 6 7 8 9	\$\$ \$\$ \$\$ \$\$ \$\$	7.5-9.0 9.5-11.0 11.5-13.0 13.5-15.0 15.5-17.0	5-12-10 9-11-14 6-6-8 8-11-11 14-10-10	18 18 18	12		
911.2	17.5	4.6'	Fine to medium GRAVEL with coarse SAND, wet-medium dense to very dense	10 11 12 13	SS SS SS	17.5-19.0 19.5-21.0 21.5-21.6	16-16-9 4-7-22 50/0.1'	18 18	9		
906.6	22.1		TEST BORING COMPLETED AUGER REFUSAL AT 22.0'	:	33	22.0-22.1	50/0.1'				

* Pocket Po	* Pocket Penetrometer Reading - Unconfined Compressive Strength, Tons/Sq. Ft.												
General Notes		Remarks	Water Level Observation										
Driller	J. R. Woodring - CMT	Drilling performed by CMT Laboratories, State College, Pa.	Immediate	NW	Ft.								
Rig No.	MU-2		At Completion	NW	Ft.								
Rig Type	Truck		After 24 Hours	BF	Ft.								
Method	4" HSA		Water Used in drilling	None	Ft.								
Sampling	2" SS		1	***************************************									
jg			(Measured from grou	und surfa	ce)								

CORPORATE CENTER - 4120 AIRPORT ROAD CINCINNATI, OH 45226 (513) 321-5816 FAX: (513) 321-0294

EMPLOYEE OWNED

GEOTECHNICAL, ENVIRONMENTAL AND TESTING ENGINEERS SINCE 1921

LOG OF TEST BORING

APPALACHIAN REGION 812 MORRIS STREET CHARLESTON, WV 25631 (304) 344-0821 FAX: (304) 342-4711

BLUEGRASS REGION 1940 OLYMPIC BLVD, STE 150 ERLANGER, KY 41018 (606) 283-9914 FAX: (606) 282-6415 CENTRAL OHIO REGION 790 MORRISON ROAD COLUMBUS, OH 43004 (614) 863-3113 FAX: (614) 863-8476

CLIENT: PROJECT:

Corning, Inc.

BORING NO.: DATE STARTED: 95-4

BORING LOCATION:

Corning 2000 Project (Glass Center Addition)

9-6-95

As shown on plan

DATE COMPLETED:

9-6-95

ELEVATION REFERENCE:

Evans Survey dated December 1994

(1' contour interval)

WORK ORDER NO.:

				SAMPLE						SOIL PROPERTIES		
ELEV (Feet)	DEPTH (Feet)		DESCRIPTION OF MATERIALS	#	TYPE	DEPTH (Feet)	BLOW PER 6 INCHES	RECOVERY (Inches)	W (%)	LL/PL (%)	PP* (tsf)	
930.0	0.0	1.5'	Dark brown lean clay, trace root hairs	1	SS	0.0-1.5	12-15-25	18				
928.5	1.5		(topsoil), dry to moist-stiff	2	SS	1.5-3.0	21-19-16	18				
927.0	3.0	1.5' 3.0'	Brown and gray silty fine to coarse sand and gravel, (fill), moist-dense	3	ss	3.0-5.0	11-11-9-9	24				
924.0	6.0	3.0	Brown silty fine SAND, moist-medium stiff	4	ss	6.0-7.5	4-5-4	18			1.0	
		- 2.5'	Gray to brownish gray SILTY CLAY, moist, medium stiff		ST	8.0-9.5 *					11.0	
921.5	8.5	1.5'	Gray and brown LEAN CLAY, moist- stiff	5	SS	8.5-10.0	5-4-6	18	25	29/21	2.75	
920.0	10.0	2.5'	Brown silty fine to medium SAND, moist-loose	6	SS	10.0-11.5	5-4-4	18				
917.5	12.5	5.0'	Brown and gray silty fine to coarse SAND AND GRAVEL, medium dense	7 8	SS SS	12.5-14.0 15.0-16.5	10-14-12 15-12-12		9			
912.5	17.5	4.5'	Brown and gray silty fine to coarse	9 10	SS SS	17.5-19.0 20.0-21.5	14-15-15 15-16-16	18 18	10			
908.0	22.0		SAND AND GRAVEL, dense TEST BORING COMPLETED AUGER REFUSAL at 22.0'									
			* offset borehole 5' north and pushed Shelby Tube					Augrap.				
				The state of the s								

Ger	neral Notes	Remarks	Water Level Obs	Water Level Observations			
Driller	J. R. Woodring - CMT	Drilling performed by CMT Laboratories, State College, Pa.	Immediate	NW F	EL.		
Rig No.	MU-2		At Completion	NW F	t.		
Rig Type	Truck		After 24 Hours	BF F	t.		
Method	4" HSA		Water Used in drilling	None	Ft.		
Sampling	2" SS						
jg			(Measured from grou	ind surface	∌)		

CORPORATE CENTER - 4120 AIRPORT ROAD CINCINNATI, OH 45226 (513) 321-5816 FAX: (513) 321-0294

EMPLOYEE OWNED

GEOTECHNICAL, ENVIRONMENTAL AND TESTING ENGINEERS SINCE 1921

LOG OF TEST BORING

APPALACHIAN REGION 912 MORRIS STREET CHARLESTON, WV 25031 (304) 344-0821 FAX: (304) 342-4711 BLUEGRASS REGION 3940 OLYMPIC BLVD, STE 350 ERLANGER, KY 41018 (606) 283-9914 FAX: (606) 282-6415

CENTRAL OHIO REGION 790 MORRISON ROAD COLUMBUS, OH 43004 (614) 863-3113 FAX: (614) 863-0475

CLIENT:

Corning, Inc.

BORING NO.:

95-5

PROJECT:

DATE STARTED:

9-6-95

BORING LOCATION:

Corning 2000 Project (Glass Center Addition) As shown on plan

DATE COMPLETED:

ELEVATION REFERENCE:

Evans Survey dated December 1994

9-6-95

(1' contour interval)

WORK ORDER NO.:

02092.200

		,										
F(5) (n=n=::]				SAN	PLE		SOII	PROPE	RTIES	
ELEV (Feet)	DEPTH (Feet)		DESCRIPTION OF MATERIALS	#	TYPE	DEPTH (Feet)	BLOW PER 6 INCHES	RECOVERY (Inches)	(%)	LL/PL (%)	PP* (tsf)	
928.7	0.0	0.6'	Brown topsoil (fill)	1	SS	0.0-1.5	9-30-5	18				
928.1	0.6	0.9'	Light brown lean clay, trace root hairs dry (fill),									
927.2	1.5	1.5	Dark gray lean clay with gravel (fill), moist-very stiff	2	SS	1.5-3.0	8-8-10	18			4.25	
925.7	3.0	9.5'	Gray and brown LEAN CLAY, trace organic matter, moist-very stiff	3 4 5 6	SS SS SS	3.0-5.0 6.0-7.5 8.5-10.0 10.0-11.5	8-6-6-7 8-8-11 3-4-5 5-5-6	18 18 18 18	23		2.5 3.0 2.0 2.75	
916.2	12.5	9.8'	Brown fine to coarse SAND AND GRAVEL, medium dense	7 8 9 10	SS SS SS	12.5-14.0 15.0-16.5 17.5-19.0 20.0-21.5	14-11-12 14-11-15 11-14-10 11-8-10	18 18 18	8		A retailment of the control of the c	
906.4	22.3		TEST BORING COMPLETED AUGER REFUSAL AT 22.3'	10		20.0-21.0	1170-10	10				
			;	-								
				The second secon			٠					
				<u> </u>	<u> </u>						ł	

* Pocket Penetrometer Reading - Unconfined Compressive Strength, Tons/Sq. Ft.

Gei	neral Notes	Remarks	Water Level Obs	ervations
Driller	J. R. Woodring - CMT	Drilling performed by CMT Laboratories, State College, Pa.	Immediate	NW Ft.
Rig No.	MU-2		At Completion	NW Ft.
Rig Type	Truck		After 24 Hours	BF Ft.
Method	.4" HSA		Water Used in drilling	None Ft.
Sampling	2" SS		1	
jg			(Measured from grou	ınd surface)

CORPORATE CENTER - 4120 AIRPORT ROAD CINCINNATI, OH 45226 (513) 321-5816 FAX: (513) 321-0294

EMPLOYEE OWNED)

GEOTECHNICAL, ENVIRONMENTAL AND TESTING ENGINEERS SINCE 1921

LOG OF TEST BORING

APPALACHIAN REGION 912 MORRIS STREET CHARLESTON, WV 25031 (304) 244-0821 FAX: (304) 342-4711

BLUEGRASS REGION 3940 OLYMPIC BLVD, 3TE 350 ERLANGER, KY 41018 (606) 283-9914 FAX: (606) 282-5415 CENTRAL OHIO REGION 790 MORRISON ROAD COLUMBUS, OH 43004 (614) 863-3113 FAX: (614) 863-0475

CLIENT: PROJECT:

Corning, Inc.

BORING NO.:

95-6 9-6-95

BORING LOCATION:

Corning 2000 Project (Glass Center Addition)
As shown on plan

DATE STARTED: DATE COMPLETED:

9-6-95

ELEVATION REFERENCE:

Evans Survey dated December 1994

(1' contour interval)

WORK ORDER NO.:

DESCRIPTION OF MATERIALS SOIL PROPERTIES											***************************************		
Feet Feet Feet DESCRIPTION OF MATERIALS # TYPE DEPTH (Feet) BLOW PER 6 INCHES W (%) CLIPL (Fat)							SAM	PLE		SOIL	. PROPE	RTIES	
926.4 0.9 0.9' Topsoil 1 SS 0.0-1.5 4-8-8 18	(Feet)	(Feet)		DESCRIPTION OF MATERIALS	#	TYPE					LL/PL (%)		
926.4 0.9 2.1' Brown silty clay, trace sand (fill), dry-stiff 2 SS 1.5-3.0 8-9-12 18 924.3 3.0 4.5' Dark brown CLAYEY SILT, moist-very stiff 5 SS 6.0-7.5 11-7-7 18 919.8 7.5 5.0' Brown LEAN CLAY, trace root hairs, moist-very stiff 6 SS 10.0-11.5 14-27-43 18 914.8 12.5 10.5' Brown fine to coarse SAND AND GRAVEL, moist-medium dense to very dense 10 SS 10.0-21.5 10.11-11 18 7 904.3 23.0 TEST BORING COMPLETED AUGER REFUSAL AT 23.0' Moved boring 10' east of staked location 10 SS 10.0-21.5 10.0 925.	927.3	0.0											
2.1' Brown silty clay, trace sand (fill), dry-stiff 3 SS 3.0-5.0 18-18-11-8 24 15 4.5' Dark brown CLAYEY SILT, moist-very stiff 5.0' Brown LEAN CLAY, trace root hairs, moist-very stiff 5 SS 8.5-10.0 8-10-10 18 18 3.0 3.25 12.5-14.0 26-15-15 18 7 7 7 7 8 7 7 7 8 7 7	926.4	na	0.9'	Topsoil	1	SS	0.0-1.5	4-8-8	18				
919.8 7.5 Dark brown CLAYEY SILT, moist-very stiff 4 SS 6.0-7.5 11-7-7 18 4.5+ stiff 5.0' Brown LEAN CLAY, trace root hairs, moist-very stiff 5 SS 8.5-10.0 8-10-10 18 18 3.0 3.25 10.0-11.5 14-27-43 18 3.0 3.25 10.5' Brown fine to coarse SAND AND SS 12.5-14.0 26-15-15 18 7 10.5' Brown fine to coarse SAND AND GRAVEL, moist-medium dense to very dense 10 SS 17.5-19.0 11-11-11 18 7 18 7 19.0-11-9 18 18 7 19.0-11-9 18 18 7 19.0-11-9 18 18 7 19.0-11-9 18 18 18 19.0-11-9 18 19.0-11-9 18 18 19.0-11-9 19.0-11-9 18 19.0-11-9 18 19.0-11-9 18 19.0-11-9 19.0-11-9 18 19.0-11-9 19.0-11-9 19.0-11-9 19.0-11-9 18 19.0-11-9 19.0-11-9 19.0-11-9 19.0-11-9 19.0-11-9 19.0-11-9 19	320.4	0.9	2.1'		2	ss	1.5-3.0	8- 9 -12	18				
919.8 7.5 5.0' Brown LEAN CLAY, trace root hairs, moist-very stiff 5 SS 8.5-10.0 8-10-10 18 18 3.0 3.25 914.8 12.5	924.3	3.0	4.5'	Dark brown CLAYEY SILT, moist-very stiff						15		4.5+	
904.3 23.0 TEST BORING COMPLETED AUGER REFUSAL AT 23.0' Moved boring 10' east of staked location 10.5' Brown fine to coarse SAND AND 8 SS 15.0-16.5 12-12-42 11-11-11 18 7 9 SS 20.0-21.5 10-11-9 18	919.8	7.5	5.0'	Brown LEAN CLAY, trace root hairs,									
904.3 23.0 GRAVEL, moist-medium dense to very dense 10 SS 17.5-19.0 11-11-11 18 7 TEST BORING COMPLETED AUGER REFUSAL AT 23.0' Moved boring 10' east of staked location	914.8	12.5	10.5'	Proventing to agarno CAND AND				26-15-15	18	7			
904.3 23.0 TEST BORING COMPLETED AUGER REFUSAL AT 23.0' Moved boring 10' east of staked location			10.5	GRAVEL, moist-medium dense to	9	SS	17.5-19.0	11-11-11		7			
	904.3	23.0	·	TEST BORING COMPLETED AUGER REFUSAL AT 23.0' Moved boring 10' east of staked location									

Ger	neral Notes	Remarks	Water Level Obs	ervation	S
Driller	J. R. Woodring - CMT	Drilling performed by CMT Laboratories, State College, Pa.	Immediate	NW Ft	t.
Rig No.	MU-2		At Completion	NW Ft	ŧ.
Rig Type	Truck		After 24 Hours	BF Ft	ŧ.
Method	4" HSA		Water Used in drilling	None	Ft.
Sampling	2" SS				
jg			(Measured from grou	ind surface))

CORPORATE CENTER - 4120 AIRPORT ROAD CINCINNATI, OH 45226 (513) 321-5816 FAX: (513) 321-0294

EMPLOYEE OWNED

GEOTECHNICAL, ENVIRONMENTAL AND TESTING ENGINEERS SINCE 1921

LOG OF TEST BORING

APPALACHAN REGION 912 MORRES STREET CHARLESTON, WV 25831 (304) 344-0821 FAX: (304) 342-4711

BLUEGRASS REGION 1940 OLYMPIC BLVD, STE 150 ERLANGER, KY 41018 (606) 282-9914 FAX: (606) 282-6415 CENTRAL OHIO REGION 790 MORRISON ROAD COLUMBUS, OH 43004 (614) 863-3113 FAX: (614) 863-0475

CLIENT:

Corning, Inc.

BORING NO.: DATE STARTED: 95-6A

PROJECT:

Corning 2000 Project (Glass Center Addition)

9-6-95

BORING LOCATION:

As shown on plan

DATE COMPLETED: 9-6-95

ELEVATION REFERENCE:

Evans Survey dated December 1994

(1' contour interval)

WORK ORDER NO.:

						SAW	PLE		SOI	PROPE	RTIES
ELEV (Feet)	DEPTH (Feet)		DESCRIPTION OF MATERIALS	#	TYPE	DEPTH (F oe t)	BLOW PER 6 INCHES	RECOVERY (Inches)	W (%)	LL/PL (%)	PP* (tsf)
928.6	0.0		T 4 600								
927.9	0.7	0.7	Topsoil (fill)	1	SS	0.0-1.5	3-5-11	18			
		3.0'	Light brown to dark brown lean clay, trace root hairs, occasional brick frag- ments (fill), dry-stiff	2	ss	1.5-3.0	12-14-18	18			
925.6	3.0		monts (m), dry-sm	3	SS	3.0-5.0	7-5-4-8	24			2.25
	٠,	3.0'	Brown lean clay to SILTY CLAY,								
922.6	6.0		occasional, root hairs, stiff	4	SS	6.0-7.5	5-5-7	18	17		2.25
-	0.0	_6.5 ¹	Brown LEAN CLAY, moist-stiff	5	SS	8.5-10.0	9-14-12	18			
				6	\$S	10.0-11.5	7-10-12	18			
916.1	12.5	2.5'	Denver and seem with the A	7	SS	12.5-14.0	15-15-17	18	8		
		2.5	Brown and gray silty fine to coarse SAND AND GRAVEL, moist-dense	1							
913.6	15.0			8	SS	15.0-15.5	14-16-16	18			
911.1	17.5	2.5'	Brown and gray silty fine to coarse SAND AND GRAVEL, very dense	_							
911.1	17.5	4.2	Brown and gray silty fine to coarse SAND AND GRAVEL, very dense	9 10	SS SS	17.5-19.0 20.0-21.5	20-22-24 22-31-50	18 18	9		
906.9	21.7										
			TEST BORING COMPLETED AUGER REFUSAL AT 21.7'					·			
			Moved boring 10.5' east of staked location due to hedges								
	. [: .								
						_ :	,	: .		,	
							·				
										·	
						· ·					

Gei	neral Notes	Remarks	Water Level Obs	Water Level Observations			
Driller	J. R. Woodring - CMT	Drilling performed by CMT Laboratories, State College, Pa.	Immediate	WM	Ft.		
Rig No.	MU-2		At Completion	NW	Ft.		
Rig Type	Truck		After 24 Hours	BF	Ft.		
Method	4" HSA		Water Used in drilling	None	Ft		
Sampling	2" SS						
jg			(Measured from grou	ind surfa	ce)		

4120 AIRPORT ROAD . CINCINNATI, OHIO 45226 . TEL. 513-321-5816

"AS A MUTUAL PROTECTION TO CLIENTS, THE PUBLIC, AND OURSELVES, ALL REPORTS ARE SUBMITTED AS THE CONFIDENTIAL PROPERTY OF CLIENTS, AND AUTHORIZATION FOR PUBLICATION OF STATEMENTS, CONCLUSIONS, OR EXTRACTS FROM OR REGARDING OUR REPORTS IS RESERVED PENDING OUR WRITTEN APPROVAL."

TEST BORING REPORT

6-28-77 js Page 1 of 2

CLIENT	The Cor	rning Muse	um of Glass	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	_ORDER No	869	03.1	
PROJECT_	Propos	ed Corning	Museum of Glass	· · · · · · · · · · · · · · · · · · ·	HOLE No	4	* * * * * * * * * * * * * * * * * * *	· .
	`	nown on pl		· · · · · · · · · · · · · · · · · · ·	. WHOMEN CONTROL OF THE CONTROL OF T			<u></u>
DRILLER	J. Mari	ín	DRILL No	2 9	DATE STAF	TED	5-10-77	
SAMPLER: DEPTH TO	AMETER_ DIAMETER WATER: 1	3.25" I. & TYPE MMEDIATE	2.0" C.D. Split Spoon	_HAMMER _UPON_CO	DATE_COM WT140# WT OMPLETION ISED_IN_DRII	FALL_ FALL_ 7	30"	
ELEVATION 922.1	DEPTH		DESCRIPTION OF MATERIALS	SAMPLE No.	SAMPLE DEPTH	TYPE OF SAMPLE	BLOWS PER 6" ON SAMPLER or % Core Rec.	Recovery
919.6	2.5	2.5° 0.5°	Dark brown topsoil with fine gravel (fill), moist - loose Dark brown clayey silt with organics, moist - medium stiff	1 2	0-1.5 2.5-3	SS	4-4-5 5	15' 6''
919.1	3.0'	3.01	Brown silty clay, moist - stiff	3 S1	3-4 4-6	SS ST	5-5 PUSHED	12' 20'
916.1	(6.0°	4.0'	Brown fine to coarse sand and gravel, very moist - medium dense	4	6-7.5	SS	6-6-7	10'
912.1	10.0	2,5	Brown fine to coarse sand and gravel, wet -dense	5	10-11.5	SS	15-25-17	7"
909.6	12.5							

Samples recovered from this test boring are available for inspection, which is strongly recommended. The company assumes no responsibility for interpretatrons made by others of load bearing, stability, excavating or other physical characteristics of materials penetrated in the boring. Respectfully submitted,

NUTTING CO. THE H. C.

Proposed Corning Museum of Glass Corning, New York PROJECT__

___HOLE No.____4_

ELEVATION 909.6	DEPTH 12.5'		DESCRIPTION OF MATERIALS	SAMPLE No.	SAMPLE DEPTH	TYPE OF SAMPLE	BLOWS PER 6" ON SAMPLER OF % Core Rec.	Recovery
		16.0*	Brown sandy fine to coarse gravel, wet - medium dense	6 7 8 9 10	12.5-14 15-16.5 17.5-19 20-21.5 25-26.5	SS 5 SS SS SS SS	12-10-14 18-18-10 6-8-7 6-7-14 8-10-13	9" 10' 7" 8" 11'
893.6	28.5	1.5'	Gray silty fine to coarse sand and shale fragments very moist - very dense	11	28.5-30	SS	45-35-50	16
892.1	30.0		BORING COMPLETED					
						·		
e de la companya de l						. 4.		
	Planting of the Park of the Pa				The state of the s			
		s			Wilder and the second		•	-
					The state of the s			

4120 AIRPORT ROAD . CINCINNATI, OHIO 45226 . TEL. 513-321-5816

"AB A MUTUAL PROTECTION TO CLIENTS, THE PUBLIC, AND OURSELVES, ALL REPORTS ARE SUBMITTED AB THE CONFIDENTIAL PROPERTY OF CLIENTS, AND AUTHORIZATION FOR PUBLICATION OF STATEMENTS. CONCLUSIONS, OR EXTRACTS FROM OR REGARDING OUR REPORTS IS RESERVED PENDING OUR WRITTEN APPROVAL."

TEST BORING REPORT

6-29-77 js Page 1 of 2

CLIENT	The Co	orning Mus	eum of Glass		ORDER N	o	8693.1	
PROJECT_		sed Cornin	g Museum of Glass		HOLE No.	ALA-A-A-COATE AT	7	
LOCATION.	41 -	own on plan						
DRILLER_	J. Mar	tin	DRILL No	29	DATE STA	RTED	5-10-77	
ELEVATION	REFEREN	CE			DATE CON		5-10-77	
CASING: DI	AMETER_	3.25" [.]	O. Augers			FALL		. :
					WT.		ed dry 6.5	
DEPTH TO	WATER_	MMEDIATE DAYS /	AFTER COMPLETION Backfill	UPON C	USED IN DR	ILLING E	com 15	
ELEVATION 921.9	DЕРТН О '		DESCRIPTION OF MATERIALS	SAMPLE No.	SAMPLE DEPTH	TYPE OF SAMPLE	BLOWS PER 6" ON SAMPLER or % Core Rec.	Recovery
		1.0'	Dark brown topsoil with fine gravel, (fill), moist - loose	1	0-1	SS	3-4	10"
920.9	1.0'	1.5'	Brown silty sandy fine to coarse gravel, (fill), moist - loose	2	1-1.5	SS	Б	4"
919.4	2.5'	7.5'	Brown fine to coarse sand and gravel, moist to very moist - medium dense	1	2.5-4 5-6.5 7.5-9	SS SS SS	10-16-14 8-9-9 10-10-8	12" 10" 7"
911.9	10.0	5.01	Brown fine to coarse sand and gravel, wet - dense	6 7	10-11.5	SS SS	15-30-19 11-15-30	- 8 ^{tt} 7 ^{tt}
906.9	15.0'	10.0'	Brown fine to coarse sand and gravel, wet - medium dense	8 9 10	15-16.5 17.5-19 20-21.5	SS SS SS	15-10-12 11-10-10 10-14-12	10'' 9'' 8''
896.9	25.0'	3.5'	Brown sandy fine to coarse gravel, wet - medium dense	11	25-26.5	SS	7-10-13	10"
893.4	28.51	*						

Samples recovered from this test boring are available for inspection, which is strongly recommended. The company assumes no responsibility for interpretations made by others of load bearing, stability, excavating or other physical characteristics of materials penetrated in the boring.

Respectfully submitted.

THE H. C. NUTTING CO.

By Du A. Doyle

PROJECT Proposed Corning Museum of Glass HOLE No. 7

Corning, New York

ELEVATION 893.4	рер тн 28.51		DESCRIPTION OF MATERIALS	SAMPLE No.	SAMPLE DEPTH	TYPE OF SAMPLE	BLOWS PER 6° ON SAMPLER or % Core Rec.	Recover
		1.5	Brown fine to coarse sand and gravel, wet - very dense	12	28.5-30	SS	24-50-58	8"
891.9	30.01							
			BORING COMPLETED			A CONTRACTOR OF THE PROPERTY O	The second secon	
	3					· characterministic - right-right-right		18 GOA AACON
	And the last of th						-	
	THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW							
						18		
		\$	~				•	

4120 AIRPORT ROAD - CINCINNATI, OHIO 45226 - TEL 513-321-5816

"AS A MUTUAL PROTECTION TO CLIENTS, THE PUBLIC. AND OURSELVES, ALL REPORTS ARE SUBMITTED AS THE CONFIDENTIAL PROPERTY OF GLIENTS, AND AUTHORIZATION FOR PUBLICATION OF STATEMENTS, CONCLUSIONS, OR EXTRACTS FROM OR REGARDING OUR REPORTS IS RESERVED FENDING OUR WRITTEN APPROVAL."

6-29-77 js

TEST BORING REPORT

CLIENT	The C	orning Mus	seum of Glass	ORDER No		•	8693.1	
PROJECT		sed Cornii		HOLE No			В-8	
LOCATION_ DRILLER	As sh	own on pla	DATE STARTED			5-8-77		
SAMPLER: D	AMETER	3.25" I. & TYPE2.0		HAMMER HAMMER	WT. 140# WT	FALL_ FALL_	30" dry 311	
ELEVATION 928.1			DESCRIPTION OF MATERIALS	SAMPLE No.	SAMPLE DEPTH	TYPE OF SAMPLE	BLOWS PER 6" ON SAMPLER or % Core Rec.	Recovery
925.1	3.01	3.01	Dark gray sandy silt with glass fragments, cinders and fine gravel (fill), moist - medium dense to loose	1 2	0-1.5 2.5-3	SS SS	2-4-8	18" 6" 10"
923.1	3,0	3.0'	Brown clayey silt, moist - medium stiff to stiff	SI	5-7	ST	PUSHED	14"
922.1	6.0'	9.0	Brown fine to coarse sand and gravel, moist to very moist - medium dense	4 5 6	7-8.5 10-11.5 12.5-14	SS SS SS	7-7-10 15-14-14 11-9-6	11" 6" 8"
913.1	15.0'	2.5	Brown fine to coarse sand and gravel, wet - loose	7	15-16.5	SS	9-4-4	6.11
910.6	17.5'	2.5'	Brown fine to coarse sand and gravel, wet - medium dense	8	17.5-19	SS	15-14-12	10"
908.1	20.0'	1.5	Brown fine to coarse sand and gravel, wet - dense	9	20-21.5	SS	20-13-21	12"
906.6	21.5	5						

Samples recovered from this test boring are available for inspection, which is strengly recommended. The company assumes no responsibility for interpretations made by others of load bearing, stability, excavating or other physical pharacteristics of materials penetrated in the boring.

BORING COMPLETED

Respectfully submitted.

THE H. C. NUTTING CO.

By Da Dayner

4120 AIRPORT ROAD . CINCINNATI, OHIO 45226 - TEL. 513-321-5816

"AS A MUTUAL PROTECTION TO CLIENTS, THE PUBLIC, AND OURSELVES, ALL REPORTS ARE SUBMITTED AS THE CONFIDENTIAL PROPERTY OF GLIENTS, AND AUTHORIZATION FOR PUBLICATION OF STATEMENTS, CONCLUSIONS, OR EXTRACTS FROM OR REGARDING OUR REPORTS IS RESERVED PENDING OUR WRITTEN APPROVAL."

TEST BORING REPORT

6-29-77 js Page 1 of 2

8693.1

CLIENT	The C	orning Mu	seum of Glass		ORDER No	o. <u>8693</u>	.1	
PROJECT_		sed Corni	ng Museum of Glass	**************************************	HOLE No.	9		·,
LOCATION.	Ad ob	own on pl						
DRILLER_	J. Ma	rtin	DRILL No	29	DATE STA	RTED5	-10-77	
ELEVATION	REFEREN	CE			DATE COM	IPLETED	5-10-77	
CASING: DI	AMETER_	3.25" I.	D. Augers	HAMMER	wr. 140	#FALL_		
SAMPLER: 1	DIAMETER	& TYPE			WT			
		MMEDIATE _		UPON C	OMPLETION_	cav	ed dry 6'	
DEPTH TO	WATER_	DAYS	AFTER COMPLETION Backfill	WATER I	USED IN DRI	LLING	2.5	
ELEVATION 928.9	DEPTH 0 '		DESCRIPTION OF MATERIALS	SAMPLE No.	SAMPLE DEPTH	TYPE OF SAMPLE	BLOWS PER 6" ON SAMPLER or % Core Rec.	Recovery
		0.51	Blacktop					
926.4	0.5'			1	0.5-2	SS	12-8-6	4"
		2.0'	Brown silty fine to coarse sand and gravel, (fill), moist - medium dense	-			12 0	
03/ /			M_{\odot}					
924.4	2.51	1.0'	Brown clayey silt, moist - stiff	2	2.5-3.5	SS	5-6	10"
923.4	3.5'							
743.4	3.3	6.51	Brown silty fine to coarse	3	3.5-4 5-6.5	SS SS	10 11-11-11	4" 10"
		0.3	sand and gravel, moist - medium dense	5	7.5-9	SS	10-10-9	7!'
916.9	10.0	2.5'	Brown fine to coarse sand and gravel, wet - medium dense	6	10-11.5	SS	7-8-12	7"
914.4	12.5	1.5'	Brown fine to coarse sand and fine gravel,	7	12.5-14	SS	3-3-3	411
912.9	14.0		wet - loose	[[

Samples recovered from this test boring are available for inspection, which is strongly recommended. The company assumes no responsibility for interpreta-tions made by others of load bearing, stability, excavating or other physical characteristics of materials penetrated in the boring.

The Corning Museum of Glass

Respectfully submitted,

THE H. C. NUTTING CO.

Proposed Corning Museum of Glass Corning, New York PROJECT___

HOLE No. 9

ELEVATION 912.9	оертн 14.0'		DESCRIPTION OF MATERIALS	SAMPLE No.	SAMPLE OEPTH	TYPE OF SAMPLE	BLOWS PER 6" ON SAMPLER or % Core Rec.	Recovery
	and the stage of t	6.0'	Brown sandy fine to coarse gravel, wet - medium dense	8 9	15-16.5 17.5-19	ss ss	7-7-10 13-12-15	5" 18"
906.9	20.0'	10.0	Brown fine to coarse sand and gravel, wet - very dense to dense		20-21.5 25-26.5 28.5-30	SS	18-50-20 26-18-25 13-30-21	10" 12" 15"
896.9	30.0			•				
,			BORING COMPLETED					
								-
						-		
		;	· .					
		,					7	
					The Language and the Company of the			

4120 AIRPORT ROAD . CINCINNATI, OHIO 45226 . TEL. 513-321-5816

"'AS A MUTUAL PROTECTION TO CLIENTS, THE PUBLIC, AND OURSELVES, ALL REPORTS ARE SUBMITTED AS THE CONFIDENTIAL PROPERTY OF CLIENTS, AND AUTHORIZATION FOR PUBLICATION OF STATEMENTS. CONCLUSIONS, OR EXTRACTS FROM OR REGARDING OUR REPORTS IS RESERVED PENDING OUR WRITTEN APPROVAL."

6-29-77 js

TEST BORING REPORT

Page 1 of 2

CLIENT	The (Corning Mu	seum of Glass	ORDER No. 8693.1					
PROJECT_		osed Corni ing, New Y	ng Museum of Glass	HOLE No. 10					
LOCATION_		nown on pl				· · · · · · · · · · · · · · · · · · ·			
DRILLER	J. Ma	artin	DRILL No	29	DATE STA	RTED	5-8-77		
ELEVATION CASING: DI SAMPLER: Ç DEPTH TO DEPTH TO	AMETER_ DIAMETER WATER: I	3.25" I & TYPE2 MMEDIATE		_HAMMER _UPON_C	WT	FALL_ FALL_ caved_c	lry 12		
ELEVATION 927.9	оертн О'		DESCRIPTION OF MATERIALS	SAMPLE No.	SAMPLE DEPTH	TYPE OF SAMPLE	BLOWS PER &" ON SAMPLER or % Core Rec.	Recovery	
924.9	2.5'	2,5	Dark brown topsoil with finé gravel and organic (fill), moist - medium dense	1 2	0-1.5	SS	4-7-11 4-6-6	15' 18'	
		3.5'	Brown clayey silt, moist-medium stiff	Sl	5-6	ST	PUSHED	15'	
921.4	6.01	4.0'	Brown silty fine to coarse sand and gravel moist - dense	3	6.0-7.5	SS	11-17-17	6"	
917.4	10.0'	5.0'	Brown fine to coarse sand and gravel, moist to very moist - medium dense	4 5	10-11.5 12.5-14	SS SS	10-12-12 9-11-7	9" 7"	
912.4	15.0	2.5	Brown fine to coarse sand and gravel, wet - medium dense	6	15-16.5	SS	9-10-7	7"	
909.9	17.5'	2.5'	Brown sandy fine to coarse gravel, wet - loose	7	17.5-19	SS ,	5-5-4"	6"	

Samples recovered from this test boring are available for inspection, which is strongly recommended. The company assumes no responsibility for interpretations made by others of load bearing, stability, excavating or other physical characteristics of materials penetrated in the boring.

907.4 20.01

Respectfully submitted,

THE H. C. NUTTING CO.

s, John & Tayre

Proposed Corning Museum of Glass HOLE No. 10
Corning, New York

*************************************		1		¥		1	I al cure neo	·
ELEVATION 907.4	DEPTH 20.0		DESCRIPTION OF MATERIALS	SAMPLE No.	SAMPLE DEPTH	TYPE OF SAMPLE	BLOWS PER 6" ON SAMPLER OF X COTE REC.	Recovery
		5.01	Brown fine to coarse gravel wet - medium dense	8	20-21.5	SS	20-31-32	15"
902.4	25.0	3.5	Brown sandy fine to coarse gravel, wet - medium dense	9	25-26.5	SS	10-10-15	9"
898.9	28.5	1.5	Brown fine to coarse sand and gravel, wet - dense	10	28.5-30	SS	14-14-21	10"
897.4	30.0'							
	,>		BORING COMPLETED					
							-	
						÷,		
Andrew Street,			·					
the state of the s								•
				e remembre desirable establishe				
The state of the s		•						
venenen er	and the second second							
1	1			1	-			

F	TAF	RTED SHED		2-2	7-84 7-84 1		Se)	MPIRE SINVESTIGATIONS INC. SUBSURFACE LOC	HOLE NO. B-1 SURF. ELEV. 927.0 G. W. DEPTH See Note #1
PRO	OJE	СТ _		Ste	ıben	Gla	ass Ex	tpansion · LOCATION Corning Gl	
DIPTHATE	SAMPLES	SAMPLE NO.	0/6	BLOW SAM:	PLER 12	N	BLOW ON CASING C	SOIL OR ROCK CLASSIFICATION	NOTES
5	1]]	4	4	5 4	9		TOPSOIL 0.5' FILL: Dark Brown coarse-fine SAND, GRAVEL & SILT, trace of cinders (Damp-Loose) -Similar w/wood, glass & coal (Moist-Loose) 8.5'	Note #1: Groundwater first encountered @ 15.5'. At completion water @ 21.3' inside 35' of augers. Auger out, water @ 15.8'
10-	1/2/1	3	5	5	-5	10		Brown SILT & CLAY (Moist-Medium) 12.5' Brown fine GRAVEL & coarse-fine SAND little to trace silt	
15-	/	2	7	10	10	20		(Wet-Firm)	
- - 25	<u>Y</u>	6	21	24		Δ7		-Compact	
 -30 	<u> </u>	7	24	32	32	64		Brown coarrse-fine SAND & GRAVEL, little to Some Silt (Wet-Very Compact)	
35	/	8	47	58	64	22		-Similar w/weathered Rock fragments Boring Terminated @ 36.5'	
.40_						1			

N = No blows to drave 2 "spoon 12 "with 140 | b pin wt falling "per blow CLASSIFICATION Visual by Driller C = No blows to drave "casing "with | b weight falling "per blow Engineering Technician with OD OF INVESTIGATION 3 3/4" ID Hollow Stem Auger Casing & Standard Penetration Test

F	INIS	HED		2-27 2-27 1 OF	-84		Son	SINVESTIGATIONS INC. SUBSURFACE LOC	HOLE NO. B-2 SURF. ELEV. 921.5 C. W. DEPTH See Note		
PR(OJE	CT _		Steu	ben	Gla	iss Ex	Repansion LOCATION Corning Gl Corning, N	lass Works NY		
DEPTH-CL	SAMPLES	SAMPLE NO.	0/6		S ON PLER 12 18		BLOW ON CASING C	SOIL OR ROCK CLASSIFICATION	NOTES		
- O								ASPHALT-0.4' Crushed Stone 1.2'	Note #1 - Groundwate first encountered @		
	7	1	11	11	27	38		Brown coarse-fine SAND & GRAVEL, Little silt, cobbles (Damp-Compact) 4.5'	9.7'. At completion water @ 10.2' inside 25' of augers		
5-	+	2	4	5	6	11	***************************************	Brown SILT & CLAY			
-	1							(Damp-Medium) 7.6'			
- - 20								Brown coarse-fine GRAVEL & SANDS, little to trace silt, cobbles (Wet-Firm)			
-	-Z	3	<u>8</u>	11	10	21		(NCC 111m)			
-	-			_							
15 - -		4	9	54	52	106		-Very Compact	· · · · · · · · · · · · · · · · · · ·		
	-						•	18.5'			
- - 20 -		5	29	46	53	99		Gray coarse-fine SAND & GRAVEL, Some Silt (weathered)	•		
_											
_ 25_						1					
	\mathbb{Z}	6	29	48	72	120		(Wet-Very Compact)	•		
								Boring Terminated @ 26.5'			
30-											
						_			-		
	1								•		
_	!										
= >	o b	lows	to do	ve	2	spoo	12	with140lb. pin wt. falling30per blowCLASS	Wisual by Dri neering Technician		

MĀ S

FIN	AR USI	TED HED		2-	27-8 27-8	4	SO) -	SUBSURFACE LOC	C. W. DEPTH See Note
PRO	EC	Τ		Ste	:ube:	n Gl	ass E	xpansion LOCATION Corning Gl Coring, NY	
DIFIELI	SAMPLES	SAMPLE NO.	0/6		VS ON IPLER	1 %	BLOW ON CASING C	SOIL OR ROCK CLASSIFICATION	NOTES
0 =								TOPSOIL 0.6' FILL: Dark Brown SILT (partially	Note #1: First encountered groundwat
_	Z]	3	4	4	8		organic), little sand, fine gravel (Moist-Loose) 5.0'	@ 15'. At completion water @ 15.3' inside 30' of augers. Auger
5	4	2	4	5	6	11		Dark Brown Organic SILT (Damp-Firm) 7.0'	out, water @ 14.9' —
0	7	3A 3E		11	11	22		Brown SILT, little sand, trace fine gravel (Moist) 10.5' Brown coarse-fine GRAVEL & SAND,	
5		4	6	6	7	13		little to trace silt, cobbles (Wet-Firm)	
	1	5	4	9	7	16			
5	1	6	20	30	36	66		25.51	_
	<u> </u>							Brown coarse-fine SAND & GRAVEL, little silt, cobbles (weathered coarse Gravels & Cobbles)	
	1	7	28	44	51	95		(Wet-Very Compact)	_
								Boring Terminated @ 31.5'	
5									•
								,	

with _______ lb. pin wt. falling _____ "per blow CLASSIFICATION & Engineering Technician ______ with _____ lb. weight falling _____ "per blow ______ 3 3/4" ID Hollow Stem Auger Casing & Standard Penetration Test

FI	11115	HED		2-2- 2-2-	4-84	[SINVESTIGATIONS INC. SUBSURFACE LOC	HOLE NO. B-5 SURF. ELEV. 921.7 G. W. DEPTH See Note
 						n Gl	ass E	xpansion LOCATION Corning Gl. Corning, N	ass Works
DIPTHEFT	SAMPLES	SAMPLE NO.	%	81,0W SAMI	PLER .	7 ~	BLOW ON CASING C	SOIL OR ROCK CLASSIFICATION	NOTES
= 0 = -								ASPHALT 0.3' Crushed Stone 1.1'	Note Groundwater
_	7	lA lB	8	8	9	17		FILL: Brown medium-fine SAND, little gravel, trace silt (Damp) 3.5	first encountered @ 9.2'. At completion water @ 9.6' inside
5	/	2	6	13	16	29		Layer of dark Brown organic SILT, roots changing to Brown SILT & fine SAND, trace gravel(Damp-Firm)5.5	25' of augers. Auge out, hole caved to 7.7'-no free water
-0 		3	- 12	13	10	23		Brown coarse-fine SAND & GRAVEL, little silt, cobbles (Damp to Wet-Firm)	·
15_			16	15	11	26			
	<u> </u>							18.5'	
-20 -	1	5	24	31	45	76		Gray coarse-fine SAND & GRAVEL, little to Some Silt, cobbles (Weathered Gravels) (Wet-Very Compact)	
25	/	6	47	92	71	163			
_				`				Boring Terminated @ 26.5'	
									· -
									-
									Visual by Dri ineering Technician

::*

H.C. Nutting Company 4120 Airport Road

Cincinnati, Ohio 45226

Corning, Inc.
Corning 2000 Project (Glass Center Addition)
Corning, New York
HCN W.O. # 02092.200 jg

TABLE I CLASSIFICATION TEST DATA

antistandista di tratti e di Salandista di Salandista di Salandista di Salandista di Salandista di Salandista d	naan ja	general en de la companya de la comp	And the state of t	A	tterberg Lim	its
Boring No.	Sample No.	Depth (Ft.)	Moisture Content (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index
95-1	5	7.5-9	8.8			
-	9	14-16	7.6			
	12	19-21	11.4			
05.0		^				
95-2	4	6-7.5	13.3			
	7	11-12.5	19.9	26	20	6
	12	19-21	10.1			
95-3	3	3-5	21.2			
	5	7.5-9	12.0			
	10	17.5-19	9.1			
95-4	5	8.5-10	24.6	29	21	8
	7	12.5-14	9.4			
	10	20-21.5	10.2			
95-5	3	3-5	22.8			
30-0	6	10-11.5	22.0			<u> </u>
	9	17.5-19	8.1			
95-6	3	3-5	14.8			
	7	12.5-14	6.5			
	9	17.5-19	7.2			
95-6A	4	6-7.5	17.1			
	 	12.5-14	7.8	······································		
	1 9	17.5-19	8.8			4

CONSOLIDATION TEST

DATE: 7-12-77

PROPOSED CORNING MUSEUM	OF GLASS - CORNING, NEW YORK.	·	CLIEN
BORING NO. 3	WATER CONTENT, %	INITIAL	ELNA
SAMPLE NO. S-1	DRY DENSITY, PCF	88.2	
DEPTH (FT.) 4.0-6.0	VOID RATIO	. 8837	.6387
	SATURATION, %	82.7	100.0
SAMPLE HEIGHT 99 IN. SAMPLE DIAMETER 2.50 IN. SPECIFIC GRAVITY 2.66	OVERBURDEN PRE PRECONSOLIDATION PRE COMPRESSION I	SSURE, P _c _	TSI

Dark brown silty clay, loamy, moist - medium

		, cra	y, Loamy, n	ioist -	<u>mediu</u>	a stif	<u> (B1</u>	ockey	Struct	ure)			
			0.9000		COEFFI	CIENT OF	PERM	EABILITY	K _∞ 10-	- CM/SEC			
			THITTAL IV	E.U DAG OTO	0.4 0.5	<u>1</u> ਕਿਕਤਜ਼ਾਜ	0	2.0	3.0	4.0 5.0	10	. 2	0 25
					11000	941							
STRESS	VOID		0.8500			TOE		$Z\sqrt{1}$		- - 			
TSF	RATIO			1-1-1	111			- N	1-1-1				
0.00	.8837							DIV	+				
0.20 0.40	.8801		0.8000						$\mathcal{X} + \mathcal{I}$	716	= 9.842-0	0 655	
0.40	8770			+++	- 				17	1117	III II	11002	
1.60	.8654								M		11111	1.2	
3.20	.8372 .7671	e)	0.7500	1-1-1					Q1		7 0 25:	32	ļ
6.40	. 6955	i		1-1-1			\rightarrow		++	+++	$\bot \bot \bot \bot \bot$		
12.80	.6193	5								NX			
25.60	.5396	RATIO,	0.700b							1 KM			
6.40	.5473	<u>o</u>					$\dashv +$	++	╂╼╂╌╂	+++-	\	 	
1.60	.5615	VOID											
0.40	.5718		0.6500		1111								
0.00	. 6387		FINAL VOID	RATIC	0.638	7		 		++++		 	
1							Cd.		0.54	╡┃┃┃		7	
			0.6000					1/2/0	-1251	7		100	
1	·						$\exists \exists$			 	+++-		
]]]	$\Phi \rightarrow \pm$			0,0	'				
		<u> </u>	015500	$\bot \bot \bot$				P	2				1
, I													- Par
			0 5666										
į		Q. I	0.5000 0.2		0.4 0.5	<u> </u>	$\bot\bot$						1
		Î	0.2	0.3 (0.5	1.0 PRESS!		2.0	3.0 4		10		25
				P	· * * * * * * * * * * * * * * * * * * *	(1/103/	σιτ ε, Ρ,	TONS/SO	λFI.		IGURE NO.		
		•		,	7 1 /			• • • • •	<i>.</i> .	L	ין החבר	Ε ?	

Main Office

2380 Commercial Blvd. State College, PA 16801 Phone: (814) 231-8845 Fax: (814) 231-8846

Branch Office

RD #5, Box 220-63 Montoursville, PA 17754 Phone: (717) 368-8607 Fax: (717) 368-8664

REPORT OF TRIAXIAL TESTING

2 1995 OCT

THE H. C. NUTTING CO.

Standard Test Method for:

Unconsolidated, Undrained Compressive Strength of Soils in Triaxial Compression

Project: Corning Glass Museum

File Number: 95874

Location: Corning, New York

Date: 21-Sep-95

Mr. George Webb, P. E. / H.C. Nutting

Boring Number: TB - 95 - 4

Sample Description:

Gray Silt

Sample Depth: 8.0 - 9.5 feet

ASTM Designation:

D 2850

Recovery: 1.2 feet

Sample Source:

Client:

Undisturbed Sample from Shelby Tube Extract

Specimen Data:

Average Height:	<u>5.87</u>	inches	Specific Gravity:	2.68		
Average Diameter:	2.78	inches	Moisture Content:	<u>16.2</u>	percent	
Height/Diameter Ratio:	2.1		Wet Unit Weight:	<u>115.8</u>	pounds per	cubic foot
Average Area:	<u>6.07</u>	sq. in.	Dry Unit Weight:	99.7	pounds per	cubic foot
Degree of Saturation:	<u>64.1</u>	percent	Void Ratio:	0.6781		
Test Data:						
Confinement Pressure:	8.0	psi	Axial Strain	at Failure:	<u>7.48</u>	percent
Average Rate of Axial Strain to Failure	<u>1.14</u>	% / minute	Minor Stress	at Failure:	8.0	psi
Type of Failure:	<u>Bulge</u>		Major Stress	at Failure:	22.7	psi
Compressive Strength:	14.7	psi	Undrained Shear	Strength:	: <u>7.0</u>	psi

Notes:

- 1.) Several gravel particles, approximately 3/8 inch, were present within test specimen.
- 2.) Moisture Content obtained from sample trimmings.
- 3.) Some sample patching was required.

construction material testing, engineering and forensics ■ geotechnical exploration

Main Office 2380 Commercial Blvd. State College, PA 16801 Phone: (814) 231-8845

Fax: (814) 231-8846

Branch Office

RD #5, Box 220-63 Montoursville, PA 17754 Phone: (\$17) 368-8607 Fax: (717) 368-8664

OCT 2 1995

Unconsolidated - Undrained Triaxial Test

THE H. C. NUTTING CO.

Project:

Corning Glass Museum

File Number: 95874

Description: Gray Silt

Date:

21-Sep-95

Boring:

<u>TB - 95 - 4</u>

Depth:

10 - 12 feet

Sample Number

1

Length 5.8

5.87 inches

Area

6.07 sq. in.

Confining Pressure

8 psi

Diameter

2.78 inches

Specimen	Vertical		Corected	Corected	Axial	Deviatory
Deformation	Strain	Load	load	Area	Strain	Stress
(in)	(in/in)	(# of_div.)	(pounds)	(sq. in.)	(%)	(psi)
0.000	. 0.000	0	0	6.070	0.000	0.00
0.025	0.004	5	20	6.096	0.426	3.28
0.050	0.009	9	31	6.122	0.852	5.06
0.075	0.013	11	36	6.148	1.278	5.86
0.100	0.017	13	41	6.175	1.704	6.64
0.125	0.021	17	52	6.202	2.129	8.38
0.150	0.026	19	57	6.229	2.555	9.15
0.175	0.030	21	63	6.256	2.981	10.07
0.200	0.034	22	65	6.284	3.407	10.34
0.225	0.038	25	73	6.312	3.833	11.57
0.250	0.043	26	76	6.340	4.259	11.99
0.275	0.047	27	78	6.368	4.685	12.25
0.300	0.051	28	81	6.397	5.111	12.66
0.325	0.055	29	84	6.426	5.537	13.07
0.350	0.060	31	89	6.455	5.963	13.79
0.375	. 0.064	31	.89	6.484	6.388	13.73
0.400	0.068	- 32	92	6.514	6.814	14.12
0.425	0.072	. 34	97	6.544	7.240	14.82
0.450	0.077	34	97	6.574	7.666	14.76
0.475	0.081	32	92	6.604	8.092	13.93
0.500	0.085	28	81	6.635	8.518	12.21
0.525	0.089	26	76	6.666	8.944	11.40

		oefficien	ts of	Consoli	dation (s	q. in.	/min.)		
No.	Load	CV	No.	Load	CV	No.	Load	CV	
1	0.25	0.027	-				£ /		4
2	0.50	0.046					<u> </u>		·
3	1.00	0.032							
4	2.00	0.046					OCT	2 1995	
5	4.00	0.051					001	10 1000	
6	8.00	0.025					FUE LL C	NUTTING CO.	
7	16.00	0.065					ina n. u.	NOTHING CO.	
			- Anna				# #		i Ž

Natural Saturation		Dry Dens. (pcf)	LL	PI	Sp.Gr.	Precons. (tsf)	حق -	e,
62.2 %	16.2 %	98.6	***************************************		2.680	0.48	0.19	0.6974

TEST RESULTS Co at 2.00 tsf applied = 0.046 sq. in./min. C_{ij} at 16.00 tsf applied = 0.065 sq. in./min.

Project No.: 95874

Project: Corning Glass Museum Location: Corning, New York Test Boring 95-4

Date: 13 Sept. 1995

CONSOLIDATION TEST REPORT (ASTM D 2435)

CMT Laboratories

MATERIAL DESCRIPTION

Gray Silt

Remarks: *

Depth of 8.0 - 9.5 feet Shelby Tube Sample 1.2 feet of recovery Client: H.C. Nuttig

Attn: Mr. George Webb

Fig. No. 1

Project No.: 95870

Project: Corning Glass Museum Location: Corning, New York Test Boring 95-4

Date: 13 Sept. 1995

Project No.: 95870

Project: Corning Glass Museum Location: Corning, New York

Test Boring 95-4

Date: 13 Sept. 1995

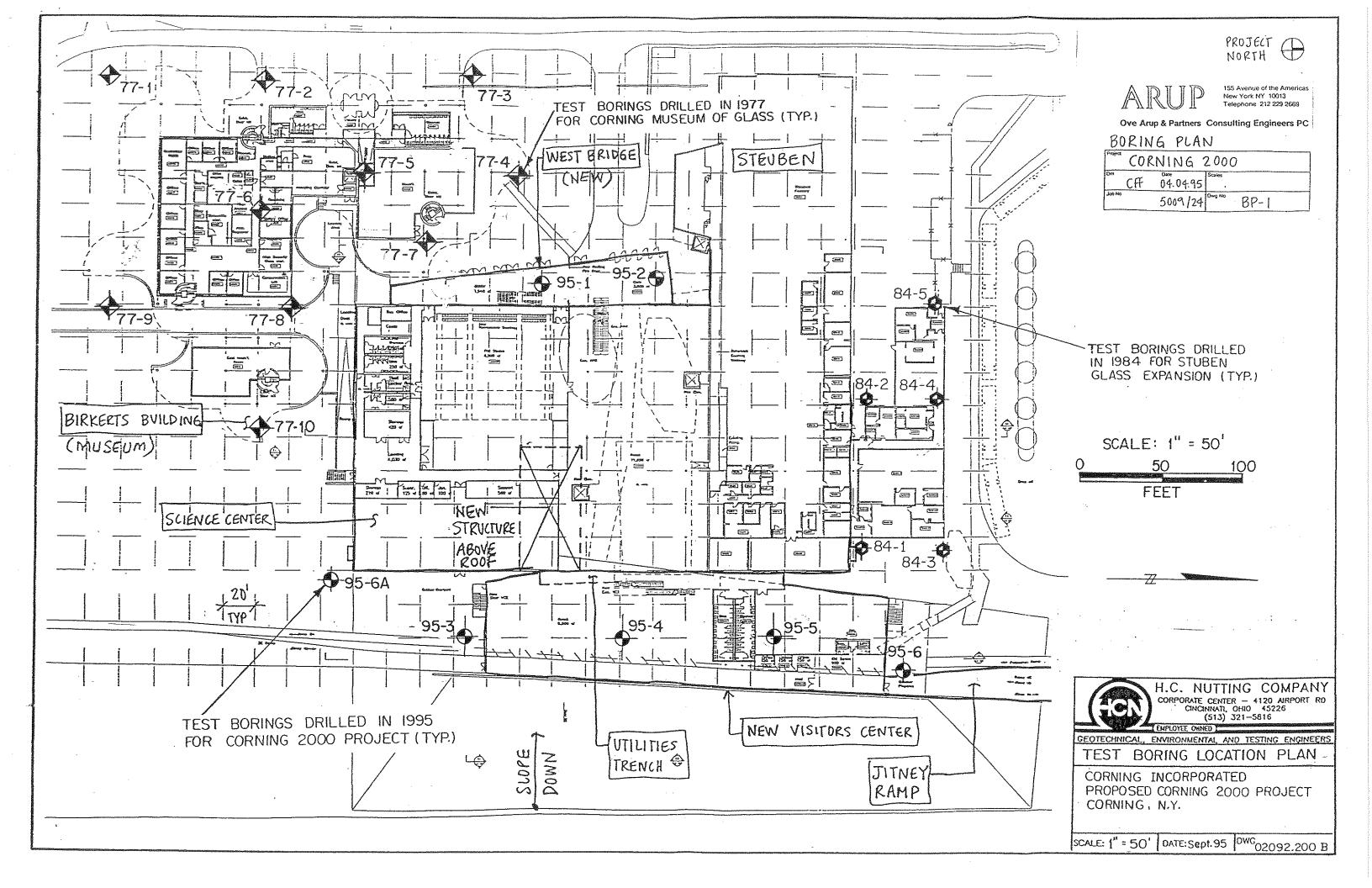
Project No.: 95870

Project: Corning Glass Museum Location: Corning, New York

Test Boring 95-4

Date: 13 Sept. 1995

Project No.: 95870


Project: Corning Glass Museum Location: Corning, New York Test Boring 95-4 Date: 13 Sept. 1995

